Sample records for cycle assessment model

  1. Waste-to-energy: A review of life cycle assessment and its extension methods.

    PubMed

    Zhou, Zhaozhi; Tang, Yuanjun; Chi, Yong; Ni, Mingjiang; Buekens, Alfons

    2018-01-01

    This article proposes a comprehensive review of evaluation tools based on life cycle thinking, as applied to waste-to-energy. Habitually, life cycle assessment is adopted to assess environmental burdens associated with waste-to-energy initiatives. Based on this framework, several extension methods have been developed to focus on specific aspects: Exergetic life cycle assessment for reducing resource depletion, life cycle costing for evaluating its economic burden, and social life cycle assessment for recording its social impacts. Additionally, the environment-energy-economy model integrates both life cycle assessment and life cycle costing methods and judges simultaneously these three features for sustainable waste-to-energy conversion. Life cycle assessment is sufficiently developed on waste-to-energy with concrete data inventory and sensitivity analysis, although the data and model uncertainty are unavoidable. Compared with life cycle assessment, only a few evaluations are conducted to waste-to-energy techniques by using extension methods and its methodology and application need to be further developed. Finally, this article succinctly summarises some recommendations for further research.

  2. Toward Automated Inventory Modeling in Life Cycle Assessment: The Utility of Semantic Data Modeling to Predict Real-WorldChemical Production

    EPA Science Inventory

    A set of coupled semantic data models, i.e., ontologies, are presented to advance a methodology towards automated inventory modeling of chemical manufacturing in life cycle assessment. The cradle-to-gate life cycle inventory for chemical manufacturing is a detailed collection of ...

  3. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com; Ometto, Aldo Roberto; Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, thismore » paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil. - Highlights: • A discussion is made on performing regionalized impact assessments using spatial differentiation in LCA. • A review is made of 20 characterization models for land use impacts in Life Cycle Impact Assessment. • Four characterization models are recommended according to different land use impact pathways for application in Brazil.« less

  4. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  5. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    NASA Technical Reports Server (NTRS)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  6. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  7. Reference H Cycle 3 Stability, Control, and Flying Qualities Batch Assessments

    NASA Technical Reports Server (NTRS)

    Henderson, Dennis K.

    1999-01-01

    This work is an update of the assessment completed in February of 1996, when a preliminary assessment report was issued for the Cycle 2B simulation model. The primary purpose of the final assessment was to re-evaluate each assessment against the flight control system (FCS) requirements document using the updated model. Only a limited number of final assessments were completed due to the close proximity of the release of the Langley model and the assessment deliverable date. The assessment used the nonlinear Cycle 3 simulation model because it combines nonlinear aeroelastic (quasi-static) aerodynamic with hinge moment and rate limited control surface deflections. Both Configuration Aerodynamics (Task 32) and Flight Controls (Task 36) were funded in 1996 to conduct the final stability and control assessments of the unaugmented Reference H configuration in FY96. Because the two tasks had similar output requirements, the work was divided such that Flight Controls would be responsible for the implementation and checkout of the simulation model and Configuration Aerodynamics for writing Madab "script' files, conducting the batch assessments and writing the assessment report. Additionally, Flight Controls was to investigate control surface allocations schemes different from the baseline Reference H in an effort to fulfill flying qualities criteria.

  8. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include n...

  9. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  10. Assessing tropical rainforest growth traits: Data - Model fusion in the Congo basin and beyond

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    Virgin forest ecosystems resemble the key reference level for natural tree growth dynamics. The mosaic cycle concept describes such dynamics as local disequilibria driven by patch level succession cycles of breakdown, regeneration, juvenescence and old growth. These cycles, however, may involve different traits of light demanding and shade tolerant species assemblies. In this work a data model fusion concept will be introduced to assess the differences in growth dynamics of the mosaic cycle of the Western Congolian Lowland Rainforest ecosystem. Field data from 34 forest patches located in an ice age forest refuge, recently pinpointed to the ground and still devoid of direct human impact up to today - resemble the data base. A 3D error assessment procedure versus BGC model simulations for the 34 patches revealed two different growth dynamics, consistent with observed growth traits of pioneer and late succession species assemblies of the Western Congolian Lowland rainforest. An application of the same procedure to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to Central American Pacific rainforests confirms the strength of the 3D error field data model fusion concept to assess different growth traits of the mosaic cycle of natural forest dynamics.

  11. Life Space Crisis Intervention and Functional Behavioral Assessment: The Guiding Models.

    ERIC Educational Resources Information Center

    McGowan, Lawrence P.

    2002-01-01

    The Conflict Cycle employed in Life Space Crisis Intervention offers a model for conducting functional assessment with students facing disciplinary action for behavior that may be related to emotional disturbance and other disabilities. This article analyzes the Conflict Cycle, using principles from cognitive behavioral science. (Contains 13…

  12. How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?

    Treesearch

    C.R. Schwalm; D.N. Huntzinger; R.B. Cook; Y. Wei; I.T. Baker; R.P. Neilson; B. Poulter; Peter Caldwell; G. Sun; H.Q. Tian; N. Zeng

    2015-01-01

    Significant changes in the water cycle are expected under current global environmental change. Robust assessment of present-day water cycle dynamics at continental to global scales is confounded by shortcomings in the observed record. Modeled assessments also yield conflicting results which are linked to differences in model structure and simulation protocol. Here we...

  13. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  14. Life cycle assessment of asphalt pavement maintenance.

    DOT National Transportation Integrated Search

    2014-01-01

    This study aims at developing a life cycle assessment (LCA) model to quantify the impact of pavement preservation on energy consumption and greenhouse gas (GHG) emissions. The construction stage contains material, manufacture, transportation and plac...

  15. A case study by life cycle assessment

    NASA Astrophysics Data System (ADS)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  16. Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.

    2017-12-01

    Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.

  17. Operations Assessment of Launch Vehicle Architectures using Activity Based Cost Models

    NASA Technical Reports Server (NTRS)

    Ruiz-Torres, Alex J.; McCleskey, Carey

    2000-01-01

    The growing emphasis on affordability for space transportation systems requires the assessment of new space vehicles for all life cycle activities, from design and development, through manufacturing and operations. This paper addresses the operational assessment of launch vehicles, focusing on modeling the ground support requirements of a vehicle architecture, and estimating the resulting costs and flight rate. This paper proposes the use of Activity Based Costing (ABC) modeling for this assessment. The model uses expert knowledge to determine the activities, the activity times and the activity costs based on vehicle design characteristics. The approach provides several advantages to current approaches to vehicle architecture assessment including easier validation and allowing vehicle designers to understand the cost and cycle time drivers.

  18. 14 CFR 91.1505 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... A300 (excluding the -600 series), the flight cycle implementation time is: (i) Model B2: 36,000 flights... operate an Airbus Model A300 (excluding the -600 series), British Aerospace Model BAC 1-11, Boeing Model... Lockheed Model L-1011 airplane beyond applicable flight cycle implementation time specified below, or May...

  19. A comparison of major petroleum life cycle models | Science ...

    EPA Pesticide Factsheets

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  20. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    PubMed

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Environmental modelling of use of treated organic waste on agricultural land: a comparison of existing models for life cycle assessment of waste systems.

    PubMed

    Hansen, Trine Lund; Christensen, Thomas Højlund; Schmidt, Sonia

    2006-04-01

    Modelling of environmental impacts from the application of treated organic municipal solid waste (MSW) in agriculture differs widely between different models for environmental assessment of waste systems. In this comparative study five models were examined concerning quantification and impact assessment of environmental effects from land application of treated organic MSW: DST (Decision Support Tool, USA), IWM (Integrated Waste Management, U.K.), THE IFEU PROJECT (Germany), ORWARE (ORganic WAste REsearch, Sweden) and EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies, Denmark). DST and IWM are life cycle inventory (LCI) models, thus not performing actual impact assessment. The DST model includes only one water emission (biological oxygen demand) from compost leaching in the results and IWM considers only air emissions from avoided production of commercial fertilizers. THE IFEU PROJECT, ORWARE and EASEWASTE are life cycle assessment (LCA) models containing more detailed land application modules. A case study estimating the environmental impacts from land application of 1 ton of composted source sorted organic household waste was performed to compare the results from the different models and investigate the origin of any difference in type or magnitude of the results. The contributions from the LCI models were limited and did not depend on waste composition or local agricultural conditions. The three LCA models use the same overall approach for quantifying the impacts of the system. However, due to slightly different assumptions, quantification methods and environmental impact assessment, the obtained results varied clearly between the models. Furthermore, local conditions (e.g. soil type, farm type, climate and legal regulation) and waste composition strongly influenced the results of the environmental assessment.

  2. Reasoning with Causal Cycles

    ERIC Educational Resources Information Center

    Rehder, Bob

    2017-01-01

    This article assesses how people reason with categories whose features are related in causal cycles. Whereas models based on causal graphical models (CGMs) have enjoyed success modeling category-based judgments as well as a number of other cognitive phenomena, CGMs are only able to represent causal structures that are acyclic. A number of new…

  3. Chasing Perfection: Should We Reduce Model Uncertainty in Carbon Cycle-Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Lombardozzi, D.; Wieder, W. R.; Lindsay, K. T.; Thomas, R. Q.

    2015-12-01

    Earth system model simulations of the terrestrial carbon (C) cycle show large multi-model spread in the carbon-concentration and carbon-climate feedback parameters. Large differences among models are also seen in their simulation of global vegetation and soil C stocks and other aspects of the C cycle, prompting concern about model uncertainty and our ability to faithfully represent fundamental aspects of the terrestrial C cycle in Earth system models. Benchmarking analyses that compare model simulations with common datasets have been proposed as a means to assess model fidelity with observations, and various model-data fusion techniques have been used to reduce model biases. While such efforts will reduce multi-model spread, they may not help reduce uncertainty (and increase confidence) in projections of the C cycle over the twenty-first century. Many ecological and biogeochemical processes represented in Earth system models are poorly understood at both the site scale and across large regions, where biotic and edaphic heterogeneity are important. Our experience with the Community Land Model (CLM) suggests that large uncertainty in the terrestrial C cycle and its feedback with climate change is an inherent property of biological systems. The challenge of representing life in Earth system models, with the rich diversity of lifeforms and complexity of biological systems, may necessitate a multitude of modeling approaches to capture the range of possible outcomes. Such models should encompass a range of plausible model structures. We distinguish between model parameter uncertainty and model structural uncertainty. Focusing on improved parameter estimates may, in fact, limit progress in assessing model structural uncertainty associated with realistically representing biological processes. Moreover, higher confidence may be achieved through better process representation, but this does not necessarily reduce uncertainty.

  4. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; William C. Parcell; Bruce S. Hart

    The principal research effort for Year 2 of the project is on stratigraphic model assessment and development. The research focus for the first six (6) months of Year 2 is on T-R cycle model development. The emphasis for the remainder of the year is on assessing the depositional model and developing and testing a sequence stratigraphy model. The development and testing of the sequence stratigraphy model has been accomplished through integrated outcrop, well log and seismic studies of Mesozoic strata in the Gulf of Mexico, North Atlantic and Rocky Mountain areas.

  5. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  6. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).

    PubMed

    Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H

    2008-02-01

    A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.

  7. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project--case study of Xi'an, China.

    PubMed

    Zhang, Q H; Wang, X C; Xiong, J Q; Chen, R; Cao, B

    2010-03-01

    In order to illuminate the benefit of a wastewater treatment and reuse project, a life cycle assessment (LCA) model was proposed by combining the process-based LCA and the input-output based LCA in one framework and using energy consumption as the sole parameter for quantitative evaluation of the project. The life cycle consumption was evaluated mainly by life cycle inventory (LCI) analysis taking into account the construction phase, operation phase and demolishment phase of the project. For evaluating the life cycle benefit of treated water reuse, attention was paid to the decrease of secondary effluent discharge and water saving. As a result of comprehensive LCA analysis of a case project in Xi'an, China, it was understood that the life cycle benefit gained from treated wastewater reuse much surpassed the life cycle energy consumption. The advantage of wastewater treatment and reuse was well shown by LCA analysis using the proposed model. 2009 Elsevier Ltd. All rights reserved.

  8. Environmental characteristics comparison of Li-ion batteries and Ni-MH batteries under the uncertainty of cycle performance.

    PubMed

    Yu, Yajuan; Wang, Xiang; Wang, Dong; Huang, Kai; Wang, Lijing; Bao, Liying; Wu, Feng

    2012-08-30

    An environmental impact assessment model for secondary batteries under uncertainty is proposed, which is a combination of the life cycle assessment (LCA), Eco-indicator 99 system and Monte Carlo simulation (MCS). The LCA can describe the environmental impact mechanism of secondary batteries, whereas the cycle performance was simulated through MCS. The composite LCA-MCS model was then carried out to estimate the environmental impact of two kinds of experimental batteries. Under this kind of standard assessment system, a comparison between different batteries could be accomplished. The following results were found: (1) among the two selected batteries, the environmental impact of the Li-ion battery is lower than the nickel-metal hydride (Ni-MH) battery, especially with regards to resource consumption and (2) the lithium ion (Li-ion) battery is less sensitive to cycle uncertainty, its environmental impact fluctuations are small when compared with the selected Ni-MH battery and it is more environmentally friendly. The assessment methodology and model proposed in this paper can also be used for any other secondary batteries and they can be helpful in the development of environmentally friendly secondary batteries. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    NASA Astrophysics Data System (ADS)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  10. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production.

    PubMed

    van Zelm, Rosalie; Larrey-Lassalle, Pyrène; Roux, Philippe

    2014-04-01

    In Life Cycle Assessment (LCA), the Life Cycle Inventory (LCI) provides emission data to the various environmental compartments and Life Cycle Impact Assessment (LCIA) determines the final distribution, fate and effects. Due to the overlap between the Technosphere (anthropogenic system) and Ecosphere (environment) in agricultural case studies, it is, however, complicated to establish what LCI needs to capture and where LCIA takes over. This paper aims to provide guidance and improvements of LCI/LCIA boundary definitions, in the dimensions of space and time. For this, a literature review was conducted to provide a clear overview of available methods and models for both LCI and LCIA regarding toxicological assessments of pesticides used in crop production. Guidelines are provided to overcome the gaps between LCI and LCIA modeling, and prevent the overlaps in their respective operational spheres. The proposed framework provides a starting point for LCA practitioners to gather the right data and use the proper models to include all relevant emission and exposure routes where possible. It is also able to predict a clear distinction between efficient and inefficient management practices (e.g. using different application rates, washing and rinsing management, etc.). By applying this framework for toxicological assessments of pesticides, LCI and LCIA can be directly linked, removing any overlaps or gaps in between the two distinct LCA steps. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Digital Avionics Information System (DAIS): Life Cycle Cost Impact Modeling System (LCCIM)--A Managerial Overview. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; Baran, H. Anthony

    This report gives a managerial overview of the Life Cycle Cost Impact Modeling System (LCCIM), which was designed to provide the Air Force with an in-house capability of assessing the life cycle cost impact of weapon system design alternatives. LCCIM consists of computer programs and the analyses which the user must perform to generate input data.…

  12. LIFE CYCLE IMPACT ASSESSMENT WORKSHOP SUMMARY - MIDPOINTS VERSUS ENDPOINTS: THE SACRIFICES AND BENEFITS

    EPA Science Inventory

    On 5/25-26/2000 in Brighton, England, the third international workshop was held under the umbrella of UNEP addressing issues in Life Cycle Impact Assessment (LCIA). The workshop provided a forum for experts to discuss midpoint vs. endpoint modeling. Midpoints are considered to be...

  13. Developing teachers' models for assessing students' competence in mathematical modelling through lesson study

    NASA Astrophysics Data System (ADS)

    Aydogan Yenmez, Arzu; Erbas, Ayhan Kursat; Cakiroglu, Erdinc; Alacaci, Cengiz; Cetinkaya, Bulent

    2017-08-01

    Applications and modelling have gained a prominent role in mathematics education reform documents and curricula. Thus, there is a growing need for studies focusing on the effective use of mathematical modelling in classrooms. Assessment is an integral part of using modelling activities in classrooms, since it allows teachers to identify and manage problems that arise in various stages of the modelling process. However, teachers' difficulties in assessing student modelling work are a challenge to be considered when implementing modelling in the classroom. Thus, the purpose of this study was to investigate how teachers' knowledge on generating assessment criteria for assessing student competence in mathematical modelling evolved through a professional development programme, which is based on a lesson study approach and modelling perspective. The data was collected with four teachers from two public high schools over a five-month period. The professional development programme included a cyclical process, with each cycle consisting of an introductory meeting, the implementation of a model-eliciting activity with students, and a follow-up meeting. The results showed that the professional development programme contributed to teachers' knowledge for generating assessment criteria on the products, and the observable actions that affect the modelling cycle.

  14. Test of US Federal Life Cycle Inventory Data Interoperability

    EPA Science Inventory

    Life cycle assessment practitioners must gather data from a variety of sources. For modeling activities in the US, practitioners may wish to use life cycle inventory data from public databases and libraries provided by US government entities. An exercise was conducted to test if ...

  15. Digital Avionics Information System (DAIS): Life Cycle Cost Impact Modeling System Reliability, Maintainability, and Cost Model (RMCM)--Description. Users Guide. Final Report.

    ERIC Educational Resources Information Center

    Goclowski, John C.; And Others

    The Reliability, Maintainability, and Cost Model (RMCM) described in this report is an interactive mathematical model with a built-in sensitivity analysis capability. It is a major component of the Life Cycle Cost Impact Model (LCCIM), which was developed as part of the DAIS advanced development program to be used to assess the potential impacts…

  16. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle

    NASA Astrophysics Data System (ADS)

    Canovas, Peter A.; Shock, Everett L.

    2016-12-01

    Integrating microbial metabolism into geochemical modeling allows assessments of energy and mass transfer between the geosphere and the microbial biosphere. Energy and power supplies and demands can be assessed from analytical geochemical data given thermodynamic data for compounds involved in catabolism and anabolism. Results are reported here from a critique of the available standard state thermodynamic data for organic acids and acid anions involved in the citric acid cycle (also known as the tricarboxylic acid cycle or the Krebs cycle). The development of methods for estimating standard state data unavailable from experiments is described, together with methods to predict corresponding values at elevated temperatures and pressures using the revised Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous species. Internal consistency is maintained with standard state thermodynamic data for organic and inorganic aqueous species commonly used in geochemical modeling efforts. Standard state data and revised-HKF parameters are used to predict equilibrium dissociation constants for the organic acids in the citric acid cycle, and to assess standard Gibbs energies of reactions for each step in the cycle at elevated temperatures and pressures. The results presented here can be used with analytical data from natural and experimental systems to assess the energy and power demands of microorganisms throughout the habitable ranges of pressure and temperature, and to assess the consequences of abiotic organic compound alteration processes at conditions of subsurface aquifers, sedimentary basins, hydrothermal systems, meteorite parent bodies, and ocean worlds throughout the solar system.

  17. Environmental performance of green building code and certification systems.

    PubMed

    Suh, Sangwon; Tomar, Shivira; Leighton, Matthew; Kneifel, Joshua

    2014-01-01

    We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).

  18. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsiliyannis, C.A., E-mail: anion@otenet.gr

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast andmore » slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand.« less

  19. A comparison between the multimedia fate and exposure models CalTOX and uniform system for evaluation of substances adapted for life-cycle assessment based on the population intake fraction of toxic pollutants.

    PubMed

    Huijbregts, Mark A J; Geelen, Loes M J; Hertwich, Edgar G; McKone, Thomas E; van de Meent, Dik

    2005-02-01

    In life-cycle assessment (LCA) and comparative risk assessment, potential human exposure to toxic pollutants can be expressed as the population intake fraction (iF), which represents the fraction of the quantity emitted that enters the human population. To assess the influence of model differences in the calculation of the population iF ingestion and inhalation iFs of 365 substances emitted to air, freshwater, and soil were calculated with two commonly applied multimedia fate and exposure models, CalTOX and the uniform system for evaluation of substances adapted for life-cycle assessment (USES-LCA). The model comparison showed that differences in the iFs due to model choices were the lowest after emission to air and the highest after emission to soil. Inhalation iFs were more sensitive to model differences compared to ingestion iFs. The choice for a continental seawater compartment, vertical stratification of the soil compartment, rain and no-rain scenarios, and drinking water purification mainly clarify the relevant model differences found in population iFs. Furthermore, pH correction of chemical properties and aerosol-associated deposition on plants appeared to be important for dissociative organics and metals emitted to air, respectively. Finally, it was found that quantitative structure-activity relationship estimates for superhydrophobics may introduce considerable uncertainty in the calculation of population intake fractions.

  20. Model of environmental life cycle assessment for coal mining operations.

    PubMed

    Burchart-Korol, Dorota; Fugiel, Agata; Czaplicka-Kolarz, Krystyna; Turek, Marian

    2016-08-15

    This paper presents a novel approach to environmental assessment of coal mining operations, which enables assessment of the factors that are both directly and indirectly affecting the environment and are associated with the production of raw materials and energy used in processes. The primary novelty of the paper is the development of a computational environmental life cycle assessment (LCA) model for coal mining operations and the application of the model for coal mining operations in Poland. The LCA model enables the assessment of environmental indicators for all identified unit processes in hard coal mines with the life cycle approach. The proposed model enables the assessment of greenhouse gas emissions (GHGs) based on the IPCC method and the assessment of damage categories, such as human health, ecosystems and resources based on the ReCiPe method. The model enables the assessment of GHGs for hard coal mining operations in three time frames: 20, 100 and 500years. The model was used to evaluate the coal mines in Poland. It was demonstrated that the largest environmental impacts in damage categories were associated with the use of fossil fuels, methane emissions and the use of electricity, processing of wastes, heat, and steel supports. It was concluded that an environmental assessment of coal mining operations, apart from direct influence from processing waste, methane emissions and drainage water, should include the use of electricity, heat and steel, particularly for steel supports. Because the model allows the comparison of environmental impact assessment for various unit processes, it can be used for all hard coal mines, not only in Poland but also in the world. This development is an important step forward in the study of the impacts of fossil fuels on the environment with the potential to mitigate the impact of the coal industry on the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Predictors and Characteristics of Erikson's Life Cycle Model Among Men: A 32-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Westermeyer, Jerry F.

    2004-01-01

    To assess Erikson's life cycle model, 86 men, initially selected for health, were prospectively studied at age 21, and reassessed 32 years later at age 53. Using the Vaillant and Milofsky (1980) modification of Erikson's model, 48 men (56%) achieved generativity, an advanced developmental stage, at follow-up. Results generally support Erikson's…

  2. Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling.

    PubMed

    Huijbregts, Mark A J; Gilijamse, Wim; Ragas, Ad M J; Reijnders, Lucas

    2003-06-01

    The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter uncertainty). However, LCA outcomes can also be uncertain due to normative choices (scenario uncertainty) and the mathematical models involved (model uncertainty). The present paper outlines a new methodology that quantifies parameter, scenario, and model uncertainty simultaneously in environmental life-cycle assessment. The procedure is illustrated in a case study that compares two insulation options for a Dutch one-family dwelling. Parameter uncertainty was quantified by means of Monte Carlo simulation. Scenario and model uncertainty were quantified by resampling different decision scenarios and model formulations, respectively. Although scenario and model uncertainty were not quantified comprehensively, the results indicate that both types of uncertainty influence the case study outcomes. This stresses the importance of quantifying parameter, scenario, and model uncertainty simultaneously. The two insulation options studied were found to have significantly different impact scores for global warming, stratospheric ozone depletion, and eutrophication. The thickest insulation option has the lowest impact on global warming and eutrophication, and the highest impact on stratospheric ozone depletion.

  3. Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling

    NASA Astrophysics Data System (ADS)

    Pehl, Michaja; Arvesen, Anders; Humpenöder, Florian; Popp, Alexander; Hertwich, Edgar G.; Luderer, Gunnar

    2017-12-01

    Both fossil-fuel and non-fossil-fuel power technologies induce life-cycle greenhouse gas emissions, mainly due to their embodied energy requirements for construction and operation, and upstream CH4 emissions. Here, we integrate prospective life-cycle assessment with global integrated energy-economy-land-use-climate modelling to explore life-cycle emissions of future low-carbon power supply systems and implications for technology choice. Future per-unit life-cycle emissions differ substantially across technologies. For a climate protection scenario, we project life-cycle emissions from fossil fuel carbon capture and sequestration plants of 78-110 gCO2eq kWh-1, compared with 3.5-12 gCO2eq kWh-1 for nuclear, wind and solar power for 2050. Life-cycle emissions from hydropower and bioenergy are substantial (˜100 gCO2eq kWh-1), but highly uncertain. We find that cumulative emissions attributable to upscaling low-carbon power other than hydropower are small compared with direct sectoral fossil fuel emissions and the total carbon budget. Fully considering life-cycle greenhouse gas emissions has only modest effects on the scale and structure of power production in cost-optimal mitigation scenarios.

  4. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  5. From LCAs to simplified models: a generic methodology applied to wind power electricity.

    PubMed

    Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle

    2013-02-05

    This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.

  6. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling.

    PubMed

    McMillen, T S; Minami, E; Leboeuf, R C

    2013-06-24

    Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

  7. Modelling of environmental impacts of solid waste landfilling within the life-cycle analysis program EASEWASTE.

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Bhander, Gurbakash Singh; Hauschild, Michael; Christensen, Thomas H

    2007-01-01

    A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model. All emissions, except the generation of landfill gas, are process specific. The landfill gas generation is calculated on the basis of organic matter in the landfilled waste. A landfill assessment example is provided. For this example, the normalised environmental effects of landfill gas on global warming and photochemical smog are much greater than the environmental effects for landfill leachate or for landfill construction. A sensitivity analysis for this example indicates that the overall environmental impact is sensitive to the gas collection efficiency and the use of the gas, but not to the amount of leachate generated, or the amount of soil or liner material used in construction. The landfill model can be used for evaluating different technologies with different liners, gas and leachate collection efficiencies, and to compare the environmental consequences of landfilling with alternative waste treatment options such as incineration or anaerobic digestion.

  8. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  9. Coupling Computer-Aided Process Simulation and Estimations of Emissions and Land Use for Rapid Life Cycle Inventory Modeling

    EPA Science Inventory

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying proces...

  10. Internal cycle modeling and environmental assessment of multiple cycle consumer products.

    PubMed

    Tsiliyannis, C A

    2012-01-01

    Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. pyhector: A Python interface for the simple climate model Hector

    DOE PAGES

    Willner, Sven N.; Hartin, Corinne; Gieseke, Robert

    2017-04-01

    Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less

  12. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  13. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  14. Integrated Assessment of Carbon Dioxide Removal

    NASA Astrophysics Data System (ADS)

    Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M. F.

    2018-03-01

    To maintain the chance of keeping the average global temperature increase below 2°C and to limit long-term climate change, removing carbon dioxide from the atmosphere (carbon dioxide removal, CDR) is becoming increasingly necessary. We analyze optimal and cost-effective climate policies in the dynamic integrated assessment model (IAM) of climate and the economy (DICE2016R) and investigate (1) the utilization of (ocean) CDR under different climate objectives, (2) the sensitivity of policies with respect to carbon cycle feedbacks, and (3) how well carbon cycle feedbacks are captured in the carbon cycle models used in state-of-the-art IAMs. Overall, the carbon cycle model in DICE2016R shows clear improvements compared to its predecessor, DICE2013R, capturing much better long-term dynamics and also oceanic carbon outgassing due to excess oceanic storage of carbon from CDR. However, this comes at the cost of a (too) tight short-term remaining emission budget, limiting the model suitability to analyze low-emission scenarios accurately. With DICE2016R, the compliance with the 2°C goal is no longer feasible without negative emissions via CDR. Overall, the optimal amount of CDR has to take into account (1) the emission substitution effect and (2) compensation for carbon cycle feedbacks.

  15. Conceptual Framework To Extend Life Cycle Assessment ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  16. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    EPA Science Inventory

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  17. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  18. Health impact assessment of cycling network expansions in European cities.

    PubMed

    Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark

    2018-04-01

    We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Abiotic raw-materials in life cycle impact assessments: An emerging consensus across disciplines

    USGS Publications Warehouse

    Drielsma, Johannes; Allington, Ruth; Brady, Thomas; Guinée, Jeroen; Hammarstrom, Jane M.; Hummen, Torsten; Russell-Vaccari, Andrea; Schneider, Laura; Sonnemann, Guido; Weihed, Pär

    2016-01-01

    This paper captures some of the emerging consensus points that came out of the workshop “Mineral Resources in Life Cycle Impact Assessment: Mapping the path forward”, held at the Natural History Museum London on 14 October 2015: that current practices rely in many instances on obsolete data, often confuse resource depletion with impacts on resource availability, which can therefore provide inconsistent decision support and lead to misguided claims about environmental performance. Participants agreed it would be helpful to clarify which models estimate depletion and which estimate availability, so that results can be correctly reported in the most appropriate framework. Most participants suggested that resource availability will be more meaningfully addressed within a comprehensive Life Cycle Sustainability Assessment framework rather than limited to an environmental Life Cycle Assessment or Footprint. Presentations from each of the authors are available for download.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willner, Sven N.; Hartin, Corinne; Gieseke, Robert

    Here, pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary productionmore » and respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system. The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2.« less

  1. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

    EPA Science Inventory

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically a...

  2. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Treesearch

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  3. Rebecca Hanes | NREL

    Science.gov Websites

    cycle inventories Economic and environmentally extended input-output analysis Sustainable design and models for sustainable design and optimization of processes, supply chains and life cycles Interactions engineering design and assessment." Doctoral dissertation, The Ohio State University, 2015. Hanes

  4. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    PubMed

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  5. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  6. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE PAGES

    Huff, Kathryn

    2017-08-01

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  7. Indoor exposure to toluene from printed matter matters: complementary views from life cycle assessment and risk assessment.

    PubMed

    Walser, Tobias; Juraske, Ronnie; Demou, Evangelia; Hellweg, Stefanie

    2014-01-01

    A pronounced presence of toluene from rotogravure printed matter has been frequently observed indoors. However, its consequences to human health in the life cycle of magazines are poorly known. Therefore, we quantified human-health risks in indoor environments with Risk Assessment (RA) and impacts relative to the total impact of toxic releases occurring in the life cycle of a magazine with Life Cycle Assessment (LCA). We used a one-box indoor model to estimate toluene concentrations in printing facilities, newsstands, and residences in a best, average, and worst-case scenario. The modeled concentrations are in the range of the values measured in on-site campaigns. Toluene concentrations can be close or even surpass the occupational legal thresholds in printing facilities in realistic worst-case scenarios. The concentrations in homes can surpass the US EPA reference dose (69 μg/kg/day) in worst-case scenarios, but are still at least 1 order of magnitude lower than in press rooms or newsstands. However, toluene inhaled at home becomes the dominant contribution to the total potential human toxicity impacts of toluene from printed matter when assessed with LCA, using the USEtox method complemented with indoor characterization factors for toluene. The significant contribution (44%) of toluene exposure in production, retail, and use in households, to the total life cycle impact of a magazine in the category of human toxicity, demonstrates that the indoor compartment requires particular attention in LCA. While RA works with threshold levels, LCA assumes that every toxic emission causes an incremental change to the total impact. Here, the combination of the two paradigms provides valuable information on the life cycle stages of printed matter.

  8. Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climate

    NASA Astrophysics Data System (ADS)

    Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.

    2013-08-01

    This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.

  9. Population pharmacokinetic model of lithium and drug compliance assessment.

    PubMed

    Pérez-Castelló, Isabel; Mangas-Sanjuan, Víctor; González-García, Ignacio; Gonzalez-Alvarez, Isabel; Bermejo, Marival; Marco-Garbayo, Jose Luis; Trocóniz, Iñaki F

    2016-12-01

    Population pharmacokinetic analysis of lithium during therapeutic drug monitoring and drug compliance assessment was performed in 54 patients and 246 plasma concentrations levels were included in this study. Patients received several treatment cycles (1-9) and one plasma concentration measurement for each patient was obtained always before starting next cycle (pre-dose) at steady state. Data were analysed using the population approach with NONMEM version 7.2. Lithium measurements were described using a two-compartment model (CL/F=0.41Lh -1 , V 1 /F=15.3L, Q/F=0.61Lh -1 , and V 2 /F = 15.8L) and the most significant covariate on lithium CL was found to be creatinine clearance (reference model). Lithium compliance was analysed using inter-occasion variability or Markovian features (previous lithium measurement as ordered categorical covariate) on bioavailability parameter. Markov-type model predicted the lithium compliance in the next cycle with higher success rate (79.8%) compared to IOV model (65.2%) and reference model (43.2%). This model becomes an efficient tool, not only being able to adequately describe the observed outcome, but also to predict the individual drug compliance in the next cycle. Therefore, Bipolar disorder patients can be classified regarding their probability to become extensive or poor compliers in the next cycle and then, individual probabilities lower than 0.5 highlight the need of intensive monitoring, as well as other pharmaceutical care measurements that might be applied to enhance drug compliance for a better and safer lithium treatment. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  10. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  11. Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2013-12-17

    Lightweighting is a key strategy used to improve vehicle fuel economy. Replacing conventional materials (e.g., steel) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use, but often increases energy consumption and GHG emissions during materials and vehicle production. Assessing the life-cycle benefits of mass reduction requires a quantitative description of the mass-induced fuel consumption during vehicle use. A new physics-based method for estimating mass-induced fuel consumption (MIF) is proposed. We illustrate the utility of this method by using publicly available data to calculate MIF values in the range of 0.2-0.5 L/(100 km 100 kg) based on 106 records of fuel economy tests by the U.S. Environmental Protection Agency for 2013 model year vehicles. Lightweighting is shown to have the most benefit when applied to vehicles with high fuel consumption and high power. Use of the physics-based model presented here would place future life cycle assessment studies of vehicle lightweighting on a firmer scientific foundation.

  12. Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5

    NASA Astrophysics Data System (ADS)

    Du, Z.

    2017-12-01

    Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.

  13. Effect of Air Pollution on Menstrual Cycle Length-A Prognostic Factor of Women's Reproductive Health.

    PubMed

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-07-20

    Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.

  14. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    PubMed

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  15. Using Screening Level Environmental Life Cycle Assessment to Aid Decision Making: A Case Study of a College Annual Report

    ERIC Educational Resources Information Center

    Ingwersen, Wesley W.; Curran, Mary Ann; Gonzalez, Michael A.; Hawkins, Troy R.

    2012-01-01

    Purpose: The purpose of this study is to compare the life cycle environmental impacts of the University of Cincinnati College of Engineering and Applied Sciences' current printed annual report to a version distributed via the internet. Design/methodology/approach: Life cycle environmental impacts of both versions of the report are modeled using…

  16. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles

    DOE PAGES

    Kim, Hyung Chul; Wallington, Timothy J.

    2016-08-17

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e/(100 km 100 kg), than those for ICEVs which are in the rangesmore » 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.« less

  17. Life Cycle Assessment of Vehicle Lightweighting: A Physics-Based Model To Estimate Use-Phase Fuel Consumption of Electrified Vehicles.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J

    2016-10-18

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e /(100 km 100 kg), than those for ICEVs which are in the ranges 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.

  18. NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.

    1992-01-01

    The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.

  19. 14 CFR 91.1505 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... operate an Airbus Model A300 (excluding the -600 series), British Aerospace Model BAC 1-11, Boeing Model... below the window line. (2) For all models of the British Aerospace BAC 1-11, the flight cycle...

  20. 14 CFR 91.1505 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... operate an Airbus Model A300 (excluding the -600 series), British Aerospace Model BAC 1-11, Boeing Model... below the window line. (2) For all models of the British Aerospace BAC 1-11, the flight cycle...

  1. 14 CFR 91.1505 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... operate an Airbus Model A300 (excluding the -600 series), British Aerospace Model BAC 1-11, Boeing Model... below the window line. (2) For all models of the British Aerospace BAC 1-11, the flight cycle...

  2. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    PubMed

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  3. Viscoplastic analysis of an experimental cylindrical thrust chamber liner

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Arnold, Steven M.

    1991-01-01

    A viscoplastic stress-strain analysis of an experimental cylindrical thrust chamber is presented. A viscoelastic constitutive model incorporating a single internal state variable that represents kinematic hardening was employed to investigate whether such a viscoplastic model could predict the experimentally observed behavior of the thrust chamber. Two types of loading cycles were considered: a short cycle of 3.5 sec. duration that corresponded to the experiments, and an extended loading cycle of 485.1 sec. duration that is typical of the Space Shuttle Main Engine (SSME) operating cycle. The analysis qualitatively replicated the deformation behavior of the component as observed in experiments designed to simulate SSME operating conditions. The analysis also showed that the mode and location in the component may depend on the loading cycle. The results indicate that using viscoplastic models for structural analysis can lead to a more realistic life assessment of thrust chambers.

  4. Using mental mapping to unpack perceived cycling risk.

    PubMed

    Manton, Richard; Rau, Henrike; Fahy, Frances; Sheahan, Jerome; Clifford, Eoghan

    2016-03-01

    Cycling is the most energy-efficient mode of transport and can bring extensive environmental, social and economic benefits. Research has highlighted negative perceptions of safety as a major barrier to the growth of cycling. Understanding these perceptions through the application of novel place-sensitive methodological tools such as mental mapping could inform measures to increase cyclist numbers and consequently improve cyclist safety. Key steps to achieving this include: (a) the design of infrastructure to reduce actual risks and (b) targeted work on improving safety perceptions among current and future cyclists. This study combines mental mapping, a stated-preference survey and a transport infrastructure inventory to unpack perceptions of cycling risk and to reveal both overlaps and discrepancies between perceived and actual characteristics of the physical environment. Participants translate mentally mapped cycle routes onto hard-copy base-maps, colour-coding road sections according to risk, while a transport infrastructure inventory captures the objective cycling environment. These qualitative and quantitative data are matched using Geographic Information Systems and exported to statistical analysis software to model the individual and (infra)structural determinants of perceived cycling risk. This method was applied to cycling conditions in Galway City (Ireland). Participants' (n=104) mental maps delivered data-rich perceived safety observations (n=484) and initial comparison with locations of cycling collisions suggests some alignment between perception and reality, particularly relating to danger at roundabouts. Attributing individual and (infra)structural characteristics to each observation, a Generalised Linear Mixed Model statistical analysis identified segregated infrastructure, road width, the number of vehicles as well as gender and cycling experience as significant, and interactions were found between individual and infrastructural variables. The paper concludes that mental mapping is a highly useful tool for assessing perceptions of cycling risk with a strong visual aspect and significant potential for public participation. This distinguishes it from more traditional cycling safety assessment tools that focus solely on the technical assessment of cycling infrastructure. Further development of online mapping tools is recommended as part of bicycle suitability measures to engage cyclists and the general public and to inform 'soft' and 'hard' cycling policy responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modeling Net Land Occupation of Hydropower Reservoirs in Norway for Use in Life Cycle Assessment.

    PubMed

    Dorber, Martin; May, Roel; Verones, Francesca

    2018-02-20

    Increasing hydropower electricity production constitutes a unique opportunity to mitigate climate change impacts. However, hydropower electricity production also impacts aquatic and terrestrial biodiversity through freshwater habitat alteration, water quality degradation, and land use and land use change (LULUC). Today, no operational model exists that covers any of these cause-effect pathways within life cycle assessment (LCA). This paper contributes to the assessment of LULUC impacts of hydropower electricity production in Norway in LCA. We quantified the inundated land area associated with 107 hydropower reservoirs with remote sensing data and related it to yearly electricity production. Therewith, we calculated an average net land occupation of 0.027 m 2 ·yr/kWh of Norwegian storage hydropower plants for the life cycle inventory. Further, we calculated an adjusted average land occupation of 0.007 m 2 ·yr/kWh, accounting for an underestimation of water area in the performed maximum likelihood classification. The calculated land occupation values are the basis to support the development of methods for assessing the land occupation impacts of hydropower on biodiversity in LCA at a damage level.

  6. Preliminary study of thermomechanical fatigue of polycrystalline MAR-M 200

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Verrilli, M. J.; Mcgaw, M. A.; Halford, G. R.

    1984-01-01

    Thermomechanical fatigue (TMF) experiments were conducted on polycrystalline MAR-M 200 over a cyclic temperature range of 500 to 1000 C. Inelastic strain ranges of 0.03 to 0.2 percent were imposed on the specimens. The TMF lives were found to be significantly shorter than isothermal low-cycle-fatigue (LCF) life at the maximum cycle temperature, and in-phase cycling was more damaging than out-of-phase cycling. Extensive crack tip oxidation appeared to play a role in promoting the severity of in-phase cycling. Carbide particle - matrix interface cracking was also observed after in-phase TMF cycling. The applicability of various life prediction models to the TMF results obtained was assessed. It was concluded that current life prediction models based on isothermal data as input must be modified to be applicable to the TMF results.

  7. 14 CFR 129.107 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Model A300 (excluding −600 series), British Aerospace Model BAC 1-11, Boeing Model 707, 720, 727, 737... all models of the British Aerospace BAC 1-11, the flight cycle implementation time is 60,000 flights...

  8. 14 CFR 129.107 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Model A300 (excluding −600 series), British Aerospace Model BAC 1-11, Boeing Model 707, 720, 727, 737... all models of the British Aerospace BAC 1-11, the flight cycle implementation time is 60,000 flights...

  9. 14 CFR 129.107 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Model A300 (excluding −600 series), British Aerospace Model BAC 1-11, Boeing Model 707, 720, 727, 737... all models of the British Aerospace BAC 1-11, the flight cycle implementation time is 60,000 flights...

  10. 14 CFR 129.107 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Model A300 (excluding −600 series), British Aerospace Model BAC 1-11, Boeing Model 707, 720, 727, 737... all models of the British Aerospace BAC 1-11, the flight cycle implementation time is 60,000 flights...

  11. Existing Soil Carbon Models Do Not Apply to Forested Wetlands

    Treesearch

    Carl C. Trettin; B. Song; M.F. Jurgensen; C. Li

    2001-01-01

    When assessing the biological,geological,and chemical cycling of nutrients and elements — or when assessing carbon dynamics with respect to global change — modeling and simulation are necessary. Although wetlands occupy a relatively small proportion of Earth’s terrestrial surface (

  12. Terrestrial nitrogen cycling in Earth system models revisited

    USGS Publications Warehouse

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  13. Mental health consequences of weight cycling in the first-year post-treatment for breast cancer.

    PubMed

    Pila, Eva; Sabiston, Catherine M; Castonguay, Andrée L; Arbour-Nicitopoulos, Kelly; Taylor, Valerie H

    2018-08-01

    Weight cycling is linked with advanced breast cancer diagnosis, increased risk of cancer reoccurrence and cancer-related mortality. While women treated for breast cancer report challenges with navigating their post-treatment body shape and weight, the effects of weight cycling on body image and mental health have not been elucidated. This study examined associations between weight changes and weight cycling on psychological health (i.e. weight-related guilt, shame and depressive symptoms) among women in the first-year post-treatment. Self-reported assessments of pre-cancer weight cycling, post-treatment weight-related guilt, shame and depressive symptoms, and objective assessments of weight were assessed in a longitudinal sample of 173 women treated for breast cancer (M age  = 55.01 ± 10.96 years). Based on findings from multilevel models, women experienced the most weight-related shame when their weight was heavier than their personal average. Additionally, heavier weight was associated with worse psychological health, particularly for women with a history of stable (vs. cycling) weight pre-cancer. Weight cycling pre-cancer and post-treatment weight change have important implications for psychological well-being. Due to the potential psychological consequences associated with a history of weight cycling, targeted strategies are needed to improve overall health outcomes for women's survivorship after breast cancer.

  14. The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling.

    PubMed

    Quinn, Jason C; Davis, Ryan

    2015-05-01

    Microalgae biofuel production has been extensively evaluated through resource, economic and life cycle assessments. Resource assessments consistently identify land as non-limiting and highlight the need to consider siting based on combined geographical constraints of land and other critical resources such as water and carbon dioxide. Economic assessments report a selling cost of fuel that ranges between $1.64 and over $30 gal(-1) consistent with large variability reported in the life cycle literature, -75 to 534 gCO2-eq MJ(-1). Large drivers behind such variability stem from differences in productivity assumptions, pathway technologies, and system boundaries. Productivity represents foundational units in these assessments with current assumed yields in various assessments varying by a factor of 60. A review of the literature in these areas highlights the need for harmonized assessments such that direct comparisons of alternative processing technologies can be made on the metrics of resource requirements, economic feasibility, and environmental impact. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SOLAR ULTRAVIOLET RADIATION AND AQUATIC CARBON, NITROGEN, SULFUR AND METALS CYCLES

    EPA Science Inventory

    Solar ultraviolet radiation (290-400 nm) has a wide-ranging impact on biological and chemical processes that affect the cycling of elements in aquatic environments. This chapter uses recent field and laboratory observations along with models to assess these impacts on carbon, nit...

  16. Air Force Systems Engineering Assessment Model (AF SEAM) Management Guide, Version 2

    DTIC Science & Technology

    2010-09-21

    gleaned from experienced professionals who assisted with the model’s development. Examples of the references used include the following: • ISO /IEC...Defense Acquisition Guidebook, Chapter 4 • AFI 63-1201, Life Cycle Systems Engineering • IEEE/EIA 12207 , Software Life Cycle Processes • Air...Selection criteria Reference Material: IEEE/EIA 12207 , MIL-HDBK-514 Other Considerations: Modeling, simulation and analysis techniques can be

  17. Analysis and modeling of the seasonal South China Sea temperature cycle using remote sensing

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Schrama, Ernst J. O.; Gerritsen, Herman

    2007-10-01

    The present paper describes the analysis and modeling of the South China Sea (SCS) temperature cycle on a seasonal scale. It investigates the possibility to model this cycle in a consistent way while not taking into account tidal forcing and associated tidal mixing and exchange. This is motivated by the possibility to significantly increase the model’s computational efficiency when neglecting tides. The goal is to develop a flexible and efficient tool for seasonal scenario analysis and to generate transport boundary forcing for local models. Given the significant spatial extent of the SCS basin and the focus on seasonal time scales, synoptic remote sensing is an ideal tool in this analysis. Remote sensing is used to assess the seasonal temperature cycle to identify the relevant driving forces and is a valuable source of input data for modeling. Model simulations are performed using a three-dimensional baroclinic-reduced depth model, driven by monthly mean sea surface anomaly boundary forcing, monthly mean lateral temperature, and salinity forcing obtained from the World Ocean Atlas 2001 climatology, six hourly meteorological forcing from the European Center for Medium range Weather Forecasting ERA-40 dataset, and remotely sensed sea surface temperature (SST) data. A sensitivity analysis of model forcing and coefficients is performed. The model results are quantitatively assessed against climatological temperature profiles using a goodness-of-fit norm. In the deep regions, the model results are in good agreement with this validation data. In the shallow regions, discrepancies are found. To improve the agreement there, we apply a SST nudging method at the free water surface. This considerably improves the model’s vertical temperature representation in the shallow regions. Based on the model validation against climatological in situ and SST data, we conclude that the seasonal temperature cycle for the deep SCS basin can be represented to a good degree. For shallow regions, the absence of tidal mixing and exchange has a clear impact on the model’s temperature representation. This effect on the large-scale temperature cycle can be compensated to a good degree by SST nudging for diagnostic applications.

  18. Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health

    PubMed Central

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-01-01

    Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748

  19. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning; Yang, Yang; Cai, Hao

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well tomore » wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.« less

  20. A VAS-numerical model impact study using the Gal-Chen variational approach

    NASA Technical Reports Server (NTRS)

    Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.

    1987-01-01

    A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.

  1. USEEIO: a New and Transparent United States ...

    EPA Pesticide Factsheets

    National-scope environmental life cycle models of goods and services may be used for many purposes, not limited to quantifying impacts of production and consumption of nations, assessing organization-wide impacts, identifying purchasing hot spots, analyzing environmental impacts of policies, and performing streamlined life cycle assessment. USEEIO is a new environmentally extended input-output model of the United States fit for such purposes and other sustainable materials management applications. USEEIO melds data on economic transactions between 389 industry sectors with environmental data for these sectors covering land, water, energy and mineral usage and emissions of greenhouse gases, criteria air pollutants, nutrients and toxics, to build a life cycle model of 385 US goods and services. In comparison with existing US input-output models, USEEIO is more current with most data representing year 2013, more extensive in its coverage of resources and emissions, more deliberate and detailed in its interpretation and combination of data sources, and includes formal data quality evaluation and description. USEEIO was assembled with a new Python module called the IO Model Builder capable of assembling and calculating results of user-defined input-output models and exporting the models into LCA software. The model and data quality evaluation capabilities are demonstrated with an analysis of the environmental performance of an average hospital in the US. All USEEIO f

  2. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  3. The Human Exposure Model (HEM): A Tool to Support Rapid Assessment of Human Health Impacts from Near-Field Consumer Product Exposures

    EPA Science Inventory

    The US EPA is developing an open and publically available software program called the Human Exposure Model (HEM) to provide near-field exposure information for Life Cycle Impact Assessments (LCIAs). Historically, LCIAs have often omitted impacts from near-field sources of exposur...

  4. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  5. Simulating carbon flows in Amazonian rainforests: how intensive C-cycle data can help to reduce vegetation model uncertainty

    NASA Astrophysics Data System (ADS)

    Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.

    2014-12-01

    The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.

  6. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  7. Potential for Integrating Diffusion of Innovation Principles into Life Cycle Assessment of Emerging Technologies.

    PubMed

    Sharp, Benjamin E; Miller, Shelie A

    2016-03-15

    Life cycle assessment (LCA) measures cradle-to-grave environmental impacts of a product. To assess impacts of an emerging technology, LCA should be coupled with additional methods that estimate how that technology might be deployed. The extent and manner that an emerging technology diffuses throughout a region shapes the magnitude and type of environmental impacts. Diffusion of innovation is an established field of research that analyzes the adoption of new innovations, and its principles can be used to construct scenario models that enhance LCA of emerging technologies. Integrating diffusion modeling techniques with an LCA of emerging technology can provide estimates for the extent of market penetration, the displacement of existing systems, and the rate of adoption. Two general perspectives of application are macro-level diffusion models that use a function of time to represent adoption, and microlevel diffusion models that simulate adoption through interactions of individuals. Incorporating diffusion of innovation concepts complement existing methods within LCA to inform proactive environmental management of emerging technologies.

  8. ENERGY AND OUR ENVIRONMENT: A SYSTEMS AND LIFE ...

    EPA Pesticide Factsheets

    This is a presentation to the North Carolina BREATE Conference on March 28, 2017. This presentation provides an overview of energy modeling capabilities in ORD, and includes examples related to scenario development, water-energy nexus, bioenergy, etc. The focus is on system approaches as well as life cycle assessment data and tools. Provide an overview of system and life cycle approaches to modeling medium to long-term changes in drivers of changes in emissions sources.

  9. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    PubMed

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermal fatigue life evaluation of SnAgCu solder joints in a multi-chip power module

    NASA Astrophysics Data System (ADS)

    Barbagallo, C.; Malgioglio, G. L.; Petrone, G.; Cammarata, G.

    2017-05-01

    For power devices, the reliability of thermal fatigue induced by thermal cycling has been prioritized as an important concern. The main target of this work is to apply a numerical procedure to assess the fatigue life for lead-free solder joints, that represent, in general, the weakest part of the electronic modules. Starting from a real multi-chip power module, FE-based models were built-up by considering different conditions in model implementation in order to simulate, from one hand, the worst working condition for the module and, from another one, the module standing into a climatic test room performing thermal cycles. Simulations were carried-out both in steady and transient conditions in order to estimate the module thermal maps, the stress-strain distributions, the effective plastic strain distributions and finally to assess the number of cycles to failure of the constitutive solder layers.

  11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  13. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    PubMed

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  14. Housing and mobility demands of individual households and their life cycle assessment.

    PubMed

    Saner, Dominik; Heeren, Niko; Jäggi, Boris; Waraich, Rashid A; Hellweg, Stefanie

    2013-06-04

    Household consumption, apart from governmental consumption, is the main driver of worldwide economy. Attached to each household purchase are economic activities along the preceding supply chain, with the associated resource use and emissions. A method to capture and assess all these resource uses and emissions is life cycle assessment. We developed a model for the life cycle assessment of housing and land-based mobility (excluding air travel) consumption of individual households a small village in Switzerland. Statistical census and dwelling register data are the foundations of the model. In a case study performed on a midsized community, we found a median value of greenhouse gas emissions of 3.12 t CO2 equiv and a mean value of 4.30 t CO2 equiv per capita and year for housing and mobility. Twenty-one percent of the households in the investigated region were responsible for 50% of the total greenhouse gas emissions, meaning that if their emissions could be halved the total emissions of the community would be reduced by 25%. Furthermore, a cluster analysis revealed that driving factors for large environmental footprints are demands of large living area heated by fossil energy carriers, as well as large demands of motorized private transportation.

  15. A Bayesian Joint Model of Menstrual Cycle Length and Fecundity

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.

    2015-01-01

    Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923

  16. Quantifying the Adaptive Cycle | Science Inventory | US EPA

    EPA Pesticide Factsheets

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and

  17. Fire behavior modeling to assess net benefits of forest treatments on fire hazard mitigation and bioenergy production in Northeastern California

    Treesearch

    David J. Ganz; David S. Saah; Klaus Barber; Mark Nechodom

    2007-01-01

    The fire behavior modeling described here, conducted as part of the Biomass to Energy (B2E) life cycle assessment, is funded by the California Energy Commission to evaluate the potential net benefits associated with treating and utilizing forest biomass. The B2E project facilitates economic, environmental, energy, and effectiveness assessments of the potential public...

  18. Area of Concern: a new paradigm in life cycle assessment for ...

    EPA Pesticide Factsheets

    Purpose: As a class of environmental metrics, footprints have been poorly defined, have shared an unclear relationship to life cycle assessment (LCA), and the variety of approaches to quantification have sometimes resulted in confusing and contradictory messages in the marketplace. In response, a task force operating under the auspices of the UNEP/SETAC Life Cycle Initiative project on environmental life cycle impact assessment (LCIA) has been working to develop generic guidance for developers of footprint metrics. The purpose of this paper is to introduce a universal footprint definition and related terminology as well as to discuss modelling implications.MethodsThe task force has worked from the perspective that footprints should be based on LCA methodology, underpinned by the same data systems and models as used in LCA. However, there are important differences in purpose and orientation relative to LCA impact category indicators. Footprints have a primary orientation toward society and nontechnical stakeholders. They are also typically of narrow scope, having the purpose of reporting only in relation to specific topics. In comparison, LCA has a primary orientation toward stakeholders interested in comprehensive evaluation of overall environmental performance and trade-offs among impact categories. These differences create tension between footprints, the existing LCIA framework based on the area of protection paradigm and the core LCA standards ISO14040/44.Res

  19. Development and Evaluation of the Effectiveness of Computer-Assisted Physics Instruction

    ERIC Educational Resources Information Center

    Rahman, Mohd. Jasmy Abd; Ismail, Mohd. Arif. Hj.; Nasir, Muhammad

    2014-01-01

    This study aims to design and develop an interactive software for teaching and learning physics about motion and vectors analysis. This study also assesses its effectiveness in classroom and assesses the learning motivation of SMA Pekanbaru's students. The software is developed using ADDIE Model design and Life Cycle Model and built using the…

  20. STUDYING THE EFFECT ON SYSTEM PREFERENCE BY VARYING CO-PRODUCT ALLOCATION IN CREATING LIFE CYCLE INVENTORY

    EPA Science Inventory

    How one models the input and output data for a life cycle assessment can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, general guidance is still lacking. Current research investigated the effect of applyin...

  1. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    NASA Astrophysics Data System (ADS)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.

  2. Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs.

    PubMed

    Susca, Tiziana

    2012-04-01

    Traditionally, life cycle assessment (LCA) does not estimate a key property: surface albedo. Here an enhancement of the LCA methodology has been proposed through the development and employment of a time-dependent climatological model for including the effect of surface albedo on climate. The theoretical findings derived by the time-dependent model have been applied to the case study of a black and a white roof evaluated in the time-frames of 50 and 100 years focusing on the impact on global warming potential. The comparative life cycle impact assessment of the two roofs shows that the high surface albedo plays a crucial role in offsetting radiative forcings. In the 50-year time horizon, surface albedo is responsible for a decrease in CO(2)eq of 110-184 kg and 131-217 kg in 100 years. Furthermore, the white roof compared to the black roof, due to the high albedo, decreases the annual energy use of about 3.6-4.5 kWh/m(2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Life cycle assessment of a packaging waste recycling system in Portugal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt

    Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less

  4. Making It Better: Research, Assessment, and Recursive Learning Cycles

    ERIC Educational Resources Information Center

    Brookover, Robert; Timmerman, Danielle

    2013-01-01

    This article provides case study examples of how assessment efforts led to and have been enhanced by the creation of integrated curriculum delivery models in parks, recreation, and tourism programs at Clemson University and the University of Utah.

  5. Classroom Assessment Techniques: A Conceptual Model for CATs in the Online Classroom

    ERIC Educational Resources Information Center

    Bergquist, Emily; Holbeck, Rick

    2014-01-01

    Formative assessments are an important part of the teaching and learning cycle. Instructors need to monitor student learning and check for understanding throughout the instructional phase of teaching to confirm that students understand the objective before embarking on the summative assessment. Typically, online classrooms are developed with…

  6. Total environmental impacts of biofuels from corn stover using a hybrid life cycle assessment model combining process life cycle assessment and economic input-output life cycle assessment.

    PubMed

    Liu, Changqi; Huang, Yaji; Wang, Xinye; Tai, Yang; Liu, Lingqin; Liu, Hao

    2018-01-01

    Studies on the environmental analysis of biofuels by fast pyrolysis and hydroprocessing (BFPH) have so far focused only on the environmental impacts from direct emissions and have included few indirect emissions. The influence of ignoring some indirect emissions on the environmental performance of BFPH has not been well investigated and hence is not really understood. In addition, in order to avoid shifting environmental problems from one medium to another, a comprehensive assessment of environmental impacts caused by the processes must quantify the environmental emissions to all media (air, water, and land) in relation to each life cycle stage. A well-to-wheels assessment of the total environmental impacts resulting from direct emissions and indirect emissions of a BFPH system with corn stover is conducted using a hybrid life cycle assessment (LCA) model combining the economic input-output LCA and the process LCA. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) has been used to estimate the environmental impacts in terms of acidification, eutrophication, global climate change, ozone depletion, human health criteria, photochemical smog formation, ecotoxicity, human health cancer, and human health noncancer caused by 1 MJ biofuel production. Taking account of all the indirect greenhouse gas (GHG) emissions, the net GHG emissions (81.8 g CO 2 eq/MJ) of the biofuels are still less than those of petroleum-based fuels (94 g CO 2 eq/MJ). Maize production and pyrolysis and hydroprocessing make major contributions to all impact categories except the human health criteria. All impact categories resulting from indirect emissions except eutrophication and smog air make more than 24% contribution to the total environmental impacts. Therefore, the indirect emissions are important and cannot be ignored. Sensitivity analysis has shown that corn stover yield and bio-oil yield affect the total environmental impacts of the biofuels more significantly than the biomass transportation distance and biofuel transportation distance. Integr Environ Assess Manag 2018;14:139-149. © 2017 SETAC. © 2017 SETAC.

  7. Incorporating climate-system and carbon-cycle uncertainties in integrated assessments of climate change. (Invited)

    NASA Astrophysics Data System (ADS)

    Rogelj, J.; McCollum, D. L.; Reisinger, A.; Knutti, R.; Riahi, K.; Meinshausen, M.

    2013-12-01

    The field of integrated assessment draws from a large body of knowledge across a range of disciplines to gain robust insights about possible interactions, trade-offs, and synergies. Integrated assessment of climate change, for example, uses knowledge from the fields of energy system science, economics, geophysics, demography, climate change impacts, and many others. Each of these fields comes with its associated caveats and uncertainties, which should be taken into account when assessing any results. The geophysical system and its associated uncertainties are often represented by models of reduced complexity in integrated assessment modelling frameworks. Such models include simple representations of the carbon-cycle and climate system, and are often based on the global energy balance equation. A prominent example of such model is the 'Model for the Assessment of Greenhouse Gas Induced Climate Change', MAGICC. Here we show how a model like MAGICC can be used for the representation of geophysical uncertainties. Its strengths, weaknesses, and limitations are discussed and illustrated by means of an analysis which attempts to integrate socio-economic and geophysical uncertainties. These uncertainties in the geophysical response of the Earth system to greenhouse gases remains key for estimating the cost of greenhouse gas emission mitigation scenarios. We look at uncertainties in four dimensions: geophysical, technological, social and political. Our results indicate that while geophysical uncertainties are an important factor influencing projections of mitigation costs, political choices that delay mitigation by one or two decades a much more pronounced effect.

  8. MISTRA mechanism development: A new mechanism focused on marine environments

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Sommariva, Roberto; von Glasow, Roland

    2015-04-01

    The tropospheric multiphase chemistry of halogen compounds plays a key role in marine environments. Moreover, halogen compounds have an impact on the tropospheric oxidation capacity and climate. With more than two thirds of the Earth's surface covered with oceans, effects are of global importance. Various conditions are found in marine environments ranging from pristine regions to polluted regimes in the continental outflow. Furthermore, there are important sources for halogen compounds over land, such as volcanoes, salt lakes, or emissions from industrial processes. To assess the impact of halogen chemistry with numerical models under these distinct conditions, a multiphase mechanism has been developed in the last decades and applied successfully in numerous box and 1D model studies. Contributions from these model studies helped to identify important chemical cycles affecting the composition and chemistry of the troposphere. However, several discrepancies between model results and field measurements remain. Therefore, a major revision of the chemical mechanism has been performed including an update of the kinetic data and the addition of new reaction cycles. The extended mechansims have been evaluated in several model studies with the 1D model MISTRA. Current work focuses at the identification of the most important reaction cycles, which led to significant changes in the concentration-time profiles of several halogen species. Subsequently, the mechanism will be reduced to the most imporatant reactions, which are currently investigated. As regional and global model studies become more important to identify the importance of tropospheric halogen multiphase chemistry, the goal is to derive parameterisations for the most important halogen chemistry cycles, which can than be implemented in regional and global 3D models. In the reduction process, the extented MISTRA version will serve as a benchmark to assess the quality and accuracy of the reduced mechansim versions.

  9. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  11. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  12. Assessment of luteal function in the vervet monkey as a means to develop a model for obesity-related reproductive phenotype

    PubMed Central

    Kundu, Mila C.; May, Margaret C.; Chosich, Justin; Bradford, Andrew P.; Lasley, Bill; Gee, Nancy; Santoro, Nanette; Appt, Susan E.; Polotsky, Alex J.

    2015-01-01

    The objective of the current study was to characterize luteal function in vervet monkeys. Urine from 12 adult female vervets housed at an academic research center was collected for 10 weeks from single-caged monkeys in order to assess evidence of luteal activity (ELA) as determined by urinary excretion of pregnanediol glucuronide (Pdg) and estrone conjugates (E1c). Dual energy X-ray absorptiometry (DXA) was performed on the monkeys to assess body composition, bone density, and fat mass. Menstrual cyclicity was determined using records of vaginal bleeding. ELA was observed in 9 monkeys and was characterized by a late follicular rise in E1c followed by a progressive increase in Pdg excretion. Mean menstrual cycle length was 26.7 ± 3.8 days and the average day of luteal transition was 14 ± 1.8. Three monkeys without ELA had a clearly defined E1c rise (mean 12-fold from nadir) followed by an E1c drop that was not accompanied by Pdg rise and coincided with vaginal bleeding. Among the 9 ELA monkeys, excretion of E1c tended to negatively associate with fat mass, although this finding did not reach statistical significance (r = −0.61, p = 0.08). Similar to women, vervet monkeys experience an increase in E1c late in the follicular phase of the menstrual cycle which is followed by a subsequent luteal Pdg peak. Assessment of urinary reproductive hormones allows for identification of cardinal menstrual cycle events; thus, the similarity of vervet cycles to human menstrual cycles makes them a useful model for obesity-related human reproductive impairment. PMID:23278149

  13. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Bunn; Steve Fetter; John P. Holdren

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recyclingmore » to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.« less

  14. Assessing the skill of hydrology models at simulating the water cycle in the HJ Andrews LTER: Assumptions, strengths and weaknesses

    EPA Science Inventory

    Simulated impacts of climate on hydrology can vary greatly as a function of the scale of the input data, model assumptions, and model structure. Four models are commonly used to simulate streamflow in model assumptions, and model structure. Four models are commonly used to simu...

  15. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  16. Coupled cycling of dissolved organic nitrogen and carbon in a forest stream

    Treesearch

    E.N. Jack Brookshire; H. Maurice Valett; Steven A. Thomas; Jackson R. Webster

    2005-01-01

    Dissolved organic nitrogen (DON) is an abundant but poorly understood pool of N in many ecosystems. We assessed DON cycling in a N-limited headwater forest stream via whole-ecosystem additions of dissolved inorganic nitrogen (DIN) and labile dissolved organic matter (DOM), hydrologic transport and biogeochemical modeling, and laboratory experiments with native...

  17. Integrating Prospective Longitudinal Data: Modeling Personality and Health in the Terman Life Cycle and Hawaii Longitudinal Studies

    ERIC Educational Resources Information Center

    Kern, Margaret L.; Hampson, Sarah E.; Goldberg, Lewis R.; Friedman, Howard S.

    2014-01-01

    The present study used a collaborative framework to integrate 2 long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Within a 5-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures…

  18. Benchmarking carbon-nitrogen interactions in Earth System Models to observations: An inter-comparison of nitrogen limitation in global land surface models with carbon and nitrogen cycles (CLM-CN and O-CN)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.

    2011-12-01

    Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.

  19. Are stormwater pollution impacts significant in life cycle assessment? A new methodology for quantifying embedded urban stormwater impacts.

    PubMed

    Phillips, Robert; Jeswani, Harish Kumar; Azapagic, Adisa; Apul, Defne

    2018-09-15

    Current life cycle assessment (LCA) models do not explicitly incorporate the impacts from urban stormwater pollution. To address this issue, a framework to estimate the impacts from urban stormwater pollution over the lifetime of a system has been developed, laying the groundwork for subsequent improvements in life cycle databases and LCA modelling. The proposed framework incorporates urban stormwater event mean concentration (EMC) data into existing LCA impact categories to account for the environmental impacts associated with urban land occupation across the whole life cycle of a system. It consists of five steps: (1) compilation of inventory of urban stormwater pollutants; (2) collection of precipitation data; (3) classification and characterisation within existing midpoint impact categories; (4) collation of inventory data for impermeable urban land occupation; and (5) impact assessment. The framework is generic and can be applied to any system using any LCA impact method. Its application is demonstrated by two illustrative case studies: electricity generation and production of construction materials. The results show that pollutants in urban stormwater have an influence on human toxicity, freshwater and marine ecotoxicity, marine eutrophication, freshwater eutrophication and terrestrial ecotoxicity. Among these, urban stormwater pollution has the highest relative contribution to the eutrophication potentials. The results also suggest that stormwater pollution from urban areas can have a substantial effect on the life cycle impacts of some systems (construction materials), while for some systems the effect is small (e.g. electricity generation). However, it is not possible to determine a priori which systems are affected so that the impacts from stormwater pollution should be considered routinely in future LCA studies. The paper also proposes ways to incorporate stormwater pollution burdens into the life cycle databases. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Lifecycle Verification of Tank Liner Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less

  1. Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Drobinski, Philippe; Borga, Marco; Calvet, Jean-Christophe; Delrieu, Guy; Morin, Efrat; Tartari, Gianni; Toffolon, Roberta

    2012-06-01

    This letter assesses the quality of temperature and rainfall daily retrievals of the European Climate Assessment and Dataset (ECA&D) with respect to measurements collected locally in various parts of the Euro-Mediterranean region in the framework of the Hydrological Cycle in the Mediterranean Experiment (HyMeX), endorsed by the Global Energy and Water Cycle Experiment (GEWEX) of the World Climate Research Program (WCRP). The ECA&D, among other gridded datasets, is very often used as a reference for model calibration and evaluation. This is for instance the case in the context of the WCRP Coordinated Regional Downscaling Experiment (CORDEX) and its Mediterranean declination MED-CORDEX. This letter quantifies ECA&D dataset uncertainties associated with temperature and precipitation intra-seasonal variability, seasonal distribution and extremes. Our motivation is to help the interpretation of the results when validating or calibrating downscaling models by the ECA&D dataset in the context of regional climate research in the Euro-Mediterranean region.

  2. European drought under climate change and an assessment of the uncertainties in projections

    NASA Astrophysics Data System (ADS)

    Yu, R. M. S.; Osborn, T.; Conway, D.; Warren, R.; Hankin, R.

    2012-04-01

    Extreme weather/climate events have significant environmental and societal impacts, and anthropogenic climate change has and will continue to alter their characteristics (IPCC, 2011). Drought is one of the most damaging natural hazards through its effects on agricultural, hydrological, ecological and socio-economic systems. Climate change is stimulating demand, from public and private sector decision-makers and also other stakeholders, for better understanding of potential future drought patterns which could facilitate disaster risk management. There remain considerable levels of uncertainty in climate change projections, particularly in relation to extreme events. Our incomplete understanding of the behaviour of the climate system has led to the development of various emission scenarios, carbon cycle models and global climate models (GCMs). Uncertainties arise also from the different types and definitions of drought. This study examines climate change-induced changes in European drought characteristics, and illustrates the robustness of these projections by quantifying the effects of using different emission scenarios, carbon cycle models and GCMs. This is achieved by using the multi-institutional modular "Community Integrated Assessment System (CIAS)" (Warren et al., 2008), a flexible integrated assessment system for modelling climate change. Simulations generated by the simple climate model MAGICC6.0 are assessed. These include ten C4MIP carbon cycle models and eighteen CMIP3 GCMs under five IPCC SRES emission scenarios, four Representative Concentration Pathway (RCP) scenarios, and three mitigation scenarios with CO2-equivalent levels stabilising at 550 ppm, 500 ppm and 450 ppm. Using an ensemble of 2160 future precipitation scenarios, we present an analysis on both short (3-month) and long (12-month) meteorological droughts based on the Standardised Precipitation Index (SPI) for the baseline period (1951-2000) and two future periods of 2001-2050 and 2051-2100. Results indicate, with the exception of high latitude regions, a marked increase in drought condition across Europe especially in the second half of 21st century. Patterns, however, vary substantially depending on the model, emission scenario, region and season. While the variance introduced by choice of carbon cycle model is of minor importance, contribution of emission scenario becomes more important in the second half of the century; nevertheless, GCM uncertainty remains the dominant source throughout the 21st century and across all regions.

  3. Life cycle assessment modelling of waste-to-energy incineration in Spain and Portugal.

    PubMed

    Margallo, M; Aldaco, R; Irabien, A; Carrillo, V; Fischer, M; Bala, A; Fullana, P

    2014-06-01

    In recent years, waste management systems have been evaluated using a life cycle assessment (LCA) approach. A main shortcoming of prior studies was the focus on a mixture of waste with different characteristics. The estimation of emissions and consumptions associated with each waste fraction in these studies presented allocation problems. Waste-to-energy (WTE) incineration is a clear example in which municipal solid waste (MSW), comprising many types of materials, is processed to produce several outputs. This paper investigates an approach to better understand incineration processes in Spain and Portugal by applying a multi-input/output allocation model. The application of this model enabled predictions of WTE inputs and outputs, including the consumption of ancillary materials and combustibles, air emissions, solid wastes, and the energy produced during the combustion of each waste fraction. © The Author(s) 2014.

  4. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation.

    PubMed

    Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie

    2012-01-17

    We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.

  5. Analysis of Affective Instability in Ecological Momentary Assessment: Indices Using Successive Difference and Group Comparison via Multilevel Modeling

    ERIC Educational Resources Information Center

    Jahng, Seungmin; Wood, Phillip K.; Trull, Timothy J.

    2008-01-01

    Temporal instability of affect is a defining characteristic of psychological disorders such as borderline personality disorder (BPD) and mood cycling disorders. Ecological momentary assessment (EMA) enables researchers to directly assess such frequent and extreme fluctuations over time. The authors examined 4 operationalizations of such temporal…

  6. Assessing the ability of operational snow models to predict snowmelt runoff extremes (Invited)

    NASA Astrophysics Data System (ADS)

    Wood, A. W.; Restrepo, P. J.; Clark, M. P.

    2013-12-01

    In the western US, the snow accumulation and melt cycle of winter and spring plays a critical role in the region's water management strategies. Consequently, the ability to predict snowmelt runoff at time scales from days to seasons is a key input for decisions in reservoir management, whether for avoiding flood hazards or supporting environmental flows through the scheduling of releases in spring, or for allocating releases for multi-state water distribution in dry seasons of year (using reservoir systems to provide an invaluable buffer for many sectors against drought). Runoff forecasts thus have important benefits at both wet and dry extremes of the climatological spectrum. The importance of the prediction of the snow cycle motivates an assessment of the strengths and weaknesses of the US's central operational snow model, SNOW17, in contrast to process-modeling alternatives, as they relate to simulating observed snowmelt variability and extremes. To this end, we use a flexible modeling approach that enables an investigation of different choices in model structure, including model physics, parameterization and degree of spatiotemporal discretization. We draw from examples of recent extreme events in western US watersheds and an overall assessment of retrospective model performance to identify fruitful avenues for advancing the modeling basis for the operational prediction of snow-related runoff extremes.

  7. HCMM energy budget data as a model input for assessing regions of high potential groundwater pollution

    NASA Technical Reports Server (NTRS)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J. A.; Baumberger, V.

    1978-01-01

    The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle.

  8. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.

  9. Life cycle assessment of lithium sulfur battery for electric vehicles

    NASA Astrophysics Data System (ADS)

    Deng, Yelin; Li, Jianyang; Li, Tonghui; Gao, Xianfeng; Yuan, Chris

    2017-03-01

    Lithium-sulfur (Li-S) battery is widely recognized as the most promising battery technology for future electric vehicles (EV). To understand the environmental sustainability performance of Li-S battery on future EVs, here a novel life cycle assessment (LCA) model is developed for comprehensive environmental impact assessment of a Li-S battery pack using a graphene sulfur composite cathode and a lithium metal anode protected by a lithium-ion conductive layer, for actual EV applications. The Li-S battery pack is configured with a 61.3 kWh capacity to power a mid-size EV for 320 km range. The life cycle inventory model is developed with a hybrid approach, based on our lab-scale synthesis of the graphene sulfur composite, our lab fabrication of Li-S battery cell, and our industrial partner's battery production processes. The impacts of the Li-S battery are assessed using the ReCiPe method and benchmarked with those of a conventional Nickle-Cobalt-Manganese (NCM)-Graphite battery pack under the same driving distance per charge. The environmental impact assessment results illustrate that Li-S battery is more environmentally friendly than conventional NCM-Graphite battery, with 9%-90% lower impact. Finally, the improvement pathways for the Li-S battery to meet the USABC (U.S. Advanced Battery Consortium) targets are presented with the corresponding environmental impact changes.

  10. Anaerobic co-digestion of municipal food waste and sewage sludge: A comparative life cycle assessment in the context of a waste service provision.

    PubMed

    Edwards, Joel; Othman, Maazuza; Crossin, Enda; Burn, Stewart

    2017-01-01

    This study used life cycle assessment to evaluate the environmental impact of anaerobic co-digestion (AcoD) and compared it against the current waste management system in two case study areas. Results indicated AcoD to have less environmental impact for all categories modelled excluding human toxicity, despite the need to collect and pre-treat food waste separately. Uncertainty modelling confirmed that AcoD has a 100% likelihood of a smaller global warming potential, and for acidification, eutrophication and fossil fuel depletion AcoD carried a greater than 85% confidence of inducing a lesser impact than the current waste service. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyong Ju, E-mail: kjkim@cau.ac.kr; Yun, Won Gun, E-mail: ogun78@naver.com; Cho, Namho, E-mail: nhc51@cau.ac.kr

    The late rise in global concern for environmental issues such as global warming and air pollution is accentuating the need for environmental assessments in the construction industry. Promptly evaluating the environmental loads of the various design alternatives during the early stages of a construction project and adopting the most environmentally sustainable candidate is therefore of large importance. Yet, research on the early evaluation of a construction project's environmental load in order to aid the decision making process is hitherto lacking. In light of this dilemma, this study proposes a model for estimating the environmental load by employing only the mostmore » basic information accessible during the early design phases of a project for the pre-stressed concrete (PSC) beam bridge, the most common bridge structure. Firstly, a life cycle assessment (LCA) was conducted on the data from 99 bridges by integrating the bills of quantities (BOQ) with a life cycle inventory (LCI) database. The processed data was then utilized to construct a case based reasoning (CBR) model for estimating the environmental load. The accuracy of the estimation model was then validated using five test cases; the model's mean absolute error rates (MAER) for the total environmental load was calculated as 7.09%. Such test results were shown to be superior compared to those obtained from a multiple-regression based model and a slab area base-unit analysis model. Henceforth application of this model during the early stages of a project is expected to highly complement environmentally friendly designs and construction by facilitating the swift evaluation of the environmental load from multiple standpoints. - Highlights: • This study is to develop the model of assessing the environmental impacts on LCA. • Bills of quantity from completed designs of PSC Beam were linked with the LCI DB. • Previous cases were used to estimate the environmental load of new case by CBR model. • CBR model produces more accurate estimations (7.09%) than other conventional models. • This study supports decision making process in the early stage of a new construction case.« less

  12. Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE).

    PubMed

    Hansen, Trine Lund; Bhander, Gurbakhash S; Christensen, Thomas Højlund; Bruun, Sander; Jensen, Lars Stoumann

    2006-04-01

    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment.

  13. Ecological Assimilation of Land and Climate Observations - the EALCO model

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.

  14. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    PubMed

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

  15. [Stimulation of D1-receptors improves passive avoidance learning of female rats during ovary cycle].

    PubMed

    Fedotova, Iu O; Sapronov, N S

    2012-01-01

    The involvement of D1-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. SKF-38393 (0,1 mg/kg, i.p.), D1-receptor agonist and SCH-23390 (0,1 mg/kg, i.p.), D1-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic SKF-3839 administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals, but failed to change the dynamics of spatial learning in Morris water maze. Chronic SCH-23390 administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D1-receptors in learning/memory processes during ovary cycle in the adult female rats.

  16. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  17. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  18. An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs.

    PubMed

    Efe, Turgay; Schofer, Markus D; Füglein, Alexander; Timmesfeld, Nina; Fuchs-Winkelmann, Susanne; Stein, Thomas; El-Zayat, Bilal Farouk; Paletta, Jürgen Rj; Heyse, Thomas J

    2010-12-15

    Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.

  19. An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs

    PubMed Central

    2010-01-01

    Background Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS®-1S). Methods A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS®-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS®-1S surface was evaluated with image processing software. Results Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS®-1S with an empty defect site was recorded. Conclusion The ex vivo CPM animal model is appropriate in investigating CaReS®-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects. PMID:21159196

  20. The Center For Medicare And Medicaid Innovation's blueprint for rapid-cycle evaluation of new care and payment models.

    PubMed

    Shrank, William

    2013-04-01

    The Affordable Care Act established the Center for Medicare and Medicaid Innovation to test innovative payment and service delivery models. The goal is to reduce program expenditures while preserving or improving the quality of care provided to beneficiaries of Medicare, Medicaid, and the Children's Health Insurance Program. Central to the success of the Innovation Center is a new, rapid-cycle approach to evaluation. This article describes that approach--setting forth how the Rapid Cycle Evaluation Group aims to deliver frequent feedback to providers in support of continuous quality improvement, while rigorously evaluating the outcomes of each model tested. This article also describes the relationship between the group's work and that of the Office of the Actuary at the Centers for Medicare and Medicaid Services, which plays a central role in the assessment of new models.

  1. Reproducibility of Carbon and Water Cycle by an Ecosystem Process Based Model Using a Weather Generator and Effect of Temporal Concentration of Precipitation on Model Outputs

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2014-12-01

    GCM is generally used to produce input weather data for the simulation of carbon and water cycle by ecosystem process based models under climate change however its temporal resolution is sometimes incompatible to requirement. A weather generator (WG) is used for temporal downscaling of input weather data for models, where the effect of WG algorithms on reproducibility of ecosystem model outputs must be assessed. In this study simulated carbon and water cycle by Biome-BGC model using weather data measured and generated by CLIMGEN weather generator were compared. The measured weather data (daily precipitation, maximum, minimum air temperature) at a few sites for 30 years was collected from NNDC Online weather data. The generated weather data was produced by CLIMGEN parameterized using the measured weather data. NPP, heterotrophic respiration (HR), NEE and water outflow were simulated by Biome-BGC using measured and generated weather data. In the case of deciduous broad leaf forest in Lushi, Henan Province, China, 30 years average monthly NPP by WG was 10% larger than that by measured weather in the growing season. HR by WG was larger than that by measured weather in all months by 15% in average. NEE by WG was more negative in winter and was close to that by measured weather in summer. These differences in carbon cycle were because the soil water content by WG was larger than that by measured weather. The difference between monthly water outflow by WG and by measured weather was large and variable, and annual outflow by WG was 50% of that by measured weather. The inconsistency in carbon and water cycle by WG and measured weather was suggested be affected by the difference in temporal concentration of precipitation, which was assessed.

  2. Momentum and Energy Assessments with NASA and Other Model and Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Salstein, David; Nelson, Peter; Hu, Wen-Jie; Sud, Yogesh (Technical Monitor)

    2001-01-01

    Aspects of the angular momentum cycle, energetics, and related diagnostics from a number of models, including some from the Goddard Laboratory for Atmospheres, and from the Atmospheric Model Intercomparison Project (AMIP) are examined. Torques that dynamically excite changes in angular momentum, including strong torques at mountains were studied. The measure of how atmospheric mass from a strong weather signal can notably change the angular momentum is studied. For AMIP, there is a spread in the angular momentum amongst models, while the GLA model does reasonably well compared to the other models in the diagnostics examined, namely angular momentum and water vapor. Trends and interannual variability in water vapor over a lengthy period was examined. The role of the diabatic heating components, especially latent heating, in the energy cycle and the terms converting available potential energy to kinetic energy, among other parts of the energy cycle, are studied. Modes of climate of the atmosphere, especially the Arctic and North Atlantic Oscillations, are analyzed as well.

  3. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  4. Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Zhang; Paul A. Webley

    CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less

  5. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  6. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    PubMed

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  7. The NEWS Water Cycle Climatology

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  8. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  9. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  10. Knowledge brokering on emissions modelling in Strategic Environmental Assessment of Estonian energy policy with special reference to the LEAP model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuldna, Piret, E-mail: piret.kuldna@seit.ee; Peterson, Kaja; Kuhi-Thalfeldt, Reeli

    Strategic Environmental Assessment (SEA) serves as a platform for bringing together researchers, policy developers and other stakeholders to evaluate and communicate significant environmental and socio-economic effects of policies, plans and programmes. Quantitative computer models can facilitate knowledge exchange between various parties that strive to use scientific findings to guide policy-making decisions. The process of facilitating knowledge generation and exchange, i.e. knowledge brokerage, has been increasingly explored, but there is not much evidence in the literature on how knowledge brokerage activities are used in full cycles of SEAs which employ quantitative models. We report on the SEA process of the nationalmore » energy plan with reflections on where and how the Long-range Energy Alternatives Planning (LEAP) model was used for knowledge brokerage on emissions modelling between researchers and policy developers. Our main suggestion is that applying a quantitative model not only in ex ante, but also ex post scenario modelling and associated impact assessment can facilitate systematic and inspiring knowledge exchange process on a policy problem and capacity building of participating actors. - Highlights: • We examine the knowledge brokering on emissions modelling between researchers and policy developers in a full cycle of SEA. • Knowledge exchange process can evolve at any modelling stage within SEA. • Ex post scenario modelling enables systematic knowledge exchange and learning on a policy problem.« less

  11. Modeling and analysis of tritium dynamics in a DT fusion fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuan, William

    1998-11-01

    A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.

  12. Recommendation for Land Use Impact Assessment: First Steps into Framework, Theory, and Implementation

    EPA Science Inventory

    Although early Life Cycle Assessment (LCA) methodology researchers focused on the modeling of impacts from chemical emissions, it has become obvious that resource depletion categories such as land use, water use, and fossil fuel depletion require additional attention to appropria...

  13. A model for evaluating the environmental benefits of elementary school facilities.

    PubMed

    Ji, Changyoon; Hong, Taehoon; Jeong, Kwangbok; Leigh, Seung-Bok

    2014-01-01

    In this study, a model that is capable of evaluating the environmental benefits of a new elementary school facility was developed. The model is composed of three steps: (i) retrieval of elementary school facilities having similar characteristics as the new elementary school facility using case-based reasoning; (ii) creation of energy consumption and material data for the benchmark elementary school facility using the retrieved similar elementary school facilities; and (iii) evaluation of the environmental benefits of the new elementary school facility by assessing and comparing the environmental impact of the new and created benchmark elementary school facility using life cycle assessment. The developed model can present the environmental benefits of a new elementary school facility in terms of monetary values using Environmental Priority Strategy 2000, a damage-oriented life cycle impact assessment method. The developed model can be used for the following: (i) as criteria for a green-building rating system; (ii) as criteria for setting the support plan and size, such as the government's incentives for promoting green-building projects; and (iii) as criteria for determining the feasibility of green building projects in key business sectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives.

    PubMed

    Lemming, Gitte; Hauschild, Michael Z; Chambon, Julie; Binning, Philip J; Bulle, Cécile; Margni, Manuele; Bjerg, Poul L

    2010-12-01

    The environmental impacts of remediation of a chloroethene-contaminated site were evaluated using life cycle assessment (LCA). The compared remediation options are (i) in situ bioremediation by enhanced reductive dechlorination (ERD), (ii) in situ thermal desorption (ISTD), and (iii) excavation of the contaminated soil followed by off-site treatment and disposal. The results showed that choosing the ERD option will reduce the life-cycle impacts of remediation remarkably compared to choosing either ISTD or excavation, which are more energy-demanding. In addition to the secondary impacts of remediation, this study includes assessment of local toxic impacts (the primary impact) related to the on-site contaminant leaching to groundwater and subsequent human exposure via drinking water. The primary human toxic impacts were high for ERD due to the formation and leaching of chlorinated degradation products, especially vinyl chloride during remediation. However, the secondary human toxic impacts of ISTD and excavation are likely to be even higher, particularly due to upstream impacts from steel production. The newly launched model, USEtox, was applied for characterization of primary and secondary toxic impacts and combined with a site-dependent fate model of the leaching of chlorinated ethenes from the fractured clay till site.

  15. Determine Operating Reactor to Use for the 2016 PCI Level 1 Milestone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarno, Kevin T.

    2016-01-30

    The Consortium for Advanced Simulation of Light Water Reactors (LWRs) (CASL) Level 1 milestone to “Assess the analysis capability for core-wide [pressurized water reactor] PWR Pellet- Clad Interaction (PCI) screening and demonstrate detailed 3-D analysis on selected sub-region” (L1:CASL.P13.03) requires a particular type of nuclear power plant for the assessment. This report documents the operating reactor and cycles chosen for this assessment in completion of the physics integration (PHI) milestone to “Determine Operating Reactor to use for PCI L1 Milestone” (L3:PHI.CMD.P12.02). Watts Bar Unit 1 experienced (at least) one fuel rod failure in each of cycles 6 and 7, andmore » at least one was deemed to be duty related rather than being primarily related to a manufacturing defect or grid effects. This brief report documents that the data required to model cycles 1–12 of Watts Bar Unit 1 using VERA-CS contains sufficient data to model the PHI portion of the PCI challenge problem. A list of additional data needs is also provided that will be important for verification and validation of the BISON results.« less

  16. Benchmarking Terrestrial Ecosystem Models in the South Central US

    NASA Astrophysics Data System (ADS)

    Kc, M.; Winton, K.; Langston, M. A.; Luo, Y.

    2016-12-01

    Ecosystem services and products are the foundation of sustainability for regional and global economy since we are directly or indirectly dependent on the ecosystem services like food, livestock, water, air, wildlife etc. It has been increasingly recognized that for sustainability concerns, the conservation problems need to be addressed in the context of entire ecosystems. This approach is even more vital in the 21st century with formidable increasing human population and rapid changes in global environment. This study was conducted to find the state of the science of ecosystem models in the South-Central region of US. The ecosystem models were benchmarked using ILAMB diagnostic package developed as a result of International Land Model Benchmarking (ILAMB) project on four main categories; viz, Ecosystem and Carbon Cycle, Hydrology Cycle, Radiation and Energy Cycle and Climate forcings. A cumulative assessment was generated with weighted seven different skill assessment metrics for the ecosystem models. This synthesis on the current state of the science of ecosystem modeling in the South-Central region of US will be highly useful towards coupling these models with climate, agronomic, hydrologic, economic or management models to better represent ecosystem dynamics as affected by climate change and human activities; and hence gain more reliable predictions of future ecosystem functions and service in the region. Better understandings of such processes will increase our ability to predict the ecosystem responses and feedbacks to environmental and human induced change in the region so that decision makers can make an informed management decisions of the ecosystem.

  17. Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi: Simulations vs. Experiment

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell; Benafan, Othmane; Noebe, Ronald; Vaidyanathan, Raj; Anderson, Peter M.

    2011-01-01

    A recent microstructure-based FEM model that couples crystal-based plasticity, the B2<-> MB190 phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation-plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale.

  18. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  19. Mechanistic exploration of the catalytic cycles for the CO oxidation by O2 over FeO(1-3) application of the energetic span model.

    PubMed

    Wang, Huan-Jiang; Wang, Yong-Cheng

    2014-06-01

    Carbon monoxide (CO) and oxygen (O2) catalyzed by small neutral iron oxide clusters (FeO(1-3)) was investigated at the density functional level of theory using the Becke-Perdew-Wang functional (BPW91). Three reaction pathways along with singlet, triplet and quintet states were calculated for ascertaining the presence of some spin inversion during the catalytic cycle. The catalytic cycle was found to be "two state reactivity" resulting from the crossing among the multistate energetic profiles. The Landau-Zener equation was used to calculate the thermally-averaged spin transition probabilities for the non-adiabatic surface crossing reaction. In order to predict the efficiency of catalyst the energetic span model developed by Kozuch was implemented, whereas this model is not suitable for handling the diabatic reaction, this feature we must take into consideration. To this end, a kinetic assessment is carried out with an expansion of the energetic span model, including the spin-crossing effects. This approximation enables one to measure the efficiency of catalytic cycle including spin-crossing effects by quantum mechanical computation.

  20. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  1. Using the Animal Model to Accelerate Response to Selection in a Self-Pollinating Crop

    PubMed Central

    Cowling, Wallace A.; Stefanova, Katia T.; Beeck, Cameron P.; Nelson, Matthew N.; Hargreaves, Bonnie L. W.; Sass, Olaf; Gilmour, Arthur R.; Siddique, Kadambot H. M.

    2015-01-01

    We used the animal model in S0 (F1) recurrent selection in a self-pollinating crop including, for the first time, phenotypic and relationship records from self progeny, in addition to cross progeny, in the pedigree. We tested the model in Pisum sativum, the autogamous annual species used by Mendel to demonstrate the particulate nature of inheritance. Resistance to ascochyta blight (Didymella pinodes complex) in segregating S0 cross progeny was assessed by best linear unbiased prediction over two cycles of selection. Genotypic concurrence across cycles was provided by pure-line ancestors. From cycle 1, 102/959 S0 plants were selected, and their S1 self progeny were intercrossed and selfed to produce 430 S0 and 575 S2 individuals that were evaluated in cycle 2. The analysis was improved by including all genetic relationships (with crossing and selfing in the pedigree), additive and nonadditive genetic covariances between cycles, fixed effects (cycles and spatial linear trends), and other random effects. Narrow-sense heritability for ascochyta blight resistance was 0.305 and 0.352 in cycles 1 and 2, respectively, calculated from variance components in the full model. The fitted correlation of predicted breeding values across cycles was 0.82. Average accuracy of predicted breeding values was 0.851 for S2 progeny of S1 parent plants and 0.805 for S0 progeny tested in cycle 2, and 0.878 for S1 parent plants for which no records were available. The forecasted response to selection was 11.2% in the next cycle with 20% S0 selection proportion. This is the first application of the animal model to cyclic selection in heterozygous populations of selfing plants. The method can be used in genomic selection, and for traits measured on S0-derived bulks such as grain yield. PMID:25943522

  2. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    PubMed

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  3. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  4. The Defense Life Cycle Management System as a Working Model for Academic Application

    ERIC Educational Resources Information Center

    Burian, Philip E.; Keffel, Leslie M.; Maffei, Francis R., III

    2011-01-01

    Performing the review and assessment of masters' level degree programs can be an overwhelming and challenging endeavor. Getting organized and mapping out the entire review and assessment process can be extremely helpful and more importantly provide a path for successfully accomplishing the review and assessment of the entire program. This paper…

  5. USEEIO: a New and Transparent United States Environmentally Extended Input-Output Model

    EPA Science Inventory

    National-scope environmental life cycle models of goods and services may be used for many purposes, not limited to quantifying impacts of production and consumption of nations, assessing organization-wide impacts, identifying purchasing hot spots, analyzing environmental impacts ...

  6. Organizational Effectiveness: Toward an Integrated Model for Schools of Nursing.

    ERIC Educational Resources Information Center

    Baker, Constance M.; And Others

    1997-01-01

    Literature review on organizational effectiveness focuses on major assessment models: goal attainment, human relations, open systems, internal processes, culture, and life cycle. A review of studies of nursing school effectiveness is used to present an agenda for nursing research. (SK)

  7. Environmental assessment of biofuel pathways in Ile de France based on ecosystem modeling.

    PubMed

    Gabrielle, Benoît; Gagnaire, Nathalie; Massad, Raia Silvia; Dufossé, Karine; Bessou, Cécile

    2014-01-01

    The objective of the work reported here was to reduce the uncertainty on the greenhouse gas balances of biofuels using agro-ecosystem modeling at a high resolution over the Ile-de-France region in Northern France. The emissions simulated during the feedstock production stage were input to a life-cycle assessment of candidate biofuel pathways: bioethanol from wheat, sugar-beet and miscanthus, and biodiesel from oilseed rape. Compared to the widely-used methodology based on fixed emission factors, ecosystem modeling lead to 55-70% lower estimates for N2O emissions, emphasizing the importance of regional factors. The life-cycle GHG emissions of first-generation biofuels were 50-70% lower than fossil-based equivalents, and 85% lower for cellulosic ethanol. When including indirect land-use change effects, GHG savings became marginal for biodiesel and wheat ethanol, but were positive due to direct effects for cellulosic ethanol. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. From individual to population level effects of toxicants in the tubicifid Branchiura sowerbyi using threshold effect models in a Bayesian framework.

    PubMed

    Ducrot, Virginie; Billoir, Elise; Péry, Alexandre R R; Garric, Jeanne; Charles, Sandrine

    2010-05-01

    Effects of zinc were studied in the freshwater worm Branchiura sowerbyi using partial and full life-cycle tests. Only newborn and juveniles were sensitive to zinc, displaying effects on survival, growth, and age at first brood at environmentally relevant concentrations. Threshold effect models were proposed to assess toxic effects on individuals. They were fitted to life-cycle test data using Bayesian inference and adequately described life-history trait data in exposed organisms. The daily asymptotic growth rate of theoretical populations was then simulated with a matrix population model, based upon individual-level outputs. Population-level outputs were in accordance with existing literature for controls. Working in a Bayesian framework allowed incorporating parameter uncertainty in the simulation of the population-level response to zinc exposure, thus increasing the relevance of test results in the context of ecological risk assessment.

  9. Assessing wetland loss impacts on watershed hydrology using an improved modeling approach

    USDA-ARS?s Scientific Manuscript database

    Despite the importance of wetland impacts on water cycling, the Chesapeake Bay Watershed (CBW) has experienced significant wetland losses. The resultant environmental degradation has not been fully characterized. Our aim is to assess wetland loss impacts on watershed hydrology for an agricultural wa...

  10. Fasting cycles potentiate the efficacy of gemcitabine treatment in in vitro and in vivo pancreatic cancer models

    PubMed Central

    Mazza, Tommaso; Panebianco, Concetta; Saracino, Chiara; Pereira, Stephen P.; Graziano, Paolo; Pazienza, Valerio

    2015-01-01

    Background/aims Pancreatic cancer (PC) is ranked as the fourth leading cause of cancer-related deaths worldwide. Despite recent advances in treatment options, a modest impact on the outcome of the disease is observed so far. Short-term fasting cycles have been shown to potentiate the efficacy of chemotherapy against glioma. The aim of this study was to assess the effect of fasting cycles on the efficacy of gemcitabine, a standard treatment for PC patients, in vitro and in an in vivo pancreatic cancer mouse xenograft model. Materials and Methods BxPC-3, MiaPaca-2 and Panc-1 cells were cultured in standard and fasting mimicking culturing condition to evaluate the effects of gemcitabine. Pancreatic cancer xenograft mice were subjected to 24h starvation prior to gemcitabine injection to assess the tumor volume and weight as compared to mice fed ad libitum. Results Fasted pancreatic cancer cells showed increased levels of equilibrative nucleoside transporter (hENT1), the transporter of gemcitabine across the cell membrane, and decreased ribonucleotide reductase M1 (RRM1) levels as compared to those cultured in standard medium. Gemcitabine was more effective in inducing cell death on fasted cells as compared to controls. Consistently, xenograft pancreatic cancer mice subjected to fasting cycles prior to gemcitabine injection displayed a decrease of more than 40% in tumor growth. Conclusion Fasting cycles enhance gemcitabine effect in vitro and in the in vivo PC xenograft mouse model. These results suggest that restrictive dietary interventions could enhance the efficacy of existing cancer treatments in pancreatic cancer patients. PMID:26176887

  11. A Unified Approach to Quantifying Feedbacks in Earth System Models

    NASA Astrophysics Data System (ADS)

    Taylor, K. E.

    2008-12-01

    In order to speed progress in reducing uncertainty in climate projections, the processes that most strongly influence those projections must be identified. It is of some importance, therefore, to assess the relative strengths of various climate feedbacks and to determine the degree to which various earth system models (ESMs) agree in their simulations of these processes. Climate feedbacks have been traditionally quantified in terms of their impact on the radiative balance of the planet, whereas carbon cycle responses have been assessed in terms of the size of the perturbations to the surface fluxes of carbon dioxide. In this study we introduce a diagnostic strategy for unifying the two approaches, which allows us to directly compare the strength of carbon-climate feedbacks with other conventional climate feedbacks associated with atmospheric and surface changes. Applying this strategy to a highly simplified model of the carbon-climate system demonstrates the viability of the approach. In the simple model we find that even if the strength of the carbon-climate feedbacks is very large, the uncertainty associated with the overall response of the climate system is likely to be dominated by uncertainties in the much larger feedbacks associated with clouds. This does not imply that the carbon cycle itself is unimportant, only that changes in the carbon cycle that are associated with climate change have a relatively small impact on global temperatures. This new, unified diagnostic approach is suitable for assessing feedbacks in even the most sophisticated earth system models. It will be interesting to see whether our preliminary conclusions are confirmed when output from the more realistic models is analyzed. This work was carried out at the University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  12. GEWEX - The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.

    1992-01-01

    GEWEX, which is part of the World Climate Research Program, has as its goal an order-of-magnitude improvement in the ability to model global precipitation and evaporation and furnish an accurate assessment of the sensitivity of atmospheric radiation and clouds. Attention will also be given to the response of the hydrological cycle and water resources to climate change. GEWEX employs a single program to coordinate all aspects of climatology from model development to the deployment and operation of observational systems. GEWEX will operate over the next two decades.

  13. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM)

    PubMed Central

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Background Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Methods Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. Results This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Conclusions Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research. PMID:23326315

  14. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM).

    PubMed

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research.

  15. Human Exposure Model (HEM): A modular, web-based application to characterize near-field chemical exposures and releases

    EPA Science Inventory

    The U.S. EPA’s Chemical Safety and Sustainability research program is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur in various populations over the entire life cycle of a consumer product. The model will be implemented as a...

  16. Nano-Launcher Technologies, Approaches, and Life Cycle Assessment. Phase II

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2014-01-01

    Assist in understanding NASA technology and investment approaches, and other driving factors, necessary for enabling dedicated nano-launchers by industry at a cost and flight rate that (1) could support and be supported by an emerging nano-satellite market and (2) would benefit NASAs needs. Develop life-cycle cost, performance and other NASA analysis tools or models required to understand issues, drivers and challenges.

  17. Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context.

    PubMed

    Gnansounou, Edgard; Raman, Jegannathan Kenthorai

    2018-04-24

    Among the renewables, non-food and wastelands based biofuels are essential for the transport sector to achieve country's climate mitigation targets. With the growing interest in biorefineries, setting policy requirements for other coproducts along with biofuels is necessary to improve the products portfolio of biorefinery, increase the bioproducts perception by the consumers and push the technology forward. Towards this context, Claiming-Based allocation models were used in comparative life cycle assessment of multiple products from wheat straw biorefinery and vetiver biorefinery. Vetiver biorefinery shows promising Greenhouse gas emission savings (181-213%) compared to the common crop based lignocellulose (wheat straw) biorefinery. Assistance of Claiming-Based Allocation models favors to find out the affordable allocation limit (0-80%) among the coproducts in order to achieve the individual prospective policy targets. Such models show promising application in multiproduct life cycle assessment studies where appropriate allocation is challenging to achieve the individual products emission subject to policy targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Response Surface Modeling of Combined-Cycle Propulsion Components using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.

    2002-01-01

    Three examples of response surface modeling with CFD are presented for combined cycle propulsion components. The examples include a mixed-compression-inlet during hypersonic flight, a hydrogen-fueled scramjet combustor during hypersonic flight, and a ducted-rocket nozzle during all-rocket flight. Three different experimental strategies were examined, including full factorial, fractionated central-composite, and D-optimal with embedded Plackett-Burman designs. The response variables have been confined to integral data extracted from multidimensional CFD results. Careful attention to uncertainty assessment and modeling bias has been addressed. The importance of automating experimental setup and effectively communicating statistical results are emphasized.

  19. Analysis of critical thinking ability of VII grade students based on the mathematical anxiety level through learning cycle 7E model

    NASA Astrophysics Data System (ADS)

    Widyaningsih, E.; Waluya, S. B.; Kurniasih, A. W.

    2018-03-01

    This study aims to know mastery learning of students’ critical thinking ability with learning cycle 7E, determine whether the critical thinking ability of the students with learning cycle 7E is better than students’ critical thinking ability with expository model, and describe the students’ critical thinking phases based on the mathematical anxiety level. The method is mixed method with concurrent embedded. The population is VII grade students of SMP Negeri 3 Kebumen academic year 2016/2017. Subjects are determined by purposive sampling, selected two students from each level of mathematical anxiety. Data collection techniques include test, questionnaire, interview, and documentation. Quantitative data analysis techniques include mean test, proportion test, difference test of two means, difference test of two proportions and for qualitative data used Miles and Huberman model. The results show that: (1) students’ critical thinking ability with learning cycle 7E achieve mastery learning; (2) students’ critical thinking ability with learning cycle 7E is better than students’ critical thinking ability with expository model; (3) description of students’ critical thinking phases based on the mathematical anxiety level that is the lower the mathematical anxiety level, the subjects have been able to fulfil all of the indicators of clarification, assessment, inference, and strategies phases.

  20. Environmental assessment of a representative grass-finishing beef operation in southern Pennsylvania

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to quantify environmental impacts of a representative grass-finished beef operation in southeastern Pennsylvania. A farm-gate life cycle assessment was conducted using the Integrated Farm System Model to estimate greenhouse gas emissions, reactive nitrogen loss, and w...

  1. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  2. Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO 2 fixation cycle in extremely thermoacidophilic archaea

    DOE PAGES

    Loder, Andrew J.; Han, Yejun; Hawkins, Aaron B.; ...

    2016-10-19

    Here, the 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO 2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35%–65% split of carbon flux throughmore » the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO 2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxyproprionate.« less

  3. Stochastic Technology Choice Model for Consequential Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; Bardow, André; Suh, Sangwon

    2016-12-06

    Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.

  4. Out with the old, in with the new: Assessing change in screen time when measurement changes over time.

    PubMed

    Gunnell, Katie E; Brunet, Jennifer; Bélanger, Mathieu

    2018-03-01

    We examined if screen time can be assessed over time when the measurement protocol has changed to reflect advances in technology. Beginning in 2011, 929 youth (9-12 years at time one) living in in New Brunswick (Canada) self-reported the amount of time spent watching television (cycles 1-13), using computers (cycles 1-13), and playing video games (cycles 3-13). Using longitudinal invariance to test a shifting indicators model of screen time, we found that the relationships between the latent variable reflecting overall screen time and the indicators used to assess screen time were invariant across cycles (weak invariance). We also found that 31 out of 37 indicator intercepts were invariant, meaning that most indicators were answered similarly (i.e., on the same metric) across cycles (partial strong invariance), and that 28 out of 37 indicator residuals were invariant indicating that similar sources of error were present over time (partial strict invariance). Overall, across all survey cycles, 76% of indicators were fully invariant. Whereas issues were noted when new examples of screen-based technology (e.g., iPads) were added, having established partial invariance, we suggest it is still possible to assess change in screen time despite having changing indicators over time. Although it is not possible to draw definitive conclusions concerning other self-report measures of screen time, our findings may assist other researchers considering modifying self-report measures in longitudinal studies to reflect technological advancements and increase the precision of their results.

  5. Life cycle costing of waste management systems: Overview, calculation principles and case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Sanchez, Veronica, E-mail: vems@env.dtu.dk; Kromann, Mikkel A.; Astrup, Thomas Fruergaard

    2015-02-15

    Highlights: • We propose a comprehensive model for cost assessment of waste management systems. • The model includes three types of LCC: Conventional, Environmental and Societal LCCs. • The applicability of the proposed model is tested with two case studies. - Abstract: This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, andmore » each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and −0.3 M€/year saved on incineration.« less

  6. A modular Human Exposure Model (HEM) framework to ...

    EPA Pesticide Factsheets

    Life Cycle Impact Analysis (LCIA) has proven to be a valuable tool for systematically comparing processes and products, and has been proposed for use in Chemical Alternatives Analysis (CAA). The exposure assessment portion of the human health impact scores of LCIA has historically focused on far-field sources (environmentally mediated exposures) while research has shown that use related exposures, (near-field exposures) typically dominate population exposure. Characterizing the human health impacts of chemicals in consumer products over the life cycle of these products requires an evaluation of both near-field as well far-field sources. Assessing the impacts of the near-field exposures requires bridging the scientific and technical gaps that currently prevent the harmonious use of the best available methods and tools from the fields of LCIA and human health exposure and risk assessment. The U.S. EPA’s Chemical Safety and Sustainability LC-HEM project is developing the Human Exposure Model (HEM) to assess near-field exposures to chemicals that occur to various populations over the life cycle of a commercial product. The HEM will be a publically available, web-based, modular system which will allow for the evaluation of chemical/product impacts in a LCIA framework to support CAA. We present here an overview of the framework for the modular HEM system. The framework includes a data flow diagram of in-progress and future planned modules, the definition of each mod

  7. Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells

    PubMed Central

    Danaher, Patrick; Finak, Greg; Krouse, Michael; Wang, Alice; Webster, Philippa; Beechem, Joseph; Gottardo, Raphael

    2014-01-01

    Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expression in single cells by measuring 333 genes in 930 cells across three phases and three cell lines. We determine each cell's phase non-invasively without chemical arrest and use it as a covariate in tests of differential expression. We observe bi-modal gene expression, a previously-described phenomenon, wherein the expression of otherwise abundant genes is either strongly positive, or undetectable within individual cells. This bi-modality is likely both biologically and technically driven. Irrespective of its source, we show that it should be modeled to draw accurate inferences from single cell expression experiments. To this end, we propose a semi-continuous modeling framework based on the generalized linear model, and use it to characterize genes with consistent cell cycle effects across three cell lines. Our new computational framework improves the detection of previously characterized cell-cycle genes compared to approaches that do not account for the bi-modality of single-cell data. We use our semi-continuous modelling framework to estimate single cell gene co-expression networks. These networks suggest that in addition to having phase-dependent shifts in expression (when averaged over many cells), some, but not all, canonical cell cycle genes tend to be co-expressed in groups in single cells. We estimate the amount of single cell expression variability attributable to the cell cycle. We find that the cell cycle explains only 5%–17% of expression variability, suggesting that the cell cycle will not tend to be a large nuisance factor in analysis of the single cell transcriptome. PMID:25032992

  8. Life cycle assessment: Existing building retrofit versus replacement

    NASA Astrophysics Data System (ADS)

    Darabi, Nura

    The embodied energy in building materials constitutes a large part of the total energy required for any building (Thormark 2001, 429). In working to make buildings more energy efficient this needs to be considered. Integrating considerations about life cycle assessment for buildings and materials is one promising way to reduce the amount of energy consumption being used within the building sector and the environmental impacts associated with that energy. A life cycle assessment (LCA) model can be utilized to help evaluate the embodied energy in building materials in comparison to the buildings operational energy. This thesis takes into consideration the potential life cycle reductions in energy and CO2 emissions that can be made through an energy retrofit of an existing building verses demolition and replacement with a new energy efficient building. A 95,000 square foot institutional building built in the 1960`s was used as a case study for a building LCA, along with a calibrated energy model of the existing building created as part of a previous Masters of Building Science thesis. The chosen case study building was compared to 10 possible improvement options of either energy retrofit or replacement of the existing building with a higher energy performing building in order to see the life cycle relationship between embodied energy, operational energy, and C02 emissions. As a result of completing the LCA, it is shown under which scenarios building retrofit saves more energy over the lifespan of the building than replacement with new construction. It was calculated that energy retrofit of the chosen existing institutional building would reduce the amount of energy and C02 emissions associated with that building over its life span.

  9. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and comparing upper tropospheric budgets of NOx from aircraft and lightning sources in the modeling domain.

  10. Assessing the radar rainfall estimates in watershed-scale water quality model

    USDA-ARS?s Scientific Manuscript database

    Watershed-scale water quality models are effective science-based tools for interpreting change in complex environmental systems that affect hydrology cycle, soil erosion and nutrient fate and transport in watershed. Precipitation is one of the primary input data to achieve a precise rainfall-runoff ...

  11. Multi-pathway exposure modelling of chemicals in cosmetics with application to shampoo

    EPA Science Inventory

    We present a novel multi-pathway, mass balance based, fate and exposure model compatible with life cycle and high-throughput screening assessments of chemicals in cosmetic products. The exposures through product use as well as post-use emissions and environmental media were quant...

  12. 14 CFR 91.1505 - Repairs assessment for pressurized fuselages.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (ii) Model B4-100 (including Model B4-2C): 30,000 flights above the window line, and 36,000 flights below the window line. (iii) Model B4-200: 25,500 flights above the window line, and 34,000 flights below the window line. (2) For all models of the British Aerospace BAC 1-11, the flight cycle...

  13. Plant ecosystem responses to rising atmospheric CO2: applying a "two-timing" approach to assess alternative hypotheses for mechanisms of nutrient limitation

    NASA Astrophysics Data System (ADS)

    Medlyn, B.; Jiang, M.; Zaehle, S.

    2017-12-01

    There is now ample experimental evidence that the response of terrestrial vegetation to rising atmospheric CO2 concentration is modified by soil nutrient availability. How to represent nutrient cycling processes is thus a key consideration for vegetation models. We have previously used model intercomparison to demonstrate that models incorporating different assumptions predict very different responses at Free-Air CO2 Enrichment experiments. Careful examination of model outputs has provided some insight into the reasons for the different model outcomes, but it is difficult to attribute outcomes to specific assumptions. Here we investigate the impact of individual assumptions in a generic plant carbon-nutrient cycling model. The G'DAY (Generic Decomposition And Yield) model is modified to incorporate alternative hypotheses for nutrient cycling. We analyse the impact of these assumptions in the model using a simple analytical approach known as "two-timing". This analysis identifies the quasi-equilibrium behaviour of the model at the time scales of the component pools. The analysis provides a useful mathematical framework for probing model behaviour and identifying the most critical assumptions for experimental study.

  14. Physiology and Endocrinology of the Ovarian Cycle in Macaques

    PubMed Central

    Weinbauer, Gerhard F.; Niehoff, Marc; Niehaus, Michael; Srivastav, Shiela; Fuchs, Antje; Van Esch, Eric; Cline, J. Mark

    2009-01-01

    Macaques provide excellent models for preclinical testing and safety assessment of female reproductive toxicants. Currently, cynomolgus monkeys are the predominant species for (reproductive) toxicity testing. Marmosets and rhesus monkeys are being used occasionally. The authors provide a brief review on physiology and endocrinology of the cynomolgus monkey ovarian cycle, practical guidance on assessment and monitoring of ovarian cyclicity, and new data on effects of social housing on ovarian cyclicity in toxicological studies. In macaques, cycle monitoring is achieved using daily vaginal smears for menstruation combined with cycle-timed frequent sampling for steroid and peptide hormone analysis. Owing to requirements of frequent and timed blood sampling, it is not recommended to incorporate these special evaluations into a general toxicity study design. Marmosets lack external signs of ovarian cyclicity, and cycle monitoring is done by regular determinations of progesterone. Cynomolgus and marmoset monkeys do not exhibit seasonal variations in ovarian activity, whereas such annual rhythm is pronounced in rhesus monkeys. Studies on pair- and group-housed cynomolgus monkeys revealed transient alterations in the duration and endocrinology of the ovarian cycle followed by return to normal cyclicity after approximately six months. This effect is avoided if the animals had contact with each other prior to mingling. These experiments also demonstrated that synchronization of ovarian cycles did not occur. PMID:20852722

  15. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  16. Assessing the environmental impacts of soil compaction in Life Cycle Assessment.

    PubMed

    Stoessel, Franziska; Sonderegger, Thomas; Bayer, Peter; Hellweg, Stefanie

    2018-07-15

    Maintaining biotic capacity is of key importance with regard to global food and biomass provision. One reason for productivity loss is soil compaction. In this paper, we use a statistical empirical model to assess long-term yield losses through soil compaction in a regionalized manner, with global coverage and for different agricultural production systems. To facilitate the application of the model, we provide an extensive dataset including crop production data (with 81 crops and corresponding production systems), related machinery application, as well as regionalized soil texture and soil moisture data. Yield loss is modeled for different levels of soil depth (0-25cm, 25-40cm and >40cm depth). This is of particular relevance since compaction in topsoil is classified as reversible in the short term (approximately four years), while recovery of subsoil layers takes much longer. We derive characterization factors quantifying the future average annual yield loss as a fraction of the current yield for 100years and applicable in Life Cycle Assessment studies of agricultural production. The results show that crops requiring enhanced machinery inputs, such as potatoes, have a major influence on soil compaction and yield losses, while differences between mechanized production systems (organic and integrated production) are small. The spatial variations of soil moisture and clay content are reflected in the results showing global hotspot regions especially susceptible to soil compaction, e.g. the South of Brazil, the Caribbean Islands, Central Africa, and the Maharashtra district of India. The impacts of soil compaction can be substantial, with highest annual yield losses in the range of 0.5% (95% percentile) due to one year of potato production (cumulated over 100y this corresponds to a one-time loss of 50% of the present yield). These modeling results demonstrate the necessity for including soil compaction effects in Life Cycle Impact Assessment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Process-oriented Observational Metrics for CMIP6 Climate Model Assessments

    NASA Astrophysics Data System (ADS)

    Jiang, J. H.; Su, H.

    2016-12-01

    Observational metrics based on satellite observations have been developed and effectively applied during post-CMIP5 model evaluation and improvement projects. As new physics and parameterizations continue to be included in models for the upcoming CMIP6, it is important to continue objective comparisons between observations and model results. This talk will summarize the process-oriented observational metrics and methodologies for constraining climate models with A-Train satellite observations and support CMIP6 model assessments. We target parameters and processes related to atmospheric clouds and water vapor, which are critically important for Earth's radiative budget, climate feedbacks, and water and energy cycles, and thus reduce uncertainties in climate models.

  18. Development and weighting of a life cycle assessment screening model

    NASA Astrophysics Data System (ADS)

    Bates, Wayne E.; O'Shaughnessy, James; Johnson, Sharon A.; Sisson, Richard

    2004-02-01

    Nearly all life cycle assessment tools available today are high priced, comprehensive and quantitative models requiring a significant amount of data collection and data input. In addition, most of the available software packages require a great deal of training time to learn how to operate the model software. Even after this time investment, results are not guaranteed because of the number of estimations and assumptions often necessary to run the model. As a result, product development, design teams and environmental specialists need a simplified tool that will allow for the qualitative evaluation and "screening" of various design options. This paper presents the development and design of a generic, qualitative life cycle screening model and demonstrates its applicability and ease of use. The model uses qualitative environmental, health and safety factors, based on site or product-specific issues, to sensitize the overall results for a given set of conditions. The paper also evaluates the impact of different population input ranking values on model output. The final analysis is based on site or product-specific variables. The user can then evaluate various design changes and the apparent impact or improvement on the environment, health and safety, compliance cost and overall corporate liability. Major input parameters can be varied, and factors such as materials use, pollution prevention, waste minimization, worker safety, product life, environmental impacts, return of investment, and recycle are evaluated. The flexibility of the model format will be discussed in order to demonstrate the applicability and usefulness within nearly any industry sector. Finally, an example using audience input value scores will be compared to other population input results.

  19. External validation of anti-Müllerian hormone based prediction of live birth in assisted conception

    PubMed Central

    2013-01-01

    Background Chronological age and oocyte yield are independent determinants of live birth in assisted conception. Anti-Müllerian hormone (AMH) is strongly associated with oocyte yield after controlled ovarian stimulation. We have previously assessed the ability of AMH and age to independently predict live birth in an Italian assisted conception cohort. Herein we report the external validation of the nomogram in 822 UK first in vitro fertilization (IVF) cycles. Methods Retrospective cohort consisting of 822 patients undergoing their first IVF treatment cycle at Glasgow Centre for Reproductive Medicine. Analyses were restricted to women aged between 25 and 42 years of age. All women had an AMH measured prior to commencing their first IVF cycle. The performance of the model was assessed; discrimination by the area under the receiver operator curve (ROCAUC) and model calibration by the predicted probability versus observed probability. Results Live births occurred in 29.4% of the cohort. The observed and predicted outcomes showed no evidence of miscalibration (p = 0.188). The ROCAUC was 0.64 (95% CI: 0.60, 0.68), suggesting moderate and similar discrimination to the original model. The ROCAUC for a continuous model of age and AMH was 0.65 (95% CI 0.61, 0.69), suggesting that the original categories of AMH were appropriate. Conclusions We confirm by external validation that AMH and age are independent predictors of live birth. Although the confidence intervals for each category are wide, our results support the assessment of AMH in larger cohorts with detailed baseline phenotyping for live birth prediction. PMID:23294733

  20. Switchgrass Biofuel Research: Carbon Sequestration and Life Cycle Analysis (a.k.a. Second Generation Biofuels: Carbon Sequestration and Life Cycle Analysis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liska, Adam J.; Suyker, Andrew E.; Arkebauer, Timothy J.

    2013-12-20

    Soil emissions have been inadequately characterized in life cycle assessment of biofuels (see section 3.2.3). This project measures the net differences in field-level greenhouse gas emissions (CO 2, N 2O, and CH 4) due to corn residue removal for cellulosic ethanol production. Gas measurements are then incorporated into life cycle assessment of the final biofuel product to determine whether it is in compliance with federal greenhouse gas emissions standards for biofuels (Renewable Fuel Standard 2, RFS2). The field measurements have been conducted over three years on two, quarter-section, production-scale, irrigated corn fields (both roughly 50 hectares, as this size ofmore » field is necessary for reproducible eddy covariance flux measurements of CO 2; chamber measurements are used to determine N 2O and CH 4 emissions). Due to a large hail storm in 2010, estimates of the emission from residue could not be separated from the total CO 2 flux in 2011. This led us to develop soil organic carbon (SOC) modeling techniques to estimate changes in CO 2 emissions from residue removal. Modeling has predicted emissions of CO 2 from oxidation of SOC that are consistent (<12%) with 9 years of CO 2 flux measurements at the two production field sites, and modeling is also consistent with other field measurements (Liska et al., submitted). The model was then used to estimate the average change in SOC and CO 2 emissions from nine years of simulated residue removal (6 Mg biomass per hectare per year) at the sites; a loss of 0.43 Mg C ha -1 yr -1 resulted. The model was then used to estimate SOC changes over 10 years across Nebraska using supercomputing, based on 61 million, 30 x 30 meter, grid cells to account for regional variability in initial SOC, crop yield, and temperature; an average loss of 0.47 Mg C ha -1 yr -1 resulted. When these CO 2 emissions are included in simple life cycle assessment calculations, emissions from cellulosic ethanol from crop residue are above mandated levels of 60% reduction compared to gasoline (Liska, in press). These approaches are both technically effective and economically feasible. This work has been extensively peer reviewed.« less

  1. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education.

    PubMed

    Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A

    2009-07-01

    Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.

  2. Insulation Cork Boards-Environmental Life Cycle Assessment of an Organic Construction Material.

    PubMed

    Silvestre, José D; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D; Durão, Vera

    2016-05-20

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A "cradle-to-cradle" environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows ( i.e. , uptakes and emissions), including sensitivity analysis of this procedure; at the production stage-the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation-the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date "cradle-to-cradle" environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards.

  3. Insulation Cork Boards—Environmental Life Cycle Assessment of an Organic Construction Material

    PubMed Central

    Silvestre, José D.; Pargana, Nuno; de Brito, Jorge; Pinheiro, Manuel D.; Durão, Vera

    2016-01-01

    Envelope insulation is a relevant technical solution to cut energy consumption and reduce environmental impacts in buildings. Insulation Cork Boards (ICB) are a natural thermal insulation material whose production promotes the recycling of agricultural waste. The aim of this paper is to determine and evaluate the environmental impacts of the production, use, and end-of-life processing of ICB. A “cradle-to-cradle” environmental Life Cycle Assessment (LCA) was performed according to International LCA standards and the European standards on the environmental evaluation of buildings. These results were based on site-specific data and resulted from a consistent methodology, fully described in the paper for each life cycle stage: Cork oak tree growth, ICB production, and end-of-life processing-modeling of the carbon flows (i.e., uptakes and emissions), including sensitivity analysis of this procedure; at the production stage—the modeling of energy processes and a sensitivity analysis of the allocation procedures; during building operation—the expected service life of ICB; an analysis concerning the need to consider the thermal diffusivity of ICB in the comparison of the performance of insulation materials. This paper presents the up-to-date “cradle-to-cradle” environmental performance of ICB for the environmental categories and life-cycle stages defined in European standards. PMID:28773516

  4. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    NASA Astrophysics Data System (ADS)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the performance of carbon fluxes and biomass simulations with them. An experiment was performed with a widely used model, Biome-BGC, and effects of disturbance and forest age were considered in the model run. As for disturbance, human influence index map derived by CIESIN was used. A global forest age map was prepared with model inversion method using CIESIN human influence index, GFED fire burnt area, and IIASA global forest biomass maps. To validate model GPP and RE, we prepared the global GPP map estimated with support vector machine and the global RE map derived by downscaling the carbon budget product (L4A) of Greenhouse gases Observing SATellite (GOSAT) in conjunction with IIASA biomass and soil carbon products. Through a process of testing the simultaneous reproducibility of the Biome-BGC model, it will be determined whether the current terrestrial ecosystem model is sophisticated enough for clarifying the mechanism of carbon cycle.

  5. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.

    PubMed

    Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V

    2017-08-01

    Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.

  7. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    NASA Astrophysics Data System (ADS)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  8. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  9. Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations

    Treesearch

    Yunjun Yao; Shunlin Liang; Xianglan Li; Shaomin Liu; Jiquan Chen; Xiaotong Zhang; Kun Jia; Bo Jiang; Xianhong Xie; Simon Munier; Meng Liu; Jian Yu; Anders Lindroth; Andrej Varlagin; Antonio Raschi; Asko Noormets; Casimiro Pio; Georg Wohlfahrt; Ge Sun; Jean-Christophe Domec; Leonardo Montagnani; Magnus Lund; Moors Eddy; Peter D. Blanken; Thomas Grunwald; Sebastian Wolf; Vincenzo Magliulo

    2016-01-01

    The latent heat flux (LE) between the terrestrial biosphere and atmosphere is a major driver of the globalhydrological cycle. In this study, we evaluated LE simulations by 45 general circulation models (GCMs)in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by a comparison...

  10. An analysis of international nuclear fuel supply options

    NASA Astrophysics Data System (ADS)

    Taylor, J'tia Patrice

    As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.

  11. Copeptin Levels Remain Unchanged during the Menstrual Cycle

    PubMed Central

    Blum, Claudine A.; Mirza, Uzma; Christ-Crain, Mirjam; Mueller, Beat; Schindler, Christian; Puder, Jardena J.

    2014-01-01

    Background Copeptin, a surrogate marker for arginin vasopressin production, is evaluated as an osmo-dependent stress and inflammatory biomarker in different diseases. We investigated copeptin during the menstrual cycle and its relationship to sex hormones, markers of subclinical inflammation and estimates of body fluid. Methods In 15 healthy women with regular menstrual cycles, blood was drawn on fifteen defined days of their menstrual cycle and was assayed for copeptin, progesterone, estradiol, luteinizing hormone, high-sensitive C-reactive protein, tumor necrosis factor-alpha and procalcitonin. Symptoms of fluid retention were assessed on each visit, and bio impedance analysis was measured thrice to estimate body fluid changes. Mixed linear model analysis was performed to assess the changes of copeptin across the menstrual cycle and the relationship of sex hormones, markers of subclinical inflammation and estimates of body fluid with copeptin. Results Copeptin levels did not significantly change during the menstrual cycle (p = 0.16). Throughout the menstrual cycle, changes in estradiol (p = 0.002) and in the physical premenstrual symptom score (p = 0.01) were positively related to copeptin, but changes in other sex hormones, in markers of subclinical inflammation or in bio impedance analysis-estimated body fluid were not (all p = ns). Conclusion Although changes in estradiol and the physical premenstrual symptom score appear to be related to copeptin changes, copeptin does not significantly change during the menstrual cycle. PMID:24866705

  12. Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Heath, Garvin A.; Carpenter Petri, Alberta C.

    The primary goal of this work was to assess the magnitude and variability of published life cycle greenhouse gas (GHG) emission estimates for three types of geothermal electricity generation technologies: enhanced geothermal systems (EGS) binary, hydrothermal (HT) flash, and HT binary. These technologies were chosen to align the results of this report with technologies modeled in National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment Systems (ReEDs) model. Although we did gather and screen life cycle assessment (LCA) literature on hybrid systems, dry steam, and two geothermal heating technologies, we did not analyze published GHG emission estimates for these technologies. Inmore » our systematic literature review of the LCA literature, we screened studies in two stages based on a variety of criteria adapted from NREL's Life Cycle Assessment (LCA) Harmonization study (Heath and Mann 2012). Of the more than 180 geothermal studies identified, only 29 successfully passed both screening stages and only 26 of these included estimates of life cycle GHG emissions. We found that the median estimate of life cycle GHG emissions (in grams of carbon dioxide equivalent per kilowatt-hour generated [g CO2eq/kWh]) reported by these studies are 32.0, 47.0, and 11.3 for EGS binary, HT flash, and HT binary, respectively (Figure ES-1). We also found that the total life cycle GHG emissions are dominated by different stages of the life cycle for different technologies. For example, the GHG emissions from HT flash plants are dominated by the operations phase owing to the flash cycle being open loop whereby carbon dioxide entrained in the geothermal fluids is released to the atmosphere. This is in contrast to binary plants (using either EGS or HT resources), whose GHG emissions predominantly originate in the construction phase, owing to its closed-loop process design. Finally, by comparing this review's literature-derived range of HT flash GHG emissions to data from currently operating geothermal plants, we found that emissions from operational plants exhibit more variability and the median of emissions from operational plants is twice the median of operational emissions reported by LCAs. Further investigation is warranted to better understand the cause of differences between published LCAs and estimates from operational plants and to develop LCA analytical approaches that can yield estimates closer to actual emissions.« less

  13. Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries

    PubMed Central

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-01-01

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries’ environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries. PMID:24646862

  14. Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries.

    PubMed

    Yu, Yajuan; Chen, Bo; Huang, Kai; Wang, Xiang; Wang, Dong

    2014-03-18

    Based on Life Cycle Assessment (LCA) and Eco-indicator 99 method, a LCA model was applied to conduct environmental impact and end-of-life treatment policy analysis for secondary batteries. This model evaluated the cycle, recycle and waste treatment stages of secondary batteries. Nickel-Metal Hydride (Ni-MH) batteries and Lithium ion (Li-ion) batteries were chosen as the typical secondary batteries in this study. Through this research, the following results were found: (1) A basic number of cycles should be defined. A minimum cycle number of 200 would result in an obvious decline of environmental loads for both battery types. Batteries with high energy density and long life expectancy have small environmental loads. Products and technology that help increase energy density and life expectancy should be encouraged. (2) Secondary batteries should be sorted out from municipal garbage. Meanwhile, different types of discarded batteries should be treated separately under policies and regulations. (3) The incineration rate has obvious impact on the Eco-indicator points of Nickel-Metal Hydride (Ni-MH) batteries. The influence of recycle rate on Lithium ion (Li-ion) batteries is more obvious. These findings indicate that recycling is the most promising direction for reducing secondary batteries' environmental loads. The model proposed here can be used to evaluate environmental loads of other secondary batteries and it can be useful for proposing policies and countermeasures to reduce the environmental impact of secondary batteries.

  15. Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

    PubMed

    Kim, Hyung Chul; Wallington, Timothy J; Sullivan, John L; Keoleian, Gregory A

    2015-08-18

    Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.

  16. Water conservation implications for decarbonizing non-electric energy supply: A hybrid life-cycle analysis.

    PubMed

    Liu, Shiyuan; Wang, Can; Shi, Lei; Cai, Wenjia; Zhang, Lixiao

    2018-08-01

    Low-carbon transition in the non-electric energy sector, which includes transport and heating energy, is necessary for achieving the 2 °C target. Meanwhile, as non-electric energy accounts for over 60% of total water consumption in the energy supply sector, it is vital to understand future water trends in the context of decarbonization. However, few studies have focused on life-cycle water impacts for non-electric energy; besides, applying conventional LCA methodology to assess non-electric energy has limitations. In this paper, a Multi-Regional Hybrid Life-Cycle Assessment (MRHLCA) model is built to assess total CO 2 emissions and water consumption of 6 non-electric energy technologies - transport energy from biofuel and gasoline, heat supply from natural gas, biogas, coal, and residual biomass, within 7 major emitting economies. We find that a shift to natural gas and residual biomass heating can help economies reduce 14-65% CO 2 and save more than 21% water. However, developed and developing economies should take differentiated technical strategies. Then we apply scenarios from IMAGE model to demonstrate that if economies take cost-effective 2 °C pathways, the water conservation synergy for the whole energy supply sector, including electricity, can also be achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Climate change impact on growing degree day accumulation values

    NASA Astrophysics Data System (ADS)

    Bekere, Liga; Sile, Tija; Bethers, Uldis; Sennikovs, Juris

    2015-04-01

    A well-known and often used method to assess and forecast plant growth cycle is the growing degree day (GDD) method with different formulas used for accumulation calculations. With this method the only factor that affects plant development is temperature. So with climate change and therefore also change in temperature the typical times of plant blooming or harvest can be expected to change. The goal of this study is to assess this change in the Northern Europe region. As an example strawberry bloom and harvest times are used. As the first part of this study it was required to define the current GDD amounts required for strawberry bloom and harvest. It was done using temperature data from the Danish Meteorological Institute's (DMI) NWP model HIRLAM for the years 2010-2012 and general strawberry growth observations in Latvia. This way we acquired an example amount of GDD required for strawberry blooming and harvest. To assess change in the plant growth cycle we used regional climate models (RCM) - Euro-CORDEX. RCM temperature data for both past and future periods was analyzed and bias correction was carried out. Then the GDD calculation methodology was applied on corrected temperature data and results showing change in strawberry growth cycle - bloom and harvest times - in Northern Europe were visualized.

  18. [Effect of agonist and antagonist of 5-HT(1A) receptors on learning in female rats during ovarian cycle].

    PubMed

    Fedotova, Iu O; Ordian, N E

    2010-01-01

    The involvement of 5-HT(1A) receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. 8-OH-DPAT (0.05 mg/kg, s.c.), 5-HT(1A) receptor agonist and NAN-190 (0.1 mg/kg, i.p.), 5-HT(1A) receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic NAN-190 administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals, but failed to change the dynamics of spatial learning in Morris water maze. Chronic 8-OH-DPAT administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of 5-HT(1A) receptors in learning/memory processes during ovary cycle in the adult female rats.

  19. Environmental and cost life cycle assessment of disinfection options for municipal wastewater treatment

    EPA Science Inventory

    This document summarizes the data collection, analysis, and results for a base case wastewater treatment (WWT) plant reference model. The base case is modeled after the Metropolitan Sewer District of Greater Cincinnati (MSDGC) Mill Creek Plant. The plant has an activated sludge s...

  20. MODELING MINERAL NITROGEN EXPORT FROM A FOREST TERRESTRIAL ECOSYSTEM TO STREAMS

    EPA Science Inventory

    Terrestrial ecosystems are major sources of N pollution to aquatic ecosystems. Predicting N export to streams is a critical goal of non-point source modeling. This study was conducted to assess the effect of terrestrial N cycling on stream N export using long-term monitoring da...

  1. Planning level assessment of greenhouse gas emissions for alternative transportation construction projects : carbon footprint estimator, phase II, volume I - GASCAP model.

    DOT National Transportation Integrated Search

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  2. Time-dependent Variation in Life Cycle Assessment of Microalgal Biorefinery Co-products

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahdokht

    Microalgae can serve as a highly productive biological feedstock for fuels and chemicals. The lipid fraction of algal seeds has been the primary target of research for biofuel production. However, numerous assessments have found that valorization of co-products is essential to achieve economic and environmental goals. The relative proportion of co-products depends on the biomolecular composition of algae at the time of harvesting. In the present study the productivity of lipid, starch, and protein fractions were shown through growth experiments to vary widely with species, feeding regime, and harvesting time. Four algae species were cultivated under nitrogen-replete and -deplete conditions and analyzed at regular harvesting intervals. Dynamic growth results were then used for life cycle assessment using the U.S. Department of Energy's GREET model to determine optimal growth scenarios that minimize life cycle greenhouse gas (GHG) emissions, eutrophication, and cumulative energy demand (CED), while aiming for an energy return on investment (EROI) greater than unity. Per kg of biodiesel produced, C. sorokiniana in N-replete conditions harvested at 12 days was most favorable for GHG emissions and CED, despite having a lipid content of <20%. N. oculata under the same conditions had the lowest life cycle eutrophication impacts, driven by efficient nutrient cycling and valorization of microalgal protein and anaerobic digester residue co-products. The results indicate that growth cycle times that maximize a single fraction do not necessarily result in the most favorable environmental performance on a life cycle basis, underscoring the importance of designing biorefinery systems that simultaneously optimize for lipid and non-lipid fractions.

  3. An updated view of global water cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Schlosser, A.; Lehr, J.

    2009-04-01

    Unprecedented new observation capacities combined with revolutions in modeling, we are poised to make huge advances in water cycle assessment, understanding, and prediction. To realize this goal, we must develop a discipline of prediction and verification through the integration of water and energy cycle observations and models, and to verify model predictions against observed phenomena to ensure that research delivers reliable improvements in prediction skill. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability, through integration of all necessary observations and research tools. A brief history of the lineage of the conventional water balance and a summary accounting of all major parameters of the water balance using highly respected secondary sources will be presented. Principally, recently published peer reviewed papers reporting results of original work involving direct measurements and new data generated by high-tech devices (e.g. satellite / airborne instruments, supercomputers, geophysical tools) will be employed. This work lends credence to the conventional water balance ideas, but also reveals anachronistic scientific concepts/models, questionable underlying data, longstanding oversights and outright errors in the water balance.

  4. The natural and perturbed troposphere

    NASA Technical Reports Server (NTRS)

    Stewart, R. W.; Hameed, S.; Pinto, J.

    1978-01-01

    A quantitative assessment of the chemical and climatic effects of industrial emissions into the atmosphere requires an understanding of the complex interactions of species within the atmosphere and of the atmosphere with other physical systems such as the oceans, lithosphere, and biosphere. The concentration of a particular species is determined by competition between various production and loss processes. The abundances of tropospheric gases are examined. The reactions of the members of the oxygen group are considered along with the models which have been developed to describe the involved relationships. Attention is also given to the natural carbon cycle, perturbations to the carbon cycle, the natural nitrogen cycle, perturbations to the nitrogen cycle, the hydrogen group, the sulfur group, and the halogen group.

  5. Application of Life Cycle Assessment on Electronic Waste Management: A Review.

    PubMed

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  6. Application of Life Cycle Assessment on Electronic Waste Management: A Review

    NASA Astrophysics Data System (ADS)

    Xue, Mianqiang; Xu, Zhenming

    2017-04-01

    Electronic waste is a rich source of both valuable materials and toxic substances. Management of electronic waste is one of the biggest challenges of current worldwide concern. As an effective and prevailing environmental management tool, life cycle assessment can evaluate the environmental performance of electronic waste management activities. Quite a few scientific literatures reporting life cycle assessment of electronic waste management with significant outcomes have been recently published. This paper reviewed the trends, characteristics, research gaps, and challenges of these studies providing detailed information for practitioners involved in electronic waste management. The results showed that life cycle assessment studies were most carried out in Europe, followed by Asia and North America. The research subject of the studies mainly includes monitors, waste printed circuit boards, mobile phones, computers, printers, batteries, toys, dishwashers, and light-emitting diodes. CML was the most widely used life cycle impact assessment method in life cycle assessment studies on electronic waste management, followed by EI99. Furthermore, 40% of the reviewed studies combined with other environmental tools, including life cycle cost, material flow analysis, multi-criteria decision analysis, emergy analysis, and hazard assessment which came to more comprehensive conclusions from different aspects. The research gaps and challenges including uneven distribution of life cycle assessment studies, life cycle impact assessment methods selection, comparison of the results, and uncertainty of the life cycle assessment studies were examined. Although life cycle assessment of electronic waste management facing challenges, their results will play more and more important role in electronic waste management practices.

  7. Multi-Scale Models for the Scale Interaction of Organized Tropical Convection

    NASA Astrophysics Data System (ADS)

    Yang, Qiu

    Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.

  8. Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.

    DOT National Transportation Integrated Search

    2015-03-12

    The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...

  9. Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks.

    PubMed

    Scharnhorst, Wolfram; Hilty, Lorenz M; Jolliet, Olivier

    2006-07-01

    The environmental performance of presently operated GSM and UMTS networks was analysed concentrating on the environmental effects of the End-of-Life (EOL) phase using the Life Cycle Assessment (LCA) method. The study was performed based on comprehensive life cycle inventory and life cycle modelling. The environmental effects were quantified using the IMPACT2002+ method. Based on technological forecasts, the environmental effects of forthcoming mobile telephone networks were approximated. The results indicate that a parallel operation of GSM and UMTS networks is environmentally detrimental and the transition phase should be kept as short as possible. The use phase (i.e. the operation) of the radio network components account for a large fraction of the total environmental impact. In particular, there is a need to lower the energy consumption of those network components. Seen in relation to each other, UMTS networks provide an environmentally more efficient mobile communication technology than GSM networks. In assessing the EOL phase, recycling the electronic scrap of mobile phone networks was shown to have clear environmental benefits. Under the present conditions, material recycling could help lower the environmental impact of the production phase by up to 50%.

  10. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand.

    PubMed

    Udomsri, Seksan; Martin, Andrew R; Fransson, Torsten H

    2010-07-01

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessment of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO(2) levels by 3% in comparison with current thermal power plants. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. On The Development of Biophysical Models for Space Radiation Risk Assessment

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  12. Remote sensing of plant-water relations: An overview and future perspectives.

    PubMed

    Damm, A; Paul-Limoges, E; Haghighi, E; Simmer, C; Morsdorf, F; Schneider, F D; van der Tol, C; Migliavacca, M; Rascher, U

    2018-04-25

    Vegetation is a highly dynamic component of the Earth surface and substantially alters the water cycle. Particularly the process of oxygenic plant photosynthesis determines vegetation connecting the water and carbon cycle and causing various interactions and feedbacks across Earth spheres. While vegetation impacts the water cycle, it reacts to changing water availability via functional, biochemical and structural responses. Unravelling the resulting complex feedbacks and interactions between the plant-water system and environmental change is essential for any modelling approaches and predictions, but still insufficiently understood due to currently missing observations. We hypothesize that an appropriate cross-scale monitoring of plant-water relations can be achieved by combined observational and modelling approaches. This paper reviews suitable remote sensing approaches to assess plant-water relations ranging from pure observational to combined observational-modelling approaches. We use a combined energy balance and radiative transfer model to assess the explanatory power of pure observational approaches focussing on plant parameters to estimate plant-water relations, followed by an outline for a more effective use of remote sensing by their integration into soil-plant-atmosphere continuum (SPAC) models. We apply a mechanistic model simulating water movement in the SPAC to reveal insight into the complexity of relations between soil, plant and atmospheric parameters, and thus plant-water relations. We conclude that future research should focus on strategies combining observations and mechanistic modelling to advance our knowledge on the interplay between the plant-water system and environmental change, e.g. through plant transpiration. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Design and development of a community carbon cycle benchmarking system for CMIP5 models

    NASA Astrophysics Data System (ADS)

    Mu, M.; Hoffman, F. M.; Lawrence, D. M.; Riley, W. J.; Keppel-Aleks, G.; Randerson, J. T.

    2013-12-01

    Benchmarking has been widely used to assess the ability of atmosphere, ocean, sea ice, and land surface models to capture the spatial and temporal variability of observations during the historical period. For the carbon cycle and terrestrial ecosystems, the design and development of an open-source community platform has been an important goal as part of the International Land Model Benchmarking (ILAMB) project. Here we designed and developed a software system that enables the user to specify the models, benchmarks, and scoring systems so that results can be tailored to specific model intercomparison projects. We used this system to evaluate the performance of CMIP5 Earth system models (ESMs). Our scoring system used information from four different aspects of climate, including the climatological mean spatial pattern of gridded surface variables, seasonal cycle dynamics, the amplitude of interannual variability, and long-term decadal trends. We used this system to evaluate burned area, global biomass stocks, net ecosystem exchange, gross primary production, and ecosystem respiration from CMIP5 historical simulations. Initial results indicated that the multi-model mean often performed better than many of the individual models for most of the observational constraints.

  14. Combining agent-based modeling and life cycle assessment for the evaluation of mobility policies.

    PubMed

    Florent, Querini; Enrico, Benetto

    2015-02-03

    This article presents agent-based modeling (ABM) as a novel approach for consequential life cycle assessment (C-LCA) of large scale policies, more specifically mobility-related policies. The approach is validated at the Luxembourgish level (as a first case study). The agent-based model simulates the car market (sales, use, and dismantling) of the population of users in the period 2013-2020, following the implementation of different mobility policies and available electric vehicles. The resulting changes in the car fleet composition as well as the hourly uses of the vehicles are then used to derive consistent LCA results, representing the consequences of the policies. Policies will have significant environmental consequences: when using ReCiPe2008, we observe a decrease of global warming, fossil depletion, acidification, ozone depletion, and photochemical ozone formation and an increase of metal depletion, ionizing radiations, marine eutrophication, and particulate matter formation. The study clearly shows that the extrapolation of LCA results for the circulating fleet at national scale following the introduction of the policies from the LCAs of single vehicles by simple up-scaling (using hypothetical deployment scenarios) would be flawed. The inventory has to be directly conducted at full scale and to this aim, ABM is indeed a promising approach, as it allows identifying and quantifying emerging effects while modeling the Life Cycle Inventory of vehicles at microscale through the concept of agents.

  15. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  16. Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR

    PubMed Central

    Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.

    2012-01-01

    Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586

  17. High Resolution Climate Modeling of the Water Cycle over the Western United States Including Potential Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Rasmussen, R.; Liu, C.; Ikeda, K.

    2016-12-01

    The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km (see figure below). A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA. This study will examine the water cycle over Western U.S. seven U.S. mountain ranges, including likely changes to amount of snowpack and spring melt-off, critical to agriculture in the western U.S.

  18. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  19. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  20. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.

  1. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.

  2. Assessing Changes in Precipitation and Impacts on Groundwater in Southeastern Brazil using Regional Hydroclimate Reconstruction

    NASA Astrophysics Data System (ADS)

    Nunes, A.; Fernandes, M.; Silva, G. C., Jr.

    2017-12-01

    Aquifers can be key players in regional water resources. Precipitation infiltration is the most relevant process in recharging the aquifers. In that regard, understanding precipitation changes and impacts on the hydrological cycle helps in the assessment of groundwater availability from the aquifers. Regional modeling systems can provide precipitation, near-surface air temperature, together with soil moisture at different ground levels from coupled land-surface schemes. More accurate those variables are better the evaluation of the precipitation impact on the groundwater. Downscaling of global reanalysis very often employs regional modeling systems, in order to give more detailed information for impact assessment studies at regional scales. In particular, the regional modeling system, Satellite-enhanced Regional Downscaling for Applied Studies (SRDAS), might improve the accuracy of hydrometeorological variables in regions with spatial and temporal scarcity of in-situ observations. SRDAS combines assimilation of precipitation estimates from gauge-corrected satellite-based products with spectral nudging technique. The SRDAS hourly outputs provide monthly means of atmospheric and land-surface variables, including precipitation, used in the calculations of the hydrological budget terms. Results show the impact of changes in precipitation on groundwater in the aquifer located near the southeastern coastline of Brazil, through the assessment of the water-cycle terms, using a hydrological model during dry and rainy periods found in the 15-year numerical integration of SRDAS.

  3. Diagnosing and Assessing Uncertainties of the Carbon Cycle in Terrestrial Ecosystem Models from a Multi-Model Ensemble Experiment

    NASA Astrophysics Data System (ADS)

    Wang, W.; Dungan, J. L.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    We are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to characterize structural uncertainty in carbon fluxes and stocks estimates from different ecosystem models. The experiment uses public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. A set of diagnostics is developed to characterize the behavior of the models in the climate (temperature-precipitation) space, and to evaluate the simulated carbon cycle in an integrated way. The key findings of this study include that: (relative) optimal primary production is generally found in climate regions where the relationship between annual temperature (T, oC) and precipitation (P, mm) is defined by P = 50*T+500; the ratios between NPP and GPP are close to 50% on average, yet can vary between models and in different climate regions; the allocation of carbon to leaf growth represents a positive feedback to the primary production, and different approaches to constrain this process have significant impacts on the simulated carbon cycle; substantial differences in biomass stocks may be induced by small differences in the tissue turnover rate and the plant mortality; the mean residence time of soil carbon pools is strongly influenced by schemes of temperature regulations; non-respiratory disturbances (e.g., fires) are the main driver for NEP, yet its magnitudes vary between models. Overall, these findings indicate that although the structures of the models are similar, the uncertainties among them can be large, highlighting the problem inherent in relying on only one modeling approach to map surface carbon fluxes or to assess vegetation-climate interactions.

  4. Life cycle-based water assessment of a hand dishwashing product: opportunities and limitations.

    PubMed

    Van Hoof, Gert; Buyle, Bea; Kounina, Anna; Humbert, Sebastien

    2013-10-01

    It is only recently that life cycle-based indicators have been used to evaluate products from a water use impact perspective. The applicability of some of these methods has been primarily demonstrated on agricultural materials or products, because irrigation requirements in food production can be water-intensive. In view of an increasing interest on life cycle-based water indicators from different products, we ran a study on a hand dishwashing product. A number of water assessment methods were applied with the purpose of identifying both product improvement opportunities, as well as understanding the potential for underlying database and methodological improvements. The study covered the entire life cycle of the product and focused on environmental issues related to water use, looking in-depth at inventory, midpoint, and endpoint methods. "Traditional" water emission driven methods, such as freshwater eutrophication, were excluded from the analysis. The use of a single formula with the same global supply chain, manufactured in 1 location was evaluated in 2 countries with different water scarcity conditions. The study shows differences ranging up to 4 orders in magnitude for indicators with similar units associated with different water use types (inventory methods) and different cause-effect chain models (midpoint and endpoint impact categories). No uncertainty information was available on the impact assessment methods, whereas uncertainty from stochastic variability was not available at the time of study. For the majority of the indicators studied, the contribution from the consumer use stage is the most important (>90%), driven by both direct water use (dishwashing process) as well as indirect water use (electricity generation to heat the water). Creating consumer awareness on how the product is used, particularly in water-scarce areas, is the largest improvement opportunity for a hand dishwashing product. However, spatial differentiation in the inventory and impact assessment model may lead to very different results for the product used under exactly the same consumer use conditions, making the communication of results a real challenge. From a practitioner's perspective, the data collection step in relation to the goal and scope of the study sets high requirements for both foreground and background data. In particular, databases covering a broad spectrum of inventory data with spatially differentiated water use information are lacking. For some impact methods, it is unknown as to whether or not characterization factors should be spatially differentiated, which creates uncertainty in their interpretation and applicability. Finally, broad application of life cycle-based water assessment will require further development of commercial life cycle assessment software. © 2013 SETAC.

  5. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  6. Viability of pyrite pulled metabolism in the ‘iron-sulfur world’ theory: Quantum chemical assessment

    NASA Astrophysics Data System (ADS)

    Michalkova, Andrea; Kholod, Yana; Kosenkov, Dmytro; Gorb, Leonid; Leszczynski, Jerzy

    2011-04-01

    The viability of pyrite-pulled metabolism in the 'iron-sulfur world' theory was assessed using a simple model of iron-nickel sulfide (Fe-Ni-S) surface and data obtained from quantum chemical calculations. We have investigated how the individual reactions in the carbon fixation cycle (carboxylic acids formation) on an Fe-Ni-S surface could have operated to produce carboxylic acids from carbon oxide and water. The proposed model cycle reveals how the individual reactions might have functioned and provides the thermodynamics of each step of the proposed pathway. The feasibility of individual reactions, as well the whole cycle was considered. The reaction of acetic acid production from CH 3SH and CO on an Fe-Ni sulfide surface was revealed to be endergonic with a few partial steps having positive Gibbs free energy. On the other hand, the pyrite formation was found to be slightly exergonic. The significance of the catalytic activity of transition metal sulfides in generation of acetic acid was shown. The Gibbs free energy values indicate that the acetic acid synthesis is unfavorable to proceed on the studied Fe-Ni-S model under simulated conditions. The importance of these results in terms of a primordial chemistry on iron-nickel sulfide surfaces is discussed.

  7. Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    NASA Astrophysics Data System (ADS)

    Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping

    2017-12-01

    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.

  8. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    PubMed

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Mycorrhizal Controls on Nitrogen Uptake Drive Carbon Cycling at the Global Scale

    NASA Astrophysics Data System (ADS)

    Shi, M.; Fisher, J. B.; Brzostek, E. R.; Phillips, R.

    2015-12-01

    Nearly all plants form symbiotic relationships with one of two types of mycorrhizal fungi—arbuscular mycorrhizae (AM) and ectomycorrhizal (ECM) fungi, which are essential to global biogeochemical cycling of nutrient elements. In soils with higher rates of nitrogen and phosphorus mineralization from organic matter, AM-associated plants can be better adapted than ECM-associated plants. Importantly, the photosynthate costs of nutrient uptake for AM-associated plants are usually lower than that for ECM-associated plants. Thus, the global carbon cycle is closely coupled with mycorrhizal controls on N uptake. To investigate the potential climate dependence of terrestrial environments from AM- and ECM-associated plants, this study uses the Community Atmosphere Model (CAM) with a plant productivity-optimized N acquisition model—the Fixation and Uptake of Nitrogen (FUN) model—integrated into its land model—the Community Land Model (CLM). This latest version of CLM coupled with FUN allows for the assessment of mycorrhizal controls on global biogeochemical cycling. Here, we show how the historical evolution of AM- and ECM-associations altered regional and global biogeochemical cycling and climate, and future projections over the next century.

  10. Reproductive Health Assessment of Female Elephants in North American Zoos and Association of Husbandry Practices with Reproductive Dysfunction in African Elephants (Loxodonta africana)

    PubMed Central

    Meehan, Cheryl L.; Hogan, Jennifer N.; Morfeld, Kari A.; Carlstead, Kathy

    2016-01-01

    As part of a multi-institutional study of zoo elephant welfare, we evaluated female elephants managed by zoos accredited by the Association of Zoos and Aquariums and applied epidemiological methods to determine what factors in the zoo environment are associated with reproductive problems, including ovarian acyclicity and hyperprolactinemia. Bi-weekly blood samples were collected from 95 African (Loxodonta africana) and 75 Asian (Elephas maximus) (8–55 years of age) elephants over a 12-month period for analysis of serum progestogens and prolactin. Females were categorized as normal cycling (regular 13- to 17-week cycles), irregular cycling (cycles longer or shorter than normal) or acyclic (baseline progestogens, <0.1 ng/ml throughout), and having Low/Normal (<14 or 18 ng/ml) or High (≥14 or 18 ng/ml) prolactin for Asian and African elephants, respectively. Rates of normal cycling, acyclicity and irregular cycling were 73.2, 22.5 and 4.2% for Asian, and 48.4, 37.9 and 13.7% for African elephants, respectively, all of which differed between species (P < 0.05). For African elephants, univariate assessment found that social isolation decreased and higher enrichment diversity increased the chance a female would cycle normally. The strongest multi-variable models included Age (positive) and Enrichment Diversity (negative) as important factors of acyclicity among African elephants. The Asian elephant data set was not robust enough to support multi-variable analyses of cyclicity status. Additionally, only 3% of Asian elephants were found to be hyperprolactinemic as compared to 28% of Africans, so predictive analyses of prolactin status were conducted on African elephants only. The strongest multi-variable model included Age (positive), Enrichment Diversity (negative), Alternate Feeding Methods (negative) and Social Group Contact (positive) as predictors of hyperprolactinemia. In summary, the incidence of ovarian cycle problems and hyperprolactinemia predominantly affects African elephants, and increases in social stability and feeding and enrichment diversity may have positive influences on hormone status. PMID:27416141

  11. Reproductive Health Assessment of Female Elephants in North American Zoos and Association of Husbandry Practices with Reproductive Dysfunction in African Elephants (Loxodonta africana).

    PubMed

    Brown, Janine L; Paris, Stephen; Prado-Oviedo, Natalia A; Meehan, Cheryl L; Hogan, Jennifer N; Morfeld, Kari A; Carlstead, Kathy

    2016-01-01

    As part of a multi-institutional study of zoo elephant welfare, we evaluated female elephants managed by zoos accredited by the Association of Zoos and Aquariums and applied epidemiological methods to determine what factors in the zoo environment are associated with reproductive problems, including ovarian acyclicity and hyperprolactinemia. Bi-weekly blood samples were collected from 95 African (Loxodonta africana) and 75 Asian (Elephas maximus) (8-55 years of age) elephants over a 12-month period for analysis of serum progestogens and prolactin. Females were categorized as normal cycling (regular 13- to 17-week cycles), irregular cycling (cycles longer or shorter than normal) or acyclic (baseline progestogens, <0.1 ng/ml throughout), and having Low/Normal (<14 or 18 ng/ml) or High (≥14 or 18 ng/ml) prolactin for Asian and African elephants, respectively. Rates of normal cycling, acyclicity and irregular cycling were 73.2, 22.5 and 4.2% for Asian, and 48.4, 37.9 and 13.7% for African elephants, respectively, all of which differed between species (P < 0.05). For African elephants, univariate assessment found that social isolation decreased and higher enrichment diversity increased the chance a female would cycle normally. The strongest multi-variable models included Age (positive) and Enrichment Diversity (negative) as important factors of acyclicity among African elephants. The Asian elephant data set was not robust enough to support multi-variable analyses of cyclicity status. Additionally, only 3% of Asian elephants were found to be hyperprolactinemic as compared to 28% of Africans, so predictive analyses of prolactin status were conducted on African elephants only. The strongest multi-variable model included Age (positive), Enrichment Diversity (negative), Alternate Feeding Methods (negative) and Social Group Contact (positive) as predictors of hyperprolactinemia. In summary, the incidence of ovarian cycle problems and hyperprolactinemia predominantly affects African elephants, and increases in social stability and feeding and enrichment diversity may have positive influences on hormone status.

  12. Assessing spatiotemporal changes in forest carbon turnover times in observational data and models

    NASA Astrophysics Data System (ADS)

    Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.

    2017-12-01

    Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.

  13. Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual

    The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less

  14. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    USGS Publications Warehouse

    Jain, A.A.; Yang, Xiaojuan; Kheshgi, H.; McGuire, A. David; Post, W.; Kicklighter, David W.

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen availability influences terrestrial carbon sinks and sources in response to changes over the 20th century in global environmental factors including atmospheric CO2 concentration, nitrogen inputs, temperature, precipitation and land use. The two versions of ISAM vary in their treatment of nitrogen availability: ISAM-NC has a terrestrial carbon cycle model coupled to a fully dynamic nitrogen cycle while ISAM-C has an identical carbon cycle model but nitrogen availability is always in sufficient supply. Overall, the two versions of the model estimate approximately the same amount of global mean carbon uptake over the 20th century. However, comparisons of results of ISAM-NC relative to ISAM-C reveal that nitrogen dynamics: (1) reduced the 1990s carbon sink associated with increasing atmospheric CO2 by 0.53 PgC yr−1 (1 Pg = 1015g), (2) reduced the 1990s carbon source associated with changes in temperature and precipitation of 0.34 PgC yr−1 in the 1990s, (3) an enhanced sink associated with nitrogen inputs by 0.26 PgC yr−1, and (4) enhanced the 1990s carbon source associated with changes in land use by 0.08 PgC yr−1 in the 1990s. These effects of nitrogen limitation influenced the spatial distribution of the estimated exchange of CO2 with greater sink activity in high latitudes associated with climate effects and a smaller sink of CO2 in the southeastern United States caused by N limitation associated with both CO2 fertilization and forest regrowth. These results indicate that the dynamics of nitrogen availability are important to consider in assessing the spatial distribution and temporal dynamics of terrestrial carbon sources and sinks.

  15. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Quantifying Anthropogenic Dust Emissions

    NASA Astrophysics Data System (ADS)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.

  17. A simple object-oriented and open-source model for scientific and policy analyses of the global climate system – Hector v1.0

    DOE PAGES

    Hartin, Corinne A.; Patel, Pralit L.; Schwarber, Adria; ...

    2015-04-01

    Simple climate models play an integral role in the policy and scientific communities. They are used for climate mitigation scenarios within integrated assessment models, complex climate model emulation, and uncertainty analyses. Here we describe Hector v1.0, an open source, object-oriented, simple global climate carbon-cycle model. This model runs essentially instantaneously while still representing the most critical global-scale earth system processes. Hector has a three-part main carbon cycle: a one-pool atmosphere, land, and ocean. The model's terrestrial carbon cycle includes primary production and respiration fluxes, accommodating arbitrary geographic divisions into, e.g., ecological biomes or political units. Hector actively solves the inorganicmore » carbon system in the surface ocean, directly calculating air–sea fluxes of carbon and ocean pH. Hector reproduces the global historical trends of atmospheric [CO 2], radiative forcing, and surface temperatures. The model simulates all four Representative Concentration Pathways (RCPs) with equivalent rates of change of key variables over time compared to current observations, MAGICC (a well-known simple climate model), and models from the 5th Coupled Model Intercomparison Project. Hector's flexibility, open-source nature, and modular design will facilitate a broad range of research in various areas.« less

  18. Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant.

    PubMed

    Rodriguez-Garcia, G; Frison, N; Vázquez-Padín, J R; Hospido, A; Garrido, J M; Fatone, F; Bolzonella, D; Moreira, M T; Feijoo, G

    2014-08-15

    The supernatant resulting from the anaerobic digestion of sludge generated by wastewater treatment plants (WWTP) is an attractive flow for technologies such as partial nitritation-anammox (CANON), nitrite shortcut (NSC) and struvite crystallization processes (SCP). The high concentration of N and P and its low flow rate facilitate the removal of nutrients under more favorable conditions than in the main water line. Despite their operational and economic benefits, the environmental burdens of these technologies also need to be assessed to prove their feasibility under a more holistic perspective. The potential environmental implications of these technologies were assessed using life cycle assessment, first at pilot plant scale, later integrating them in a modeled full WWTP. Pilot plant results reported a much lower environmental impact for N removal technologies than SCP. Full-scale modeling, however, highlighted that the differences between technologies were not relevant once they are integrated in a WWTP. The impacts associated with the WWTP are slightly reduced in all categories except for eutrophication, where a substantial reduction was achieved using NSC, SCP, and especially when CANON and SCP were combined. This study emphasizes the need for assessing wastewater treatment technologies as part of a WWTP rather than as individual processes and the utility of modeling tools for doing so. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrological cycle in the Danube basin in present and projected future climate conditions: a models' intercomparison perspective

    NASA Astrophysics Data System (ADS)

    Lucarini, V.

    2010-09-01

    We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40 reanalyses in representing the present climate conditions. The reanalyses result to be largely inadequate for describing the hydrology of the Danube river basin, both for the reconstruction of the long-term averages and of the seasonal cycle. The reanalyses cannot in any sense be used as verification. In global warming conditions, for basically all models the water balance decreases, whereas its interannual variability increases. Changes in the strength of the hydrological cycle are not consistent among models: it is confirmed that capturing the impact of climate change on the hydrological cycle is not an easy task over land areas. We note that for some of the diagnostics the ensemble mean does not represent any sort of "average" model, and it often falls between the models’ clusters. We suggest that these results should be carefully considered in the perspective of auditing climate models and assessing their ability to simulate future climate changes.

  20. Conceptualising the effectiveness of impact assessment processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchitpricha, Chaunjit, E-mail: chaunjit@g.sut.ac.th; Bond, Alan, E-mail: alan.bond@uea.ac.uk; Unit for Environmental Sciences and Management School of Geo and Spatial Sciences, Internal Box 375, North West University

    2013-11-15

    This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria acrossmore » the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria.« less

  1. Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway

    NASA Technical Reports Server (NTRS)

    Mitchell, D.M.; Misios, S.; Gray, L. J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thieblemont, R.; Rozanov, E.; hide

    2015-01-01

    The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period approximately 1850-2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (approximately 70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modeled response is more consistent with observations when only data from 1979-2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.

  2. Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2009-01-01

    During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  3. Comparison of the organic waste management systems in the Danish-German border region using life cycle assessment (LCA).

    PubMed

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2016-03-01

    This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. PICUS v1.6 - enhancing the water cycle within a hybrid ecosystem model to assess the provision of drinking water in a changing climate

    NASA Astrophysics Data System (ADS)

    Schimmel, A.; Rammer, W.; Lexer, M. J.

    2012-04-01

    The PICUS model is a hybrid ecosystem model which is based on a 3D patch model and a physiological stand level production model. The model includes, among others, a submodel of bark beetle disturbances in Norway spruce and a management module allowing any silvicultural treatment to be mimicked realistically. It has been tested intensively for its ability to realistically reproduce tree growth and stand dynamics in complex structured mixed and mono-species temperate forest ecosystems. In several applications the models capacity to generate relevant forest related attributes which were subsequently fed into indicator systems to assess sustainable forest management under current and future climatic conditions has been proven. However, the relatively coarse monthly temporal resolution of the driving climate data as well as the process resolution of the major water relations within the simulated ecosystem hampered the inclusion of more detailed physiologically based assessments of drought conditions and water provisioning ecosystem services. In this contribution we present the improved model version PICUS v1.6 focusing on the newly implemented logic for the water cycle calculations. Transpiration, evaporation from leave surfaces and the forest floor, snow cover and snow melt as well as soil water dynamics in several soil horizons are covered. In enhancing the model overarching goal was to retain the large-scale applicability by keeping the input requirements to a minimum while improving the physiological foundation of water related ecosystem processes. The new model version is tested against empirical time series data. Future model applications are outlined.

  5. A model of formative assessment practice in secondary science classrooms using an audience response system

    NASA Astrophysics Data System (ADS)

    Shirley, Melissa L.

    Formative assessment involves the probing of students' ideas to determine their level of understanding during the instructional sequence. Often conceptualized as a cycle, formative assessment consists of the teacher posing an instructional task to students, collecting data about student understanding, and engaging in follow-up strategies such as clarifying student understanding and adjusting instruction to meet learning needs. Despite having been shown to increase student achievement in a variety of classroom settings, formative assessment remains a relative weak area of teacher practice. Methods that enhance formative assessment strategies may therefore have a positive effect on student achievement. Audience response systems comprise a broad category of technologies that support richer classroom interaction and have the potential to facilitate formative assessment. Results from a large national research study, Classroom Connectivity in Promoting Mathematics and Science Achievement (CCMS), show that students in algebra classrooms where the teacher has implemented a type of audience response system experience significantly higher achievement gains compared to a control group. This suggests a role for audience response systems in promoting rich formative assessment. The importance of incorporating formative assessment strategies into regular classroom practice is widely recognized. However, it remains challenging to identify whether rich formative assessment is occurring during a particular class session. This dissertation uses teacher interviews and classroom observations to develop a fine-grained model of formative assessment in secondary science classrooms employing a type of audience response system. This model can be used by researchers and practitioners to characterize components of formative assessment practice in classrooms. A major component of formative assessment practice is the collection and aggregation of evidence of student learning. This dissertation proposes the use of the assessment episode to characterize extended cycles of teacher-student interactions. Further, the model presented here provides a new methodology to describe the teacher's use of questioning and subsequent classroom discourse to uncover student learning. Additional components of this model of formative assessment focus on the recognition of student learning by the teacher and the resultant changes in instructional practice to enhance student understanding.

  6. How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2014-12-01

    The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.

  7. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.

  8. Comparison of wheat yield simulated using three N cycling options in the SWAT model

    USDA-ARS?s Scientific Manuscript database

    The Soil and Water Assessment Tool (SWAT) model has been successfully used to predict alterations in streamflow, evapotranspiration and soil water; however, it is not clear how effective or accurate SWAT is at predicting crop growth. Previous research suggests that while the hydrologic balance in e...

  9. Global and Local Contributions to Mercury Concentrations in Lake Michigan and Impact on Fish Consumption Advisories

    EPA Science Inventory

    LM2-Mercury, a mercury species mass balance model developed for Lake Michigan, was used to assess mercury cycling in Lake Michigan. A calibrated model (including a hindcast) was used to predict mercury concentrations in the lake based on various sensitivity and management scenari...

  10. Integrating fAPARchl and PRInadir from EO-1/Hyperion to predict cornfield daily gross primary production (GPP)

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of terrestrial carbon sequestration is essential for evaluating changes in the carbon cycle due to global climate change. In a recent assessment of 26 carbon assimilation models at 39 FLUXNET tower sites across the United States and Canada, all models failed to adequately compute...

  11. Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells

    PubMed Central

    Panetta, J C; Evans, W E; Cheok, M H

    2006-01-01

    The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance. PMID:16333308

  12. Forecasting of wet snow avalanche activity: Proof of concept and operational implementation

    NASA Astrophysics Data System (ADS)

    Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph

    2017-04-01

    State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.

  13. Assessment of variations in thermal cycle life data of thermal barrier coated rods

    NASA Astrophysics Data System (ADS)

    Hendricks, R. C.; McDonald, G.

    An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.

  14. Assessment of variations in thermal cycle life data of thermal barrier coated rods

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.

    1981-01-01

    An analysis of thermal cycle life data for 22 thermal barrier coated (TBC) specimens was conducted. The Zr02-8Y203/NiCrAlY plasma spray coated Rene 41 rods were tested in a Mach 0.3 Jet A/air burner flame. All specimens were subjected to the same coating and subsequent test procedures in an effort to control three parametric groups; material properties, geometry and heat flux. Statistically, the data sample space had a mean of 1330 cycles with a standard deviation of 520 cycles. The data were described by normal or log-normal distributions, but other models could also apply; the sample size must be increased to clearly delineate a statistical failure model. The statistical methods were also applied to adhesive/cohesive strength data for 20 TBC discs of the same composition, with similar results. The sample space had a mean of 9 MPa with a standard deviation of 4.2 MPa.

  15. When could global warming reach 4°C?

    PubMed

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.

  16. Modern Estimates of Global Water Cycle Fluxes

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  17. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  18. Intergovernmental Panel on Climate Change (IPCC)\\, Working Group 1, 1994: Modelling Results Relating Future Atmospheric CO2 Concentrations to Industrial Emissions (DB1009)

    DOE Data Explorer

    Enting, I. G.; Wigley, M. L.; Heimann, M.

    1995-01-01

    This database contains the results of various projections of the relation between future CO2 concentrations and future industrial emissions. These projections were contributed by groups from a number of countries as part of the scientific assessment for the report, "Radiative Forcing of Climate Change" (1994), issued by Working Group 1 of the Intergovernmental Panel on Climate Change. There were three types of calculations: (1) forward projections, calculating the atmospheric CO2 concentrations resulting from specified emissions scenarios; (2) inverse calculations, determining the emission rates that would be required to achieve stabilization of CO2 concentrations via specified pathways; (3) impulse response function calculations, required for determining Global Warming Potentials. The projections were extrapolations of global carbon cycle models from pre-industrial times (starting at 1765) to 2100 or 2200 A.D. There were two aspects to the exercise: (1) an assessment of the uncertainty due to uncertainties regarding the current carbon budget, and (2) an assessment of the uncertainties arising from differences between models. To separate these effects, a set of standard conditions was used to explore inter-model differences and then a series of sensitivity studies was used to explore the consequences of current uncertainties in the carbon cycle.

  19. Environmental sustainability assessments of pharmaceuticals: an emerging need for simplification in life cycle assessments.

    PubMed

    De Soete, Wouter; Debaveye, Sam; De Meester, Steven; Van der Vorst, Geert; Aelterman, Wim; Heirman, Bert; Cappuyns, Philippe; Dewulf, Jo

    2014-10-21

    The pharmaceutical and fine chemical industries are eager to strive toward innovative products and technologies. This study first derives hotspots in resource consumption of 2839 Basic Operations in 40 Active Pharmaceutical Ingredient synthesis steps through Exergetic Life Cycle Assessment (ELCA). Second, since companies are increasingly obliged to quantify the environmental sustainability of their products, two alternative ways of simplifying (E)LCA are discussed. The usage of averaged product group values (R(2) = 3.40 × 10(-30)) is compared with multiple linear regression models (R(2) = 8.66 × 10(-01)) in order to estimate resource consumption of synthesis steps. An optimal set of predictor variables is postulated to balance model complexity and embedded information with usability and capability of merging models with existing Enterprise Resource Planning (ERP) data systems. The amount of organic solvents used, molar efficiency, and duration of a synthesis step were shown to be the most significant predictor variables. Including additional predictor variables did not contribute to the predictive power and eventually weakens the model interpretation. Ideally, an organization should be able to derive its environmental impact from readily available ERP data, linking supply chains back to the cradle of resource extraction, excluding the need for an approximation with product group averages.

  20. Integrated Technology Assessment Center (ITAC) Update

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)

    2002-01-01

    The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.

  1. Life cycle models of conventional and alternative-fueled automobiles

    NASA Astrophysics Data System (ADS)

    Maclean, Heather Louise

    This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)

  2. Study of the damage evolution function of tin silver copper in cycling

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Awni

    The present research focused on the assessment of solder joint fatigue life in microelectronics assemblies. A general concern of any reliability engineer is whether accelerated tests are relevant to field conditions. The risk of this was minimized by developing an approach to reduce the duration of an accelerated thermal cycling test, thus allowing for the use of less accelerated test conditions. For this purpose the conventional dye and pry technique was improved and used together with artificial neural networks to measure and characterize very early stages of crack growth. The same work also demonstrated a quantitative link between thermal cycling induced recrystallization and a strong acceleration of the subsequent fatigue crack growth and failure. A new study was conducted in which different combinations of annealing and isothermal cycling provided a systematic characterization of the effects of a range of individual parameters on the recrystallization. Experiments showed the ongoing coarsening of secondary precipitates to have a clear effect on recrystallization. The rate of recrystallization was also shown not to scale with the inelastic energy deposition. This means that the most popular current thermal cycling model cannot apply to SnAgCu solder joints. Recrystallization of the Sn grains is usually not the rate limiting mechanism in isothermal cycling. The crack initiation stage often takes up a much greater fraction of the overall life, and the eventual failure of BGA joints tends to involve transgranular crack growth instead. Cycling of individual solder joints allowed for monitoring of the evolution of the solder properties and the rate of inelastic energy deposition. Both the number of cycles to crack initiation and the subsequent number of cycles to failure were shown to be determined by the inelastic energy deposition. This provides for a simple model for the extrapolation of accelerated test results to the much milder cycling amplitudes characteristic of long term service conditions based on conventional Finite Element Modeling. It also offers a critical basis for the ongoing development of a practical model to account for the often dramatic break-down of Miner's rule of linear damage accumulation under variable cycling amplitudes as expected in realistic applications.

  3. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  4. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  5. Cycling Power Outputs Predict Functional Threshold Power And Maximum Oxygen Uptake.

    PubMed

    Denham, Joshua; Scott-Hamilton, John; Hagstrom, Amanda D; Gray, Adrian J

    2017-09-11

    Functional threshold power (FTP) has emerged as a correlate of lactate threshold and is commonly assessed by recreational and professional cyclists for tailored exercise programing. To identify whether results from traditional aerobic and anaerobic cycling tests could predict FTP and V˙ O2max, we analysed the association between estimated FTP, maximum oxygen uptake (V˙ O2max [mlkgmin]) and power outputs obtained from a maximal cycle ergometry cardiopulmonary exercise test (CPET) and a 30-s Wingate test in a heterogeneous cohort of cycle-trained and untrained individuals (N=40, mean±SD; age: 32.6±10.6 y; relative V˙ O2max: 46.8±9.1 mlkgmin). The accuracy and sensitivity of the prediction equations was also assessed in young men (N=11) before and after a 6-wk sprint interval training intervention.Moderate to strong positive correlations were observed between FTP, relative V˙ O2max and power outputs achieved during incremental and 30-s Wingate cycling tests (r=.39-.965, all P<.05). While maximum power achieved during incremental cycle testing (Pmax) and relative V˙ O2max were predictors of FTP (r =.93), age and FTP (Wkg) estimated relative V˙ O2max (r=.80). Our findings confirm that FTP predominantly relies on aerobic metabolism and indicate both prediction models are sensitive enough to detect meaningful exercise-induced changes in FTP and V˙ O2max. Thus, coaches should consider limiting the time and load demands placed on athletes by conducting a maximal cycle ergometry CPET to estimate FTP. Additionally, a 20-min FTP test is a convenient method to assess V˙ O2max and is particularly relevant for exercise professionals without access to expensive CPET equipment.

  6. Measuring fecundity with standardised estimates of expected pregnancies.

    PubMed

    Mikolajczyk, Rafael T; Stanford, Joseph B

    2006-11-01

    Approaches to measuring fecundity include the assessment of time to pregnancy and day-specific probabilities of conception (daily fecundities) indexed to a day of ovulation. In this paper, we develop an additional approach of calculating expected pregnancies based on daily fecundities indexed to the last day of the menstrual cycle. Expected pregnancies can thus be calculated while controlling for frequency and timing of coitus. Comparing observed pregnancies with expected pregnancies allows for a standardised comparison of fecundity between studies or groups within studies, and can be used to assess the effects of categorical covariates on the woman or couple level, and also on the cycle level. This can be accomplished in a minimal data set that does not necessarily require hormonal measurement or the explicit identification of ovulation. We demonstrate this approach by examining the effects of age and parity on fecundity in a data set from women monitoring their fertility cycles with the Creighton Model FertilityCare System.

  7. [Stimulation of D2-receptors improves passive avoidance learning in female rats].

    PubMed

    Fedotova, Iu O

    2012-01-01

    The involvement of D2-receptors in learning/memory processes during ovary cycle was assessed in the adult female rats. Quinperole (0,1 mg/kg, i.p.), D2-receptor agonist and sulpiride (10,0 mg/kg, i.p.), D2-receptor antagonist were injected chronically to adult female rats. Learning of these animals was assessed in different models: passive avoidance performance and Morris water maze. Chronic quinperole administration to females resulted in the appearance of the passive avoidance performance in proestrous and estrous, as distinct from the control animals. Also, quinperole improved spatial learning in proestrous and stimulated it in estrous in Morris water maze. Chronic sulpiride administration similarly impaired non-spatial and spatial learning in females during all phases of ovary cycle. The results of the study suggest modulating role of D2-receptors in learning/memory processes during ovary cycle in the adult female rats.

  8. Post2 End-to-End Descent and Landing Simulation for ALHAT Design Analysis Cycle 2

    NASA Technical Reports Server (NTRS)

    Davis, Jody L.; Striepe, Scott A.; Maddock, Robert W.; Johnson, Andrew E.; Paschall, Stephen C., II

    2010-01-01

    The ALHAT project is an agency-level program involving NASA centers, academia, and industry, with a primary goal to develop a safe, autonomous, precision-landing system for robotic and crew-piloted lunar and planetary descent vehicles. POST2 is used as the 6DOF descent and landing trajectory simulation for determining integrated system performance of ALHAT landing-system models and lunar environment models. This paper presents updates in the development of the ALHAT POST2 simulation, as well as preliminary system performance analysis for ALDAC-2 used for the testing and assessment of ALHAT system models. The ALDAC-2 POST2 Monte Carlo simulation results have been generated and focus on HRN model performance with the fully integrated system, as well performance improvements of AGNC and TSAR model since the previous design analysis cycle

  9. Development of a Benchmark Example for Delamination Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2010-01-01

    The development of a benchmark example for cyclic delamination growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of a Double Cantilever Beam (DCB) specimen, which is independent of the analysis software used and allows the assessment of the delamination growth prediction capabilities in commercial finite element codes. First, the benchmark result was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to grow under cyclic loading in a finite element model of a commercial code. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the analysis. In general, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. Overall, the results are encouraging but further assessment for mixed-mode delamination is required

  10. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    PubMed

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  11. Home composting as an alternative treatment option for organic household waste in Denmark: An environmental assessment using life cycle assessment-modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, J.K.; Boldrin, A.; Christensen, T.H.

    2012-01-15

    An environmental assessment of the management of organic household waste (OHW) was performed from a life cycle perspective by means of the waste-life cycle assessment (LCA) model EASEWASTE. The focus was on home composting of OHW in Denmark and six different home composting units (with different input and different mixing frequencies) were modelled. In addition, incineration and landfilling was modelled as alternatives to home composting. The most important processes contributing to the environmental impact of home composting were identified as greenhouse gas (GHG) emissions (load) and the avoided emissions in relation to the substitution of fertiliser and peat when compostmore » was used in hobby gardening (saving). The replacement of fertiliser and peat was also identified as one of the most sensible parameters, which could potentially have a significant environmental benefit. Many of the impact categories (especially human toxicity via water (HTw) and soil (HTs)) were affected by the heavy metal contents of the incoming OHW. The concentrations of heavy metals in the compost were below the threshold values for compost used on land and were thus not considered to constitute a problem. The GHG emissions were, on the other hand, dependent on the management of the composting units. The frequently mixed composting units had the highest GHG emissions. The environmental profiles of the home composting scenarios were in the order of -2 to 16 milli person equivalents (mPE) Mg{sup -1} wet waste (ww) for the non-toxic categories and -0.9 to 28 mPE Mg{sup -1} ww for the toxic categories. Home composting performed better than or as good as incineration and landfilling in several of the potential impact categories. One exception was the global warming (GW) category, in which incineration performed better due to the substitution of heat and electricity based on fossil fuels.« less

  12. Evaluate the seasonal cycle and interannual variability of carbon fluxes and the associated uncertainties using modeled and observed data

    NASA Astrophysics Data System (ADS)

    Zeng, F.; Collatz, G. J.; Ivanoff, A.

    2013-12-01

    We assessed the performance of the Carnegie-Ames-Stanford Approach - Global Fire Emissions Database (CASA-GFED3) terrestrial carbon cycle model in simulating seasonal cycle and interannual variability (IAV) of global and regional carbon fluxes and uncertainties associated with model parameterization. Key model parameters were identified from sensitivity analyses and their uncertainties were propagated through model processes using the Monte Carlo approach to estimate the uncertainties in carbon fluxes and pool sizes. Three independent flux data sets, the global gross primary productivity (GPP) upscaled from eddy covariance flux measurements by Jung et al. (2011), the net ecosystem exchange (NEE) estimated by CarbonTracker, and the eddy covariance flux observations, were used to evaluate modeled fluxes and the uncertainties. Modeled fluxes agree well with both Jung's GPP and CarbonTracker NEE in the amplitude and phase of seasonal cycle, except in the case of GPP in tropical regions where Jung et al. (2011) showed larger fluxes and seasonal amplitude. Modeled GPP IAV is positively correlated (p < 0.1) with Jung's GPP IAV except in the tropics and temperate South America. The correlations between modeled NEE IAV and CarbonTracker NEE IAV are weak at regional to continental scales but stronger when fluxes are aggregated to >40°N latitude. At regional to continental scales flux uncertainties were larger than the IAV in the fluxes for both Jung's GPP and CarbonTracker NEE. Comparisons with eddy covariance flux observations are focused on sites within regions and years of recorded large-scale climate anomalies. We also evaluated modeled biomass using other independent continental biomass estimates and found good agreement. From the comparisons we identify the strengths and weaknesses of the model to capture the seasonal cycle and IAV of carbon fluxes and highlight ways to improve model performance.

  13. The impact of the diurnal cycle on the MJO over the Maritime Continent: a modeling study assimilating TRMM rain rate into global analysis

    NASA Astrophysics Data System (ADS)

    Oh, Ji-Hyun; Kim, Baek-Min; Kim, Kwang-Yul; Song, Hyo-Jong; Lim, Gyu-Ho

    2013-02-01

    In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.

  14. SUSTAINABILITY. Response to Comment on "Planetary boundaries: Guiding human development on a changing planet".

    PubMed

    Gerten, Dieter; Rockström, Johan; Heinke, Jens; Steffen, Will; Richardson, Katherine; Cornell, Sarah

    2015-06-12

    Jaramillo and Destouni claim that freshwater consumption is beyond the planetary boundary, based on high estimates of water cycle components, different definitions of water consumption, and extrapolation from a single case study. The difference from our analysis, based on mainstream assessments of global water consumption, highlights the need for clearer definitions of water cycle components and improved models and databases. Copyright © 2015, American Association for the Advancement of Science.

  15. Comparative life cycle assessment of disposable and reusable laryngeal mask airways.

    PubMed

    Eckelman, Matthew; Mosher, Margo; Gonzalez, Andres; Sherman, Jodi

    2012-05-01

    Growing awareness of the negative impacts from the practice of health care on the environment and public health calls for the routine inclusion of life cycle criteria into the decision-making process of device selection. Here we present a life cycle assessment of 2 laryngeal mask airways (LMAs), a one-time-use disposable Unique™ LMA and a 40-time-use reusable Classic™ LMA. In life cycle assessment, the basis of comparison is called the "functional unit." For this report, the functional unit of the disposable and reusable LMAs was taken to be maintenance of airway patency by 40 disposable LMAs or 40 uses of 1 reusable LMA. This was a cradle-to-grave study that included inputs and outputs for the manufacture, transport, use, and waste phases of the LMAs. The environmental impacts of the 2 LMAs were estimated using SimaPro life cycle assessment software and the Building for Environmental and Economic Sustainability impact assessment method. Sensitivity and simple life cycle cost analyses were conducted to aid in interpretation of the results. The reusable LMA was found to have a more favorable environmental profile than the disposable LMA as used at Yale New Haven Hospital. The most important sources of impacts for the disposable LMA were the production of polymers, packaging, and waste management, whereas for the reusable LMA, washing and sterilization dominated for most impact categories. The differences in environmental impacts between these devices strongly favor reusable devices. These benefits must be weighed against concerns regarding transmission of infection. Health care facilities can decrease their environmental impacts by using reusable LMAs, to a lesser extent by selecting disposable LMA models that are not made of certain plastics, and by ordering in bulk from local distributors. Certain practices would further reduce the environmental impacts of reusable LMAs, such as increasing the number of devices autoclaved in a single cycle to 10 (-25% GHG emissions) and improving the energy efficiency of the autoclaving machines by 10% (-8% GHG emissions). For both environmental and cost considerations, management and operating procedures should be put in place to ensure that reusable LMAs are not discarded prematurely.

  16. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    Treesearch

    Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng

    2011-01-01

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...

  17. Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Malzbender, J.; Steinbrech, R. W.

    Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.

  18. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    NASA Astrophysics Data System (ADS)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  19. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.

    PubMed

    Brandt, Adam R

    2012-01-17

    Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.

  20. Robust signals of future projections of Indian summer monsoon rainfall by IPCC AR5 climate models: Role of seasonal cycle and interannual variability

    NASA Astrophysics Data System (ADS)

    Jayasankar, C. B.; Surendran, Sajani; Rajendran, Kavirajan

    2015-05-01

    Coupled Model Intercomparison Project phase 5 (Fifth Assessment Report of Intergovernmental Panel on Climate Change) coupled global climate model Representative Concentration Pathway 8.5 simulations are analyzed to derive robust signals of projected changes in Indian summer monsoon rainfall (ISMR) and its variability. Models project clear future temperature increase but diverse changes in ISMR with substantial intermodel spread. Objective measures of interannual variability (IAV) yields nearly equal chance for future increase or decrease. This leads to discrepancy in quantifying changes in ISMR and variability. However, based primarily on the physical association between mean changes in ISMR and its IAV, and objective methods such as k-means clustering with Dunn's validity index, mean seasonal cycle, and reliability ensemble averaging, projections fall into distinct groups. Physically consistent groups of models with the highest reliability project future reduction in the frequency of light rainfall but increase in high to extreme rainfall and thereby future increase in ISMR by 0.74 ± 0.36 mm d-1, along with increased future IAV. These robust estimates of future changes are important for useful impact assessments.

  1. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.

    PubMed

    Loubet, Philippe; Roux, Philippe; Guérin-Schneider, Laetitia; Bellon-Maurel, Véronique

    2016-03-01

    A framework and an associated modeling tool to perform life cycle assessment (LCA) of urban water system, namely the WaLA model, has been recently developed. In this paper, the WaLA model is applied to a real case study: the urban water system of the Paris suburban area, in France. It aims to verify the capacity of the model to provide environmental insights to stakeholder's issues related to future trends influencing the system (e.g., evolution of water demand, increasing water scarcity) or policy responses (e.g., choices of water resources and technologies). This is achieved by evaluating a baseline scenario for 2012 and several forecasting scenarios for 2022 and 2050. The scenarios are designed through the modeling tool WaLA, which is implemented in Simulink/Matlab: it combines components representing the different technologies, users and resources of the UWS. The life cycle inventories of the technologies and users components include water quantity and quality changes, specific operation (electricity, chemicals) and infrastructures data (construction materials). The methods selected for the LCIA are midpoint ILCD, midpoint water deprivation impacts at the sub-river basin scale, and endpoint Impact 2002+. The results of the baseline scenario show that wastewater treatment plants have the highest impacts compared to drinking water production and distribution, as traditionally encountered in LCA of UWS. The results of the forecasting scenarios show important changes in water deprivation impacts due to water management choices or effects of climate change. They also enable to identify tradeoffs with other impact categories and to compare several scenarios. It suggests the capacity of the model to deliver information for decision making about future policies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Numerical Model of Full Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation

    PubMed Central

    Marom, Gil; Chiu, Wei-Che; Crosby, Jessica R.; DeCook, Katrina J.; Prabhakar, Saurabh; Horner, Marc; Slepian, Marvin J.; Bluestein, Danny

    2014-01-01

    The SynCardia total artificial heart (TAH) is the only FDA approved device for replacing hearts in patients with congestive heart failure. It pumps blood via pneumatically driven diaphragms and controls the flow with mechanical valves. While it has been successfully implanted in more than 1,300 patients, its size precludes implantation in smaller patients. This study’s aim was to evaluate the viability of scaled-down TAHs by quantifying thrombogenic potentials from flow patterns. Simulations of systole were first conducted with stationary valves, followed by an advanced full-cardiac-cycle model with moving valves. All the models included deforming diaphragms and platelet suspension in the blood flow. Flow stress-accumulations were computed for the platelet trajectories and thrombogenic potentials were assessed. The simulations successfully captured complex flow patterns during various phases of the cardiac-cycle. Increased stress-accumulations, but within the safety margin of acceptable thrombogenicity, were found in smaller TAHs, indicating that they are clinically viable. PMID:25354999

  3. Modeling and optimization of a hybrid solar combined cycle (HYCS)

    NASA Astrophysics Data System (ADS)

    Eter, Ahmad Adel

    2011-12-01

    The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.

  4. Environmental and economic assessment of a road safety product made with virgin and recycled HDPE: a comparative study.

    PubMed

    L Simões, Carla; Costa Pinto, Lígia M; Bernardo, C A

    2013-01-15

    The development of value-added products made from post-consumer plastic recyclates has become an important goal in the quest for a sustainable society. To attain such goal, tools with higher accuracy and wider scope are increasingly necessary. The present work describes the application of a Life Cycle Assessment (LCA)/Life Cycle Costing (LCC) integrated model, with inclusion of externalities (environmental and social costs), to Anti-Glare Lamellae (AGL) made with High Density Polyethylene (HDPE). It compares an AGL currently manufactured from virgin HDPE (current AGL) with an alternative one made with recycled HDPE (optional AGL). The results obtained show that neither the current nor the optional AGL depict the best environmental performance in all impact categories. Nevertheless, there is a clear overall environmental and economic advantage in replacing virgin HDPE with recycled HDPE. The present work also makes evident that the LCA/LCC integrated model allows the identification of economic and environmental win-win and trade-off situations related to the full life cycle of products. As such, its results can be used as valuable guidelines in product development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.

    PubMed

    Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-09-15

    Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. A Comparative Analysis of Life-Cycle Assessment Tools for ...

    EPA Pesticide Factsheets

    We identified and evaluated five life-cycle assessment tools that community decision makers can use to assess the environmental and economic impacts of end-of-life (EOL) materials management options. The tools evaluated in this report are waste reduction mode (WARM), municipal solid waste-decision support tool (MSW-DST), solid waste optimization life-cycle framework (SWOLF), environmental assessment system for environmental technologies (EASETECH), and waste and resources assessment for the environment (WRATE). WARM, MSW-DST, and SWOLF were developed for US-specific materials management strategies, while WRATE and EASETECH were developed for European-specific conditions. All of the tools (with the exception of WARM) allow specification of a wide variety of parameters (e.g., materials composition and energy mix) to a varying degree, thus allowing users to model specific EOL materials management methods even outside the geographical domain they are originally intended for. The flexibility to accept user-specified input for a large number of parameters increases the level of complexity and the skill set needed for using these tools. The tools were evaluated and compared based on a series of criteria, including general tool features, the scope of the analysis (e.g., materials and processes included), and the impact categories analyzed (e.g., climate change, acidification). A series of scenarios representing materials management problems currently relevant to c

  7. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    PubMed

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework

    NASA Astrophysics Data System (ADS)

    Grist, Jeremy P.; Josey, Simon A.; Zika, Jan D.; Evans, Dafydd Gwyn; Skliris, Nikolaos

    2016-12-01

    A novel assessment of recent changes in air-sea freshwater fluxes has been conducted using a surface temperature-salinity framework applied to four atmospheric reanalyses. Viewed in the T-S space of the ocean surface, the complex pattern of the longitude-latitude space mean global Precipitation minus Evaporation (PME) reduces to three distinct regions. The analysis is conducted for the period 1979-2007 for which there is most evidence for a broadening of the (atmospheric) tropical belt. All four of the reanalyses display an increase in strength of the water cycle. The range of increase is between 2% and 30% over the period analyzed, with an average of 14%. Considering the average across the reanalyses, the water cycle changes are dominated by changes in tropical as opposed to mid-high latitude precipitation. The increases in the water cycle strength, are consistent in sign, but larger than in a 1% greenhouse gas run of the HadGEM3 climate model. In the model a shift of the precipitation/evaporation cells to higher temperatures is more evident, due to the much stronger global warming signal. The observed changes in freshwater fluxes appear to be reflected in changes in the T-S distribution of the Global Ocean. Specifically, across the diverse range of atmospheric reanalyses considered here, there was an acceleration of the hydrological cycle during 1979-2007 which led to a broadening of the ocean's salinity distribution. Finally, although the reanalyses indicate that the warm temperature tropical precipitation dominated water cycle change, ocean observations suggest that ocean processes redistributed the freshening to lower ocean temperatures.

  9. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  10. A cumulative energy demand indicator (CED), life cycle based, for industrial waste management decision making.

    PubMed

    Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba

    2013-12-01

    Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport. Copyright © 2013. Published by Elsevier Ltd.

  11. Development of Hydro-Informatic Modelling System and its Application

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.

    2009-12-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  12. Life cycle costing of waste management systems: overview, calculation principles and case studies.

    PubMed

    Martinez-Sanchez, Veronica; Kromann, Mikkel A; Astrup, Thomas Fruergaard

    2015-02-01

    This paper provides a detailed and comprehensive cost model for the economic assessment of solid waste management systems. The model was based on the principles of Life Cycle Costing (LCC) and followed a bottom-up calculation approach providing detailed cost items for all key technologies within modern waste systems. All technologies were defined per tonne of waste input, and each cost item within a technology was characterised by both a technical and an economic parameter (for example amount and cost of fuel related to waste collection), to ensure transparency, applicability and reproducibility. Cost items were classified as: (1) budget costs, (2) transfers (for example taxes, subsidies and fees) and (3) externality costs (for example damage or abatement costs related to emissions and disamenities). Technology costs were obtained as the sum of all cost items (of the same type) within a specific technology, while scenario costs were the sum of all technologies involved in a scenario. The cost model allows for the completion of three types of LCC: a Conventional LCC, for the assessment of financial costs, an Environmental LCC, for the assessment of financial costs whose results are complemented by a Life Cycle Assessment (LCA) for the same system, and a Societal LCC, for socio-economic assessments. Conventional and Environmental LCCs includes budget costs and transfers, while Societal LCCs includes budget and externality costs. Critical aspects were found in the existing literature regarding the cost assessment of waste management, namely system boundary equivalency, accounting for temporally distributed emissions and impacts, inclusions of transfers, the internalisation of environmental impacts and the coverage of shadow prices, and there was also significant confusion regarding terminology. The presented cost model was implemented in two case study scenarios assessing the costs involved in the source segregation of organic waste from 100,000 Danish households and the subsequent co-digestion of organic waste with animal manure. Overall, source segregation resulted in higher financial costs than the alternative of incinerating the organic waste with the residual waste: 1.6 M€/year, of which 0.9 M€/year was costs for extra bins and bags used by the households, 1.0 M€/year for extra collections and -0.3 M€/year saved on incineration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reuse of bituminous pavements: A mini-review of research, regulations and modelling.

    PubMed

    Anthonissen, Joke; Van den Bergh, Wim; Braet, Johan

    2017-04-01

    Bituminous pavement can be recycled - even multiple times - by reusing it in new bituminous mixtures. If the mechanical properties of the binder get worse, this reclaimed asphalt is often used in the sub-structure of the road. Apparently, up till now, no end-of-life phase exists for the material. Actually, defining the end-of-life and the end-of-waste stage of a material is important for life cycle assessment modelling. Various standards and scientific studies on modelling life cycle assessment are known, but the crucial stages are not yet defined for reclaimed asphalt pavement. Unlike for iron, steel and aluminium scrap, at this moment, no legislative end-of-waste criteria for aggregates are formulated by the European Commission. More research is necessary in order to develop valuable end-of-life criteria for aggregates. This contribution is a mini-review article of the current regulations, standards and studies concerning end-of-life and end-of-waste of reclaimed asphalt pavement. The existing methodology in order to define end-of-waste criteria, a case study on aggregates and the argumentation used in finished legislative criteria are the basis to clarify some modelling issues for reclaimed asphalt material. Hence, this contribution elucidates the assignment of process environmental impacts to a life cycle stage as defined by EN15804, that is, end-of-life stage (C) and the supplementary information Module D with benefits and loads beyond the system boundary.

  14. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    NASA Astrophysics Data System (ADS)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  15. A framework to analyze emissions implications of manufacturing shifts in the industrial sector through integrating bottom-up energy models and economic input-output environmental life cycle assessment models

    EPA Science Inventory

    Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future unc...

  16. A framework to analyze emissions implications of manufacturing shifts in the industrial sector through integrating bottom-up energy models and economic input/output environmental life cycle assessment models

    EPA Science Inventory

    Future year emissions depend highly on economic, technological, societal and regulatory drivers. A scenario framework was adopted to analyze technology development pathways and changes in consumer preferences, and evaluate resulting emissions growth patterns while considering fut...

  17. Developing CCUS system models to handle the complexity of multiple sources and sinks: An update on Tasks 5.3 and 5.4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard Stephen

    2017-05-22

    This presentation is part of US-China Clean Coal project and describes the impact of power plant cycling, techno economic modeling of combined IGCC and CCS, integrated capacity generation decision making for power utilities, and a new decision support tool for integrated assessment of CCUS.

  18. Modeling atmospheric effects - an assessment of the problems

    Treesearch

    Douglas G. Fox

    1976-01-01

    Our ability to simulate atmospheric processes that affect the life cycle of pollution is reviewed. The transport process is considered on three scales (a) the near-source or single-plume dispersion problem, (b) the multiple-source dispersion problem, and (c) the long-range transport. Modeling the first of these is shown to be well within the capability of generally...

  19. Orbiter/payload contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Strange, D. A.; Hetrick, M. A.

    1978-01-01

    The development and integration of 16 payload bay liner filters into the existing shuttle/payload contamination evaluation (SPACE) computer program is discussed as well as an initial mission profile model. As part of the mission profile model, a thermal conversion program, a temperature cycling routine, a flexible plot routine and a mission simulation of orbital flight test 3 are presented.

  20. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    PubMed

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  1. Quantifying the importance of model-to-model variability in integrated assessments of 21st century climate

    NASA Astrophysics Data System (ADS)

    Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.

    2016-12-01

    The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.

  2. NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.

    2012-01-01

    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions.

  3. Using Data From Ontario's Episode-Based Funding Model to Assess Quality of Chemotherapy.

    PubMed

    Kaizer, Leonard; Simanovski, Vicky; Lalonde, Carlin; Tariq, Huma; Blais, Irene; Evans, William K

    2016-10-01

    A new episode-based funding model for ambulatory systemic therapy was implemented in Ontario, Canada on April 1, 2014, after a comprehensive knowledge transfer and exchange strategy with providers and administrators. An analysis of the data from the first year of the new funding model provided an opportunity to assess the quality of chemotherapy, which was not possible under the old funding model. Options for chemotherapy regimens given with adjuvant/curative intent or palliative intent were informed by input from disease site groups. Bundles were developed and priced to enable evidence-informed best practice. Analysis of systemic therapy utilization after model implementation was performed to assess the concordance rate of the treatments chosen with recommended practice. The actual number of cycles of treatment delivered was also compared with expert recommendations. Significant improvement compared with baseline was seen in the proportion of adjuvant/curative regimens that aligned with disease site group-recommended options (98% v 90%). Similar improvement was seen for palliative regimens (94% v 89%). However, overall, the number of cycles of adjuvant/curative therapy delivered was lower than recommended best practice in 57.5% of patients. There was significant variation by disease site and between facilities. Linking funding to quality, supported by knowledge transfer and exchange, resulted in a rapid improvement in the quality of systemic treatment in Ontario. This analysis has also identified further opportunities for improvement and the need for model refinement.

  4. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences linking environmental impact with the cellular phone production activities focusing on the upstream manufacturing and end-of-life life cycle stages. The last part of this work, the quantitative elicitation of weighting factors facilitates the comparison of trade-offs in the context of a multi-attribute problem. An integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), is proposed to assess alternatives at the design phase of a product system and is validated with the assessment of desktop display technologies and lead-free solder alternatives.

  5. Attachment based treatments for adolescents: the secure cycle as a framework for assessment, treatment and evaluation.

    PubMed

    Kobak, Roger; Zajac, Kristyn; Herres, Joanna; Krauthamer Ewing, E Stephanie

    2015-01-01

    The emergence of attachment-based treatments (ABTs) for adolescents highlights the need to more clearly define and evaluate these treatments in the context of other attachment based treatments for young children and adults. We propose a general framework for defining and evaluating ABTs that describes the cyclical processes that are required to maintain a secure attachment bond. This secure cycle incorporates three components: (1) the child or adult's IWM of the caregiver; (2) emotionally attuned communication; and (3) the caregiver's IWM of the child or adult. We briefly review Bowlby, Ainsworth, and Main's contributions to defining the components of the secure cycle and discuss how this framework can be adapted for understanding the process of change in ABTs. For clinicians working with adolescents, our model can be used to identify how deviations from the secure cycle (attachment injuries, empathic failures and mistuned communication) contribute to family distress and psychopathology. The secure cycle also provides a way of describing the ABT elements that have been used to revise IWMs or improve emotionally attuned communication. For researchers, our model provides a guide for conceptualizing and measuring change in attachment constructs and how change in one component of the interpersonal cycle should generalize to other components.

  6. Attachment Based Treatments for Adolescents: The Secure Cycle as a Framework for Assessment, Treatment and Evaluation

    PubMed Central

    Kobak, Roger; Zajac, Kristyn; Herres, Joanna; KrauthamerEwing, E. Stephanie

    2016-01-01

    The emergence of ABTs for adolescents highlights the need to more clearly define and evaluate these treatments in the context of other attachment based treatments for young children and adults. We propose a general framework for defining and evaluating ABTs that describes the cyclical processes that are required to maintain a secure attachment bond. This secure cycle incorporates three components: 1) the child or adult’s IWM of the caregiver; 2) emotionally attuned communication; and 3) the caregiver’s IWM of the child or adult. We briefly review Bowlby, Ainsworth, and Main’s contributions to defining the components of the secure cycle and discuss how this framework can be adapted for understanding the process of change in ABTs. For clinicians working with adolescents, our model can be used to identify how deviations from the secure cycle (attachment injuries, empathic failures and mistuned communication) contribute to family distress and psychopathology. The secure cycle also provides a way of describing the ABT elements that have been used to revise IWMs or improve emotionally attuned communication. For researchers, our model provides a guide for conceptualizing and measuring change in attachment constructs and how change in one component of the interpersonal cycle should generalize to other components. PMID:25744572

  7. Policy implications of uncertainty in modeled life-cycle greenhouse gas emissions of biofuels.

    PubMed

    Mullins, Kimberley A; Griffin, W Michael; Matthews, H Scott

    2011-01-01

    Biofuels have received legislative support recently in California's Low-Carbon Fuel Standard and the Federal Energy Independence and Security Act. Both present new fuel types, but neither provides methodological guidelines for dealing with the inherent uncertainty in evaluating their potential life-cycle greenhouse gas emissions. Emissions reductions are based on point estimates only. This work demonstrates the use of Monte Carlo simulation to estimate life-cycle emissions distributions from ethanol and butanol from corn or switchgrass. Life-cycle emissions distributions for each feedstock and fuel pairing modeled span an order of magnitude or more. Using a streamlined life-cycle assessment, corn ethanol emissions range from 50 to 250 g CO(2)e/MJ, for example, and each feedstock-fuel pathway studied shows some probability of greater emissions than a distribution for gasoline. Potential GHG emissions reductions from displacing fossil fuels with biofuels are difficult to forecast given this high degree of uncertainty in life-cycle emissions. This uncertainty is driven by the importance and uncertainty of indirect land use change emissions. Incorporating uncertainty in the decision making process can illuminate the risks of policy failure (e.g., increased emissions), and a calculated risk of failure due to uncertainty can be used to inform more appropriate reduction targets in future biofuel policies.

  8. The association between commuter cycling and sickness absence.

    PubMed

    Hendriksen, Ingrid J M; Simons, Monique; Garre, Francisca Galindo; Hildebrandt, Vincent H

    2010-08-01

    To study the association between commuter cycling and all-cause sickness absence, and the possible dose-response relationship between absenteeism and the distance, frequency and speed of commuter cycling. Cross-sectional data about cycling in 1236 Dutch employees were collected using a self-report questionnaire. Company absenteeism records were checked over a one-year period (May 2007-April 2008). Propensity scores were used to make groups comparable and to adjust for confounders. Zero-inflated Poisson models were used to assess differences in absenteeism between cyclists and non-cyclists. The mean total duration of absenteeism over the study year was more than 1 day shorter in cyclists than in non-cyclists. This can be explained by the higher proportion of people with no absenteeism in the cycling group. A dose-response relationship was observed between the speed and distance of cycling and absenteeism. Compared to people who cycle a short distance (

  9. The watershed-scale optimized and rearranged landscape design (WORLD) model and local biomass processing depots for sustainable biofuel production: Integrated life cycle assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eranki, Pragnya L.; Manowitz, David H.; Bals, Bryan D.

    An array of feedstock is being evaluated as potential raw material for cellulosic biofuel production. Thorough assessments are required in regional landscape settings before these feedstocks can be cultivated and sustainable management practices can be implemented. On the processing side, a potential solution to the logistical challenges of large biorefi neries is provided by a network of distributed processing facilities called local biomass processing depots. A large-scale cellulosic ethanol industry is likely to emerge soon in the United States. We have the opportunity to influence the sustainability of this emerging industry. The watershed-scale optimized and rearranged landscape design (WORLD) modelmore » estimates land allocations for different cellulosic feedstocks at biorefinery scale without displacing current animal nutrition requirements. This model also incorporates a network of the aforementioned depots. An integrated life cycle assessment is then conducted over the unified system of optimized feedstock production, processing, and associated transport operations to evaluate net energy yields (NEYs) and environmental impacts.« less

  10. Life Cycle Assessment for the Production of Oil Palm Seeds

    PubMed Central

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-01-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change. PMID:27073598

  11. Life Cycle Assessment for the Production of Oil Palm Seeds.

    PubMed

    Muhamad, Halimah; Ai, Tan Yew; Khairuddin, Nik Sasha Khatrina; Amiruddin, Mohd Din; May, Choo Yuen

    2014-12-01

    The oil palm seed production unit that generates germinated oil palm seeds is the first link in the palm oil supply chain, followed by the nursery to produce seedling, the plantation to produce fresh fruit bunches (FFB), the mill to produce crude palm oil (CPO) and palm kernel, the kernel crushers to produce crude palm kernel oil (CPKO), the refinery to produce refined palm oil (RPO) and finally the palm biodiesel plant to produce palm biodiesel. This assessment aims to investigate the life cycle assessment (LCA) of germinated oil palm seeds and the use of LCA to identify the stage/s in the production of germinated oil palm seeds that could contribute to the environmental load. The method for the life cycle impact assessment (LCIA) is modelled using SimaPro version 7, (System for Integrated environMental Assessment of PROducts), an internationally established tool used by LCA practitioners. This software contains European and US databases on a number of materials in addition to a variety of European- and US-developed impact assessment methodologies. LCA was successfully conducted for five seed production units and it was found that the environmental impact for the production of germinated oil palm was not significant. The characterised results of the LCIA for the production of 1000 germinated oil palm seeds showed that fossil fuel was the major impact category followed by respiratory inorganics and climate change.

  12. Thermal-mechanical fatigue of high temperature structural materials

    NASA Astrophysics Data System (ADS)

    Renauld, Mark Leo

    Experimental and analytical methods were developed to address the effect of thermal-mechanical strain cycling on high temperature structural materials under uniaxial and biaxial stress states. Two materials were used in the investigation, a nickel-base superalloy of low ductility, IN-738LC and a high ductility material, 316 stainless steel. A uniaxial life prediction model for the IN-738LC material was based on tensile hysteresis energy measured in stabilized, mid-life hysteresis loops. Hold-time effects and temperature cycling were incorporated in the hysteresis energy approach. Crack growth analysis was also included in the model to predict the number of TMF cycles to initiate and grow a fatigue crack through the coating. The nickel-base superalloy, IN-738LC, was primarily tested in out-of-phase (OP) TMF with a temperature range from 482-871sp°C (900-1600sp°F) under continuous and compressive hold-time cycling. IN-738LC fatigue specimens were coated either with an aluminide, NiCoCrAlHfSi overlay or CoNiCrAlY overlay coating on the outer surface of the specimen. Metallurgical failure analysis via optical and scanning electron microscopy, was used to characterize failure behavior of both substrate and coating materials. Type 316 SS was subjected to continuous biaxial strain cycling with an in-phase (IP) TMF loading and a temperature range from 399-621sp°C (750-1150sp°F). As a result, a biaxial TMF life prediction model was proposed on the basis of an extended isothermal fatigue model. The model incorporates a frequency effect and phase factors to assess the different damage mechanisms observed during TMF loading. The model was also applied to biaxial TMF data generated on uncoated IN-738LC.

  13. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    PubMed

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 2: Derivation of system energy price equations

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The methodology presented is a derivation of the utility owned solar electric systems model. The net present value of the system is determined by consideration of all financial benefits and costs including a specified return on investment. Life cycle costs, life cycle revenues, and residual system values are obtained. Break-even values of system parameters are estimated by setting the net present value to zero.

  15. Space and Missile Defense Acquisitions: Periodic Assessment Needed to Correct Parts Quality Problems in Major Programs

    DTIC Science & Technology

    2011-06-01

    understanding of the global water cycle and the accuracy of precipitation forecasts. GPM is composed of a core spacecraft carrying two main instruments: a dual...developed by NASA and the Space Agency of Argentina (Comisión Nacional de Actividades Espaciales) to investigate the links between the global water ... cycle , ocean circulation, and the climate. It will measure global sea surface salinity. The Aquarius science goals are to observe and model the

  16. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  17. Ecotoxicological assessment of cobalt using Hydra model: ROS, oxidative stress, DNA damage, cell cycle arrest, and apoptosis as mechanisms of toxicity.

    PubMed

    Zeeshan, Mohammed; Murugadas, Anbazhagan; Ghaskadbi, Surendra; Ramaswamy, Babu Rajendran; Akbarsha, Mohammad Abdulkader

    2017-05-01

    The mechanisms underlying cobalt toxicity in aquatic species in general and cnidarians in particular remain poorly understood. Herein we investigated cobalt toxicity in a Hydra model from morphological, histological, developmental, and molecular biological perspectives. Hydra, exposed to cobalt (0-60 mg/L), were altered in morphology, histology, and regeneration. Exposure to standardized sublethal doses of cobalt impaired feeding by affecting nematocytes, which in turn affected reproduction. At the cellular level, excessive ROS generation, as the principal mechanism of action, primarily occurred in the lysosomes, which was accompanied by the upregulation of expression of the antioxidant genes SOD, GST, GPx, and G6PD. The number of Hsp70 and FoxO transcripts also increased. Interestingly, the upregulations were higher in the 24-h than in the 48-h time-point group, indicating that ROS overwhelmed the cellular defense mechanisms at the latter time-point. Comet assay revealed DNA damage. Cell cycle analysis indicated the induction of apoptosis accompanied or not by cell cycle arrest. Immunoblot analyses revealed that cobalt treatment triggered mitochondria-mediated apoptosis as inferred from the modulation of the key proteins Bax, Bcl-2, and caspase-3. From this data, we suggest the use of Hydra as a model organism for the risk assessment of heavy metal pollution in aquatic ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Emulating atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 2: Applications

    NASA Astrophysics Data System (ADS)

    Meinshausen, M.; Wigley, T. M. L.; Raper, S. C. B.

    2011-02-01

    Intercomparisons of coupled atmosphere-ocean general circulation models (AOGCMs) and carbon cycle models are important for galvanizing our current scientific knowledge to project future climate. Interpreting such intercomparisons faces major challenges, not least because different models have been forced with different sets of forcing agents. Here, we show how an emulation approach with MAGICC6 can address such problems. In a companion paper (Meinshausen et al., 2011a), we show how the lower complexity carbon cycle-climate model MAGICC6 can be calibrated to emulate, with considerable accuracy, globally aggregated characteristics of these more complex models. Building on that, we examine here the Coupled Model Intercomparison Project's Phase 3 results (CMIP3). If forcing agents missed by individual AOGCMs in CMIP3 are considered, this reduces ensemble average temperature change from pre-industrial times to 2100 under SRES A1B by 0.4 °C. Differences in the results from the 1980 to 1999 base period (as reported in IPCC AR4) to 2100 are negligible, however, although there are some differences in the trajectories over the 21st century. In a second part of this study, we consider the new RCP scenarios that are to be investigated under the forthcoming CMIP5 intercomparison for the IPCC Fifth Assessment Report. For the highest scenario, RCP8.5, relative to pre-industrial levels, we project a median warming of around 4.6 °C by 2100 and more than 7 °C by 2300. For the lowest RCP scenario, RCP3-PD, the corresponding warming is around 1.5 °C by 2100, decreasing to around 1.1 °C by 2300 based on our AOGCM and carbon cycle model emulations. Implied cumulative CO2 emissions over the 21st century for RCP8.5 and RCP3-PD are 1881 GtC (1697 to 2034 GtC, 80% uncertainty range) and 381 GtC (334 to 488 GtC), when prescribing CO2 concentrations and accounting for uncertainty in the carbon cycle. Lastly, we assess the reasons why a previous MAGICC version (4.2) used in IPCC AR4 gave roughly 10% larger warmings over the 21st century compared to the CMIP3 average. We find that forcing differences and the use of slightly too high climate sensitivities inferred from idealized high-forcing runs were the major reasons for this difference.

  19. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    NASA Astrophysics Data System (ADS)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include that, Indiana has adequate suitable land area available to locate wind farms with installed capacity between 11 and 51 GW if 100 meters high turbines are used. For a 1.5 MW standard wind turbine, financial feasibility analysis shows that production tax credits and property tax abatements are helpful for financial success in Indiana. Also, the wind energy is not entirely emission free if life cycle events of wind turbine manufacturing, production, installation, construction and decommissioning are considered. The research developed a replicable and integrated framework for statewide life cycle analysis of wind energy production accounting for uncertainty into the analyses. Considering the complexity of life cycle analysis and lack of state specific data on performance of wind turbines and wind farms, this study should be considered an intermediate step.

  20. Model Estimated GCR Particle Flux Variation - Assessment with CRIS Data

    NASA Astrophysics Data System (ADS)

    Saganti, Premkumar

    We present model calculated particle flux as a function of time during the current solar cycle along with the comparisons from the ACE/CRIS data and the Mars/MARIE data. In our model calculations we make use of the NASA's HZETRN (High Z and Energy Transport) code along with the nuclear fragmentation cross sections that are described by the quantum multiple scattering (QMSFRG) model. The time dependant variation of the GCR environment is derived making use of the solar modulation potential, phi. For the past ten years, Advanced Composition Explorer (ACE) has been in orbit at the Sun- Earth libration point (L1). Data from the Cosmic Ray Isotope Spectrometer (CRIS) instrument onboard the ACE spacecraft has been available from 1997 through the present time. Our model calculated particle flux showed high degree of correlation during the earlier phase of the current solar cycle (2003) in the lower Z region within 15

  1. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    PubMed

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  2. Integration of eHealth Tools in the Process of Workplace Health Promotion: Proposal for Design and Implementation

    PubMed Central

    2018-01-01

    Background Electronic health (eHealth) and mobile health (mHealth) tools can support and improve the whole process of workplace health promotion (WHP) projects. However, several challenges and opportunities have to be considered while integrating these tools in WHP projects. Currently, a large number of eHealth tools are developed for changing health behavior, but these tools can support the whole WHP process, including group administration, information flow, assessment, intervention development process, or evaluation. Objective To support a successful implementation of eHealth tools in the whole WHP processes, we introduce a concept of WHP (life cycle model of WHP) with 7 steps and present critical and success factors for the implementation of eHealth tools in each step. Methods We developed a life cycle model of WHP based on the World Health Organization (WHO) model of healthy workplace continual improvement process. We suggest adaptations to the WHO model to demonstrate the large number of possibilities to implement eHealth tools in WHP as well as possible critical points in the implementation process. Results eHealth tools can enhance the efficiency of WHP in each of the 7 steps of the presented life cycle model of WHP. Specifically, eHealth tools can support by offering easier administration, providing an information and communication platform, supporting assessments, presenting and discussing assessment results in a dashboard, and offering interventions to change individual health behavior. Important success factors include the possibility to give automatic feedback about health parameters, create incentive systems, or bring together a large number of health experts in one place. Critical factors such as data security, anonymity, or lack of management involvement have to be addressed carefully to prevent nonparticipation and dropouts. Conclusions Using eHealth tools can support WHP, but clear regulations for the usage and implementation of these tools at the workplace are needed to secure quality and reach sustainable results. PMID:29475828

  3. Durability Assessment of Various Gamma TiAl Alloys

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, Mike; Zhuang, Wyman

    2003-01-01

    Seven cast and one wrought gamma-alloys were ballistically impacted and tested under high cycle fatigue. The fatigue strength of each alloy was characterized as a function of initial flaw size and modeled using a threshold-based fracture mechanics approach.

  4. Analysis of in vitro fertilization data with multiple outcomes using discrete time-to-event analysis

    PubMed Central

    Maity, Arnab; Williams, Paige; Ryan, Louise; Missmer, Stacey; Coull, Brent; Hauser, Russ

    2014-01-01

    In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and followup required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data due to its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women’s Hospital, Massachusetts. We also summarize the performance of our proposed methods based on a simulation study. PMID:24317880

  5. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents

    PubMed Central

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport. PMID:26784933

  6. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents.

    PubMed

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Active transport is a convenient way to incorporate physical activity in adolescents' daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17-18 years), to school and to other destinations. 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport.

  7. DEVELOPMENT OF THE METHOD AND U.S. NORMALIZATION DATABASE FOR LIFE CYCLE IMPACT ASSESSMENT AND SUSTAINABILITY METRICS

    EPA Science Inventory

    Normalization is an optional step within Life Cycle Impact Assessment (LCIA) that may be used to assist in the interpretation of life cycle inventory data as well as, life cycle impact assessment results. Normalization transforms the magnitude of LCI and LCIA results into relati...

  8. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  9. Menstrual Bleeding Patterns Among Regularly Menstruating Women

    PubMed Central

    Dasharathy, Sonya S.; Mumford, Sunni L.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2012-01-01

    Menstrual bleeding patterns are considered relevant indicators of reproductive health, though few studies have evaluated patterns among regularly menstruating premenopausal women. The authors evaluated self-reported bleeding patterns, incidence of spotting, and associations with reproductive hormones among 201 women in the BioCycle Study (2005–2007) with 2 consecutive cycles. Bleeding patterns were assessed by using daily questionnaires and pictograms. Marginal structural models were used to evaluate associations between endogenous hormone concentrations and subsequent total reported blood loss and bleeding length by weighted linear mixed-effects models and weighted parametric survival analysis models. Women bled for a median of 5 days (standard deviation: 1.5) during menstruation, with heavier bleeding during the first 3 days. Only 4.8% of women experienced midcycle bleeding. Increased levels of follicle-stimulating hormone (β = 0.20, 95% confidence interval: 0.13, 0.27) and progesterone (β = 0.06, 95% confidence interval: 0.03, 0.09) throughout the cycle were associated with heavier menstrual bleeding, and higher follicle-stimulating hormone levels were associated with longer menses. Bleeding duration and volume were reduced after anovulatory compared with ovulatory cycles (geometric mean blood loss: 29.6 vs. 47.2 mL; P = 0.07). Study findings suggest that detailed characterizations of bleeding patterns may provide more insight than previously thought as noninvasive markers for endocrine status in a given cycle. PMID:22350580

  10. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    EPA Science Inventory

    We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categori...

  11. How to assess performance in cycling: the multivariate nature of influencing factors and related indicators

    PubMed Central

    Castronovo, A. Margherita; Conforto, Silvia; Schmid, Maurizio; Bibbo, Daniele; D'Alessio, Tommaso

    2013-01-01

    Finding an optimum for the cycling performance is not a trivial matter, since the literature shows the presence of many controversial aspects. In order to quantify different levels of performance, several indexes have been defined and used in many studies, reflecting variations in physiological and biomechanical factors. In particular, indexes such as Gross Efficiency (GE), Net Efficiency (NE) and Delta Efficiency (DE) have been referred to changes in metabolic efficiency (EffMet), while the Indexes of Effectiveness (IE), defined over the complete crank revolution or over part of it, have been referred to variations in mechanical effectiveness (EffMech). All these indicators quantify the variations of different factors [i.e., muscle fibers type distribution, pedaling cadence, setup of the bicycle frame, muscular fatigue (MFat), environmental variables, ergogenic aids, psychological traits (PsychTr)], which, moreover, show high mutual correlation. In the attempt of assessing cycling performance, most studies in the literature keep all these factors separated. This may bring to misleading results, leaving unanswered the question of how to improve cycling performance. This work provides an overview on the studies involving indexes and factors usually related to performance monitoring and assessment in cycling. In particular, in order to clarify all those aspects, the mutual interactions among these factors are highlighted, in view of a global performance assessment. Moreover, a proposal is presented advocating for a model-based approach that considers all factors mentioned in the survey, including the mutual interaction effects, for the definition of an objective function E representing the overall effectiveness of a training program in terms of both EffMet and EffMech. PMID:23734130

  12. Life cycle assessment of the application of nanoclays in wire coating

    NASA Astrophysics Data System (ADS)

    Tellaetxe, A.; Blázquez, M.; Arteche, A.; Egizabal, A.; Ermini, V.; Rose, J.; Chaurand, P.; Unzueta, I.

    2012-09-01

    A life cycle assessment (LCA) is carried out to compare nanoclay-reinforced polymer wire coatings with conventional ones. While the conventional wire coatings contain standard halogen free retardants, in reinforced coatings, montmorillonite (nanoclay) is incorporated into electric cable linings as a rheological agent for an increased resistance to fire. In addition, a reduced load of standard halogen free retardants is obtained. The synergistic effect of the montmorillonite on traditional flame retardant additives (by the formation of a three-dimensional char network) can lead to a revolution in wire production. The application of nanoclays contributes also to anti-dripping effect and flexibility increase [1]. Some producers have already started commercializing wire with nanotechnology-based coating; in the short term the use of nanoclay in wire coating production will probably reach a significant market share replacing traditional formulations. The main aim of this study is to compare the environmental impacts along the life cycle of a traditional wire coating (mineral flame retardants like ATH or MDH in a polymer matrix) with the nanoclay-reinforced wire coating, where the montmorillonite replaces a low percentage of the mineral flame retardant. The system boundaries of the study include the following unit processes: nanoclay production, thermoplastic material and mineral flame retardants production, cable coating manufacturing by extrusion and different end of life scenarios (recycling, incineration and landfill disposal). Whereas nanoreinforced composites have shown and increased fire retardance, the addition of nanomaterials seems to have no significant relevance in the environmental assessment. However, the lack of nano-specific characterization factors for nanomaterials and emission rates associated to the different life cycle stages -mainly in the extrusion and use phase, where accidental combustions can take place- still remains a challenge for realistic life cycle assessment modelling.

  13. pyhector: A Python interface for the simple climate model Hector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N Willner, Sven; Hartin, Corinne; Gieseke, Robert

    2017-04-01

    Pyhector is a Python interface for the simple climate model Hector (Hartin et al. 2015) developed in C++. Simple climate models like Hector can, for instance, be used in the analysis of scenarios within integrated assessment models like GCAM1, in the emulation of complex climate models, and in uncertainty analyses. Hector is an open-source, object oriented, simple global climate carbon cycle model. Its carbon cycle consists of a one pool atmosphere, three terrestrial pools which can be broken down into finer biomes or regions, and four carbon pools in the ocean component. The terrestrial carbon cycle includes primary production andmore » respiration fluxes. The ocean carbon cycle circulates carbon via a simplified thermohaline circulation, calculating air-sea fluxes as well as the marine carbonate system (Hartin et al. 2016). The model input is time series of greenhouse gas emissions; as example scenarios for these the Pyhector package contains the Representative Concentration Pathways (RCPs)2. These were developed to cover the range of baseline and mitigation emissions scenarios and are widely used in climate change research and model intercomparison projects. Using DataFrames from the Python library Pandas (McKinney 2010) as a data structure for the scenarios simplifies generating and adapting scenarios. Other parameters of the Hector model can easily be modified when running the model. Pyhector can be installed using pip from the Python Package Index.3 Source code and issue tracker are available in Pyhector's GitHub repository4. Documentation is provided through Readthedocs5. Usage examples are also contained in the repository as a Jupyter Notebook (Pérez and Granger 2007; Kluyver et al. 2016). Courtesy of the Mybinder project6, the example Notebook can also be executed and modified without installing Pyhector locally.« less

  14. Land Use in LCA: Including Regionally Altered Precipitation to Quantify Ecosystem Damage.

    PubMed

    Lathuillière, Michael J; Bulle, Cécile; Johnson, Mark S

    2016-11-01

    The incorporation of soil moisture regenerated by precipitation, or green water, into life cycle assessment has been of growing interest given the global importance of this resource for terrestrial ecosystems and food production. This paper proposes a new impact assessment model to relate land and water use in seasonally dry, semiarid, and arid regions where precipitation and evapotranspiration are closely coupled. We introduce the Precipitation Reduction Potential midpoint impact representing the change in downwind precipitation as a result of a land transformation and occupation activity. Then, our end-point impact model quantifies terrestrial ecosystem damage as a function of precipitation loss using a relationship between woody plant species richness, water and energy regimes. We then apply the midpoint and end-point models to the production of soybean in Southeastern Amazonia which has resulted from the expansion of cropland into tropical forest, with noted effects on local precipitation. Our proposed cause-effect chain represents a complementary approach to previous contributions which have focused on water consumption impacts and/or have represented evapotranspiration as a loss to the water cycle.

  15. Hydrological changes in the tropics: an Holocene perspective

    NASA Astrophysics Data System (ADS)

    Braconnot, Pascale

    2015-04-01

    Past climates offer a large set of natural experiences that can be used to better understand the relative role of different climate feedbacks arising from changes in the Earth's global energetics, Earth's hydrological cycle or from the coupling between climate and biogeochemical cycles. In addition, the numerous climate reconstructions from different and independent ice, marine and terrestrial climate archives allow to test how climate models reproduce past changes and to assess their credibility when used for future climate projections. The presentation will review some of the mechanisms affecting the long term trend in the location of the intertropical convergence zone and the Afro-Asian monsoon. Using simulations of the PMIP project, as well as sensitivity experiments with the IPSL model, I'll discuss the role of monsoon changes in the global Earth's energetics and the different feedbacks from ocean and land-surface. The presentation will contrast the conditions in the Early, the mid and late Holocene and show how robust features of monsoon changes can be used to better assess future changes in regions where model results are uncertain, such as West Africa.

  16. Assessing time-integrated dissolved concentrations and predicting toxicity of metals during diel cycling in streams

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Nimick, David A.; Mebane, Christopher A.

    2012-01-01

    Evaluating water quality and the health of aquatic organisms is challenging in systems with systematic diel (24 hour) or less predictable runoff-induced changes in water composition. To advance our understanding of how to evaluate environmental health in these dynamic systems, field studies of diel cycling were conducted in two streams (Silver Bow Creek and High Ore Creek) affected by historical mining activities in southwestern Montana. A combination of sampling and modeling tools were used to assess the toxicity of metals in these systems. Diffusive Gradients in Thin Films (DGT) samplers were deployed at multiple time intervals during diel sampling to confirm that DGT integrates time-varying concentrations of dissolved metals. Thermodynamic speciation calculations using site specific water compositions, including time-integrated dissolved metal concentrations determined from DGT, and a competitive, multiple-metal biotic ligand model incorporated into the Windemere Humic Aqueous Model Version 6.0 (WHAM VI) were used to determine the chemical speciation of dissolved metals and biotic ligands. The model results were combined with previously collected toxicity data on cutthroat trout to derive a relationship that predicts the relative survivability of these fish at a given site. This integrative approach may prove useful for assessing water quality and toxicity of metals to aquatic organisms in dynamic systems and evaluating whether potential changes in environmental health of aquatic systems are due to anthropogenic activities or natural variability.

  17. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  18. Mutual information and phase dependencies: measures of reduced nonlinear cardiorespiratory interactions after myocardial infarction.

    PubMed

    Hoyer, Dirk; Leder, Uwe; Hoyer, Heike; Pompe, Bernd; Sommer, Michael; Zwiener, Ulrich

    2002-01-01

    The heart rate variability (HRV) is related to several mechanisms of the complex autonomic functioning such as respiratory heart rate modulation and phase dependencies between heart beat cycles and breathing cycles. The underlying processes are basically nonlinear. In order to understand and quantitatively assess those physiological interactions an adequate coupling analysis is necessary. We hypothesized that nonlinear measures of HRV and cardiorespiratory interdependencies are superior to the standard HRV measures in classifying patients after acute myocardial infarction. We introduced mutual information measures which provide access to nonlinear interdependencies as counterpart to the classically linear correlation analysis. The nonlinear statistical autodependencies of HRV were quantified by auto mutual information, the respiratory heart rate modulation by cardiorespiratory cross mutual information, respectively. The phase interdependencies between heart beat cycles and breathing cycles were assessed basing on the histograms of the frequency ratios of the instantaneous heart beat and respiratory cycles. Furthermore, the relative duration of phase synchronized intervals was acquired. We investigated 39 patients after acute myocardial infarction versus 24 controls. The discrimination of these groups was improved by cardiorespiratory cross mutual information measures and phase interdependencies measures in comparison to the linear standard HRV measures. This result was statistically confirmed by means of logistic regression models of particular variable subsets and their receiver operating characteristics.

  19. Life cycle assessment part 1: framework, goal and scope definition, inventory analysis, and applications.

    PubMed

    Rebitzer, G; Ekvall, T; Frischknecht, R; Hunkeler, D; Norris, G; Rydberg, T; Schmidt, W-P; Suh, S; Weidema, B P; Pennington, D W

    2004-07-01

    Sustainable development requires methods and tools to measure and compare the environmental impacts of human activities for the provision of goods and services (both of which are summarized under the term "products"). Environmental impacts include those from emissions into the environment and through the consumption of resources, as well as other interventions (e.g., land use) associated with providing products that occur when extracting resources, producing materials, manufacturing the products, during consumption/use, and at the products' end-of-life (collection/sorting, reuse, recycling, waste disposal). These emissions and consumptions contribute to a wide range of impacts, such as climate change, stratospheric ozone depletion, tropospheric ozone (smog) creation, eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources, water use, land use, and noise-among others. A clear need, therefore, exists to be proactive and to provide complimentary insights, apart from current regulatory practices, to help reduce such impacts. Practitioners and researchers from many domains come together in life cycle assessment (LCA) to calculate indicators of the aforementioned potential environmental impacts that are linked to products-supporting the identification of opportunities for pollution prevention and reductions in resource consumption while taking the entire product life cycle into consideration. This paper, part 1 in a series of two, introduces the LCA framework and procedure, outlines how to define and model a product's life cycle, and provides an overview of available methods and tools for tabulating and compiling associated emissions and resource consumption data in a life cycle inventory (LCI). It also discusses the application of LCA in industry and policy making. The second paper, by Pennington et al. (Environ. Int. 2003, in press), highlights the key features, summarises available approaches, and outlines the key challenges of assessing the aforementioned inventory data in terms of contributions to environmental impacts (life cycle impact assessment, LCIA).

  20. Energy and life-cycle cost analysis of a six-story office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.

    1981-10-01

    An energy analysis computer program, DOE-2, was used to compute annual energy use for a typical office building as originally designed and with several energy conserving design modifications. The largest energy use reductions were obtained with the incorporation of daylighting techniques, the use of double pane windows, night temperature setback, and the reduction of artificial lighting levels. A life-cycle cost model was developed to assess the cost-effectiveness of the design modifications discussed. The model incorporates such features as inclusion of taxes, depreciation, and financing of conservation investments. The energy conserving strategies are ranked according to economic criteria such as net present benefit, discounted payback period, and benefit to cost ratio.

  1. Evaluation of ceramics for stator application: Gas turbine engine report

    NASA Technical Reports Server (NTRS)

    Trela, W.; Havstad, P. H.

    1978-01-01

    Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.

  2. Terrestrial water cycle and the impact of climate change.

    PubMed

    Tao, Fulu; Yokozawa, Masayuki; Hayashi, Yousay; Lin, Erda

    2003-06-01

    The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.

  3. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, R. E.

    1995-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements and crew rotation via spread sheets provide adequate benchmarks to assess cargo vehicle design and performance characteristics.

  4. A Monthly Water-Balance Model Driven By a Graphical User Interface

    USGS Publications Warehouse

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  5. Review of nitrogen fate models applicable to forest landscapes in the Southern U.S.

    Treesearch

    D. M. Amatya; C. G. Rossi; A. Saleh; Z. Dai; M. A. Youssef; R. G. Williams; D. D. Bosch; G. M. Chescheir; G. Sun; R. W. Skaggs; C. C. Trettin; E. D. Vance; J. E. Nettles; S. Tian

    2013-01-01

    Assessing the environmental impacts of fertilizer nitrogen (N) used to increase productivity in managed forests is complex due to a wide range of abiotic and biotic factors affecting its forms and movement. Models developed to predict fertilizer N fate (e.g., cycling processes) and water quality impacts vary widely in their design, scope, and potential application. We...

  6. Assessing the environmental characteristics of cycling routes to school: a study on the reliability and validity of a Google Street View-based audit.

    PubMed

    Vanwolleghem, Griet; Van Dyck, Delfien; Ducheyne, Fabian; De Bourdeaudhuij, Ilse; Cardon, Greet

    2014-06-10

    Google Street View provides a valuable and efficient alternative to observe the physical environment compared to on-site fieldwork. However, studies on the use, reliability and validity of Google Street View in a cycling-to-school context are lacking. We aimed to study the intra-, inter-rater reliability and criterion validity of EGA-Cycling (Environmental Google Street View Based Audit - Cycling to school), a newly developed audit using Google Street View to assess the physical environment along cycling routes to school. Parents (n = 52) of 11-to-12-year old Flemish children, who mostly cycled to school, completed a questionnaire and identified their child's cycling route to school on a street map. Fifty cycling routes of 11-to-12-year olds were identified and physical environmental characteristics along the identified routes were rated with EGA-Cycling (5 subscales; 37 items), based on Google Street View. To assess reliability, two researchers performed the audit. Criterion validity of the audit was examined by comparing the ratings based on Google Street View with ratings through on-site assessments. Intra-rater reliability was high (kappa range 0.47-1.00). Large variations in the inter-rater reliability (kappa range -0.03-1.00) and criterion validity scores (kappa range -0.06-1.00) were reported, with acceptable inter-rater reliability values for 43% of all items and acceptable criterion validity for 54% of all items. EGA-Cycling can be used to assess physical environmental characteristics along cycling routes to school. However, to assess the micro-environment specifically related to cycling, on-site assessments have to be added.

  7. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  8. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    NASA Astrophysics Data System (ADS)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyung Chul; Wallington, Timothy J.

    Assessing the life-cycle benefits of vehicle lightweighting requires a quantitative description of mass-induced fuel consumption (MIF) and fuel reduction values (FRVs). We have extended our physics-based model of MIF and FRVs for internal combustion engine vehicles (ICEVs) to electrified vehicles (EVs) including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs). We illustrate the utility of the model by calculating MIFs and FRVs for 37 EVs and 13 ICEVs. BEVs have much smaller MIF and FRVs, both in the range 0.04-0.07 L e/(100 km 100 kg), than those for ICEVs which are in the rangesmore » 0.19-0.32 and 0.16-0.22 L/(100 km 100 kg), respectively. The MIF and FRVs for HEVs and PHEVs mostly lie between those for ICEVs and BEVs. Powertrain resizing increases the FRVs for ICEVs, HEVs and PHEVs. Lightweighting EVs is less effective in reducing greenhouse gas emissions than lightweighting ICEVs, however the benefits differ substantially for different vehicle models. The physics-based approach outlined here enables model specific assessments for ICEVs, HEVs, PHEVs, and BEVs required to determine the optimal strategy for maximizing the life-cycle benefits of lightweighting the light-duty vehicle fleet.« less

  10. Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.

    PubMed

    Weiland, Nathan T; Zinn, Ben T

    2003-11-01

    In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.

  11. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    PubMed

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. High cycle fatigue crack modeling and analysis for deck truss flooring connection details : final report.

    DOT National Transportation Integrated Search

    1997-07-01

    The Oregon Department of Transportation is responsible for many steel deck truss bridges containing connection details that are fatigue prone. A typical bridge, the Winchester Bridge in Roseburg, Oregon, was analyzed to assess the loading conditions,...

  13. Towards Robust Energy Systems Modeling: Examinging Uncertainty in Fossil Fuel-Based Life Cycle Assessment Approaches

    NASA Astrophysics Data System (ADS)

    Venkatesh, Aranya

    Increasing concerns about the environmental impacts of fossil fuels used in the U.S. transportation and electricity sectors have spurred interest in alternate energy sources, such as natural gas and biofuels. Life cycle assessment (LCA) methods can be used to estimate the environmental impacts of incumbent energy sources and potential impact reductions achievable through the use of alternate energy sources. Some recent U.S. climate policies have used the results of LCAs to encourage the use of low carbon fuels to meet future energy demands in the U.S. However, the LCA methods used to estimate potential reductions in environmental impact have some drawbacks. First, the LCAs are predominantly based on deterministic approaches that do not account for any uncertainty inherent in life cycle data and methods. Such methods overstate the accuracy of the point estimate results, which could in turn lead to incorrect and (consequent) expensive decision-making. Second, system boundaries considered by most LCA studies tend to be limited (considered a manifestation of uncertainty in LCA). Although LCAs can estimate the benefits of transitioning to energy systems of lower environmental impact, they may not be able to characterize real world systems perfectly. Improved modeling of energy systems mechanisms can provide more accurate representations of reality and define more likely limits on potential environmental impact reductions. This dissertation quantitatively and qualitatively examines the limitations in LCA studies outlined previously. The first three research chapters address the uncertainty in life cycle greenhouse gas (GHG) emissions associated with petroleum-based fuels, natural gas and coal consumed in the U.S. The uncertainty in life cycle GHG emissions from fossil fuels was found to range between 13 and 18% of their respective mean values. For instance, the 90% confidence interval of the life cycle GHG emissions of average natural gas consumed in the U.S was found to range between -8 to 9% (17%) of the mean value of 66 g CO2e/MJ. Results indicate that uncertainty affects the conclusions of comparative life cycle assessments, especially when differences in average environmental impacts between two competing fuels/products are small. In the final two research chapters of this thesis, system boundary limitations in LCA are addressed. Simplified economic dispatch models for are developed to examine changes in regional power plant dispatch that occur when coal power plants are retired and when natural gas prices drop. These models better reflect reality by estimating the order in which existing power plants are dispatched to meet electricity demand based on short-run marginal costs. Results indicate that the reduction in air emissions are lower than suggested by LCA studies, since they generally do not include the complexity of regional electricity grids, predominantly driven by comparative fuel prices. For instance, comparison, this study estimates 7-15% reductions in emissions with low natural gas prices. Although this is a significant reduction in itself, it is still lower than the benefits reported in traditional life cycle comparisons of coal and natural gas-based power (close to 50%), mainly due to the effects of plant dispatch.

  14. Toward improving the representation of the water cycle at High Northern Latitudes

    NASA Astrophysics Data System (ADS)

    Lahoz, William; Svendby, Tove; Hamer, Paul; Blyverket, Jostein; Kristiansen, Jørn; Luijting, Hanneke

    2016-04-01

    The rapid warming at northern latitude regions in recent decades has resulted in a lengthening of the growing season, greater photosynthetic activity and enhanced carbon sequestration by the ecosystem. These changes are likely to intensify summer droughts, tree mortality and wildfires. A potential major climate change feedback is the release of carbon-bearing compounds from soil thawing. These changes make it important to have information on the land surface (soil moisture and temperature) at high northern latitude regions. The availability of soil moisture measurements from several satellite platforms provides an opportunity to address issues associated with the effects of climate change, e.g., assessing multi-decadal links between increasing temperatures, snow cover, soil moisture variability and vegetation dynamics. The relatively poor information on water cycle parameters for biomes at northern high latitudes make it important that efforts are expended on improving the representation of the water cycle at these latitudes. In a collaboration between NILU and Met Norway, we evaluate the soil moisture observations over Norway from the ESA satellite SMOS (Soil Moisture and Ocean Salinity) using in situ ground based soil moisture measurements, with reference to drought and flood episodes. We will use data assimilation of the quality-controlled SMOS soil moisture observations into a land surface model and a numerical weather prediction model to assess the added value from satellite observations of soil moisture for improving the representation of the water cycle at high northern latitudes. This presentation provides first results from this work. We discuss the evaluation of SMOS soil moisture data (and from other satellites) against ground-based in situ data over Norway; the performance of the SMOS soil moisture data for selected drought and flood conditions over Norway; and the first results from data assimilation experiments with land surface models and numerical weather prediction models. Analyses include information on root zone soil moisture. We provide evidence of the value of satellite soil measurements over Norway, including their fidelity, and their impact at improving the representation of the hydrological cycle over northern high latitudes. We indicate benefits from these results for multi-decadal soil moisture datasets such as that from the ESA CCI for soil moisture.

  15. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  16. Perfluoroalkyl Chemicals, Menstrual Cycle Length, and Fecundity: Findings from a Prospective Pregnancy Study

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Barr, Dana Boyd; Louis, Thomas A.; Louis, Germaine M. Buck

    2016-01-01

    Background Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample upon enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid-chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF]=1.03, 95% credible interval [CrI]=[1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA) (AF=0.98, 95% CrI=[0.96, 1.00]). When accounting for cycle length, relevant covariates and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of PFNA (odds ratio [OR]=0.6, 95% CrI=[0.4, 1.0]) though not when comparing the highest versus lowest (OR=0.7, 95% CrI=[0.3, 1.1]) tertile. Conclusions In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. PMID:27541842

  17. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM Device.

    PubMed

    Bertucci, W; Duc, S; Villerius, V; Pernin, J N; Grappe, F

    2005-12-01

    The SRM power measuring crank system is nowadays a popular device for cycling power output (PO) measurements in the field and in laboratories. The PowerTap (CycleOps, Madison, USA) is a more recent and less well-known device that allows mobile PO measurements of cycling via the rear wheel hub. The aim of this study is to test the validity and reliability of the PowerTap by comparing it with the most accurate (i.e. the scientific model) of the SRM system. The validity of the PowerTap is tested during i) sub-maximal incremental intensities (ranging from 100 to 420 W) on a treadmill with different pedalling cadences (45 to 120 rpm) and cycling positions (standing and seated) on different grades, ii) a continuous sub-maximal intensity lasting 30 min, iii) a maximal intensity (8-s sprint), and iiii) real road cycling. The reliability is assessed by repeating ten times the sub-maximal incremental and continuous tests. The results show a good validity of the PowerTap during sub-maximal intensities between 100 and 450 W (mean PO difference -1.2 +/- 1.3 %) when it is compared to the scientific SRM model, but less validity for the maximal PO during sprint exercise, where the validity appears to depend on the gear ratio. The reliability of the PowerTap during the sub-maximal intensities is similar to the scientific SRM model (the coefficient of variation is respectively 0.9 to 2.9 % and 0.7 to 2.1 % for PowerTap and SRM). The PowerTap must be considered as a suitable device for PO measurements during sub-maximal real road cycling and in sub-maximal laboratory tests.

  18. Automation life-cycle cost model

    NASA Technical Reports Server (NTRS)

    Gathmann, Thomas P.; Reeves, Arlinda J.; Cline, Rick; Henrion, Max; Ruokangas, Corinne

    1992-01-01

    The problem domain being addressed by this contractual effort can be summarized by the following list: Automation and Robotics (A&R) technologies appear to be viable alternatives to current, manual operations; Life-cycle cost models are typically judged with suspicion due to implicit assumptions and little associated documentation; and Uncertainty is a reality for increasingly complex problems and few models explicitly account for its affect on the solution space. The objectives for this effort range from the near-term (1-2 years) to far-term (3-5 years). In the near-term, the envisioned capabilities of the modeling tool are annotated. In addition, a framework is defined and developed in the Decision Modelling System (DEMOS) environment. Our approach is summarized as follows: Assess desirable capabilities (structure into near- and far-term); Identify useful existing models/data; Identify parameters for utility analysis; Define tool framework; Encode scenario thread for model validation; and Provide transition path for tool development. This report contains all relevant, technical progress made on this contractual effort.

  19. Kinetic characterisation of primer mismatches in allele-specific PCR: a quantitative assessment.

    PubMed

    Waterfall, Christy M; Eisenthal, Robert; Cobb, Benjamin D

    2002-12-20

    A novel method of estimating the kinetic parameters of Taq DNA polymerase during rapid cycle PCR is presented. A model was constructed using a simplified sigmoid function to represent substrate accumulation during PCR in combination with the general equation describing high substrate inhibition for Michaelis-Menten enzymes. The PCR progress curve was viewed as a series of independent reactions where initial rates were accurately measured for each cycle. Kinetic parameters were obtained for allele-specific PCR (AS-PCR) amplification to examine the effect of mismatches on amplification. A high degree of correlation was obtained providing evidence of substrate inhibition as a major cause of the plateau phase that occurs in the later cycles of PCR.

  20. The association between physical environment and cycling to school among Turkish and Moroccan adolescents in Amsterdam.

    PubMed

    Mäki-Opas, Tomi E; de Munter, Jeroen; Maas, Jolanda; den Hertog, Frank; Kunst, Anton E

    2014-08-01

    This study examined the effect of physical environment on cycling to and from school among boys and girls of Turkish and Moroccan origin living in Amsterdam. The LASER study (n = 697) was an interview study that included information on cycling to and from school and the perceived physical environment. Objective information on physical environment was gathered from Statistics Netherlands and the Department for Research and Statistics at the Municipality of Amsterdam. Structural equation modelling with latent variables was applied, taking into account age, gender, self-assessed health, education, country of origin, and distance to school. For every unit increase in the latent variable scale for bicycle-friendly infrastructure, we observed a 21% increase in the odds for cycling to and from school. The association was only borderline statistically significant and disappeared after controlling for distance to school. The enjoyable environment was not associated with cycling to and from school after controlling for all background factors. Bicycle-friendly infrastructure and an enjoyable environment were not important factors for cycling to and from school among those with no cultural cycling background.

  1. A normative price for energy from an electricity generation system: An Owner-dependent Methodology for Energy Generation (system) Assessment (OMEGA). Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Chamberlain, R. G.; Mcmaster, K. M.

    1981-01-01

    The utility owned solar electric system methodology is generalized and updated. The net present value of the system is determined by consideration of all financial benefits and costs (including a specified return on investment). Life cycle costs, life cycle revenues, and residual system values are obtained. Break even values of system parameters are estimated by setting the net present value to zero. While the model was designed for photovoltaic generators with a possible thermal energy byproduct, it applicability is not limited to such systems. The resulting owner-dependent methodology for energy generation system assessment consists of a few equations that can be evaluated without the aid of a high-speed computer.

  2. Specification and implementation of IFC based performance metrics to support building life cycle assessment of hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrissey, Elmer; O'Donnell, James; Keane, Marcus

    2004-03-29

    Minimizing building life cycle energy consumption is becoming of paramount importance. Performance metrics tracking offers a clear and concise manner of relating design intent in a quantitative form. A methodology is discussed for storage and utilization of these performance metrics through an Industry Foundation Classes (IFC) instantiated Building Information Model (BIM). The paper focuses on storage of three sets of performance data from three distinct sources. An example of a performance metrics programming hierarchy is displayed for a heat pump and a solar array. Utilizing the sets of performance data, two discrete performance effectiveness ratios may be computed, thus offeringmore » an accurate method of quantitatively assessing building performance.« less

  3. A Quasi-2D Delta-growth Model Accounting for Multiple Avulsion Events, Validated by Robust Data from the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Moodie, A. J.; Nittrouer, J. A.; Ma, H.; Carlson, B.; Parker, G.

    2016-12-01

    The autogenic "life cycle" of a lowland fluvial channel building a deltaic lobe typically follows a temporal sequence that includes: channel initiation, progradation and aggradation, and abandonment via avulsion. In terms of modeling these processes, it is possible to use a one-dimensional (1D) morphodynamic scheme to capture the magnitude of the prograding and aggrading processes. These models can include algorithms to predict the timing and location of avulsions for a channel lobe. However, this framework falls short in its ability to evaluate the deltaic system beyond the time scale of a single channel, and assess sedimentation processes occurring on the floodplain, which is important for lobe building. Herein, we adapt a 1D model to explicitly account for multiple avulsions and therefore replicate a deltaic system that includes many lobe cycles. Following an avulsion, sediment on the floodplain and beyond the radially-averaged shoreline is redistributed across the delta topset and along the shoreline, respectively, simultaneously prograding and aggrading the delta. Over time this framework produces net shoreline progradation and forward-stepping of subsequent avulsions. Testing this model using modern systems is inherently difficult due to a lack of data: most modern delta lobes are active for timescales of centuries to millennia, and so observing multiple iterations of the channel-lobe cycle is impossible. However, the Yellow River delta (China) is unique because the lobe cycles here occur within years to decades. Therefore it is possible to measure shoreline evolution through multiple lobe cycles, based on satellite imagery and historical records. These data are used to validate the model outcomes. Our findings confirm that the explicit accounting of avulsion processes in a quasi-2D model framework is capable of capturing shoreline development patterns that otherwise are not resolvable based on previously published delta building models.

  4. [Modeling of carbon cycling in terrestrial ecosystem: a review].

    PubMed

    Mao, Liuxi; Sun, Yanling; Yan, Xiaodong

    2006-11-01

    Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.

  5. Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas

    PubMed Central

    Althouse, Benjamin M.; Vasilakis, Nikos; Sall, Amadou A.; Diallo, Mawlouth; Weaver, Scott C.; Hanley, Kathryn A.

    2016-01-01

    Zika virus (ZIKV) originated and continues to circulate in a sylvatic transmission cycle between non-human primate hosts and arboreal mosquitoes in tropical Africa. Recently ZIKV invaded the Americas, where it poses a threat to human health, especially to pregnant women and their infants. Here we examine the risk that ZIKV will establish a sylvatic cycle in the Americas, focusing on Brazil. We review the natural history of sylvatic ZIKV and present a mathematical dynamic transmission model to assess the probability of establishment of a sylvatic ZIKV transmission cycle in non-human primates and/or other mammals and arboreal mosquito vectors in Brazil. Brazil is home to multiple species of primates and mosquitoes potentially capable of ZIKV transmission, though direct assessment of host competence (ability to mount viremia sufficient to infect a feeding mosquito) and vector competence (ability to become infected with ZIKV and disseminate and transmit upon subsequent feedings) of New World species is lacking. Modeling reveals a high probability of establishment of sylvatic ZIKV across a large range of biologically plausible parameters. Probability of establishment is dependent on host and vector population sizes, host birthrates, and ZIKV force of infection. Research on the host competence of New World monkeys or other small mammals to ZIKV, on vector competence of New World Aedes, Sabethes, and Haemagogus mosquitoes for ZIKV, and on the geographic range of potential New World hosts and vectors is urgently needed. A sylvatic cycle of ZIKV would make future elimination efforts in the Americas practically impossible, and paints a dire picture for the epidemiology of ZIKV and our ability to end the ongoing outbreak of congenital Zika syndrome. PMID:27977671

  6. Initial high anti-emetic efficacy of granisetron with dexamethasone is not maintained over repeated cycles.

    PubMed Central

    de Wit, R.; van den Berg, H.; Burghouts, J.; Nortier, J.; Slee, P.; Rodenburg, C.; Keizer, J.; Fonteyn, M.; Verweij, J.; Wils, J.

    1998-01-01

    We have reported previously that the anti-emetic efficacy of single agent 5HT3 antagonists is not maintained when analysed with the measurement of cumulative probabilities. Presently, the most effective anti-emetic regimen is a combination of a 5HT3 antagonist plus dexamethasone. We, therefore, assessed the sustainment of efficacy of such a combination in 125 patients, scheduled to receive cisplatin > or = 70 mg m(-2) either alone or in combination with other cytotoxic drugs. Anti-emetic therapy was initiated with 10 mg of dexamethasone and 3 mg of granisetron intravenously, before cisplatin. On days 1-6, patients received 8 mg of dexamethasone and 1 mg of granisetron twice daily by oral administration. Protection was assessed during all cycles and calculated based on cumulative probability analyses using the method of Kaplan-Meier and a model for transitional probabilities. Irrespective of the type of analysis used, the anti-emetic efficacy of granisetron/dexamethasone decreased over cycles. The initial complete acute emesis protection rate of 66% decreased to 30% according to the method of Kaplan-Meier and to 39% using the model for transitional probabilities. For delayed emesis, the initial complete protection rate of 52% decreased to 21% (Kaplan-Meier) and to 43% (transitional probabilities). In addition, we observed that protection failure in the delayed emesis period adversely influenced the acute emesis protection in the next cycle. We conclude that the anti-emetic efficacy of a 5HT3 antagonist plus dexamethasone is not maintained over multiple cycles of highly emetogenic chemotherapy, and that the acute emesis protection is adversely influenced by protection failure in the delayed emesis phase. PMID:9652766

  7. Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas.

    PubMed

    Althouse, Benjamin M; Vasilakis, Nikos; Sall, Amadou A; Diallo, Mawlouth; Weaver, Scott C; Hanley, Kathryn A

    2016-12-01

    Zika virus (ZIKV) originated and continues to circulate in a sylvatic transmission cycle between non-human primate hosts and arboreal mosquitoes in tropical Africa. Recently ZIKV invaded the Americas, where it poses a threat to human health, especially to pregnant women and their infants. Here we examine the risk that ZIKV will establish a sylvatic cycle in the Americas, focusing on Brazil. We review the natural history of sylvatic ZIKV and present a mathematical dynamic transmission model to assess the probability of establishment of a sylvatic ZIKV transmission cycle in non-human primates and/or other mammals and arboreal mosquito vectors in Brazil. Brazil is home to multiple species of primates and mosquitoes potentially capable of ZIKV transmission, though direct assessment of host competence (ability to mount viremia sufficient to infect a feeding mosquito) and vector competence (ability to become infected with ZIKV and disseminate and transmit upon subsequent feedings) of New World species is lacking. Modeling reveals a high probability of establishment of sylvatic ZIKV across a large range of biologically plausible parameters. Probability of establishment is dependent on host and vector population sizes, host birthrates, and ZIKV force of infection. Research on the host competence of New World monkeys or other small mammals to ZIKV, on vector competence of New World Aedes, Sabethes, and Haemagogus mosquitoes for ZIKV, and on the geographic range of potential New World hosts and vectors is urgently needed. A sylvatic cycle of ZIKV would make future elimination efforts in the Americas practically impossible, and paints a dire picture for the epidemiology of ZIKV and our ability to end the ongoing outbreak of congenital Zika syndrome.

  8. Modeling Feedbacks Between Water and Vegetation in the Climate System

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Not only is water essential for life on earth, but life itself affects the global hydrologic cycle and consequently the climate of the planet. Whether the global feedbacks between life and the hydrologic cycle tend to stabilize the climate system about some equilibrium level is difficult to assess. We use a global climate model to examine how the presence of vegetation can affect the hydrologic cycle in a particular region. A control for the present climate is compared with a model experiment in which the Sahara Desert is replaced by vegetation in the form of trees and shrubs common to the Sahel region. A second model experiment is designed to identify the separate roles of two different effects of vegetation, namely the modified albedo and the presence of roots that can extract moisture from deeper soil layers. The results show that the presence of vegetation leads to increases in precipitation and soil moisture in western Sahara. In eastern Sahara, the changes are less clear. The increase in soil moisture is greater when the desert albedo is replaced by the vegetation albedo than when both the vegetation albedo and roots are added. The effect of roots is to withdraw water from deeper layers during the dry season. One implication of this study is that the insertion of vegetation into the Sahara modifies the hydrologic cycle so that the vegetation is more likely to persist than initially.

  9. ORIGEN-based Nuclear Fuel Inventory Module for Fuel Cycle Assessment: Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skutnik, Steven E.

    The goal of this project, “ORIGEN-based Nuclear Fuel Depletion Module for Fuel Cycle Assessment" is to create a physics-based reactor depletion and decay module for the Cyclus nuclear fuel cycle simulator in order to assess nuclear fuel inventories over a broad space of reactor operating conditions. The overall goal of this approach is to facilitate evaluations of nuclear fuel inventories for a broad space of scenarios, including extended used nuclear fuel storage and cascading impacts on fuel cycle options such as actinide recovery in used nuclear fuel, particularly for multiple recycle scenarios. The advantages of a physics-based approach (compared tomore » a recipe-based approach which has been typically employed for fuel cycle simulators) is in its inherent flexibility; such an approach can more readily accommodate the broad space of potential isotopic vectors that may be encountered under advanced fuel cycle options. In order to develop this flexible reactor analysis capability, we are leveraging the Origen nuclear fuel depletion and decay module from SCALE to produce a standalone “depletion engine” which will serve as the kernel of a Cyclus-based reactor analysis module. The ORIGEN depletion module is a rigorously benchmarked and extensively validated tool for nuclear fuel analysis and thus its incorporation into the Cyclus framework can bring these capabilities to bear on the problem of evaluating long-term impacts of fuel cycle option choices on relevant metrics of interest, including materials inventories and availability (for multiple recycle scenarios), long-term waste management and repository impacts, etc. Developing this Origen-based analysis capability for Cyclus requires the refinement of the Origen analysis sequence to the point where it can reasonably be compiled as a standalone sequence outside of SCALE; i.e., wherein all of the computational aspects of Origen (including reactor cross-section library processing and interpolation, input and output processing, and depletion/decay solvers) can be self-contained into a single executable sequence. Further, to embed this capability into other software environments (such as the Cyclus fuel cycle simulator) requires that Origen’s capabilities be encapsulated into a portable, self-contained library which other codes can then call directly through function calls, thereby directly accessing the solver and data processing capabilities of Origen. Additional components relevant to this work include modernization of the reactor data libraries used by Origen for conducting nuclear fuel depletion calculations. This work has included the development of new fuel assembly lattices not previously available (such as for CANDU heavy-water reactor assemblies) as well as validation of updated lattices for light-water reactors updated to employ modern nuclear data evaluations. The CyBORG reactor analysis module as-developed under this workscope is fully capable of dynamic calculation of depleted fuel compositions from all commercial U.S. reactor assembly types as well as a number of international fuel types, including MOX, VVER, MAGNOX, and PHWR CANDU fuel assemblies. In addition, the Origen-based depletion engine allows for CyBORG to evaluate novel fuel assembly and reactor design types via creation of Origen reactor data libraries via SCALE. The establishment of this new modeling capability affords fuel cycle modelers a substantially improved ability to model dynamically-changing fuel cycle and reactor conditions, including recycled fuel compositions from fuel cycle scenarios involving material recycle into thermal-spectrum systems.« less

  10. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000-2012. It has been shown that the Net Ecosystem Carbon Budget (NECB) of Russian forests for this period was in range of 0.5-0.7 Pg C yr-1 with a slight negative trend during the period due to acceleration of disturbance regimes and negative impacts of weather extremes (heat waves etc.). Uncertainties of the FCA for individual years were estimated at about 25% (CI 0.9). It has been shown that some models (e.g. majority of DGVMs) do not describe some processes on permafrost satisfactory while results of applications of ensembles of inverse models on average are closed to empirical assessments. A most important conclusion from this experience is that future improvements of knowledge of carbon cycling of Northern Eurasia forests requires development of an integrated observing system as a unified information background, as well as systems methodological improvements of all methods of cognition of carbon cycling.

  11. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation.

    PubMed

    Lemming, Gitte; Chambon, Julie C; Binning, Philip J; Bjerg, Poul L

    2012-12-15

    A comparative life cycle assessment is presented for four different management options for a trichloroethene-contaminated site with a contaminant source zone located in a fractured clay till. The compared options are (i) long-term monitoring (ii) in-situ enhanced reductive dechlorination (ERD), (iii) in-situ chemical oxidation (ISCO) with permanganate and (iv) long-term monitoring combined with treatment by activated carbon at the nearby waterworks. The life cycle assessment included evaluation of both primary and secondary environmental impacts. The primary impacts are the local human toxic impacts due to contaminant leaching into groundwater that is used for drinking water, whereas the secondary environmental impacts are related to remediation activities such as monitoring, drilling and construction of wells and use of remedial amendments. The primary impacts for the compared scenarios were determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result in higher environmental impacts than they remediate, in terms of person equivalents and assuming equal weighting of all impacts. The ERD and long-term monitoring were the scenarios with the lowest secondary life cycle impacts and are therefore the preferred alternatives. However, if activated carbon treatment at the waterworks is required in the long-term monitoring scenario, then it becomes unfavorable because of large secondary impacts. ERD is favorable due to its low secondary impacts, but only if leaching of vinyl chloride to the groundwater aquifer can be avoided. Remediation with ISCO caused the highest secondary impacts and cannot be recommended for the site. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Evaluation method for regional water cycle health based on nature-society water cycle theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial restructuring.

  13. Study on LOC for modern facility agriculture automatic walking equipment LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    LiFePO4 battery LOC (life Of Charge) is the assessment of the ability to work within a cycle of battery charge and discharge period, which likes the miles for vehicle. LOC is related with battery capacity, working condition and stress. LOC consists of the model of the battery's SOC online prediction model, the analysis of RBSOC and the LOC model of multi-condition and multi-stress.

  14. A Process-Based Assessment for Watershed Restoration Planning, Chehalis River Basin, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Thompson, J.; Seixas, G.; Fogel, C.; Hall, J.; Chamberlin, J.; Kiffney, P.; Pollock, M. M.; Pess, G. R.

    2016-12-01

    Three key questions in identifying and prioritizing river restoration are: (1) How have habitats changed?, (2) What are the causes of those habitat changes?, and (3) How of those changes affected the species of interest? To answer these questions and assist aquatic habitat restoration planning in the Chehalis River basin, USA, we quantified habitat changes across the river network from headwaters to the estuary. We estimated historical habitat capacity to support salmonids using a combination of historical assessments, reference sites, and models. We also estimated current capacity from recent or newly created data sets. We found that losses of floodplain habitats and beaver ponds were substantial, while the estuary was less modified. Both tributary and main channel habitats—while modified—did not show particularly large habitat changes. Assessments of key processes that form and sustain habitats indicate that riparian functions (shading and wood recruitment) have been significantly altered, although peak and low flows have also been altered in some locations. The next step is to link our habitat assessments to salmon life-cycle models to evaluate which life stages and habitat types currently constrain population sizes of spring and fall Chinook salmon, coho salmon, and steelhead. By comparing model runs that represent different components of habitat losses identified in the analysis above, life-cycle models help identify which habitat losses have most impacted each species and population. This assessment will indicate which habitat types provide the greatest restoration potential, and help define a guiding vision for restoration efforts. Future analyses may include development and evaluation of alternative restoration scenarios, including different climate change scenarios, to refine our understanding of which restoration actions provide the greatest benefit to a salmon population.

  15. Life Cycle Assessment for Biofuels

    EPA Science Inventory

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  16. LIFE CYCLE ASSESSMENT: PRINCIPLES AND PRACTICE

    EPA Science Inventory

    The following document provides an introductory overview of Life Cycle Assessment (LCA) and describes the general uses and major components of LCA. This document is an update and merger of two previous EPA documents on LCA ("Life Cycle Assessment: Inventory Guidelines and Princip...

  17. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  18. When the Well Runs Dry: Climate Change, Water and Human Health

    NASA Astrophysics Data System (ADS)

    Balbus, J. M.

    2014-12-01

    Water is a critical pathway between changes in climate and impacts on human health. Increased intensity of the hydrologic cycle can impair water quality through both drought and runoff associated with extreme precipitation events. Local changes or extremes in hydrological cycles can also alter the life cycles of moquitoes, ticks, snails, and other carriers of human diseases. These impacts in turn can affect the transmission of malaria, schistosomiasis, and many other human diseases. Warmer freshwater and coastal waters, in combination with other factors like fertilizer runoff and salinity, are also associated with proliferation of a variety of human pathogens, including cyanobacteria and vibrio species. This presentation will highlight the many linkages between climate change, water and human health. It will review recent findings of the US National Climate Assessment and 5th Assessment Report of the IPCC with regards to water-related threats to health, and discuss approaches to modeling health outcomes of water-associated climate change impacts.

  19. How to address data gaps in life cycle inventories: a case study on estimating CO2 emissions from coal-fired electricity plants on a global scale.

    PubMed

    Steinmann, Zoran J N; Venkatesh, Aranya; Hauck, Mara; Schipper, Aafke M; Karuppiah, Ramkumar; Laurenzi, Ian J; Huijbregts, Mark A J

    2014-05-06

    One of the major challenges in life cycle assessment (LCA) is the availability and quality of data used to develop models and to make appropriate recommendations. Approximations and assumptions are often made if appropriate data are not readily available. However, these proxies may introduce uncertainty into the results. A regression model framework may be employed to assess missing data in LCAs of products and processes. In this study, we develop such a regression-based framework to estimate CO2 emission factors associated with coal power plants in the absence of reported data. Our framework hypothesizes that emissions from coal power plants can be explained by plant-specific factors (predictors) that include steam pressure, total capacity, plant age, fuel type, and gross domestic product (GDP) per capita of the resident nations of those plants. Using reported emission data for 444 plants worldwide, plant level CO2 emission factors were fitted to the selected predictors by a multiple linear regression model and a local linear regression model. The validated models were then applied to 764 coal power plants worldwide, for which no reported data were available. Cumulatively, available reported data and our predictions together account for 74% of the total world's coal-fired power generation capacity.

  20. Cost-effectiveness of hysteroscopy screening for infertile women.

    PubMed

    Kasius, Jenneke C; Eijkemans, René J C; Mol, Ben W J; Fauser, Bart C J M; Fatemi, Human M; Broekmans, Frank J M

    2013-06-01

    This study assessed the cost-effectiveness of office hysteroscopy screening prior to IVF. Therefore, the cost-effectiveness of two distinct strategies - hysteroscopy after two failed IVF cycles (Failedhyst) and routine hysteroscopy prior to IVF (Routinehyst) - was compared with the reference strategy of no hysteroscopy (Nohyst). When present, intrauterine pathology was treated during hysteroscopy. Two models were constructed and evaluated in a decision analysis. In model I, all patients had an increase in pregnancy rate after screening hysteroscopy prior to IVF; in model II, only patients with intrauterine pathology would benefit. For each strategy, the total costs and live birth rates after a total of three IVF cycles were assessed. For model I (all patients benefit from hysteroscopy), Routinehyst was always cost-effective compared with Nohyst or Failedhyst. For the Routinehyst strategy, a monetary profit would be obtained in the case where hysteroscopy would increase the live birth rate after IVF by ≥ 2.8%. In model II (only patients with pathology benefit from hysteroscopy), Routinehyst also dominated Failedhyst. However, hysteroscopy performance resulted in considerable costs. In conclusion, the application of a routine hysteroscopy prior to IVF could be cost-effective. However, randomized trials confirming the effectiveness of hysteroscopy are needed. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  1. What is in the flask? Going beyond inventories

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Patra, P. K.; Piper, S.

    2010-12-01

    Compiling accurate inventories is tough work. Spatial, temporal, and altitudinal constraints all impact inventory accuracy and utility. However, while there is considerable challenge in creating inventories, the creation process needs to be mindful of inventory utilization. No inventory is perfect for all needs, yet inventories can be constructed to meet many needs. This presentation focuses on the use of a global, monthly, fossil-fuel carbon dioxide inventory. This inventory serves as one input into an atmospheric general circulation model (AGCM) based chemistry-transport model (ACTM). The inquiry centers on if fossil fuel emissions significantly impact the seasonal cycle of measured atmospheric carbon dioxide concentrations. Model results will be compared to Scripps Institution of Oceanography (SIO) flask and continuous analyzer data. Primary metrics to be used in the comparison are slope and correlation analyses. Slope analysis will help assess the degree to which model results agree with SIO data. Correlation analysis will help assess the degree to which the various model components (i.e., fossil fuels, terrestrial biosphere, oceans) contribute to the overall seasonal cycle. The importance of this example is that it couples inventory creation with inventory utilization. This demonstration of a new inventory data set shows the utility of carefully crafted inventory data sets to the broader community.

  2. Methods for Cloud Cover Estimation

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Huning, J. R.; Smith, J. H.; Logan, T. L.

    1984-01-01

    Several methods for cloud cover estimation are described relevant to assessing the performance of a ground-based network of solar observatories. The methods rely on ground and satellite data sources and provide meteorological or climatological information. One means of acquiring long-term observations of solar oscillations is the establishment of a ground-based network of solar observatories. Criteria for station site selection are: gross cloudiness, accurate transparency information, and seeing. Alternative methods for computing this duty cycle are discussed. The cycle, or alternatively a time history of solar visibility from the network, can then be input to a model to determine the effect of duty cycle on derived solar seismology parameters. Cloudiness from space is studied to examine various means by which the duty cycle might be computed. Cloudiness, and to some extent transparency, can potentially be estimated from satellite data.

  3. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    NASA Astrophysics Data System (ADS)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  4. Multi-objective optimization integrated with life cycle assessment for rainwater harvesting systems

    NASA Astrophysics Data System (ADS)

    Li, Yi; Huang, Youyi; Ye, Quanliang; Zhang, Wenlong; Meng, Fangang; Zhang, Shanxue

    2018-03-01

    The major limitation of optimization models applied previously for rainwater harvesting (RWH) systems is the systematic evaluation of environmental and human health impacts across all the lifecycle stages. This study integrated life cycle assessment (LCA) into a multi-objective optimization model to optimize the construction areas of green rooftops, porous pavements and green lands in Beijing of China, considering the trade-offs among 24 h-interval RWH volume (QR), stormwater runoff volume control ratio (R), economic cost (EC), and environmental impacts (EI). Eleven life cycle impact indicators were assessed with a functional unit of 10,000 m2 of RWH construction areas. The LCA results showed that green lands performed the smallest lifecycle impacts of all assessment indicators, in contrast, porous pavements showed the largest impact values except Abiotic Depletion Potential (ADP) elements. Based on the standardization results, ADP fossil was chosen as the representative indicator for the calculation of EI objective in multi-objective optimization model due to its largest value in all RWH systems lifecycle. The optimization results for QR, R, EC and EI were 238.80 million m3, 78.5%, 66.68 billion RMB Yuan, and 1.05E + 16 MJ, respectively. After the construction of optimal RWH system, 14.7% of annual domestic water consumption and 78.5% of maximum daily rainfall would be supplied and controlled in Beijing, respectively, which would make a great contribution to reduce the stress of water scarcity and water logging problems. Green lands have been the first choice for RWH in Beijing according to the capacity of rainwater harvesting and less environmental and human impacts. Porous pavements played a good role in water logging alleviation (R for 67.5%), however, did not show a large construction result in this study due to the huge ADP fossil across the lifecycle. Sensitivity analysis revealed the daily maximum precipitation to be key factor for the robustness of the results for three RWH systems construction in this study.

  5. A study of the effect of space-dependent neutronics on stochastically-induced bifurcations in BWR dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Analytis, G.T.

    1995-09-01

    A non-linear one-group space-dependent neutronic model for a finite one-dimensional core is coupled with a simple BWR feed-back model. In agreement with results obtained by the authors who originally developed the point-kinetics version of this model, we shall show numerically that stochastic reactivity excitations may result in limit-cycles and eventually in a chaotic behaviour, depending on the magnitude of the feed-back coefficient K. In the framework of this simple space-dependent model, the effect of the non-linearities on the different spatial harmonics is studied and the importance of the space-dependent effects is exemplified and assessed in terms of the importance ofmore » the higher harmonics. It is shown that under certain conditions, when the limit-cycle-type develop, the neutron spectra may exhibit strong space-dependent effects.« less

  6. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  7. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  8. Alberta Carpenter | NREL

    Science.gov Websites

    cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental

  9. Developing Statistical Models to Assess Transplant Outcomes Using National Registries: The Process in the United States.

    PubMed

    Snyder, Jon J; Salkowski, Nicholas; Kim, S Joseph; Zaun, David; Xiong, Hui; Israni, Ajay K; Kasiske, Bertram L

    2016-02-01

    Created by the US National Organ Transplant Act in 1984, the Scientific Registry of Transplant Recipients (SRTR) is obligated to publicly report data on transplant program and organ procurement organization performance in the United States. These reports include risk-adjusted assessments of graft and patient survival, and programs performing worse or better than expected are identified. The SRTR currently maintains 43 risk adjustment models for assessing posttransplant patient and graft survival and, in collaboration with the SRTR Technical Advisory Committee, has developed and implemented a new systematic process for model evaluation and revision. Patient cohorts for the risk adjustment models are identified, and single-organ and multiorgan transplants are defined, then each risk adjustment model is developed following a prespecified set of steps. Model performance is assessed, the model is refit to a more recent cohort before each evaluation cycle, and then it is applied to the evaluation cohort. The field of solid organ transplantation is unique in the breadth of the standardized data that are collected. These data allow for quality assessment across all transplant providers in the United States. A standardized process of risk model development using data from national registries may enhance the field.

  10. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services

    PubMed Central

    Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen

    2017-01-01

    International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions. PMID:28429710

  11. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services

    NASA Astrophysics Data System (ADS)

    Chaplin-Kramer, Rebecca; Sim, Sarah; Hamel, Perrine; Bryant, Benjamin; Noe, Ryan; Mueller, Carina; Rigarlsford, Giles; Kulak, Michal; Kowal, Virginia; Sharp, Richard; Clavreul, Julie; Price, Edward; Polasky, Stephen; Ruckelshaus, Mary; Daily, Gretchen

    2017-04-01

    International corporations in an increasingly globalized economy exert a major influence on the planet's land use and resources through their product design and material sourcing decisions. Many companies use life cycle assessment (LCA) to evaluate their sustainability, yet commonly-used LCA methodologies lack the spatial resolution and predictive ecological information to reveal key impacts on climate, water and biodiversity. We present advances for LCA that integrate spatially explicit modelling of land change and ecosystem services in a Land-Use Change Improved (LUCI)-LCA. Comparing increased demand for bioplastics derived from two alternative feedstock-location scenarios for maize and sugarcane, we find that the LUCI-LCA approach yields results opposite to those of standard LCA for greenhouse gas emissions and water consumption, and of different magnitudes for soil erosion and biodiversity. This approach highlights the importance of including information about where and how land-use change and related impacts will occur in supply chain and innovation decisions.

  12. Estimates of Embodied Global Energy and Air-Emission Intensities of Japanese Products for Building a Japanese Input–Output Life Cycle Assessment Database with a Global System Boundary

    PubMed Central

    2012-01-01

    To build a life cycle assessment (LCA) database of Japanese products embracing their global supply chains in a manner requiring lower time and labor burdens, this study estimates the intensity of embodied global environmental burden for commodities produced in Japan. The intensity of embodied global environmental burden is a measure of the environmental burden generated globally by unit production of the commodity and can be used as life cycle inventory data in LCA. The calculation employs an input–output LCA method with a global link input–output model that defines a global system boundary grounded in a simplified multiregional input–output framework. As results, the intensities of embodied global environmental burden for 406 Japanese commodities are determined in terms of energy consumption, greenhouse-gas emissions (carbon dioxide, methane, nitrous oxide, perfluorocarbons, hydrofluorocarbons, sulfur hexafluoride, and their summation), and air-pollutant emissions (nitrogen oxide and sulfur oxide). The uncertainties in the intensities of embodied global environmental burden attributable to the simplified structure of the global link input–output model are quantified using Monte Carlo simulation. In addition, by analyzing the structure of the embodied global greenhouse-gas intensities we characterize Japanese commodities in the context of LCA embracing global supply chains. PMID:22881452

  13. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  14. Wave Engine Topping Cycle Assessment

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    The performance benefits derived by topping a gas turbine engine with a wave engine are assessed. The wave engine is a wave rotor that produces shaft power by exploiting gas dynamic energy exchange and flow turning. The wave engine is added to the baseline turboshaft engine while keeping high-pressure-turbine inlet conditions, compressor pressure ratio, engine mass flow rate, and cooling flow fractions fixed. Related work has focused on topping with pressure-exchangers (i.e., wave rotors that provide pressure gain with zero net shaft power output); however, more energy can be added to a wave-engine-topped cycle leading to greater engine specific-power-enhancement The energy addition occurs at a lower pressure in the wave-engine-topped cycle; thus the specific-fuel-consumption-enhancement effected by ideal wave engine topping is slightly lower than that effected by ideal pressure-exchanger topping. At a component level, however, flow turning affords the wave engine a degree-of-freedom relative to the pressure-exchanger that enables a more efficient match with the baseline engine. In some cases, therefore, the SFC-enhancement by wave engine topping is greater than that by pressure-exchanger topping. An ideal wave-rotor-characteristic is used to identify key wave engine design parameters and to contrast the wave engine and pressure-exchanger topping approaches. An aerodynamic design procedure is described in which wave engine design-point performance levels are computed using a one-dimensional wave rotor model. Wave engines using various wave cycles are considered including two-port cycles with on-rotor combustion (valved-combustors) and reverse-flow and through-flow four-port cycles with heat addition in conventional burners. A through-flow wave cycle design with symmetric blading is used to assess engine performance benefits. The wave-engine-topped turboshaft engine produces 16% more power than does a pressure-exchanger-topped engine under the specified topping constraints. Positive and negative aspects of wave engine topping in gas turbine engines are identified.

  15. In Vitro Quantification of Gutter Formation and Chimney Graft Compression in Chimney EVAR Stent-Graft Configurations Using Electrocardiography-Gated Computed Tomography.

    PubMed

    Overeem, Simon P; Donselaar, Esmé J; Boersen, Jorrit T; Groot Jebbink, Erik; Slump, Cornelis H; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2018-03-01

    To assess the dynamic behavior of chimney grafts during the cardiac cycle. Three chimney endovascular aneurysm repair (EVAR) stent-graft configurations (Endurant and Advanta V12, Endurant and Viabahn, and Endurant and BeGraft) were placed in silicone aneurysm models and subjected to physiologic flow. Electrocardiography (ECG)-gated contrast-enhanced computed tomography was used to visualize geometric changes during the cardiac cycle. Endograft and chimney graft surface, gutter volume, chimney graft angulation over the center lumen line, and the D-ratio (the ratio between the lengths of the major and minor axes) were independently assessed by 2 observers at 10 time points in the cardiac cycle. Both gutter volumes and chimney graft geometry changed significantly during the cardiac cycle in all 3 configurations (p<0.001). Gutters and endoleaks were observed in all configurations. The largest gutter volume (232.8 mm 3 ) and change in volume (20.7 mm 3 ) between systole and diastole were observed in the Endurant-Advanta configuration. These values were 2.7- and 3.0-fold higher, respectively, compared to the Endurant-Viabahn configuration and 1.7- and 1.6-fold higher as observed in the Endurant-BeGraft configuration. The Endurant-Viabahn configuration had the highest D-ratio (right, 1.26-1.35; left, 1.33-1.48), while the Endurant-BeGraft configuration had the lowest (right, 1.11-1.17; left, 1.08-1.15). Assessment of the interobserver variability showed a high correlation (intraclass correlation >0.935) between measurements. Gutter volumes and stent compression are dynamic phenomena that reshape during the cardiac cycle. Compelling differences were observed during the cardiac cycle in all configurations, with the self-expanding (Endurant-Viabahn) chimney EVAR configurations having smaller gutters and less variation in gutter volume during the cardiac cycle yet more stent compression without affecting the chimney graft surface.

  16. Modeling Instruction in AP Physics C: Mechanics and Electricity and Magnetism

    NASA Astrophysics Data System (ADS)

    Belcher, Nathan Tillman

    This action research study used data from multiple assessments in Mechanics and Electricity and Magnetism to determine the viability of Modeling Instruction as a pedagogy for students in AP Physics C: Mechanics and Electricity and Magnetism. Modeling Instruction is a guided-inquiry approach to teaching science in which students progress through the Modeling Cycle to develop a fully-constructed model for a scientific concept. AP Physics C: Mechanics and Electricity and Magnetism are calculus-based physics courses, approximately equivalent to first-year calculus-based physics courses at the collegiate level. Using a one-group pretest-posttest design, students were assessed in Mechanics using the Force Concept Inventory, Mechanics Baseline Test, and 2015 AP Physics C: Mechanics Practice Exam. With the same design, students were assessed in Electricity and Magnetism on the Brief Electricity and Magnetism Assessment, Electricity and Magnetism Conceptual Assessment, and 2015 AP Physics C: Electricity and Magnetism Practice Exam. In a one-shot case study design, student scores were collected from the 2017 AP Physics C: Mechanics and Electricity and Magnetism Exams. Students performed moderately well on the assessments in Mechanics and Electricity and Magnetism, demonstrating that Modeling Instruction is a viable pedagogy in AP Physics C: Electricity and Magnetism.

  17. Optimization of monitoring and inspections in the life-cycle of wind turbines

    NASA Astrophysics Data System (ADS)

    Hanish Nithin, Anu; Omenzetter, Piotr

    2016-04-01

    The past decade has witnessed a surge in the offshore wind farm developments across the world. Although this form of cleaner and greener energy is beneficial and eco-friendly, the production of wind energy entails high life-cycle costs. The costs associated with inspections, monitoring and repairs of wind turbines are primary contributors to the high costs of electricity produced in this way and are disadvantageous in today's competitive economic environment. There is limited research being done in the probabilistic optimization of life-cycle costs of offshore wind turbines structures and their components. This paper proposes a framework for assessing the life cycle cost of wind turbine structures subject to damage and deterioration. The objective of the paper is to develop a mathematical probabilistic cost assessment framework which considers deterioration, inspection, monitoring, repair and maintenance models and their uncertainties. The uncertainties are etched in the accuracy and precision of the monitoring and inspection methods and can be considered through the probability of damage detection of each method. Schedules for inspection, monitoring and repair actions are demonstrated using a decision tree. Examples of a generalised deterioration process integrated with the cost analysis using a decision tree are shown for a wind turbine foundation structure.

  18. Towards a community Earth System Model

    NASA Astrophysics Data System (ADS)

    Blackmon, M.

    2003-04-01

    The Community Climate System Model, version 2 (CCSM2), was released in June 2002. CCSM2 has several new components and features, which I will discuss briefly. I will also show a few results from a multi-century equilibrium run with this model, emphasizing the improvements over the earlier simulation using the original CSM. A few flaws and inadequacies in CCSM2 have been identified. I will also discuss briefly work underway to improve the model and present results, if available. CCSM2, with improvements, will be the basis for the development of a Community Earth System Model (CESM). The highest priority for expansion of the model involves incorporation of biogeosciences into the coupled model system, with emphasis given to the carbon, nitrogen and iron cycles. The overall goal of the biogeosciences project within CESM is to understand the regulation of planetary energetics, planetary ecology, and planetary metabolism through exchanges of energy, momentum, and materials among atmosphere, land, and ocean, and the response of the climate system through these processes to changes in land cover and land use. In particular, this research addresses how biogeochemical coupling of carbon, nitrogen, and iron cycles affects climate and how human perturbations of these cycles alter climate. To accomplish these goals, the Community Land Model, the land component of CCSM2, is being developed to include river routing, carbon and nitrogen cycles, emissions of mineral aerosols and biogenic volatile organic compounds, dry deposition of various gases, and vegetation dynamics. The carbon and nitrogen cycles are being implemented using parameterizations developed as part of a state-of-the-art ecosystem biogeochemistry model. The primary goal of this research is to provide an accurate net flux of CO2 between the land and the atmosphere so that CESM can be used to study the dynamics of the coupled climate-carbon system. Emissions of biogenic volatile organic compounds are also based on a state-of-the-art emissions model and depend on plant type, leaf area index, photosynthetically active radiation, and leaf temperature. Dust emissions and deposition are being developed to implement a fully coupled dust cycle in CCSM, including the radiative effects of dust and carbon feedbacks related to fertilization of ocean and terrestrial ecosystems. Dust mobilization depends on surface wind speed, soil moisture, plant cover, and soil texture. Dust dry deposition processes include sedimentation and turbulent mix-out. A major research focus is how natural and human-mediated changes in land cover and ecosystem functions alter surface energy fluxes, the hydrological cycle, and biogeochemical cycles. Human land uses include conversion of natural vegetation to cropland, soil degradation, and urbanization. Climate feedbacks associated with natural changes in land cover are being assessed by developing and implementing a model of natural vegetation dynamics for use with the Community Land Model. Development of a marine ecosystem model is also underway. The ecosystem model is based on the global, mixed-layer marine ecosystem model of Moore et al., which includes parameterizations for such things as iron limitation and scavenging, zooplankton grazing, nitrogen fixation, calcification, and ballast-based remineralization. A series of experiments is being planned to assess the coupling of the ecology to the biogeochemistry, to adequately tune some of the model parameters that are poorly constrained by data, to explore new parameterizations and processes (e.g., riverine and atmospheric inputs of nutrients), and to conduct uncoupled application studies (e.g., deliberate carbon sequestration, retrospective historical simulations, iron-dust deposition response). Longer term plans include investigating biogeochemical processes in the coastal zone and how to incorporate these processes into a global ocean model, either through subgrid-scale parameterizations or model nesting. A Whole Atmosphere Community Climate Model(WACCM) is being developed. The vertical extent of the model is 150 km at present, but extension to 500 km is eventually expected. Interactive chemistry is being incorporated. This model will be used as the atmospheric component of CESM for some experiments. One expected application is the study of solar variability and its impact on climate variability in the troposphere and at the atmosphere, ocean, land interface. Preliminary results using some of these model components will be shown. A timeline for development and use of the models will be given.

  19. Life cycle assessment of corn-based ethanol production in Argentina.

    PubMed

    Pieragostini, Carla; Aguirre, Pío; Mussati, Miguel C

    2014-02-15

    The promotion of biofuels as energy for transportation in the world is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. In Argentina, the legislation has imposed the use of biofuels in blend with fossil fuels (5 to 10%) in the transport sector. The aim of this paper is to assess the environmental impact of corn-based ethanol production in the province of Santa Fe in Argentina based on the life cycle assessment methodology. The studied system includes from raw materials production to anhydrous ethanol production using dry milling technology. The system is divided into two subsystems: agricultural system and refinery system. The treatment of stillage is considered as well as the use of co-products (distiller's dried grains with solubles), but the use and/or application of the produced biofuel is not analyzed: a cradle-to-gate analysis is presented. As functional unit, 1MJ of anhydrous ethanol at biorefinery is chosen. Two life cycle impact assessment methods are selected to perform the study: Eco-indicator 99 and ReCiPe. SimaPro is the life cycle assessment software used. The influence of the perspectives on the model is analyzed by sensitivity analysis for both methods. The two selected methods identify the same relevant processes. The use of fertilizers and resources, seeds production, harvesting process, corn drying, and phosphorus fertilizers and acetamide-anillide-compounds production are the most relevant processes in agricultural system. For refinery system, corn production, supplied heat and burned natural gas result in the higher contributions. The use of distiller's dried grains with solubles has an important positive environmental impact. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The degrees to which transtrochanteric rotational osteotomy moves the region of osteonecrotic femoral head out of the weight-bearing area as evaluated by computer simulation.

    PubMed

    Chen, Weng-Pin; Tai, Ching-Lung; Tan, Chih-Feng; Shih, Chun-Hsiung; Hou, Shun-Hsin; Lee, Mel S

    2005-01-01

    Transtrochanteric rotational osteotomy is a technical demanding procedure. Currently, the pre-operative planning of the transtrochanteric rotational osteotomy is mostly based on X-ray images. The surgeons would need to reconstruct the three-dimensional structure of the femoral head and the necrosis in their mind. This study develops a simulation platform using computer models based on the computed tomography images of the femoral head to evaluate the degree to which transtrochanteric rotational osteotomy moves the region of osteonecrotic femoral head out of the weight-bearing area in stance and gait cycle conditions. Based on this simulation procedure, the surgeons would be better informed before the surgery and the indication can be carefully assessed. A case with osteonecrosis involving 15% of the femoral head was recruited. Virtual models with the same size lesion but at different locations were devised. Computer models were created using SolidWorks 2000 CAD software. The area ratio of weight-bearing zone occupied by the necrotic lesion on two conditions, stance and gait cycle, were measured after surgery simulations. For the specific case and virtual models devised in this study, computer simulation showed the following two findings: (1) The degrees needed to move the necrosis out of the weight-bearing zone in stance were less by anterior rotational osteotomy as compared to that of posterior rotational osteotomy. However, the necrotic region would still overlap with the weight-bearing area during gait cycle. (2) Because the degrees allowed for posterior rotation were less restricted than anterior rotation, posterior rotational osteotomies were often more effective to move the necrotic region out of the weight-bearing area during gait cycle. The computer simulation platform by registering actual CT images is a useful tool to assess the direction and degrees needed for transtrochanteric rotational osteotomy. Although the results indicated that anterior rotational osteotomy was more effective to move the necrosis out of the weight-bearing zone in stance for models devised in this study, in circumstances where the necrotic region located at various locale, considering the limitation of anterior rotation inherited with the risk of vascular compromise, it might be more beneficial to perform posterior rotation osteotomy in taking account of gait cycle.

  1. Integrative Application of Life Cycle Assessment and Risk Assessment to Environmental Impacts of Anthropogenic Pollutants at a Watershed Scale.

    PubMed

    Lin, Xiaodan; Yu, Shen; Ma, Hwongwen

    2018-01-01

    Intense human activities have led to increasing deterioration of the watershed environment via pollutant discharge, which threatens human health and ecosystem function. To meet a need of comprehensive environmental impact/risk assessment for sustainable watershed development, a biogeochemical process-based life cycle assessment and risk assessment (RA) integration for pollutants aided by geographic information system is proposed in this study. The integration is to frame a conceptual protocol of "watershed life cycle assessment (WLCA) for pollutants". The proposed WLCA protocol consists of (1) geographic and environmental characterization mapping; (2) life cycle inventory analysis; (3) integration of life-cycle impact assessment (LCIA) with RA via characterization factor of pollutant of interest; and (4) result analysis and interpretation. The WLCA protocol can visualize results of LCIA and RA spatially for the pollutants of interest, which might be useful for decision or policy makers for mitigating impacts of watershed development.

  2. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective.

    PubMed

    Rivas-García, Pasiano; Botello-Álvarez, José E; Abel Seabra, Joaquim E; da Silva Walter, Arnaldo C; Estrada-Baltazar, Alejandro

    2015-01-01

    The environmental profile of milk production in Mexico was analysed for three manure management scenarios: fertilization (F), anaerobic digestion (AD) and enhanced anaerobic digestion (EAD). The study used the life cycle assessment (LCA) technique, considering a 'cradle-to-gate' approach. The assessment model was constructed using SimaPro LCA software, and the life cycle impact assessment was performed according to the ReCiPe method. Dairy farms with AD and EAD scenarios were found to exhibit, respectively, 12% and 27% less greenhouse gas emissions, 58% and 31% less terrestrial acidification, and 3% and 18% less freshwater eutrophication than the F scenario. A different trend was observed in the damage to resource availability indicator, as the F scenario presented 6% and 22% less damage than the EAD and AD scenarios, respectively. The magnitude of environmental damage from milk production in the three dairy manure management scenarios, using a general single score indicator, was 0.118, 0.107 and 0.081 Pt/L of milk for the F, AD and EAD scenarios, respectively. These results indicate that manure management systems with anaerobic digestion can improve the environmental profile of each litre of milk produced.

  3. Evaluating landfill aftercare strategies: A life cycle assessment approach.

    PubMed

    Turner, David A; Beaven, Richard P; Woodman, Nick D

    2017-05-01

    This study investigates the potential impacts caused by the loss of active environmental control measures during the aftercare period of landfill management. A combined mechanistic solute flow model and life cycle assessment (LCA) approach was used to evaluate the potential impacts of leachate emissions over a 10,000year time horizon. A continuum of control loss possibilities occurring at different times and for different durations were investigated for four different basic aftercare scenarios, including a typical aftercare scenario involving a low permeability cap and three accelerated aftercare scenarios involving higher initial infiltration rates. Assuming a 'best case' where control is never lost, the largest potential impacts resulted from the typical aftercare scenario. The maximum difference between potential impacts from the 'best case' and the 'worst case', where control fails at the earliest possible point and is never reinstated, was only a fourfold increase. This highlights potential deficiencies in standard life cycle impact assessment practice, which are discussed. Nevertheless, the results show how the influence of active control loss on the potential impacts of landfilling varies considerably depending on the aftercare strategy used and highlight the importance that leachate treatment efficiencies have upon impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.

  5. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    PubMed Central

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111

  6. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.

    PubMed

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-03

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .

  7. Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle

    NASA Astrophysics Data System (ADS)

    Siddiqui, Osamah; Dincer, Ibrahim

    2017-12-01

    In the present study, a new solar-based multigeneration system integrated with an ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle to produce electricity, hydrogen, cooling and hot water is developed for analysis and performance assessment. In this regard, thermodynamic analyses and modeling through both energy and exergy approaches are employed to assess and evaluate the overall system performance. Various parametric studies are conducted to study the effects of varying system parameters and operating conditions on the energy and exergy efficiencies. The results of this study show that the overall multigeneration system energy efficiency is obtained as 39.1% while the overall system exergy efficiency is calculated as 38.7%, respectively. The performance of this multigeneration system results in an increase of 19.3% in energy efficiency as compared to single generation system. Furthermore, the exergy efficiency of the multigeneration system is 17.8% higher than the single generation system. Moreover, both energy and exergy efficiencies of the solid oxide fuel cell-gas turbine combined cycle are determined as 68.5% and 55.9% respectively.

  8. International Space Station Alpha (ISSA) Integrated Traffic Model

    NASA Technical Reports Server (NTRS)

    Gates, Robert E.

    1994-01-01

    The paper discusses the development process of the International Space Station Alpha (ISSA) Integrated Traffic Model which is a subsystem analyses tool utilized in the ISSA design analysis cycles. Fast-track prototyping of the detailed relationships between daily crew and station consumables, propellant needs, maintenance requirements, and crew rotation via spread sheets provides adequate bench marks to assess cargo vehicle design and performance characteristics.

  9. Development and application of EEAST: a life cycle based model for use of harvested rainwater and composting toilets in buildings.

    PubMed

    Devkota, J; Schlachter, H; Anand, C; Phillips, R; Apul, Defne

    2013-11-30

    Harvested rainwater systems and composting toilets are expected to be an important part of sustainable solutions in buildings. Yet, to this date, a model evaluating their economic and environmental impact has been missing. To address this need, a life cycle based model, EEAST was developed. EEAST was designed to compare the business as usual (BAU) case of using potable water for toilet flushing and irrigation to alternative scenarios of rainwater harvesting and composting toilet based technologies. In EEAST, building characteristics, occupancy, and precipitation are used to size the harvested rainwater and composting toilet systems. Then, life cycle costing and life cycle assessment methods are used to estimate cost, energy, and greenhouse gas (GHG) emission payback periods (PPs) for five alternative scenarios. The scenarios modeled include use of harvested rainwater for toilet flushing, for irrigation, or both; and use of composting toilets with or without harvested rainwater use for irrigation. A sample simulation using EEAST showed that for the office building modeled, the cost PPs were greater than energy PPs which in turn were greater than GHG emission PPs. This was primarily due to energy and emission intensive nature of the centralized water and wastewater infrastructure. The sample simulation also suggested that the composting toilets may have the best performance in all criteria. However, EEAST does not explicitly model solids management and as such may give composting toilets an unfair advantage compared to flush based toilets. EEAST results were found to be very sensitive to cost values used in the model. With the availability of EEAST, life cycle cost, energy, and GHG emissions can now be performed fairly easily by building designers and researchers. Future work is recommended to further improve EEAST and evaluate it for different types of buildings and climates so as to better understand when composting toilets and harvested rainwater systems outperform the BAU case in building design. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  11. LIFE CYCLE ASSESSMENT FOR PC BLEND 2 AIRCRAFT RADOME DEPAINTER

    EPA Science Inventory

    This report describes the life cycle assessment on a potential replacement solvent blend for aircraft radome depainting at the Oklahoma City Air Logistics Center at Tinker Air Force Base. The life cycle assessment is composed of three separate but interrelated components: life cy...

  12. EDITORIAL: THE INTERNATIONAL CONFERENCE ON LIFE CYCLE ASSESSMENT

    EPA Science Inventory

    This is a special issue of Journal of Life Cycle Assessment that includes selected papers from the Internatonal Conference and Exhibition on Life Cycle Assessment (InLCA). In April 2000, the EPA, with co-organizer IERE, held the InLCA conferencethat attracted over 265 attendees (...

  13. Economic assessment and energy model scenarios of municipal solid waste incineration and gas turbine hybrid dual-fueled cycles in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udomsri, Seksan, E-mail: seksan.udomsri@energy.kth.s; Martin, Andrew R.; Fransson, Torsten H.

    Finding environmentally benign methods related to sound municipal solid waste (MSW) management is of highest priority in Southeast Asia. It is very important to study new approaches which can reduce waste generation and simultaneously enhance energy recovery. One concrete example of particular significance is the concept of hybrid dual-fuel power plants featuring MSW and another high-quality fuel like natural gas. The hybrid dual-fuel cycles provide significantly higher electrical efficiencies than a composite of separate single-fuel power plant (standalone gas turbine combined cycle and MSW incineration). Although hybrid versions are of great importance for energy conversion from MSW, an economic assessmentmore » of these systems must be addressed for a realistic appraisal of these technologies. This paper aims to further examine an economic assessment and energy model analysis of different conversion technologies. Energy models are developed to further refine the expected potential of MSW incineration with regards to energy recovery and environmental issues. Results show that MSW incineration can play role for greenhouse gas reduction, energy recovery and waste management. In Bangkok, the electric power production via conventional incineration and hybrid power plants can cover 2.5% and 8% of total electricity consumption, respectively. The hybrid power plants have a relative short payback period (5 years) and can further reduce the CO{sub 2} levels by 3% in comparison with current thermal power plants.« less

  14. Chronic sciatic neuropathy in rat reduces voluntary wheel running activity with concurrent chronic mechanical allodynia

    PubMed Central

    Whitehead, RA; Lam, NL; Sun, MS; Sanchez, JJ; Noor, S; Vanderwall, AG; Petersen, TR; Martin, HB

    2016-01-01

    BACKGROUND Animal models of peripheral neuropathy produced by a number of manipulations are assessed for the presence of pathological pain states such as allodynia. While stimulus-induced behavioral assays are frequently used and important to examine allodynia (i.e. sensitivity to light mechanical touch; von Frey fiber test) other measures of behavior that reflect overall function are not only complementary to stimulus-induced responsive measures, but are also critical to gain a complete understanding of the effects of the pain model on quality of life, a clinically relevant aspect of pain on general function. Voluntary wheel running activity in rodent models of inflammatory and muscle pain is emerging as a reliable index of general function that extends beyond stimulus-induced behavioral assays. Clinically, reports of increased pain intensity occur at night, a period typically characterized with reduced activity during the diurnal cycle. We therefore examined in rats whether alterations in wheel running activity were more robust during the inactive phase compared to the active phase of their diurnal cycle in a widely used rodent model of chronic peripheral neuropathic pain, the sciatic nerve chronic constriction injury (CCI) model. METHODS In adult male Sprague Dawley rats, baseline (BL) hindpaw threshold responses to light mechanical touch were assessed using the von Frey test prior to measuring BL activity levels using freely accessible running wheels (1 hr/day for 7 sequential days) to quantify distance traveled. Running wheel activity BL values are expressed as total distance traveled (m). The overall experimental design was: following BL measures, rats underwent either sham or CCI surgery followed by repeated behavioral re-assessment of hindpaw thresholds and wheel running activity levels for up to 18 days after surgery. Specifically, separate groups of rats were assessed for wheel running activity levels (1 hr total/trial) during the onset (within first 2 hrs) of either the (1) inactive (n=8/gp) or (2) active (n = 8/gp) phase of the diurnal cycle. An additional group of CCI-treated rats (n = 8/gp) were exposed to a locked running wheel to control for the potential effects of wheel running exercise on allodynia. The 1-hr running wheel trial period was further examined at discrete 20-min intervals to identify possible pattern differences in activity during the first, middle and last portion of the 1-hr trial. The effect of neuropathy on activity levels were assessed by measuring the change from their respective BLs to distance traveled in the running wheels. RESULTS While wheel running distances between groups were not different at BL from rats examined during either the inactive phase of the diurnal cycle or active phase of the diurnal cycle, sciatic nerve CCI reduced running wheel activity levels compared to sham-operated controls during the inactive phase. Additionally, compared to sham controls, bilateral low threshold mechanical allodynia was observed at all time-points after surgical induction of neuropathy in rats with free-wheel and locked-wheel access. Allodynia in CCI compared to shams was replicated in rats whose running wheel activity was examined during the active phase of the diurnal cycle. Conversely, no significant reduction in wheel running activity was observed in CCI-treated rats compared to sham controls at any timepoint when activity levels were examined during the active diurnal phase. Lastly, running wheel activity patterns within the 1 hr trial period during the inactive phase of the diurnal cycle were relatively consistent throughout each 20 min phase. CONCLUSIONS Compared to non-neuropathic sham controls, a profound and stable reduction of running wheel activity was observed in CCI rats during the inactive phase of the diurnal cycle. A concurrent robust allodynia persisted in all rats regardless of when wheel running activity was examined or whether they ran on wheels, suggesting that acute wheel running activity does not alter chronic low intensity mechanical allodynia as measured using the von Frey fiber test. Overall, these data support that acute wheel running exercise with limited repeated exposures does not itself alter allodynia and offers a behavioral assay complementary to stimulus-induced measures of neuropathic pain. PMID:27782944

  15. Probalistic Assessment of Radiation Risk for Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2008-01-01

    For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.

  16. Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis.

    PubMed

    Li, Hua; Nitivattananon, Vilas; Li, Peng

    2015-05-01

    This study is to quantify and objectively evaluate the extent of environmental health risks from three waste treatment options suggested by the national municipal solid waste management enhancing strategy (No [2011] 9 of the State Council, promulgated on 19 April 2011), which includes sanitary landfill, waste-to-energy incineration and compost, together with the material recovery facility through a case study in Zhangqiu City of China. It addresses potential chronic health risks from air emissions to residential receptors in the impacted area. It combines field survey, analogue survey, design documents and life cycle inventory methods in defining the source strength of chemicals of potential concern. The modelling of life cycle inventory and air dispersion is via integrated waste management(IWM)-2 and Screening Air Dispersion Model (Version 3.0) (SCREEN3). The health risk assessment is in accordance with United States Environmental Protection Agency guidance Risk Assessment Guidance for Superfund (RAGS), Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). The exposure concentration is based on long-term exposure to the maximum ground level contaminant in air under the 'reasonable worst situation' emissions and then directly compared with reference for concentration and unit risk factor/cancer slope factor derived from the national air quality standard (for a conventional pollutant) and toxicological studies (for a specific pollutant). Results from this study suggest that the option of compost with material recovery facility treatment may pose less negative health impacts than other options; the sensitivity analysis shows that the landfill integrated waste management collection rate has a great influence on the impact results. Further investigation is needed to validate or challenge the findings of this study. © The Author(s) 2015.

  17. Integrating risk assessment and life cycle assessment: a case study of insulation.

    PubMed

    Nishioka, Yurika; Levy, Jonathan I; Norris, Gregory A; Wilson, Andrew; Hofstetter, Patrick; Spengler, John D

    2002-10-01

    Increasing residential insulation can decrease energy consumption and provide public health benefits, given changes in emissions from fuel combustion, but also has cost implications and ancillary risks and benefits. Risk assessment or life cycle assessment can be used to calculate the net impacts and determine whether more stringent energy codes or other conservation policies would be warranted, but few analyses have combined the critical elements of both methodologies In this article, we present the first portion of a combined analysis, with the goal of estimating the net public health impacts of increasing residential insulation for new housing from current practice to the latest International Energy Conservation Code (IECC 2000). We model state-by-state residential energy savings and evaluate particulate matter less than 2.5 microm in diameter (PM2.5), NOx, and SO2 emission reductions. We use past dispersion modeling results to estimate reductions in exposure, and we apply concentration-response functions for premature mortality and selected morbidity outcomes using current epidemiological knowledge of effects of PM2.5 (primary and secondary). We find that an insulation policy shift would save 3 x 10(14) British thermal units or BTU (3 x 10(17) J) over a 10-year period, resulting in reduced emissions of 1,000 tons of PM2.5, 30,000 tons of NOx, and 40,000 tons of SO2. These emission reductions yield an estimated 60 fewer fatalities during this period, with the geographic distribution of health benefits differing from the distribution of energy savings because of differences in energy sources, population patterns, and meteorology. We discuss the methodology to be used to integrate life cycle calculations, which can ultimately yield estimates that can be compared with costs to determine the influence of external costs on benefit-cost calculations.

  18. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.

  19. Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2015-04-07

    This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency.

  20. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    PubMed

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  1. 78 FR 43870 - Hydrogen Energy California's Integrated Gasification Combined Cycle Project; Preliminary Staff...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Combined Cycle Project; Preliminary Staff Assessment and Draft Environmental Impact Statement AGENCY... Combined Cycle Project Preliminary Staff Assessment/Draft Environmental Impact Statement (PSA/DEIS) (DOE... Gasification Combined Cycle Project, which would be designed, constructed, and operated by HECA, LLC. HECA's...

  2. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigamonti, L., E-mail: lucia.rigamonti@polimi.it; Falbo, A.; Grosso, M.

    Highlights: • LCA was used for evaluating the performance of four provincial waste management systems. • Milano, Bergamo, Pavia and Mantova (Italy) are the provinces selected for the analysis. • Most of the data used to model the systems are primary. • Significant differences were found among the provinces located in the same Region. • LCA was used as a decision-supporting tool by Regione Lombardia. - Abstract: This paper reports some of the findings of the ‘GERLA’ project: GEstione Rifiuti in Lombardia – Analisi del ciclo di vita (Waste management in Lombardia – Life cycle assessment). The project was devotedmore » to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020.« less

  3. SEAPODYM-LTL: a parsimonious zooplankton dynamic biomass model

    NASA Astrophysics Data System (ADS)

    Conchon, Anna; Lehodey, Patrick; Gehlen, Marion; Titaud, Olivier; Senina, Inna; Séférian, Roland

    2017-04-01

    Mesozooplankton organisms are of critical importance for the understanding of early life history of most fish stocks, as well as the nutrient cycles in the ocean. Ongoing climate change and the need for improved approaches to the management of living marine resources has driven recent advances in zooplankton modelling. The classical modeling approach tends to describe the whole biogeochemical and plankton cycle with increasing complexity. We propose here a different and parsimonious zooplankton dynamic biomass model (SEAPODYM-LTL) that is cost efficient and can be advantageously coupled with primary production estimated either from satellite derived ocean color data or biogeochemical models. In addition, the adjoint code of the model is developed allowing a robust optimization approach for estimating the few parameters of the model. In this study, we run the first optimization experiments using a global database of climatological zooplankton biomass data and we make a comparative analysis to assess the importance of resolution and primary production inputs on model fit to observations. We also compare SEAPODYM-LTL outputs to those produced by a more complex biogeochemical model (PISCES) but sharing the same physical forcings.

  4. Behavioral Concepts in the Analysis of Chronic Pain Syndromes.

    ERIC Educational Resources Information Center

    Keefe, Francis J.; Gil, Karen M.

    1986-01-01

    Reviews behavioral and psychological concepts currently applied to the assessment and treatment of chronic pain syndromes, including operant conditioning and psychophysiologic concepts such as the stress-pain hypothesis, the pain-muscle spasm-pain cycle, and the neuromuscular pain model. Discusses relaxation and biofeedback training and concepts…

  5. Integrating Emergy into LCA: potential added value and lingering obstacles

    EPA Science Inventory

    Emergy attempts to measure the environmental work required to generate (ecosystem) goods and services that can be used by humans. It is claimed that the use of inventory modelling principles behind the Life Cycle Assessment (LCA) method (European Commission, 2010a) may improve th...

  6. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Chandler, David; Ade, Brian J

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the designmore » of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.« less

  7. Dynamic energy budget as a basis to model population-level effects of zinc-spiked sediments in the gastropod Valvata piscinalis.

    PubMed

    Ducrot, Virginie; Péry, Alexandre R R; Mons, Raphaël; Quéau, Hervé; Charles, Sandrine; Garric, Jeanne

    2007-08-01

    This paper presents original toxicity test designs and mathematical models that may be used to assess the deleterious effects of toxicants on Valvata piscinalis (Mollusca, Gastropoda). Results obtained for zinc, used as a reference toxicant, are presented. The feeding behavior, juvenile survival, growth, age at puberty, onset of reproduction, number of breedings during the life cycle, and fecundity were significantly altered when the snails were exposed to zinc-spiked sediments. Dynamic energy budget models (DEBtox) adequately predicted the effects of zinc on the V. piscinalis life cycle. They also provided estimates for lifecycle parameters that were used to parameterize a demographic model, based on a Z-transformed life-cycle graph. The effect threshold for the population growth rate (lambda) was estimated at 259 mg/kg dry sediment of zinc, showing that significant changes in abundance may occur at environmental concentrations. Significant effects occurring just above this threshold value were mainly caused by the severe impairment of reproductive endpoints. Sensitivity analysis showed that the value of lambda depended mainly on the juvenile survival rate. The impairment of this latter parameter may result in extinction of V. piscinalis. Finally, the present study highlights advantages of the proposed modeling approach in V. piscinalis and possible transfer to other test species and contaminants.

  8. Geographical scenario uncertainty in generic fate and exposure factors of toxic pollutants for life-cycle impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huijbregts, Mark A.J.; Lundi, Sven; McKone, Thomas E.

    In environmental life-cycle assessments (LCA), fate and exposure factors account for the general fate and exposure properties of chemicals under generic environmental conditions by means of 'evaluative' multi-media fate and exposure box models. To assess the effect of using different generic environmental conditions, fate and exposure factors of chemicals emitted under typical conditions of (1) Western Europe, (2) Australia and (3) the United States of America were compared with the multi-media fate and exposure box model USES-LCA. Comparing the results of the three evaluative environments, it was found that the uncertainty in fate and exposure factors for ecosystems and humansmore » due to choice of an evaluative environment, as represented by the ratio of the 97.5th and 50th percentile, is between a factor 2 and 10. Particularly, fate and exposure factors of emissions causing effects in fresh water ecosystems and effects on human health have relatively high uncertainty. This uncertainty i s mainly caused by the continental difference in the average soil erosion rate, the dimensions of the fresh water and agricultural soil compartment, and the fraction of drinking water coming from ground water.« less

  9. Assessment of Life Cycle Information Exchanges (LCie): Understanding the Value-Added Benefit of a COBie Process

    DTIC Science & Technology

    2013-10-01

    exchange (COBie), Building Information Modeling ( BIM ), value-added analysis, business processes, project management 16. SECURITY CLASSIFICATION OF: 17...equipment. The innovative aspect of Building In- formation Modeling ( BIM ) is that it creates a computable building descrip- tion. The ability to use a...interoperability. In order for the building information to be interoperable, it must also con- form to a common data model , or schema, that defines the class

  10. Assessment of cell death mechanisms triggered by 177Lu-anti-CD20 in lymphoma cells.

    PubMed

    Azorín-Vega, E; Rojas-Calderón, E; Martínez-Ventura, B; Ramos-Bernal, J; Serrano-Espinoza, L; Jiménez-Mancilla, N; Ordaz-Rosado, D; Ferro-Flores, G

    2018-08-01

    The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with 177 Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interannual and low-frequency variability of Upper Indus Basin winter/spring precipitation in observations and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Greene, Arthur M.; Robertson, Andrew W.

    2017-12-01

    An assessment is made of the ability of general circulation models in the CMIP5 ensemble to reproduce observed modes of low-frequency winter/spring precipitation variability in the region of the Upper Indus basin (UIB) in south-central Asia. This season accounts for about two thirds of annual precipitation totals in the UIB and is characterized by "western disturbances" propagating along the eastward extension of the Mediterranean storm track. Observational data are utilized for for spatiotemporal characterization of the precipitation seasonal cycle, to compute seasonalized spectra and finally, to examine teleconnections, in terms of large-scale patterns in sea-surface temperature (SST) and atmospheric circulation. Annual and lowpassed variations are found to be associated primarily with SST modes in the tropical and extratropical Pacific. A more obscure link to North Atlantic SST, possibly related to the North Atlantic Oscillation, is also noted. An ensemble of 31 CMIP5 models is then similarly assessed, using unforced preindustrial multi-century control runs. Of these models, eight are found to reproduce well the two leading modes of the observed seasonal cycle. This model subset is then assessed in the spectral domain and with respect to teleconnection patterns, where a range of behaviors is noted. Two model families each account for three members of this subset. The degree of within-family similarity in behavior is shown to reflect underlying model differences. The results provide estimates of unforced regional hydroclimate variability over the UIB on interannual and decadal scales and the corresponding far-field influences, and are of potential relevance for the estimation of uncertainties in future water availability.

  12. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model.

    PubMed

    Birgisdóttir, H; Bhander, G; Hauschild, M Z; Christensen, T H

    2007-01-01

    Two disposal methods for MSWI bottom ash were assessed in a new life cycle assessment (LCA) model for road construction and disposal of residues. The two scenarios evaluated in the model were: (i) landfilling of bottom ash in a coastal landfill in Denmark and (ii) recycling of bottom ash as subbase layer in an asphalted secondary road. The LCA included resource and energy consumption, and emissions associated with upgrading of bottom ash, transport, landfilling processes, incorporation of bottom ash in road, substitution of natural gravel as road construction material and leaching of heavy metals and salts from bottom ash in road as well as in landfill. Environmental impacts associated with emissions to air, fresh surface water, marine surface water, groundwater and soil were aggregated into 12 environmental impact categories: Global Warming, Photochemical Ozone Formation, Nutrient Enrichment, Acidification, Stratospheric Ozone Depletion, Human Toxicity via air/water/soil, Ecotoxicity in water/soil, and a new impact category, Stored Ecotoxicity to water/soil that accounts for the presence of heavy metals and very persistent organic compounds that in the long-term might leach. Leaching of heavy metals and salts from bottom ash was estimated from a series of laboratory leaching tests. For both scenarios, Ecotoxicity(water) was, when evaluated for the first 100 yr, the most important among the twelve impact categories involved in the assessment. Human Toxicity(soil) was also important, especially for the Road scenario. When the long-term leaching of heavy metals from bottom ash was evaluated, based on the total content of heavy metals in bottom ash, all impact categories became negligible compared to the potential Stored Ecotoxicity, which was two orders of magnitudes greater than Ecotoxicity(water). Copper was the constituent that gave the strongest contributions to the ecotoxicities. The most important resources consumed were clay as liner in landfill and the groundwater resource which was potentially spoiled due to leaching of salts from bottom ash in road. The difference in environmental impacts between landfilling and utilization of bottom ash in road was marginal when these alternatives were assessed in a life cycle perspective.

  13. LCIA framework and cross-cutting issues guidance within the UNEP/SETAC Life Cycle Initiative

    EPA Science Inventory

    Increasing needs for decision support and advances in scientific knowledge within life cycle assessment (LCA) led to substantial efforts to provide global guidance on environmental life cycle impact assessment (LCIA) indicators under the auspices of the UNEP-SETAC Life Cycle Init...

  14. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].

    PubMed

    Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin

    2015-03-01

    Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was the main process leading to the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Marine Aquatic Ecotoxicity Potential, Freshwater Aquatic Ecotoxicity Potential, Human Toxicity Potential. While for Hyundai ICEV, gasoline production and tailpipe emission were the primary sources of environmental impact in the use phase. Tailpipe emission was a significant cause for increase in Eutrophication Potential and Global Warming Potential, and so forth. On the basis of inventory data analysis and 2010 Beijing electricity mix, the comparative results of haze-induced pollutants emissions showed that the full life cycle emissions of PM2.5, NO(x), SO(x), VOCs of Midi EV were higher than those of Hyundai ICEV, but the emission of NH3 was lower than that of Hyundai ICEV. Different emissions in use phase were the chief reason leading to this trend. In addition, by sensitivity analysis the results indicated that with the increase of lifetime mileage and proportion of cleaning energy, the rate of GHG( Green House Gas) emission reduction per kilometer of Midi EV became higher with respect to Hyundai ICEV. Haze-induced pollutants emission from EV could be significantly reduced using cleaner power energy. According to the assessment results, some management strategies aiming at electric car promotion were proposed.

  15. Nitrogen and Phosphorus Plant Uptake During Periods with no Photosynthesis Accounts for About Half of Global Annual Uptake

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2017-12-01

    Uncertainties in current Earth System Model (ESM) predictions of terrestrial carbon-climate feedbacks over the 21st century are as large as, or larger than, any other reported natural system uncertainties. Soil Organic Matter (SOM) decomposition and photosynthesis, the dominant fluxes in this regard, are tightly linked through nutrient availability, and the recent Coupled Model Inter-comparison Project 5 (CMIP5) used for climate change assessment had no credible representations of these constraints. In response, many ESM land models (ESMLMs) have developed dynamic and coupled soil and plant nutrient cycles. Here we quantify terrestrial carbon cycle impacts from well-known observed plant nutrient uptake mechanisms ignored in most current ESMLMs. In particular, we estimate the global role of plant root nutrient competition with microbes and abiotic process at night and during the non-growing season using the ACME land model (ALMv1-ECA-CNP) that explicitly represents these dynamics. We first demonstrate that short-term nutrient uptake dynamics and competition between plants and microbes are accurately predicted by the model compared to 15N and 33P isotopic tracer measurements from more than 20 sites. We then show that global nighttime and non-growing season nitrogen and phosphorus uptake accounts for 46 and 45%, respectively, of annual uptake, with large latitudinal variation. Model experiments show that ignoring these plant uptake periods leads to large positive biases in annual N leaching (globally 58%) and N2O emissions (globally 68%). Biases these large will affect modeled carbon cycle dynamics over time, and lead to predictions of ecosystems that have overly open nutrient cycles and therefore lower capacity to sequester carbon.

  16. The Effects of Climate Sensitivity and Carbon Cycle Interactions on Mitigation Policy Stringency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Katherine V.; Bond-Lamberty, Benjamin; Edmonds, James A.

    2015-07-01

    Climate sensitivity and climate-carbon cycle feedbacks interact to determine how global carbon and energy cycles will change in the future. While the science of these connections is well documented, their economic implications are not well understood. Here we examine the effect of climate change on the carbon cycle, the uncertainty in climate outcomes inherent in any given policy target, and the economic implications. We examine three policy scenarios—a no policy “Reference” (REF) scenario, and two policies that limit total radiative forcing—with four climate sensitivities using a coupled integrated assessment model. Like previous work, we find that, within a given scenario,more » there is a wide range of temperature change and sea level rise depending on the realized climate sensitivity. We expand on this previous work to show that temperature-related feedbacks on the carbon cycle result in more mitigation required as climate sensitivity increases. Thus, achieving a particular radiative forcing target becomes increasingly expensive as climate sensitivity increases.« less

  17. Life Cycle Cost Analysis of Shuttle-Derived Launch Vehicles, Volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The design, performance, and programmatic definition of shuttle derived launch vehicles (SDLV) established by two different contractors were assessed and the relative life cycle costs of space transportation systems using the shuttle alone were compared with costs for a mix of shuttles and SDLV's. The ground rules and assumptions used in the evaluation are summarized and the work breakdown structure is included. Approaches used in deriving SDLV costs, including calibration factors and historical data are described. Both SDLV cost estimates and SDLV/STS cost comparisons are summarized. Standard formats are used to report comprehensive SDLV life cycle estimates. Hardware cost estimates (below subsystem level) obtained using the RCA PRICE 84 cost model are included along with other supporting data.

  18. Solar prediction analysis

    NASA Technical Reports Server (NTRS)

    Smith, Jesse B.

    1992-01-01

    Solar Activity prediction is essential to definition of orbital design and operational environments for space flight. This task provides the necessary research to better understand solar predictions being generated by the solar community and to develop improved solar prediction models. The contractor shall provide the necessary manpower and facilities to perform the following tasks: (1) review, evaluate, and assess the time evolution of the solar cycle to provide probable limits of solar cycle behavior near maximum end during the decline of solar cycle 22, and the forecasts being provided by the solar community and the techniques being used to generate these forecasts; and (2) develop and refine prediction techniques for short-term solar behavior flare prediction within solar active regions, with special emphasis on the correlation of magnetic shear with flare occurrence.

  19. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    EPA Science Inventory

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  20. 7 CFR 3560.65 - Reserve account.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-year period. The reserve account analysis is based on either a Capital Needs Assessment or life cycle... Assessment or as part of the original life cycle cost analysis. The cost of conducting either a Capital Needs... Needs Assessment or life cycle cost analysis may be included in the loan financing. (b) For ownership...

  1. 7 CFR 3560.65 - Reserve account.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-year period. The reserve account analysis is based on either a Capital Needs Assessment or life cycle... Assessment or as part of the original life cycle cost analysis. The cost of conducting either a Capital Needs... Needs Assessment or life cycle cost analysis may be included in the loan financing. (b) For ownership...

  2. USEtox - The UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenbaum, Ralph K.; Bachmann, Till M.; Swirsky Gold, Lois

    2008-02-03

    Background, Aim and Scope. In 2005 a comprehensive comparison of LCIA toxicity characterisation models was initiated by the UNEP-SETAC Life Cycle Initiative, directly involving the model developers of CalTOX, IMPACT 2002, USES-LCA, BETR, EDIP, WATSON, and EcoSense. In this paper we describe this model-comparison process and its results--in particular the scientific consensus model developed by the model developers. The main objectives of this effort were (i) to identify specific sources of differences between the models' results and structure, (ii) to detect the indispensable model components, and (iii) to build a scientific consensus model from them, representing recommended practice. Methods. Amore » chemical test set of 45 organics covering a wide range of property combinations was selected for this purpose. All models used this set. In three workshops, the model comparison participants identified key fate, exposure and effect issues via comparison of the final characterisation factors and selected intermediate outputs for fate, human exposure and toxic effects for the test set applied to all models. Results. Through this process, we were able to reduce inter-model variation from an initial range of up to 13 orders of magnitude down to no more than 2 orders of magnitude for any substance. This led to the development of USEtox, a scientific consensus model that contains only the most influential model elements. These were, for example, process formulations accounting for intermittent rain, defining a closed or open system environment, or nesting an urban box in a continental box. Discussion. The precision of the new characterisation factors (CFs) is within a factor of 100-1000 for human health and 10-100 for freshwater ecotoxicity of all other models compared to 12 orders of magnitude variation between the CFs of each model respectively. The achieved reduction of inter-model variability by up to 11 orders of magnitude is a significant improvement.Conclusions. USEtox provides a parsimonious and transparent tool for human health and ecosystem CF estimates. Based on a referenced database, it has now been used to calculate CFs for several thousand substances and forms the basis of the recommendations from UNEP-SETAC's Life Cycle Initiative regarding characterization of toxic impacts in Life Cycle Assessment. Recommendations and Perspectives. We provide both recommended and interim (not recommended and to be used with caution) characterisation factors for human health and freshwater ecotoxicity impacts. After a process of consensus building among stakeholders on a broad scale as well as several improvements regarding a wider and easier applicability of the model, USEtox will become available to practitioners for the calculation of further CFs.« less

  3. Impact of climate change on the water cycle of agricultural landscapes in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Witte, Irene; Ingwersen, Joachim; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    For agricultural production and life in general, water is a necessity. To ensure food and drinking water security in the future an understanding of the impact of climate change on the water cycle is indispensable. The objective of this PhD research is to assess how higher temperatures, higher atmospheric CO2 concentration and changing precipitation patterns will alter the water cycle of agricultural landscapes in Southwest Germany. As representative key characteristics data evaluation will focus on water use efficiency (WUE) and groundwater recharge. The main research question is whether the positive effect of elevated atmospheric CO2 on WUE will be overcompensated by a decrease in net primary production due to warming and to altered seasonal water availability caused by higher rainfall variability. Elevated atmospheric CO2 stimulates plant growth and improves WUE, whereas higher temperatures are expected to reduce net primary production and groundwater recharge. Another research question referring to groundwater recharge is whether groundwater recharge will increase in winter and decrease in summer in Southwest Germany. Changed groundwater recharge directly affects drinking water supply and is an indicator for possible temporary water shortages in agricultural production. A multi-model ensemble composed of 16 combinations of four crop growth models, two water regime models and two nitrogen models will be calibrated and validated against sets of field data. Field data will be provided by FOR 1965 from 2009-2015 for the Kraichgau region and the Swabian Alb, two contrasting areas with regard to climate and agricultural intensity. By using a multi model ensemble uncertainties in predictions due to different model structures (epistemic uncertainty) can be quantified. The uncertainty related to the randomness of inputs and parameters, the so-called aleatory uncertainty, will be additionally assessed for each of the 16 models. Hence, a more reliable range of future scenarios can be derived and supports to develop practicable mitigation strategies.

  4. Modeling greenhouse gas emissions from dairy farms.

    PubMed

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  5. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less

  6. Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale

    NASA Astrophysics Data System (ADS)

    Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-08-01

    This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.

  7. Key metrics for HFIR HEU and LEU models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Betzler, Benjamin R.; Chandler, David

    This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less

  8. Feedbacks between climate change and biosphere integrity

    NASA Astrophysics Data System (ADS)

    Lade, Steven; Anderies, J. Marty; Donges, Jonathan; Steffen, Will; Rockström, Johan; Richardson, Katherine; Cornell, Sarah; Norberg, Jon; Fetzer, Ingo

    2017-04-01

    The terrestrial and marine biospheres sink substantial fractions of human fossil fuel emissions. How the biosphere's capacity to sink carbon depends on biodiversity and other measures of biosphere integrity is however poorly understood. Here, we (1): review assumptions from literature regarding the relationships between the carbon cycle and the terrestrial and marine biospheres; and (2) explore the consequences of these different assumptions for climate feedbacks using the stylised carbon cycle model PB-INT. We find that: terrestrial biodiversity loss could significantly dampen climate-carbon cycle feedbacks; direct biodiversity effects, if they exist, could rival temperature increases from low-emission trajectories; and the response of the marine biosphere is critical for longer term climate change. Simple, low-dimensional climate models such as PB-INT can help assess the importance of still unknown or controversial earth system processes such as biodiversity loss for climate feedbacks. This study constitutes the first detailed study of the interactions between climate change and biosphere integrity, two of the 'planetary boundaries'.

  9. Ischaemic heart disease mortality and the business cycle in Australia.

    PubMed Central

    Bunn, A R

    1979-01-01

    Trends in Australian heart disease mortality were assessed for association with the business cycle. Correlation models of mortality and unemployment series were used to test for association. An indicator series of "national stress" was developed. The three series were analyzed in path models to quantify the links between unemployment, national stress, and heart disease. Ischemic heart disease (IHD) mortality and national stress were found to follow the business cycle. The two periods of accelerating IHD mortality coincided with economic recession. The proposed "wave hypothesis" links the trend in IHD mortality to the high unemployment of severe recession. The mortality trend describes a typical epidemic parabolic path from the Great Depression to 1975, with a smaller parabolic trend at the 1961 recession. These findings appear consistent with the hypothesis that heart disease is, to some degree, a point source epidemic arising with periods of severe economic recession. Forecasts under the hypothesis indicate a turning point in the mortality trend between 1976 and 1978. (Am J Public Health 69:772-781, 1979). PMID:453409

  10. Advanced ceramic coating development for industrial/utility gas turbine applications

    NASA Technical Reports Server (NTRS)

    Andersson, C. A.; Lau, S. K.; Bratton, R. J.; Lee, S. Y.; Rieke, K. L.; Allen, J.; Munson, K. E.

    1982-01-01

    The effects of ceramic coatings on the lifetimes of metal turbine components and on the performance of a utility turbine, as well as of the turbine operational cycle on the ceramic coatings were determined. When operating the turbine under conditions of constant cooling flow, the first row blades run 55K cooler, and as a result, have 10 times the creep rupture life, 10 times the low cycle fatigue life and twice the corrosion life with only slight decreases in both specific power and efficiency. When operating the turbine at constant metal temperature and reduced cooling flow, both specific power and efficiency increases, with no change in component lifetime. The most severe thermal transient of the turbine causes the coating bond stresses to approach 60% of the bond strengths. Ceramic coating failures was studied. Analytic models based on fracture mechanics theories, combined with measured properties quantitatively assessed both single and multiple thermal cycle failures which allowed the prediction of coating lifetime. Qualitative models for corrosion failures are also presented.

  11. Assisted reproductive technology (ART) cumulative live birth rates following preimplantation genetic diagnosis for aneuploidy (PGD-A) or morphological assessment of embryos: A cohort analysis.

    PubMed

    Lee, Evelyn; Chambers, Georgina Mary; Hale, Lyndon; Illingworth, Peter; Wilton, Leeanda

    2017-12-27

    Preimplantation genetic diagnosis for aneuploidy (PGD-A) for all 24 chromosomes improves implantation and clinical pregnancy rates per single assisted reproductive technology (ART) cycle. However, there is limited data on the live-birth rate of PGD-A over repeated cycles. To assess the cumulative live-birth rates (CLBR) of PGD-A compared with morphological assessment of embryos of up to three 'complete ART cycles' (fresh plus frozen/thaw cycles) in women aged 37 years or older. A retrospective cohort study of ART treatments undertaken by ART-naïve women at a large Australian fertility clinic between 2011 and 2014. Cohorts were assigned based on the embryo selection method used in their first fresh cycle [PGD-A, n = 110 women (PGD-A group); morphological assessment of embryos, n = 1983 women (control group)]. CLBR, time to clinical pregnancy and cycles needed to achieve a live birth were measured over multiple cycles. Compared to the control group, the PGD-A group achieved a higher per cycle live-birth rate (14.47% vs 9.12%, P < 0.01), took a shorter mean time to reach a clinical pregnancy leading to a live-birth (104.8 days vs 140.6 days, P < 0.05) and required fewer cycles to achieve a live-birth (6.91 cycles vs 10.96 cycles, P < 0.01). However, after three 'complete ART cycles', the CLBR was comparable for the two groups (30.90% vs 26.77%, P = 0.34). This is the first study to assess the effectiveness of PGD-A over multiple ART cycles. These real-world findings suggest that PGD-A leads to better outcomes than using morphological assessment alone in women of advanced maternal age. © 2017 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  12. The OPTIMIST study: optimisation of cost effectiveness through individualised FSH stimulation dosages for IVF treatment. A randomised controlled trial.

    PubMed

    van Tilborg, Theodora C; Eijkemans, Marinus J C; Laven, Joop S E; Koks, Carolien A M; de Bruin, Jan Peter; Scheffer, Gabrielle J; van Golde, Ron J T; Fleischer, Kathrin; Hoek, Annemieke; Nap, Annemiek W; Kuchenbecker, Walter K H; Manger, Petra A; Brinkhuis, Egbert A; van Heusden, Arne M; Sluijmer, Alexander V; Verhoeff, Arie; van Hooff, Marcel H A; Friederich, Jaap; Smeenk, Jesper M J; Kwee, Janet; Verhoeve, Harold R; Lambalk, Cornelis B; Helmerhorst, Frans M; van der Veen, Fulco; Mol, Ben Willem J; Torrance, Helen L; Broekmans, Frank J M

    2012-09-18

    Costs of in vitro fertilisation (IVF) are high, which is partly due to the use of follicle stimulating hormone (FSH). FSH is usually administered in a standard dose. However, due to differences in ovarian reserve between women, ovarian response also differs with potential negative consequences on pregnancy rates. A Markov decision-analytic model showed that FSH dose individualisation according to ovarian reserve is likely to be cost-effective in women who are eligible for IVF. However, this has never been confirmed in a large randomised controlled trial (RCT). The aim of the present study is to assess whether an individualised FSH dose regime based on an ovarian reserve test (ORT) is more cost-effective than a standard dose regime. Multicentre RCT in subfertile women indicated for a first IVF or intracytoplasmic sperm injection cycle, who are aged < 44 years, have a regular menstrual cycle and no major abnormalities at transvaginal sonography. Women with polycystic ovary syndrome, endocrine or metabolic abnormalities and women undergoing IVF with oocyte donation, will not be included. Ovarian reserve will be assessed by measuring the antral follicle count. Women with a predicted poor response or hyperresponse will be randomised for a standard versus an individualised FSH regime (150 IU/day, 225-450 IU/day and 100 IU/day, respectively). Participants will undergo a maximum of three stimulation cycles during maximally 18 months. The primary study outcome is the cumulative ongoing pregnancy rate resulting in live birth achieved within 18 months after randomisation. Secondary outcomes are parameters for ovarian response, multiple pregnancies, number of cycles needed per live birth, total IU of FSH per stimulation cycle, and costs. All data will be analysed according to the intention-to-treat principle. Cost-effectiveness analysis will be performed to assess whether the health and associated economic benefits of individualised treatment of subfertile women outweigh the additional costs of an ORT. The results of this study will be integrated into a decision model that compares cost-effectiveness of the three dose-adjustment strategies to a standard dose strategy. The study outcomes will provide scientific foundation for national and international guidelines. NTR2657.

  13. Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model

    DOE PAGES

    Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...

    2015-07-01

    In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less

  14. Improving Learners' Ability to Recognize Emergence with Embedded Assessment in a Virtual Watershed

    ERIC Educational Resources Information Center

    Erlandson, Benjamin E.

    2014-01-01

    Measures of participants' water cycle knowledge and ability to recognize emergence were taken at various points throughout a 2-h experience with the Cloverdale virtual watershed socioecological simulation. Multilevel growth models were estimated for analysis of hypothesized predictive relationships between measured variables. Significant…

  15. Computational Modeling and Simulation of Developmental Toxicity: what can we learn from a virtual embryo? (RIVM, Brussels)

    EPA Science Inventory

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional ...

  16. Population-level Experiments for Population-level Risk Assessment: An Example Using the Opposum Shrimp Americamysis bahia (NACSETAC)

    EPA Science Inventory

    Most observations of stressor effects on marine crustaceans are made on individuals or even-aged cohorts. Results of these studies are difficult to translate into ecological predictions, either because life cycle models are incomplete, or because stressor effects on mixed age po...

  17. Carbon footprint and ammonia emissions of California beef production systems

    USDA-ARS?s Scientific Manuscript database

    Beef production is a recognized source of greenhouse gas (GHG) and ammonia (NH3) emissions; however, little information exists on the net emissions from beef production systems. A partial life cycle assessment (LCA) was conducted using the Integrated Farm System Model (IFSM) to estimate GHG and NH3 ...

  18. COMPARISON OF CHEMICAL SCREENING AND RANKING APPROACHES: THE WASTE MINIMIZATION PRIORITIZATION TOOL VERSUS TOXIC EQUIVALENCY POTENTIALS

    EPA Science Inventory

    Chemical screening in the United States is often conducted using scoring and ranking methodologies. Linked models accounting for chemical fate, exposure, and toxicological effects are generally preferred in Europe and in product Life Cycle Assessment. For the first time, a compar...

  19. Assessing the Effect of Honeypots on Cyber-Attackers

    DTIC Science & Technology

    2006-12-01

    provide a process for modeling threats and decision cycles. The third to fifth sections provide the history and overview of honeypots and anti-honeypot...XP Professional with SP2 Data Capture (SUSE Linux 10) Primary Goal Store Snort Data Storage PostgreSQL 8.1.1 Fake Self-contained Honeynet (SUSE

  20. Damage assessment, characterization, and modeling for enhanced design of concrete bridge decks in cold regions : [project brief].

    DOT National Transportation Integrated Search

    2015-07-01

    Freeze-thaw and fatigue-type loading processes degrade concrete materials and reduce the load carrying capacity of concrete decks. Damage to concrete decks is caused by the formation of cracks and micro-cracks during fatigue and freeze-thaw cycles. T...

Top