Sample records for cycle block revealed

  1. Lis1 regulates dynein by sterically blocking its mechanochemical cycle

    PubMed Central

    Toropova, Katerina; Zou, Sirui; Roberts, Anthony J; Redwine, William B; Goodman, Brian S; Reck-Peterson, Samara L; Leschziner, Andres E

    2014-01-01

    Regulation of cytoplasmic dynein's motor activity is essential for diverse eukaryotic functions, including cell division, intracellular transport, and brain development. The dynein regulator Lis1 is known to keep dynein bound to microtubules; however, how this is accomplished mechanistically remains unknown. We have used three-dimensional electron microscopy, single-molecule imaging, biochemistry, and in vivo assays to help establish this mechanism. The three-dimensional structure of the dynein–Lis1 complex shows that binding of Lis1 to dynein's AAA+ ring sterically prevents dynein's main mechanical element, the ‘linker’, from completing its normal conformational cycle. Single-molecule experiments show that eliminating this block by shortening the linker to a point where it can physically bypass Lis1 renders single dynein motors insensitive to regulation by Lis1. Our data reveal that Lis1 keeps dynein in a persistent microtubule-bound state by directly blocking the progression of its mechanochemical cycle. DOI: http://dx.doi.org/10.7554/eLife.03372.001 PMID:25380312

  2. Inhibitor effects during the cell cycle in Chlamydomonas reinhardtii. Determination of transition points in asynchronous cultures

    PubMed Central

    1975-01-01

    A wide variety of inhibitors (drugs, antibiotics, and antimetabolites) will block cell division within an ongoing cell cycle in autotrophic cultures of Chlamydomonas reinhardtii. To determine when during the cell cycle a given inhibitor is effective in preventing cell division, a technique is described which does not rely on the use of synchronous cultures. The technique permits the measurement of transition points, the cell cycle stage at which the subsequent cell division becomes insensitive to the effects of an inhibitor. A map of transition points in the cell cycle reveals that they are grouped into two broad periods, the second and fourth quarters. In general, inhibitors which block organellar DNA, RNA, and protein synthesis have second-quarter transition points, while those which inhibit nuclear cytoplasmic macromolecular synthesis have fourth-quarter transition points. The specific grouping of these transition points into two periods suggests that the synthesis of organellar components is completed midway through the cell cycle and that the synthesis of nonorganellar components required for cell division is not completed until late in the cell cycle. PMID:1176526

  3. Cocaine Shifts the Estrus Cycle Out of Phase and Caffeine Restores It

    PubMed Central

    Malave, Lauren B.

    2014-01-01

    Background: Sex differences in cocaine abuse are well established. Females have a higher sensitivity and thus higher vulnerability to cocaine abuse compared to males. There are many studies showing that sensitivity to cocaine reward varies during the estrus cycle. Methods: Vaginal smears were examined through a DIFF staining kit and viewed through a microscope to determine the estrus cycle stage. Smears were taken immediately before and after cocaine and/or caffeine injections. Furthermore, we suggest a new tool to analyze the estrus cycle by using electrical resistance of the vaginal mucosa. Results: In the present study, we discovered that cocaine directly induced changes in the estrus cycle. Interestingly, caffeine did not affect the estrus cycle and nor did the combination of cocaine and caffeine. We observed that caffeine blocked the cocaine-induced estrus cycle changes using conventional exfoliate cytology. Therefore, caffeine may have neuroprotective properties on the changes induced by cocaine. Conclusion: These phase changes in the estrus cycle may be the underlying cause of sex differences in cocaine addiction that can be blocked by caffeine. Thus, we propose a valuable insight into sex differences in cocaine abuse and reveal a possible treatment with antagonizing the adenosine system. PMID:25538863

  4. Early and late arrhythmogenic effects of doxorubicin.

    PubMed

    Kilickap, Saadettin; Barista, Ibrahim; Akgul, Ebru; Aytemir, Kudret; Aksoy, Sercan; Tekuzman, Gulten

    2007-03-01

    To determine the incidence of early and late arrhythmogenic effects of doxorubicin-containing chemotherapy regimens. A prospective study including 29 patients who were treated with doxorubicin-containing regimens. Cardiac evaluation was based on 24-hour electrocardiographic monitorization (Holter), which was performed during the first cycle of doxorubicin-containing regimens, as well as after the last cycle of chemotherapy. The mean age of the patients was 45.8 +/- 15.1 (range 18-69). Holter records obtained during the first cycle of treatment revealed varying arrhythmias in 19 patients (65.5%) and in 18 (62.1%) patients after completion of therapy. One patient presented with syncope and both Mobitz Type 2 atrioventricular block and complete atrioventricular block were demonstrated. The patient subsequently underwent permanent pacemaker implantation. Doxorubicin may result in arrhythmias both in early and late periods of treatment. These arrhythmias are rarely life threatening.

  5. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1 {yields} S transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay

    2011-07-01

    Highlights: {yields} TCP4 is a class II TCP transcription factor, that represses cell division in Arabidopsis. {yields} TCP4 expression in yeast retards cell division by blocking G1 {yields} S transition. {yields} Genome-wide expression studies and Western analysis reveals stabilization of cell cycle inhibitor Sic1, as possible mechanism. -- Abstract: The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, theirmore » exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1 {yields} S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1 {yields} S arrest is discussed.« less

  6. [Analysis of natural diversity of symbiotic relationships in the Paramecium bursaria--Holospora curviuscula system].

    PubMed

    Skoblo, I I; Makarov, S V; Osipov, D V

    2001-01-01

    Bacteria of the genus Holospora belong to obligatory endonucleobionts of ciliates of the genus Paramecium. The bacteria show specificity towards the particular host species and the types of nuclei they infect: macro- or micronuclei. During a long-term screening of P. bursaria clones, belonging to three different syngens, Holospora inhibited cells of two syngens only. Using the number of host clones and symbiont isolates, it was shown that H. curviuscula was unable to pass successfully through the syngen barrier even under experimental infection. Considering the species level of specificity in Holospora associations of P. caudatum we suggest the existence of a greater evolutionary divergence in P. bursaria syngens than in syngens of P. caudatum. We have revealed that in incompatible combinations "host clone--symbionts isolate" the complicated bacterial life cycle may be blocked at definite stages depending on genetic features of both partners. Thus, the recognition of the full block spectrum could break the continuous infection process down to independently controlled steps. The block spectrum revealed in the system of P. bursaria--H. curviuscula demonstrates its significant similarity to block spectra of other systems within the Holospora--Paramecium complex. A block of transverse binding formation has been first revealed in Holospora dividing in the nucleus.

  7. Synthesis of Diblock copolymer poly-3-hydroxybutyrate -block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidation weakened Pseudomonas putida KT2442.

    PubMed

    Tripathi, Lakshmi; Wu, Lin-Ping; Chen, Jinchun; Chen, Guo-Qiang

    2012-04-05

    Block polyhydroxyalkanoates (PHA) were reported to be resistant against polymer aging that negatively affects polymer properties. Recently, more and more attempts have been directed to make PHA block copolymers. Diblock copolymers PHB-b-PHHx consisting of poly-3-hydroxybutyrate (PHB) block covalently bonded with poly-3-hydroxyhexanoate (PHHx) block were for the first time produced successfully by a recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. The chloroform extracted polymers were characterized by nuclear magnetic resonance (NMR), thermo- and mechanical analysis. NMR confirmed the existence of diblock copolymers consisting of 58 mol% PHB as the short chain length block with 42 mol% PHHx as the medium chain length block. The block copolymers had two glass transition temperatures (Tg) at 2.7°C and -16.4°C, one melting temperature (Tm) at 172.1°C and one cool crystallization temperature (Tc) at 69.1°C as revealed by differential scanning calorimetry (DSC), respectively. This is the first microbial short-chain-length (scl) and medium-chain-length (mcl) PHA block copolymer reported. It is possible to produce PHA block copolymers of various kinds using the recombinant Pseudomonas putida KT2442 with its β-oxidation cycle deleted to its maximum. In comparison to a random copolymer poly-3-hydroxybutyrate-co-3-hydroxyhexanoate (P(HB-co-HHx)) and a blend sample of PHB and PHHx, the PHB-b-PHHx showed improved structural related mechanical properties.

  8. Interferon-induced Sus scrofa Mx1 blocks endocytic traffic of incoming influenza A virus particles.

    PubMed

    Palm, Mélanie; Garigliany, Mutien-Marie; Cornet, François; Desmecht, Daniel

    2010-01-01

    The interferon-induced Mx proteins of vertebrates are dynamin-like GTPases, some isoforms of which can additionally inhibit the life cycle of certain RNA viruses. Here we show that the porcine Mx1 protein (poMx1) inhibits replication of influenza A virus and we attempt to identify the step at which the viral life cycle is blocked. In infected cells expressing poMx1, the level of transcripts encoding the viral nucleoprotein is significantly lower than normal, even when secondary transcription is prevented by exposure to cycloheximide. This reveals that a pretranscriptional block participates to the anti-influenza activity. Binding and internalization of incoming virus particles are normal in the presence of poMx1 but centripetal traffic to the late endosomes is interrupted. Surprisingly but decisively, poMx1 significantly alters binding of early endosome autoantigen 1 to early endosomes and/or early endosome size and spatial distribution. This is compatible with impairment of traffic of the endocytic vesicles to the late endosomes. INRA, EDP Sciences, 2010.

  9. Cocaethylene, a metabolite of cocaine and ethanol, is a potent blocker of cardiac sodium channels.

    PubMed

    Xu, Y Q; Crumb, W J; Clarkson, C W

    1994-10-01

    Cocaethylene is an active metabolite of cocaine believed to play a causative role in the increased incidence of sudden death in individuals who coadminister ethanol with cocaine. However, the direct effects of cocaethylene on the heart have not been well defined. In this study, we defined the effects of cocaethylene on the cardiac Na current (INa) in guinea pig ventricular myocytes at 16 degrees C using the whole-cell patch-clamp method. Cocaethylene (10-50 microM) produced both a significant tonic block and a rate-dependent block of INa at cycle lengths between 2 and 0.2 sec. Cocaethylene produced a significantly greater tonic block than cocaine at a concentration of 50 microM and produced a significantly greater use-dependent block over a 5-fold range of drug concentrations (10-50 microM) and cycle lengths (0.2-1.0 sec). Analysis of channel-blocking characteristics revealed that cocaethylene had a significantly higher affinity for inactivated channels (Kdi = 5.1 +/- 0.6 microM, n = 15) compared with cocaine (Kdi = 7.9 +/- 0.5 microM, n = 10) (P < .01) and that cocaethylene produced a significantly greater hyperpolarizing shift of the steady-state INa inactivation curve (P < .05). Cocaethylene also had a significantly longer time constant for recovery from channel block at -140 mV (12.24 +/- 0.88 sec, n = 16) compared with cocaine (8.33 +/- 0.56 sec, n = 14) (P < .01).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE PAGES

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...

    2018-01-04

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  11. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  12. Lithium Metal-Copper Vanadium Oxide Battery with a Block Copolymer Electrolyte

    DOE PAGES

    Devaux, Didier; Wang, Xiaoya; Thelen, Jacob L.; ...

    2016-09-08

    Lithium (Li) batteries comprising multivalent positive active materials such as copper vanadium oxide have high theoretical capacity. These batteries with a conventional liquid electrolyte exhibit limited cycle life because of copper dissolution into the electrolyte. In this paper, we report here on the characterization of solid-state Li metal batteries with a positive electrode based on α-Cu 6.9V 6O 18.9 (α-CuVO 3). We replaced the liquid electrolyte by a nanostructured solid block copolymer electrolyte comprising of a mixture of polystyrene-b-poly(ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. In situ X-ray diffraction was used to follow the Li insertion/de-insertion mechanism into themore » α-CuVO 3 host material and its reversibility. In situ X-ray scattering revealed that the multistep electrochemical reactions involved are similar in the presence of liquid or solid electrolyte. The capacity fade of the solid-state batteries is less rapid than that of α-CuVO 3–Li metal batteries with a conventional liquid electrolyte. Hard X-ray microtomography revealed that upon cycling, voids and Cu-rich agglomerates were formed at the interface between the Li metal and the SEO electrolyte. Finally, the void volume and the volume occupied by the Cu-rich agglomerates were independent of C-rate and cycle number.« less

  13. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block.

    PubMed

    Siriwardana, Gamini; Seligman, Paul A

    2013-12-01

    Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid-G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid-G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points.

  14. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  15. Two cell cycle blocks caused by iron chelation of neuroblastoma cells: separating cell cycle events associated with each block

    PubMed Central

    Siriwardana, Gamini; Seligman, Paul A.

    2013-01-01

    Abstract Studies have presented evidence that besides the well described S phase block, treatment of cancer cell lines with the iron chelator deferrioxamine (DFO) also results in an earlier block in G1 phase. In this article, measurements of cell cycle regulatory proteins define this block at a very specific point in G1. DFO treatment results in markedly decreased cyclin A protein levels. Cyclin E levels that accumulate in early to mid‐G1 are increased in cells treated with DFO as compared to the resting cells. The DFO S phase block is shown after cells are arrested at G1/S by (aphidicolin) then released into DFO. The same S phase block occurs with DFO treatment of a neuroblastoma cell line relatively resistant to the G1 DFO block. These experiments clearly differentiate the S phase DFO block from the earlier block pinpointed to a point in mid‐G1, before G1/S when cyclin E protein increases but before increased cyclin A synthesis. Apoptosis was observed in cells inhibited by DFO at both cell cycle arrest points. PMID:24744856

  16. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  17. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  18. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked (generic name). 721.6660 Section 721.6660... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked..., acetone oxime-blocked (PMN P-88-1658) is subject to reporting under this section for the significant new...

  1. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection

    PubMed Central

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N.; Gestwicki, Jason E.; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-01-01

    Summary Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. PMID:26582131

  2. Rapidly fluctuating anosmia: A clinical sign for unilateral smell impairment.

    PubMed

    Negoias, Simona; Friedrich, Hergen; Caversaccio, Marco D; Landis, Basile N

    2016-02-01

    Reports about fluctuating olfactory deficits are rare, as are reports of unilateral olfactory loss. We present a case of unilateral anosmia with contralateral normosmia, presenting as rapidly fluctuating anosmia. The olfactory fluctuation occurred in sync with the average nasal cycle duration. Examination after nasal decongestion, formal smell testing, and imaging revealed unilateral, left-sided anosmia of sinonasal cause, with right-sided normosmia. We hypothesize that the nasal cycle induced transient anosmia when blocking the normosmic side. Fluctuating olfactory deficits might hide a unilateral olfactory loss and require additional unilateral testing and thorough workup. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Acidosis slows electrical conduction through the atrio-ventricular node

    PubMed Central

    Nisbet, Ashley M.; Burton, Francis L.; Walker, Nicola L.; Craig, Margaret A.; Cheng, Hongwei; Hancox, Jules C.; Orchard, Clive H.; Smith, Godfrey L.

    2014-01-01

    Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis. PMID:25009505

  4. Acidosis slows electrical conduction through the atrio-ventricular node.

    PubMed

    Nisbet, Ashley M; Burton, Francis L; Walker, Nicola L; Craig, Margaret A; Cheng, Hongwei; Hancox, Jules C; Orchard, Clive H; Smith, Godfrey L

    2014-01-01

    Acidosis affects the mechanical and electrical activity of mammalian hearts but comparatively little is known about its effects on the function of the atrio-ventricular node (AVN). In this study, the electrical activity of the epicardial surface of the left ventricle of isolated Langendorff-perfused rabbit hearts was examined using optical methods. Perfusion with hypercapnic Tyrode's solution (20% CO2, pH 6.7) increased the time of earliest activation (Tact) from 100.5 ± 7.9 to 166.1 ± 7.2 ms (n = 8) at a pacing cycle length (PCL) of 300 ms (37°C). Tact increased at shorter PCL, and the hypercapnic solution prolonged Tact further: at 150 ms PCL, Tact was prolonged from 131.0 ± 5.2 to 174.9 ± 16.3 ms. 2:1 AVN block was common at shorter cycle lengths. Atrial and ventricular conduction times were not significantly affected by the hypercapnic solution suggesting that the increased delay originated in the AVN. Isolated right atrial preparations were superfused with Tyrode's solutions at pH 7.4 (control), 6.8 and 6.3. Low pH prolonged the atrial-Hisian (AH) interval, the AVN effective and functional refractory periods and Wenckebach cycle length significantly. Complete AVN block occurred in 6 out of 9 preparations. Optical imaging of conduction at the AV junction revealed increased conduction delay in the region of the AVN, with less marked effects in atrial and ventricular tissue. Thus acidosis can dramatically prolong the AVN delay, and in combination with short cycle lengths, this can cause partial or complete AVN block and is therefore implicated in the development of brady-arrhythmias in conditions of local or systemic acidosis.

  5. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles.

  6. Defining Hsp70 Subnetworks in Dengue Virus Replication Reveals Key Vulnerability in Flavivirus Infection.

    PubMed

    Taguwa, Shuhei; Maringer, Kevin; Li, Xiaokai; Bernal-Rubio, Dabeiba; Rauch, Jennifer N; Gestwicki, Jason E; Andino, Raul; Fernandez-Sesma, Ana; Frydman, Judith

    2015-11-19

    Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Bulk rheology and simulated episodic tremor and slip within a numerically-modeled block-dominated subduction melange

    NASA Astrophysics Data System (ADS)

    Webber, S.; Ellis, S. M.; Fagereng, A.

    2015-12-01

    We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of non-linear matrix viscosity and development of tensile fractures at rapid shear strain rates. Model behaviour, including the generation of mixed-mode deformation, is highly comparable to the exhumed block-dominated melange found within the Chrystalls Beach Complex.

  8. Heave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0 °C

    NASA Astrophysics Data System (ADS)

    Murton, Julian B.; Ozouf, Jean-Claude; Peterson, Rorik

    2016-10-01

    To elucidate the early stages of heave, settlement and fracture of intact frost-susceptible rock by temperature cycling above and below 0 °C, two physical modelling experiments were performed on 10 rectangular blocks 450 mm high of fine-grained, soft limestone. One experiment simulated 21 cycles of bidirectional freezing (upward and downward) of an active layer above permafrost, and the other simulated 26 cycles of unidirectional freezing (downward) of a seasonally frozen bedrock in a non-permafrost region. Heave and settlement of the top of the blocks were monitored in relation to rock temperature and unfrozen water content, which ranged from almost dry to almost saturated. In the bidirectional freezing experiment, heave of the wettest block initially occurred abruptly at the onset of freezing periods and gradually during thawing periods (summer heave). After the crossing of a threshold marked by the appearance of a macrocrack in the upper layer of permafrost, summer heave increased by an order of magnitude as segregated ice accumulated incrementally in macrocracks, interrupted episodically by abrupt settlement that coincided with unusually high air temperatures. In the unidirectional freezing experiment, the wet blocks heaved during freezing periods and settled during thawing periods, whereas the driest blocks showed the opposite behaviour. The two wettest blocks settled progressively during the first 15 freeze-thaw cycles, before starting to heave progressively as macrocracks developed. Four processes, operating singly or in combination in the blocks account for their heave and settlement: (1) thermal expansion and contraction caused heave and settlement when little or no water-ice phase change was involved; (2) volumetric expansion of water freezing in situ caused short bursts of heave of the outer millimetres of wet rock; (3) ice segregation deeper in the blocks caused sustained heave during thawing and freezing periods; and (4) freeze-thaw cycling caused consolidation and settlement of wet blocks prior to macrocracking in the unidirectional freezing experiment. Rock fracture developed by growth of segregated ice in microcracks and macrocracks at depths determined by the freezing regime. Overall, the heave, settlement and fracture behaviour of the limestone is similar to that of frost-susceptible soil.

  9. The Efficacy of an 8-Week Concurrent Strength and Endurance Training Programme on Hand Cycling Performance.

    PubMed

    Nevin, Jonpaul; Waldron, Mark; Patterson, Stephen; Smith, Paul; Price, Mike; Hunt, Alex

    2018-03-20

    The aim of the present study was to investigate the effects of an 8-week concurrent strength and endurance training programme in comparison to endurance training only on several key determinants of hand cycling performance. Five H4 and five H3 classified hand cyclists with at least one year's hand cycling training history consented to participate in the study. Subjects underwent a battery of tests to establish body mass, body composition, VO2peak, maximum aerobic power, gross mechanical efficiency, maximal upper body strength, and 30 km time trial performance. Subjects were matched into pairs based upon 30 km time trial performance and randomly allocated to either a concurrent strength and endurance or endurance training only, intervention group. Following an 8-week training programme based upon a conjugated block periodisation model, subjects completed a second battery of tests. A mixed model, 2-way analysis of variance (ANOVA) revealed no significant changes between groups. However, the calculation of effect sizes (ES) revealed that both groups demonstrated a positive improvement in most physiological and performance measures with subjects in the concurrent group demonstrating a greater magnitude of improvement in body composition (ES -0.80 vs. -0.22) maximal aerobic power (ES 0.97 vs. 0.28), gross mechanical efficiency (ES 0.87 vs. 0.63), bench press 1 repetition maximum (ES 0.53 vs. 0.33), seated row 1 repetition maximum (ES 1.42 vs. 0.43), and 30 km time trial performance (ES -0.66 vs. -0.30). In comparison to endurance training only, an 8-week concurrent training intervention based upon a conjugated block periodisation model appears to be a more effective training regime for improving the performance capabilities of hand cyclists.

  10. U3 long terminal repeat-mediated induction of intracellular immunity by a murine retrovirus: a novel model of latency for retroviruses.

    PubMed Central

    Gorska-Flipot, I; Huang, M; Cantin, M; Rassart, E; Massé, G; Jolicoeur, P

    1992-01-01

    BL/VL3 radiation leukemia virus (RadLV) is a thymotropic, highly leukemogenic murine leukemia virus (MuLV) which is unable to replicate in vitro in mouse fibroblasts. We have previously reported that the U3 long terminal repeat region of its genome is responsible for this block (E. Rassart, Y. Paquette, and P. Jolicoeur, J. Virol. 62:3840-3848, 1988). By using hybrids of permissive and resistant cells infected with BL/VL3 RadLV or fibrotropic MuLV, we found that the resistant phenotype was dominant. Investigation to determine at which step of the virus cycle the block operates revealed that integration, transcription, and translation of the BL/VL3 viral genome occurred at normal levels in nonpermissive cells. The BL/VL3 RadLV Pr65gag proteins made in nonpermissive cells were also myristylated and located at the membrane, and the levels of their cleaved products were similar to those of fibrotropic MuLV. However, processing of BL/VL3 RadLV Pr85env was impaired in nonpermissive cells. Virions were not released into the culture medium of nonpermissive cells, as measured by reverse transcriptase activity and by content in p30 or gp70 protein and as documented by lower levels of budding particles seen by electron microscopy. These results indicate that BL/VL3 RadLV replication is blocked at a late stage of the virus cycle, i.e., at virion assembly. Interestingly, these BL/VL3 RadLV-infected nonpermissive fibroblasts were resistant to superinfection by fibrotropic Moloney MuLV, and this resistance also occurred at a late step of the Moloney virus cycle. Since this block is dominant, it appears that the U3 long terminal repeat region of the BL/VL3 viral genome has the ability to induce a cellular suppressor factor(s), thus bringing intracellular immunity against itself and against other ecotropic MuLVs. Images PMID:1433513

  11. Arctigenin induces cell cycle arrest by blocking the phosphorylation of Rb via the modulation of cell cycle regulatory proteins in human gastric cancer cells.

    PubMed

    Jeong, Jin Boo; Hong, Se Chul; Jeong, Hyung Jin; Koo, Jin Suk

    2011-10-01

    Gastric cancer is a leading cause of cancer-related deaths, worldwide being second only to lung cancer as a cause of death. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms of arctigenin for anti-tumor effect on gastric cancer have not been examined. This study examined the biological effects of arctigenin on the human gastric cancer cell line SNU-1 and AGS. Cell proliferation was determined by MTT assay. In MTT assay, the proliferation of SNU-1 and AGS cells was significantly inhibited by arctigenin in a time and dose dependent manner, as compared with SNU-1 and AGS cells cultured in the absence of arctigenin. Inhibition of cell proliferation by arctigenin was in part associated with apoptotic cell death, as shown by changes in the expression ratio of Bcl-2 to Bax by arctigenin. Also, arctigenin blocked cell cycle arrest from G(1) to S phase by regulating the expression of cell cycle regulatory proteins such as Rb, cyclin D1, cyclin E, CDK4, CDK2, p21Waf1/Cip1 and p15 INK4b. The antiproliferative effect of arctigenin on SNU-1 and AGS gastric cancer cells revealed in this study suggests that arctigenin has intriguing potential as a chemopreventive or chemotherapeutic agent. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  12. Implications of the earthquake cycle for inferring fault locking on the Cascadia megathrust

    USGS Publications Warehouse

    Pollitz, Fred; Evans, Eileen

    2017-01-01

    GPS velocity fields in the Western US have been interpreted with various physical models of the lithosphere-asthenosphere system: (1) time-independent block models; (2) time-dependent viscoelastic-cycle models, where deformation is driven by viscoelastic relaxation of the lower crust and upper mantle from past faulting events; (3) viscoelastic block models, a time-dependent variation of the block model. All three models are generally driven by a combination of loading on locked faults and (aseismic) fault creep. Here we construct viscoelastic block models and viscoelastic-cycle models for the Western US, focusing on the Pacific Northwest and the earthquake cycle on the Cascadia megathrust. In the viscoelastic block model, the western US is divided into blocks selected from an initial set of 137 microplates using the method of Total Variation Regularization, allowing potential trade-offs between faulting and megathrust coupling to be determined algorithmically from GPS observations. Fault geometry, slip rate, and locking rates (i.e. the locking fraction times the long term slip rate) are estimated simultaneously within the TVR block model. For a range of mantle asthenosphere viscosity (4.4 × 1018 to 3.6 × 1020 Pa s) we find that fault locking on the megathrust is concentrated in the uppermost 20 km in depth, and a locking rate contour line of 30 mm yr−1 extends deepest beneath the Olympic Peninsula, characteristics similar to previous time-independent block model results. These results are corroborated by viscoelastic-cycle modelling. The average locking rate required to fit the GPS velocity field depends on mantle viscosity, being higher the lower the viscosity. Moreover, for viscosity ≲ 1020 Pa s, the amount of inferred locking is higher than that obtained using a time-independent block model. This suggests that time-dependent models for a range of admissible viscosity structures could refine our knowledge of the locking distribution and its epistemic uncertainty.

  13. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-14

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

  14. Functional studies of TcRjl, a novel GTPase of Trypanosoma cruzi, reveals phenotypes related with MAPK activation during parasite differentiation and after heterologous expression in Drosophila model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis Monteiro dos-Santos, Guilherme Rodrigo; Fontenele, Marcio Ribeiro; Dias, Felipe de Almeida

    The life cycle of the protozoan parasite Trypanosoma cruzi comprises rounds of proliferative cycles and differentiation in distinct host environments. Ras GTPases are molecular switches that play pivotal regulatory functions in cell fate. Rjl is a novel GTPase with unknown function. Herein we show that TcRjl blocks in vivo cell differentiation. The forced expression of TcRjl leads to changes in the overall tyrosine protein phosphorylation profile of parasites. TcRjl expressing parasites sustained DNA synthesis regardless the external stimuli for differentiation. Heterologous expression in the Drosophila melanogaster genetic system strongly suggests a role from TcRjl protein in RTK-dependent pathways and MAPK activation.

  15. Techno-economic analysis of supercritical carbon dioxide power blocks

    NASA Astrophysics Data System (ADS)

    Meybodi, Mehdi Aghaei; Beath, Andrew; Gwynn-Jones, Stephen; Veeraragavan, Anand; Gurgenci, Hal; Hooman, Kamel

    2017-06-01

    Developing highly efficient power blocks holds the key to enhancing the cost competitiveness of Concentration Solar Thermal (CST) technologies. Supercritical CO2 (sCO2) Brayton cycles have proved promising in providing equivalent or higher cycle efficiency than supercritical or superheated steam cycles at temperatures and scales relevant for Australian CST applications. In this study, a techno-economic methodology is developed using a stochastic approach to determine the ranges for the cost and performance of different components of central receiver power plants utilizing sCO2 power blocks that are necessary to meet the Australian Solar Thermal Initiative (ASTRI) final LCOE target of 12 c/kWh.

  16. Tremor analysis separates Parkinson's disease and dopamine receptor blockers induced parkinsonism.

    PubMed

    Shaikh, Aasef G

    2017-05-01

    Parkinson's disease, the most common cause of parkinsonism is often difficult to distinguish from its second most common etiology due to exposure to dopamine receptor blocking agents such as antiemetics and neuroleptics. Dual axis accelerometry was used to quantify tremor in 158 patients with parkinsonism; 62 had Parkinson's disease and 96 were clinically diagnosed with dopamine receptor blocking agent-induced parkinsonism. Tremor was measured while subjects rested arms (resting tremor), outstretched arms in front (postural tremor), and reached a target (kinetic tremor). Cycle-by-cycle analysis was performed to measure cycle duration, oscillation amplitude, and inter-cycle variations in the frequency. Patients with dopamine receptor blocker induced parkinsonism had lower resting and postural tremor amplitude. There was a substantial increase of kinetic tremor amplitude in both disorders. Postural and resting tremor in subjects with dopamine receptor blocking agent-induced parkinsonism was prominent in the abduction-adduction plane. In contrast, the Parkinson's disease tremor had equal amplitude in all three planes of motion. Tremor frequency was comparable in both groups. Remarkable variability in the width of the oscillatory cycles suggested irregularity in the oscillatory waveforms in both subtypes of parkinsonism. Quantitative tremor analysis can distinguish Parkinson's disease from dopamine receptor blocking agent-induced parkinsonism.

  17. Activation and Repression of Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus Lytic Cycles by Short- and Medium-Chain Fatty Acids

    PubMed Central

    Gorres, Kelly L.; Daigle, Derek; Mohanram, Sudharshan

    2014-01-01

    ABSTRACT The lytic cycles of Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are induced in cell culture by sodium butyrate (NaB), a short-chain fatty acid (SCFA) histone deacetylase (HDAC) inhibitor. Valproic acid (VPA), another SCFA and an HDAC inhibitor, induces the lytic cycle of KSHV but blocks EBV lytic reactivation. To explore the hypothesis that structural differences between NaB and VPA account for their functional effects on the two related viruses, we investigated the capacity of 16 structurally related short- and medium-chain fatty acids to promote or prevent lytic cycle reactivation. SCFAs differentially affected EBV and KSHV reactivation. KSHV was reactivated by all SCFAs that are HDAC inhibitors, including phenylbutyrate. However, several fatty acid HDAC inhibitors, such as isobutyrate and phenylbutyrate, did not reactivate EBV. Reactivation of KSHV lytic transcripts could not be blocked completely by any fatty acid tested. In contrast, several medium-chain fatty acids inhibited lytic activation of EBV. Fatty acids that blocked EBV reactivation were more lipophilic than those that activated EBV. VPA blocked activation of the BZLF1 promoter by NaB but did not block the transcriptional function of ZEBRA. VPA also blocked activation of the DNA damage response that accompanies EBV lytic cycle activation. Properties of SCFAs in addition to their effects on chromatin are likely to explain activation or repression of EBV. We concluded that fatty acids stimulate the two related human gammaherpesviruses to enter the lytic cycle through different pathways. IMPORTANCE Lytic reactivation of EBV and KSHV is needed for persistence of these viruses and plays a role in carcinogenesis. Our direct comparison highlights the mechanistic differences in lytic reactivation between related human oncogenic gammaherpesviruses. Our findings have therapeutic implications, as fatty acids are found in the diet and produced by the human microbiota. Small-molecule inducers of the lytic cycle are desired for oncolytic therapy. Inhibition of viral reactivation, alternatively, may prove useful in cancer treatment. Overall, our findings contribute to the understanding of pathways that control the latent-to-lytic switch and identify naturally occurring molecules that may regulate this process. PMID:24807711

  18. Method for solidification of radioactive and other hazardous waste

    DOEpatents

    Anshits, Alexander G.; Vereshchagina, Tatiana A.; Voskresenskaya, Elena N.; Kostin, Eduard M.; Pavlov, Vyacheslav F.; Revenko, Yurii A.; Tretyakov, Alexander A.; Sharonova, Olga M.; Aloy, Albert S.; Sapozhnikova, Natalia V.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    Solidification of liquid radioactive waste, and other hazardous wastes, is accomplished by the method of the invention by incorporating the waste into a porous glass crystalline molded block. The porous block is first loaded with the liquid waste and then dehydrated and exposed to thermal treatment at 50-1,000.degree. C. The porous glass crystalline molded block consists of glass crystalline hollow microspheres separated from fly ash (cenospheres), resulting from incineration of fossil plant coals. In a preferred embodiment, the porous glass crystalline blocks are formed from perforated cenospheres of grain size -400+50, wherein the selected cenospheres are consolidated into the porous molded block with a binder, such as liquid silicate glass. The porous blocks are then subjected to repeated cycles of saturating with liquid waste, and drying, and after the last cycle the blocks are subjected to calcination to transform the dried salts to more stable oxides. Radioactive liquid waste can be further stabilized in the porous blocks by coating the internal surface of the block with metal oxides prior to adding the liquid waste, and by coating the outside of the block with a low-melting glass or a ceramic after the waste is loaded into the block.

  19. Saponins from soy bean and mung bean inhibit the antigen specific activation of helper T cells by blocking cell cycle progression.

    PubMed

    Lee, Suk Jun; Bae, Joonbeom; Kim, Sunhee; Jeong, Seonah; Choi, Chang-Yong; Choi, Sang-Pil; Kim, Hyun-Sook; Jung, Woon-Won; Imm, Jee-Young; Kim, Sae Hun; Chun, Taehoon

    2013-02-01

    Treatment of helper T (Th) cells with saponins from soy bean and mung bean prevented their activation by inhibiting cell proliferation and cytokine secretion. However, the saponins did not affect the expression of major histocompatibility complex class II (A(b)) and co-stimulatory molecule (CD86) on professional antigen-presenting cells. Instead, the saponins directly inhibited Th cell proliferation by blocking the G(1) to S phase cell cycle transition. Moreover, blocking of the cell cycle by the saponins was achieved by decreased expression of cyclin D1 and cyclin E, and constitutive expression of p27(KIP1). Saponins also increased stability of p27(KIP1) in Th cells after antigenic stimulation.

  20. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  1. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.

  2. A Novel In Vivo Assay Reveals Inhibition of Ribosomal Nuclear Export in Ran-Cycle and Nucleoporin Mutants

    PubMed Central

    Hurt, Ed; Hannus, Stefan; Schmelzl, Birgit; Lau, Denise; Tollervey, David; Simos, George

    1999-01-01

    To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes. PMID:9971735

  3. Clock genes and their genomic distributions in three species of salmonid fishes: Associations with genes regulating sexual maturation and cell cycling

    PubMed Central

    2010-01-01

    Background Clock family genes encode transcription factors that regulate clock-controlled genes and thus regulate many physiological mechanisms/processes in a circadian fashion. Clock1 duplicates and copies of Clock3 and NPAS2-like genes were partially characterized (genomic sequencing) and mapped using family-based indels/SNPs in rainbow trout (RT)(Oncorhynchus mykiss), Arctic charr (AC)(Salvelinus alpinus), and Atlantic salmon (AS)(Salmo salar) mapping panels. Results Clock1 duplicates mapped to linkage groups RT-8/-24, AC-16/-13 and AS-2/-18. Clock3/NPAS2-like genes mapped to RT-9/-20, AC-20/-43, and AS-5. Most of these linkage group regions containing the Clock gene duplicates were derived from the most recent 4R whole genome duplication event specific to the salmonids. These linkage groups contain quantitative trait loci (QTL) for life history and growth traits (i.e., reproduction and cell cycling). Comparative synteny analyses with other model teleost species reveal a high degree of conservation for genes in these chromosomal regions suggesting that functionally related or co-regulated genes are clustered in syntenic blocks. For example, anti-müllerian hormone (amh), regulating sexual maturation, and ornithine decarboxylase antizymes (oaz1 and oaz2), regulating cell cycling, are contained within these syntenic blocks. Conclusions Synteny analyses indicate that regions homologous to major life-history QTL regions in salmonids contain many candidate genes that are likely to influence reproduction and cell cycling. The order of these genes is highly conserved across the vertebrate species examined, and as such, these genes may make up a functional cluster of genes that are likely co-regulated. CLOCK, as a transcription factor, is found within this block and therefore has the potential to cis-regulate the processes influenced by these genes. Additionally, clock-controlled genes (CCGs) are located in other life-history QTL regions within salmonids suggesting that at least in part, trans-regulation of these QTL regions may also occur via Clock expression. PMID:20670436

  4. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function.

    PubMed

    Bjursell, Magnus K; Blom, Henk J; Cayuela, Jordi Asin; Engvall, Martin L; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M; Lundeberg, Joakim; Wedell, Anna

    2011-10-07

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Congruent bodily arousal promotes the constructive recognition of emotional words.

    PubMed

    Kever, Anne; Grynberg, Delphine; Vermeulen, Nicolas

    2017-08-01

    Considerable research has shown that bodily states shape affect and cognition. Here, we examined whether transient states of bodily arousal influence the categorization speed of high arousal, low arousal, and neutral words. Participants realized two blocks of a constructive recognition task, once after a cycling session (increased arousal), and once after a relaxation session (reduced arousal). Results revealed overall faster response times for high arousal compared to low arousal words, and for positive compared to negative words. Importantly, low arousal words were categorized significantly faster after the relaxation than after the cycling, suggesting that a decrease in bodily arousal promotes the recognition of stimuli matching one's current arousal state. These findings highlight the importance of the arousal dimension in emotional processing, and suggest the presence of arousal-congruency effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Inhibition of Human Cytomegalovirus Replication by Artemisinins: Effects Mediated through Cell Cycle Modulation

    PubMed Central

    Roy, Sujayita; He, Ran; Kapoor, Arun; Forman, Michael; Mazzone, Jennifer R.; Posner, Gary H.

    2015-01-01

    Artemisinin-derived monomers and dimers inhibit human cytomegalovirus (CMV) replication in human foreskin fibroblasts (HFFs). The monomer artesunate (AS) inhibits CMV at micromolar concentrations, while dimers inhibit CMV replication at nanomolar concentrations, without increased toxicity in HFFs. We report on the variable anti-CMV activity of AS compared to the consistent and reproducible CMV inhibition by dimer 606 and ganciclovir (GCV). Investigation of this phenomenon revealed that the anti-CMV activity of AS correlated with HFFs synchronized to the G0/G1 stage of the cell cycle. In contact-inhibited serum-starved HFFs or cells arrested at early/late G1 with specific checkpoint regulators, AS and dimer 606 efficiently inhibited CMV replication. However, in cycling HFFs, in which CMV replication was productive, virus inhibition by AS was significantly reduced, but inhibition by dimer 606 and GCV was maintained. Cell cycle analysis in noninfected HFFs revealed that AS induced early G1 arrest, while dimer 606 partially blocked cell cycle progression. In infected HFFs, AS and dimer 606 prevented the progression of cell cycle toward the G1/S checkpoint. AS reduced the expression of cyclin-dependent kinases (CDK) 2, 4, and 6 in noninfected cycling HFFs, while the effect of dimer 606 on these CDKs was moderate. Neither compound affected CDK expression in noninfected contact-inhibited HFFs. In CMV-infected cells, AS activity correlated with reduced CDK2 levels. CMV inhibition by AS and dimer 606 also correlated with hypophosphorylation (activity) of the retinoblastoma protein (pRb). AS activity was strongly associated with pRb hypophosphorylation, while its reduced anti-CMV activity was marked by pRb phosphorylation. Roscovitine, a CDK2 inhibitor, antagonized the anti-CMV activities of AS and dimer 606. These data suggest that cell cycle modulation through CDKs and pRb might play a role in the anti-CMV activities of artemisinins. Proteins involved in this modulation may be identified and targeted for CMV inhibition. PMID:25870074

  7. E2F activators signal and maintain centrosome amplification in breast cancer cells.

    PubMed

    Lee, Mi-Young; Moreno, Carlos S; Saavedra, Harold I

    2014-07-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2(+) cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2(+) cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2(+) breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2.

  8. Pituitary block with gonadotrophin-releasing hormone antagonist during intrauterine insemination cycles: a systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Vitagliano, A; Saccone, G; Noventa, M; Borini, A; Coccia, M E; Nardelli, G B; Saccardi, C; Bifulco, G; Litta, P S; Andrisani, A

    2018-06-03

    Several randomised controlled trials (RCTs) have investigated the usefulness of pituitary block with gonadotrophin-releasing hormone (GnRH) antagonists during intrauterine insemination (IUI) cycles, with conflicting results. The aim of the present systematic review and meta-analysis of RCTs was to evaluate the effectiveness of GnRH antagonist administration as an intervention to improve the success of IUI cycles. Electronic databases (MEDLINE, Scopus, EMBASE, Sciencedirect) and clinical registers were searched from their inception until October 2017. Randomised controlled trials of infertile women undergoing one or more IUI stimulated cycles with GnRH antagonists compared with a control group. The primary outcomes were ongoing pregnancy/live birth rate (OPR/LBR) and clinical pregnancy rate (CPR). Pooled results were expressed as odds ratio (OR) or mean differences with 95% confidence interval (95% CI). Sources of heterogeneity were investigated through sensitivity and subgroups analysis. The body of evidence was rated using GRADE methodology. Publication bias was assessed with funnel plot, Begg's and Egger's tests. Fifteen RCTs were included (3253 IUI cycles, 2345 participants). No differences in OPR/LBR (OR 1.14, 95% CI 0.82-1.57, P = 0.44) and CPR (OR 1.28, 95% CI 0.97-1.69, P = 0.08) were found. Sensitivity and subgroup analyses did not provide statistical changes in pooled results. The body of evidence was rated as low (GRADE 2/4). No publication bias was detected. Pituitary block with GnRH antagonists does not improve OPR/LBR and CPR in women undergoing IUI cycles. Pituitary block with GnRH antagonists does not improve the success of IUI cycles. © 2018 Royal College of Obstetricians and Gynaecologists.

  9. The biomechanical strength of a hardware-free femoral press-fit method for ACL bone-tendon-bone graft fixation.

    PubMed

    Arnold, M P; Burger, L D; Wirz, D; Goepfert, B; Hirschmann, M T

    2017-04-01

    The purpose was to investigate graft slippage and ultimate load to failure of a femoral press-fit fixation technique for anterior cruciate ligament (ACL) reconstruction. Nine fresh-frozen knees were used. Standardized harvesting of the B-PT-B graft was performed. The femora were cemented into steel rods, and a tunnel was drilled outside-in into the native ACL footprint and expanded using a manual mill bit. The femoral bone block was fixed press-fit. To pull the free end of the graft, it was fixed to a mechanical testing machine using a deep-freezing technique. A motion capture system was used to assess three-dimensional micro-motion. After preconditioning of the graft, 1000 cycles of tensile loading were applied. Finally, an ultimate load to failure test was performed. Graft slippage in mm ultimate load to failure as well as type of failure was noted. In six of the nine measured specimens, a typical pattern of graft slippage was observed during cyclic loading. For technical reasons, the results of three knees had to be discarded. 78.6 % of total graft slippage occurred in the first 100 cycles. Once the block had settled, graft slippage converged to zero, highlighting the importance of initial preconditioning of the graft in the clinical setting. Graft slippage after 1000 cycles varied around 3.4 ± 3.2 mm (R = 1.3-9.8 mm) between the specimens. Ultimate loading (n = 9) revealed two characteristic patterns of failure. In four knees, the tendon ruptured, while in five knees the bone block was pulled out of the femoral tunnel. The median ultimate load to failure was 852 N (R = 448-1349 N). The implant-free femoral press-fit fixation provided adequate primary stability with ultimate load to failure pull forces at least equal to published results for interference screws; hence, its clinical application is shown to be safe.

  10. Genetic Ablation of CCAAT/Enhancer Binding Protein α in Epidermis Reveals Its Role in Suppression of Epithelial Tumorigenesis

    PubMed Central

    Loomis, Kari D.; Zhu, Songyun; Yoon, Kyungsil; Johnson, Peter F.; Smart, Robert C.

    2013-01-01

    CCAAT/enhancer binding protein y (C/EBPα) is a basic leucine zipper transcription factor that inhibits cell cycle progression and regulates differentiation in various cell types. C/EBPα is inactivated by mutation in acute myeloid leukemia (AML) and is considered a human tumor suppressor in AML. Although C/EBPα mutations have not been observed in malignancies other than AML, greatly diminished expression of C/EBPα occurs in numerous human epithelial cancers including lung, liver, endometrial, skin, and breast, suggesting a possible tumor suppressor function. However, direct evidence for C/EBPα as an epithelial tumor suppressor is lacking due to the absence of C/EBPα mutations in epithelial tumors and the lethal effect of C/EBPα deletion in mouse model systems. To examine the function of C/EBPα in epithelial tumor development, an epidermal-specific C/EBPα knockout mouse was generated. The epidermal-specific C/EBPα knockout mice survived and displayed no detectable abnormalities in epidermal keratinocyte proliferation, differentiation, or apoptosis, showing that C/EBPα is dispensable for normal epidermal homeostasis. In spite of this, the epidermal-specific C/EBPα knockout mice were highly susceptible to skin tumor development involving oncogenic Ras. These mice displayed decreased tumor latency and striking increases in tumor incidence, multiplicity, growth rate, and the rate of malignant progression. Mice hemizygous for C/EBPα displayed an intermediate-enhanced tumor phenotype. Our results suggest that decreased expression of C/EBPα contributes to deregulation of tumor cell proliferation. C/EBPα had been proposed to block cell cycle progression through inhibition of E2F activity. We observed that C/EBPα blocked Ras-induced and epidermal growth factor-induced E2F activity in keratinocytes and also blocked Ras-induced cell transformation and cell cycle progression. Our study shows that C/EBPα is dispensable for epidermal homeostasis and provides genetic evidence that C/EBPα is a suppressor of epithelial tumorigenesis. PMID:17638888

  11. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Peltier-based freeze-thaw device for meteorite disaggregation

    NASA Astrophysics Data System (ADS)

    Ogliore, R. C.

    2018-02-01

    A Peltier-based freeze-thaw device for the disaggregation of meteorite or other rock samples is described. Meteorite samples are kept in six water-filled cavities inside a thin-walled Al block. This block is held between two Peltier coolers that are automatically cycled between cooling and warming. One cycle takes approximately 20 min. The device can run unattended for months, allowing for ˜10 000 freeze-thaw cycles that will disaggregate meteorites even with relatively low porosity. This device was used to disaggregate ordinary and carbonaceous chondrite regoltih breccia meteorites to search for micrometeoroid impact craters.

  13. Associative list processing unit

    DOEpatents

    Hemmert, Karl Scott; Underwood, Keith D.

    2013-01-29

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

  14. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation

    PubMed Central

    Hirai, Maretoshi; Arita, Yoh; McGlade, C. Jane; Lee, Kuo-Fen; Chen, Ju; Evans, Sylvia M.

    2017-01-01

    Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine. PMID:28067668

  15. Clinical application of hysteroscopic hydrotubation for unexplained infertility in the mare.

    PubMed

    Inoue, Y; Sekiguchi, M

    2017-11-07

    Therapeutic techniques for oviductal obstruction in the mare are limited. Nonsurgical and retrograde flushing may be an attractive alternative to current treatment methods for oviductal blockage. To evaluate hysteroscopic selective hydrotubation as a treatment option for presumptive equine oviductal blockage. Retrospective case series. A quantity of 10 mL of saline was flushed through the oviducts in 28 standing sedated mares, which had reproductive histories of unexplained subfertility, by inserting a catheter into the uterotubal junction under endoscopic guidance. All mares in the study had been mated through several cycles (2-20 oestrous cycles) by known fertile stallions prior to treatment, with no evidence of conception. The average number of cycles for each mare prior to treatment was 6.5 ± 4.5. Saline was successfully infused into a total of 50 oviducts. Of 28 mares, 26 conceived after the treatment. The average number of cycles for each mare to become pregnant after treatment was 1.8 ± 0.8. Diagnosis of blocked oviducts was presumptive, and pretreatment infertility was used as the control. This study revealed that hysteroscopic hydrotubation using saline improved pregnancy rates in mares in which oviductal blockage was suspected as a cause of unexplained subfertility. © 2017 EVJ Ltd.

  16. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  17. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  18. Lipid Osteoclastokines Regulate Breast Cancer Bone Metastasis

    PubMed Central

    Krzeszinski, Jing Y.; Schwaid, Adam G.; Cheng, Wing Yin; Jin, Zixue; Gallegos, Zachary R.; Saghatelian, Alan

    2017-01-01

    Bone metastasis is a deadly consequence of cancers, in which osteoclast forms a vicious cycle with tumor cells. Bone metastasis attenuation by clinical usage of osteoclast inhibitors and in our osteopetrotic mouse genetic models with β-catenin constitutive activation or peroxisome proliferator-activated receptor γ deficiency fully support the important role of osteoclast in driving the bone metastatic niche. However, the mechanisms for this “partnership in crime” are underexplored. Here we show that osteoclasts reprogram their lipid secretion to support cancer cells. Metabolomic profiling reveals elevated prometastatic arachidonic acid (AA) but reduced antimetastatic lysophosphatidylcholines (LPCs). This shift in lipid osteoclastokines synergistically stimulates tumor cell proliferation, migration, survival, and expression of prometastatic genes. Pharmacologically, combined treatment with LPCs and BW-755C, an inhibitor of AA signaling via blocking lipoxygenase and cyclooxygenase, impedes breast cancer bone metastasis. Our findings elucidate key paracrine mechanisms for the osteoclast-cancer vicious cycle and uncover important therapeutic targets for bone metastasis. PMID:27967239

  19. Effectiveness and stability of silane coupling agent incorporated in 'universal' adhesives.

    PubMed

    Yoshihara, Kumiko; Nagaoka, Noriyuki; Sonoda, Akinari; Maruo, Yukinori; Makita, Yoji; Okihara, Takumi; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2016-10-01

    For bonding indirect restorations, some 'universal' adhesives incorporate a silane coupling agent to chemically bond to glass-rich ceramics so that a separate ceramic primer is claimed to be no longer needed. With this work, we investigated the effectiveness/stability of the silane coupling function of the silanecontaining experimentally prepared adhesives and Scotchbond Universal (3MESPE). Experimental adhesives consisted of Scotchbond Universal and the silane-free Clearfil S3 ND Quick (Kuraray Noritake) mixed with Clearfil Porcelain Bond Activator (Kuraray Noritake) and the two adhesives to which γ-methacryloxypropyltrimethoxysilane (γ-MPTS) was added. Shear bond strength was measured onto silica-glass plates; the adhesive formulations were analyzed using fourier transform infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (NMR). In addition, shear bond strength onto CAD-CAM composite blocks was measured without and after thermo-cycling ageing. A significantly higher bond strength was recorded when Clearfil Porcelain Bond Activator was freshly mixed with the adhesive. Likewise, the experimental adhesives, to which γ-MPTS was added, revealed a significantly higher bond strength, but only when the adhesive was applied immediately after mixing; delayed application resulted in a significantly lower bond strength. FTIR and (13)C NMR revealed hydrolysis and dehydration condensation to progress with the time after γ-MPTS was mixed with the two adhesives. After thermo-cycling, the bond strength onto CAD-CAM composite blocks remained stable only for the two adhesives with which Clearfil Porcelain Bond Activator was mixed. Only the silane coupling effect of freshly prepared silanecontaining adhesives was effective. Clinically, the use of a separate silane primer or silane freshly mixed with the adhesive remains recommended to bond glass-rich ceramics. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yonghan; Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 daysmore » of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.« less

  1. Associative list processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemmert, Karl Scott; Underwood, Keith D

    2014-04-01

    An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full.

  2. Influence of Thermal Cycling on Flexural Properties and Simulated Wear of Computer-aided Design/Computer-aided Manufacturing Resin Composites.

    PubMed

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the influence of thermal cycling on the flexural properties and simulated wear of computer-aided design/computer-aided manufacturing (CAD/CAM) resin composites. The six CAD/CAM resin composites used in this study were 1) Lava Ultimate CAD/CAM Restorative (LU); 2) Paradigm MZ100 (PM); 3) CERASMART (CS); 4) Shofu Block HC (SB); 5) KATANA AVENCIA Block (KA); and 6) VITA ENAMIC (VE). Specimens were divided randomly into two groups, one of which was stored in distilled water for 24 hours, and the other of which was subjected to 10,000 thermal cycles. For each material, 15 specimens from each group were used to determine the flexural strength and modulus according to ISO 6872, and 20 specimens from each group were used to examine wear using a localized wear simulation model. The test materials were subjected to a wear challenge of 400,000 cycles in a Leinfelder-Suzuki device (Alabama machine). The materials were placed in custom-cylinder stainless steel fixtures, and simulated localized wear was generated using a stainless steel ball bearing (r=2.387 mm) antagonist in a water slurry of polymethyl methacrylate beads. Simulated wear was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The two-way analysis of variance of flexural properties and simulated wear of CAD/CAM resin composites revealed that material type and thermal cycling had a significant influence (p<0.05), but there was no significant interaction (p>0.05) between the two factors. The flexural properties and maximum depth of wear facets of CAD/CAM resin composite were different (p<0.05) depending on the material, and their values were influenced (p>0.05) by thermal cycling, except in the case of VE. The volume losses in wear facets on LU, PM, and SB after 10,000 thermal cycles were significantly higher (p<0.05) than those after 24 hours of water storage, unlike CS, KA, and VE. The results of this study indicate that the flexural properties and simulated wear of CAD/CAM resin composites are different depending on the material. In addition, the flexural properties and simulated wear of CAD/CAM resin composites are influenced by thermal cycling.

  3. E2F Activators Signal and Maintain Centrosome Amplification in Breast Cancer Cells

    PubMed Central

    Lee, Mi-Young; Moreno, Carlos S.

    2014-01-01

    Centrosomes ensure accurate chromosome segregation by directing spindle bipolarity. Loss of centrosome regulation results in centrosome amplification, multipolar mitosis and aneuploidy. Since centrosome amplification is common in premalignant lesions and breast tumors, it is proposed to play a central role in breast tumorigenesis, a hypothesis that remains to be tested. The coordination between the cell and centrosome cycles is of paramount importance to maintain normal centrosome numbers, and the E2Fs may be responsible for regulating these cycles. However, the role of E2F activators in centrosome amplification is unclear. Because E2Fs are deregulated in Her2+ cells displaying centrosome amplification, we addressed whether they signal this abnormal process. Knockdown of E2F1 or E2F3 in Her2+ cells decreased centrosome amplification without significantly affecting cell cycle progression, whereas the overexpression of E2F1, E2F2, or E2F3 increased centrosome amplification in MCF10A mammary epithelial cells. Our results revealed that E2Fs affect the expression of proteins, including Nek2 and Plk4, known to influence the cell/centrosome cycles and mitosis. Downregulation of E2F3 resulted in cell death and delays/blocks in cytokinesis, which was reversed by Nek2 overexpression. Nek2 overexpression enhanced centrosome amplification in Her2+ breast cancer cells silenced for E2F3, revealing a role for the E2F activators in maintaining centrosome amplification in part through Nek2. PMID:24797070

  4. Chromatin condensation during terminal erythropoiesis.

    PubMed

    Zhao, Baobing; Yang, Jing; Ji, Peng

    2016-09-02

    Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.

  5. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase.

    PubMed

    Paquet, Tanya; Le Manach, Claire; Cabrera, Diego González; Younis, Yassir; Henrich, Philipp P; Abraham, Tara S; Lee, Marcus C S; Basak, Rajshekhar; Ghidelli-Disse, Sonja; Lafuente-Monasterio, María José; Bantscheff, Marcus; Ruecker, Andrea; Blagborough, Andrew M; Zakutansky, Sara E; Zeeman, Anne-Marie; White, Karen L; Shackleford, David M; Mannila, Janne; Morizzi, Julia; Scheurer, Christian; Angulo-Barturen, Iñigo; Martínez, María Santos; Ferrer, Santiago; Sanz, Laura María; Gamo, Francisco Javier; Reader, Janette; Botha, Mariette; Dechering, Koen J; Sauerwein, Robert W; Tungtaeng, Anchalee; Vanachayangkul, Pattaraporn; Lim, Chek Shik; Burrows, Jeremy; Witty, Michael J; Marsh, Kennan C; Bodenreider, Christophe; Rochford, Rosemary; Solapure, Suresh M; Jiménez-Díaz, María Belén; Wittlin, Sergio; Charman, Susan A; Donini, Cristina; Campo, Brice; Birkholtz, Lyn-Marie; Hanson, Kirsten K; Drewes, Gerard; Kocken, Clemens H M; Delves, Michael J; Leroy, Didier; Fidock, David A; Waterson, David; Street, Leslie J; Chibale, Kelly

    2017-04-26

    As part of the global effort toward malaria eradication, phenotypic whole-cell screening revealed the 2-aminopyridine class of small molecules as a good starting point to develop new antimalarial drugs. Stemming from this series, we found that the derivative, MMV390048, lacked cross-resistance with current drugs used to treat malaria. This compound was efficacious against all Plasmodium life cycle stages, apart from late hypnozoites in the liver. Efficacy was shown in the humanized Plasmodium falciparum mouse model, and modest reductions in mouse-to-mouse transmission were achieved in the Plasmodium berghei mouse model. Experiments in monkeys revealed the ability of MMV390048 to be used for full chemoprotection. Although MMV390048 was not able to eliminate liver hypnozoites, it delayed relapse in a Plasmodium cynomolgi monkey model. Both genomic and chemoproteomic studies identified a kinase of the Plasmodium parasite, phosphatidylinositol 4-kinase, as the molecular target of MMV390048. The ability of MMV390048 to block all life cycle stages of the malaria parasite suggests that this compound should be further developed and may contribute to malaria control and eradication as part of a single-dose combination treatment. Copyright © 2017, American Association for the Advancement of Science.

  6. A generalized memory test algorithm

    NASA Technical Reports Server (NTRS)

    Milner, E. J.

    1982-01-01

    A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.

  7. Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.

    PubMed

    Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges

    2009-03-01

    We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.

  8. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions*

    PubMed Central

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M.; Barron, Luke; Qualls, Joseph E.; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O.; Wynn, Thomas A.; Murray, Peter J.

    2017-01-01

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. PMID:27903651

  9. T Cells Encountering Myeloid Cells Programmed for Amino Acid-dependent Immunosuppression Use Rictor/mTORC2 Protein for Proliferative Checkpoint Decisions.

    PubMed

    Van de Velde, Lee-Ann; Subramanian, Chitra; Smith, Amber M; Barron, Luke; Qualls, Joseph E; Neale, Geoffrey; Alfonso-Pecchio, Adolfo; Jackowski, Suzanne; Rock, Charles O; Wynn, Thomas A; Murray, Peter J

    2017-01-06

    Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G 1 , and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G 1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    PubMed

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  11. Optimization of the Photoanode of CdS Quantum Dot-Sensitized Solar Cells Using Light-Scattering TiO2 Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Marandi, Maziar; Rahmani, Elham; Ahangarani Farahani, Farzaneh

    2017-12-01

    CdS quantum dot-sensitized solar cells (QDSCs) have been fabricated and their photoanode optimized by altering the thickness of the photoelectrode and CdS deposition conditions and applying a ZnS electron-blocking layer and TiO2 hollow spheres. Hydrothermally grown TiO2 nanocrystals (NCs) with dominant size of 20 nm were deposited as a sublayer in the photoanode with thickness in the range from 5 μm to 10 μm using a successive ionic layer adsorption and reaction (SILAR) method. The number of deposition cycles was altered over a wide range to obtain optimized sensitization. Photoanode thickness and number of CdS sensitization cycles around the optimum values were selected and used for ZnS deposition. ZnS overlayers were also deposited on the surface of the photoanodes using different numbers of cycles of the SILAR process. The best QDSC with the optimized photoelectrode demonstrated a 153% increase in efficiency compared with a similar cell with ZnS-free photoanode. Such bilayer photoelectrodes were also fabricated with different thicknesses of TiO2 sublayers and one overlayer of TiO2 hollow spheres (HSs) with external diameter of 500 nm fabricated by liquid-phase deposition with carbon spheres as template. The optimization was performed by changing the photoanode thickness using a wide range of CdS sensitizing cycles. The maximum energy conversion efficiency was increased by about 77% compared with a similar cell with HS-free photoelectrode. The reason was considered to be the longer path length of the incident light inside the photoanode and greater light absorption. A ZnS blocking layer was overcoated on the surface of the bilayer photoanode with optimized thickness. The number of CdS sensitization cycles was also changed around the optimized value to obtain the best QDSC performance. The number of ZnS deposition cycles was also altered in a wide range for optimization of the photovoltaic performance. It was shown that the maximum efficiency was increased by about 55% compared with a similar QDSC with ZnS-free bilayer photoanode. The final improvement was carried out by applying methanol-based Cd precursor solution in the SILAR deposition process. The best photoanodes from the previous stages were selected and used in this sensitizing process. Besides, nanocrystalline TiO2 sublayers with different thicknesses were applied for further optimization. The results revealed that maximum power conversion efficiency of 3.7% was achieved as a result of such improvement, for a QDSC with optimized double-layer photoanode including TiO2 HSs and NCs and ZnS blocking layer.

  12. Design study and performance analysis of a high-speed multistage variable-geometry fan for a variable cycle engine

    NASA Technical Reports Server (NTRS)

    Sullivan, T. J.; Parker, D. E.

    1979-01-01

    A design technology study was performed to identify a high speed, multistage, variable geometry fan configuration capable of achieving wide flow modulation with near optimum efficiency at the important operating condition. A parametric screening study of the front and rear block fans was conducted in which the influence of major fan design features on weight and efficiency was determined. Key design parameters were varied systematically to determine the fan configuration most suited for a double bypass, variable cycle engine. Two and three stage fans were considered for the front block. A single stage, core driven fan was studied for the rear block. Variable geometry concepts were evaluated to provide near optimum off design performance. A detailed aerodynamic design and a preliminary mechanical design were carried out for the selected fan configuration. Performance predictions were made for the front and rear block fans.

  13. The life cycles of intense cyclonic and anticyclonic circulation systems observed over oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1994-01-01

    The work over the past six months has focused on the October/November 1985 blocking case study noted in the last progress report. A summary of the results of this effort is contained in the attached preprint papers for the Symposium on the Life Cycles of Extratropical Cyclones. Using this case study as a model, Ph.D. student Anthony Lupo is now initiating the multiple-case diagnosis by first examining two more fall 1985 blocking episodes. In addition, two secondary efforts have been completed, as summarized in the attached M.S. thesis abstracts. Both studies, which were primarily funded by a fellowship and a teaching assistantship, complement the objectives of this study by providing diagnoses of additional cyclone cases to serve as a comparative base for the pre-blocking cyclones to be studied in the multiple-case blocking diagnosis.

  14. Analysis of Glenoid Fixation with Anatomic Total Shoulder Arthroplasty in an Extreme Cyclic Loading Scenario.

    PubMed

    Roche, Christopher P; Staunch, Cameron; Hahn, William; Grey, Sean G; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D

    2015-12-01

    ASTM F2028-14 was adopted to recom mend a cyclic eccentric glenoid edge loading test that simulates the rocking horse loading mechanism beleived to cause aTSA glenoid loosening. While this method accurately simulates that failure mechanism, the recommended 750 N load may not be sufficient to simulate worst-case loading magnitudes, and the recommended 100,000 cycles may not be sufficient to simulate device fatigue-related failure modes. Finally, if greater loading magnitude or a larger number of cycles is performed, the recommended substrate density may not be sufficiently strong to support the elevated loads and cycles. To this end, a new test method is proposed to supplement ASTM F2028-14. A series of cyclic tests were performed to evaluate the long-term fixation strength of two different hybrid glenoid designs in both low (15 pcf) and high (30 pcf) density polyurethane blocks at elevated loads relative to ASTM F2028-14. To simulate a worst case clinical condition in which the humeral head is superiorly migrated, a cyclic load was applied to the superior glenoid rim to induce a maximum torque on the fixation pegs for three different cyclic loading tests: 1. 1,250 N load for 0.75 M cycles in a 15 pcf block, 2. 1,250 N load for 1.5 M cycles in a 30 pcf block, and 3. 2,000 N load for 0.65 M cycles in a 30 pcf block. All devices completed cyclic loading without failure, fracture, or loss of fixation regardless of glenoid design, polyurethane density, loading magnitude, or cycle length. No significant difference in post-cyclic displacement was noted between designs in any of the three tests. Post-cyclic radiographs demonstrated that each device maintained fixa - tion with the metal pegs within the bone-substitute blocks with no fatigue related failures. These results demonstrate that both cemented hybrid glenoids maintained fixation when tested according to each cyclic loading scenario, with no difference in post-cyclic displacement observed between designs. The lack of fatigue-related failures in these elevated load and high cycle test scenarios are promising, as are the relatively low displacements given the extreme nature of each test. This cyclic loading method is intended to supplement the ASTM F2028-14 standard that adequately simulates the rocking horse loading mechanism but may not adequately simulate the fatigue-related failure modes.

  15. Intrinsic, nondeterministic circadian rhythm generation in identified mammalian neurons.

    PubMed

    Webb, Alexis B; Angelo, Nikhil; Huettner, James E; Herzog, Erik D

    2009-09-22

    Circadian rhythms are modeled as reliable and self-sustained oscillations generated by single cells. The mammalian suprachiasmatic nucleus (SCN) keeps near 24-h time in vivo and in vitro, but the identity of the individual cellular pacemakers is unknown. We tested the hypothesis that circadian cycling is intrinsic to a unique class of SCN neurons by measuring firing rate or Period2 gene expression in single neurons. We found that fully isolated SCN neurons can sustain circadian cycling for at least 1 week. Plating SCN neurons at <100 cells/mm(2) eliminated synaptic inputs and revealed circadian neurons that contained arginine vasopressin (AVP) or vasoactive intestinal polypeptide (VIP) or neither. Surprisingly, arrhythmic neurons (nearly 80% of recorded neurons) also expressed these neuropeptides. Furthermore, neurons were observed to lose or gain circadian rhythmicity in these dispersed cell cultures, both spontaneously and in response to forskolin stimulation. In SCN explants treated with tetrodotoxin to block spike-dependent signaling, neurons gained or lost circadian cycling over many days. The rate of PERIOD2 protein accumulation on the previous cycle reliably predicted the spontaneous onset of arrhythmicity. We conclude that individual SCN neurons can generate circadian oscillations; however, there is no evidence for a specialized or anatomically localized class of cell-autonomous pacemakers. Instead, these results indicate that AVP, VIP, and other SCN neurons are intrinsic but unstable circadian oscillators that rely on network interactions to stabilize their otherwise noisy cycling.

  16. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    NASA Astrophysics Data System (ADS)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  17. Synthesis, Biological Evaluation, and Structure–Activity Relationships of Novel Substituted N-Phenyl Ureidobenzenesulfonate Derivatives Blocking Cell Cycle Progression in S-Phase and Inducing DNA Double-Strand Breaks

    PubMed Central

    2012-01-01

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents. PMID:22694057

  18. Synthesis, biological evaluation, and structure-activity relationships of novel substituted N-phenyl ureidobenzenesulfonate derivatives blocking cell cycle progression in S-phase and inducing DNA double-strand breaks.

    PubMed

    Turcotte, Vanessa; Fortin, Sébastien; Vevey, Florence; Coulombe, Yan; Lacroix, Jacques; Côté, Marie-France; Masson, Jean-Yves; C-Gaudreault, René

    2012-07-12

    Twenty-eight new substituted N-phenyl ureidobenzenesulfonate (PUB-SO) and 18 N-phenylureidobenzenesulfonamide (PUB-SA) derivatives were prepared. Several PUB-SOs exhibited antiproliferative activity at the micromolar level against the HT-29, M21, and MCF-7 cell lines and blocked cell cycle progression in S-phase similarly to cisplatin. In addition, PUB-SOs induced histone H2AX (γH2AX) phosphorylation, indicating that these molecules induce DNA double-strand breaks. In contrast, PUB-SAs were less active than PUB-SOs and did not block cell cycle progression in S-phase. Finally, PUB-SOs 4 and 46 exhibited potent antitumor activity in HT-1080 fibrosarcoma cells grafted onto chick chorioallantoic membranes, which was similar to cisplatin and combretastatin A-4 and without significant toxicity toward chick embryos. These new compounds are members of a promising new class of anticancer agents.

  19. Flow cytometry analysis of cell cycle and specific cell synchronization with butyrate

    USDA-ARS?s Scientific Manuscript database

    Synchronized cells have been invaluable in many kinds of cell cycle and cell proliferation studies. Butyrate induces cell cycle arrest and apoptosis in MDBK cells. The possibility of using butyrate-blocked cells to obtain synchronized cells was explored and the properties of butyrate-induced cell ...

  20. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines.

    PubMed

    Yan, Wei; Yang, Tao; Yang, Jianhong; Wang, Taijin; Yu, Yamei; Wang, Yuxi; Chen, Qiang; Bai, Peng; Li, Dan; Ye, Haoyu; Qiu, Qiang; Zhou, Yongzhao; Hu, Yiguo; Yang, Shengyong; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2018-05-22

    Many tubulin inhibitors are in clinical use as anti-cancer drugs. In our previous study, a novel series of 4-substituted coumarins derivatives were identified as novel tubulin inhibitors. Here, we report the anti-cancer activity and underlying mechanism of one of the 4-substituted coumarins derivatives (SKLB060). The anti-cancer activity of SKLB060 was tested on 13 different cancer cell lines and four xenograft cancer models. Immunofluorescence staining, cell cycle analysis, and tubulin polymerization assay were employed to study the inhibition of tubulin. N, N '-Ethylenebis(iodoacetamide) assay was used to measure binding to the colchicine site. Wound-healing migration and tube formation assays were performed on human umbilical vascular endothelial cells to study anti-vascular activity (the ability to inhibit blood vessel growth). Mitotic block reversibility and structural biology assays were used to investigate the SKLB060-tubulin bound model. SKLB060 inhibited tubulin polymerization and subsequently induced G2/M cell cycle arrest and apoptosis in cancer cells. SKLB060 bound to the colchicine site of β-tubulin and showed antivascular activity in vitro. Moreover, SKLB060 induced reversible cell cycle arrest and reversible inhibition of tubulin polymerization. A mitotic block reversibility assay showed that the effects of SKLB060 have greater reversibility than those of colcemid (a reversible tubulin inhibitor), indicating that SKLB060 binds to tubulin in a totally reversible manner. The crystal structures of SKLB060-tubulin complexes confirmed that SKLB060 binds to the colchicine site, and the natural coumarin ring in SKLB060 enables reversible binding. These results reveal that SKLB060 is a powerful and reversible microtubule inhibitor that binds to the colchicine site and is effective in multidrug-resistant cell lines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  1. Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    PubMed Central

    Wang, Jibin; Fang, Shouguo; Xiao, Han; Chen, Bo; Tam, James P.; Liu, Ding Xiang

    2009-01-01

    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus. PMID:19287488

  2. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges

    PubMed Central

    Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591

  3. Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.

    PubMed

    Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela

    2017-01-01

    This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.

  4. In Vitro Antiproliferative Effect of Arthrocnemum indicum Extracts on Caco-2 Cancer Cells through Cell Cycle Control and Related Phenol LC-TOF-MS Identification

    PubMed Central

    Boulaaba, Mondher; Mkadmini, Khaoula; Tsolmon, Soninkhishig; Han, Junkyu; Smaoui, Abderrazak; Kawada, Kiyokazu; Ksouri, Riadh; Isoda, Hiroko; Abdelly, Chedly

    2013-01-01

    This study aimed to determinate phenolic contents and antioxidant activities of the halophyte Arthrocnemum indicum shoot extracts. Moreover, the anticancer effect of this plant on human colon cancer cells and the likely underlying mechanisms were also investigated, and the major phenols were identified by LC-ESI-TOF-MS. Results showed that shoot extracts had an antiproliferative effect of about 55% as compared to the control and were characterised by substantial total polyphenol content (19 mg GAE/g DW) and high antioxidant activity (IC50 = 40 μg/mL for DPPH test). DAPI staining revealed that these extracts decrease DNA synthesis and reduce the proliferation of Caco-2 cells which were stopped at the G2/M phase. The changes in the cell-cycle-associated proteins (cyclin B1, p38, Erk1/2, Chk1, and Chk2) correlate with the changes in cell cycle distribution. Eight phenolic compounds were also identified. In conclusion, A. indicum showed interesting antioxidant capacities associated with a significant antiproliferative effect explained by a cell cycle blocking at the G2/M phase. Taken together, these data suggest that A. indicum could be a promising candidate species as a source of anticancer molecules. PMID:24348703

  5. Extreme Value Theory and the New Sunspot Number Series

    NASA Astrophysics Data System (ADS)

    Acero, F. J.; Carrasco, V. M. S.; Gallego, M. C.; García, J. A.; Vaquero, J. M.

    2017-04-01

    Extreme value theory was employed to study solar activity using the new sunspot number index. The block maxima approach was used at yearly (1700-2015), monthly (1749-2016), and daily (1818-2016) scales, selecting the maximum sunspot number value for each solar cycle, and the peaks-over-threshold (POT) technique was used after a declustering process only for the daily data. Both techniques led to negative values for the shape parameters. This implies that the extreme sunspot number value distribution has an upper bound. The return level (RL) values obtained from the POT approach were greater than when using the block maxima technique. Regarding the POT approach, the 110 year (550 and 1100 year) RLs were lower (higher) than the daily maximum observed sunspot number value of 528. Furthermore, according to the block maxima approach, the 10-cycle RL lay within the block maxima daily sunspot number range, as expected, but it was striking that the 50- and 100-cycle RLs were also within that range. Thus, it would seem that the RL is reaching a plateau, and, although one must be cautious, it would be difficult to attain sunspot number values greater than 550. The extreme value trends from the four series (yearly, monthly, and daily maxima per solar cycle, and POT after declustering the daily data) were analyzed with the Mann-Kendall test and Sen’s method. Only the negative trend of the daily data with the POT technique was statistically significant.

  6. Maintenance of Marine Structures: A State of the Art Summary

    DTIC Science & Technology

    1993-05-01

    Edward K(adala Mr. David L Stocks Mr. William Hanzelek Mr. Allen H. Enose Mr. Peter Tkmonin MILTAY SAUIECOMANDMRTIEA U. S. COAST GUARD Mr. Robert E. Van... Musher of areu block, III-Nwmber of usrew block e block i NI-’nwaber of cycles -. Azifre da/dn-F(K.,-K..) or the crack growth rate is some function of

  7. Dynamics of Human Telomerase Holoenzyme Assembly and Subunit Exchange across the Cell Cycle*

    PubMed Central

    Vogan, Jacob M.; Collins, Kathleen

    2015-01-01

    Human telomerase acts on telomeres during the genome synthesis phase of the cell cycle, accompanied by its concentration in Cajal bodies and transient colocalization with telomeres. Whether the regulation of human telomerase holoenzyme assembly contributes to the cell cycle restriction of telomerase function is unknown. We investigated the steady-state levels, assembly, and exchange dynamics of human telomerase subunits with quantitative in vivo cross-linking and other methods. We determined the physical association of telomerase subunits in cells blocked or progressing through the cell cycle as synchronized by multiple protocols. The total level of human telomerase RNA (hTR) was invariant across the cell cycle. In vivo snapshots of telomerase holoenzyme composition established that hTR remains bound to human telomerase reverse transcriptase (hTERT) throughout all phases of the cell cycle, and subunit competition assays suggested that hTERT-hTR interaction is not readily exchangeable. In contrast, the telomerase holoenzyme Cajal body-associated protein, TCAB1, was released from hTR in mitotic cells coincident with TCAB1 delocalization from Cajal bodies. This telomerase holoenzyme disassembly was reversible with cell cycle progression without any change in total TCAB1 protein level. Consistent with differential cell cycle regulation of hTERT-hTR and TCAB1-hTR protein-RNA interactions, overexpression of hTERT or TCAB1 had limited if any influence on hTR assembly of the other subunit. Overall, these findings revealed a cell cycle regulation that disables human telomerase association with telomeres while preserving the co-folded hTERT-hTR ribonucleoprotein catalytic core. Studies here, integrated with previous work, led to a unifying model for telomerase subunit assembly and trafficking in human cells. PMID:26170453

  8. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone

    PubMed Central

    Ono, Y.; Woodmass, J. M.; Nelson, A. A.; Boorman, R. S.; Thornton, G. M.

    2016-01-01

    Objectives This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Methods Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’. Results In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed ‘suture cutting through bone’ as the predominant source of suture displacement in cadaveric bone (qualitative) and greater ‘suture cutting through bone’ comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Conclusions Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone. Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269–275. DOI: 10.1302/2046-3758.56.2000535. PMID:27357383

  9. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone.

    PubMed

    Ono, Y; Woodmass, J M; Nelson, A A; Boorman, R S; Thornton, G M; Lo, I K Y

    2016-06-01

    This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P). Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of 'suture cutting through bone'. In cadaveric bone and foam blocks, MultiFIX P anchors had significantly greater initial displacement, and lower number of cycles and lower load at 3 mm displacement than SpeedScrew anchors. Video analysis revealed 'suture cutting through bone' as the predominant source of suture displacement in cadaveric bone (qualitative) and greater 'suture cutting through bone' comparing MultiFIX P with SpeedScrew anchors in foam blocks (quantitative). The greater suture displacement in MultiFIX P anchors was predominantly from suture cutting through bone, which was enhanced in an osteopenic bone model. Anchors with sutures external to the anchor body are at risk for suture cutting through bone since the suture eyelet is at the distal tip of the implant and the suture directly abrades against the bone edge during cyclic loading. Suture cutting through bone may be a significant source of fixation failure, particularly in osteopenic bone.Cite this article: Y. Ono, J. M. Woodmass, A. A. Nelson, R. S. Boorman, G. M. Thornton, I. K. Y. Lo. Knotless anchors with sutures external to the anchor body may be at risk for suture cutting through osteopenic bone. Bone Joint Res 2016;5:269-275. DOI: 10.1302/2046-3758.56.2000535. © 2016 Lo et al.

  10. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    NASA Astrophysics Data System (ADS)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently present result from removal of sediments from below, as a result of the tidal fluctuations.

  11. Influence of Solar Variability on the North Atlantic / European Sector.

    NASA Astrophysics Data System (ADS)

    Gray, L. J.

    2016-12-01

    The 11year solar cycle signal in December-January-February averaged mean-sea-level pressure and Atlantic/European blocking frequency is examined using multilinear regression with indices to represent variability associated with the solar cycle, volcanic eruptions, the El Nino - Southern Oscillation (ENSO) and the Atlantic Multidecadal Oscillation (AMO). Results from a previous 11-year solar cycle signal study of the period 1870-2010 (140 years; 13 solar cycles) that suggested a 3-4 year lagged signal in SLP over the Atlantic are confirmed by analysis of a much longer reconstructed dataset for the period 1660-2010 (350 years; 32 solar cycles). Apparent discrepancies between earlier studies are resolved and stem primarily from the lagged nature of the response and differences between early- and late-winter responses. Analysis of the separate winter months provide supporting evidence for two mechanisms of influence, one operating via the atmosphere that maximises in late winter at 0-2 year lags and one via the mixd-layer ocean that maximises in early winter at 3-4 year lags. Corresponding analysis of DJF-averaged Atlantic / European blocking frequency shows a highly statistically significant signal at 1-year lag that originates promarily from the late winter response. The 11-year solar signal in DJF blocking frequency is compared with other known influences from ENSO and the AMO and found to be as large in amplitude and have a larger region of statistical significance.

  12. USAF Damage Tolerant Design Handbook: Guidelines for the Analysis and Design of Damage Tolerant Aircraft Structures. Revision B

    DTIC Science & Technology

    1984-05-01

    Effect of Block Programming and Block Size on Crack Growth Life (All Histories Have Same Cycle Content) Alloy : 2024 -T3 Aluminum (Reference 27...1 I 6 o T 1 >0 100 Crack Growth Life for l-in. Crack Growth 1000 Figure 5.1.10, Effect of Humidity on Fatigue Crack Propagation...Growth Life (All Histories Have Same Cycle Content) Alloy : 2024 -T3 Aluminum (Reference 27). 5.2.6 Yield Zone Due to Overload (r T), Current Crack

  13. Cumulative fatigue damage behavior of MAR M-247

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.; Halford, Gary R.; Kalluri, Sreeramesh

    1991-01-01

    The objective was to examine the room temperature fatigue and nonlinear cumulative fatigue damage behavior of the cast nickel-based superalloy, MAR M-247. The fatigue test matrix consisted of single-level, fully reversed fatigue experiments. Two series of tests were performed: one of the two baseline fatigue LCF (Low-Cycle Fatigue) life levels was used in the first loading block, and the HCF (High-Cycle Fatigue) baseline loading level was used in the second block in each series. For each series, duplicate tests were performed at each applied LCF life fraction.

  14. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  15. Comparing cutting efficiencies of diamond burs using a high-speed electric handpiece.

    PubMed

    Chung, Evelyn M; Sung, Eric C; Wu, Ben; Caputo, Angelo A

    2006-01-01

    This study sought to compare the cutting efficiency of different diamond burs on initial use as well as during repeated use, alternating with sterilization. Long, round-end, tapered diamond burs with similar diameter, profile, and diamond coarseness (125-150 microm grit) were used. A high-torque, high-speed electric handpiece (set at 200,000 rpm) was utilized with a coolant flow rate of 25 mL/min. Burs were tested under a constant load of 170 g while cuts were made on a machinable ceramic substrate block. Each bur was subjected to five consecutive cuts for 30 seconds of continuous operation and the cutting depths were measured. All burs performed similarly on the first cut. Cutting efficiencies for three of the bur groups decreased significantly after the first cycle; however, by the fifth cycle, all bur groups performed similarly without any significant differences (p > 0.05). A scanning electron microscope revealed significant crystal loss after each use.

  16. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  17. Inducing microstructural changes in Nafion by incorporating graphitic carbon nitride to enhance the vanadium-blocking effect.

    PubMed

    Wu, Chunxiao; Lu, Shanfu; Zhang, Jin; Xiang, Yan

    2018-03-14

    Two-dimensional graphitic carbon nitride (g-C 3 N 4 ) nanosheets are introduced into a Nafion matrix to prepare a 'vanadium-blocking' recast Nafion membrane for vanadium redox flow battery (VRFB) applications. After 0.2 wt% g-C 3 N 4 nanosheets are incorporated, the vanadium ion permeability of the composite membrane decreases from 3.3 × 10 -7 cm 2 min -1 to 3.8 × 10 -9 cm 2 min -1 , which is a reduction of two orders of magnitude in comparison to the pristine recast Nafion membrane. This satisfactory result contributes to the physical blocking effect as well as the Donnan effect from the 2D morphology and functional amino groups of g-C 3 N 4 nanosheets. Notably, this work reveals that the g-C 3 N 4 nanosheets can help reinforce the vanadium-blocking effect by changing the microstructure of Nafion in addition to the well-known effects mentioned above. The g-C 3 N 4 nanosheets induce shrinkage in the original spherical structure of the ion cluster and generate a new lamellar structure. Correspondingly, the amorphous phase of Nafion is interrupted, and the membrane crystallinity is reduced. The VRFB with an optimized composite membrane achieves a high coulombic efficiency of 97% and an energy efficiency of 83% at a current density of 160 mA cm -2 . Meanwhile, the battery exhibited excellent lifetime stability during a 100 charge-discharge cycling test.

  18. Dual-Functional Polyethylene Glycol-b-polyhexanide Surface Coating with in Vitro and in Vivo Antimicrobial and Antifouling Activities.

    PubMed

    Zhi, Zelun; Su, Yajuan; Xi, Yuewei; Tian, Liang; Xu, Miao; Wang, Qianqian; Padidan, Sara; Li, Peng; Huang, Wei

    2017-03-29

    In recent years, microbial colonization on the surface of biomedical implants/devices has become a severe threat to human health. Herein, surface-immobilized guanidine derivative block copolymers create an antimicrobial and antifouling dual-functional coating. We report the preparation of an antimicrobial and antifouling block copolymer by the conjugation of polyhexanide (PHMB) with either allyl glycidyl ether or allyloxy polyethylene glycol (APEG; MW 1200 and 2400). The allyl glycidyl ether modified PHMB (A-PHMB) and allyloxy polyethylene glycol 1200/2400 modified PHMB (APEG 1200/2400 -PHMB) copolymers were grafted onto a silicone rubber surface as a bottlebrush-like coating, respectively, using a plasma-UV-assisted surface-initiated polymerization. Both A-PHMB and APEG 1200/2400 -PHMB coatings exhibited excellent broad-spectrum antimicrobial properties against Gram-negative/positive bacteria and fungi. The APEG 2400 -PHMB coating displayed an improved antibiofilm as well as antifouling properties and a long reusable cycle, compared with two other coatings, due to its abundant PEG blocks among those copolymers. Also, the APEG 2400 -PHMB-coated silicone coupons were biocompatible toward mammalian cells, as revealed by in vitro hemocompatibile and cytotoxic assays. An in vivo study showed a significant decline of Escherichia coli colonies with a 5-log reduction, indicating the APEG 2400 -PHMB coating surface worked effectively in the rodent subcutaneous infection model. This PHMB-based block copolymer coating is believed to be an effective strategy to prevent biomaterial-associated infections.

  19. Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.

    PubMed

    Fleisig, Helen; Wong, Judy

    2012-05-22

    Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.

  20. Paris Saponin I Sensitizes Gastric Cancer Cell Lines to Cisplatin via Cell Cycle Arrest and Apoptosis.

    PubMed

    Song, Shuichuan; Du, Leiwen; Jiang, Hao; Zhu, Xinhai; Li, Jinhui; Xu, Ji

    2016-10-18

    BACKGROUND Dose-related toxicity is the major restriction of cisplatin and cisplatin-combination chemotherapy, and is a challenge for advanced gastric cancer treatment. We explored the possibility of using Paris saponin I as an agent to sensitize gastric cancer cells to cisplatin, and examined the underlying mechanism. MATERIAL AND METHODS Growth inhibition was detected by MTT assay. The cell cycle and apoptosis were detected using flow cytometry and Annexin V/PI staining. The P21waf1/cip1, Bcl-2, Bax, and caspase-3 protein expression were detected using Western blot analysis. RESULTS The results revealed that PSI sensitized gastric cancer cells to cisplatin, with low toxicity. The IC50 value of cisplatin in SGC-7901 cell lines was decreased when combined with PSI. PSI promoted cisplatin-induced G2/M phase arrest and apoptosis in a cisplatin concentration-dependent manner. Bcl-2 protein expression decreased, but Bax, caspase-3, and P21waf1/cip1 protein expression increased with PSI treatment. CONCLUSIONS The underlying mechanism of Paris saponin I may be related to targeting the apoptosis pathway and cell cycle blocking, which suggests that PSI is a potential therapeutic sensitizer for cisplatin in treating gastric cancer.

  1. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle.

    PubMed

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian; Kümmerer, Beate Mareike

    2017-01-01

    The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d'Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus , e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers.

  2. Host Range Restriction of Insect-Specific Flaviviruses Occurs at Several Levels of the Viral Life Cycle

    PubMed Central

    Junglen, Sandra; Korries, Marvin; Grasse, Wolfgang; Wieseler, Janett; Kopp, Anne; Hermanns, Kyra; León-Juárez, Moises; Drosten, Christian

    2017-01-01

    ABSTRACT The genus Flavivirus contains emerging arthropod-borne viruses (arboviruses) infecting vertebrates, as well as insect-specific viruses (ISVs) (i.e., viruses whose host range is restricted to insects). ISVs are evolutionary precursors to arboviruses. Knowledge of the nature of the ISV infection block in vertebrates could identify functions necessary for the expansion of the host range toward vertebrates. Mapping of host restrictions by complementation of ISV and arbovirus genome functions could generate knowledge critical to predicting arbovirus emergence. Here we isolated a novel flavivirus, termed Niénokoué virus (NIEV), from mosquitoes sampled in Côte d’Ivoire. NIEV groups with insect-specific flaviviruses (ISFs) in phylogeny and grows in insect cells but not in vertebrate cells. We generated an infectious NIEV cDNA clone and a NIEV reporter replicon to study growth restrictions of NIEV in comparison to yellow fever virus (YFV), for which the same tools are available. Efficient RNA replication of the NIEV reporter replicon was observed in insect cells but not in vertebrate cells. Initial translation of the input replicon RNA in vertebrate cells was functional, but RNA replication did not occur. Chimeric YFV carrying the envelope proteins of NIEV was recovered via electroporation in C6/36 insect cells but did not infect vertebrate cells, indicating a block at the level of entry. Since the YF/NIEV chimera readily produced infectious particles in insect cells but not in vertebrate cells despite efficient RNA replication, restriction is also determined at the level of assembly/release. Taking the results together, the ability of ISF to infect vertebrates is blocked at several levels, including attachment/entry and RNA replication as well as assembly/release. IMPORTANCE Most viruses of the genus Flavivirus, e.g., YFV and dengue virus, are mosquito borne and transmitted to vertebrates during blood feeding of mosquitoes. Within the last decade, an increasing number of viruses with a host range exclusively restricted to insects in close relationship to the vertebrate-pathogenic flaviviruses were discovered in mosquitoes. To identify barriers that could block the arboviral vertebrate tropism, we set out to identify the steps at which the ISF replication cycle fails in vertebrates. Our studies revealed blocks at several levels, suggesting that flavivirus host range expansion from insects to vertebrates was a complex process that involved overcoming multiple barriers. PMID:28101536

  3. Cell cycle progression in irradiated endothelial cells cultured from bovine aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, D.B.; Drab, E.A.; Ward, W.F.

    1988-11-01

    Logarithmically growing endothelial cells from bovine aortas were exposed to single doses of 0-10 Gy of 60Co gamma rays, and cell cycle phase distribution and progression were examined by flow cytometry and autoradiography. In some experiments, cells were synchronized in the cell cycle with hydroxyurea (1 mM). Cell number in sham-irradiated control cultures doubled in approximately 24 h. Estimated cycle stage times for control cells were 14.4 h for G1 phase, 7.2 h for S phase, and 2.4 h for G2 + M phase. Irradiated cells demonstrated a reduced distribution at the G1/S phase border at 4 h, and anmore » increased distribution in G2 + M phase at 24 h postirradiation. Autoradiographs of irradiated cells after continuous (3H)thymidine labeling indicated a block in G1 phase or at the G1/S-phase border. The duration of the block was dose dependent (2-3 min/cGy). Progression of the endothelial cells through S phase after removal of the hydroxyurea block also was retarded by irradiation, as demonstrated by increased distribution in early S phase and decreased distribution in late S phase. These results indicate that progression of asynchronous cultured bovine aortic endothelial cells through the DNA synthetic cycle is susceptible to radiation inhibition at specific sites in the cycle, resulting in redistribution and partial synchronization of the population. Thus aortic endothelial cells, diploid cells from a normal tissue, resemble many immortal cell types that have been examined in this regard in vitro.« less

  4. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun

    2017-03-01

    With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells.

    PubMed

    Krýsová, Hana; Krýsa, Josef; Kavan, Ladislav

    2018-01-01

    For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO 2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO 2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20-200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO 2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO 2 films. The blocking properties of the as-deposited TiO 2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO 2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells.

  6. Amphiphilic block copolymer membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena

    2013-11-01

    An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.

  7. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    PubMed

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  8. Extracellular Citrate Affects Critical Elements of Cancer Cell Metabolism and Supports Cancer Development In Vivo.

    PubMed

    Mycielska, Maria E; Dettmer, Katja; Rümmele, Petra; Schmidt, Katharina; Prehn, Cornelia; Milenkovic, Vladimir M; Jagla, Wolfgang; Madej, Gregor M; Lantow, Margareta; Schladt, Moritz; Cecil, Alexander; Koehl, Gudrun E; Eggenhofer, Elke; Wachsmuth, Christian J; Ganapathy, Vadivel; Schlitt, Hans J; Kunzelmann, Karl; Ziegler, Christine; Wetzel, Christian H; Gaumann, Andreas; Lang, Sven A; Adamski, Jerzy; Oefner, Peter J; Geissler, Edward K

    2018-05-15

    Glycolysis and fatty acid synthesis are highly active in cancer cells through cytosolic citrate metabolism, with intracellular citrate primarily derived from either glucose or glutamine via the tricarboxylic acid cycle. We show here that extracellular citrate is supplied to cancer cells through a plasma membrane-specific variant of the mitochondrial citrate transporter (pmCiC). Metabolomic analysis revealed that citrate uptake broadly affected cancer cell metabolism through citrate-dependent metabolic pathways. Treatment with gluconate specifically blocked pmCiC and decreased tumor growth in murine xenografts of human pancreatic cancer. This treatment altered metabolism within tumors, including fatty acid metabolism. High expression of pmCiC was associated with invasion and advanced tumor stage across many human cancers. These findings support the exploration of extracellular citrate transport as a novel potential target for cancer therapy. Significance: Uptake of extracellular citrate through pmCiC can be blocked with gluconate to reduce tumor growth and to alter metabolic characteristics of tumor tissue. Cancer Res; 78(10); 2513-23. ©2018 AACR . ©2018 American Association for Cancer Research.

  9. Evolution of sequence-defined highly functionalized nucleic acid polymers

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.

    2018-03-01

    The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.

  10. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  11. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.

    PubMed

    Chen, I-Wen Peter; Yang, Ming-Chia; Yang, Chia-Hui; Zhong, Dai-Xuan; Hsu, Ming-Chun; Chen, YiWen

    2017-02-15

    This is a study on the development of carbon nanotube-based composite actuators using a new ionic liquid-doped electroactive ionic polymer. For scalable production purposes, a simple hot-pressing method was used. Carbon nanotube/ionic liquid-Nafion/carbon nanotube composite films were fabricated that exhibited a large output blocking force and a stable cycling life with low alternating voltage stimuli in air. Of particular interest and importance, a blocking force of 1.5 N was achieved at an applied voltage of 6 V. Operational durability was confirmed by testing in air for over 30 000 cycles (or 43 h). The superior actuation performance of the carbon nanotube/ionic liquid-Nafion/carbon nanotube composite, coupled with easy manufacturability, low driving voltage, and reliable operation, promises great potential for artificial muscle and biomimetic applications.

  12. Tris(trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi 0.5Mn 0.3Co 0.2O 2- Graphite full cell cycling

    DOE PAGES

    Peebles, Cameron; Sahore, Ritu; Gilbert, James A.; ...

    2017-05-27

    Here, tris(trimethylsilyl) phosphite (TMSPi) has emerged as an useful electrolyte additive for lithium ion cells. This work examines the use of TMSPi and a structurally analogous compound, triethyl phosphite (TEPi), in LiNi 0.5Mn 0.3Co 0.2O 2-graphite full cells, containing a (baseline) electrolyte with 1.2 M LiPF6 in EC: EMC (3:7 w/w) and operating between 3.0-4.4 V. Galvanostatic cycling data reveal a measurable difference in capacity fade between the TMSPi and TEPi cells. Furthermore, lower impedance rise is observed for the TMSPi cells, because of the formation of a P-and O-rich surface film on the positive electrode that was revealed bymore » X-ray photoelectron spectroscopy data. Elemental analysis on negative electrodes harvested from cycled cells show lower contents of transition metal (TM) elements for the TMSPi cells than for the baseline and TEPi cells. Our findings indicate that removal of TMS groups from the central P-O core of the TMSPi additive enables formation of the oxide surface film. This film is able to block the generation of reactive TM-oxygen radical species, suppress hydrogen abstraction from the electrolyte solvent, and minimize oxidation reactions at the positive electrode-electrolyte interface. In contrast, oxidation of TEPi does not yield a protective positive electrode film, which results in inferior electrochemical performance.« less

  13. Tris(trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: Mechanistic insights into differences during LiNi 0.5Mn 0.3Co 0.2O 2- Graphite full cell cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peebles, Cameron; Sahore, Ritu; Gilbert, James A.

    Here, tris(trimethylsilyl) phosphite (TMSPi) has emerged as an useful electrolyte additive for lithium ion cells. This work examines the use of TMSPi and a structurally analogous compound, triethyl phosphite (TEPi), in LiNi 0.5Mn 0.3Co 0.2O 2-graphite full cells, containing a (baseline) electrolyte with 1.2 M LiPF6 in EC: EMC (3:7 w/w) and operating between 3.0-4.4 V. Galvanostatic cycling data reveal a measurable difference in capacity fade between the TMSPi and TEPi cells. Furthermore, lower impedance rise is observed for the TMSPi cells, because of the formation of a P-and O-rich surface film on the positive electrode that was revealed bymore » X-ray photoelectron spectroscopy data. Elemental analysis on negative electrodes harvested from cycled cells show lower contents of transition metal (TM) elements for the TMSPi cells than for the baseline and TEPi cells. Our findings indicate that removal of TMS groups from the central P-O core of the TMSPi additive enables formation of the oxide surface film. This film is able to block the generation of reactive TM-oxygen radical species, suppress hydrogen abstraction from the electrolyte solvent, and minimize oxidation reactions at the positive electrode-electrolyte interface. In contrast, oxidation of TEPi does not yield a protective positive electrode film, which results in inferior electrochemical performance.« less

  14. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease. An electrophysiological-pathological correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.I.; Bharati, S.; Glass, J.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis ofmore » the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.« less

  15. Radiotherapy as a cause of complete atrioventricular block in Hodgkin's disease: an electrophysiological-pathological correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.I.; Bharati, S.; Glass, J.

    1981-04-01

    A 20-year-old man contracted Hodgkin's disease and was treated with mantle radiotherapy. Heart block developed 11 years later. Electrocardiograms revealed predominant atrioventricular (AV) block and occasional AV conduction. Intracardiac electrograms demonstrated that the site of AV block was above the level of the His bundle. A permanent transvenous pacemaker was implanted. Seven months later the patient died of complications from cryptococcal meningitis. Pathological study of the heart revealed marked arteriosclerosis with fibrosis of the epicardium, myocardium, and endocardium. Examination of the conduction system revealed extensive arteriolosclerosis of the sinoatrial node and its approaches. In addition, there was marked fibrosis ofmore » the approaches to the AV node, the AV bundle, and both bundle branches. There was no evidence of Hodgkin's disease. This case documents the rare occurrence of AV block due to tissue destruction by radiotherapy. There was a good correlation between block proximal to the His bundle recording site and fibrosis of the approaches to the AV node.« less

  16. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun

    2016-06-28

    Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.

  17. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Phase locking of convectively coupled equatorial atmospheric Kelvin waves over Indian Ocean basin

    NASA Astrophysics Data System (ADS)

    Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr; Matthews, Adrian

    2015-04-01

    The properties of convectively coupled Kelvin waves in the Indian Ocean and their propagation over the Maritime Continent are studied. It is shown that Kelvin waves are longitude - diurnal cycle phase locked over the Maritime Continent, Africa and the Indian Ocean. Thus, it is shown that they tend to propagate over definite areas during specific times of the day. Over the Maritime Continent, longitude-diurnal cycle phase locking is such that it agrees with mean, local diurnal cycle of convection. The strength of the longitude-diurnal cycle phase locking differs between 'non-blocked' Kelvin waves, which make successful transition over the Maritime Continent, and 'blocked' waves that terminated within it. It is shown that a specific combination of Kelvin wave phase speed and time of the day at which a wave approaches the Maritime Continent influence the chance of successful transition into the Western Pacific. Kelvin waves that maintain phase speed of 10 to 11 degrees per day over the central-eastern Indian Ocean and arrive at 90E between 9UTC and 18UTC have the highest chance of being 'non-blocked' by the Maritime Continent. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average convectively coupled Kelvin wave in one day. This suggests that the Maritime Continent may act as a 'filter' for Kelvin waves favoring successful propagation of those waves for which propagation is in phase with the local diurnal cycle of precipitation. The AmPm index, a simple measure of local diurnal cycle for propagating disturbances, is introduced and shown to be useful metric depicting key characteristics of the convection associated with propagating Kelvin waves.

  19. Impact of cycling cells and cell cycle regulation on Hydra regeneration.

    PubMed

    Buzgariu, Wanda; Wenger, Yvan; Tcaciuc, Nina; Catunda-Lemos, Ana-Paula; Galliot, Brigitte

    2018-01-15

    Hydra tissues are made from three distinct populations of stem cells that continuously cycle and pause in G2 instead of G1. To characterize the role of cell proliferation after mid-gastric bisection, we have (i) used flow cytometry and classical markers to monitor cell cycle modulations, (ii) quantified the transcriptomic regulations of 202 genes associated with cell proliferation during head and foot regeneration, and (iii) compared the impact of anti-proliferative treatments on regeneration efficiency. We confirm two previously reported events: an early mitotic wave in head-regenerating tips, when few cell cycle genes are up-regulated, and an early-late wave of proliferation on the second day, preceded by the up-regulation of 17 cell cycle genes. These regulations appear more intense after mid-gastric bisection than after decapitation, suggesting a position-dependent regulation of cell proliferation during head regeneration. Hydroxyurea, which blocks S-phase progression, delays head regeneration when applied before but not after bisection. This result is consistent with the fact that the Hydra central region is enriched in G2-paused adult stem cells, poised to divide upon injury, thus forming a necessary constitutive pro-blastema. However a prolonged exposure to hydroxyurea does not block regeneration as cells can differentiate apical structures without traversing S-phase, and also escape in few days the hydroxyurea-induced S-phase blockade. Thus Hydra head regeneration, which is a fast event, is highly plastic, relying on large stocks of adult stem cells paused in G2 at amputation time, which immediately divide to proliferate and/or differentiate apical structures even when S-phase is blocked. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Isoelectric Bovine Serum Albumin: Robust Blocking Agent for Enhanced Performance in Optical-Fiber Based DNA Sensing.

    PubMed

    Wang, Ruoyu; Zhou, Xiaohong; Zhu, Xiyu; Yang, Chao; Liu, Lanhua; Shi, Hanchang

    2017-02-24

    Surface blocking is a well-known process for reducing unwanted nonspecific adsorption in sensor fabrication, especially important in the emerging field where DNA/RNA applied. Bovine serum albumin (BSA) is one of the most popular blocking agents with an isoelectric point at pH 4.6. Although it is widely recognized that the adsorption of a blocking agent is strongly affected by its net charge and the maximum adsorption is often observed under its isoelectric form, BSA has long been perfunctorily used for blocking merely in neutral solution, showing poor blocking performances in the optical-fiber evanescent wave (OFEW) based sensing toward DNA target. To meet this challenge, we first put forward the view that isoelectric BSA (iep-BSA) has the best blocking performance and use an OFEW sensor platform to demonstrate this concept. An optical-fiber was covalently modified with amino-DNA, and further coupled with the optical system to detect fluorophore labeled complementary DNA within the evanescent field. A dramatic improvement in the reusability of this DNA modified sensing surface was achieved with 120 stable detection cycles, which ensured accurate quantitative bioassay. As expected, the iep-BSA blocked OFEW system showed enhanced sensing performance toward target DNA with a detection limit of 125 pM. To the best of our knowledge, this is the highest number of regeneration cycles ever reported for a DNA immobilized optical-fiber surface. This study can also serve as a good reference and provide important implications for developing similar DNA-directed surface biosensors.

  1. 25. At 1050 Gallery, Block 55, view of gate control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. At 1050 Gallery, Block 55, view of gate control and motor, looking west, (Westinghouse Gearmotor, ca. 1939, type CS induction motor, 440 volts, 43 rpm, 60 cycle). - Columbia Basin Project, Grand Coulee Dam & Franklin D. Roosevelt Lake, Across Columbia River, Southeast of Town of Grand Coulee, Grand Coulee, Grant County, WA

  2. Calcein represses human papillomavirus 16 E1-E2 mediated DNA replication via blocking their binding to the viral origin of replication.

    PubMed

    Das, Dipon; Smith, Nathan W; Wang, Xu; Richardson, Stacie L; Hartman, Matthew C T; Morgan, Iain M

    2017-08-01

    Human papillomaviruses are causative agents in several human diseases ranging from genital warts to ano-genital and oropharyngeal cancers. Currently only symptoms of HPV induced disease are treated; there are no antivirals available that directly target the viral life cycle. Previously, we determined that the cellular protein TopBP1 interacts with the HPV16 replication/transcription factor E2. This E2-TopBP1 interaction is essential for optimal E1-E2 DNA replication and for the viral life cycle. The drug calcein disrupts the interaction of TopBP1 with itself and other host proteins to promote cell death. Here we demonstrate that calcein blocks HPV16 E1-E2 DNA replication via blocking the viral replication complex forming at the origin of replication. This occurs at non-toxic levels of calcein and demonstrates specificity as it does not block the ability of E2 to regulate transcription. We propose that calcein or derivatives could be developed as an anti-HPV therapeutic. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Evaluation of power block arrangements for 100MW scale concentrated solar thermal power generation using top-down design

    NASA Astrophysics Data System (ADS)

    Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney

    2017-06-01

    Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.

  4. Reduction of right ventricular pacing with advanced atrioventricular search hysteresis: results of the PREVENT study.

    PubMed

    Kolb, Christof; Schmidt, Roland; Dietl, Josef U; Weyerbrock, Sonja; Morgenstern, Martin; Fleckenstein, Martin; Beier, Thomas; Von Bary, Christian; Mackes, Karl G; Widmaier, Jochen; Kreuzer, Jörg; Semmler, Verena; Zrenner, Bernhard

    2011-08-01

    Right ventricular pacing predisposes to the development of heart failure and atrial fibrillation. Automatic atrioventricular search hysteresis (AVSH) is a commonly used strategy to decrease the percentage of right ventricular pacing (%VP) in patients without permanent AV block, but the results have not been optimal. The randomized, crossover PREVENT study evaluated whether an enhanced AVSH with two new features can reduce %VP compared with standard AVSH. The new features are the repetitive hysteresis [switch from extended to basic AV delay after a consistent loss of intrinsic AV conduction (IAVC) lasting for six consecutive atrial cycles] and the scan hysteresis (periodic IAVC search extension over six consecutive atrial cycles). Both standard AVSH and enhanced AVSH performed a periodic IAVC search every 180 cardiac cycles and operated with a basic AV-delay of 225 ms and a rate-independent maximum AV-delay of 300 ms for paced and sensed atrial events. Among 178 patients, 53.4% had no evidence of AV block at enrollment and 46.6% had history of intermittent AV block. The median %VP was decreased by enhanced AVSH compared to standard AVSH (4.0% vs 5.5%, P < 0.001), particularly in patients with a history of AV block (21.4% vs 25.5%, P < 0.001). The primary study hypothesis that 25% of all patients would experience > 20% relative %VP reduction was not met as 46 (25.8%) patients (95% confidence interval, 20.5-31.8%) presented such relative reduction. The enhanced AVSH algorithm reduces %VP compared with standard AVSH in patients with intermittent AV block. ©2011, The Authors. Journal compilation ©2011 Wiley Periodicals, Inc.

  5. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.

    PubMed

    Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew

    2015-10-14

    Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells.

    PubMed

    Nabzdyk, Christoph S; Lancero, Hope; Nguyen, Khanh P; Salek, Sherveen; Conte, Michael S

    2011-11-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.

  7. RNA interference-mediated survivin gene knockdown induces growth arrest and reduced migration of vascular smooth muscle cells

    PubMed Central

    Nabzdyk, Christoph S.; Lancero, Hope; Nguyen, Khanh P.; Salek, Sherveen

    2011-01-01

    Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G2/M fraction consistent with a mitotic defect; 4′,6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G2/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall. PMID:21856925

  8. Erythrocytes Functional Features in the 11-YEAR Solar Cycle

    NASA Astrophysics Data System (ADS)

    Parshina, S. S.; Tokayeva, L. K.; Dolgova, E. M.; Afanas'yeva, T. N.; Samsonov, S. N.; Petrova, V. D.; Vodolagina, E. S.; Kaplanova, T. I.; Potapova, M. V.

    There had been studied features of rheological blood failures in patients with unstable angina (UA) in periods of the high (HSA) and low solar activity (LSA) in the 23rd 11-year solar cycle. This category of patients is characterized by prethrombotic blood state, although they don't have coronary thrombosis. The research aimed to study compensatory mechanisms which block thrombosis development at the solar activity increase. There had been established that the period of the solar activity increasing in the 11-year solar cycle is characterized by an increase of a blood viscosity, comparing with the period of a low solar activity. Though, erythrocytes functional features in this case are compensatory mechanisms - erythrocyte aggregation paradoxically reduced and their deformability increases. It is probably connected with the revealed fibrinogen decrease in the period of the high solar activity. We can see that the change of a solar activity is accompanied not only by the progressing of pathologic processes, but also by an activation of adaptive changes in erythrocyte membrane so0 as to prevent thrombosis. Though, the required compensatory mechanisms were found invalid, which were shown in the decrease of an oxygen delivery to tissues, and the effectiveness decrease of the medical treatment in the period of a HSA.

  9. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae.

    PubMed

    Desfossés-Baron, Kristelle; Hammond-Martel, Ian; Simoneau, Antoine; Sellam, Adnane; Roberts, Stephen; Wurtele, Hugo

    2016-10-26

    The mechanism of action of valproate (VPA), a widely prescribed short chain fatty acid with anticonvulsant and anticancer properties, remains poorly understood. Here, the yeast Saccharomyces cerevisiae was used as model to investigate the biological consequences of VPA exposure. We found that low pH strongly potentiates VPA-induced growth inhibition. Transcriptional profiling revealed that under these conditions, VPA modulates the expression of genes involved in diverse cellular processes including protein folding, cell wall organisation, sexual reproduction, and cell cycle progression. We further investigated the impact of VPA on selected processes and found that this drug: i) activates markers of the unfolded protein stress response such as Hac1 mRNA splicing; ii) modulates the cell wall integrity pathway by inhibiting the activation of the Slt2 MAP kinase, and synergizes with cell wall stressors such as micafungin and calcofluor white in preventing yeast growth; iii) prevents activation of the Kss1 and Fus3 MAP kinases of the mating pheromone pathway, which in turn abolishes cellular responses to alpha factor; and iv) blocks cell cycle progression and DNA replication. Overall, our data identify heretofore unknown biological responses to VPA in budding yeast, and highlight the broad spectrum of cellular pathways influenced by this chemical in eukaryotes.

  10. The Prevalence and Investigation of Risk Factors of Oral Mucositis in a Pediatric Oncology Inpatient Population; a Prospective Study.

    PubMed

    Allen, Gabrielle; Logan, Richard; Revesz, Tom; Keefe, Dorothy; Gue, Sam

    2018-01-01

    Oral mucositis can be a frequent and severe complication of chemotherapy in children. It can result in pain, infection, depression, prolonged admission, treatment delays, increase in patient morbidity, and increased costs. To record the prevalence and severity of oral mucositis among inpatients and explore the relationship of risks factors and the development of oral mucositis. During an 18-month period 643 clinical inpatient assessments were completed on 73 children who were admitted and had received chemotherapy in the last 14 days. There were 43 episodes of oral mucositis in 31 children; 42.5% of the inpatient population. World Health Organization assessment identified 32.6% of episodes were grade 1, 34.9% grade 2, 14.0% grade 3, and 18.6% grade 4. Analysis revealed significant associations between patient diagnosis (P<0.0001), chemotherapy cycles (P<0.0001), day 8 and 9 of the chemotherapy cycle (P<0.05), and neutropenia (P<0.0001) and oral mucositis. Children had increased length of admission with increasing severity of oral mucositis (P=0.0005). The prevalence of oral mucositis was 42.5% among inpatients and admission length was increased with increasing severity. Patient diagnosis, chemotherapy treatment block, day of chemotherapy cycle, and neutropenic status were shown to influence the risk of developing oral mucositis.

  11. Reaction of Epoxides with Wood.

    DTIC Science & Technology

    1984-12-01

    second water cycle . The ASE values for BC are -h m--was ground to pass a 20-mesh higher than PO on the first soak cycle and do not drop f- ,tr .r_- 0rf...microns for specimens in the light and water cycle weathering due to the blocking of lignin hydroxyls so exposures. Without the action of water (leaching...separation1800 Hr. Light- Water Cycle step. The sugars would be absent in the sugar analysis and would appear to have been degraded by the test

  12. Semi-automatic spray pyrolysis deposition of thin, transparent, titania films as blocking layers for dye-sensitized and perovskite solar cells

    PubMed Central

    Krýsová, Hana; Kavan, Ladislav

    2018-01-01

    For proper function of the negative electrode of dye-sensitized and perovskite solar cells, the deposition of a nonporous blocking film is required on the surface of F-doped SnO2 (FTO) glass substrates. Such a blocking film can minimise undesirable parasitic processes, for example, the back reaction of photoinjected electrons with the oxidized form of the redox mediator or with the hole-transporting medium can be avoided. In the present work, thin, transparent, blocking TiO2 films are prepared by semi-automatic spray pyrolysis of precursors consisting of titanium diisopropoxide bis(acetylacetonate) as the main component. The variation in the layer thickness of the sprayed films is achieved by varying the number of spray cycles. The parameters investigated in this work were deposition temperature (150, 300 and 450 °C), number of spray cycles (20–200), precursor composition (with/without deliberately added acetylacetone), concentration (0.05 and 0.2 M) and subsequent post-calcination at 500 °C. The photo-electrochemical properties were evaluated in aqueous electrolyte solution under UV irradiation. The blocking properties were tested by cyclic voltammetry with a model redox probe with a simple one-electron-transfer reaction. Semi-automatic spraying resulted in the formation of transparent, homogeneous, TiO2 films, and the technique allows for easy upscaling to large electrode areas. The deposition temperature of 450 °C was necessary for the fabrication of highly photoactive TiO2 films. The blocking properties of the as-deposited TiO2 films (at 450 °C) were impaired by post-calcination at 500 °C, but this problem could be addressed by increasing the number of spray cycles. The modification of the precursor by adding acetylacetone resulted in the fabrication of TiO2 films exhibiting perfect blocking properties that were not influenced by post-calcination. These results will surely find use in the fabrication of large-scale dye-sensitized and perovskite solar cells. PMID:29719764

  13. NANOCRYSTALLINE MATERIALS FOR REMOVAL OF REDUCED SULFUR AND NITROGEN COMPOUNDS FROM FUEL GAS - PHASE II

    EPA Science Inventory

    Integrated gasification combined cycle (IGCC), which uses a gasilier to convert coal to fuel gas, and then uses a combined cycle power block to generate electricity. is one of the most promising technologies for generating electricity from coal in an environmentally sustainabl...

  14. The influence of day/night cycles on biomass yield and composition of Neochloris oleoabundans.

    PubMed

    de Winter, Lenneke; Cabanelas, Iago Teles Dominguez; Martens, Dirk E; Wijffels, René H; Barbosa, Maria J

    2017-01-01

    Day/night cycles regulate the circadian clock of organisms to program daily activities. Many species of microalgae have a synchronized cell division when grown under a day/night cycle, and synchronization might influence biomass yield and composition. Therefore, the aim of this study was to study the influence of day/night cycle on biomass yield and composition of the green microalgae Neochloris oleoabundans . Hence, we compared continuous turbidostat cultures grown under continuous light with cultures grown under simulated day/night cycles. Under day/night cycles, cultures were synchronized as cell division was scheduled in the night, whereas under continuous light cell division occurred randomly synchronized cultures were able to use the light 10-15% more efficiently than non-synchronized cultures. Our results indicate that the efficiency of light use varies over the cell cycle and that synchronized cell division provides a fitness benefit to microalgae. Biomass composition under day/night cycles was similar to continuous light, with the exception of starch content. The starch content was higher in cultures under continuous light, most likely because the cells never had to respire starch to cover for maintenance during dark periods. Day/night cycles were provided in a 'block' (continuous light intensity during the light period) and in a 'sine' (using a sine function to simulate light intensities from sunrise to sunset). There were no differences in biomass yield or composition between these two ways of providing light (in a 'block' or in a 'sine'). The biomass yield and composition of N. oleoabundans were influenced by day/night cycles. These results are important to better understand the relations between research done under continuous light conditions and with day/night cycle conditions. Our findings also imply that more research should be done under day/night cycles.

  15. Differential response of cell-cycle and cell-expansion regulators to heat stress in apple (Malus domestica) fruitlets.

    PubMed

    Flaishman, Moshe A; Peles, Yuval; Dahan, Yardena; Milo-Cochavi, Shira; Frieman, Aviad; Naor, Amos

    2015-04-01

    Temperature is one of the most significant factors affecting physiological and biochemical aspects of fruit development. Current and progressing global warming is expected to change climate in the traditional deciduous fruit tree cultivation regions. In this study, 'Golden Delicious' trees, grown in a controlled environment or commercial orchard, were exposed to different periods of heat treatment. Early fruitlet development was documented by evaluating cell number, cell size and fruit diameter for 5-70 days after full bloom. Normal activities of molecular developmental and growth processes in apple fruitlets were disrupted under daytime air temperatures of 29°C and higher as a result of significant temporary declines in cell-production and cell-expansion rates, respectively. Expression screening of selected cell cycle and cell expansion genes revealed the influence of high temperature on genetic regulation of apple fruitlet development. Several core cell-cycle and cell-expansion genes were differentially expressed under high temperatures. While expression levels of B-type cyclin-dependent kinases and A- and B-type cyclins declined moderately in response to elevated temperatures, expression of several cell-cycle inhibitors, such as Mdwee1, Mdrbr and Mdkrps was sharply enhanced as the temperature rose, blocking the cell-cycle cascade at the G1/S and G2/M transition points. Moreover, expression of several expansin genes was associated with high temperatures, making them potentially useful as molecular platforms to enhance cell-expansion processes under high-temperature regimes. Understanding the molecular mechanisms of heat tolerance associated with genes controlling cell cycle and cell expansion may lead to the development of novel strategies for improving apple fruit productivity under global warming. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Bonding effectiveness to different chemically pre-treated dental zirconia.

    PubMed

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  17. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation

    PubMed Central

    Gaillard, Coline; Tokuyasu, Taku A.; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E.; Kogan, Scott C.

    2015-01-01

    Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment. PMID:26088929

  18. The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2015-12-01

    I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.

  19. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions.

    PubMed

    Guitart, Amelie V; Panagopoulou, Theano I; Villacreces, Arnaud; Vukovic, Milica; Sepulveda, Catarina; Allen, Lewis; Carter, Roderick N; van de Lagemaat, Louie N; Morgan, Marcos; Giles, Peter; Sas, Zuzanna; Gonzalez, Marta Vila; Lawson, Hannah; Paris, Jasmin; Edwards-Hicks, Joy; Schaak, Katrin; Subramani, Chithra; Gezer, Deniz; Armesilla-Diaz, Alejandro; Wills, Jimi; Easterbrook, Aaron; Coman, David; So, Chi Wai Eric; O'Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P; Pollard, Patrick J; Morton, Nicholas M; Finch, Andrew; Kranc, Kamil R

    2017-03-06

    Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1 / Hoxa9 -driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. © 2017 Guitart et al.

  20. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  1. Strategic Origins of Early Semantic Facilitation in the Blocked-Cyclic Naming Paradigm

    ERIC Educational Resources Information Center

    Belke, Eva; Shao, Zeshu; Meyer, Antje S.

    2017-01-01

    In the blocked-cyclic naming paradigm, participants repeatedly name small sets of objects that do or do not belong to the same semantic category. A standard finding is that, after a first presentation cycle where one might find semantic facilitation, naming is slower in related (homogeneous) than in unrelated (heterogeneous) sets. According to…

  2. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials.

    PubMed

    Sugiyama, Toshiko; Kameyama, Atsushi; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki

    2017-06-01

    This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words: CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness.

  3. Effect of professional dental prophylaxis on the surface gloss and roughness of CAD/CAM restorative materials

    PubMed Central

    Sugiyama, Toshiko; Enokuchi, Tomoka; Haruyama, Akiko; Chiba, Aoi; Sugiyama, Setsuko; Hosaka, Makoto; Takahashi, Toshiyuki

    2017-01-01

    Background This study aimed to evaluate the effect of dental prophylaxis on the surface gloss and roughness of different indirect restorative materials for computer-aided design/computer-aided manufacturing (CAD/CAM): two types of CAD/CAM composite resin blocks (Shofu Block HC and Estelite Block) and two types of CAD/CAM ceramic blocks (IPS Empress CAD and Celtra DUO). Material and Methods After polishing the CAD/CAM blocks and applying prophylaxis pastes, professional dental prophylaxis was performed using four different experimental protocols (n = 5 each): mechanical cleaning with Merssage Regular for 10 s four times (Group 1); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 10 s (Group 2); four cycles of mechanical cleaning with Merssage Regular for 10 s and Merssage Fine for 30 s (Group 3); and mechanical cleaning with Merssage Fine for 10 s four times (Group 4). A glossmeter was used to measure surface gloss before and after mechanical cleaning, and a contact stylus profilometer was used to measure surface roughness (Ra). Results Polishing with prophylactic paste led to a significant reduction in surface gloss and increase in surface roughness among resin composite blocks, whereas the polishing-related change in surface gloss or roughness was smaller in Celtra DUO, a zirconia-reinforced lithium silicate block. Conclusions Changes in surface gloss and roughness due to polishing with a prophylactic paste containing large particles were not improved by subsequent polishing with a prophylactic paste containing fine particles. Key words:CAD/CAM, professional dental prophylaxis, prophylactic paste, surface gloss, surface roughness. PMID:28638554

  4. The TCP4 transcription factor of Arabidopsis blocks cell division in yeast at G1→S transition.

    PubMed

    Aggarwal, Pooja; Padmanabhan, Bhavna; Bhat, Abhay; Sarvepalli, Kavitha; Sadhale, Parag P; Nath, Utpal

    2011-07-01

    The TCP transcription factors control important aspects of plant development. Members of class I TCP proteins promote cell cycle by regulating genes directly involved in cell proliferation. In contrast, members of class II TCP proteins repress cell division. While it has been postulated that class II proteins induce differentiation signal, their exact role on cell cycle has not been studied. Here, we report that TCP4, a class II TCP protein from Arabidopsis that repress cell proliferation in developing leaves, inhibits cell division by blocking G1→S transition in budding yeast. Cells expressing TCP4 protein with increased transcriptional activity fail to progress beyond G1 phase. By analyzing global transcriptional status of these cells, we show that expression of a number of cell cycle genes is altered. The possible mechanism of G1→S arrest is discussed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Complex Dynamics in Nonequilibrium Economics and Chemistry

    NASA Astrophysics Data System (ADS)

    Wen, Kehong

    Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator or the random walk model as the building block in business cycle theory. The mathematical structure of the model (delay differential equation) is studied analytically and numerically. The research pave the way toward sensible economic forecasting.

  6. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility

    PubMed Central

    Green, Judith L.; Wall, Richard J.; Vahokoski, Juha; Yusuf, Noor A.; Ridzuan, Mohd A. Mohd; Stanway, Rebecca R.; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R.; Howell, Steven A.; Pires, Isa P.; Moon, Robert W.; Molloy, Justin E.; Kursula, Inari; Tewari, Rita

    2017-01-01

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain–interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. PMID:28893907

  7. Compositional and expression analyses of the glideosome during the Plasmodium life cycle reveal an additional myosin light chain required for maximum motility.

    PubMed

    Green, Judith L; Wall, Richard J; Vahokoski, Juha; Yusuf, Noor A; Ridzuan, Mohd A Mohd; Stanway, Rebecca R; Stock, Jessica; Knuepfer, Ellen; Brady, Declan; Martin, Stephen R; Howell, Steven A; Pires, Isa P; Moon, Robert W; Molloy, Justin E; Kursula, Inari; Tewari, Rita; Holder, Anthony A

    2017-10-27

    Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle. We examined MyoA expression throughout the Plasmodium berghei life cycle in both mammalian and insect hosts. In extracellular ookinetes, sporozoites, and merozoites, MyoA was located at the parasite periphery. In the sexual stages, zygote formation and initial ookinete differentiation precede MyoA synthesis and deposition, which occurred only in the developing protuberance. In developing intracellular asexual blood stages, MyoA was synthesized in mature schizonts and was located at the periphery of segmenting merozoites, where it remained throughout maturation, merozoite egress, and host cell invasion. Besides the known GAPs in the malaria parasite, the complex included GAP40, an additional myosin light chain designated essential light chain (ELC), and several other candidate components. This ELC bound the MyoA neck region adjacent to the MTIP-binding site, and both myosin light chains co-located to the glideosome. Co-expression of MyoA with its two light chains revealed that the presence of both light chains enhances MyoA-dependent actin motility. In conclusion, we have established a system to study the interplay and function of the three glideosome components, enabling the assessment of inhibitors that target this motor complex to block host cell invasion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    PubMed

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  9. Accretionary history of the Archean Barberton Greenstone Belt (3.55-3.22 Ga), southern Africa

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.

    1994-01-01

    The 3.55-3.22 Ga Barberton Greenstone Belt, South Africa and Swaziland, and surrounding coeval plutons can be divided into four tectono-stratigraphic blocks that become younger toward the northwest. Each block formed through early mafic to ultramafic volcanism (Onverwacht Group), probably in oceanic extensional, island, or plateau settings. Volcanism was followed by magmatic quiescence and deposition of fine-grained sediments, possibly in an intraplate setting. Late evolution involved underplating of the mafic crust by tonalitic intrusions along a subduction-related magmatic arc, yielding a thickened, buoyant protocontinental block. The growth of larger continental domains occurred both through magmatic accretion, as new protocontinental blocks developed along the margins of older blocks, and when previously separate blocks were amalgamated through tectonic accretion. Evolution of the Barberton Belt may reflect an Early Archean plate tectonic cycle that characterized a world with few or no large, stabilized blocks of sialic crust.

  10. Inhibition of KSP by ARRY-520 Induces Cell Cycle Block and Cell Death via the Mitochondrial Pathway in AML Cells

    PubMed Central

    Carter, Bing Z.; Mak, Duncan H.; Woessner, Richard; Gross, Stefan; Schober, Wendy D.; Estrov, Zeev; Kantarjian, Hagop; Andreeff, Michael

    2013-01-01

    Kinesin spindle protein (KSP), a microtubule-associated motor protein essential for cell cycle progression, is overexpressed in many cancers and a potential anti-tumor target. We found that inhibition of KSP by a selective inhibitor, ARRY-520, blocked cell cycle progression, leading to apoptosis in acute myeloid leukemia cell lines which express high levels of KSP. Knockdown of p53, overexpression of XIAP, and mutation in caspase-8 did not significantly affect sensitivity to ARRY-520, suggesting that the response is independent of p53, XIAP, and the extrinsic apoptotic pathway. Although ARRY-520 induced mitotic arrest in both HL-60 and Bcl-2-overexpressing HL-60Bcl-2 cells, cell death was blunted in HL-60Bcl-2 cells, suggesting that the apoptotic program is executed through the mitochondrial pathway. Accordingly, inhibition of Bcl-2 by ABT-737 was synergistic with ARRY-520 in HL-60Bcl-2 cells. Furthermore, ARRY-520 increased Bim protein levels prior to caspase activation in HL-60 cells. ARRY-520 significantly inhibited tumor growth of xenografts in SCID mice and inhibited AML blast but not normal colony formation, supporting a critical role for KSP in proliferation of leukemic progenitor cells. These results demonstrate that ARRY-520 potently induces cell cycle block and subsequent death in leukemic cells via the mitochondrial pathway and has potential to eradicate AML progenitor cells. PMID:19458629

  11. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    PubMed Central

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  12. Regulatory properties of polysaccharopeptide derived from Coriolus versicolor and its combined effect with ciclosporin on the homeostasis of human lymphocytes.

    PubMed

    Lee, Cheuk-Lun; Jiang, Pingping; Sit, Wai-Hung; Yang, Xiatong; Wan, Jennifer Man-Fan

    2010-08-01

    Lymphocyte homoeostasis is essential in inflammatory and autoimmune diseases. In search of natural fungal metabolites with effects on lymphocyte homoeostasis, we recently reported that polysaccharopeptide (PSP) from Coriolus versicolor exhibited ciclosporin-like activity in controlling aberrant lymphocyte activation. This object of this study was to investigate its effect on lymphocyte homoeostasis. This was done by investigating the mechanistic actions of PSP in relation to ciclosporin by performing cell cycle and cell death analysis of human lymphocytes in vitro. We investigated the effect of PSP in the presence and absence of ciclosporin on cell proliferation, cell cycle, cell death, immunophenotype and cell cycle regulatory proteins in human lymphocytes. The data showed that PSP exhibited homoeostatic activity by promoting and inhibiting the proliferation of resting and phytohaemagglutinin (PHA)-stimulated lymphocytes, respectively. PHA-stimulated lymphocytes exhibited G0/G1 cell cycle arrest that was accompanied by a reduction of cyclin E expression with PSP treatment. Both PSP and ciclosporin blocked the reduction of the CD4/CD8 ratio in stimulated lymphocytes. PSP did not induce cell death in human lymphocytes, but the suppression of the Fasreceptor suggested a protective role of PSP against extrinsic cell death signals. These homoeostatic effects were more potent with combined PSP and ciclosporin treatment than with either fungal metabolite alone. Collectively, the results reveal certain novel effects of PSP in lymphocyte homoeostasis and suggest potential as a specific immunomodulatory adjuvant for clinical applications in the treatment of autoimmune diseases.

  13. Block 3. Central view of Block 3 observed from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Block 3. Central view of Block 3 observed from the west to the east. This photograph reveals the alignment of trees within the central path of the park. In addition, this photograph exposes broken bricks aligning tree beds - Skyline Park, 1500-1800 Arapaho Street, Denver, Denver County, CO

  14. Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells

    PubMed Central

    Adeyemi, Richard O.; Pintel, David J.

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942

  15. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.

    PubMed

    Adeyemi, Richard O; Pintel, David J

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.

  16. Labeled Nucleoside Triphosphates with Reversibly Terminating Aminoalkoxyl Groups

    PubMed Central

    Hutter, Daniel; Kim, Myong-Jung; Karalkar, Nilesh; Leal, Nicole A.; Chen, Fei; Guggenheim, Evan; Visalakshi, Visa; Olejnik, Jerzy; Gordon, Steven; Benner, Steven A.

    2013-01-01

    Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing”. PMID:21128174

  17. METHOD OF AND APPARATUS FOR WITHDRAWING LIGHT ISOTOPIC PRODUCT FROM A LIQUID THERMAL DIFFUSION PLANT

    DOEpatents

    Dole, M.

    1959-09-22

    An improved process and apparatus are described for removing enriched product from the columns of a thermal diffusion plant for separation of isotopes. In the removal cycle, light product at the top cf the diffusion columns is circulated through the column tops and a shipping cylinder connected thereto unttl the concertation of enriched product in the cylinder reaches the desired point. During the removal, circulation through the bottoms is blocked bv freezing. in the diffusion cycle, the bottom portion is unfrozen, fresh feed is distributed to the bottoms of the columns, ard heavy product is withdrawn from the bottoms, while the tops of the columns are blocked by freezing.

  18. [Blockade of the pheromonal effects in rat by central deafferentation of the accessory olfactory system].

    PubMed

    Sánchez-Criado, J E

    1979-06-01

    Female rats reared without sex odours from male rats have a five day stral cycle. With exposure to male odour the estral cycle is shortened from five to four days. This pheromonal effect is blocked on deafferenting the vomeronasal system by electrolytically damaging both accessory olfactory bulbs.

  19. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  20. 40 CFR Table 5 to Subpart Hhhhhhh... - Operating Parameters, Operating Limits and Data Monitoring, Recording and Compliance Frequencies...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conductivity Continuous Every 15 minutes 3-hour block average. Regenerative Adsorber Regeneration stream flow. Minimum total flow per regeneration cycle Continuous N/A Total flow for each regeneration cycle. Adsorber bed temperature. Maximum temperature Continuously after regeneration and within 15 minutes of...

  1. Software designs of image processing tasks with incremental refinement of computation.

    PubMed

    Anastasia, Davide; Andreopoulos, Yiannis

    2010-08-01

    Software realizations of computationally-demanding image processing tasks (e.g., image transforms and convolution) do not currently provide graceful degradation when their clock-cycles budgets are reduced, e.g., when delay deadlines are imposed in a multitasking environment to meet throughput requirements. This is an important obstacle in the quest for full utilization of modern programmable platforms' capabilities since worst-case considerations must be in place for reasonable quality of results. In this paper, we propose (and make available online) platform-independent software designs performing bitplane-based computation combined with an incremental packing framework in order to realize block transforms, 2-D convolution and frame-by-frame block matching. The proposed framework realizes incremental computation: progressive processing of input-source increments improves the output quality monotonically. Comparisons with the equivalent nonincremental software realization of each algorithm reveal that, for the same precision of the result, the proposed approach can lead to comparable or faster execution, while it can be arbitrarily terminated and provide the result up to the computed precision. Application examples with region-of-interest based incremental computation, task scheduling per frame, and energy-distortion scalability verify that our proposal provides significant performance scalability with graceful degradation.

  2. A monofunctional platinum(II)-based anticancer agent from a salicylanilide derivative: Synthesis, antiproliferative activity, and transcription inhibition.

    PubMed

    Wang, Beilei; Wang, Zhigang; Ai, Fujin; Tang, Wai Kin; Zhu, Guangyu

    2015-01-01

    Cationic monofunctional platinum(II)-based anticancer agents with a general formula of cis-[Pt(NH3)2(N-donor)Cl](+) have recently drawn significant attention due to their unique mode of action, distinctive anticancer spectrum, and promising antitumor activity both in vitro and in vivo. Understanding the mechanism of action of novel monofunctional platinum compounds through rational drug design will aid in the further development of active agents. In this study, we synthesized and evaluated a monofunctional platinum-based anticancer agent SA-Pt containing a bulky salicylanilide moiety. The antiproliferative activity of SA-Pt was close to that of cisplatin. Mechanism studies revealed that SA-Pt entered HeLa cells more efficiently than cisplatin, blocked the cell cycle at the S-phase, and induced apoptosis. The compound bound to DNA as effectively as cisplatin, but did not block RNA polymerase II-mediated transcription as strongly as cisplatin, indicating that once the compound formed Pt-DNA lesions, the salicylanilide group was more easily recognized and removed. This study not only enriches the family of monofunctional platinum-based anticancer agents but also guides the design of more potent monofunctional platinum complexes. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Small domain-size multiblock copolymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistorino, Jonathan; Eitouni, Hany Basam

    2016-09-20

    New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.

  4. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Porcarelli, Luca; Aboudzadeh, M. Ali; Rubatat, Laurent; Nair, Jijeesh R.; Shaplov, Alexander S.; Gerbaldi, Claudio; Mecerreyes, David

    2017-10-01

    Single-ion conducting polymer electrolytes represent the ideal solution to reduce concentration polarization in lithium metal batteries (LMBs). This paper reports on the synthesis and characterization of single-ion ABA triblock copolymer electrolytes comprising PEO and poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) blocks, poly(LiMTFSI). Block copolymers are prepared by reversible addition-fragmentation chain transfer polymerization, showing low glass transition temperature (-55 to 7 °C) and degree of crystallinity (51-0%). Comparatively high values of ionic conductivity are obtained (up to ≈ 10-4 S cm-1 at 70 °C), combined with a lithium-ion transference number close to unity (tLi+ ≈ 0.91) and a 4 V electrochemical stability window. In addition to these promising features, solid polymer electrolytes are successfully tested in lithium metal cells at 70 °C providing long lifetime up to 300 cycles, and stable charge/discharge cycling at C/2 (≈100 mAh g-1).

  5. A critical period of progesterone withdrawal precedes menstruation in macaques

    PubMed Central

    Slayden, Ov D; Brenner, Robert M

    2006-01-01

    Macaques are menstruating nonhuman primates that provide important animal models for studies of hormonal regulation in the uterus. In women and macaques the decline of progesterone (P) at the end of the cycle triggers endometrial expression of a variety of matrix metalloproteinase (MMP) enzymes that participate in tissue breakdown and menstrual sloughing. To determine the minimal duration of P withdrawal required to induce menses, we assessed the effects of adding P back at various time points after P withdrawal on both frank bleeding patterns and endometrial MMP expression. Artificial menstrual cycles were induced by treating the animals sequentially with implants releasing estradiol (E2) and progesterone (P). To assess bleeding patterns, P implants were removed at the end of a cycle and then added back at 12, 24, 30, 36, 40, 48, 60, or 72 hours (h) after the initial P withdrawal. Observational analysis of frank bleeding patterns showed that P replacement at 12 and 24 h blocked menses, replacement at 36 h reduced menses but replacement after 36 h failed to block menses. These data indicate that in macaques, a critical period of P withdrawal exists and lasts approximately 36 h. In other similarly cycled animals, we withdrew P and then added P back either during (12–24 h) or after (48 h) the critical period, removed the uterus 24 h after P add back and evaluated endometrial MMP expression. Immunocytochemistry showed that replacement of P during the critical period suppressed MMP-1, -2 and -3 expression along with menses, but replacement of P at 48 h, which failed to suppress mense, suppressed MMP-1 and MMP-3 but did not block MMP-2. We concluded that upregulation of MMPs is essential to menses induction, but that after the critical period, menses will occur even if some MMPs are experimentally blocked. PMID:17118170

  6. Viscoelastic Earthquake Cycle Simulation with Memory Variable Method

    NASA Astrophysics Data System (ADS)

    Hirahara, K.; Ohtani, M.

    2017-12-01

    There have so far been no EQ (earthquake) cycle simulations, based on RSF (rate and state friction) laws, in viscoelastic media, except for Kato (2002), who simulated cycles on a 2-D vertical strike-slip fault, and showed nearly the same cycles as those in elastic cases. The viscoelasticity could, however, give more effects on large dip-slip EQ cycles. In a boundary element approach, stress is calculated using a hereditary integral of stress relaxation function and slip deficit rate, where we need the past slip rates, leading to huge computational costs. This is a cause for almost no simulations in viscoelastic media. We have investigated the memory variable method utilized in numerical computation of wave propagation in dissipative media (e.g., Moczo and Kristek, 2005). In this method, introducing memory variables satisfying 1st order differential equations, we need no hereditary integrals in stress calculation and the computational costs are the same order of those in elastic cases. Further, Hirahara et al. (2012) developed the iterative memory variable method, referring to Taylor et al. (1970), in EQ cycle simulations in linear viscoelastic media. In this presentation, first, we introduce our method in EQ cycle simulations and show the effect of the linear viscoelasticity on stick-slip cycles in a 1-DOF block-SLS (standard linear solid) model, where the elastic spring of the traditional block-spring model is replaced by SLS element and we pull, in a constant rate, the block obeying RSF law. In this model, the memory variable stands for the displacement of the dash-pot in SLS element. The use of smaller viscosity reduces the recurrence time to a minimum value. The smaller viscosity means the smaller relaxation time, which makes the stress recovery quicker, leading to the smaller recurrence time. Second, we show EQ cycles on a 2-D dip-slip fault with the dip angel of 20 degrees in an elastic layer with thickness of 40 km overriding a Maxwell viscoelastic half layer with the relaxation time of 5 yrs. In a test model where we set the fault at 30-40 km depths, the recurrence time of the EQ cycle is reduced by 1 yr from 27.92 in elastic case to 26.85 yrs. This smaller recurrence time is the same as in Kato (2002), but the effect of the viscoelasticity on the cycles would be larger in the dip-slip fault case than that in the strike-slip one.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiangfeng; Tanihata, Kimiaki; Miyamoto, Yoshinari

    A TiC/Ni functionally gradient material (FGM) fabricated via gas-pressure combustion sintering is presently investigated to establish its mechanical and thermal properties. Attention is given to the FGM's specific thermal conductivities with different thermal cycling conditions; these are found to decrease with thermal cycling in all samples tested, implying that the lateral cracks are generated in the FGM and then propagated by the thermal cycle. High compressive stresses are induced at the TiC surface when this is constrained by a Cu block. 6 refs.

  8. A mitosis block links active cell cycle with human epidermal differentiation and results in endoreplication.

    PubMed

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-12-20

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation.

  9. A Mitosis Block Links Active Cell Cycle with Human Epidermal Differentiation and Results in Endoreplication

    PubMed Central

    Zanet, Jennifer; Freije, Ana; Ruiz, María; Coulon, Vincent; Sanz, J. Ramón; Chiesa, Jean; Gandarillas, Alberto

    2010-01-01

    How human self-renewal tissues co-ordinate proliferation with differentiation is unclear. Human epidermis undergoes continuous cell growth and differentiation and is permanently exposed to mutagenic hazard. Keratinocytes are thought to arrest cell growth and cell cycle prior to terminal differentiation. However, a growing body of evidence does not satisfy this model. For instance, it does not explain how skin maintains tissue structure in hyperproliferative benign lesions. We have developed and applied novel cell cycle techniques to human skin in situ and determined the dynamics of key cell cycle regulators of DNA replication or mitosis, such as cyclins E, A and B, or members of the anaphase promoting complex pathway: cdc14A, Ndc80/Hec1 and Aurora kinase B. The results show that actively cycling keratinocytes initiate terminal differentiation, arrest in mitosis, continue DNA replication in a special G2/M state, and become polyploid by mitotic slippage. They unambiguously demonstrate that cell cycle progression coexists with terminal differentiation, thus explaining how differentiating cells increase in size. Epidermal differentiating cells arrest in mitosis and a genotoxic-induced mitosis block rapidly pushes epidermal basal cells into differentiation and polyploidy. These observations unravel a novel mitosis-differentiation link that provides new insight into skin homeostasis and cancer. It might constitute a self-defence mechanism against oncogenic alterations such as Myc deregulation. PMID:21187932

  10. Relationships between solar activity and climate change. [sunspot cycle effects on lower atmosphere

    NASA Technical Reports Server (NTRS)

    Roberts, W. O.

    1974-01-01

    Recurrent droughts are related to the double sunspot cycle. It is suggested that high solar activity generally increases meridional circulations and blocking patterns at high and intermediate latitudes, especially in winter. This effect is related to the sudden formation of cirrus clouds during strong geomagnetic activity that originates in the solar corpuscular emission.

  11. Development of high-energy silicon-based anode materials for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Yi, Ran

    The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability. Corresponding reasons underneath electrochemical performance have been revealed by various characterizations. Combining both optimized Si building block size and carbon coating temperature, the resultant composite can sustain 600 cycles at 1.2 A/g with a fixed lithiation capacity of 1200 mAh/g, the best cycling performance with such a high capacity for micro-sized Si-based anodes. To further improve the the rate capability of Si-based anode materials, an effecitive method of facile boron doping was demonstrated. Boron-doped Si-C composite can deliver a high capacity of 575 mAh/g at 6.4 A/g without addition of any conductive additives, 80% higher than that of undoped composite. Compared to the obvious capacity fading of undoped Si-C composite, boron-doped Si-C composite maintains its capacity well upon long cycling at a high current density. Electrochemical impedance spectroscopy (EIS) measurement shows boron-doped Si-C composite has lower charge transfer resistance, which helps improve its rate capability. A novel micro-sized graphene/Si-C composite (G/Si-C) was then developed to translate the performance of such micro-sized Si-C composites from the material level to the electrode level aiming to achieve high areal capacities (mAh/cm2) besides gravimetric capacities (mAh/g). Owing to dual conductive networks both within single particles formed by carbon and between different particles formed by graphene, low electrical resistance can be maintained at high mass loading, which enables a high degree of material utilization. Areal capacity thus increases almost linearly with mass loading. As a result, G/Si-C exhibits a high areal capacity of 3.2 mAh/cm2 after 100 cycles with high coulombic efficiency (average 99.51% from 2nd to 100th cycle), comparable to that of commercial anodes. Finally, a micro-sized Si-based material (B-Si/SiO2/C) featuring high rate performance was developed via a facile route without use of toxic hydrofluoric acid. A Li-ion hybrid battery constructed of such a Si-based anode and a porous carbon cathode was demonstrated with both high power and energy densities. Boron-doping is employed to improve the rate capability of B-Si/SiO2/C. At a high current density of 6.4 A/g, B-Si/SiO 2/C delivers a capacity of 685 mAh/g, 2.4 times that of the undoped Si/SiO2/C. Benefiting from the high rate performance along with low working voltage, high capacity and good cycling stability of B-Si/SiO 2/C, the hybrid battery exhibits a high energy density of 128 Wh/kg at 1229 W/kg. Even when power density increases to the level of a conventional supercapacitor (9704 W/kg), 89 Wh/kg can be obtained, the highest values of any hybrid battery to date. Long cycling life (capacity retention of 70% after 6000 cycles) and low self-discharge rate (voltage retention of 82% after 50 hours) are also achieved.

  12. Effect of Variable Amplitude Blocks' Ordering on the Functional Fatigue of Superelastic NiTi Wires

    NASA Astrophysics Data System (ADS)

    Soul, Hugo; Yawny, Alejandro

    2017-12-01

    Accumulation of superelastic cycles in NiTi uniaxial element generates changes on the stress-strain response. Basically, there is an uneven drop of martensitic transformation stress plateaus and an increase of residual strain. This evolution associated with deterioration of superelastic characteristics is referred to as "functional fatigue" and occurs due to irreversible microstructural changes taking place each time a material domain transforms. Unlike complete cycles, for which straining is continued up to elastic loading of martensite, partial cycles result in a differentiated evolution of those material portions affected by the transformation. It is then expected that the global stress-strain response would reflect the previous cycling history of the specimen. In the present work, the consequences of cycling of NiTi wires using blocks of different strain amplitudes interspersed in different sequences are analyzed. The effect of successive increasing, successive decreasing, and interleaved strain amplitudes on the evolution of the superelastic response is characterized. The feasibility of postulating a functional fatigue criterion similar to the Miner's cumulative damage law used in structural fatigue analysis is discussed. The relation of the observed stress-strain response with the transformational history of the specimen can be rationalized by considering that the stress-induced transformation proceeds via localized propagating fronts.

  13. Application of interconnected porous hydroxyapatite ceramic block for onlay block bone grafting in implant treatment: A case report.

    PubMed

    Ohta, Kouji; Tada, Misato; Ninomiya, Yoshiaki; Kato, Hiroki; Ishida, Fumi; Abekura, Hitoshi; Tsuga, Kazuhiro; Takechi, Masaaki

    2017-12-01

    Autogenous block bone grafting as treatment for alveolar ridge atrophy has various disadvantages, including a limited availability of sufficiently sized and shaped grafts, donor site morbidity and resorption of the grafted bone. As a result, interconnected porous hydroxyapatite ceramic (IP-CHA) materials with high porosity have been developed and used successfully in orthopedic cases. To the best of the author's knowledge, this is the first report of clinical application of an IP-CHA block for onlay grafting for implant treatment in a patient with horizontal alveolar atrophy. The present study performed onlay block grafting using an IP-CHA block to restore bone volume for implant placement in the alveolar ridge area without collecting autogenous bone. Dental X-ray findings revealed that the border of the IP-CHA block became increasingly vague over the 3-year period, whereas CT scanning revealed that the gap between the block and bone had a smooth transition, indicating that IP-CHA improved the process of integration with host bone. In follow-up examinations over a period of 5 years, the implants and superstructures had no problems. An IP-CHA block may be useful as a substitute for onlay block bone grafting in implant treatment.

  14. Pullout strength of bone-patellar tendon-bone allograft bone plugs: a comparison of cadaver tibia and rigid polyurethane foam.

    PubMed

    Barber, F Alan

    2013-09-01

    To compare the load-to-failure pullout strength of bone-patellar tendon-bone (BPTB) allografts in human cadaver tibias and rigid polyurethane foam blocks. Twenty BPTB allografts were trimmed creating 25 mm × 10 mm × 10 mm tibial plugs. Ten-millimeter tunnels were drilled in 10 human cadaver tibias and 10 rigid polyurethane foam blocks. The BPTB anterior cruciate ligament allografts were inserted into these tunnels and secured with metal interference screws, with placement of 10 of each type in each material. After preloading (10 N), cyclic loading (500 cycles, 10 to 150 N at 200 mm/min) and load-to-failure testing (200 mm/min) were performed. The endpoints were ultimate failure load, cyclic loading elongation, and failure mode. No difference in ultimate failure load existed between grafts inserted into rigid polyurethane foam blocks (705 N) and those in cadaver tibias (669 N) (P = .69). The mean rigid polyurethane foam block elongation (0.211 mm) was less than that in tibial bone (0.470 mm) (P = .038), with a smaller standard deviation (0.07 mm for foam) than tibial bone (0.34 mm). All BPTB grafts successfully completed 500 cycles. The rigid polyurethane foam block showed less variation in test results than human cadaver tibias. Rigid polyurethane foam blocks provide an acceptable substitute for human cadaver bone tibia for biomechanical testing of BPTB allografts and offer near-equivalent results. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  15. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  16. Blocking IP3 signal transduction pathways inhibits melatonin-induced Ca2+ signals and impairs P. falciparum development and proliferation in erythrocytes.

    PubMed

    Pecenin, Mateus Fila; Borges-Pereira, Lucas; Levano-Garcia, Julio; Budu, Alexandre; Alves, Eduardo; Mikoshiba, Katsuhiko; Thomas, Andrew; Garcia, Celia R S

    2018-03-14

    Inositol 1,4,5 trisphosphate (IP 3 ) signaling plays a crucial role in a wide range of eukaryotic processes. In Plasmodium falciparum, IP 3 elicits Ca 2+ release from intracellular Ca 2+ stores, even though no IP 3 receptor homolog has been identified to date. The human host hormone melatonin plays a key role in entraining the P. falciparum life cycle in the intraerythrocytic stages, apparently through an IP 3 -dependent Ca 2+ signal. The melatonin-induced cytosolic Ca 2+ ([Ca 2+ ] cyt ) increase and malaria cell cycle can be blocked by the IP 3 receptor blocker 2-aminoethyl diphenylborinate (2-APB). However, 2-APB also inhibits store-operated Ca 2+ entry (SOCE). Therefore, we have used two novel 2-APB derivatives, DPB162-AE and DPB163-AE, which are 100-fold more potent than 2-APB in blocking SOCE in mammalian cells, and appear to act by interfering with clustering of STIM proteins. In the present work we report that DPB162-AE and DPB163-AE block the [Ca 2+ ] cyt rise in response to melatonin in P. falciparum, but only at high concentrations. These compounds also block SOCE in the parasite at similarly high concentrations suggesting that P. falciparum SOCE is not activated in the same way as in mammalian cells. We further find that DPB162-AE and DPB163-AE affect the development of the intraerythrocytic parasites and invasion of new red blood cells. Our efforts to episomally express proteins that compete with native IP 3 receptor like IP 3 -sponge and an IP 3 sensor such as IRIS proved to be lethal to P. falciparum during intraerythrocytic cycle. The present findings point to an important role of IP 3 -induced Ca 2+ release in intraerythrocytic stage of P. falciparum. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    PubMed Central

    Padua, Maria B; Hansen, Peter J

    2008-01-01

    Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS), inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3) cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL)-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth. PMID:18218135

  18. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    PubMed

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  19. Global Climate Change and Sedimentation Patterns in the Neogene Baringo Basin, Central Kenya Rift

    NASA Astrophysics Data System (ADS)

    Deino, A. L.; Kingston, J. D.; Wilson, K. E.; Hill, A.

    2010-12-01

    The Tugen Hills are part of a ~100 km N-S tilted fault block, just west of Lake Baringo within the Central Kenyan Rift Valley. Sediments exposed in this block span the last 16 Ma and have yielded abundant and diverse fossil assemblages including a number of hominoid and hominid specimens. Much research has also focused on documenting the paleoecology of the succession through analyses of fossil floral, faunal, and biogeochemical proxies. Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short time-scales (104-105 ka), limited temporal resolution has until now generally precluded assessments of environmental change at these scales. Recently published investigations in the Baringo Basin have provided evidence of orbitally mediated environmental change over periods which include hominid fossil localities (Deino et al., 2006; Kingston et al., 2007). The Baringo data represent the only empirical evidence for significant local environmental shifts that can directly be correlated with insolation patterns in equatorial Africa. Sedimentation patterns in the Baringo Basin between ca. 2.70 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record including a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with ~23 kyr Milankovitch precessional periodicity modulated by eccentricity. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30○N insolation curve, suggesting that precipitation patterns in the region are controlled by the African monsoon system. More recent fieldwork has identified older sequences that similarly demonstrate rhythmic cycling of freshwater lake systems. Preliminary 40Ar/39Ar dating of intercalated tephra reveals that these deposits occur at ~3.7-3.8 Ma, ~4.8-4.9 Ma, and ~5.7-5.8 Ma, though each occurrence is unique in terms of the number of cycles recorded, the thickness of diatomites, and the nature of the non-lacustrine sediments. The oldest of these packages is characterized by very thick (>50 m), continuous diatomite accumulation interrupted only by deposition of pyroclastic deposits. This unit is laterally quite extensive, with exposures extending over 150 km2, indicating the establishment of a large, deep, and persistent paleolake. The development of this major water body, possibly the largest recorded in the Baringo Basin, may be in part a consequence of hemisphere-wide climate disruptions accompanying dessication events in the Mediterranean during the Messinian.

  20. Polysulfide Anchoring Mechanism Revealed by Atomic Layer Deposition of V2O5 and Sulfur-Filled Carbon Nanotubes for Lithium-Sulfur Batteries.

    PubMed

    Carter, Rachel; Oakes, Landon; Muralidharan, Nitin; Cohn, Adam P; Douglas, Anna; Pint, Cary L

    2017-03-01

    Despite the promise of surface engineering to address the challenge of polysulfide shuttling in sulfur-carbon composite cathodes, melt infiltration techniques limit mechanistic studies correlating engineered surfaces and polysulfide anchoring. Here, we present a controlled experimental demonstration of polysulfide anchoring using vapor phase isothermal processing to fill the interior of carbon nanotubes (CNTs) after assembly into binder-free electrodes and atomic layer deposition (ALD) coating of polar V 2 O 5 anchoring layers on the CNT surfaces. The ultrathin submonolayer V 2 O 5 coating on the CNT exterior surface balances the adverse effect of polysulfide shuttling with the necessity for high sulfur utilization due to binding sites near the conductive CNT surface. The sulfur loaded into the CNT interior provides a spatially separated control volume enabling high sulfur loading with direct sulfur-CNT electrical contact for efficient sulfur conversion. By controlling ALD coating thickness, high initial discharge capacity of 1209 mAh/g S at 0.1 C and exceptional cycling at 0.2 C with 87% capacity retention after 100 cycles and 73% at 450 cycles is achieved and correlated to an optimal V 2 O 5 anchoring layer thickness. This provides experimental evidence that surface engineering approaches can be effective to overcome polysulfide shuttling by controlled design of molecular-scale building blocks for efficient binder free lithium sulfur battery cathodes.

  1. RNA Futile Cycling in Model Persisters Derived from MazF Accumulation

    PubMed Central

    Mok, Wendy W. K.; Park, Junyoung O.; Rabinowitz, Joshua D.

    2015-01-01

    ABSTRACT Metabolism plays an important role in the persister phenotype, as evidenced by the number of strategies that perturb metabolism to sabotage this troublesome subpopulation. However, the absence of techniques to isolate high-purity populations of native persisters has precluded direct measurement of persister metabolism. To address this technical challenge, we studied Escherichia coli populations whose growth had been inhibited by the accumulation of the MazF toxin, which catalyzes RNA cleavage, as a model system for persistence. Using chromosomally integrated, orthogonally inducible promoters to express MazF and its antitoxin MazE, bacterial populations that were almost entirely tolerant to fluoroquinolone and β-lactam antibiotics were obtained upon MazF accumulation, and these were subjected to direct metabolic measurements. While MazF model persisters were nonreplicative, they maintained substantial oxygen and glucose consumption. Metabolomic analysis revealed accumulation of all four ribonucleotide monophosphates (NMPs). These results are consistent with a MazF-catalyzed RNA futile cycle, where the energy derived from catabolism is dissipated through continuous transcription and MazF-mediated RNA degradation. When transcription was inhibited, oxygen consumption and glucose uptake decreased, and nucleotide triphosphates (NTPs) and NTP/NMP ratios increased. Interestingly, the MazF-inhibited cells were sensitive to aminoglycosides, and this sensitivity was blocked by inhibition of transcription. Thus, in MazF model persisters, futile cycles of RNA synthesis and degradation result in both significant metabolic demands and aminoglycoside sensitivity. PMID:26578677

  2. Bromodomain and extraterminal inhibitors block the Epstein-Barr virus lytic cycle at two distinct steps.

    PubMed

    Keck, Kristin M; Moquin, Stephanie A; He, Amanda; Fernandez, Samantha G; Somberg, Jessica J; Liu, Stephanie M; Martinez, Delsy M; Miranda, Jj L

    2017-08-11

    Lytic infection by the Epstein-Barr virus (EBV) poses numerous health risks, such as infectious mononucleosis and lymphoproliferative disorder. Proteins in the bromodomain and extraterminal (BET) family regulate multiple stages of viral life cycles and provide promising intervention targets. Synthetic small molecules can bind to the bromodomains and disrupt function by preventing recognition of acetylated lysine substrates. We demonstrate that JQ1 and other BET inhibitors block two different steps in the sequential cascade of the EBV lytic cycle. BET inhibitors prevent expression of the viral immediate-early protein BZLF1. JQ1 alters transcription of genes controlled by the host protein BACH1, and BACH1 knockdown reduces BZLF1 expression. BET proteins also localize to the lytic origin of replication (OriLyt) genetic elements, and BET inhibitors prevent viral late gene expression. There JQ1 reduces BRD4 recruitment during reactivation to preclude replication initiation. This represents a rarely observed dual mode of action for drugs.

  3. Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster.

    PubMed

    Umezaki, Yujiro; Yasuyama, Kouji; Nakagoshi, Hideki; Tomioka, Kenji

    2011-09-01

    Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase.

    PubMed

    Adedeji, Adeyemi O; Singh, Kamalendra; Calcaterra, Nicholas E; DeDiego, Marta L; Enjuanes, Luis; Weiss, Susan; Sarafianos, Stefan G

    2012-09-01

    Severe acute respiratory syndrome (SARS) is a highly contagious disease, caused by SARS coronavirus (SARS-CoV), for which there are no approved treatments. We report the discovery of a potent inhibitor of SARS-CoV that blocks replication by inhibiting the unwinding activity of the SARS-CoV helicase (nsp13). We used a Förster resonance energy transfer (FRET)-based helicase assay to screen the Maybridge Hitfinder chemical library. We identified and validated a compound (SSYA10-001) that specifically blocks the double-stranded RNA (dsRNA) and dsDNA unwinding activities of nsp13, with 50% inhibitory concentrations (IC(50)s) of 5.70 and 5.30 μM, respectively. This compound also has inhibitory activity (50% effective concentration [EC(50)] = 8.95 μM) in a SARS-CoV replicon assay, with low cytotoxicity (50% cytotoxic concentration [CC(50)] = >250 μM), suggesting that the helicase plays a still unidentified critical role in the SARS-CoV life cycle. Enzyme kinetic studies on the mechanism of nsp13 inhibition revealed that SSYA10-001 acts as a noncompetitive inhibitor of nsp13 with respect to nucleic acid and ATP substrates. Moreover, SSYA10-001 does not affect ATP hydrolysis or nsp13 binding to the nucleic acid substrate. SSYA10-001 did not inhibit hepatitis C virus (HCV) helicase, other bacterial and viral RNA-dependent RNA polymerases, or reverse transcriptase. These results suggest that SSYA10-001 specifically blocks nsp13 through a novel mechanism and is less likely to interfere with the functions of cellular enzymes that process nucleic acids or ATP. Hence, it is possible that SSYA10-001 inhibits unwinding by nsp13 by affecting conformational changes during the course of the reaction or translocation on the nucleic acid. SSYA10-001 will be a valuable tool for studying the specific role of nsp13 in the SARS-CoV life cycle, which could be a model for other nidoviruses and also a candidate for further development as a SARS antiviral target.

  5. Theory of post-block 2 VLBI observable extraction

    NASA Technical Reports Server (NTRS)

    Lowe, Stephen T.

    1992-01-01

    The algorithms used in the post-Block II fringe-fitting software called 'Fit' are described. The steps needed to derive the very long baseline interferometry (VLBI) charged-particle corrected group delay, phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are presented beginning with the set of complex fringe phasors as a function of observation frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II correlator. The output of Fit is the set of charged-particle corrected observables (along with ancillary information) in a form amenable to the software program 'Modest.'

  6. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymer of alkanepolyol and poly-alkyl... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked... substance identified generically as a polymer of alkane-polyol and polyalkylpolyisocyanatocarbomonocy- cle...

  7. 40 CFR 721.6660 - Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymer of alkanepolyol and poly-alkyl... Polymer of alkanepolyol and poly-alkyl-poly-iso-cyan-ato-car-bo-mo-no-cycle, acetone oxime-blocked... substance identified generically as a polymer of alkane-polyol and polyalkylpolyisocyanatocarbomonocy- cle...

  8. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer

    NASA Astrophysics Data System (ADS)

    Jin, Liming; Li, Gaoran; Liu, Binhong; Li, Zhoupeng; Zheng, Junsheng; Zheng, Jim P.

    2017-07-01

    Lithium sulfur (Lisbnd S) batteries are one of the most promising energy storage devices owing to their high energy and power density. However, the shuttle effect as a key barrier hinders its practical application by resulting in low coulombic efficiency and poor cycling performance. Herein, a novel design of in situ formed polysulfide adsorptive-blocking layer (PAL) on the cathode surface was developed to tame the polysulfide shuttling and promote the cycling stability for Lisbnd S batteries. The PAL is consisted of La2S3, which is capable to chemically adsorb polysulfide via the strong interaction of Lasbnd S bond and Ssbnd S bond, and build an effective barrier against sulfur escaping. Moreover, the La2S3 is capable to suppress the crystallization of Li2S and promote the ion transfer, which contributes to the reduced internal resistance of batteries. Furthermore, the by-product LiNO3 simultaneously forms a stable anode solid and electrolyte interface to further inhibit the polysulfide shuttle. By this simple and convenient method, the resultant Lisbnd S batteries achieved exceptional cycling stability with an ultralow decay rate of 0.055% since the 10th cycle.

  9. A bioactive film based on cashew gum polysaccharide for wound dressing applications.

    PubMed

    Moreira, Bruna R; Batista, Karla A; Castro, Elisandra G; Lima, Eliana M; Fernandes, Kátia F

    2015-05-20

    This work presents the development of a new bioactive material for wound therapeutics which may play a dual role of modulate metallo proteinases activity while prevents infection blocking out pathogenic microorganisms and foreign materials. A CGP/PVA film was activated by covalent immobilization of trypsin. Results from biocompatibility test revealed that PDL fibroblasts grown on the surface of CGP/PVA and the high amount of viable cells proved absence of cytotoxicity. Trypsin immobilized onto CGP/PVA film remained 100% active after 28 days stored dried at room temperature. In addition, CGP/PVA-trypsin film could be used for 9 cycles of storage/use without loss of activity. After immobilization, trypsin retained its collagenolytic activity, indicating this material as a promising material for wound dressing applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Risperidone prolongs cardiac repolarization by blocking the rapid component of the delayed rectifier potassium current.

    PubMed

    Drolet, Benoit; Yang, Tao; Daleau, Pascal; Roden, Dan M; Turgeon, Jacques

    2003-06-01

    Cases of QT prolongation and sudden death have been reported with risperidone, a neuroleptic agent increasingly prescribed worldwide. Although hypokalemia was present in some of these events, we hypothesized that risperidone may have unsuspected electrophysiologic effects predisposing patients to proarrhythmia. In six isolated guinea pig hearts, risperidone elicited prolongation of cardiac repolarization: action potential duration increased from a baseline value of 128 ms +/- 5 to 147 ms +/- 5 (15%) with risperidone 1 microM during pacing at 250-ms cycle length, whereas the increase was only 10%, from 101 ms +/- 2 to 111 ms +/- 4, with pacing at a cycle length of 150 ms. In human ether-a-go-go (HERG)-transfected Chinese hamster ovary cells (n = 16), risperidone caused concentration-dependent block of the rapid component (I(Kr)) of the delayed rectifier potassium current with an IC(50) for tail block of 261 nM. Risperidone did not block I(Ks). Risperidone exerts cardiac electrophysiologic effects similar to those of Class III antiarrhythmic drugs. These effects are observed at clinically relevant concentrations. Because risperidone is metabolized primarily by CYP2D6, these actions likely enhance risk for risperidone-related QT prolongation and proarrhythmia in specific patient subsets (e.g., poor metabolizers and those taking interacting drugs).

  11. Development of Alkali Activated Geopolymer Masonry Blocks

    NASA Astrophysics Data System (ADS)

    Venugopal, K.; Radhakrishna; Sasalatti, Vinod

    2016-09-01

    Cement masonry units are not considered as sustainable since their production involves consumption of fuel, cement and natural resources and therefore it is essential to find alternatives. This paper reports on making of geopolymer solid & hollow blocks and masonry prisms using non conventional materials like fly ash, ground granulated blast furnace slag (GGBFS) and manufactured sand and curing at ambient temperature. They were tested for water absorption, initial rate of water absorption, dry density, dimensionality, compressive, flexural and bond-strength which were tested for bond strength with and without lateral confinement, modulus of elasticity, alternative drying & wetting and masonry efficiency. The properties of geopolymer blocks were found superior to traditional masonry blocks and the masonry efficiency was found to increase with decrease in thickness of cement mortar joints. There was marginal difference in strength between rendered and unrendered geopolymer masonry blocks. The percentage weight gain after 7 cycles was less than 6% and the percentage reduction in strength of geopolymer solid blocks and hollow blocks were 26% and 28% respectively. Since the properties of geopolymer blocks are comparatively better than the traditional masonry they can be strongly recommended for structural masonry.

  12. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells

    PubMed Central

    Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto

    2017-01-01

    Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481

  13. Multifunctional Nitrogen-Doped Loofah Sponge Carbon Blocking Layer for High-Performance Rechargeable Lithium Batteries.

    PubMed

    Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing

    2016-06-29

    Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.

  14. HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific.

    PubMed

    Evans, Edward L; Becker, Jordan T; Fricke, Stephanie L; Patel, Kishan; Sherer, Nathan M

    2018-04-01

    Cells derived from mice and other rodents exhibit profound blocks to HIV-1 virion production, reflecting species-specific incompatibilities between viral Tat and Rev proteins and essential host factors cyclin T1 (CCNT1) and exportin-1 (XPO1, also known as CRM1), respectively. To determine if mouse cell blocks other than CCNT1 and XPO1 affect HIV's postintegration stages, we studied HIV-1 NL4-3 gene expression in mouse NIH 3T3 cells modified to constitutively express HIV-1-compatible versions of CCNT1 and XPO1 (3T3.CX cells). 3T3.CX cells supported both Rev-independent and Rev-dependent viral gene expression and produced relatively robust levels of virus particles, confirming that CCNT1 and XPO1 represent the predominant blocks to these stages. Unexpectedly, however, 3T3.CX cells were remarkably resistant to virus-induced cytopathic effects observed in human cell lines, which we mapped to the viral protein Vif and its apparent species-specific capacity to induce G 2 /M cell cycle arrest. Vif was able to mediate rapid degradation of human APOBEC3G and the PPP2R5D regulatory B56 subunit of the PP2A phosphatase holoenzyme in mouse cells, thus demonstrating that Vif NL4-3 's modulation of the cell cycle can be functionally uncoupled from some of its other defined roles in CUL5-dependent protein degradation. Vif was also unable to induce G 2 /M cell cycle arrest in other nonhuman cell types, including cells derived from nonhuman primates, leading us to propose that one or more human-specific cofactors underpin Vif's ability to modulate the cell cycle. IMPORTANCE Cells derived from mice and other rodents exhibit profound blocks to HIV-1 replication, thus hindering the development of a low-cost small-animal model for studying HIV/AIDS. Here, we engineered otherwise-nonpermissive mouse cells to express HIV-1-compatible versions of two species-specific host dependency factors, cyclin T1 (CCNT1) and exportin-1 (XPO1) (3T3.CX cells). We show that 3T3.CX cells rescue HIV-1 particle production but, unexpectedly, are completely resistant to virus-induced cytopathic effects. We mapped these effects to the viral accessory protein Vif, which induces a prolonged G 2 /M cell cycle arrest followed by apoptosis in human cells. Combined, our results indicate that one or more additional human-specific cofactors govern HIV-1's capacity to modulate the cell cycle, with potential relevance to viral pathogenesis in people and existing animal models. Copyright © 2018 American Society for Microbiology.

  15. CSN5/JAB1 Interacts with the Centromeric Components CENP-T and CENP-W and Regulates Their Proteasome-mediated Degradation*

    PubMed Central

    Chun, Younghwa; Lee, Miae; Park, Byoungwoo; Lee, Soojin

    2013-01-01

    The CENP-T·CENP-W complex is a recently identified inner centromere component that plays crucial roles in the formation of a functional kinetochore involved in cell division during mitosis. Using yeast two-hybrid screening, we identified an interaction between CENP-T and CSN5, the fifth component of the COP9 signalosome and a key modulator of the cell cycle and cancer. Co-immunoprecipitation revealed that CSN5 directly interacts with both CENP-T and CENP-W. Ectopically expressed CSN5 promoted the ubiquitin- and proteasome-dependent degradation of CENP-T·CENP-W. The formation of a CENP-T·CENP-W complex greatly enhanced the stabilities of the respective proteins, possibly by blocking CSN5-mediated degradation. Furthermore, dysregulation of CSN5 induced severe defects in the recruitment of CENP-T·CENP-W to the kinetochore during the prophase stage of mitosis. Thus, our results indicate that CSN5 regulates the stability of the inner kinetochore components CENP-T and CENP-W, providing the first direct link between CSN5 and the mitotic apparatus, highlighting the role of CSN5 as a multifunctional cell cycle regulator. PMID:23926101

  16. Deficiency of the Arabidopsis Helicase RTEL1 Triggers a SOG1-Dependent Replication Checkpoint in Response to DNA Cross-Links

    PubMed Central

    Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven

    2015-01-01

    To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. PMID:25595823

  17. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  18. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress*

    PubMed Central

    Kemp, Michael G.; Sancar, Aziz

    2016-01-01

    ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878

  19. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers

    PubMed Central

    2017-01-01

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block. PMID:28994585

  20. Amplifying (Im)perfection: The Impact of Crystallinity in Discrete and Disperse Block Co-oligomers.

    PubMed

    van Genabeek, Bas; Lamers, Brigitte A G; de Waal, Bas F M; van Son, Martin H C; Palmans, Anja R A; Meijer, E W

    2017-10-25

    Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

  1. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-11-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae.

  2. Small-scale Starshade Test

    NASA Image and Video Library

    2016-08-09

    A test of a small-scale starshade model (58 cm), made from metal, in a dry lake bed in central Nevada's Smith Creek, took place from May to June 2014. Nineteen different versions of the miniaturized starshade were tested over five days. The tests revealed that a starshade, or external occulter, is capable of blocking starlight to a degree that reveals the relatively dim reflected light of a planet next to its brighter star. Like holding your hand up to block sunlight, the starshade works to block excessive starlight from the "eyes" of a space telescope like Hubble. http://photojournal.jpl.nasa.gov/catalog/PIA20902

  3. Preliminary observations on the impact of complex stress histories on sandstone response to salt weathering: laboratory simulations of process combinations

    NASA Astrophysics Data System (ADS)

    McCabe, S.; Smith, B. J.; Warke, P. A.

    2007-03-01

    Historic sandstone structures carry an inheritance, or a ‘memory’, of past stresses that the stone has undergone since its placement in a façade. This inheritance, which conditions present day performance, may be made up of long-term exposure to a combination of low magnitude background environmental factors (for example, salt weathering, temperature and moisture cycling) and, superimposed upon these, less frequent but potentially high magnitude events or ‘exceptional’ factors (for example, lime rendering, severe frost events, fire). The impact of complex histories on the decay pathways of historic sandstone is not clearly understood, but this paper seeks to improve that understanding through the use of a laboratory ‘process combination’ study. Blocks of quartz sandstone (Peakmoor, from NW England) were divided into subsets that experienced different histories (lime rendering and removal, fire and freeze-thaw cycles in isolation and combination) that reflected the event timeline of a real medieval sandstone monument in NE Ireland, Bonamargy Friary (McCabe et al. 2006b). These subsets were then subject to salt weathering cycles using a 10% salt solution of NaCl and MgSO4 that represents the ‘every-day’ stress environment of, for example, sandstone structures in coastal, or polluted urban, location. Block response to salt weathering was monitored by collecting, drying and weighing the debris that was released as blocks were immersed in the salt solution at the beginning of each cycle. The results illustrate the complexity of the stone decay system, showing that seemingly small variations in stress history can produce divergent response to salt weathering cycles. Applied to real-world historic sandstone structures, this concept may help to explain the spatial and temporal variability of sandstone response to background environmental factors on a single façade, and encourage conservators to include the role of stress inheritance when selecting and implementing conservation strategies.

  4. Remineralization of artificial enamel lesions by theobromine.

    PubMed

    Amaechi, B T; Porteous, N; Ramalingam, K; Mensinkai, P K; Ccahuana Vasquez, R A; Sadeghpour, A; Nakamoto, T

    2013-01-01

    This study investigated the remineralization potential of theobromine in comparison to a standard NaF dentifrice. Three tooth blocks were produced from each of 30 teeth. Caries-like lesion was created on each block using acidified gel. A smaller block was cut from each block for baseline scanning electron microscopy imaging and electron-dispersive spectroscopy (EDS) analysis for surface Ca level. A tooth slice was cut from each lesion-bearing block for transverse microradiography (TMR) quantification of baseline mineral loss (Δz) and lesion depth (LD). Then baseline surface microhardness (SMH) of each lesion was measured. The three blocks from each tooth were assigned to three remineralizing agents: (1) artificial saliva; (2) artificial saliva with theobromine (0.0011 mol/l), and (3) NaF toothpaste slurry (0.0789 mol/l F). Remineralization was conducted using a pH cycling model with storage in artificial saliva. After a 28-day cycle, samples were analyzed using EDS, TMR, and SMH. Intragroup comparison of pre- and posttest data was performed using t tests (p < 0.05). Intergroup comparisons were performed by post hoc multistep comparisons (Tukey). SMH indicated significant (p < 0.01) remineralization only with theobromine (38 ± 32%) and toothpaste (29 ± 16%). With TMR (Δz/lD), theobromine and toothpaste exhibited significantly (p < 0.01) higher mineral gain relative to artificial saliva. With SMH and TMR, remineralization produced by theobromine and toothpaste was not significantly different. With EDS, calcium deposition was significant in all groups, but not significantly different among the groups (theobromine 13 ± 8%, toothpaste 10 ± 5%, and artificial saliva 6 ± 8%). The present study demonstrated that theobromine in an apatite-forming medium can enhance the remineralization potential of the medium. Copyright © 2013 S. Karger AG, Basel.

  5. The effects and mechanisms of clinorotation on proliferation and differentiation in bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Ming; Wang, Yongchun; Yang, Min

    Data from human and rodent studies have demonstrated that microgravity induces observed bone loss in real spaceflight or simulated experiments. The decrease of bone formation and block of maturation may play important roles in bone loss induced by microgravity. The aim of this study was to investigate the changes of proliferation and differentiation in bone marrow mesenchymal stem cells (BMSCs) induced by simulated microgravity and the mechanisms underlying it. We report here that clinorotation, a simulated model of microgravity, decreased proliferation and differentiation in BMSCs after exposure to 48 h simulated microgravity. The inhibited proliferation are related with blocking the cellmore » cycle in G2/M and enhancing the apoptosis. While alterations of the osteoblast differentiation due to the decreased SATB2 expression induced by simulated microgravity in BMSCs. - Highlights: • Simulated microgravity inhibited proliferation and differentiation in BMSCs. • The decreased proliferation due to blocked cell cycle and enhanced the apoptosis. • The inhibited differentiation accounts for alteration of SATB2, Hoxa2 and Cbfa1.« less

  6. Lithium dendrite growth through solid polymer electrolyte membranes

    NASA Astrophysics Data System (ADS)

    Harry, Katherine; Schauser, Nicole; Balsara, Nitash

    2015-03-01

    Replacing the graphite-based anode in current batteries with a lithium foil will result in a qualitative increase in the energy density of lithium batteries. The primary reason for not adopting lithium-foil anodes is the formation of dendrites during cell charging. In this study, stop-motion X-ray microtomography experiments were used to directly monitor the growth of lithium dendrites during electrochemical cycling of symmetric lithium-lithium cells with a block copolymer electrolyte. In an attempt to understand the relationship between viscoelastic properties of the electrolyte on dendrite formation, a series of complementary experiments including cell cycling, tomography, ac impedance, and rheology, were conducted above and below the glass transition temperature of the non-conducting poly(styrene) block; the conducting phase is a mixture of rubbery poly(ethylene oxide) and a lithium salt. The tomography experiments enable quantification of the evolution of strain in the block copolymer electrolyte. Our work provides fundamental insight into the dynamics of electrochemical deposition of metallic films in contact with high modulus polymer electrolytes. Rational approaches for slowing down and, perhaps, eliminating dendrite growth are proposed.

  7. Reconstruction of multidimensional carbon hosts with combined 0D, 1D and 2D networks for enhanced lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Li, S. H.; Xia, X. H.; Wang, Y. D.; Wang, X. L.; Tu, J. P.

    2017-02-01

    It is a core task to find solutions to suppress the "shuttle effect" of polysulfides and improve high rate capability at the sulfur cathode of lithium sulfur batteries. Herein we first time propose a concept of multileveled blocking "dams" to suppress the diffusion of polysulfides. We report a facile and effective strategy to construct multidimensional conductive carbon hosts for accommodation of active sulfur. Multidimensional ternary carbon networks (MTCNs) with 0D nanospheres, 1D nanotubes and 2D nanoflakes are organically combined together to provide multileveled conductive channels to reserve active sulfur and promote stable sustained reactions. In the light of enhanced conductivity and multileveled blocking "dams" for polysulfides, the designed MTCNs/S cathode has been demonstrated with noticeable improvement in discharge capacity (1472 mAh g-1 at 0.l C) and long-term cycling stability (65% retention at 5.0 C after 500 cycles). Our research may provide a new insight in the gradient blocking of polysulfides with the help of multidimensional carbon networks.

  8. Emerging CFD technologies and aerospace vehicle design

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.

    1995-01-01

    With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.

  9. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    PubMed Central

    2014-01-01

    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels. PMID:24479647

  10. Managing Security in FPGA-Based Embedded Systems

    DTIC Science & Technology

    2008-01-01

    Trans. De- sign Automation of Electronic Systems (TODAES), vol. 13, no. 3, July 2008, article 44. c©2008 ACM with permission.5) of the function would need...in the finished design. In addition, the life cycle can be subverted when engineers inject unintended functionality, some of which might be malicious...cores and a moat size of two. There are several different drawbridge configurations between the cores. (IOB: I/O block; CLB: configuration logic block

  11. Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis.

    PubMed

    Chemineau, Philippe; Pellicer-Rubio, Maria-Theresa; Lassoued, Narjess; Khaldi, Gley; Monniaux, Danielle

    2006-01-01

    The existence of short ovulatory cycles (5-day duration) after the first male-induced ovulations in anovulatory ewes and goats, associated or not with the appearance of oestrous behaviour, is the origin of the two-peak abnormal distribution of parturitions after the "male effect". We propose here a working hypothesis to explain the presence of these short cycles. The male-effect is efficient during anoestrus, when follicles contain granulosa cells of lower quality than during the breeding season. They generate corpora lutea (CL) with a lower proportion of large luteal cells compared to small cells, which secrete less progesterone, compared to what is observed in the breeding season cycle. This is probably not sufficient to block prostaglandin synthesis in the endometrial cells of the uterus at the time when the responsiveness to prostaglandins of the new-formed CL is initiated and, in parallel, to centrally reduce LH pulsatility. This LH pulsatility stimulates a new wave of follicles secreting oestradiol which, in turn, stimulates prostaglandin synthesis and provokes luteolysis and new ovulation(s). The occurrence of a new follicular wave on days 3-4 of the first male-induced cycle and the initiation of the responsiveness to prostaglandins of the CL from day 3 of the oestrous cycle are probably the key elements which ensure such regularity in the duration of the short cycles. Exogenous progesterone injection suppresses short cycles, probably not by delaying ovulation time, but rather by blocking prostaglandin synthesis, thus impairing luteolysis. The existence, or not, of oestrous behaviour associated to these ovulatory events mainly varies with species: ewes, compared to does, require a more intense endogenous progesterone priming; only ovulations preceded by normal cycles are associated with oestrous behaviour. Thus, the precise and delicate mechanism underlying the existence of short ovulatory and oestrous cycles induced by the male effect appears to be dependent on the various levels of the hypothalamo-pituitary-ovario-uterine axis.

  12. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Ya-Hsin, E-mail: yhcheng@mail.cmu.edu.tw; Li, Lih-Ann; Lin, Pinpin

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phasemore » and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.« less

  13. Notch3 overexpression causes arrest of cell cycle progression by inducing Cdh1 expression in human breast cancer cells.

    PubMed

    Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun

    2016-01-01

    Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.

  14. Wolff-Parkinson-White syndrome type B and left bundle-branch block: electrophysiologic and radionuclide study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakovec, P.; Kranjec, I.; Fettich, J.J.

    1985-01-01

    Coinciding left bundle-branch block and Wolff-Parkinson-White syndrome type B, a very rare electrocardiographic occurrence, was found in a patient with dilated cardiomyopathy. Electrophysiologic study revealed eccentric retrograde atrial activation during ventricular pacing, suggesting right-sided accessory pathway. At programmed atrial pacing, effective refractory period of the accessory pathway was 310 ms; at shorter pacing coupling intervals, normal atrioventricular conduction with left bundle-branch block was seen. Left bundle-branch block was seen also with His bundle pacing. Radionuclide phase imaging demonstrated right ventricular phase advance and left ventricular phase delay; both right and left ventricular phase images revealed broad phase distribution histograms. Combinedmore » electrophysiologic and radionuclide investigations are useful to disclose complex conduction abnormalities and their mechanical correlates.« less

  15. Transmission-blocking interventions eliminate malaria from laboratory populations

    PubMed Central

    Blagborough, A. M.; Churcher, T. S.; Upton, L. M.; Ghani, A. C.; Gething, P. W.; Sinden, R. E.

    2013-01-01

    Transmission-blocking interventions aim to reduce the prevalence of infection in endemic communities by targeting Plasmodium within the insect host. Although many studies have reported the successful reduction of infection in the mosquito vector, direct evidence that there is an onward reduction in infection in the vertebrate host is lacking. Here we report the first experiments using a population, transmission-based study of Plasmodium berghei in Anopheles stephensi to assess the impact of a transmission-blocking drug upon both insect and host populations over multiple transmission cycles. We demonstrate that the selected transmission-blocking intervention, which inhibits transmission from vertebrate to insect by only 32%, reduces the basic reproduction number of the parasite by 20%, and in our model system can eliminate Plasmodium from mosquito and mouse populations at low transmission intensities. These findings clearly demonstrate that use of transmission-blocking interventions alone can eliminate Plasmodium from a vertebrate population, and have significant implications for the future design and implementation of transmission-blocking interventions within the field. PMID:23652000

  16. Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock

    PubMed Central

    Chen, Dong; Buchanan, Gordon F.; Ding, Jian M.; Hannibal, Jens; Gillette, Martha U.

    1999-01-01

    The circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus organizes behavioral rhythms, such as the sleep–wake cycle, on a near 24-h time base and synchronizes them to environmental day and night. Light information is transmitted to the SCN by direct retinal projections via the retinohypothalamic tract (RHT). Both glutamate (Glu) and pituitary adenylyl cyclase-activating peptide (PACAP) are localized within the RHT. Whereas Glu is an established mediator of light entrainment, the role of PACAP is unknown. To understand the functional significance of this colocalization, we assessed the effects of nocturnal Glu and PACAP on phasing of the circadian rhythm of neuronal firing in slices of rat SCN. When coadministered, PACAP blocked the phase advance normally induced by Glu during late night. Surprisingly, blocking PACAP neurotransmission, with either PACAP6–38, a specific PACAP receptor antagonist, or anti-PACAP antibodies, augmented the Glu-induced phase advance. Blocking PACAP in vivo also potentiated the light-induced phase advance of the rhythm of hamster wheel-running activity. Conversely, PACAP enhanced the Glu-induced delay in the early night, whereas PACAP6–38 inhibited it. These results reveal that PACAP is a significant component of the Glu-mediated light-entrainment pathway. When Glu activates the system, PACAP receptor-mediated processes can provide gain control that generates graded phase shifts. The relative strengths of the Glu and PACAP signals together may encode the amplitude of adaptive circadian behavioral responses to the natural range of intensities of nocturnal light. PMID:10557344

  17. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells.

    PubMed

    Chang, Hsin-Ning; Huang, Sheng-Teng; Yeh, Yuan-Chieh; Wang, Hsin-Shih; Wang, Tzu-Hao; Wu, Yi-Hong; Pang, Jong-Hwei S

    2015-11-04

    Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting the cell cycle progression, cell migration and tube formation, likely mediated through blocking the Akt and FAK pathways. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Observational Evidence of Shallow Origins for the Magnetic Fields of Solar Cycles - a review

    NASA Astrophysics Data System (ADS)

    Martin, Sara F.

    2018-05-01

    Observational evidence for the origin of active region magnetic fields has been sought from published information on extended solar cycles, statistical distributions of active regions and ephemeral regions, helioseismology results, positional relationships to supergranules, and fine-scale magnetic structure of active regions and their sunspots during their growth. Statistical distributions of areas of ephemeral and active regions blend together to reveal a single power law. The shape of the size distribution in latitude of all active regions is independent of time during the solar cycle, yielding further evidence that active regions of all sizes belong to the same population. Elementary bipoles, identified also by other names, appear to be the building blocks of active regions; sunspots form from elementary bipoles and are therefore deduced to develop from the photosphere downward, consistent with helioseismic detection of downflows to 3-4 Mm below sunspots as well as long-observed downflows from chromospheric/coronal arch filaments into sunspots from their earliest appearance. Time-distance helioseismology has been effective in revealing flows related to sunspots to depths of 20 Mm. Ring diagram analysis shows a statistically significant preference for upflows to precede major active region emergence and downflows after flux emergence but both are often observed together or sometimes not detected. From deep-focus helioseismic techniques for seeking magnetic flux below the photosphere prior major active regions, there is evidence of acoustic travel-time perturbation signatures rising in the limited range of depths of 42-75 Mm but these have not been verified or found at more shallow depths by helioseismic holographic techniques. The development of active regions from clusters of elementary bipoles appears to be the same irrespective of how much flux an active region eventually develops. This property would be consistent with the magnetic fields of large active regions being generated in the same way and close the same depth as small active regions in a shallow zone below the photosphere. All evidence considered together, understanding the origins of the magnetic fields of solar cycles boils down to learning how and where elementary bipoles are generated beneath the photosphere.

  19. (PECASE 08) - ION-Conducting Network Membranes Using Tapered Block Copolymers

    DTIC Science & Technology

    2015-07-08

    iron phosphate ( LiFePO4 ) as an active material for the cathode. The composite cathode was prepared by mixing P(S-EO) with carbon black and LiFePO4 ...salt- doping ratio of [EO]:[Li] = 12:1. Example cycle-life data for the Li/P(S-EO)/ LiFePO4 cell is shown in Figure 1. The specific discharge...rates, indicating good cycling stability. This investigation currently is in progress. 1 Figure 1: Cycle-life data for the Li/P(S-EO)/ LiFePO4 cell

  20. High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

    NASA Astrophysics Data System (ADS)

    Bai, ZengLiang; Wang, XuYang; Yang, ShenShen; Li, YongMin

    2016-01-01

    Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and qua-si-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.

  1. Two-sided block of a dual-topology F- channel.

    PubMed

    Turman, Daniel L; Nathanson, Jacob T; Stockbridge, Randy B; Street, Timothy O; Miller, Christopher

    2015-05-05

    The Fluc family is a set of small membrane proteins forming F(-)-specific electrodiffusive ion channels that rescue microorganisms from F(-) toxicity during exposure to weakly acidic environments. The functional channel is built as a dual-topology homodimer with twofold symmetry parallel to the membrane plane. Fluc channels are blocked by nanomolar-affinity fibronectin-domain monobodies originally selected from phage-display libraries. The unusual symmetrical antiparallel dimeric architecture of Flucs demands that the two chemically equivalent monobody-binding epitopes reside on opposite ends of the channel, a double-sided blocking situation that has never before presented itself in ion channel biophysics. However, it is not known if both sites can be simultaneously occupied, and if so, whether monobodies bind independently or cooperatively to their transmembrane epitopes. Here, we use direct monobody-binding assays and single-channel recordings of a Fluc channel homolog to reveal a novel trimolecular blocking behavior that reveals a doubly occupied blocked state. Kinetic analysis of single-channel recordings made with monobody on both sides of the membrane shows substantial negative cooperativity between the two blocking sites.

  2. Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling.

    PubMed

    Yan, Nina; Wang, Yong

    2015-09-21

    Switchable nanoporous films, which can repeatedly alternate their porosities, are of great interest in a diversity of fields. Currently these intelligent materials are mostly based on polyelectrolytes and their porosities can change only in relatively narrow ranges, typically under wet conditions, severely limiting their applications. Here we develop a new system, which is capable of reversibly switching between a highly porous state and a nonporous state dozens of times regulated simply by exposure to selective solvents. In this system nanopores are created or reversibly eliminated in films of a block copolymer, polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP), by exposing the films to P2VP-selective or PS-selective solvents, respectively. The mechanism of the switch is based on the selective swelling of the constituent blocks in corresponding solvents, which is a nondestructive and easily controllable process enabling the repeatable and ample switch between the open and the closed state. Systematic microscopic and ellipsometric characterization methods are performed to elucidate the pore-closing course induced by nonsolvents and the cycling between the pore-open and the pore-closed state up to 20 times. The affinity of the solvent for PS blocks is found to play a dominating role in determining the pore-closing process and the porosities of the pore-open films increase with the cycling numbers as a result of loose packing conditions of the polymer chains. We finally demonstrate the potential applications of these films as intelligent antireflection coatings and drug carriers.

  3. Management of refractory trigeminal neuralgia using extended duration pulsed radiofrequency application.

    PubMed

    Thapa, Deepak; Ahuja, Vanita; Dass, Christopher; Verma, Parul

    2015-01-01

    Trigeminal neuralgia (TN) produces incapacitating facial pain that reduces quality of life in patients. Thermal radiofrequency (RF) ablation of gasserian ganglion (GG) is associated with masseter weakness and unpleasant sensations along the distribution of the ablated nerve. Pulsed radiofrequency (PRF) of GG has minimal side effects but literature is inconclusive regarding its benefit in refractory TN. Increasing the duration of PRF application to 6 minutes in TN produced encouraging results. PRF application to the saphenous nerve for 8 minutes reported improved pain relief and patient satisfaction. We report successful management of two patients of classic TN, which were refractory to medical management and interventional nerve blocks. The lesion site were confirmed with motor and sensory stimulation through a 22 G, 10 cm RF needle with 5 mm active tip. Both the patients received four cycles of PRF at 42 °C with each cycle of 120 seconds (8 minutes). The visual analogue scale (VAS) in case 1 reduced from pre-block score of 80 to score 10 post-block, while in case 2 the VAS reduced from pre-block score of 85 to score 15 post-block. During follow up both the patients are now pain free with minimal dose of carbamazepine at 12 and 6 months respectively. We used PRF for longer duration (8 minutes) in these patients, which resulted in improved VAS and WHOQOL-BREF score in these patients. PRF of mandibular division of GG for extended duration provided long-term effective pain relief and quality of life in patients of refractory classic TN.

  4. Protein PSMD8 may mediate microgravity-induced cell cycle arrest

    NASA Astrophysics Data System (ADS)

    Hang, Xiaoming; Sun, Yeqing; Xu, Dan; Wu, Di; Chen, Xiaoning

    Microgravity environment of space can induce a serial of changes in cells, such as morphology alterations, cytoskeleton disorder and cell cycle disturbance. Our previous study of simulated-microgravity on zebrafish (Danio rerio) embryos demonstrated 26s proteasome non-ATPase regulatory subunit 8 (PSMD8) might be a microgravity sensitive gene. However, functional study on PSMD8 is very limited and it has not been cloned in zebrafish till now. In this study, we tried to clone PSMD8 gene in zebrafish, quantify its protein expression level in zebrafish embryos after simulated microgravity and identify its possible function in cell cycle regulation. A rotary cell culture system (RCCS) designed by national aeronautics and apace administration (NASA) of America was used to simulate microgravity. The full-length of psmd8 gene in zebrafish was cloned. Preliminary analysis on its sequence and phylogenetic tree construction were carried out subsequently. Quantitative analysis by western blot showed that PSMD8 protein expression levels were significantly increased 1.18 and 1.22 times after 24-48hpf and 24-72hpf simulated microgravity, respectively. Moreover, a significant delay on zebrafish embryo development was found in simulated-microgravity exposed group. Inhibition of PSMD8 protein in zebrafish embryonic cell lines ZF4 could block cell cycle in G1 phase, which indicated that PSMD8 may play a role in cell cycle regulation. Interestingly, simulated-microgravity could also block ZF4 cell in G1 phase. Whether it is PSMD8 mediated cell cycle regulation result in the zebrafish embryo development delay after simulated microgravity exposure still needs further study. Key Words: PSMD8; Simulated-microgravity; Cell cycle; ZF4 cell line

  5. Imatinib Mesylate Exerts Anti-Proliferative Effects on Osteosarcoma Cells and Inhibits the Tumour Growth in Immunocompetent Murine Models

    PubMed Central

    Ory, Benjamin; Charrier, Céline; Brion, Régis; Blanchard, Frederic; Redini, Françoise; Heymann, Dominique

    2014-01-01

    Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma), a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1). Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma) and POS-1 (undifferentiated osteosarcoma). Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R), appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor status of patients. PMID:24599309

  6. A mucin-like glycoprotein identified by MAG (mouse ascites Golgi) antibodies. Menstrual cycle-dependent localization in human endometrium.

    PubMed Central

    Kliman, H. J.; Feinberg, R. F.; Schwartz, L. B.; Feinman, M. A.; Lavi, E.; Meaddough, E. L.

    1995-01-01

    Human endometrial glands synthesize and secrete a high molecular weight mucin-like glycoprotein in a menstrual cycle-dependent fashion. A novel moiety within this Golgi-associated glycoprotein is strongly reactive with IgG antibodies in numerous murine ascites, and has been termed MAG (mouse ascites Golgi). Immunohistochemical staining of 201 endometrial biopsies revealed the following patterns: MAG first appeared in the Golgi on cycle day 5, peaked on day 15, was present on the surface of the luminal epithelium between days 17 and 19, and was no longer detectable after day 19. MAG was also present in cervical, prostate, seminal vesicle, and lacrimal glands, pancreatic acinar cells, gall bladder and bile duct epithelium, and certain cells of the salivary and sweat glands. Interestingly, only tissues from blood group A individuals exhibited this staining. As a common link among all these cell types is the expression of mucins, we speculated that the MAG epitope could be a mucin-associated blood group A-related epitope. This hypothesis was tested by absorption experiments with a variety of glycoconjugates and erythrocytes and by immunoblots of MAG-rich material. The absorption studies demonstrated that only type III porcine mucin (< 1% sialic acid) and blood type A or AB erythrocytes were able to absorb the anti-MAG antibody. Inasmuch as N-acetyl-galactosamine alone, the terminal blood group A carbohydrate, did not block MAG antibody binding, the MAG epitope appears to involve N-acetylgalactosamine plus other determinants. Immunoblots of endometrial extracts and saliva from blood type A individuals revealed MAG-reactive material with a molecular weight > 200 kd under reducing conditions. Because the MAG epitope appears on the endometrial surface during the purported implantation window, we speculate that mucin-like epitopes could play a role in the earliest apposition phases of conceptus-endometrial interaction. Images Figure 1 Figure 2 Figure 4 Figure 5 Figure 6 PMID:7531946

  7. Marginal Integrity of Glass Ionomer and All Ceramic Restorations

    DTIC Science & Technology

    2016-06-01

    from ceramic blocks, and cemented with a dual-cured resin cement . Following thennocycling (10,000 cycles, 5°/55°C), the restorations were examined...final result by using resin cements .26 There is an increasing range of shades in resin cements that can be used to modify the shade and value of the...restoration. The resin cement can also block out any potential imperfections present in the prepared tooth from being externally visible.27 Modern

  8. Reliability Testing on the CTI-Cryogenic 1 Watt Integral Cooler (HD- 1033C/UA)

    DTIC Science & Technology

    1989-09-01

    SUBJECT TERMS (Continue on reverse if necessary and identify by block numbe) FIELD GROUP SUB- GROUP Cryocooler, Stirling Cycle, Cryogenics 19, ABSTRCT...the Army. C2NVEO also maintains configuration management control of the forward-looking infrared (FLIR) Common Module coolers used in thermal imagers... controlled high/low temperature chamber. * A microprocessor which was programmed to automatically cycle the temperature in the chamber in accordance

  9. p53 functions as a cell cycle control protein in osteosarcomas.

    PubMed Central

    Diller, L; Kassel, J; Nelson, C E; Gryka, M A; Litwak, G; Gebhardt, M; Bressac, B; Ozturk, M; Baker, S J; Vogelstein, B

    1990-01-01

    Mutations in the p53 gene have been associated with a wide range of human tumors, including osteosarcomas. Although it has been shown that wild-type p53 can block the ability of E1a and ras to cotransform primary rodent cells, it is poorly understood why inactivation of the p53 gene is important for tumor formation. We show that overexpression of the gene encoding wild-type p53 blocks the growth of osteosarcoma cells. The growth arrest was determined to be due to an inability of the transfected cells to progress into S phase. This suggests that the role of the p53 gene as an antioncogene may be in controlling the cell cycle in a fashion analogous to the check-point control genes in Saccharomyces cerevisiae. Images PMID:2233717

  10. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  11. EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas.

    PubMed

    Shair, Kathy H Y; Bendt, Katherine M; Edwards, Rachel H; Bedford, Elisabeth C; Nielsen, Judith N; Raab-Traub, Nancy

    2007-11-01

    Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFkappaB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFkappaB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas.

  12. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  13. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Combined Sciatic and Lumbar Plexus Nerve Blocks for the Analgesic Management of Hip Arthroscopy Procedures: A Retrospective Review.

    PubMed

    Jaffe, J Douglas; Morgan, Theodore Ross; Russell, Gregory B

    2017-06-01

    Hip arthroscopy is a minimally invasive alternative to open hip surgery. Despite its minimally invasive nature, there can still be significant reported pain following these procedures. The impact of combined sciatic and lumbar plexus nerve blocks on postoperative pain scores and opioid consumption in patients undergoing hip arthroscopy was investigated. A retrospective analysis of 176 patients revealed that compared with patients with no preoperative peripheral nerve block, significant reductions in pain scores to 24 hours were reported and decreased opioid consumption during the post anesthesia care unit (PACU) stay was recorded; no significant differences in opioid consumption out to 24 hours were discovered. A subgroup analysis comparing two approaches to the sciatic nerve block in patients receiving the additional lumbar plexus nerve block failed to reveal a significant difference for this patient population. We conclude that peripheral nerve blockade can be a useful analgesic modality for patients undergoing hip arthroscopy.

  15. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells

    PubMed Central

    Pauwels, Laurens; Morreel, Kris; De Witte, Emilie; Lammertyn, Freya; Van Montagu, Marc; Boerjan, Wout; Inzé, Dirk; Goossens, Alain

    2008-01-01

    Jasmonates (JAs) are plant-specific signaling molecules that steer a diverse set of physiological and developmental processes. Pathogen attack and wounding inflicted by herbivores induce the biosynthesis of these hormones, triggering defense responses both locally and systemically. We report on alterations in the transcriptome of a fast-dividing cell culture of the model plant Arabidopsis thaliana after exogenous application of methyl JA (MeJA). Early MeJA response genes encoded the JA biosynthesis pathway proteins and key regulators of MeJA responses, including most JA ZIM domain proteins and MYC2, together with transcriptional regulators with potential, but yet unknown, functions in MeJA signaling. In a second transcriptional wave, MeJA reprogrammed cellular metabolism and cell cycle progression. Up-regulation of the monolignol biosynthesis gene set resulted in an increased production of monolignols and oligolignols, the building blocks of lignin. Simultaneously, MeJA repressed activation of M-phase genes, arresting the cell cycle in G2. MeJA-responsive transcription factors were screened for their involvement in early signaling events, in particular the regulation of JA biosynthesis. Parallel screens based on yeast one-hybrid and transient transactivation assays identified both positive (MYC2 and the AP2/ERF factor ORA47) and negative (the C2H2 Zn finger proteins STZ/ZAT10 and AZF2) regulators, revealing a complex control of the JA autoregulatory loop and possibly other MeJA-mediated downstream processes. PMID:18216250

  16. Plasmodium falciparum CRK4 directs continuous rounds of DNA replication during schizogony.

    PubMed

    Ganter, Markus; Goldberg, Jonathan M; Dvorin, Jeffrey D; Paulo, Joao A; King, Jonas G; Tripathi, Abhai K; Paul, Aditya S; Yang, Jing; Coppens, Isabelle; Jiang, Rays H Y; Elsworth, Brendan; Baker, David A; Dinglasan, Rhoel R; Gygi, Steven P; Duraisingh, Manoj T

    2017-02-17

    Plasmodium parasites, the causative agents of malaria, have evolved a unique cell division cycle in the clinically relevant asexual blood stage of infection 1 . DNA replication commences approximately halfway through the intracellular development following invasion and parasite growth. The schizont stage is associated with multiple rounds of DNA replication and nuclear division without cytokinesis, resulting in a multinucleated cell. Nuclei divide asynchronously through schizogony, with only the final round of DNA replication and segregation being synchronous and coordinated with daughter cell assembly 2,3 . However, the control mechanisms for this divergent mode of replication are unknown. Here, we show that the Plasmodium-specific kinase PfCRK4 is a key cell-cycle regulator that orchestrates multiple rounds of DNA replication throughout schizogony in Plasmodium falciparum. PfCRK4 depletion led to a complete block in nuclear division and profoundly inhibited DNA replication. Quantitative phosphoproteomic profiling identified a set of PfCRK4-regulated phosphoproteins with greatest functional similarity to CDK2 substrates, particularly proteins involved in the origin of replication firing. PfCRK4 was required for initial and subsequent rounds of DNA replication during schizogony and, in addition, was essential for development in the mosquito vector. Our results identified an essential S-phase promoting factor of the unconventional P. falciparum cell cycle. PfCRK4 is required for both a prolonged period of the intraerythrocytic stage of Plasmodium infection, as well as for transmission, revealing a broad window for PfCRK4-targeted chemotherapeutics.

  17. Structures of closed and open states of a voltage-gated sodium channel

    PubMed Central

    Lenaeus, Michael J.; Gamal El-Din, Tamer M.; Ramanadane, Karthik; Pomès, Régis; Zheng, Ning; Catterall, William A.

    2017-01-01

    Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaVAb mutants that capture tightly closed and open states at a resolution of 2.8–3.2 Å. Introduction of two humanizing mutations in the S6 segment (NaVAb/FY: T206F and V213Y) generates a persistently closed form of the activation gate in which the intracellular ends of the four S6 segments are drawn tightly together to block ion permeation completely. This construct also revealed the complete structure of the four-helix bundle that forms the C-terminal domain. In contrast, truncation of the C-terminal 40 residues in NavAb/1–226 captures the activation gate in an open conformation, revealing the open state of a BacNav with intact voltage sensors. Comparing these structures illustrates the full range of motion of the activation gate, from closed with its orifice fully occluded to open with an orifice of ∼10 Å. Molecular dynamics and free-energy simulations confirm designation of NaVAb/1–226 as an open state that allows permeation of hydrated Na+, and these results also support a hydrophobic gating mechanism for control of ion permeation. These two structures allow completion of a closed–open–inactivated conformational cycle in a single voltage-gated sodium channel and give insight into the structural basis for state-dependent binding of sodium channel-blocking drugs. PMID:28348242

  18. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells

    PubMed Central

    Burke, Russell T.; Marcus, Joshua M.; Orth, James D.

    2017-01-01

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801

  19. Genomic Foundation of Starch-to-Lipid Switch in Oleaginous Chlorella spp.1

    PubMed Central

    Fan, Jianhua; Ning, Kang; Zeng, Xiaowei; Luo, Yuanchan; Wang, Dongmei; Hu, Jianqiang; Li, Jing; Xu, Hui; Huang, Jianke; Wan, Minxi; Wang, Weiliang; Zhang, Daojing; Shen, Guomin; Run, Conglin; Liao, Junjie; Fang, Lei; Huang, Shi; Jing, Xiaoyan; Su, Xiaoquan; Wang, Anhui; Bai, Lili; Hu, Zanmin; Xu, Jian; Li, Yuanguang

    2015-01-01

    The ability to rapidly switch the intracellular energy storage form from starch to lipids is an advantageous trait for microalgae feedstock. To probe this mechanism, we sequenced the 56.8-Mbp genome of Chlorella pyrenoidosa FACHB-9, an industrial production strain for protein, starch, and lipids. The genome exhibits positive selection and gene family expansion in lipid and carbohydrate metabolism and genes related to cell cycle and stress response. Moreover, 10 lipid metabolism genes might be originated from bacteria via horizontal gene transfer. Transcriptomic dynamics tracked via messenger RNA sequencing over six time points during metabolic switch from starch-rich heterotrophy to lipid-rich photoautotrophy revealed that under heterotrophy, genes most strongly expressed were from the tricarboxylic acid cycle, respiratory chain, oxidative phosphorylation, gluconeogenesis, glyoxylate cycle, and amino acid metabolisms, whereas those most down-regulated were from fatty acid and oxidative pentose phosphate metabolism. The shift from heterotrophy into photoautotrophy highlights up-regulation of genes from carbon fixation, photosynthesis, fatty acid biosynthesis, the oxidative pentose phosphate pathway, and starch catabolism, which resulted in a marked redirection of metabolism, where the primary carbon source of glycine is no longer supplied to cell building blocks by the tricarboxylic acid cycle and gluconeogenesis, whereas carbon skeletons from photosynthesis and starch degradation may be directly channeled into fatty acid and protein biosynthesis. By establishing the first genetic transformation in industrial oleaginous C. pyrenoidosa, we further showed that overexpression of an NAD(H) kinase from Arabidopsis (Arabidopsis thaliana) increased cellular lipid content by 110.4%, yet without reducing growth rate. These findings provide a foundation for exploiting the metabolic switch in microalgae for improved photosynthetic production of food and fuels. PMID:26486592

  20. Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4) Perturbs the G1-S Cell Cycle Progression via Deregulation of the cyclin D1 Gene.

    PubMed

    Lee, Hye-Ra; Mitra, Jaba; Lee, Stacy; Gao, Shou-Jiang; Oh, Tae-Kwang; Kim, Myung Hee; Ha, Taekjip; Jung, Jae U

    2016-01-15

    Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. [Complete atrioventricular block in Duchenne muscular dystrophy].

    PubMed

    Kuru, Satoshi; Tanahashi, Tamotsu; Matsumoto, Shinjirou; Kitamura, Tetsuya; Konagaya, Masaaki

    2012-01-01

    We report a case of complete atrioventricular (AV) block in a 40-year-old patient with Duchenne muscular dystrophy (DMD). While he was bed-ridden and required mechanical ventilation, his cardiac involvement was mild. He had the deletion of exon 45-52 in the dystrophin gene. He underwent transient complete AV block and came to require pacemaker implantation due to recurrence of complete AV block ten days after the first attack. Electrophysiological study revealed mild prolonged AH and HV interval. Although DMD patients with AV block have been rarely reported so far, attention should be paid to AV block for patients who prolonged their lives.

  2. ERP evidence of distinct processes underlying semantic facilitation and interference in word production.

    PubMed

    Python, Grégoire; Fargier, Raphaël; Laganaro, Marina

    2018-02-01

    In everyday conversations, we take advantage of lexical-semantic contexts to facilitate speech production, but at the same time, we also have to reduce interference and inhibit semantic competitors. The blocked cyclic naming paradigm (BCNP) has been used to investigate such context effects. Typical results on production latencies showed semantic facilitation (or no effect) during the first presentation cycle, and interference emerging in subsequent cycles. Even if semantic contexts might be just as facilitative as interfering, previous BCNP studies focused on interference, which was interpreted as reflecting lemma selection and self-monitoring processes. Facilitation in the first cycle was rarely considered/analysed, although it potentially informs on word production to the same extent as interference. Here we contrasted the event-related potential (ERP) signatures of both semantic facilitation and interference in a BCNP. ERPs differed between homogeneous and heterogeneous blocks from about 365 msec post picture onset in the first cycle (facilitation) and in an earlier time-window (270 msec post picture onset) in the third cycle (interference). Three different analyses of the ERPs converge towards distinct processes underlying semantic facilitation and interference (post-lexical vs lexical respectively). The loci of semantic facilitation and interference are interpreted in the context of different theoretical frameworks of language production: the post-lexical locus of semantic facilitation involves interactive phonological-semantic processes and/or self-monitoring, whereas the lexical locus of semantic interference is in line with selection through increased lexical competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle.

    PubMed

    Ramasamy, Rajesh; Fazekasova, Henrietta; Lam, Eric W-F; Soeiro, Inês; Lombardi, Giovanna; Dazzi, Francesco

    2007-01-15

    Mesenchymal stem cells (MSCs) play a crucial role in hematopoietic development and have been shown to exert a powerful immunosuppressive effect. In this study, we investigated the effect of bone marrow MSC on the differentiation and function of peripheral blood monocytes into dendritic cells (DCs). Human MSCs, generated from normal bone marrow, were added to peripheral blood monocytes stimulated in vitro with granulocyte-macrophage colony stimulating factor and interleukin-4 to become DCs. Monocytes were then examined for the expression of markers characteristic of DCs and their ability to stimulate allogeneic T cells. In addition, the effect of MSCs on the cell cycle of monocyte-derived DCs and the expression of various cell cycle proteins were analyzed by cytometric analysis and Western blotting with specific antibodies. MSCs blocked the differentiation of monocytes into DCs and impaired their antigen-presenting ability. This resulted from a block of monocytes from entering the G1 phase of the cell cycle with a progressive number of cells accumulating in the G0 phase. Cyclin D2 was downregulated. However, differently from what was observed in T-cells stimulated in the presence of MSCs, the expression of p27 was found decreased, suggesting the involvement of similar but not identical pathways. We conclude that MSCs impair monocyte differentiation and function by interfering with the cell cycle. These findings imply that MSC-induced immunosuppression might be a side product of a more general antiproliferative effect.

  4. The Tsaoling 1941 Landslide, New Insight of Numerical Simulation of Discrete Element Model

    NASA Astrophysics Data System (ADS)

    Tang, C.-L.; Hu, J.-C.; Lin, M.-L.

    2009-04-01

    Large earthquakes in the southeastern Taiwan are not rare in the historical catalogue. Tsaoling, located southeast of Taiwan, last five large landslides occurred in the 19th and 20th centuries. According to the literature about the Tsaoling landslide, we concluded four characteristics of the Tsaoling landslide, (1) repeated (2) multi-landslide surface, (3) huge landslide block, and (4) some people survived after sliding a long distance (>2 km). This is the reason why we want to understand the causes of the repeated landslides in Tsaoling and its mechanisms. However, there is not any record about the landslide in 1862 and the most of the landslide evidence disappeared. Hence, we aim at the landslide dynamics of the 1941 landslide in this study. Tsaoling area is located in a large dipping towards the south-southwest monocline. The dip of strata toward the SSW is similar to the both sides of the Chinshui River valley. The bedrock of the Tsaoling area is Pliocene in age and belongs to the upper Chinshui Shale and the lower Cholan Formation. The plane failure analysis and Newmark displacement method are common for slope stability in recent years. However, the plane failure analysis can only provide a safety factor. When the safe factor (FS) is less than 1, it can only indicate that the slope is unstable. The result of Newmark displacement method is a value of displacement length. Both assumptions of the analysis are based on a rigid body. For the large landslide, like the Tsaoling landslide, the volume of landslide masses are over 108 m3, and the landslide block cannot be considered a rigid body. We considered the block as a quasi-rigid body, because the blocks are deformable and jointed. The original version of Distinct Element Method (DEM) was devoted to the modeling of rock-block systems and it was lately applied to the modeling of granular material. The calculation cycle in PFC2D is a time-stepping algorithm that consists of the repeated application of the law of motion to each particle, a force-displacement law to each contact, and a constant updating of wall positions. The physical properties of the particles in the model can be traced in time dominant (i.e. velocity, displacement, force, and stress). During the simulating, we can get the variation of physical properties, so the inter-block change of displacement, force, and stress could be monitored. After the seismic shaking, the result of the PFC model can be divided into three portions, upper (thick), middle (transitional) and lower (thin). The shear displacements of the three parts on the sliding plane are not agreement. The displacement of the lower part block is large than the upper and middle part of the blocks. The shear displacement of middle part is between upper and lower part. During the shaking of the earthquake, the different parts in the block collide with each other, and the upper part of the block was hit back and stayed in origin position or slid a short distance, but the lower part of the block was hit down by the upper block. The collision pushed down a certain length to the lower part of the block. The shear length just lost the strength of the sliding plane and induced the landslide during the 1941 earthquake. The upper part of the block stayed on the slope but revealed unstable. Eight months later, the upper part of the block slid down was induced by a 700 mm downpour in three days.

  5. Combined cycle comes to the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-03-01

    The first combined cycle power station in the Philippines has gone into operation at National Power Corporation`s (NPC) Limay Bataan site, some 40 km west of Manila. The plant comprises two 300 MW blocks in 3+3+1 configuration, based on ABB Type GT11N gas turbines. It was built by a consortium of ABB, with their Japanese licensee Kawasaki Heavy Industries, and Marubeni Corporation. This paper discusses Philippine power production, design and operation of the Limay Bataan plant, and conversion of an existing turbine of the nuclear plant project that was abandoned earlier, into a combined cycle operation. 6 figs.

  6. Computer Program Development Specification for IDAMST Operational Flight Programs. Addendum 1. Executive Software.

    DTIC Science & Technology

    1976-11-01

    system. b. Read different program configurations to reconfigure the software during flight. c. Write Digital Integrated Test System (DITS) results...associated witn > inor C):l.e Event must be Unlatched. The sole difference between a Latched ana an lnratcrec Condition is that upon the Scheduling...Table. Furthermore, the block of pointers for one Minor Cycle may be wholly contained witnir the Diock of ocinters for a different Minor Cycle. For

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.

    A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversiblemore » aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.« less

  8. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musk, S.R.

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  9. High elastic modulus polymer electrolytes

    DOEpatents

    Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2013-10-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics.

  10. Valorisation of Sugarcane Bagasse Ash in the Manufacture of Lime-Stabilized Blocks

    NASA Astrophysics Data System (ADS)

    James, Jijo; Pandian, Pitchai Kasinatha

    2016-06-01

    The study investigated the potential of lime in the manufacture of stabilized soil blocks and the valorisation of a solid waste, Bagasse Ash (BA), in its manufacture. A locally available soil was collected from a field and characterized in the soil laboratory as a clay of intermediate plasticity. This soil was stabilized using lime, the quantity of which was determined from the Eades and Grim pH test. The soil was stabilized using this lime content, amended with various BA contents during mixing, and moulded into blocks of 19 cm x 9 cm x 9 cm. The blocks were then moist cured for a period of 28 days, following which they were subjected to compressive strength, water absorption and efflorescence tests. The results of the tests revealed that the addition of BA resulted in enhanced compressive strength of the blocks, increased the water absorption marginally, and resulted in no efflorescence in any of the combinations, although the limited combinations in the study could not produce enough strength to meet the specifications of the Bureau of Indian Standards. The study revealed that BA can be effectively valorised in the manufacture of stabilized soil blocks.

  11. Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology.

    PubMed

    McLaughlin, Richard N

    2018-03-01

    Transposable elements comprise a huge portion of most animal genomes. Unlike many pathogens, these elements leave a mark of their impact via their insertion into host genomes. With proper teasing, these sequences can relay information about the evolutionary history of transposons and their hosts. In a new publication, Larson and colleagues describe a previously unappreciated density of long interspersed element-1 (LINE-1) sequences that have been spliced (LINE-1 and other reverse transcribing elements are necessarily intronless). They provide data to suggest that the retention of these potentially deleterious splice sites in LINE-1 results from the sites' overlap with an important transcription factor binding site. These spliced LINE-1s (i.e., spliced integrated retrotransposed elements [SpiREs]) lose their ability to replicate, suggesting they are evolutionary dead ends. However, the lethality of this splicing could be an efficient means of blocking continued replication of LINE-1. In this way, the record of inactive LINE-1 sequences in the human genome revealed a new, though infrequent, event in the LINE-1 replication cycle and motivates future studies to test whether splicing might be another weapon in the anti-LINE-1 arsenal of host genomes.

  12. All Solid State Rechargeable Lithium Batteries using Block Copolymers

    NASA Astrophysics Data System (ADS)

    Hallinan, Daniel; Balsara, Nitash

    2011-03-01

    The growing need for alternative energy and increased demand for mobile technology require higher density energy storage. Existing battery technologies, such as lithium ion, are limited by theoretical energy density as well as safety issues. Other battery chemistries are promising options for dramatically increasing energy density. Safety can be improved by replacing the flammable, reactive liquids used in existing lithium-ion battery electrolytes with polymer electrolytes. Block copolymers are uniquely suited for this task because ionic conductivity and mechanical strength, both important properties in battery formulation, can be independently controlled. In this study, lithium batteries were assembled using lithium metal as negative electrode, polystyrene-b-poly(ethylene oxide) copolymer with lithium salt as electrolyte, and a positive electrode. The positive electrode consisted of polymer electrolyte for ion conduction, carbon for electron conduction, and an active material. Batteries were charged and discharged over many cycles. The battery cycling results were compared to a conventional battery chemistry.

  13. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    NASA Astrophysics Data System (ADS)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  14. Characterization of the mississippian chat in South-central Kansas

    USGS Publications Warehouse

    Watney, W.L.; Guy, W.J.; Byrnes, A.P.

    2001-01-01

    To understand production from low resistivity-high porosity Mississippian chat reservoirs in south-central Kansas it is necessary to understand the nature of deposition and diagenesis, how tectonics is a factor, the lithofacies controls on petrophysical properties, and log response to these properties. The initial mudstones to sponge-spicule wacke-packstones were deposited in transgressive-regressive (T-R) cycles on a shelf to shelf margin setting, resulting in a series of shallowing-upward cycles. Sponge-spicule content appears to increase upward with increasing cycle thickness. After early silicification, inter- and post-Mississippian subaerial exposure resulted in further diagenesis, including sponge-spicule dissolution, vuggy porosity development in moldic-rich rocks, and autobrecciation. Meteoric water infiltration is limited in depth below the exposure surface and in distance downdip into unaltered, cherty Cowley Formation facies. Areas of thicker preserved chat and increased diagenesis can be correlated with structural lineaments and, in some areas, with recurrent basement block movement. Combination of folding or block fault movement prior to or during development of the basal Pennsylvanian unconformity, sponge-spicule concentration, and possibly thickness of overlying bioclastic wacke-grainstones resulted in variable reservoir properties and the creation of pods of production separated by nonproductive cherty dolomite mudstones. These events also resulted in alteration of the depositional cycles to produce a series of lithofacies that exhibit unique petrophysical properties. From bottom to top in a complete cycle seven lithofacies are present: (1) argillaceous dolomite mudstone, (2) argillaceous dolomite mudstone that has chert nodules, (3) clean dolomite mudstone that has nodular chert, (4) nodular to bedded chert, (5) autoclastic chert, (6) autoclastic chert that has clay infill, and (7) bioclastic wacke-grainstone. The uppermost cycle was terminated by another lithofacies, a chert conglomerate of Mississippian and/or Pennsylvanian age. The chert facies exhibit porosities ranging from 25 to 50% and permeabilities greater than 5 md. The cherty dolomite mudstones, argillaceous dolomite mudstones, and bioclastic wacke-grainstones exhibit nonreservoir properties. Reservoir production, numerical simulation, and whole core data indicate fracturing can be present in chat reservoirs and can enhance permeability by as much as an order of magnitude. Capillary pressure data indicate the presence of microporosity and can explain high water saturations and low resistivity observed in wire-line logs. Relative permeabilities to oil decrease rapidly for saturations greater than 60% and may be influenced by dual pore systems. Archie cementation exponents increase from 1.8 for mudstones to more than 2.5 in the cherts that have increasing sponge-spicule mold and vug content. Detailed modified Pickett plot analysis of logs reveals critical aspects of chat character and can provide reliable indices of reservoir properties and pay delineation. Models developed provide additional insight into the chat of south-central Kansas and understanding of the nature of controls on shallow-shelf chert reservoir properties.

  15. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  16. Small Molecule Inhibition of cAMP Response Element Binding Protein in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Mitton, Bryan; Chae, Hee-Don; Hsu, Katie; Dutta, Ritika; Aldana-Masangkay, Grace; Ferrari, Roberto; Davis, Kara; Tiu, Bruce C.; Kaul, Arya; Lacayo, Norman; Dahl, Gary; Xie, Fuchun; Li, Bingbing X.; Breese, Marcus R.; Landaw, Elliot M.; Nolan, Garry; Pellegrini, Matteo; Romanov, Sergei; Xiao, Xiangshu; Sakamoto, Kathleen M.

    2016-01-01

    The transcription factor CREB (cAMP Response Element Binding Protein) is overexpressed in the majority of acute myeloid leukemia (AML) patients, and this is associated with a worse prognosis. Previous work revealed that CREB overexpression augmented AML cell growth, while CREB knockdown disrupted key AML cell functions in vitro. In contrast, CREB knockdown had no effect on long-term hematopoietic stem cell activity in mouse transduction/transplantation assays. Together, these studies position CREB as a promising drug target for AML. To test this concept, a small molecule inhibitor of CREB, XX-650-23, was developed. This molecule blocks a critical interaction between CREB and its required co-activator CBP (CREB Binding Protein), leading to disruption of CREB-driven gene expression. Inhibition of CBP-CREB interaction induced apoptosis and cell cycle arrest in AML cells, and prolonged survival in vivo in mice injected with human AML cells. XX-650-23 had little toxicity on normal human hematopoietic cells and tissues in mice. To understand the mechanism of XX-650-23, we performed RNA-seq, ChIP-seq and Cytometry Time of Flight with human AML cells. Our results demonstrate that small molecule inhibition of CBP-CREB interaction mostly affects apoptotic, cell cycle, and survival pathways, which may represent a novel approach for AML therapy. PMID:27211267

  17. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions

    PubMed Central

    Schneider, Thomas; Keiblinger, Katharina M; Schmid, Emanuel; Sterflinger-Gleixner, Katja; Ellersdorfer, Günther; Roschitzki, Bernd; Richter, Andreas; Eberl, Leo; Zechmeister-Boltenstern, Sophie; Riedel, Kathrin

    2012-01-01

    Leaf-litter decomposition is a central process in carbon cycling; however, our knowledge about the microbial regulation of this process is still scarce. Metaproteomics allows us to link the abundance and activity of enzymes during nutrient cycling to their phylogenetic origin based on proteins, the ‘active building blocks' in the system. Moreover, we employed metaproteomics to investigate the influence of environmental factors and nutrients on the decomposer structure and function during beech litter decomposition. Litter was collected at forest sites in Austria with different litter nutrient content. Proteins were analyzed by 1-D-SDS-PAGE followed by liquid-chromatography and tandem mass-spectrometry. Mass spectra were assigned to phylogenetic and functional groups by a newly developed bioinformatics workflow, assignments being validated by complementary approaches. We provide evidence that the litter nutrient content and the stoichiometry of C:N:P affect the decomposer community structure and activity. Fungi were found to be the main producers of extracellular hydrolytic enzymes, with no bacterial hydrolases being detected by our metaproteomics approach. Detailed investigation of microbial succession suggests that it is influenced by litter nutrient content. Microbial activity was stimulated at higher litter nutrient contents via a higher abundance and activity of extracellular enzymes. PMID:22402400

  18. Deficiency of the Arabidopsis helicase RTEL1 triggers a SOG1-dependent replication checkpoint in response to DNA cross-links.

    PubMed

    Hu, Zhubing; Cools, Toon; Kalhorzadeh, Pooneh; Heyman, Jefri; De Veylder, Lieven

    2015-01-01

    To maintain genome integrity, DNA replication is executed and regulated by a complex molecular network of numerous proteins, including helicases and cell cycle checkpoint regulators. Through a systematic screening for putative replication mutants, we identified an Arabidopsis thaliana homolog of human Regulator of Telomere Length 1 (RTEL1), which functions in DNA replication, DNA repair, and recombination. RTEL1 deficiency retards plant growth, a phenotype including a prolonged S-phase duration and decreased cell proliferation. Genetic analysis revealed that rtel1 mutant plants show activated cell cycle checkpoints, specific sensitivity to DNA cross-linking agents, and increased homologous recombination, but a lack of progressive shortening of telomeres, indicating that RTEL1 functions have only been partially conserved between mammals and plants. Surprisingly, RTEL1 deficiency induces tolerance to the deoxynucleotide-depleting drug hydroxyurea, which could be mimicked by DNA cross-linking agents. This resistance does not rely on the essential replication checkpoint regulator WEE1 but could be blocked by a mutation in the SOG1 transcription factor. Taken together, our data indicate that RTEL1 is required for DNA replication and that its deficiency activates a SOG1-dependent replication checkpoint. © 2015 American Society of Plant Biologists. All rights reserved.

  19. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  20. Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band

    PubMed Central

    Li, Junhua; Lim, Julian; Chen, Yu; Wong, Kianfoong; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous efforts have been devoted to revealing neurophysiological mechanisms of mental fatigue, aiming to find an effective way to reduce the undesirable fatigue-related outcomes. Until recently, mental fatigue is thought to be related to functional dysconnectivity among brain regions. However, the topological representation of brain functional connectivity altered by mental fatigue is only beginning to be revealed. In the current study, we applied a graph theoretical approach to analyse such topological alterations in the lower alpha band (8~10 Hz) of EEG data from 20 subjects undergoing a two-session experiment, in which one session includes four successive blocks with visual oddball tasks (session 1) whereas a mid-task break was introduced in the middle of four task blocks in the other session (session 2). Phase lag index (PLI) was then employed to measure functional connectivity strengths for all pairs of EEG channels. Behavior and connectivity maps were compared between the first and last task blocks in both sessions. Inverse efficiency scores (IES = reaction time/response accuracy) were significantly increased in the last task block, showing a clear effect of time-on-task in participants. Furthermore, a significant block-by-session interaction was revealed in the IES, suggesting the effectiveness of the mid-task break on maintaining task performance. More importantly, a significant session-independent deficit of global integration and an increase of local segregation were found in the last task block across both sessions, providing further support for the presence of a reshaped topology in functional brain connectivity networks under fatigue state. Moreover, a significant block-by-session interaction was revealed in the characteristic path length, small-worldness, and global efficiency, attributing to the significantly disrupted network topology in session 1 in comparison of the maintained network structure in session 2. Specifically, we found increased nodal betweenness centrality in several channels resided in frontal regions in session 1, resembling the observations of more segregated global architecture under fatigue state. Taken together, our findings provide insights into the substrates of brain functional dysconnectivity patterns for mental fatigue and reiterate the effectiveness of the mid-task break on maintaining brain network efficiency. PMID:27378894

  1. MiR-100 regulates cell differentiation and survival by targeting RBSP3, a phosphatase-like tumor suppressor in acute myeloid leukemia

    PubMed Central

    Zheng, Y-S; Zhang, H; Zhang, X-J; Feng, D-D; Luo, X-Q; Zeng, C-W; Lin, K-Y; Zhou, H; Qu, L-H; Zhang, P; Chen, Y-Q

    2012-01-01

    Acute myeloblastic leukemia (AML) is characterized by the accumulation of abnormal myeloblasts (mainly granulocyte or monocyte precursors) in the bone marrow and blood. Though great progress has been made for improvement in clinical treatment during the past decades, only minority with AML achieve long-term survival. Therefore, further understanding mechanisms of leukemogenesis and exploring novel therapeutic strategies are still crucial for improving disease outcome. MicroRNA-100 (miR-100), a small non-coding RNA molecule, has been reported as a frequent event aberrantly expressed in patients with AML; however, the molecular basis for this phenotype and the statuses of its downstream targets have not yet been elucidated. In the present study, we found that the expression level of miR-100 in vivo was related to the stage of the maturation block underlying the subtypes of myeloid leukemia. In vitro experiments further demonstrated that miR-100 was required to promote the cell proliferation of promyelocytic blasts and arrest them differentiated to granulocyte/monocyte lineages. Significantly, we identified RBSP3, a phosphatase-like tumor suppressor, as a bona fide target of miR-100 and validated that RBSP3 was involved in cell differentiation and survival in AML. Moreover, we revealed a new pathway that miR-100 regulates G1/S transition and S-phase entry and blocks the terminal differentiation by targeting RBSP3, which partly in turn modulates the cell cycle effectors pRB/E2F1 in AML. These events promoted cell proliferation and blocked granulocyte/monocyte differentiation. Our data highlight an important role of miR-100 in the molecular etiology of AML, and implicate the potential application of miR-100 in cancer therapy. PMID:21643017

  2. Dengue virus induces and requires glycolysis for optimal replication.

    PubMed

    Fontaine, Krystal A; Sanchez, Erica L; Camarda, Roman; Lagunoff, Michael

    2015-02-01

    Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells. Our metabolic profiling data suggested that central carbon metabolism, particularly glycolysis, is strikingly altered during a time course of DENV infection. Glucose consumption is increased during DENV infection and depriving DENV-infected cells of exogenous glucose had a pronounced impact on viral replication. Furthermore, the expression of both glucose transporter 1 and hexokinase 2, the first enzyme of glycolysis, is upregulated in DENV-infected cells. Pharmacologically inhibiting the glycolytic pathway dramatically reduced DENV RNA synthesis and infectious virion production, revealing a requirement for glycolysis during DENV infection. Thus, these experiments suggest that DENV induces the glycolytic pathway to support efficient viral replication. This study raises the possibility that metabolic inhibitors, such as those that target glycolysis, could be used to treat DENV infection in the future. Approximately 400 million people are infected with dengue virus (DENV) annually, and more than one-third of the global population is at risk of infection. As there are currently no effective vaccines or specific antiviral therapies for DENV, we investigated the impact DENV has on the host cellular metabolome to identify metabolic pathways that are critical for the virus life cycle. We report an essential role for glycolysis during DENV infection. DENV activates the glycolytic pathway, and inhibition of glycolysis significantly blocks infectious DENV production. This study provides further evidence that viral metabolomic analyses can lead to the discovery of novel therapeutic targets to block the replication of medically important human pathogens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    NASA Astrophysics Data System (ADS)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  4. DACH1 regulates cell cycle progression of myeloid cells through the control of cyclin D, Cdk 4/6 and p21{sup Cip1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Woong; Kim, Hyeng-Soo; Kim, Seonggon

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer DACH1 increases cyclin D, F and Cdk 1, 4, 6 in mouse myeloid progenitor cells. Black-Right-Pointing-Pointer The knockdown of DACH1 blocked the cell cycle progression of HL-60 cells. Black-Right-Pointing-Pointer The novel effect of DACH1 related with cell cycle regulation and leukemogenesis. -- Abstract: The cell-fate determination factor Dachshund, a component of the Retinal Determination Gene Network (RDGN), has a role in breast tumor proliferation through the repression of cyclin D1 and several key regulators of embryonic stem cell function, such as Nanog and Sox2. However, little is known about the role of DACH1 in a myeloid lineage asmore » a cell cycle regulator. Here, we identified the differential expression levels of extensive cell cycle regulators controlled by DACH1 in myeloid progenitor cells. The forced expression of DACH1 induced p27{sup Kip1} and repressed p21{sup Cip1}, which is a pivotal characteristic of the myeloid progenitor. Furthermore, DACH1 significantly increased the expression of cyclin D1, D3, F, and Cdk 1, 4, and 6 in myeloid progenitor cells. The knockdown of DACH1 blocked the cell cycle progression of HL-60 promyeloblastic cells through the decrease of cyclin D1, D3, F, and Cdk 1, 4, and 6 and increase in p21{sup Cip1}, which in turn decreased the phosphorylation of the Rb protein. The expression of Sox2, Oct4, and Klf4 was significantly up-regulated by the forced expression of DACH1 in mouse myeloid progenitor cells.« less

  5. Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation

    PubMed Central

    Patsoukis, Nikolaos; Brown, Julia; Petkova, Victoria; Liu, Fang; Li, Lequn; Boussiotis, Vassiliki A.

    2017-01-01

    The receptor programmed death 1 (PD-1) inhibits T cell proliferation and plays a critical role in suppressing self-reactive T cells, and it also compromises antiviral and antitumor responses. To determine how PD-1 signaling inhibits T cell proliferation, we used human CD4+ T cells to examine the effects of PD-1 signaling on the molecular control of the cell cycle. The ubiquitin ligase SCFSkp2 degrades p27kip1, an inhibitor of cyclin-dependent kinases (Cdks), and PD-1 blocked cell cycle progression through the G1 phase by suppressing transcription of SKP2, which encodes a component of this ubiquitin ligase. Thus, in T cells stimulated through PD-1, Cdks were not activated, and two critical Cdk substrates were not phosphorylated. Activation of PD-1 inhibited phosphorylation of the retinoblastoma gene product, which suppressed expression of E2F target genes. PD-1 also inhibited phosphorylation of the transcription factor Smad3, which increased its activity. These events induced additional inhibitory checkpoints in the cell cycle by increasing the abundance of the G1 phase inhibitor p15INK4 and repressing the Cdk-activating phosphatase Cdc25A. PD-1 suppressed SKP2 transcription by inhibiting phosphoinositide 3-kinase–Akt and Ras–mitogen-activated and extracellular signal–regulated kinase kinase (MEK)–extracellular signal–regulated kinase (ERK) signaling. Exposure of cells to the proliferation-promoting cytokine interleukin-2 restored activation of MEK-ERK signaling, but not Akt signaling, and only partially restored SKP2 expression. Thus, PD-1 blocks cell cycle progression and proliferation of T lymphocytes by affecting multiple regulators of the cell cycle. PMID:22740686

  6. Thin-film Organic-based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2002-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6 percent loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge- Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99 percent. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approx. 0.14 percent under white light. Devices fabricated from 2 percent solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  7. A comparison of G2 phase radiation-induced chromatid break kinetics using calyculin-PCC with those obtained using colcemid block.

    PubMed

    Bryant, Peter E; Mozdarani, Hossein

    2007-09-01

    To study the possible influence of cell-cycle delay on cells reaching mitosis during conventional radiation-induced chromatid break experiments using colcemid as a blocking agent, we have compared the chromatid break kinetics following a single dose of gamma rays (0.75 Gy) in metaphase CHO cells using calyculin-induced premature chromosome condensation (PCC), with those using colcemid block. Calyculin-induced PCC causes very rapid condensation of G2 cell chromosomes without the need for a cell to progress to mitosis, hence eliminating any effect of cell-cycle checkpoint on chromatid break frequency. We found that the kinetics of the exponential first-order decrease in chromatid breaks with time after irradiation was similar (not significantly different) between the two methods of chromosome condensation. However, use of the calyculin-PCC technique resulted in a slightly increased rate of disappearance of chromatid breaks and thus higher frequencies of breaks at 1.5 and 2.5 h following irradiation. We also report on the effect of the nucleoside analogue ara A on chromatid break kinetics using the two chromosome condensation techniques. Ara A treatment of cells abrogated the decrease in chromatid breaks with time, both using the calyculin-PCC and colcemid methods. We conclude that cell-cycle delay may be a factor determining the absolute frequency of chromatid breaks at various times following irradiation of cells in G2 phase but that the first-order disappearance of chromatid breaks with time and its abrogation by ara A are not significantly influenced by the G2 checkpoint.

  8. Thin-Film Organic-Based Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Harris, Jerry D.; Hepp, Aloysius F.; Anglin, Emily J.; Raffaelle, Ryne P.; Clark, Harry R., Jr.; Gardner, Susan T. P.; Sun, Sam S.

    2001-01-01

    Recent advances in dye-sensitized and organic polymer solar cells have lead NASA to investigate the potential of these devices for space power generation. Dye-sensitaized solar cells were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AM0) illumination. Complete cells were exposed to pressures less than 1 x 10 (exp -7)torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling. In a separate project, novel -Bridge-Donor-Bridge-Acceptor- (-BDBA-) type conjugated block copolymer systems have been synthesized and characterized by photoluminescence (PL). In comparison to pristine donor or acceptor, the PL emissions of final -B-D-B-A- block copolymer films were quenched over 99%. Effective and efficient photo induced electron transfer and charge separation occurs due to the interfaces of micro phase separated donor and acceptor blocks. The system is very promising for a variety high efficiency light harvesting applications. Under an SBIR contract, fullerene-doped polymer-based photovoltaic devices were fabricated and characterized. The best devices showed overall power efficiencies of approximately 0.14% under white light. Devices fabricated from 2% solids content solutions in chlorobenzene gave the best results. Presently, device lifetimes are too short to be practical for space applications.

  9. Intermittent bradyarrhythmia in a Hispaniolan Amazon parrot (Amazona ventralis).

    PubMed

    Rembert, Melanie S; Smith, Julie A; Strickland, Keith N; Tully, Thomas N

    2008-03-01

    A clinically normal 2-year-old Hispaniolan Amazon parrot (Amazona ventralis) was found to have periodic second-degree atrioventricular (AV) block with variable nodal conductions while anesthetized with isoflurane during a thermal-support research project. Arrhythmias were observed on 5 successive weekly electrocardiograms. A complete cardiac evaluation, including a diagnostic electrocardiogram, revealed intermittent bradyarrhythmias ranging from a 2:1 to a 7:1 second-degree AV block, with concurrent hypotensive episodes during the nodal blocks. Results of a complete blood cell count, plasma biochemical profile, blood gas analysis, and atropine-response test, as well as radiography and auscultation, revealed no obvious cause for the arrhythmias. Echocardiography demonstrated cardiac wall thickness, chamber size, and systolic function similar to other psittacine birds. On return to the colony, the parrot continued to be outwardly asymptomatic despite the dramatic conduction disturbances. Although cardiac arrhythmias, including second-degree AV block, have been widely reported in birds, the wide variation of nodal conductions, the intermittent nature, and an arrhythmia with a 7:1 second-degree AV block that spontaneously reverts to normal as seen in this case have not been well documented in parrots.

  10. Problem-based test: replication of mitochondrial DNA during the cell cycle.

    PubMed

    Sétáló, György

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids, re-replication block, cell fractionation, Svedberg (sedimentation constant = [ S]), nuclear DNA, mitochondrial DNA, heavy and light mitochondrial DNA chains, heteroplasmy, mitochondrial diseases Copyright © 2013 Wiley Periodicals, Inc.

  11. Build 3 of an Accelerated Mission Test of a TF41 with Block 76 Hardware.

    DTIC Science & Technology

    1979-12-01

    Temperature and Calculated Turbine 28 Stator Inlet Temperature Time History 7 ACU/DCU Time Checks 31 8 Oil Consumption Between Fills 32 9 Overall Oil...Consumption 33 10 Engine Vibration History 36 11 Corrected "A" Cycle Performance Trends 33 12 Corrected "A" Cycle Performance Trends 39 13 Corrected...records of engine histories during actual flight. An extensive program of pilot interviews 12 0 Li) 05 ____ ____ ___ ____ ____ ___ ____ ____ __ F

  12. Blocks in cycles and k-commuting permutations.

    PubMed

    Moreno, Rutilo; Rivera, Luis Manuel

    2016-01-01

    We introduce and study k -commuting permutations. One of our main results is a characterization of permutations that k -commute with a given permutation. Using this characterization, we obtain formulas for the number of permutations that k -commute with a permutation [Formula: see text], for some cycle types of [Formula: see text]. Our enumerative results are related with integer sequences in "The On-line Encyclopedia of Integer Sequences", and in some cases provide new interpretations for such sequences.

  13. Rotation of vertically oriented objects during earthquakes

    NASA Astrophysics Data System (ADS)

    Hinzen, Klaus-G.

    2012-10-01

    Vertically oriented objects, such as tombstones, monuments, columns, and stone lanterns, are often observed to shift and rotate during earthquake ground motion. Such observations are usually limited to the mesoseismal zone. Whether near-field rotational ground motion components are necessary in addition to pure translational movements to explain the observed rotations is an open question. We summarize rotation data from seven earthquakes between 1925 and 2009 and perform analog and numeric rotation testing with vertically oriented objects. The free-rocking motion of a marble block on a sliding table is disturbed by a pulse in the direction orthogonal to the rocking motion. When the impulse is sufficiently strong and occurs at the `right' moment, it induces significant rotation of the block. Numeric experiments of a free-rocking block show that the initiation of vertical block rotation by a cycloidal acceleration pulse applied orthogonal to the rocking axis depends on the amplitude of the pulse and its phase relation to the rocking cycle. Rotation occurs when the pulse acceleration exceeds the threshold necessary to provoke rocking of a resting block, and the rocking block approaches its equilibrium position. Experiments with blocks subjected to full 3D strong motion signals measured during the 2009 L'Aquila earthquake confirm the observations from the tests with analytic ground motions. Significant differences in the rotational behavior of a monolithic block and two stacked blocks exist.

  14. Inhibition effects of scorpion venom extracts (Buthus matensii Karsch) on the growth of human breast cancer MCF-7 cells.

    PubMed

    Li, Weiling; Li, Ye; Zhao, Yuwan; Yuan, Jieli; Mao, Weifeng

    2014-01-01

    To observe the inhibition effects of the Buthus matensii Karsch (BmK) scorpion venom extracts on the growth of human breast cancer MCF-7 cells, and to explore its mechanisms. Two common tumor cells (SMMC7721, MCF-7) were examined for the one which wasmore sensitivity to scorpion venom by MTT method. Cell cycle was determined by flow cytometry. Immunocytochemistry was applied to detect apoptosis-related protein Caspase-3 and Bcl-2 levels, while the expression of cell cycle-related protein Cyclin D1 was shown by Western blotting. Our data indicated that MCF-7 was the more sensitive cell line to scorpion venom. The extracts of scorpion venom could inhibit the growth and proliferation of MCF-7 cells. Furthermore, the extract of scorpion venom induced apoptosis through Caspase-3 up-regulation while Bcl-2 down-regulation in MCF-7 cells. In addition, the extracts of scorpion venom blocked the cells from G0/G1 phase to S phase and decreased cell cycle-related protein Cyclin D1 level after drug intervention compared with the negative control group. These results showed that the BmK scorpion venom extracts could inhibit the growth of MCF-7 cells by inducing apoptosis and blocking cell cycle in G0/G1 phase. The BmK scorpion venom extracts will be very valuable for the treatment of breast cancer.

  15. Partial venom gland transcriptome of a Drosophila parasitoid wasp, Leptopilina heterotoma, reveals novel and shared bioactive profiles with stinging Hymenoptera

    PubMed Central

    Heavner, Mary E.; Gueguen, Gwenaelle; Rajwani, Roma; Pagan, Pedro E.; Small, Chiyedza; Govind, Shubha

    2013-01-01

    Analysis of natural host-parasite relationships reveals the evolutionary forces that shape the delicate and unique specificity characteristic of such interactions. The accessory long gland-reservoir complex of the wasp Leptopilina heterotoma (Figitidae) produces venom with virus-like particles. Upon delivery, venom components delay host larval development and completely block host immune responses. The host range of this Drosophila endoparasitoid notably includes the highly-studied model organism, Drosophila melanogaster. Categorization of 827 unigenes, using similarity as an indicator of putative homology, reveals that approximately 25% are novel or classified as hypothetical proteins. Most of the remaining unigenes are related to processes involved in signaling, cell cycle, and cell physiology including detoxification, protein biogenesis, and hormone production. Analysis of L. heterotoma’s predicted venom gland proteins demonstrates conservation among endo- and ectoparasitoids within the Apocrita (e.g., this wasp and the jewel wasp Nasonia vitripennis) and stinging aculeates (e.g., the honey bee and ants). Enzyme and KEGG pathway profiling predicts that kinases, esterases, and hydrolases may contribute to venom activity in this unique wasp. To our knowledge, this investigation marks the first functional genomic study for a natural parasitic wasp of Drosophila. Our findings will help explain how L. heterotoma shuts down its hosts’ immunity and shed light on the molecular basis of a natural arms race between these insects. PMID:23688557

  16. Blocking DNA Repair in Advanced BRCA-Mutated Cancer

    Cancer.gov

    In this trial, patients with relapsed or refractory advanced cancer and confirmed BRCA mutations who have not previously been treated with a PARP inhibitor will be given BMN 673 by mouth once a day in 28-day cycles.

  17. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  18. Integrase inhibitor reversal dynamics indicate unintegrated HIV-1 dna initiate de novo integration.

    PubMed

    Thierry, Sylvain; Munir, Soundasse; Thierry, Eloïse; Subra, Frédéric; Leh, Hervé; Zamborlini, Alessia; Saenz, Dyana; Levy, David N; Lesbats, Paul; Saïb, Ali; Parissi, Vincent; Poeschla, Eric; Deprez, Eric; Delelis, Olivier

    2015-03-12

    Genomic integration, an obligate step in the HIV-1 replication cycle, is blocked by the integrase inhibitor raltegravir. A consequence is an excess of unintegrated viral DNA genomes, which undergo intramolecular ligation and accumulate as 2-LTR circles. These circularized genomes are also reliably observed in vivo in the absence of antiviral therapy and they persist in non-dividing cells. However, they have long been considered as dead-end products that are not precursors to integration and further viral propagation. Here, we show that raltegravir action is reversible and that unintegrated viral DNA is integrated in the host cell genome after raltegravir removal leading to HIV-1 replication. Using quantitative PCR approach, we analyzed the consequences of reversing prolonged raltegravir-induced integration blocks. We observed, after RAL removal, a decrease of 2-LTR circles and a transient increase of linear DNA that is subsequently integrated in the host cell genome and fuel new cycles of viral replication. Our data highly suggest that 2-LTR circles can be used as a reserve supply of genomes for proviral integration highlighting their potential role in the overall HIV-1 replication cycle.

  19. Hierarchical columnar silicon anode structures for high energy density lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Piwko, Markus; Kuntze, Thomas; Winkler, Sebastian; Straach, Steffen; Härtel, Paul; Althues, Holger; Kaskel, Stefan

    2017-05-01

    Silicon is a promising anode material for next generation lithium secondary batteries. To significantly increase the energy density of state of the art batteries with silicon, new concepts have to be developed and electrode structuring will become a key technology. Structuring is essential to reduce the macroscopic and microscopic electrode deformation, caused by the volume change during cycling. We report pulsed laser structuring for the generation of hierarchical columnar silicon films with outstanding high areal capacities up to 7.5 mAh cm-2 and good capacity retention. Unstructured columnar electrodes form a micron-sized block structure during the first cycle to compensate the volume expansion leading to macroscopic electrode deformation. At increased silicon loading, without additional structuring, pronounced distortion and the formation of cracks through the current collector causes cell failure. Pulsed laser ablation instead is demonstrated to avoid macroscopic electrode deformation by initial formation of the block structure. A full cell with lithiated silicon versus a carbon-sulfur cathode is assembled with only 15% overbalanced anode and low electrolyte amount (8 μl mgsulfur-1). While the capacity retention over 50 cycles is identical to a cell with high excess lithium anode, the volumetric energy density could be increased by 30%.

  20. In vitro effects of histone deacetylase inhibitors and mitomycin C on tenon capsule fibroblasts and conjunctival melanoma cells.

    PubMed

    Cunneen, Thomas S; Conway, R Max; Madigan, Michele C

    2009-04-01

    To investigate the effects of mitomycin C and the histone deacetylase inhibitors sodium butyrate and trichostatin on the viability and growth of conjunctival melanoma cell lines and Tenon capsule fibroblasts. Cells were treated with a range of concentrations of sodium butyrate, trichostatin, and mitomycin C. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assays were performed 48 hours after treatment. Treated cells were stained with acridine orange/ethidium bromide to assess for cell death. Cell-cycle changes in histone deacetylase inhibitor-treated melanoma cells were quantified using flow cytometry. All agents induced dose-dependent cell death in the melanoma cell lines; however, sodium butyrate and trichostatin were relatively nontoxic to Tenon capsule fibroblasts. Acridine orange/ethidium bromide staining indicated that sodium butyrate and trichostatin induced apoptotic cell death. At low doses, sodium butyrate and trichostatin induced a G1 cell-cycle block in the melanoma cells. Sodium butyrate and trichostatin induced cell death in melanoma cells, comparable with mitomycin C, with minimal effect on Tenon capsule fibroblasts. In addition, they induced a G1 cell-cycle block. These findings support the need for further investigation into the in vivo efficacy of these agents.

  1. Dual targeted polymeric nanoparticles based on tumor endothelium and tumor cells for enhanced antitumor drug delivery.

    PubMed

    Gupta, Madhu; Chashoo, Gousia; Sharma, Parduman Raj; Saxena, Ajit Kumar; Gupta, Prem Narayan; Agrawal, Govind Prasad; Vyas, Suresh Prasad

    2014-03-03

    Some specific types of tumor cells and tumor endothelial cells represented CD13 proteins and act as receptors for Asn-Gly-Arg (NGR) motifs containing peptide. These CD13 receptors can be specifically recognized and bind through the specific sequence of cyclic NGR (cNGR) peptide and presented more affinity and specificity toward them. The cNGR peptide was conjugated to the poly(ethylene glycol) (PEG) terminal end in the poly(lactic-co-glycolic) acid PLGA-PEG block copolymer. Then, the ligand conjugated nanoparticles (cNGR-DNB-NPs) encapsulating docetaxel (DTX) were synthesized from preformed block copolymer by the emulsion/solvent evaporation method and characterized for different parameters. The various studies such as in vitro cytotoxicity, cell apoptosis, and cell cycle analysis presented the enhanced therapeutic potential of cNGR-DNB-NPs. The higher cellular uptake was also found in cNGR peptide anchored NPs into HUVEC and HT-1080 cells. However, free cNGR could inhibit receptor mediated intracellular uptake of NPs into both types of cells at 37 and 4 °C temperatures, revealing the involvement of receptor-mediated endocytosis. The in vivo biodistribution and antitumor efficacy studies indicated that targeted NPs have a higher therapeutic efficacy through targeting the tumor-specific site. Therefore, the study exhibited that cNGR-functionalized PEG-PLGA-NPs could be a promising approach for therapeutic applications to efficient antitumor drug delivery.

  2. Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma.

    PubMed

    Avirneni-Vadlamudi, Usha; Galindo, Kathleen A; Endicott, Tiana R; Paulson, Vera; Cameron, Scott; Galindo, Rene L

    2012-01-01

    Rhabdomyosarcoma (RMS) is a malignancy of muscle myoblasts, which fail to exit the cell cycle, resist terminal differentiation, and are blocked from fusing into syncytial skeletal muscle. In some patients, RMS is caused by a translocation that generates the fusion oncoprotein PAX-FOXO1, but the underlying RMS pathogenetic mechanisms that impede differentiation and promote neoplastic transformation remain unclear. Using a Drosophila model of PAX-FOXO1-mediated transformation, we show here that mutation in the myoblast fusion gene rolling pebbles (rols) dominantly suppresses PAX-FOXO1 lethality. Further analysis indicated that PAX-FOXO1 expression caused upregulation of rols, which suggests that Rols acts downstream of PAX-FOXO1. In mammalian myoblasts, gene silencing of Tanc1, an ortholog of rols, revealed that it is essential for myoblast fusion, but is dispensable for terminal differentiation. Misexpression of PAX-FOXO1 in myoblasts upregulated Tanc1 and blocked differentiation, whereas subsequent reduction of Tanc1 expression to native levels by RNAi restored both fusion and differentiation. Furthermore, decreasing human TANC1 gene expression caused RMS cancer cells to lose their neoplastic state, undergo fusion, and form differentiated syncytial muscle. Taken together, these findings identify misregulated myoblast fusion caused by ectopic TANC1 expression as a RMS neoplasia mechanism and suggest fusion molecules as candidates for targeted RMS therapy.

  3. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    PubMed

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway.

  4. Controllers for Battery Chargers and Battery Chargers Therefrom

    NASA Technical Reports Server (NTRS)

    Elmes, John (Inventor); Kersten, Rene (Inventor); Pepper, Michael (Inventor)

    2014-01-01

    A controller for a battery charger that includes a power converter has parametric sensors for providing a sensed Vin signal, a sensed Vout signal and a sensed Iout signal. A battery current regulator (BCR) is coupled to receive the sensed Iout signal and an Iout reference, and outputs a first duty cycle control signal. An input voltage regulator (IVR) receives the sensed Vin signal and a Vin reference. The IVR provides a second duty cycle control signal. A processor receives the sensed Iout signal and utilizes a Maximum Power Point Tracking (MPPT) algorithm, and provides the Vin reference to the IVR. A selection block forwards one of the first and second duty cycle control signals as a duty cycle control signal to the power converter. Dynamic switching between the first and second duty cycle control signals maximizes the power delivered to the battery.

  5. Open-cycle systems performance analysis programming guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, D.A.

    1981-12-01

    The Open-Cycle OTEC Systems Performance Analysis Program is an algorithm programmed on SERI's CDC Cyber 170/720 computer to predict the performance of a Claude-cycle, open-cycle OTEC plant. The algorithm models the Claude-cycle system as consisting of an evaporator, a turbine, a condenser, deaerators, a condenser gas exhaust, a cold water pipe and cold and warm seawater pumps. Each component is a separate subroutine in the main program. A description is given of how to write Fortran subroutines to fit into the main program for the components of the OTEC plant. An explanation is provided of how to use the algorithm.more » The main program and existing component subroutines are described. Appropriate common blocks and input and output variables are listed. Preprogrammed thermodynamic property functions for steam, fresh water, and seawater are described.« less

  6. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  7. The effect of environmental and physiological conditions on excystation of Acanthamoeba castellanii belonging to the T4 genotype.

    PubMed

    Lakhundi, Sahreena; Khan, Naveed Ahmed; Siddiqui, Ruqaiyyah

    2014-08-01

    Excystation in Acanthamoeba is an important property for the onset of infection as well as infection recurrence, post-treatment. The overall aim of this study was to determine the effects of several environmental and physiological parameters on excystation in Acanthamoeba castellanii belonging to the T4 genotype. Cysts were prepared by inoculating A. castellanii trophozoites on non-nutrient agar plates for up to 2 weeks. To determine the effects of various conditions on excystation, A. castellanii cysts were inoculated in growth medium i.e. PYG and incubated at varying temperatures (4-40 °C), various pHs (4-9), artificial light/dark cycles and 5% of CO2. Optimum excystation was observed when cysts were incubated at 30 °C in growth medium at neutral pH. Extremes of temperature and pH reduced excystation, while light/dark cycles had no effect on excystation of A. castellanii. On the other hand, 5% of CO2 enhanced excystation and growth of excysting amoebae. To determine the effect of serum on A. castellanii excystation, assays were performed in the presence of varying concentrations of heat-inactivated foetal bovine serum (FBS) (5-100%). The results revealed that FBS promoted excystation. The involvement of G proteins in excystation was also determined. Using propranolol hydrochloride, a G protein inhibitor, the results revealed that G proteins play a role in A. castellanii differentiation. Furthermore, organic solvents (methanol/ethanol) completely blocked excystation. None of the aforementioned conditions had any effect on the viability of A. castellanii. A complete understanding of excystation in A. castellanii will be of value to counter infection recurrence.

  8. Telomerase reverse transcriptase (TERT) expression and role of vincristine sulfate in mouse model of malignancy related peritoneal ascites: an experimental metastatic condition.

    PubMed

    Chaklader, M; Das, P; Pereira, J A; Chatterjee, S; Basak, P; Law, A; Banerjee, T; Chauhan, S; Law, S

    2011-06-01

    To evaluate the efficacy of intraperitoneal vincristine administration into ascitic sarcoma-180 bearing mice as a model of human malignant ascites regarding various peritoneal/retroperitoneal sarcomatosis, and to evaluate the flowcytometric telomerase reverse transcriptase expression for the diagnostic and prognostic purposes. Present study included disease induction by intraperitoneal homologous ascitic sarcoma-180 transplantation followed by in vivo intraperitoneal drug administration to study mitotic index, flowcytometric cell cycle and telomerase reverse transcriptase expression pattern, erythrosin-B dye exclusion study for malignant cell viability assessment. Besides, in vitro malignant ascite culture in presence and absence of vincristine sulfate and survival study were also taken into consideration. Intraperitoneal vincristine administration (concentration 0.5 mg/kg body weight) significantly diminished the mitotic index in diseased subjects in comparison to untreated control subjects. Treated group of animals showed increased life span and median survival time. Cell viability assessment during the course of drug administration also revealed gradual depression on cell viability over time. Flowcytometric cell cycle analysis showed a good prognostic feature of chemotherapeutic administration schedule by representing high G2/M phase blocked cells along with reduced telomerase reverse transcriptase positive cells in treated animals. We conclude that long term administration of vincristine sulfate in small doses could be a good pharmacological intervention in case of malignant peritoneal ascites due to sarcomatosis as it indirectly reduced the level of telomerase reverse transcriptase expression in malignant cells by directly regulating cell cycle and simultaneously increased the life expectancy of the diseased subjects.

  9. Coordinated metabolic transitions during Drosophila embryogenesis and the onset of aerobic glycolysis.

    PubMed

    Tennessen, Jason M; Bertagnolli, Nicolas M; Evans, Janelle; Sieber, Matt H; Cox, James; Thummel, Carl S

    2014-03-12

    Rapidly proliferating cells such as cancer cells and embryonic stem cells rely on a specialized metabolic program known as aerobic glycolysis, which supports biomass production from carbohydrates. The fruit fly Drosophila melanogaster also utilizes aerobic glycolysis to support the rapid growth that occurs during larval development. Here we use singular value decomposition analysis of modENCODE RNA-seq data combined with GC-MS-based metabolomic analysis to analyze the changes in gene expression and metabolism that occur during Drosophila embryogenesis, spanning the onset of aerobic glycolysis. Unexpectedly, we find that the most common pattern of co-expressed genes in embryos includes the global switch to glycolytic gene expression that occurs midway through embryogenesis. In contrast to the canonical aerobic glycolytic pathway, however, which is accompanied by reduced mitochondrial oxidative metabolism, the expression of genes involved in the tricarboxylic cycle (TCA cycle) and the electron transport chain are also upregulated at this time. Mitochondrial activity, however, appears to be attenuated, as embryos exhibit a block in the TCA cycle that results in elevated levels of citrate, isocitrate, and α-ketoglutarate. We also find that genes involved in lipid breakdown and β-oxidation are upregulated prior to the transcriptional initiation of glycolysis, but are downregulated before the onset of larval development, revealing coordinated use of lipids and carbohydrates during development. These observations demonstrate the efficient use of nutrient stores to support embryonic development, define sequential metabolic transitions during this stage, and demonstrate striking similarities between the metabolic state of late-stage fly embryos and tumor cells. Copyright © 2014 Tennessen et al.

  10. Removing CO2 and moisture from air

    NASA Technical Reports Server (NTRS)

    Tepper, E. H.

    1977-01-01

    Foamed-aluminum blocks act as passive heat exchanger to improve efficiency. Improved closed-cycle atmospheric scrubber, level of carbon dioxide, and water vapor are reduced without affecting temperature of airstream. Exchangers draw impurities from air without additional heaters of auxillary equipment.

  11. USAF Damage Tolerant Design Handbook: Guidelines for the analysis and Design of Damage Tolerant Aircraft Structures. Revision A

    DTIC Science & Technology

    1979-03-01

    Fatigue Crack Growth (Schr~matic) 5.12 Sustained Load Crack Growth Rate Data for 7075-f651,7079- T651, and 2024 - T351 Aluminum Plate (Ref...Block Programming and Block Size on Crack Growth Life (All histories Have Same Cycle Content) Alloy : 2024 -T3 Aluminum (Ref. 38) 5.21 Yield Zone Due to...4340 Steel in Humid Air," ASM Trans 58, 46-53 (1965). 20. Meyn, D.A., "Frequency and Amplitude Effects on Corrosion Fatigue Cracks in a Titanium Alloy

  12. High Infrared Blocking Cellulose Film Based on Amorphous to Anatase Transition of TiO2 via Atomic Layer Deposition.

    PubMed

    Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin

    2018-06-27

    A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.

  13. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation.

    PubMed

    Xi, Z; Yao, M; Li, Y; Xie, C; Holst, J; Liu, T; Cai, S; Lao, Y; Tan, H; Xu, H-X; Dong, Q

    2016-06-02

    Cell cycle re-entry by quiescent cancer cells is an important mechanism for cancer progression. While high levels of c-MYC expression are sufficient for cell cycle re-entry, the modality to block c-MYC expression, and subsequent cell cycle re-entry, is limited. Using reversible quiescence rendered by serum withdrawal or contact inhibition in PTEN(null)/p53(WT) (LNCaP) or PTEN(null)/p53(mut) (PC-3) prostate cancer cells, we have identified a compound that is able to impede cell cycle re-entry through c-MYC. Guttiferone K (GUTK) blocked resumption of DNA synthesis and preserved the cell cycle phase characteristics of quiescent cells after release from the quiescence. In vehicle-treated cells, there was a rapid increase in c-MYC protein levels upon release from the quiescence. However, this increase was inhibited in the presence of GUTK with an associated acceleration in c-MYC protein degradation. The inhibitory effect of GUTK on cell cycle re-entry was significantly reduced in cells overexpressing c-MYC. The protein level of FBXW7, a subunit of E3 ubiquitin ligase responsible for degradation of c-MYC, was reduced upon the release from the quiescence. In contrast, GUTK stabilized FBXW7 protein levels during release from the quiescence. The critical role of FBXW7 was confirmed using siRNA knockdown, which impaired the inhibitory effect of GUTK on c-MYC protein levels and cell cycle re-entry. Administration of GUTK, either in vitro prior to transplantation or in vivo, suppressed the growth of quiescent prostate cancer cell xenografts. Furthermore, elevation of FBXW7 protein levels and reduction of c-MYC protein levels were found in the xenografts of GUTK-treated compared with vehicle-treated mice. Hence, we have identified a compound that is capable of impeding cell cycle re-entry by quiescent PTEN(null)/p53(WT) and PTEN(null)/p53(mut) prostate cancer cells likely by promoting c-MYC protein degradation through stabilization of FBXW7. Its usage as a clinical modality to prevent prostate cancer progression should be further evaluated.

  14. Chapter 11: Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S; Stekli, J.; Bueno, P. C.

    2017-01-02

    This chapter summarizes the applications of the supercritical CO2 (sCO2) Brayton cycle in concentrating solar power (CSP) plants. The design and operation of CSP plants are reviewed to highlight the requirements for the power cycle and attributes that are advantageous for the solar-thermal application. The sCO2 Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for CSP applications. In addition, Brayton cycle systems using sCO2 are anticipated to have smaller weight and volume, lower thermal mass, and less complex power blocks compared with Rankine cycles due to the higher density ofmore » the fluid and simpler cycle design. The simpler machinery and compact size of the sCO2 process may also reduce the installation, maintenance, and operation cost of the system. Power cycle capacities in the range of 10-150 MWe are anticipated for the CSP application. In this chapter, we explore sCO2 Brayton cycle configurations that have attributes that are desirable from the perspective of a CSP application, such as the ability to accommodate dry cooling and daily cycling, as well as integration with thermal energy storage.« less

  15. Variations in synoptic-scale eddy activity during the life cycles of persistent flow anomalies

    NASA Technical Reports Server (NTRS)

    Dole, Randall M.; Neilley, Peter P.

    1991-01-01

    The objective of the study was to identify how synoptic-scale eddy activity varies throughout the life cycles of major scale flow anomalies. In particular, composite analyses of various measures of synoptic-scale eddy activity are constructed, with the composites obtained relative to the onset and termination times of cases typically associated with either blocking or abnormally intense zonal flows. The potential mechanisms that are likely to contribute to the observed changes in eddy behavior are discussed.

  16. Using Click Chemistry to Identify Potential Drug Targets in Plasmodium

    DTIC Science & Technology

    2015-04-01

    step of the Plasmodium mammalian cycle . Inhibiting this step can block malaria at an early step. However, few anti-malarials target liver infection...points in the life cycle of malaria parasites. PLoS Biol 12: e1001806. 2. Falae A, Combe A, Amaladoss A, Carvalho T, Menard R, et al. (2010) Role of...AWARD NUMBER: W81XWH-13-1-0429 TITLE: Using "Click Chemistry" to Identify Potential Drug Targets in Plasmodium PRINCIPAL INVESTIGATOR: Dr. Purnima

  17. Cost comparison of printed circuit heat exchanger to low cost periodic flow regenerator for use as recuperator in a s-CO 2 Brayton cycle

    DOE PAGES

    Hinze, Jacob F.; Nellis, Gregory F.; Anderson, Mark H.

    2017-09-21

    Supercritical Carbon Dioxide (sCO 2) power cycles have the potential to deliver high efficiency at low cost. However, in order for an sCO 2 cycle to reach high efficiency, highly effective recuperators are needed. These recuperative heat exchangers must transfer heat at a rate that is substantially larger than the heat transfer to the cycle itself and can therefore represent a significant portion of the power block costs. Regenerators are proposed as a cost saving alternative to high cost printed circuit recuperators for this application. A regenerator is an indirect heat exchanger which periodically stores and releases heat to themore » working fluid. The simple design of a regenerator can be made more inexpensively compared to current options. The objective of this paper is a detailed evaluation of regenerators as a competing technology for recuperators within an sCO 2 Brayton cycle. The level of the analysis presented here is sufficient to identify issues with the regenerator system in order to direct future work and also to clarify the potential advantage of pursuing this technology. A reduced order model of a regenerator is implemented into a cycle model of an sCO 2 Brayton cycle. An economic analysis investigates the cost savings that is possible by switching from recuperative heat exchangers to switched-bed regenerators. The cost of the regenerators was estimated using the amount of material required if the pressure vessel is sized using ASME Boiler Pressure Vessel Code (BPVC) requirements. The cost of the associated valves is found to be substantial for the regenerator system and is estimated in collaboration with an industrial valve supplier. The result of this analysis suggests that a 21.2% reduction in the contribution to the Levelized Cost of Electricity (LCoE) from the power block can be realized by switching to a regenerator-based system.« less

  18. Cost comparison of printed circuit heat exchanger to low cost periodic flow regenerator for use as recuperator in a s-CO 2 Brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinze, Jacob F.; Nellis, Gregory F.; Anderson, Mark H.

    Supercritical Carbon Dioxide (sCO 2) power cycles have the potential to deliver high efficiency at low cost. However, in order for an sCO 2 cycle to reach high efficiency, highly effective recuperators are needed. These recuperative heat exchangers must transfer heat at a rate that is substantially larger than the heat transfer to the cycle itself and can therefore represent a significant portion of the power block costs. Regenerators are proposed as a cost saving alternative to high cost printed circuit recuperators for this application. A regenerator is an indirect heat exchanger which periodically stores and releases heat to themore » working fluid. The simple design of a regenerator can be made more inexpensively compared to current options. The objective of this paper is a detailed evaluation of regenerators as a competing technology for recuperators within an sCO 2 Brayton cycle. The level of the analysis presented here is sufficient to identify issues with the regenerator system in order to direct future work and also to clarify the potential advantage of pursuing this technology. A reduced order model of a regenerator is implemented into a cycle model of an sCO 2 Brayton cycle. An economic analysis investigates the cost savings that is possible by switching from recuperative heat exchangers to switched-bed regenerators. The cost of the regenerators was estimated using the amount of material required if the pressure vessel is sized using ASME Boiler Pressure Vessel Code (BPVC) requirements. The cost of the associated valves is found to be substantial for the regenerator system and is estimated in collaboration with an industrial valve supplier. The result of this analysis suggests that a 21.2% reduction in the contribution to the Levelized Cost of Electricity (LCoE) from the power block can be realized by switching to a regenerator-based system.« less

  19. Small RNA populations revealed by blocking rRNA fragments in Drosophila melanogaster reproductive tissues

    PubMed Central

    Dalmay, Tamas

    2018-01-01

    RNA interference (RNAi) is a complex and highly conserved regulatory mechanism mediated via small RNAs (sRNAs). Recent technical advances in high throughput sequencing have enabled an increasingly detailed analysis of sRNA abundances and profiles in specific body parts and tissues. This enables investigations of the localized roles of microRNAs (miRNAs) and small interfering RNAs (siRNAs). However, variation in the proportions of non-coding RNAs in the samples being compared can hinder these analyses. Specific tissues may vary significantly in the proportions of fragments of longer non-coding RNAs (such as ribosomal RNA or transfer RNA) present, potentially reflecting tissue-specific differences in biological functions. For example, in Drosophila, some tissues contain a highly abundant 30nt rRNA fragment (the 2S rRNA) as well as abundant 5’ and 3’ terminal rRNA fragments. These can pose difficulties for the construction of sRNA libraries as they can swamp the sequencing space and obscure sRNA abundances. Here we addressed this problem and present a modified “rRNA blocking” protocol for the construction of high-definition (HD) adapter sRNA libraries, in D. melanogaster reproductive tissues. The results showed that 2S rRNAs targeted by blocking oligos were reduced from >80% to < 0.01% total reads. In addition, the use of multiple rRNA blocking oligos to bind the most abundant rRNA fragments allowed us to reveal the underlying sRNA populations at increased resolution. Side-by-side comparisons of sequencing libraries of blocked and non-blocked samples revealed that rRNA blocking did not change the miRNA populations present, but instead enhanced their abundances. We suggest that this rRNA blocking procedure offers the potential to improve the in-depth analysis of differentially expressed sRNAs within and across different tissues. PMID:29474379

  20. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F.

    2016-10-01

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10-3. For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.

  1. Lexical Retrieval is not by Competition: Evidence from the Blocked Naming Paradigm

    PubMed Central

    Navarrete, Eduardo; Del Prato, Paul; Peressotti, Francesca; Mahon, Bradford Z.

    2014-01-01

    A central issue in research on speech production is whether or not the retrieval of words from the mental lexicon is a competitive process. An important experimental paradigm to study the dynamics of lexical retrieval is the blocked naming paradigm, in which participants name pictures of objects that are grouped by semantic category (‘homogenous’ or ‘related’ blocks) or not grouped by semantic category (‘heterogeneous’ or ‘unrelated’ blocks). Typically, pictures are repeated multiple times (or cycles) within both related and unrelated blocks. It is known that participants are slower in related than in unrelated blocks when the data are collapsed over all within-block repetitions. This semantic interference effect, as observed in the blocked naming task, is the strongest empirical evidence for the hypothesis of lexical selection by competition. Here we show, contrary to the accepted view, that the default polarity of semantic context effects in the blocked naming paradigm is facilitation, rather than interference. In a series of experiments we find that interference arises only when items repeat within a block, and only because of that repetition: What looks to be ‘semantic interference’ in the blocked naming paradigm is actually less repetition priming in related compared to unrelated blocks. These data undermine the theory of lexical selection by competition and indicate a model in which the most highly activated word is retrieved, regardless of the activation levels of nontarget words. We conclude that the theory of lexical selection by competition, and by extension the important psycholinguistic models based on that assumption, are no longer viable, and frame a new way to approach the question of how words are retrieved in spoken language production. PMID:25284954

  2. Thermodynamic Analysis of Beam down Solar Gas Turbine Power Plant equipped with Concentrating Receiver System

    NASA Astrophysics Data System (ADS)

    Azharuddin; Santarelli, Massimo

    2016-09-01

    Thermodynamic analysis of a closed cycle, solar powered Brayton gas turbine power plant with Concentrating Receiver system has been studied. A Brayton cycle is simpler than a Rankine cycle and has an advantage where the water is scarce. With the normal Brayton cycle a Concentrating Receiver System has been analysed which has a dependence on field density and optical system. This study presents a method of optimization of design parameter, such as the receiver working temperature and the heliostats density. This method aims at maximizing the overall efficiency of the three major subsystem that constitute the entire plant, namely, the heliostat field and the tower, the receiver and the power block. The results of the optimization process are shown and analysed.

  3. Uncoupling of oxidative phosphorylation prevents the urinary alcohol level cycling caused by feeding ethanol continuously at a constant rate.

    PubMed

    Li, J; French, B A; Nan, L; Fu, P; French, S W

    2005-06-01

    The mechanism of the UAL cycle in the intragastric feeding model of alcoholic liver disease in the rat was investigated by administering dinitrophenol (DNP) with ethanol in the diet. The question was: is the rate of oxidative phosphorylation fluxuation essential for the cycle to occur? The question has been partially answered by showing that rotenone, which inhibits complex I, blocks the cycle by preventing the generation of NAD from NADH. This would inhibit ATP generation from complex I but would not affect oxidative phosphorylation by complex 2 and 3. Since the rate of O2 consumption is normal at the troughs of the cycle and decreases at the peaks of the cycle and the levels of ATP are reduced at the peaks of the cycle, it is likely that the rate of oxidative phosphorylation also cycles. Since 2-4 dinitrophenol (DNP) uncouples oxidative phosphorylation, it was anticipated that feeding it with ethanol would prevent the cycle from occurring. This proved to be the case. In addition, DNP caused energy wasting and prevented the increase in serum alanine aminotranspeptidase caused by ethanol feeding, probably by preventing the hypoxia which occurs at the peaks of the cycle.

  4. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  5. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21.

    PubMed

    Patil, N; Berno, A J; Hinds, D A; Barrett, W A; Doshi, J M; Hacker, C R; Kautzer, C R; Lee, D H; Marjoribanks, C; McDonough, D P; Nguyen, B T; Norris, M C; Sheehan, J B; Shen, N; Stern, D; Stokowski, R P; Thomas, D J; Trulson, M O; Vyas, K R; Frazer, K A; Fodor, S P; Cox, D R

    2001-11-23

    Global patterns of human DNA sequence variation (haplotypes) defined by common single nucleotide polymorphisms (SNPs) have important implications for identifying disease associations and human traits. We have used high-density oligonucleotide arrays, in combination with somatic cell genetics, to identify a large fraction of all common human chromosome 21 SNPs and to directly observe the haplotype structure defined by these SNPs. This structure reveals blocks of limited haplotype diversity in which more than 80% of a global human sample can typically be characterized by only three common haplotypes.

  6. A Protein Encoded by the Latency-Related Gene of Bovine Herpesvirus 1 Is Expressed in Trigeminal Ganglionic Neurons of Latently Infected Cattle and Interacts with Cyclin-Dependent Kinase 2 during Productive Infection

    PubMed Central

    Jiang, Yunquan; Hossain, Ashfaque; Winkler, Maria Teresa; Holt, Todd; Doster, Alan; Jones, Clinton

    1998-01-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation. PMID:9733854

  7. A protein encoded by the latency-related gene of bovine herpesvirus 1 is expressed in trigeminal ganglionic neurons of latently infected cattle and interacts with cyclin-dependent kinase 2 during productive infection.

    PubMed

    Jiang, Y; Hossain, A; Winkler, M T; Holt, T; Doster, A; Jones, C

    1998-10-01

    Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807-3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.

  8. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans.

    PubMed

    Yun, JiEun; Lee, Dong Gun

    2017-03-01

    Chlorogenic acid (CRA) is an abundant phenolic compound in the human diet. CRA has a potent antifungal effect, inducing cell death in Candida albicans. However, there are no further studies to investigate the antifungal mechanism of CRA, associated with ion channels. To evaluate the inhibitory effects on CRA-induced cell death, C. albicans cells were pretreated with potassium and chloride channel blockers, separately. Flow cytometry was carried out to detect several hallmarks of apoptosis, such as cell cycle arrest, caspase activation, and DNA fragmentation, after staining of the cells with SYTOX green, FITC-VAD-FMK, and TUNEL. CRA caused excessive potassium efflux, and an apoptotic volume decrease (AVD) was observed. This change, in turn, induced cytosolic calcium uptake and cell cycle arrest in C. albicans. Moreover, CRA induced caspase activation and DNA fragmentation, which are considered apoptotic markers. In contrast, the potassium efflux and proapoptotic changes were inhibited when potassium channels were blocked, whereas there was no inhibitory effect when chloride channels were blocked. CRA induces potassium efflux, leading to AVD and G2/M cell cycle arrest in C. albicans. Therefore, potassium efflux via potassium channels regulates the CRA-induced apoptosis, stimulating several apoptotic processes. This study improves the understanding of the antifungal mechanism of CRA and its association with ion homeostasis, thereby pointing to a role of potassium channels in CRA-induced apoptosis. Copyright © 2016. Published by Elsevier B.V.

  9. High-temperature Gas Reactor (HTGR)

    NASA Astrophysics Data System (ADS)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  10. Tethered Hsp90 Inhibitors Carrying Optical or Radioiodinated Probes Reveal Selective Internalization of Ectopic Hsp90 in Malignant Breast Tumor Cells

    PubMed Central

    Barrott, Jared J.; Hughes, Philip F.; Osada, Takuya; Yang, Xiao-Yi; Hartman, Zachary C.; Loiselle, David R.; Spector, Neil L.; Neckers, Len; Rajaram, Narasimhan; Hu, Fangyao; Ramanujam, Nimmi; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Lyerly, H. Kim; Haystead, Timothy A.

    2013-01-01

    Summary Hsp90 inhibitors have demonstrated unusual selectivity for tumor cells despite its ubiquitous expression. This phenomenon has remained unexplained but could be influenced by ectopically expressed Hsp90 in tumors. We have synthesized novel Hsp90 inhibitors that can carry optical or radioiodinated probes via a PEG tether. We show that these tethered inhibitors selectively recognize cells expressing ectopic Hsp90 and become internalized. The internalization process is blocked by Hsp90 antibodies, suggesting that active cycling of the protein is occurring at the plasma membrane. In mice, we show exquisite accumulation of the fluor-tethered versions within breast tumors at very sensitive levels. Cell-based assays with the radiolabeled version showed picomolar detection in cells that express ectopic Hsp90. Our findings show that fluor-tethered or radiolabeled inhibitors targeting ectopic Hsp90 can be used to detect breast cancer malignancies through non-invasive imaging. PMID:24035283

  11. Oxyntomodulin regulates resetting of the liver circadian clock by food

    PubMed Central

    Landgraf, Dominic; Tsang, Anthony H; Leliavski, Alexei; Koch, Christiane E; Barclay, Johanna L; Drucker, Daniel J; Oster, Henrik

    2015-01-01

    Circadian clocks coordinate 24-hr rhythms of behavior and physiology. In mammals, a master clock residing in the suprachiasmatic nucleus (SCN) is reset by the light–dark cycle, while timed food intake is a potent synchronizer of peripheral clocks such as the liver. Alterations in food intake rhythms can uncouple peripheral clocks from the SCN, resulting in internal desynchrony, which promotes obesity and metabolic disorders. Pancreas-derived hormones such as insulin and glucagon have been implicated in signaling mealtime to peripheral clocks. In this study, we identify a novel, more direct pathway of food-driven liver clock resetting involving oxyntomodulin (OXM). In mice, food intake stimulates OXM secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. Inhibition of OXM signaling blocks food-mediated resetting of hepatocyte clocks. These data reveal a direct link between gastric filling with food and circadian rhythm phasing in metabolic tissues. DOI: http://dx.doi.org/10.7554/eLife.06253.001 PMID:25821984

  12. Structure of human Cdc45 and implications for CMG helicase function

    PubMed Central

    Simon, Aline C.; Sannino, Vincenzo; Costanzo, Vincenzo; Pellegrini, Luca

    2016-01-01

    Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication. PMID:27189187

  13. SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies

    PubMed Central

    Liang, Ya-Chen; Lee, Chia-Chin; Yao, Ya-Li; Lai, Chien-Chen; Schmitz, M. Lienhard; Yang, Wen-Ming

    2016-01-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are PML-based nuclear structures that regulate various cellular processes. SUMOylation, the process of covalently conjugating small ubiquitin-like modifiers (SUMOs), is required for both the formation and the disruption of PML-NBs. However, detailed mechanisms of how SUMOylation regulates these processes remain unknown. Here we report that SUMO5, a novel SUMO variant, mediates the growth and disruption of PML-NBs. PolySUMO5 conjugation of PML at lysine 160 facilitates recruitment of PML-NB components, which enlarges PML-NBs. SUMO5 also increases polySUMO2/3 conjugation of PML, resulting in RNF4-mediated disruption of PML-NBs. The acute promyelocytic leukemia oncoprotein PML-RARα blocks SUMO5 conjugation of PML, causing cytoplasmic displacement of PML and disruption of PML-NBs. Our work not only identifies a new member of the SUMO family but also reveals the mechanistic basis of the PML-NB life cycle in human cells. PMID:27211601

  14. Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives.

    PubMed

    Castaings, Loren; Bergonzi, Sara; Albani, Maria C; Kemi, Ulla; Savolainen, Outi; Coupland, George

    2014-07-17

    Antisense RNA (asRNA) COOLAIR is expressed at A. thaliana FLOWERING LOCUS C (FLC) in response to winter temperatures. Its contribution to cold-induced silencing of FLC was proposed but its functional and evolutionary significance remain unclear. Here we identify a highly conserved block containing the COOLAIR first exon and core promoter at the 3' end of several FLC orthologues. Furthermore, asRNAs related to COOLAIR are expressed at FLC loci in the perennials A. alpina and A. lyrata, although some splicing variants differ from A. thaliana. Study of the A. alpina orthologue, PERPETUAL FLOWERING 1 (PEP1), demonstrates that AaCOOLAIR is induced each winter of the perennial life cycle. Introduction of PEP1 into A. thaliana reveals that AaCOOLAIR cis-elements confer cold-inducibility in this heterologous species while the difference between PEP1 and FLC mRNA patterns depends on both cis-elements and species-specific trans-acting factors. Thus, expression of COOLAIR is highly conserved, supporting its importance in FLC regulation.

  15. Energy Underground.

    ERIC Educational Resources Information Center

    Wiley, Catherina L.

    2003-01-01

    Describes a unit to study the cycling of matter and energy through speleology using cooperative learning groups. Integrates the topic with zoology, biogeochemistry, paleontology, and meteorology. Includes a sample rubric for a salt block cave presentation, unit outline, and processes for studying matter and energy processes in caves. (Author/KHR)

  16. Preventing the activation or cycling of the Rap1 GTPase alters adhesion and cytoskeletal dynamics and blocks metastatic melanoma cell extravasation into the lungs.

    PubMed

    Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D

    2010-06-01

    The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.

  17. Automatic Generation of Cycle-Approximate TLMs with Timed RTOS Model Support

    NASA Astrophysics Data System (ADS)

    Hwang, Yonghyun; Schirner, Gunar; Abdi, Samar

    This paper presents a technique for automatically generating cycle-approximate transaction level models (TLMs) for multi-process applications mapped to embedded platforms. It incorporates three key features: (a) basic block level timing annotation, (b) RTOS model integration, and (c) RTOS overhead delay modeling. The inputs to TLM generation are application C processes and their mapping to processors in the platform. A processor data model, including pipelined datapath, memory hierarchy and branch delay model is used to estimate basic block execution delays. The delays are annotated to the C code, which is then integrated with a generated SystemC RTOS model. Our abstract RTOS provides dynamic scheduling and inter-process communication (IPC) with processor- and RTOS-specific pre-characterized timing. Our experiments using a MP3 decoder and a JPEG encoder show that timed TLMs, with integrated RTOS models, can be automatically generated in less than a minute. Our generated TLMs simulated three times faster than real-time and showed less than 10% timing error compared to board measurements.

  18. [Effect of shikonin, a phytocompound from Lithospermum erythrorhizon, on rat vascular smooth muscle cells proliferation and apoptosis in vitro].

    PubMed

    Zhang, Zhuo-qi; Cao, Xi-chuan; Zhang, Ling; Zhu, Wen-ling

    2005-06-08

    To study the anti-proliferation, pro-apoptosis and cell cycle blocking effects of shikonin on rat vascular smooth muscle cell (VSMC) in vitro. VSMCs were primarily cultured by explant method from the thoracic aorta of male SD rats. Shikonin of different concentration, 4, 2, 1, 0.5, 0.25, and 0 micromol/L was added. The cell viability was detected by MTT method. Cell growth curve was drawn by trypan blue exclusion method. (3)H-thymidine incorporation was used to calculate the inhibition rate of DNA synthesis. Flow cytometry was used to detect the cell cycle. Cell apoptosis was observed by fluorescence microscopy. Western blotting was performed to detect the expression of different cell apoptosis and cell cycle regulatory proteins, such as cyclin D(1) and E, proliferating cell nuclear antigen (PCNA), p21(waf1/cip1), p27(kip1), and p53. Compared with control group, shikonin had no obvious cytotoxic effect on cell viability at the concentration of 0.25-1 micromol/L (P > 0.05). While it could inhibit, both time- and dose-dependently, the growth of VSMC, which was predominant of 1 micromol/L at 72 h (1.9 x 10(5)/well vs 5.8 x 10(5)/well, P < 0.05), and DNA synthesis was also significantly inhibited in a time- and dose-dependent manner with inhibition rate varied from 33 to 98% (P < 0.05 or P < 0.01). 1 micromol/L shikonin significantly blocked the cell cycle progression in proliferative VSMC, decreased S, G(2)/M phase (P < 0.05) and increased G(0)/G(1) phase (P < 0.05) to quiescent level with sub-G(1) apoptotic distribution at 48 h (10.9% +/- 0.3%). Shikohin at the concentration of 1-2 micromol/L significantly increased the percentage of apoptotic cells in a time- and dose-dependent manner compared with control group (2.8%-23.7% vs 0.2%-0.4%, P < 0.05), and typical apoptotic nuclear morphological changes were observed. 1 micromol/L shikonin significantly down-regulated cyclin D(1), E and PCNA expression, up-regulated p21(wif1/cip1) expression, and did not obviously influence the p27(kip1) and p53 expression. Shikonin inhibits the proliferation, promotes the apoptosis and blocks cell cycle progression of VSMC. These effects are associated with the expression changes of cell cycle regulatory proteins.

  19. Right bundle branch block pattern during right ventricular permanent pacing: Is it safe or not?

    PubMed Central

    Erdogan, Okan; Aksu, Feyza

    2007-01-01

    The present case report describes a patient with dual chamber pacemaker whose surface ECG demonstrated paced right bundle branch block pattern suggesting a malpositioned ventricular lead in the left ventricle. However, diagnostic work-up revealed that the lead was appropriately located in the right ventricular apex. Diagnostic maneuvers and clues for differentiating safe right bundle branch block pattern during permanent pacing are thoroughly revisited and discussed within the article. PMID:17684578

  20. All-Ceramic Thin Film Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BOYLE, TIMOTHY J.; INGERSOLL, DAVID; CYGAN, RANDALL T.

    2002-11-01

    We have undertaken the synthesis of a thin film ''All Ceramic Battery'' (ACB) using solution route processes. Based on the literature and experimental results, we selected SnO{sub 2}, LiCoO{sub 2}, and LiLaTiO{sub 3} (LLT) as the anode, cathode, and electrolyte, respectively. Strain induced by lattice mismatch between the cathode and bottom electrode, as estimated by computational calculations, indicate that thin film orientations for batteries when thicknesses are as low as 500 {angstrom} are strongly controlled by surface energies. Therefore, we chose platinized silicon as the basal platform based on our previous experience with this material. The anode thin films weremore » generated by standard spin-cast methods and processing using a solution of [Sn(ONep)]{sub 8} and HOAc which was found to form Sn{sub 6}(O){sub 4}(ONep){sub 4}. Electrochemical evaluation showed that the SnO{sub 2} was converted to Sn{sup o} during the first cycle. The cathode was also prepared by spin coating using the novel [Li(ONep)]{sub 8} and Co(OAc){sub 2}. The films could be electrochemically cycled (i.e., charged/discharged), with all of the associated structural changes being observable by XRD. Computational models indicated that the LLT electrolyte would be the best available ceramic material for use as the electrolyte. The LLT was synthesized from [Li(ONep)]{sub 8}, [Ti(ONep){sub 4}]{sub 2}, and La(DIP){sub 3}(py){sub 3} with RTP processing at 900 C being necessary to form the perovskite phase. Alternatively, a novel route to thin films of the block co-polymer ORMOLYTE was developed. The integration of these components was undertaken with each part of the assembly being identifiably by XRD analysis (this will allow us to follow the progress of the charge/discharge cycles of the battery during use). SEM investigations revealed the films were continuous with minimal mixing. All initial testing of the thin-film cathode/electrolyte/anode ACB devices revealed electrical shorting. Alternative approaches for preparing non-shorted devices (e.g. inverted and side-by-side) are under study.« less

  1. The product of the Saccharomyces cerevisiae cell cycle gene DBF2 has homology with protein kinases and is periodically expressed in the cell cycle.

    PubMed Central

    Johnston, L H; Eberly, S L; Chapman, J W; Araki, H; Sugino, A

    1990-01-01

    Several Saccharomyces cerevisiae dbf mutants defective in DNA synthesis have been described previously. In this paper, one of them, dbf2, is characterized in detail. The DBF2 gene has been cloned and mapped, and its nucleotide sequence has been determined. This process has identified an open reading frame capable of encoding a protein of molecular weight 64,883 (561 amino acids). The deduced amino acid sequence contains all 11 conserved domains found in various protein kinases. DBF2 was periodically expressed in the cell cycle at a time that clearly differed from the time of expression of either the histone H2A or DNA polymerase I gene. Its first function was completed very near to initiation of DNA synthesis. However, DNA synthesis in the mutant was only delayed at 37 degrees C, and the cells blocked in nuclear division. Consistent with this finding, the execution point occurred about 1 h after DNA synthesis, and the nuclear morphology of the mutant at the restrictive temperature was that of cells blocked in late nuclear division. DBF2 is therefore likely to encode a protein kinase that may function in initiation of DNA synthesis and also in late nuclear division. Images PMID:2181271

  2. Altered nitrogen balance and decreased urea excretion in male rats fed cafeteria diet are related to arginine availability.

    PubMed

    Sabater, David; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Alemany, Marià; Remesar, Xavier

    2014-01-01

    Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NO x ; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NO(x) and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  3. Substance P promotes sleep in the ventrolateral preoptic area of rats.

    PubMed

    Zhang, Gongliang; Wang, Liecheng; Liu, Huan; Zhang, Jingxing

    2004-12-03

    Substance P (SP) has been characterized as an excitatory neurotransmitter and/or neuromodulator in the peripheral and central nervous systems. It is involved in mediating various biological functions such as smooth muscle contraction, neuronal excitation, and pain transmission. Although Lieb et al. reported that intravenous infusion of SP into healthy men led to an increase of paradoxical sleep latency and time awake, little is known about the function and target of SP on sleep-wakefulness cycle in the central nervous system. The ventrolateral preoptic area (vLPO) plays an important role in modulation of sleep-wakefulness cycle. The present study investigated the effect of SP on sleep-wakefulness cycle in the vLPO of rats. Slow wave sleep (SWS) was enhanced after SP was microinjected into bilateral vLPO, while SP receptor antagonist, N-acetyl-l-tryptophan 3,5-bis(trifluoromethyl)-benzyl ester, led to the opposite effect. The effect induced by SP was blocked by U73122, a phospholipase C inhibitor. In addition, 3-mercaptopropionic acid, a glutamic acid decarboxylase inhibitor that inhibits gamma-aminobutyric acid (GABA) synthesis and release, blocked the SP-induced sleep-promoting effect in the vLPO. These results indicate that SP has sleep-promoting effect in the vLPO possibly by GABAergic neurons.

  4. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    PubMed Central

    Sabater, David; Arriarán, Sofía; Fernández-López, José-Antonio; Romero, María del Mar; Remesar, Xavier

    2014-01-01

    Hyperlipidic diets limit glucose oxidation and favor amino acid preservation, hampering the elimination of excess dietary nitrogen and the catabolic utilization of amino acids. We analyzed whether reduced urea excretion was a consequence of higher NOx; (nitrite, nitrate, and other derivatives) availability caused by increased nitric oxide production in metabolic syndrome. Rats fed a cafeteria diet for 30 days had a higher intake and accumulation of amino acid nitrogen and lower urea excretion. There were no differences in plasma nitrate or nitrite. NOx and creatinine excretion accounted for only a small part of total nitrogen excretion. Rats fed a cafeteria diet had higher plasma levels of glutamine, serine, threonine, glycine, and ornithine when compared with controls, whereas arginine was lower. Liver carbamoyl-phosphate synthetase I activity was higher in cafeteria diet-fed rats, but arginase I was lower. The high carbamoyl-phosphate synthetase activity and ornithine levels suggest activation of the urea cycle in cafeteria diet-fed rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability. PMID:24707502

  5. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels.

    PubMed

    Silver, R B

    1989-01-01

    Transient elevations in intracellular free Ca2+ are believed to signal the initiation of mitosis. This model predicts that mitosis might be arrested prior to nuclear envelope breakdown (NEB) or anaphase onset if intracellular Ca2+ concentration is buffered or dampened. Microinjection of a discrete dose of Ca2+ into the cell might then release the cell to resume mitotic cycling. Experimentally, one blastomere of two cell sand dollar (Echinaracnius parma) embryos was microinjected with Ca2+ buffers, Ca2+ solutions, or Ca2+ channel antagonists; the uninjected blastomere was the control. Cells were loaded with 10 pl doses of the Ca2+ buffer antipyrylazo III (ApIII) at specific times in the cell cycle to attempt a competitive inhibition of Ca2+-dependent steps in NEB and initiation of mitosis. Injection of 50 microM ApIII 6 min prior to NEB blocked NEB and further cell cycling. Injections of solutions between 0 and 30 microM ApIII were without observable effect. Control injections had no observable effect on the injected cell. Cells injected with 50 microM ApIII 2 min prior to the onset of anaphase in control cells were blocked in metaphase. Cells were sensitive to Ca2+ buffer injections 6 min prior to NEB (with a 40- to 45-sec duration), and 2 min prior to anaphase onset (with a 10- to 20-sec duration). Vital staining of these cells with H33342 demonstrated that they contained only one nucleus that had the same fluorescence intensity as seen prior to microinjection, and thus did not undergo DNA synthesis following the imposition of the Ca2+ buffer block to mitosis. Cells arrested in this fashion did not spontaneously resume mitotic cycling. This Ca2+ buffer-induced mitotic arrest was, however, experimentally reversible. Cells arrested with 50 microM ApIII 6 min prior to NEB could be returned to mitotic activity by injecting 300 microM CaCl2 5 min after the ApIII injection. The double injected cells resumed cycling, NEB, and mitosis after a delay of one cell cycle period, and remained one cell cycle out of phase with the sister (control) cell. Microinjection of antagonists of endomembrane Ca2+ channels inhibited NEB and anaphase onset in a concentration- and time-dependent fashion. The effective doses of compounds tested were 7 micrograms/ml ryanodine and 500 micrograms/ml TMB-8. These results indicate that a transient elevation of intracellular Ca2+ from endomembrane stores is required to initiate mitotic events, namely NEB and anaphase onset.(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant

    NASA Astrophysics Data System (ADS)

    Reyes-Belmonte, Miguel A.; Sebastián, Andrés; González-Aguilar, José; Romero, Manuel

    2017-06-01

    The potential of using different thermodynamic cycles coupled to a solar tower central receiver that uses a novel heat transfer fluid is analyzed. The new fluid, named as DPS, is a dense suspension of solid particles aerated through a tubular receiver used to convert concentrated solar energy into thermal power. This novel fluid allows reaching high temperatures at the solar receiver what opens a wide range of possibilities for power cycle selection. This work has been focused into the assessment of power plant performance using conventional, but optimized cycles but also novel thermodynamic concepts. Cases studied are ranging from subcritical steam Rankine cycle; open regenerative Brayton air configurations at medium and high temperature; combined cycle; closed regenerative Brayton helium scheme and closed recompression supercritical carbon dioxide Brayton cycle. Power cycle diagrams and working conditions for design point are compared amongst the studied cases for a common reference thermal power of 57 MWth reaching the central cavity receiver. It has been found that Brayton air cycle working at high temperature or using supercritical carbon dioxide are the most promising solutions in terms of efficiency conversion for the power block of future generation by means of concentrated solar power plants.

  7. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    PubMed

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.

  8. New in vitro insights on a cell death pathway induced by magnolol and honokiol in aristolochic acid tubulotoxicity.

    PubMed

    Bunel, Valérian; Antoine, Marie-Hélène; Stévigny, Caroline; Nortier, Joëlle; Duez, Pierre

    2016-01-01

    Aristolochic acids (AA) are nephrotoxic agents found in Aristolochia species whose consumption leads to the onset of a progressive tubulointerstitial fibrosis. This AA-nephropathy was first reported during the Belgian outbreak of the 1990's in which more than a hundred patients consumed slimming pills containing an Aristolochia species and Magnolia officinalis. The patients developed an end-stage kidney disease requiring dialysis or transplantation. Magnolol and honokiol are bioactive compounds from M. officinalis known for their potent antioxidant activity. As they can alleviate oxidative stress, we investigated their respective effects on AA-mediated tubulotoxicity using HK-2 cells. Magnolol and honokiol were able to reduce the oxidative stress associated with AA-treatment. Cytotoxicity alleviation was further investigated and overall cell viability measurements unexpectedly revealed that both compounds worsened the survival of AA-treated cells. Flow cytometry analyses of annexin V/PI stained cells indicated that the lignans efficiently prevented AA-induced apoptosis; but favored necrosis. Microscopy observations highlighted extensive vacuolization; other types of cell death, including autophagy, paraptosis or accelerated senescence were excluded. Ki-67 index and cell cycle analysis indicated that both magnolol and honokiol inhibited proliferation by blocking the cell cycle at the G1 phase; they also prevented the AA-induced G2/M arrest. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A Signal Processing Module for the Analysis of Heart Sounds and Heart Murmurs

    NASA Astrophysics Data System (ADS)

    Javed, Faizan; Venkatachalam, P. A.; H, Ahmad Fadzil M.

    2006-04-01

    In this paper a Signal Processing Module (SPM) for the computer-aided analysis of heart sounds has been developed. The module reveals important information of cardiovascular disorders and can assist general physician to come up with more accurate and reliable diagnosis at early stages. It can overcome the deficiency of expert doctors in rural as well as urban clinics and hospitals. The module has five main blocks: Data Acquisition & Pre-processing, Segmentation, Feature Extraction, Murmur Detection and Murmur Classification. The heart sounds are first acquired using an electronic stethoscope which has the capability of transferring these signals to the near by workstation using wireless media. Then the signals are segmented into individual cycles as well as individual components using the spectral analysis of heart without using any reference signal like ECG. Then the features are extracted from the individual components using Spectrogram and are used as an input to a MLP (Multiple Layer Perceptron) Neural Network that is trained to detect the presence of heart murmurs. Once the murmur is detected they are classified into seven classes depending on their timing within the cardiac cycle using Smoothed Pseudo Wigner-Ville distribution. The module has been tested with real heart sounds from 40 patients and has proved to be quite efficient and robust while dealing with a large variety of pathological conditions.

  10. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  11. The p53 inhibitor, pifithrin-{alpha}, suppresses self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelalim, Essam Mohamed, E-mail: essam_abdelalim@yahoo.com; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522; Tooyama, Ikuo

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We determine the role of p53 in ES cells under unstressful conditions. Black-Right-Pointing-Pointer PFT-{alpha} suppresses ES cell proliferation. Black-Right-Pointing-Pointer PFT-{alpha} induces ES cell cycle arrest. Black-Right-Pointing-Pointer PFT-{alpha} downregulates Nanog and cyclin D1. -- Abstract: Recent studies have reported the role of p53 in suppressing the pluripotency of embryonic stem (ES) cells after DNA damage and blocking the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. However, to date no evidence has been presented to support the function of p53 in unstressed ES cells. In this study, we investigated the effect of pifithrin (PFT)-{alpha}, an inhibitor ofmore » p53-dependent transcriptional activation, on self-renewal of ES cells. Our results revealed that treatment of ES cells with PFT-{alpha} resulted in the inhibition of ES cell propagation in a dose-dependent manner, as indicated by a marked reduction in the cell number and colony size. Also, PFT-{alpha} caused a cell cycle arrest and significant reduction in DNA synthesis. In addition, inhibition of p53 activity reduced the expression levels of cyclin D1 and Nanog. These findings indicate that p53 pathway in ES cells rather than acting as an inactive gene, is required for ES cell proliferation and self-renewal under unstressful conditions.« less

  12. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons.

    PubMed

    Das, Sulagna; Moon, Hyungseok C; Singer, Robert H; Park, Hye Yoon

    2018-06-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3' untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca 2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  13. Characterization of a Poly(styrene-block-methylacrylate-random-octadecylacrylate-block-styrene) Shape Memory ABA Triblock Copolymer

    NASA Astrophysics Data System (ADS)

    Fei, Pengzhan; Cavicchi, Kevin

    2011-03-01

    A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.

  14. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.

    PubMed

    Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert

    2017-04-01

    Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.

  15. ETARA PC version 3.3 user's guide: Reliability, availability, maintainability simulation model

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Viterna, Larry A.

    1991-01-01

    A user's manual describing an interactive, menu-driven, personal computer based Monte Carlo reliability, availability, and maintainability simulation program called event time availability reliability (ETARA) is discussed. Given a reliability block diagram representation of a system, ETARA simulates the behavior of the system over a specified period of time using Monte Carlo methods to generate block failure and repair intervals as a function of exponential and/or Weibull distributions. Availability parameters such as equivalent availability, state availability (percentage of time as a particular output state capability), continuous state duration and number of state occurrences can be calculated. Initial spares allotment and spares replenishment on a resupply cycle can be simulated. The number of block failures are tabulated both individually and by block type, as well as total downtime, repair time, and time waiting for spares. Also, maintenance man-hours per year and system reliability, with or without repair, at or above a particular output capability can be calculated over a cumulative period of time or at specific points in time.

  16. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  17. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  18. Prescribing family criticism as a paradoxical intervention.

    PubMed

    Bergman, J S

    1983-12-01

    Two case studies are presented in which parental criticism of children was prescribed in two fused families, who in part were fused because of the mutual and intense criticism between the parents and children. In both cases, prescribing the criticism resulted in blocking the parental criticism, thus forcing the family members to interact in new and different ways. Blocking the criticism permitted the individuals and the family to evolve to the next developmental stages in the family life cycle. Discussion is detailed as to why the prescription of family criticism led to shifts in the family system.

  19. The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1996-01-01

    This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.

  20. Functional group and individual maceral chemistry of high volatile bituminous coals from southern Indiana: Controls on coking

    USGS Publications Warehouse

    Walker, R.; Mastalerz, Maria

    2004-01-01

    The individual maceral chemistries of two Pennsylvanian, high volatile bituminous coals, the Danville Coal Member (Dugger Formation, R o=0.55%) and the Lower Block Coal Member (Brazil Formation, R o=0.56%) of Indiana, were investigated using electron microprobe and Fourier Transform Infrared Spectrometry (FTIR) techniques, with the purpose of understanding differences in their coking behavior. Microprobe results reveal that carbon contents are highest in inertinite and sporinite, followed by desmocollinite and telocollinite. Oxygen and organic nitrogen are most abundant in telocollinite and desmocollinite; sporinite and inertinite contain lesser amounts of these two elements. Organic sulfur contents are highest in sporinite, lowest in inertinite, and intermediate in desmocollinite and telocollinite. Vitrinites within the Danville and Lower Block coals are very similar in elemental composition, while Lower Block inertinites and sporinites have higher carbon, lower oxygen, and sulfur contents which, when combined with the inertinite-and sporinite-rich composition of the Lower Block seam, strongly influences its whole coal chemistry. Fourier transform infrared spectrometry revealed greater aromatic hydrogen in the Lower Block coal, along with higher CH2/CH3 ratios, which suggest that liptinites contribute considerable amounts of long-chain, unbranched aliphatics to the overall kerogen composition of the Lower Block coal. Long-chain, unbranched aliphatics crack at higher temperatures, producing tar and oily byproducts during coking; these may help increase Lower Block plasticity. Electron microprobe and FTIR results indicate that individual maceral chemistries, combined with the maceral composition of the seam, are the primary control of better coking properties of the Lower Block coal. ?? 2003 Elsevier B.V. All rights reserved.

  1. Small homologous blocks in phytophthora genomes do not point to an ancient whole-genome duplication.

    PubMed

    van Hooff, Jolien J E; Snel, Berend; Seidl, Michael F

    2014-05-01

    Genomes of the plant-pathogenic genus Phytophthora are characterized by small duplicated blocks consisting of two consecutive genes (2HOM blocks) and by an elevated abundance of similarly aged gene duplicates. Both properties, in particular the presence of 2HOM blocks, have been attributed to a whole-genome duplication (WGD) at the last common ancestor of Phytophthora. However, large intraspecies synteny-compelling evidence for a WGD-has not been detected. Here, we revisited the WGD hypothesis by deducing the age of 2HOM blocks. Two independent timing methods reveal that the majority of 2HOM blocks arose after divergence of the Phytophthora lineages. In addition, a large proportion of the 2HOM block copies colocalize on the same scaffold. Therefore, the presence of 2HOM blocks does not support a WGD at the last common ancestor of Phytophthora. Thus, genome evolution of Phytophthora is likely driven by alternative mechanisms, such as bursts of transposon activity.

  2. Improved thermal isolation for superconducting magnet systems

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R.

    1974-01-01

    Closed-cycle refrigerating system for superconductive magnet and maser is operated in vacuum environment. Each wire leading from external power source passes through cooling station which blocks heat conduction. In connection with these stations, switch with small incandescent light bulb, which generates heat, is used to stop superconduction.

  3. Modeling the Air-Vegetation-Soil Exchange of Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. However, in excess reactive nitrogen can lead to poor air or water quality, loss of biodiversity, and impact respiratory and cardiac health. Human activity has perturbed this cycl...

  4. USEEIO v1.1-Matrices

    EPA Science Inventory

    This dataset provides the basic building blocks for the USEEIO v1.1 model and life cycle results per $1 (2013 USD) demand for all goods and services in the model in the producer's price (see BEA 2015). The methodology underlying USEEIO is described in Yang, Ingwersen et al., 2017...

  5. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  6. A conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover.

    PubMed

    Cox, R; Lowe, D R

    1995-01-02

    Both sediment recycling and first-cycle input influence the composition of clastic material in sedimentary systems. This paper examines conceptually the roles played by these processes in governing the composition of clastic sediment on a regional scale by outlining the expected effects on sediment composition of protracted sediment recycling and of continuous first-cycle input on a maturing continental block. Generally speaking, long-term recycling tends to enrich sediments in the most chemically and mechanically stable components: quartz in the sand and silt size fractions, and illite among the clay minerals. Sandstones trend towards pure quartz arenites, and mudrocks become more potassic and aluminous. The average grain size of clastic sediment decreases by a combination of progressive attrition of sand grains and ongoing breakdown of primary silicate minerals to finer-grained clay minerals and oxides. Sandstones derived by continuous first-cycle input from an evolving continental crustal source also become increasingly rich in quartz, but in addition become more feldspathic as the proportion of granitic material in the upper continental crust increases during crustal stabilization. Associated mudrocks also become richer in potassium and aluminum, but will have higher K2O/Al2O3 ratios than recycled muds. The average grain size of the sediment may increase with time as the proportion of sand-prone granitic source rocks increases at the expense of more mud-prone volcanic sources. In general, except in instances where chemical weathering is extreme, first-cycle sediments lack the compositional maturity of recycled detritus, and are characterized by the presence of a variety of primary silicate minerals. Sedimentary systems are not usually completely dominated by either recycling or first-cycle detritus. Generally, however, sedimentary systems associated with the earliest phases of formation and accretion of continental crust are characterized by first-cycle input from igneous and metamorphic rocks, whereas those associated with more mature cratons tend to be dominated by recycled sedimentary material.

  7. Defect propagation in NiTi rotary instruments: a noncontact optical profilometry analysis.

    PubMed

    Barbosa, I; Ferreira, F; Scelza, P; Neff, J; Russano, D; Montagnana, M; Zaccaro Scelza, M

    2018-04-10

    To evaluate the presence and propagation of defects and their effects on surfaces of nickel-titanium (NiTi) instruments using noncontact, three-dimensional optical profilometry, and to assess the accuracy of this method of investigation. The flute surface areas of instruments from two commercial instrumentation systems, namely Reciproc R25 (n = 5) and WaveOne Primary (n = 5), were assessed and compared before and after performing two instrumentation cycles in simulated root canals in clear resin blocks. All the analyses were conducted on areas measuring 211 × 211 μm, located 3 mm from the tips of the instruments. A quantitative analysis was conducted before and after the first and second instrumentation cycles, using the Sa (average roughness over the measurement field), Sq (root mean square roughness) and Sz (average height over the measurement field) amplitude parameters. All the data were submitted to statistical analysis at a 5% level of significance. There was a significant increase (P = 0.007) in wear in both groups, especially between baseline and the second instrumentation cycle, with significantly higher wear values being observed on WaveOne instruments (Sz median values = 33.68 and 2.89 μm, respectively, for WO and RP groups). A significant increase in surface roughness (P = 0.016 and P = 0.008, respectively, for Sa and Sq) was observed in both groups from the first to the second instrumentation cycle, mostly in WaveOne specimens. Qualitative analysis revealed a greater number of defects on the flute topography of all the instruments after use. More defects were identified in WaveOne Primary instruments compared to Reciproc R25, irrespective of the evaluation stage. The investigation method provided an accurate, repeatable and reproducible assessment of NiTi instruments at different time-points. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection

    PubMed Central

    Greseth, Matthew D.; Traktman, Paula

    2014-01-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production. PMID:24651651

  9. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    PubMed

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production.

  10. Single Polymer Chain Elongation by Atomic Force Microscopy.

    DTIC Science & Technology

    1998-01-01

    are designated by PS for polystyrene and P2VP or PVP for poly-2-vinyl-pyridine. Molecular weights of the individual blocks are given after the...In the case of PS - P2VP the difference in interfacial tensions of the two blocks with water are too close to distinguish. Using block copolymers with...Stanford University, 1987. (20) Static light scattering reveals that the CMC of PS - P2VP solutions in toluene is approximately 65ug/ml,19 and as such

  11. Dynamic thermal field-induced gradient soft-shear for highly oriented block copolymer thin films.

    PubMed

    Singh, Gurpreet; Yager, Kevin G; Berry, Brian; Kim, Ho-Cheol; Karim, Alamgir

    2012-11-27

    As demand for smaller, more powerful, and energy-efficient devices continues, conventional patterning technologies are pushing up against fundamental limits. Block copolymers (BCPs) are considered prime candidates for a potential solution via directed self-assembly of nanostructures. We introduce here a facile directed self-assembly method to rapidly fabricate unidirectionally aligned BCP nanopatterns at large scale, on rigid or flexible template-free substrates via a thermally induced dynamic gradient soft-shear field. A localized differential thermal expansion at the interface between a BCP film and a confining polydimethylsiloxane (PDMS) layer due to a dynamic thermal field imposes the gradient soft-shear field. PDMS undergoes directional expansion (along the annealing direction) in the heating zone and contracts back in the cooling zone, thus setting up a single cycle of oscillatory shear (maximum lateral shear stress ∼12 × 10(4) Pa) in the system. We successfully apply this process to create unidirectional alignment of BCP thin films over a wide range of thicknesses (nm to μm) and processing speeds (μm/s to mm/s) using both a flat and patterned PDMS layer. Grazing incidence small-angle X-ray scattering measurements show absolutely no sign of isotropic population and reveal ≥99% aligned orientational order with an angular spread Δθ(fwhm) ≤ 5° (full width at half-maximum). This method may pave the way to practical industrial use of hierarchically patterned BCP nanostructures.

  12. Local anesthetic-induced myotoxicity as a cause of severe trismus after inferior alveolar nerve block.

    PubMed

    Smolka, Wenko; Knoesel, Thomas; Mueller-Lisse, Ullrich

    2018-01-01

    A case of a 60-year-old man with severe trismus after inferior alveolar nerve block is presented. MRI scans as well as histologic examination revealed muscle fibrosis and degeneration of the medial part of the left temporal muscle due to myotoxicity of a local anesthetic agent.

  13. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.

    PubMed

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-05-22

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.

  14. The Expression Pattern of the Cell Cycle Inhibitor p19INK4d by Progenitor Cells of the Rat Embryonic Telencephalon and Neonatal Anterior Subventricular Zone

    PubMed Central

    Coskun, Volkan; Luskin, Marla B.

    2014-01-01

    In this study we investigated whether the pattern of expression of the cyclin-dependent kinase inhibitor p19INK4d by the unique progenitor cells of the neonatal anterior subventricular zone (SVZa) can account for their ability to divide even though they express phenotypic characteristics of differentiated neurons. p19INK4d was chosen for analysis because it usually acts to block permanently the cell cycle at the G1 phase. p19INK4d immunoreactivity and the incorporation of bromodeoxyuridine (BrdU) by SVZa cells were compared with that of the more typical progenitor cells of the prenatal telencephalic ventricular zone. In the developing telencephalon, p19INK4d is expressed by postmitotic cells and has a characteristic perinuclear distribution depending on the laminar position and state of differentiation of a cell. Moreover, the laminar-specific staining of the developing cerebral cortex revealed that the ventricular zone (VZ) is divided into p19INK4d(+) and p19INK4d(−) sublaminae, indicating that the VZ has a previously unrecognized level of functional organization. Furthermore, the rostral migratory stream, traversed by the SVZa-derived cells, exhibits an anteriorhigh–posteriorlow gradient of p19INK4d expression. On the basis of the p19INK4d immunoreactivity and BrdU incorporation, SVZa-derived cells appear to exit and reenter the cell cycle successively. Thus, in contrast to telencephalic VZ cells, SVZa cells continue to undergo multiple rounds of division and differentiation before becoming postmitotic. PMID:11312294

  15. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  16. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    NASA Astrophysics Data System (ADS)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; Guilhem, Yoann; Lebensohn, Ricardo A.; Ludwig, Wolfgang

    2018-06-01

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.

  17. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse.

    PubMed

    Vázquez-Cuevas, F G; Cruz-Rico, A; Garay, E; García-Carrancá, A; Pérez-Montiel, D; Juárez, B; Arellano, R O

    2013-01-01

    Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.

  18. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE PAGES

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; ...

    2018-03-11

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  19. Changes in composition and enamel demineralization inhibition activities of gallic acid at different pH values.

    PubMed

    Zhang, Jingyang; Huang, Xuelian; Huang, Shengbin; Deng, Meng; Xie, Xincheng; Liu, Mingdong; Liu, Hongling; Zhou, Xuedong; Li, Jiyao; Ten Cate, Jacob Martien

    2015-01-01

    Gallic acid (GA) has been shown to inhibit demineralization and enhance remineralization of enamel; however, GA solution is highly acidic. This study was to investigate the stability of GA solutions at various pH and to examine the resultant effects on enamel demineralization. The stability of GA in H2O or in phosphate buffer at pH 5.5, pH 7.0 and pH 10.0 was evaluated qualitatively by ultraviolet absorption spectra and quantified by high performance liquid chromatography with diode array detection (HPLC-DAD). Then, bovine enamel blocks were subjected to a pH-cycling regime of 12 cycles. Each cycle included 5 min applications with one of the following treatments: 1 g/L NaF (positive control), 4 g/L GA in H2O or buffered at pH 5.5, pH 7.0 and pH 10.0 and buffers without GA at the same pH (negative control), followed by a 60 min application with pH 5.0 acidic buffers and a 5 min application with neutral buffers. The acidic buffers were analysed for dissolved calcium. GA was stable in pure water and acidic condition, but was unstable in neutral and alkaline conditions, in which ultraviolet spectra changed and HPLC-DAD analysis revealed that most of the GA was degraded. All the GA groups significantly inhibited demineralization (p < 0.05) and there was no significant difference of the inhibition efficacy among different GA groups (p > 0.05). GA could inhibit enamel demineralization and the inhibition effect is not influenced by pH. GA could be a useful source as an anti-cariogenic agent for broad practical application.

  20. A Proteasome Cap Subunit Required for Spindle Pole Body Duplication in Yeast

    PubMed Central

    McDonald, Heather B.; Byers, Breck

    1997-01-01

    Proteasome-mediated protein degradation is a key regulatory mechanism in a diversity of complex processes, including the control of cell cycle progression. The selection of substrates for degradation clearly depends on the specificity of ubiquitination mechanisms, but further regulation may occur within the proteasomal 19S cap complexes, which attach to the ends of the 20S proteolytic core and are thought to control entry of substrates into the core. We have characterized a gene from Saccharomyces cerevisiae that displays extensive sequence similarity to members of a family of ATPases that are components of the 19S complex, including human subunit p42 and S. cerevisiae SUG1/ CIM3 and CIM5 products. This gene, termed PCS1 (for proteasomal cap subunit), is identical to the recently described SUG2 gene (Russell, S.J., U.G. Sathyanarayana, and S.A. Johnston. 1996. J. Biol. Chem. 271:32810– 32817). We have shown that PCS1 function is essential for viability. A temperature-sensitive pcs1 strain arrests principally in the second cycle after transfer to the restrictive temperature, blocking as large-budded cells with a G2 content of unsegregated DNA. EM reveals that each arrested pcs1 cell has failed to duplicate its spindle pole body (SPB), which becomes enlarged as in other monopolar mutants. Additionally, we have shown localization of a functional Pcs1–green fluorescent protein fusion to the nucleus throughout the cell cycle. We hypothesize that Pcs1p plays a role in the degradation of certain potentially nuclear component(s) in a manner that specifically is required for SPB duplication. PMID:9151663

  1. In vitro and in vivo anti-tumour activities of echinoside A and ds-echinoside A from Pearsonothuria graeffei.

    PubMed

    Zhao, Qin; Xue, Yong; Wang, Jing-feng; Li, Hui; Long, Teng-teng; Li, Zhaojie; Wang, Yu-ming; Dong, Ping; Xue, Chang-hu

    2012-03-15

    Echinoside A (EA) and ds-echinoside A (DSEA) are triterpene glycosides isolated from the sea cucumber Pearsonothuria graeffei. DSEA, the desulfurisation product of EA, has the following structure: β-D-xylopyranosyl-holost-8(9),11(12)-diene-3β,17α-diol. In the present study, we examined the anti-tumour activities-in particular, the structure-activity relationships-of EA and DSEA in vitro and in vivo. Both EA and DSEA exhibited an inhibitory effect on cell proliferation, along with apoptosis-inducing activity, in HepG2 cells. Moreover, they significantly arrested the cell cycle in the G₀/G₁ phase. A reverse transcriptase-polymerase chain reaction assay revealed that EA and DSEA significantly increased the expression of the cell-cycle-related genes, namely, p16, p21 and c-myc, and decreased that of cyclin D₁. Western blotting analysis demonstrated that they down-regulated the expression of Bcl-2, and enhanced mitochondria cytochrome c release, caspase-3 activation, and poly(adenosine diphosphate ribose) polymerase, cleavage. Nuclear factor kappa B (NF-κB) expression was significantly decreased by DSEA, but was unaffected by EA. EA and DSEA (2.5 mg kg⁻¹) treatment of mice bearing H22 hepatocarcinoma tumours reduced the tumour weight by 49.8% and 55.0%, respectively. EA and DSEA exhibit marked anti-cancer activity in HepG2 cells, by blocking cell-cycle progression and inducing apoptosis through the mitochondrial pathway. DSEA-induced apoptosis was more potent than EA-induced apoptosis. Furthermore, the two triterpene glycosides derived from P. graeffei may induce apoptosis of HepG2 cells in an NF-κB-dependent or NF-κB-independent manner, depending on their structure. Copyright © 2011 Society of Chemical Industry.

  2. Cholesterol effectively blocks entry of flavivirus.

    PubMed

    Lee, Chyan-Jang; Lin, Hui-Ru; Liao, Ching-Len; Lin, Yi-Ling

    2008-07-01

    Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2) are enveloped flaviviruses that enter cells through receptor-mediated endocytosis and low pH-triggered membrane fusion and then replicate in intracellular membrane structures. Lipid rafts, cholesterol-enriched lipid-ordered membrane domains, are platforms for a variety of cellular functions. In this study, we found that disruption of lipid raft formation by cholesterol depletion with methyl-beta-cyclodextrin or cholesterol chelation with filipin III reduces JEV and DEN-2 infection, mainly at the intracellular replication steps and, to a lesser extent, at viral entry. Using a membrane flotation assay, we found that several flaviviral nonstructural proteins are associated with detergent-resistant membrane structures, indicating that the replication complex of JEV and DEN-2 localizes to the membranes that possess the lipid raft property. Interestingly, we also found that addition of cholesterol readily blocks flaviviral infection, a result that contrasts with previous reports of other viruses, such as Sindbis virus, whose infectivity is enhanced by cholesterol. Cholesterol mainly affected the early step of the flavivirus life cycle, because the presence of cholesterol during viral adsorption greatly blocked JEV and DEN-2 infectivity. Flavirial entry, probably at fusion and RNA uncoating steps, was hindered by cholesterol. Our results thus suggest a stringent requirement for membrane components, especially with respect to the amount of cholesterol, in various steps of the flavivirus life cycle.

  3. Synthesis and energy applications of oriented metal oxide nanoporous films

    NASA Astrophysics Data System (ADS)

    Wu, Qingliu

    This dissertation mainly addresses the synthesis of well-ordered mesoporous titania thin films by dip coating with PEO-PPO-PEO triblock copolymer surfactant template P123. Because P123 is composed of poly(ethylene oxide) [PEO] and poly(propylene oxide) [PPO] blocks, concentrations of ingredients are adjusted to tune the films' wall thickness, pore size and mesophase. Structural changes are consistent with partitioning of species among PEO blocks, PPO blocks, and the PEO/PPO interface. Titanates localize near PEO and increase wall thickness (by 5 nm to 7 nm). Depending on aging temperature, PPG either swells the PPO cores (when it is hydrophobic) or introduces large (>200 nm) voids (when it is hydrophilic but phase separates during heating). 1-butanol localizes at the PEO/PPO interface to favor a 3D hexagonal mesostructure. In another approach, anodizing Ti foils yields vertically aligned titania nanotubes arrays with exceptional stabilities as anodes in lithium ion batteries; they maintain capacities of 130-230 mAhg-1 over 200 cycles. No microstructural changes are induced by battery cycling and good electrical contact is maintained. A diffusion induced stress model suggests that thin-walled nanotubes arrays should be stable under testing conditions, and that ordered hexagonal columnar pore arrays should have both high charge/discharge rates and low stress development. KEY WORDS: materials synthesis, porous, thin film, alternative energy, self-assembly

  4. Preventing messaging queue deadlocks in a DMA environment

    DOEpatents

    Blocksome, Michael A; Chen, Dong; Gooding, Thomas; Heidelberger, Philip; Parker, Jeff

    2014-01-14

    Embodiments of the invention may be used to manage message queues in a parallel computing environment to prevent message queue deadlock. A direct memory access controller of a compute node may determine when a messaging queue is full. In response, the DMA may generate and interrupt. An interrupt handler may stop the DMA and swap all descriptors from the full messaging queue into a larger queue (or enlarge the original queue). The interrupt handler then restarts the DMA. Alternatively, the interrupt handler stops the DMA, allocates a memory block to hold queue data, and then moves descriptors from the full messaging queue into the allocated memory block. The interrupt handler then restarts the DMA. During a normal messaging advance cycle, a messaging manager attempts to inject the descriptors in the memory block into other messaging queues until the descriptors have all been processed.

  5. Resilient self-assembling hydrogels from block copolypeptide amphiphiles

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew Paul

    The ability to produce well defined synthetic polypeptides has been greatly improved by the discovery of transition metal species that mediate the controlled polymerization of N-carboxyanhydrides (NCAs). These metal species create a living polymerization system by producing control over chain length, low polydispersities, and the ability to form complex block architectures. We have applied this system to the synthesis of block copolypeptide amphiphiles. Initial block copolymers synthesized were composed of hydrophilic, cationic poly(L-Lysine) combined with hydrophobic, alpha-helical poly(L-Leucine). These Lysine- block-Leucine copolypeptides were found to form stiff, clear hydrogels at low concentration (˜1 wt%) in low ionic strength water. Based on this unexpected result we used the flexibility of our transition metal polymerization chemistry to better understand the nature and mechanisms of gel formation in these materials. Systematic changes to the original Lysine-block-Leucine copolypeptides were made by altering overall chain size, relative block length, polyelectrolyte charge, and hydrophobic secondary structure. Rheological characterization revealed that the strength of these hydrogels was primarily dependent on degree of polymerization, relative block length, and a well ordered secondary structure in the hydrophobic segment. The Lysine-block-Leucine hydrogels were formed by direct addition of water to dry polypeptide material which swelled to homogeneously fill the entire volume of liquid with no special processing. CryoTEM showed a percolating cellular network at ˜100nm that appears to be comprised of both membranes and fibers. Larger length scales studied with Laser Scanning Confocal Microscopy revealed a spontaneously formed microporous network with large (˜10mum) water rich voids. These hydrogels also displayed interesting mechanical properties including rapid recovery of solid like behavior after being sheared to a liquid and mechanical stability with increased temperature (˜90°C). The behavior of the Lysine- block-Leucine system with salt was also thoroughly investigated. With proper tuning of the relative block composition it was found that hydrogels could be optimized to possess good solubility and mechanical strength in many useful ionic solutions (˜100--200mM) such as pH buffers and cell culture media.

  6. Block Distribution Analysis of Impact Craters in the Tharsis and Elysium Planitia Regions on Mars

    NASA Astrophysics Data System (ADS)

    Button, N.; Karunatillake, S.; Diaz, C.; Zadei, S.; Rajora, V.; Barbato, A.; Piorkowski, M.

    2017-12-01

    The block distribution pattern of ejecta surrounding impact craters reveals clues about their formation. Using images from High Resolution Imaging Science Experiment (HiRISE) image onboard the Mars Reconnaissance Orbiter (MRO), we indentified two rayed impact craters on Mars with measurable ejecta fields to quantitatively investigate in this study. Impact Crater 1 (HiRISE image PSP_008011_1975) is located in the Tharsis region at 17.41°N, 248.75°E and is 175 m in diameter. Impact Crater 2 (HiRISE image ESP_018352_1805) is located in Elysium Planitia at 0.51°N, 163.14°E and is 320 m in diameter. Our block measurements, used to determine the area, were conducted using HiView. Employing methods similar to Krishna and Kumar (2016), we compared block size and axis ratio to block distance from the center of the crater, impact angle, and direction. Preliminary analysis of sixteen radial sectors around Impact Crater 1 revealed that in sectors containing mostly small blocks (less than 10 m2), the small blocks were ejected up to three times the diameter of the crater from the center of the crater. These small block-dominated sectors lacked blocks larger than 10 m2. Contrastingly, in large block-dominated sectors (larger than 30 m2) blocks rarely traveled farther than 200 m from the center of the crater. We also seek to determine the impact angle and direction. Krishna and Kumar (2016) calculate the b-value (N(a) = Ca-b; "N(a) equals the number of fragments or craters with a size greater than a, C is a constant, and -b is a power index") as a method to determine the impact direction. Our preliminary results for Impact Crater 1 did not clearly indicate the impact angle. With improved measurements and the assessment of Impact Crater 2, we will compare Impact Crater 1 to Impact Crater 2 as well as assess the impact angle and direction in order to determine if the craters are secondary craters. Hood, D. and Karunatillake, S. (2017), LPSC, Abstract #2640 Krishna, N., and P. S. Kumar (2016), Icarus, 264, 274-299

  7. Room Air Conditioners; Appliance Repair--Advanced: 9027.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This Quinmester course includes installations, electrical and mechanical servicing, reverse cycle air conditioning, malfunctions, troubleshooting and repair, discharge, pump down, and recharging the system. The course may be taught as a two or three Quinmester credit course. In each instance the course consists of six instructional blocks:…

  8. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    PubMed

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed by a single amino acid from the sequence of hG1.16 and the published rat L37 sequence. Southern-blot analysis revealed that hG1.16 exists in multiple copies in human, rat and mouse genomes. These G1.16 clones encode unique human, rat and bovine members of the ribosomal protein L37 gene family, which are constitutively expressed even during transitions from quiescence to active cell proliferation or terminal differentiation, in all tissues and all vertebrates investigated.

  9. A Pattern of Perseveration in Cocaine Addiction May Reveal Neurocognitive Processes Implicit in the Wisconsin Card Sorting Test

    PubMed Central

    Woicik, Patricia A.; Urban, Catherine; Alia-Klein, Nelly; Henry, Ashley; Maloney, Thomas; Telang, Frank; Wang, Gene-Jack; Volkow, Nora D.; Goldstein, Rita Z.

    2011-01-01

    The ability to adapt behavior in a changing environment is necessary for humans to achieve their goals and can be measured in the lab with tests of rule-based switching. Disease models, such as cocaine addiction, have revealed that alterations in dopamine interfere with adaptive set switching, culminating in perseveration. We explore perseverative behavior in individuals with cocaine use disorders (CUD) and healthy controls (CON) during performance of the Wisconsin Card Sorting Test (WCST) (N = 107 in each group). By examining perseverative errors within each of the 6 blocks of the WCST, we uniquely test two forms of set switching that are differentiated by either the presence (extradimensional set shifting (EDS) – first 3 blocks) or absence (task-set switching – last 3 blocks) of contingency learning. We also explore relationships between perseveration and select cognitive and drug use factors including verbal learning and memory, trait inhibitory control, motivational state, and urine status for cocaine (in CUD). Results indicate greater impairment for CUD than CON on the WCST, even in higher performing CUD who completed all 6 blocks of the WCST. Block by block analysis conducted on completers’ scores indicate a tendency for greater perseveration in CUD than CON but only during the first task-set switch; no such deficits were observed during EDS. This task-set switching impairment was modestly associated with two indices of immediate recall (r = −.32, −.29) and urine status for cocaine [t (134) = 2.3, p <.03]. By distinguishing these two forms of switching on the WCST, the current study reveals a neurocognitive context (i.e. initial stage of task-set switching) implicit in the WCST that possibly relies upon intact dopaminergic function, but that is impaired in CUD, as associated with worse recall and possibly withdrawal from cocaine. Future studies should investigate whether dopaminergically innervated pathways alone, or in combination with other monoamines, underlie this implicit neurocognitive processes in the WCST. PMID:21392517

  10. Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current

    PubMed Central

    Brauser, Annemarie; Schroeder, Indra; Gutsmann, Thomas; Cosentino, Cristian; Moroni, Anna; Winterhalter, Mathias

    2012-01-01

    One major determinant of the efficacy of antibiotics on Gram-negative bacteria is the passage through the outer membrane. During transport of the fluoroquinolone enrofloxacin through the trimeric outer membrane protein OmpF of Escherichia coli, the antibiotic interacts with two binding sites within the pore, thus partially blocking the ionic current. The modulation of one affinity site by Mg2+ reveals further details of binding sites and binding kinetics. At positive membrane potentials, the slow blocking events induced by enrofloxacin in Mg2+-free media are converted to flickery sojourns at the highest apparent current level (all three pores flickering). This indicates weaker binding in the presence of Mg2+. Analysis of the resulting amplitude histograms with β distributions revealed the rate constants of blocking (kOB) and unblocking (kBO) in the range of 1,000 to 120,000 s−1. As expected for a bimolecular reaction, kOB was proportional to blocker concentration and kBO independent of it. kOB was approximately three times lower for enrofloxacin coming from the cis side than from the trans side. The block was not complete, leading to a residual conductivity of the blocked state being ∼25% of that of the open state. Interpretation of the results has led to the following model: fast flickering as caused by interaction of Mg2+ and enrofloxacin is related to the binding site at the trans side, whereas the cis site mediates slow blocking events which are also found without Mg2+. The difference in the accessibility of the binding sites also explains the dependency of kOB on the side of enrofloxacin addition and yields a means of determining the most plausible orientation of OmpF in the bilayer. The voltage dependence suggests that the dipole of the antibiotic has to be adequately oriented to facilitate binding. PMID:22689827

  11. Effectiveness of plant-derived proanthocyanidins on demineralization on enamel and dentin under artificial cariogenic challenge

    PubMed Central

    da SILVA, Ana Paula Pereira; GONÇALVES, Rafael Simões; BORGES, Ana Flávia Sanches; BEDRAN-RUSSO, Ana Karina; SHINOHARA, Mirela Sanae

    2015-01-01

    Dental caries is considered a disease of high prevalence and a constant problem in public health. Proanthocyanidins (PAs) are substances that have been the target of recent studies aiming to control or treat caries. Objective The aim of this in vitro study was to evaluate the efficacy of a treatment with grape seed extract, under cariogenic challenge, to minimize or even prevent the onset of caries in the enamel and dentin. Material and Methods Blocks of enamel and dentin (6.0x6.0 mm) were obtained from bovine central incisors, polished, and selected by analysis of surface microhardness (SH). The blocks were randomly divided into 3 groups (n=15), according to the following treatments: GC (control), GSE (grape seed extract), GF (fluoride – 1,000 ppm). The blocks were subjected to 6 daily pH cycles for 8 days. Within the daily cycling, the specimens were stored in buffered solution. The blocks were then analyzed for perpendicular and surface hardness and polarized light microscopy. Results The means were subjected to statistical analysis using the ANOVA and Fisher’s PLSD tests (p<0.05). For enamel SH, GF showed the highest hardness values. In the dentin, GF was also the one that showed higher hardness values, followed by GSE. Regarding the cross-sectional hardness values, all groups behaved similarly in both the enamel and dentin. The samples that were treated with GSE and fluoride (GF) showed statistically higher values than the control. Conclusion Based on the data obtained in this in vitro study, it is suggested that grape seed extract inhibits demineralization of artificial carious lesions in both the enamel and dentin, but in a different scale in each structure and in a smaller scale when compared to fluoride. PMID:26221925

  12. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590.

    PubMed

    Kharade, Sujay V; Sheehan, Jonathan H; Figueroa, Eric E; Meiler, Jens; Denton, Jerod S

    2017-09-01

    VU590 was the first publicly disclosed, submicromolar-affinity (IC 50 = 0.2 μ M), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC 50 ∼ 8 μ M), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K + -dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Does the use of gonadotropin-releasing hormone antagonists in natural IVF cycles for poor responder patients cause more harm than benefit?

    PubMed

    Aksoy, Senai; Yakin, Kayhan; Seyhan, Ayse; Oktem, Ozgur; Alatas, Cengiz; Ata, Baris; Urman, Bulent

    2016-06-01

    Poor ovarian response to controlled ovarian stimulation (COS) is one of the most critical factors that substantially limits the success of assisted reproduction techniques (ARTs). Natural and modified natural cycle IVF are two options that could be considered as a last resort. Blocking gonadotropin-releasing hormone (GnRH) actions in the endometrium via GnRH receptor antagonism may have a negative impact on endometrial receptivity. We analysed IVF outcomes in 142 natural (n = 30) or modified natural (n = 112) IVF cycles performed in 82 women retrospectively. A significantly lower proportion of natural cycles reached follicular aspiration compared to modified natural cycles (56.7% vs. 85.7%, p < 0.001). However, the difference between the numbers of IVF cycles ending in embryo transfer (26.7% vs. 44.6%) was not statistically significant between natural cycle and modified natural IVF cycles. Clinical pregnancy (6.7% vs. 7.1%) and live birth rates per initiated cycle (6.7% vs. 5.4%) were similar between the two groups. Notably, the implantation rate was slightly lower in modified natural cycles (16% vs. 25%, p > 0.05). There was a trend towards higher clinical pregnancy (25% vs. 16%) and live birth (25% vs. 12%) rates per embryo transfer in natural cycles compared to modified natural cycles, but the differences did not reach statistical significance.

  14. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    NASA Astrophysics Data System (ADS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  15. Importance of crystallinity of anchoring block of semi-solid amphiphilic triblock copolymers in stabilization of silicone nanoemulsions.

    PubMed

    Le Kim, Trang Huyen; Jun, Hwiseok; Nam, Yoon Sung

    2017-10-01

    Polymer emulsifiers solidified at the interface between oil and water can provide exceptional dispersion stability to emulsions due to the formation of unique semi-solid interphase. Our recent works showed that the structural stability of paraffin-in-water emulsions highly depends on the oil wettability of hydrophobic block of methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (mPEG-b-PCL). Here we investigate the effects of the crystallinity of hydrophobic block of triblock copolymer-based emulsifiers, PCLL-b-PEG-b-PCLL, on the colloidal properties of silicone oil-in-water nanoemulsions. The increased ratio of l-lactide to ε-caprolactone decreases the crystallinity of the hydrophobic block, which in turn reduces the droplet size of silicone oil nanoemulsions due to the increased chain mobility at the interface. All of the prepared nanoemulsions are very stable for a month at 37°C. However, the exposure to repeated freeze-thaw cycles quickly destabilizes the nanoemulsions prepared using the polymer with the reduced crystallinity. This work demonstrates that the anchoring chain crystallization in the semi-solid interphase is critically important for the structural robustness of nanoemulsions under harsh physical stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pectoral nerves (PECS) and intercostal nerve block for cardiac resynchronization therapy device implantation.

    PubMed

    Fujiwara, Atsushi; Komasawa, Nobuyasu; Minami, Toshiaki

    2014-01-01

    A 71-year-old man was scheduled to undergo cardiac resynchronization therapy device (CRTD) implantation. He was combined with severe chronic heart failure due to ischemic heart disease. NYHA class was 3 to 4 and electrocardiogram showed non-sustained ventricular. Ejection fraction was about 20% revealed by transthoracic echocardiogram. He was also on several anticoagulation medications. We planned to implant the device under the greater pectoral muscle. As general anesthesia was considered risky, monitored anesthesia care utilizing peripheral nerve block and slight sedation was scheduled. Pectoral nerves (PECS) block and intercostal block was performed under ultrasonography with ropivacaine. For sedation during the procedure, continuous infusion of dexmedetomidine without a loading dose was performed. The procedure lasted about 3 hours, but the patient showed no pain or restlessness. Combination of PECS block and intercostal block may provide effective analgesia for CRTD implantation.

  17. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  18. Ion blocking dip shape analysis around a LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Jalabert, D.; Zaid, H.; Berger, M. H.; Fongkaew, I.; Lambrecht, W. R. L.; Sehirlioglu, A.

    2018-05-01

    We present an analysis of the widths of the blocking dips obtained in MEIS ion blocking experiments of two LaAlO3/SrTiO3 heterostructures differing in their LaAlO3 layer thicknesses. In the LaAlO3 layers, the observed blocking dips are larger than expected. This enlargement is the result of the superposition of individual dips at slightly different angular positions revealing a local disorder in the atomic alignment, i.e., layer buckling. By contrast, in the SrTiO3 substrate, just below the interface, the obtained blocking dips are thinner than expected. This thinning indicates that the blocking atoms stand at a larger distance from the scattering center than expected. This is attributed to an accumulation of Sr vacancies at the layer/substrate interface which induces lattice distortions shifting the atoms off the scattering plane.

  19. Influence of additional heat exchanger block on directional solidification system for growing multi-crystalline silicon ingot - A simulation investigation

    NASA Astrophysics Data System (ADS)

    Nagarajan, S. G.; Srinivasan, M.; Aravinth, K.; Ramasamy, P.

    2018-04-01

    Transient simulation has been carried out for analyzing the heat transfer properties of Directional Solidification (DS) furnace. The simulation results revealed that the additional heat exchanger block under the bottom insulation on the DS furnace has enhanced the control of solidification of the silicon melt. Controlled Heat extraction rate during the solidification of silicon melt is requisite for growing good quality ingots which has been achieved by the additional heat exchanger block. As an additional heat exchanger block, the water circulating plate has been placed under the bottom insulation. The heat flux analysis of DS system and the temperature distribution studies of grown ingot confirm that the established additional heat exchanger block on the DS system gives additional benefit to the mc-Si ingot.

  20. "Isogaba Maware": quality control of genome DNA by checkpoints.

    PubMed

    Kitazono, A; Matsumoto, T

    1998-05-01

    Checkpoints maintain the interdependency of cell cycle events by permitting the onset of an event only after the completion of the preceding event. The DNA replication checkpoint induces a cell cycle arrest until the completion of the DNA replication. Similarly, the DNA damage checkpoint arrests cell cycle progression if DNA repair is incomplete. A number of genes that play a role in the two checkpoints have been identified through genetic studies in yeasts, and their homologues have been found in fly, mouse, and human. They form signaling cascades activated by a DNA replication block or DNA damage and subsequently generate the negative constraints on cell cycle regulators. The failure of these signaling cascades results in producing offspring that carry mutations or that lack a portion of the genome. In humans, defects in the checkpoints are often associated with cancer-prone diseases. Focusing mainly on the studies in budding and fission yeasts, we summarize the recent progress.

  1. Two-dimensional phase separated structures of block copolymers on solids

    NASA Astrophysics Data System (ADS)

    Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Ribbe, Alexander

    The fundamental, yet unsolved question in block copolymer (BCP) thin films is the self-organization process of BCPs at the solid-polymer melt interface. We here focus on the self-organization processes of cylinder-forming polystyrene-block-poly (4-vinylpyridine) diblock copolymer and lamellar-forming poly (styrene-block-butadiene-block-styrene) triblock copolymer on Si substrates as model systems. In order to reveal the buried interfacial structures, the following experimental protocols were utilized: the BCP monolayer films were annealed under vacuum at T>Tg of the blocks (to equilibrate the melts); vitrification of the annealed BCP films via rapid quench to room temperature; subsequent intensive solvent leaching (to remove unadsorbed chains) with chloroform, a non-selective good solvent for the blocks. The strongly bound BCP layers were then characterized by using atomic force microscopy, scanning electron microscopy, grazing incidence small angle X-ray scattering, and X-ray reflectivity. The results showed that both blocks lie flat on the substrate, forming the two-dimensional, randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. Acknowledgement of financial support from NSF Grant (CMMI -1332499).

  2. Cognitive behavior and sensory function were significantly influenced by restoration of active ovarian function in postreproductive mice.

    PubMed

    Parkinson, Kate C; Peterson, Rhett L; Mason, Jeffrey B

    2017-06-01

    In mammals, the relationship between reproductive function and health has been particularly difficult to define. Previously, in old, postreproductive-aged mice, replacement of senescent ovaries with new ovaries from young, actively cycling mice increased life span. We hypothesized that the same factors that increased life span would also influence health span. In the current experiments, we tested two of the seven domains of function/health, sensory function and cognition to determine if exposure of postreproductive female mice to young transplanted ovaries influenced health span. We evaluated control female CBA/J mice at six, 13 and 16months of age. Additional mice received new (60d) ovaries at 12 or 17months of age and were subsequently evaluated at 16 or 25months of age, respectively. Evaluation of sensory function included two measures of olfactory perception; olfactory identification (buried pellet test) and olfactory discrimination (novel recognition block test). We found a significant age-related decline in olfactory identification in 16-month old mice. This decline was avoided by ovarian transplantation at 12months of age. The olfactory discrimination block test revealed an age-associated increase in time spent on both the novel and familiar blocks. This trend was reversed in 16-month old new-ovary recipients. We evaluated cognitive behavior with a burrowing behavior test. We detected a significant age-related decrease in burrowing behavior at 16months of age. This age-related decrease in burrowing behavior was prevented by ovarian transplantation at 12months of age. In summary, we have shown that cognitive behavior and sensory function, which are negatively influenced by aging, can be positively influenced or restored by re-establishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats

    PubMed Central

    Zheng, Qingshan; Yang, Xiaolin; Lv, Rong; Ma, Longxiang; Liu, Jin; Zhu, Tao; Zhang, Wensheng

    2017-01-01

    Objective The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. Methods QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. Results 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. Conclusion The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment. PMID:28334014

  4. The quaternary lidocaine derivative QX-314 in combination with bupivacaine for long-lasting nerve block: Efficacy, toxicity, and the optimal formulation in rats.

    PubMed

    Yin, Qinqin; Li, Jun; Zheng, Qingshan; Yang, Xiaolin; Lv, Rong; Ma, Longxiang; Liu, Jin; Zhu, Tao; Zhang, Wensheng

    2017-01-01

    The quaternary lidocaine derivative (QX-314) in combination with bupivacaine can produce long-lasting nerve blocks in vivo, indicating potential clinical application. The aim of the study was to investigate the efficacy, safety, and the optimal formulation of this combination. QX-314 and bupivacaine at different concentration ratios were injected in the vicinity of the sciatic nerve in rats; bupivacaine and saline served as controls (n = 6~10). Rats were inspected for durations of effective sensory and motor nerve blocks, systemic adverse effects, and histological changes of local tissues. Mathematical models were established to reveal drug-interaction, concentration-effect relationships, and the optimal ratio of QX-314 to bupivacaine. 0.2~1.5% QX-314 with 0.03~0.5% bupivacaine produced 5.8~23.8 h of effective nerve block; while 0.5% bupivacaine alone was effective for 4 h. No systemic side effects were observed; local tissue reactions were similar to those caused by 0.5% bupivacaine if QX-314 were used < 1.2%. The weighted modification model was successfully established, which revealed that QX-314 was the main active ingredient while bupivacaine was the synergist. The formulation, 0.9% QX-314 plus 0.5% bupivacaine, resulted in 10.1 ± 0.8 h of effective sensory and motor nerve blocks. The combination of QX-314 and bupivacaine facilitated prolonged sciatic nerve block in rats with a satisfactory safety profile, maximizing the duration of nerve block without clinically important systemic and local tissue toxicity. It may emerge as an alternative approach to post-operative pain treatment.

  5. Planetary and synoptic-scale interactions during the life cycle of a mid-latitude blocking anticyclone over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1995-01-01

    The formation of a blocking anticyclone over the North Atlantic has been examined over its entire life-CyCle using the Zwack-Okossi (Z-O) equation as the diagnostic tool. This blocking anticyclone occurred in late October and early November of 1985. The data used were provided by the NASA Goddard Laboratory for Atmospheres on a global 2.O degree latitude by 2.5 degree longitudinal grid. The horizontal distribution of the atmospheric forcing mechanisms that were important to 500 mb block formation, maintenance and decay were examined. A scale-partitioned form of the Z-O equation was then used to examine the relative importance of forcing on the planetary and synoptic scales, and their interactions. As seen in previous studies, the results presented here show that upper tropospheric anticyclonic vorticity advection was the most important contributor to block formation and maintenance. However, adiabatic warming, and vorticity tilting were also important at various times during the block lifetime. In association with precursor surface cyclogenesis, the 300 mb jet streak in the downstream (upstream) from a long-wave trough (ridge) amplified significantly. This strengthening of the jet streak enhanced the anti-cyclonic vorticity advection field that aided the amplification of a 500 mb short-wave ridge. Tile partitioned height tendency results demonstrate that the interactions between the planetary and sn,noptic-scale through vorticity advection was the most important contributor to block formation. Planetary-scale, synoptic-scale. and their interactions contributed weakly to the maintenance of the blocking anticyclone with the advection of synoptic-scale vorticity by the planetary-scale flow playing a more important role. Planetary-scale decay ofthe long-wave ridge contributed to the demise of this blocking event.

  6. International business cycle synchronization since the 1870s: Evidence from a novel network approach

    NASA Astrophysics Data System (ADS)

    Antonakakis, Nikolaos; Gogas, Periklis; Papadimitriou, Theophilos; Sarantitis, Georgios Antonios

    2016-04-01

    In this study, we examine the issue of business cycle synchronization from a historical perspective in 27 developed and developing countries. Based on a novel complex network approach, the Threshold-Minimum Dominating Set (T-MDS), our results reveal heterogeneous patterns of international business cycle synchronization during fundamental globalization periods since the 1870s. In particular, the proposed methodology reveals that worldwide business cycles de-coupled during the Gold Standard, though they were synchronized during the Great Depression. The Bretton Woods era was associated with a lower degree of synchronization as compared to that during the Great Depression, while worldwide business cycle synchronization increased to unprecedented levels during the latest period of floating exchange rates and the Great Recession.

  7. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Astrophysics Data System (ADS)

    Aung, M.

    1992-11-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  8. Thermodynamic analysis of a combined-cycle solar thermal power plant with manganese oxide-based thermochemical energy storage

    NASA Astrophysics Data System (ADS)

    Lei, Qi; Bader, Roman; Kreider, Peter; Lovegrove, Keith; Lipiński, Wojciech

    2017-11-01

    We explore the thermodynamic efficiency of a solar-driven combined cycle power system with manganese oxide-based thermochemical energy storage system. Manganese oxide particles are reduced during the day in an oxygen-lean atmosphere obtained with a fluidized-bed reactor at temperatures in the range of 750-1600°C using concentrated solar energy. Reduced hot particles are stored and re-oxidized during night-time to achieve continuous power plant operation. The steady-state mass and energy conservation equations are solved for all system components to calculate the thermodynamic properties and mass flow rates at all state points in the system, taking into account component irreversibilities. The net power block and overall solar-to-electric energy conversion efficiencies, and the required storage volumes for solids and gases in the storage system are predicted. Preliminary results for a system with 100 MW nominal solar power input at a solar concentration ratio of 3000, designed for constant round-the-clock operation with 8 hours of on-sun and 16 hours of off-sun operation and with manganese oxide particles cycled between 750 and 1600°C yield a net power block efficiency of 60.0% and an overall energy conversion efficiency of 41.3%. Required storage tank sizes for the solids are estimated to be approx. 5-6 times smaller than those of state-of-the-art molten salt systems.

  9. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450-mediated metabolism with menadione.

    PubMed

    Jan, Yi-Hua; Richardson, Jason R; Baker, Angela A; Mishin, Vladimir; Heck, Diane E; Laskin, Debra L; Laskin, Jeffrey D

    2016-08-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase. We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH-cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the Food and Drug Administration for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. © 2016 New York Academy of Sciences.

  10. Novel approaches to mitigating parathion toxicity: targeting cytochrome P450–mediated metabolism with menadione

    PubMed Central

    Jan, Yi-Hua; Richardson, Jason R.; Baker, Angela A.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2016-01-01

    Accidental or intentional exposures to parathion, an organophosphorus (OP) pesticide, can cause severe poisoning in humans. Parathion toxicity is dependent on its metabolism by the cytochrome P450 (CYP) system to paraoxon (diethyl 4-nitrophenyl phosphate), a highly poisonous nerve agent and potent inhibitor of acetylcholinesterase (AChE). We have been investigating inhibitors of CYP-mediated bioactivation of OPs as a method of preventing or reversing progressive parathion toxicity. It is well recognized that NADPH–cytochrome P450 reductase, an enzyme required for the transfer of electrons to CYPs, mediates chemical redox cycling. In this process, the enzyme diverts electrons from CYPs to support chemical redox cycling, which results in inhibition of CYP-mediated biotransformation. Using menadione as the redox-cycling chemical, we discovered that this enzymatic reaction blocks metabolic activation of parathion in rat and human liver microsomes and in recombinant CYPs important to parathion metabolism, including CYP1A2, CYP2B6, and CYP3A4. Administration of menadione to rats reduces metabolism of parathion, as well as parathion-induced inhibition of brain cholinesterase activity. This resulted in inhibition of parathion neurotoxicity. Menadione has relatively low toxicity and is approved by the FDA for other indications. Its ability to block parathion metabolism makes it an attractive therapeutic candidate to mitigate parathion-induced neurotoxicity. PMID:27441453

  11. Constant light affects retinal dopamine levels and blocks deprivation myopia but not lens-induced refractive errors in chickens.

    PubMed

    Bartmann, M; Schaeffel, F; Hagel, G; Zrenner, E

    1994-01-01

    Chickens were raised with either translucent occluders or lenses, both under normal light cycles (12-h light/12-h dark) and in constant light (CL). Under normal light cycles, eyes with occluders became very myopic, and eyes with lenses became either relatively hyperopic (positive lenses) or myopic (negative lenses). After the treatment, retinal dopamine (DA), DOPAC, and serotonin levels were measured by high-pressure liquid chromatography (HPLC-EC). A significant drop in daytime retinal DOPAC (-20%) was observed after 1 week of deprivation, and in both DOPAC (-40%) and DA (-30%) after 2 weeks of deprivation. No changes in retinal serotonin levels were found. Retinal DA or DOPAC content remained unchanged after 2 or 4 days of lens wearing even though the lenses had already exerted their maximal effect on axial eye growth. When the chickens were raised in CL, development of deprivation myopia was reduced (8 days CL) or entirely blocked (13 days CL). Lens-induced changes in eye growth were not different after either 6 or 11 days in CL, compared to animals raised in a normal light cycle. Thirteen days of CL resulted in a dramatic reduction of DA and DOPAC levels, but serotonin levels were also lowered. The results suggest that lens-induced changes in refraction may not be dependent on dopaminergic pathways whereas deprivation myopia requires normal diurnal DA rhythms to develop.

  12. Low load, high repetition resistance training program increases bone mineral density in untrained adults.

    PubMed

    Petersen, Bailey A; Hastings, Bryce; Gottschall, Jinger S

    2017-01-01

    High load, low repetition resistance training increases BMD in untrained adults; however, many older and untrained adults cannot maintain this type of strenuous program. Our goal was to evaluate whether a low load, high repetition resistance training program would increase BMD in untrained adults. Twenty sedentary, but otherwise healthy, adults (6 men and 14 women, age 28-63 yrs) completed a 27-week group exercise program. The participants were randomly assigned to one of two strength groups: one group completed full body, low load, high repetition weight training classes (S-WEIGHT), while the other group completed core focused fusion classes (S-CORE). Both groups also completed indoor cycling classes for cardiovascular conditioning. After a 3-week familiarization period, all participants completed a 12-week block of 5 fitness classes per week (3 cycling + 2 strength) and concluded with another 12-week block of 6 classes per week (3 cycling + 3 strength). We completed iDXA scans at baseline (week 3) and final (week 28). Compared to baseline, BMD significantly increased for S-WEIGHT in the arms (+4%, P<0.001), legs (+8%, P<0.01), pelvis (+6%, P<0.01) and lumbar spine (+4%, P<0.05), whereas BMD did not significantly change for S-CORE at any site. These results suggest that a low load, high repetition resistance training program may be an effective method to improve bone mass in adults.

  13. Tracking performance and cycle slipping in the all-digital symbol synchronizer loop of the block 5 receiver

    NASA Technical Reports Server (NTRS)

    Aung, M.

    1992-01-01

    Computer simulated noise performance of the symbol synchronizer loop (SSL) in the Block 5 receiver is compared with the theoretical noise performance. Good agreement is seen at the higher loop SNR's (SNR(sub L)'s), with gradual degradation as the SNR(sub L) is decreased. For the different cases simulated, cycle slipping is observed (within the simulation time of 10(exp 4) seconds) at SNR(sub L)'s below different thresholds, ranging from 6 to 8.5 dB, comparable to that of a classical phase-locked loop. An important point, however, is that to achieve the desired loop SNR above the seemingly low threshold to avoid cycle slipping, a large data-to-loop-noise power ratio, P(sub D)/(N(sub 0)B(sub L)), is necessary (at least 13 dB larger than the desired SNR(sub L) in the optimum case and larger otherwise). This is due to the large squaring loss (greater than or equal to 13 dB) inherent in the SSL. For the special case of symbol rates approximately equaling the loop update rate, a more accurate equivalent model accounting for an extra loop update period delay (characteristic of the SSL phase detector design) is derived. This model results in a more accurate estimation of the noise-equivalent bandwidth of the loop.

  14. Automated in-chamber specimen coating for serial block-face electron microscopy.

    PubMed

    Titze, B; Denk, W

    2013-05-01

    When imaging insulating specimens in a scanning electron microscope, negative charge accumulates locally ('sample charging'). The resulting electric fields distort signal amplitude, focus and image geometry, which can be avoided by coating the specimen with a conductive film prior to introducing it into the microscope chamber. This, however, is incompatible with serial block-face electron microscopy (SBEM), where imaging and surface removal cycles (by diamond knife or focused ion beam) alternate, with the sample remaining in place. Here we show that coating the sample after each cutting cycle with a 1-2 nm metallic film, using an electron beam evaporator that is integrated into the microscope chamber, eliminates charging effects for both backscattered (BSE) and secondary electron (SE) imaging. The reduction in signal-to-noise ratio (SNR) caused by the film is smaller than that caused by the widely used low-vacuum method. Sample surfaces as large as 12 mm across were coated and imaged without charging effects at beam currents as high as 25 nA. The coatings also enabled the use of beam deceleration for non-conducting samples, leading to substantial SNR gains for BSE contrast. We modified and automated the evaporator to enable the acquisition of SBEM stacks, and demonstrated the acquisition of stacks of over 1000 successive cut/coat/image cycles and of stacks using beam deceleration or SE contrast. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  15. Understanding the mechanism of circadian modulation to improve the quality of life for cancer patients

    USDA-ARS?s Scientific Manuscript database

    The strategy of anticancer treatment varies for different types of cancers, but most of them are aimed at inducing cell-cycle arrest or apoptosis in proliferating tumor cells by generating genomic DNA-damage or blocking intracellular mitogenic signaling. Although these treatments could reduce the ra...

  16. CHANGES IN NUCLEIC ACIDS OVER THE MOLT CYCLE IN RELATION TO FOOD AVAILABILITY AND TEMPERATURE IN HOMARUS AMERICANUS POSTLARVAE

    EPA Science Inventory

    Postlarval lobsters Homarus americanus Milne Edwards hatched from three females collected in 1989 fr m Block Island Sound, Rhode Island were reared individually in the laboratory under nine treatment combinations of temperature (15, 18 and 200C) and feeding(starved, low ration, a...

  17. 40 CFR 63.1402 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... properties may vary with time. For a unit operation operated in a batch mode (i.e., batch unit operation... means a unit operation operated in a batch mode. Block means the time period that comprises a single batch cycle. Combustion device burner means a device designed to mix and ignite fuel and air to provide...

  18. 40 CFR 63.1402 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... properties may vary with time. For a unit operation operated in a batch mode (i.e., batch unit operation... means a unit operation operated in a batch mode. Block means the time period that comprises a single batch cycle. Combustion device burner means a device designed to mix and ignite fuel and air to provide...

  19. 40 CFR 63.1402 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... properties may vary with time. For a unit operation operated in a batch mode (i.e., batch unit operation... means a unit operation operated in a batch mode. Block means the time period that comprises a single batch cycle. Combustion device burner means a device designed to mix and ignite fuel and air to provide...

  20. 40 CFR 63.1402 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... properties may vary with time. For a unit operation operated in a batch mode (i.e., batch unit operation... means a unit operation operated in a batch mode. Block means the time period that comprises a single batch cycle. Combustion device burner means a device designed to mix and ignite fuel and air to provide...

  1. 40 CFR 63.1402 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... properties may vary with time. For a unit operation operated in a batch mode (i.e., batch unit operation... means a unit operation operated in a batch mode. Block means the time period that comprises a single batch cycle. Combustion device burner means a device designed to mix and ignite fuel and air to provide...

  2. Teichmüller TQFT vs. Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Victor

    2018-04-01

    Teichmüller TQFT is a unitary 3d topological theory whose Hilbert spaces are spanned by Liouville conformal blocks. It is related but not identical to PSL(2, ℝ) Chern-Simons theory. To physicists, it is known in particular in the context of 3d-3d correspondence and also in the holographic description of Virasoro conformal blocks. We propose that this theory can be defined by an analytically-continued Chern-Simons path-integral with an unusual integration cycle. On hyperbolic three-manifolds, this cycle is singled out by the requirement of invertible vielbein. Mathematically, our proposal translates a known conjecture by Andersen and Kashaev into a conjecture about the Kapustin-Witten equations. We further explain that Teichmüller TQFT is dual to complex SL(2, ℂ) Chern-Simons theory at integer level k = 1, clarifying some puzzles previously encountered in the 3d-3d correspondence literature. We also present a new simple derivation of complex Chern-Simons theories from the 6d (2,0) theory on a lens space with a transversely-holomorphic foliation.

  3. Distinct Tensile Response of Model Semi-flexible Elastomer Networks

    NASA Astrophysics Data System (ADS)

    Aguilera-Mercado, Bernardo M.; Cohen, Claude; Escobedo, Fernando A.

    2011-03-01

    Through coarse-grained molecular modeling, we study how the elastic response strongly depends upon nanostructural heterogeneities in model networks made of semi-flexible chains exhibiting both regular and realistic connectivity. Idealized regular polymer networks have been shown to display a peculiar elastic response similar to that of super-tough natural materials (e.g., organic adhesives inside abalone shells). We investigate the impact of chain stiffness, and the effect of including tri-block copolymer chains, on the network's topology and elastic response. We find in some systems a dual tensile response: a liquid-like behavior at small deformations, and a distinct saw-tooth shaped stress-strain curve at moderate to large deformations. Additionally, stiffer regular networks exhibit a marked hysteresis over loading-unloading cycles that can be deleted by heating-cooling cycles or by performing deformations along different axes. Furthermore, small variations of chain stiffness may entirely change the nature of the network's tensile response from an entropic to an enthalpic elastic regime, and micro-phase separation of different blocks within elastomer networks may significantly enhance their mechanical strength. This work was supported by the American Chemical Society.

  4. Rift valley fever virus infection of human cells and insect hosts is promoted by protein kinase C epsilon.

    PubMed

    Filone, Claire Marie; Hanna, Sheri L; Caino, M Cecilia; Bambina, Shelly; Doms, Robert W; Cherry, Sara

    2010-11-24

    As an arthropod-borne human pathogen, Rift Valley fever virus (RVFV) cycles between an insect vector and mammalian hosts. Little is known about the cellular requirements for infection in either host. Here we developed a tissue culture model for RVFV infection of human and insect cells that is amenable to high-throughput screening. Using this approach we screened a library of 1280 small molecules with pharmacologically defined activities and identified 59 drugs that inhibited RVFV infection with 15 inhibiting RVFV replication in both human and insect cells. Amongst the 15 inhibitors that blocked infection in both hosts was a subset that inhibits protein kinase C. Further studies found that infection is dependent upon the novel protein kinase C isozyme epsilon (PKCε) in both human and insect cells as well as in adult flies. Altogether, these data show that inhibition of cellular factors required for early steps in the infection cycle including PKCε can block RVFV infection, and may represent a starting point for the development of anti-RVFV therapeutics.

  5. Deformation events in the Andean orogenic cycle in the Altiplano and Western Cordillera, southern Peru

    NASA Astrophysics Data System (ADS)

    Ellison, R. A.; Klinck, B. A.; Hawkins, M. P.

    A regional mapping program associated with radiometric age dating has provided evidence of seven deformation pulses in the Andean orogenic cycle in part of southern Peru. These are the Peruvian (Late Cretaceous), Incaic (Eocene), and five Quechua phases defined as D1 to D5. The D1 phase (early Oligocene) folded molasse deposits in the Western Cordillera; the D2 phase (late Oligocene to early Miocene) folded volcanics of the Western Cordillera; the D3 phase (middle Miocene) folded the molasse deposits in the Altiplano; the D4 (late Miocene) folded lacustrine sediments in the central part of the Western Cordillera; and the D5 phase was a major gravity slide in the Altiplano. Several faults and fault zones, known as the Chupa, Calapuja, Lagunillas, and Laraqueri Faults, are identified. They form the boundaries to Paleozoic basement blocks which appear to have acted as buttresses or barriers to the penetration of some deformation events. In the case of the D5 phase, the gravity slide was preceded by uplift and tilting of a Paleozoic block.

  6. Revisiting Parallel Cyclic Reduction and Parallel Prefix-Based Algorithms for Block Tridiagonal System of Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul

    2013-01-01

    Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less

  7. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOEpatents

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  8. Increasing available FIFO space to prevent messaging queue deadlocks in a DMA environment

    DOEpatents

    Blocksome, Michael A [Rochester, MN; Chen, Dong [Croton On Hudson, NY; Gooding, Thomas [Rochester, MN; Heidelberger, Philip [Cortlandt Manor, NY; Parker, Jeff [Rochester, MN

    2012-02-07

    Embodiments of the invention may be used to manage message queues in a parallel computing environment to prevent message queue deadlock. A direct memory access controller of a compute node may determine when a messaging queue is full. In response, the DMA may generate an interrupt. An interrupt handler may stop the DMA and swap all descriptors from the full messaging queue into a larger queue (or enlarge the original queue). The interrupt handler then restarts the DMA. Alternatively, the interrupt handler stops the DMA, allocates a memory block to hold queue data, and then moves descriptors from the full messaging queue into the allocated memory block. The interrupt handler then restarts the DMA. During a normal messaging advance cycle, a messaging manager attempts to inject the descriptors in the memory block into other messaging queues until the descriptors have all been processed.

  9. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  10. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    PubMed

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Soon Young; Department of Biomedical Science and Technology, Research Center for Transcription Control, Konkuk University, Seoul 143-701; Hyun, Jiye

    2011-08-01

    Natural flavonoids have diverse pharmacological activities, including anti-oxidative, anti-inflammatory, and anti-cancer activities. In this study, we investigated the molecular mechanism underlying the action of 5-methoxyflavanone (5-MF) which has a strong bioavailability and metabolic stability. Our results show that 5-MF inhibited the growth and clonogenicity of HCT116 human colon cancer cells, and that it activated DNA damage responses, as revealed by the accumulation of p53 and the phosphorylation of DNA damage-sensitive proteins, including ataxia-telangiectasia mutated (ATM) at Ser1981, checkpoint kinase 2 (Chk2) at Thr68, and histone H2AX at Ser139. 5-MF-induced DNA damage was confirmed in a comet tail assay. We alsomore » found that 5-MF increased the cleavage of caspase-2 and -7, leading to the induction of apoptosis. Pretreatment with the ATM inhibitor KU55933 enhanced 5-MF-induced {gamma}-H2AX formation and caspase-7 cleavage. HCT116 cells lacking p53 (p53{sup -/-}) or p21 (p21{sup -/-}) exhibited increased sensitivity to 5-MF compared to wild-type cells. 5-MF further induced autophagy via an ERK signaling pathway. Blockage of autophagy with the MEK inhibitor U0126 potentiated 5-MF-induced {gamma}-H2AX formation and caspase-2 activation. These results suggest that a caspase-2 cascade mediates 5-MF-induced anti-tumor activity, while an ATM/Chk2/p53/p21 checkpoint pathway and ERK-mediated autophagy act as a survival program to block caspase-2-mediated apoptosis induced by 5-MF. - Graphical abstract: Display Omitted Highlights: > 5-MF inhibits the proliferation of HCT116 colon cancer cells. > 5-MF inhibits cell cycle progression and induces apoptosis. > Inhibition of autophagy triggers 5-MF-induced apoptosis. > Inhibition of ERK signaling blocks 5-MF-induced autophagy but activates apoptosis. > Treatment with 5-MF in combination with an ERK inhibitor may be a potential therapeutic strategy in human colon cancer.« less

  12. Transient Amaurosis and Diplopia After Inferior Alveolar Nerve Block.

    PubMed

    Odabaşi, Onur; Şahin, Onur; Polat, Mehmet Emrah

    2017-10-01

    A 40-year-old female patient was admitted to the authors' oral and maxillofacial clinic for removal of her lower left second molar under local anesthesia. The patient's medical history revealed that she had cardiac arhythmia and hypertension. Inferior alveolar nerve block was achieved using 2 mL of sefacaine (%3 mepivacaine HCL, without epinephrine). The patient complained of loss of vision in her left eye. All procedures were stopped immediately. Within 2 minutes the patient reported diplopia. All of the symptoms disappeared about 5 minutes after initial observation. Follow-up after 1 day revealed no complications. The procedure was then performed uneventfully.

  13. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    PubMed

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX due to blocking the efflux activity of P-gp pump, inducing cell cycle arrest and increasing apoptosis, finding that improuve the synergism of antitumor effect of Algerian propolis and DOX in pancreatic cancer cell line. Therefore, Algerian propolis may be an effective agent in a combined treatment with doxorubicin for increased therapeutic efficacy against pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Is Soleus Muscle-Tendon-Unit Behavior Related to Ground-Force Application During the Sprint Start?

    PubMed

    Schrödter, Erik; Brüggemann, Gert-Peter; Willwacher, Steffen

    2017-04-01

    To describe the stretch-shortening behavior of ankle plantar-flexing muscle-tendon units (MTUs) during the push-off in a sprint start. Fifty-four male (100-m personal best: 9.58-12.07 s) and 34 female (100-m personal best: 11.05-14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels. The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2-18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4-9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes' block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation. This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.

  15. Local GABA receptor blockade reveals hindlimb responses in the SI forelimb-stump representation of neonatally amputated rats.

    PubMed

    Pluto, Charles P; Lane, Richard D; Rhoades, Robert W

    2004-07-01

    In adult rats that sustained forelimb amputation on the day of birth, there are numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to cutaneous stimulation of the hindlimb when cortical receptors for GABA are blocked. These normally suppressed hindlimb inputs originate in the SI hindlimb representation and synapse in the dysgranular cortex before exciting SI forelimb-stump neurons. In our previous studies, GABA (A + B) receptor blockade was achieved by topically applying a bicuculline methiodide/saclofen solution (BMI/SAC) to the cortical surface. This treatment blocks receptors throughout SI and does not allow determination of where along the above circuit the GABA-mediated suppression of hindlimb information occurs. In this study, focal injections of BMI/SAC were delivered to three distinct cortical regions that are involved in the hindlimb-to-forelimb-stump pathway. Blocking GABA receptors in the SI hindlimb representation and in the dysgranular cortex was largely ineffective in revealing hindlimb inputs ( approximately 10% of hindlimb inputs were revealed in both cases). In contrast, when the blockade was targeted at forelimb-stump recording sites, >80% of hindlimb inputs were revealed. Thus GABAergic interneurons within the forelimb-stump representation suppress the expression of reorganized hindlimb inputs to the region. A circuit model incorporating these and previous observations is presented and discussed.

  16. Fabrication of carbonate apatite blocks from set gypsum based on dissolution-precipitation reaction in phosphate-carbonate mixed solution.

    PubMed

    Nomura, Shunsuke; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki; Takahashi, Ichiro; Ishikawa, Kunio

    2014-01-01

    Carbonate apatite (CO3Ap), fabricated by dissolution-precipitation reaction based on an appropriate precursor, is expected to be replaced by bone according to bone remodeling cycle. One of the precursor candidates is gypsum because it shows self-setting ability, which then enables it to be shaped and molded. The aim of this study, therefore, was to fabricate CO3Ap blocks from set gypsum. Set gypsum was immersed in a mixed solution of 0.4 mol/L disodium hydrogen phosphate (Na2HPO4) and 0.4 mol/L sodium hydrogen carbonate (NaHCO3) at 80-200°C for 6-48 h. Powder X-ray diffraction patterns and Fourier transform infrared spectra showed that CO3Ap block was fabricated by dissolution-precipitation reaction in Na2HPO4-NaHCO3 solution using set gypsum in 48 h when the temperature was 100°C or higher. Conversion rate to CO3Ap increased with treatment temperature. CO3Ap block containing a larger amount of carbonate was obtained when treated at lower temperature.

  17. Block-accelerated aggregation multigrid for Markov chains with application to PageRank problems

    NASA Astrophysics Data System (ADS)

    Shen, Zhao-Li; Huang, Ting-Zhu; Carpentieri, Bruno; Wen, Chun; Gu, Xian-Ming

    2018-06-01

    Recently, the adaptive algebraic aggregation multigrid method has been proposed for computing stationary distributions of Markov chains. This method updates aggregates on every iterative cycle to keep high accuracies of coarse-level corrections. Accordingly, its fast convergence rate is well guaranteed, but often a large proportion of time is cost by aggregation processes. In this paper, we show that the aggregates on each level in this method can be utilized to transfer the probability equation of that level into a block linear system. Then we propose a Block-Jacobi relaxation that deals with the block system on each level to smooth error. Some theoretical analysis of this technique is presented, meanwhile it is also adapted to solve PageRank problems. The purpose of this technique is to accelerate the adaptive aggregation multigrid method and its variants for solving Markov chains and PageRank problems. It also attempts to shed some light on new solutions for making aggregation processes more cost-effective for aggregation multigrid methods. Numerical experiments are presented to illustrate the effectiveness of this technique.

  18. Recyclable magnetic nanocluster crosslinked with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) copolymer for adsorption with antibody.

    PubMed

    Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha

    2016-10-01

    Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Solvothermal Vapor Annealing of Lamellar Poly(styrene)-block-poly(d,l-lactide) Block Copolymer Thin Films for Directed Self-Assembly Application.

    PubMed

    Cummins, Cian; Mokarian-Tabari, Parvaneh; Andreazza, Pascal; Sinturel, Christophe; Morris, Michael A

    2016-03-01

    Solvothermal vapor annealing (STVA) was employed to induce microphase separation in a lamellar forming block copolymer (BCP) thin film containing a readily degradable block. Directed self-assembly of poly(styrene)-block-poly(d,l-lactide) (PS-b-PLA) BCP films using topographically patterned silicon nitride was demonstrated with alignment over macroscopic areas. Interestingly, we observed lamellar patterns aligned parallel as well as perpendicular (perpendicular microdomains to substrate in both cases) to the topography of the graphoepitaxial guiding patterns. PS-b-PLA BCP microphase separated with a high degree of order in an atmosphere of tetrahydrofuran (THF) at an elevated vapor pressure (at approximately 40-60 °C). Grazing incidence small-angle X-ray scattering (GISAXS) measurements of PS-b-PLA films reveal the through-film uniformity of perpendicular microdomains after STVA. Perpendicular lamellar orientation was observed on both hydrophilic and relatively hydrophobic surfaces with a domain spacing (L0) of ∼32.5 nm. The rapid removal of the PLA microdomains is demonstrated using a mild basic solution for the development of a well-defined PS mask template. GISAXS data reveal the through-film uniformity is retained following wet etching. The experimental results in this article demonstrate highly oriented PS-b-PLA microdomains after a short annealing period and facile PLA removal to form porous on-chip etch masks for nanolithography application.

  20. Seismic Evidence for a Geosuture between the Yangtze and Cathaysia Blocks, South China

    PubMed Central

    He, Chuansong; Dong, Shuwen; Santosh, M.; Chen, Xuanhua

    2013-01-01

    South China, composed of the Yangtze and Cathaysia Blocks and the intervening Jiangnan orogenic belt, has been central to the debate on the tectonic evolution of East Asia. Here we investigate the crustal structure and composition of South China from seismic data employing the H-k stacking technique. Our results show that the composition and seismic structure of the crust in the Jiangnan orogenic belt are identical to those of the Cathaysia Block. Our data reveal a distinct contrast in the crustal structure and composition between the two flanks of the Jiujiang-Shitai buried fault. We propose that the Jiujiang-Shitai buried fault defines a geosuture between the Yangtze and Cathaysia Blocks, and that the felsic lower crust of the Cathaysia Block and the Jiangnan orogenic belt may represent fragments derived from the Gondwana supercontinent. PMID:23857499

  1. The CHIC Model: A Global Model for Coupled Binary Data

    ERIC Educational Resources Information Center

    Wilderjans, Tom; Ceulemans, Eva; Van Mechelen, Iven

    2008-01-01

    Often problems result in the collection of coupled data, which consist of different N-way N-mode data blocks that have one or more modes in common. To reveal the structure underlying such data, an integrated modeling strategy, with a single set of parameters for the common mode(s), that is estimated based on the information in all data blocks, may…

  2. 75 FR 66649 - Airworthiness Directives; Fokker Services B.V. Model F.28 Mark 0070 and 0100 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... investigation revealed that the cause of the MLG extension problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of hard plastic. These were identified as parts of the... extension problem was the (partially) blocked hydraulic return line from the MLG selector valve by pieces of...

  3. Cell cycle-regulated proteolysis of mitotic target proteins.

    PubMed

    Bastians, H; Topper, L M; Gorbsky, G L; Ruderman, J V

    1999-11-01

    The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.

  4. Synthesis, antiproliferative and apoptotic activities of N-(6(4)-indazolyl)-benzenesulfonamide derivatives as potential anticancer agents.

    PubMed

    Abbassi, Najat; Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Alaoui, Mdaghri; Hajjaji, Abdelouahed; Geffken, Detlef; Aiello, Cinzia; Gangemi, Rosaria; Rosano, Camillo; Viale, Maurizio

    2012-11-01

    Recently, it has been reported that compounds bearing a sulfonamide moiety possess many types of biological activities, including anticancer activity. The present work reports the synthesis and antiproliferative evaluation of some N-(6(4)-indazolyl)benzenesulfonamides and 7-ethoxy-N-(6(4)-indazolyl)benzenesulfonamides. All compounds were evaluated for their in vitro antiproliferative activity against three tumor cell lines: A2780 (human ovarian carcinoma) A549 (human lung adenocarcinoma) and P388 (murine leukemia). The results indicated that sulfonamides 2c, 3c, 6d, 8, 13, 3b and 16 were endowed with a pharmacologically interesting antiproliferative activity with compounds 2c and 3c showing the lower IC(50) (from 0.50 ± 0.09 to 1.83 ± 0.52 μM and from 0.58 ± 0.17 to 5.83 ± 1.83 μM, respectively). Moreover, these indazoles were able to trigger apoptosis through the upregulation of the typical apoptosis markers p53 and bax. As regard to the hypothetic targets of these compounds, a preliminary docking analysis showed that all compounds seemed to interact with β-tubulin, in particular compound 3b that showed the lower Ki. The cytofluorimetric analysis of the cell cycle phases indicates that all compounds, when administered at their IC(75), caused a block in the G2/M phase of the cell cycle with the generation of subpopulations of cells with a number of chromosome >4n. When the IC(50)s were applied we observed a prevalent block in the G0/G1 phase except for compounds 16 and 8 where a partial G2/M block was present with a concomitant decrease of cells in the G0/G1 and S phases of the cell cycle. Altogether these results suggest a possible, but not exclusive, interaction with microtubules. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. Second-degree atrioventricular block.

    PubMed

    Zipes, D P

    1979-09-01

    1) While it is possible only one type of second-degree AV block exists electrophysiologically, the available data do not justify such a conclusion and it would seem more appropriate to remain a "splitter," and advocate separation and definition of multiple mechanisms, than to be a "lumper," and embrace a unitary concept. 2) The clinical classification of type I and type II AV block, based on present scalar electrocardiographic criteria, for the most part accurately differentiates clinically important categories of patients. Such a classification is descriptive, but serves a useful function and should be preserved, taking into account the caveats mentioned above. The site of block generally determines the clinical course for the patient. For most examples of AV block, the type I and type II classification in present use is based on the site of block. Because block in the His-Purkinje system is preceded by small or nonmeasurable increments, it is called type II AV block; but the very fact that it is preceded by small increments is because it occurs in the His-Purkinje system. Similar logic can be applied to type I AV block in the AV node. Exceptions do occur. If the site of AV block cannot be distinguished with certainity from the scalar ECG, an electrophysiologic study will generally reveal the answer.

  6. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    PubMed Central

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-01-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures. PMID:25965726

  7. Sepiapterin Reductase Mediates Chemical Redox Cycling in Lung Epithelial Cells*

    PubMed Central

    Yang, Shaojun; Jan, Yi-Hua; Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2013-01-01

    In the lung, chemical redox cycling generates highly toxic reactive oxygen species that can cause alveolar inflammation and damage to the epithelium, as well as fibrosis. In this study, we identified a cytosolic NADPH-dependent redox cycling activity in mouse lung epithelial cells as sepiapterin reductase (SPR), an enzyme important for the biosynthesis of tetrahydrobiopterin. Human SPR was cloned and characterized. In addition to reducing sepiapterin, SPR mediated chemical redox cycling of bipyridinium herbicides and various quinones; this activity was greatest for 1,2-naphthoquinone followed by 9,10-phenanthrenequinone, 1,4-naphthoquinone, menadione, and 2,3-dimethyl-1,4-naphthoquinone. Whereas redox cycling chemicals inhibited sepiapterin reduction, sepiapterin had no effect on redox cycling. Additionally, inhibitors such as dicoumarol, N-acetylserotonin, and indomethacin blocked sepiapterin reduction, with no effect on redox cycling. Non-redox cycling quinones, including benzoquinone and phenylquinone, were competitive inhibitors of sepiapterin reduction but noncompetitive redox cycling inhibitors. Site-directed mutagenesis of the SPR C-terminal substrate-binding site (D257H) completely inhibited sepiapterin reduction but had minimal effects on redox cycling. These data indicate that SPR-mediated reduction of sepiapterin and redox cycling occur by distinct mechanisms. The identification of SPR as a key enzyme mediating chemical redox cycling suggests that it may be important in generating cytotoxic reactive oxygen species in the lung. This activity, together with inhibition of sepiapterin reduction by redox-active chemicals and consequent deficiencies in tetrahydrobiopterin, may contribute to tissue injury. PMID:23640889

  8. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Phase I Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker

    This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less

  10. Unraveling the Driving Forces in the Self-Assembly of Monodisperse Naphthalenediimide-Oligodimethylsiloxane Block Molecules

    PubMed Central

    2017-01-01

    Block molecules belong to a rapidly growing research field in materials chemistry in which discrete macromolecular architectures bridge the gap between block copolymers (BCP) and liquid crystals (LCs). The merging of characteristics from both BCP and LCs is expected to result in exciting breakthroughs, such as the discovery of unexpected morphologies or significant shrinking of domain spacings in materials that possess the high definition of organic molecules and the processability of polymers. Here we report the bulk self-assembly of two families of monodisperse block molecules comprised of naphthalenediimides (NDIs) and oligodimethylsiloxanes (ODMS). These materials are characterized by waxy texture, strong long-range order, and very low mobility, typical properties of conformationally disordered crystals. Our investigation unambiguously reveals that thermodynamic immiscibility and crystallization direct the self-assembly of ODMS-based block molecules. We show that a synergy of high incompatibility between the blocks and crystallization of the NDIs causes nanophase separation, giving access to hexagonally packed columnar (Colh) and lamellar (LAM) morphologies with sub-10 nm periodicities. The domain spacings can be tuned by mixing molecules with different ODMS lengths and the same number of NDIs, introducing an additional layer of control. X-ray scattering experiments reveal macrophase separation whenever this constitutional bias is not observed. Finally, we highlight our “ingredient approach” to obtain perfect order in sub-10 nm structured materials with a simple strategy built on a crystalline “hard” moiety and an incompatible “soft” ODMS partner. Following this simple rule, our recipe can be extended to a number of systems. PMID:28380290

  11. Diesels in combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, S.E.

    1995-03-01

    This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less

  12. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    PubMed

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p < 0.05). However, the mean bond strengths significantly decreased in the connector groups (CE and CV) after thermal cycling (p < 0.05). The elemental analysis suggested diffusion of ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  13. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA networks, (5) protein-DNA co-assembly structures, and (6) DNA block copolymers including trimers and pentamers. These results affirm that this method can produce a variety of chemical structures and in yields that are tunable. Using PCR-based preparation of DNA-bridged nanostructures, we can program the assembly of the nanoscale blocks through the adjustment of the primer intensity on the assembled units, the number of PCR cycles, or both. The resulting structures are highly complex and diverse and have interesting dynamics and collective properties. Potential applications of these materials include chirooptical materials, probe fabrication, and environmental and biomedical sensors.

  14. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.

    PubMed

    Komura, Kazumasa; Yoshikawa, Yuki; Shimamura, Teppei; Chakraborty, Goutam; Gerke, Travis A; Hinohara, Kunihiko; Chadalavada, Kalyani; Jeong, Seong Ho; Armenia, Joshua; Du, Shin-Yi; Mazzu, Ying Z; Taniguchi, Kohei; Ibuki, Naokazu; Meyer, Clifford A; Nanjangud, Gouri J; Inamoto, Teruo; Lee, Gwo-Shu Mary; Mucci, Lorelei A; Azuma, Haruhito; Sweeney, Christopher J; Kantoff, Philip W

    2018-06-04

    Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.

  15. A spectroscopic and surface microhardness study of enamel exposed to beverages supplemented with ferrous fumarate and ferrous sulfate. A randomized in vitro trial.

    PubMed

    Xavier, Arun M; Rai, Kavita; Hegde, Amitha M; Shetty, Suchetha

    2016-06-01

    To compare the efficacy between supplementing ferrous fumarate and ferrous sulfate to carbonated beverages by recording the in vitro mineral loss and surface microhardness (SMH) changes in human enamel. 120 enamel blocks each (from primary and permanent teeth) were uniformly prepared and the initial SMH was recorded. These enamel specimens were equally divided (n = 60) for their respective beverage treatment in Group 1 (2 mmol/L ferrous sulfate) and Group 2 (2 mmol/L ferrous fumarate). Each group was further divided into three subgroups as Coca-Cola, Sprite and mineral water (n= 10). The specimens were subjected to three repetitive cycles of respective treatment for a 5-minute incubation period, equally interspaced by 5-minute storage in artificial saliva. The calcium and phosphate released after each cycle were analyzed spectrophotometrically and the final SMH recorded. The results were tested using student's t-test, one-way ANOVA and Wilcoxon signed rank test (P < 0.05). The spectrophotometric assessment of calcium and phosphate withdrawal found more loss with the supplementation of 2 mmol/L ferrous sulfate than ferrous fumarate (P < 0.005). Similarly, the mean surface microhardness reduction was less with the supplementation of 2 mmol/L ferrous fumarate than with ferrous sulfate (P < 0.005). Statistical comparisons revealed the maximum surface microhardness and mineral loss with primary enamel and the maximum loss produced in all groups by Coca-Cola (P < 0.005).

  16. The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells

    PubMed Central

    Wang, Hai; Yu, Cuijuan; Gao, Xia; Welte, Thomas; Muscarella, Aaron M.; Tian, Lin; Zhao, Hong; Zhao, Zhen; Du, Shiyu; Tao, Jianning; Lee, Brendan; Westbrook, Thomas F.; Wong, Stephen T. C.; Jin, Xin; Rosen, Jeffrey M.; Osborne, C. Kent; Zhang, Xiang H.-F.

    2014-01-01

    Summary Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We further elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human datasets analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases. Significance In advanced stages, breast cancer bone metastases are driven by paracrine crosstalk among cancer cells, osteoblasts, and osteoclasts, which constitute a vicious osteolytic cycle. Current therapies targeting this process limit tumor progression, but do not improve patient survival. On the other hand, bone micrometastases may remain indolent for years before activating the vicious cycle, providing a therapeutic opportunity to prevent macrometastases. Here, we show that bone colonization is initiated in a microenvironment niche exhibiting active osteogenesis. Cancer and osteogenic cells form heterotypic adherens junctions, which enhance mTOR activity and drive early-stage bone colonization prior to osteolysis. These results reveal a strong connection between osteogenesis and micrometastasis and suggest potential therapeutic targets to prevent bone macrometastases. PMID:25600338

  17. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  18. Asymptotics for moist deep convection I: refined scalings and self-sustaining updrafts

    NASA Astrophysics Data System (ADS)

    Hittmeir, Sabine; Klein, Rupert

    2018-04-01

    Moist processes are among the most important drivers of atmospheric dynamics, and scale analysis and asymptotics are cornerstones of theoretical meteorology. Accounting for moist processes in systematic scale analyses therefore seems of considerable importance for the field. Klein and Majda (Theor Comput Fluid Dyn 20:525-551, 2006) proposed a scaling regime for the incorporation of moist bulk microphysics closures in multiscale asymptotic analyses of tropical deep convection. This regime is refined here to allow for mixtures of ideal gases and to establish consistency with a more general multiple scales modeling framework for atmospheric flows. Deep narrow updrafts, the so-called hot towers, constitute principal building blocks of larger scale storm systems. They are analyzed here in a sample application of the new scaling regime. A single quasi-one-dimensional upright columnar cloud is considered on the vertical advective (or tower life cycle) time scale. The refined asymptotic scaling regime is essential for this example as it reveals a new mechanism for the self-sustainance of such updrafts. Even for strongly positive convectively available potential energy, a vertical balance of buoyancy forces is found in the presence of precipitation. This balance induces a diagnostic equation for the vertical velocity, and it is responsible for the generation of self-sustained balanced updrafts. The time-dependent updraft structure is encoded in a Hamilton-Jacobi equation for the precipitation mixing ratio. Numerical solutions of this equation suggest that the self-sustained updrafts may strongly enhance hot tower life cycles.

  19. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    The team of Southwest Research Institute® (SwRI) and Thar Energy LLC (Thar) applied technology engineering and economic analysis to evaluate two advanced oxy-combustion power cycles, the Cryogenic Pressurized Oxy-combustion Cycle (CPOC), and the Supercritical Oxy-combustion Cycle. This assessment evaluated the performance and economic cost of the two proposed cycles with carbon capture, and included a technology gap analysis of the proposed technologies to determine the technology readiness level of the cycle and the cycle components. The results of the engineering and economic analysis and the technology gap analysis were used to identify the next steps along the technology development roadmapmore » for the selected cycle. The project objectives, as outlined in the FOA, were 90% CO{sub 2} removal at no more than a 35% increase in cost of electricity (COE) as compared to a Supercritical Pulverized Coal Plant without CO{sub 2} capture. The supercritical oxy-combustion power cycle with 99% carbon capture achieves a COE of $121/MWe. This revised COE represents a 21% reduction in cost as compared to supercritical steam with 90% carbon capture ($137/MWe). However, this represents a 49% increase in the COE over supercritical steam without carbon capture ($80.95/MWe), exceeding the 35% target. The supercritical oxy-combustion cycle with 99% carbon capture achieved a 37.9% HHV plant efficiency (39.3% LHV plant efficiency), when coupling a supercritical oxy-combustion thermal loop to an indirect supercritical CO{sub 2} (sCO{sub 2}) power block. In this configuration, the power block achieved 48% thermal efficiency for turbine inlet conditions of 650°C and 290 atm. Power block efficiencies near 60% are feasible with higher turbine inlet temperatures, however a design tradeoff to limit firing temperature to 650°C was made in order to use austenitic stainless steels for the high temperature pressure vessels and piping and to minimize the need for advanced turbomachinery features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development. This demonstration would advance the supercritical oxy-combustion cycle and the supercritical oxy-combustor from a current TRL of 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment, and enable the evaluation and continued refinement of the supercritical oxy-combustor and critical secondary systems.« less

  20. ROCK mediates phorbol ester-induced apoptosis in prostate cancer cells via p21Cip1 up-regulation and JNK.

    PubMed

    Xiao, Liqing; Eto, Masumi; Kazanietz, Marcelo G

    2009-10-23

    It is established that androgen-dependent prostate cancer cells undergo apoptosis upon treatment with phorbol esters and related analogs, an effect primarily mediated by PKCdelta. Treatment of LNCaP prostate cancer cells with phorbol 12-myristate 13-acetate (PMA) causes a strong and sustained activation of RhoA and its downstream effector ROCK (Rho kinase) as well as the formation of stress fibers. These effects are impaired in cells subjected to PKCdelta RNA interference depletion. Functional studies revealed that expression of a dominant negative RhoA mutant or treatment with the ROCK inhibitor Y-27632 inhibits the apoptotic effect of PMA in LNCaP cells. Remarkably, the cytoskeleton inhibitors cytochalasin B and blebbistatin blocked not only PMA-induced apoptosis but also the activation of JNK, a mediator of the cell death effect by the phorbol ester. In addition, we found that up-regulation of the cell cycle inhibitor p21(Cip1) is required for PMA-induced apoptosis and that inhibitors of ROCK or the cytoskeleton organization prevent p21(Cip1) induction. Real time PCR analysis and reporter gene assay revealed that PMA induces p21(Cip1) transcriptionally in a ROCK- and cytoskeleton-dependent manner. p21(Cip1) promoter analysis revealed that PMA induction is dependent on Sp1 elements in the p21(Cip1) promoter but independent of p53. Taken together, our studies implicate ROCK-mediated up-regulation of p21(Cip1) and the cytoskeleton in PKCdelta-dependent apoptosis in prostate cancer cells.

  1. High-temperature low cycle fatigue behavior of a gray cast iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by themore » interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.« less

  2. A transgenic mouse for imaging activity-dependent dynamics of endogenous Arc mRNA in live neurons

    PubMed Central

    2018-01-01

    Localized translation plays a crucial role in synaptic plasticity and memory consolidation. However, it has not been possible to follow the dynamics of memory-associated mRNAs in living neurons in response to neuronal activity in real time. We have generated a novel mouse model where the endogenous Arc/Arg3.1 gene is tagged in its 3′ untranslated region with stem-loops that bind a bacteriophage PP7 coat protein (PCP), allowing visualization of individual mRNAs in real time. The physiological response of the tagged gene to neuronal activity is identical to endogenous Arc and reports the true dynamics of Arc mRNA from transcription to degradation. The transcription dynamics of Arc in cultured hippocampal neurons revealed two novel results: (i) A robust transcriptional burst with prolonged ON state occurs after stimulation, and (ii) transcription cycles continue even after initial stimulation is removed. The correlation of stimulation with Arc transcription and mRNA transport in individual neurons revealed that stimulus-induced Ca2+ activity was necessary but not sufficient for triggering Arc transcription and that blocking neuronal activity did not affect the dendritic transport of newly synthesized Arc mRNAs. This mouse will provide an important reagent to investigate how individual neurons transduce activity into spatiotemporal regulation of gene expression at the synapse.

  3. Recent adjustments to the long profile of Cooksville Creek, an urbanized bedrock channel in Mississauga, Ontario

    NASA Astrophysics Data System (ADS)

    Tinkler, Keith J.; Parish, John

    Cooksville Creek (33 km2) is based in weak Georgian Bay Formation shale and thin limestone and has been gradually urbanized by the City of Mississauga within the last thirty years. These conditions, together with a mean thalweg gradient of about 0.77%, have produced enhanced rates of channel bed erosion along much of the channel (the order of 2 centimetres per year), as revealed by installed engineering works, such as armour stone blocks and gabion baskets. Erosion rates below drop structures are up to an order of magnitude faster. A year-long monitoring program revealed that weathering of the shale bed by wetting and drying cycles was primarily responsible for fragmenting the shale to a size (a few centimetres on the long axis) which could be removed by frequent and moderate high flows with a magnitude much less than the Mean Annual Flood. Channel bed quarrying of shale and limestone slabs, and the transport of larger clasts and meter dimension armour stones toppled from channel structures, require flood flows with a recurrence interval of about the Mean Annual Flood. Such flows are characterized by critical or supercritical flow conditions along the thalweg, and with velocities typically in the range 4 to 6 meters per second, they are well able to quarry the bed, and transport clasts up to metre dimension in size.

  4. The role of enamel thickness and refractive index on human tooth colour.

    PubMed

    Oguro, Rena; Nakajima, Masatoshi; Seki, Naoko; Sadr, Alireza; Tagami, Junji; Sumi, Yasunori

    2016-08-01

    To investigate the role of enamel thickness and refractive index (n) on tooth colour. The colour and enamel thickness of fifteen extracted human central incisors were determined according to CIELab colour scale using spectrophotometer (Crystaleye) and swept-source optical coherence tomography (SS-OCT), respectively. Subsequently, labial enamel was trimmed by approximately 100μm, and the colour and remaining enamel thickness were investigated again. This cycle was repeated until dentin appeared. Enamel blocks were prepared from the same teeth and their n were obtained using SS-OCT. Multiple regression analysis was performed to reveal any effects of enamel thickness and n on colour difference (ΔE00) and differences in colour parameters with CIELCh and CIELab colour scales. Multiple regression analysis revealed that enamel thickness (p=0.02) and n of enamel (p<0.001) were statistically significant predictors of ΔE00 after complete enamel trimming. The n was also a significant predictor of ΔH' (p=0.01). Enamel thickness and n were not statistically significant predictors of ΔL', ΔC', Δa* and Δb*. Enamel affected tooth colour, in which n was a statistically significant predictor for tooth colour change. Understanding the role of enamel in tooth colour could contribute to development of aesthetic restorative materials that mimic the colour of natural tooth with minimal reduction of the existing enamel. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.

    PubMed

    Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

    2013-07-23

    Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (σe,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, σe,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries.

  6. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells

    PubMed Central

    Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Park, Nam Gyu; Chang, Young-Chae; Lee, Young-Choon; Chung, Tae-Wook; Ha, Ki-Tae; Son, Jong-Keun

    2017-01-01

    Jellyfish species are widely distributed in the world’s oceans, and their population is rapidly increasing. Jellyfish extracts have several biological functions, such as cytotoxic, anti-microbial, and antioxidant activities in cells and organisms. However, the anti-cancer effect of Jellyfish extract has not yet been examined. We used chronic myelogenous leukemia K562 cells to evaluate the mechanisms of anti-cancer activity of hexane extracts from Nomura’s jellyfish in vitro. In this study, jellyfish are subjected to hexane extraction, and the extract is shown to have an anticancer effect on chronic myelogenous leukemia K562 cells. Interestingly, the present results show that jellyfish hexane extract (Jellyfish-HE) induces apoptosis in a dose- and time-dependent manner. To identify the mechanism(s) underlying Jellyfish-HE-induced apoptosis in K562 cells, we examined the effects of Jellyfish-HE on activation of caspase and mitogen-activated protein kinases (MAPKs), which are responsible for cell cycle progression. Induction of apoptosis by Jellyfish-HE occurred through the activation of caspases-3,-8 and -9 and phosphorylation of p38. Jellyfish-HE-induced apoptosis was blocked by a caspase inhibitor, Z-VAD. Moreover, during apoptosis in K562 cells, p38 MAPK was inhibited by pretreatment with SB203580, an inhibitor of p38. SB203580 blocked jellyfish-HE-induced apoptosis. Additionally, Jellyfish-HE markedly arrests the cell cycle in the G0/G1 phase. Therefore, taken together, the results imply that the anti-cancer activity of Jellyfish-HE may be mediated apoptosis by induction of caspases and activation of MAPK, especially phosphorylation of p38, and cell cycle arrest at the Go/G1 phase in K562 cells. PMID:28133573

  7. Alteration of the carbohydrate for deoxyguanosine analogs markedly changes DNA replication fidelity, cell cycle progression and cytotoxicity

    PubMed Central

    O’Konek, Jessica J.; Ladd, Brendon; Flanagan, Sheryl A.; Im, Mike M.; Boucher, Paul D.; Thepsourinthone, Tico S.; Secrist, John A.; Shewach, Donna S.

    2011-01-01

    Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2′-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10–100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC→TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC→TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development. PMID:20004674

  8. Anticancer effect of cucurbitacin B on MKN-45 cells via inhibition of the JAK2/STAT3 signaling pathway

    PubMed Central

    Xie, You-Li; Tao, Wen-Hui; Yang, Ti-Xiong; Qiao, Jian-Guo

    2016-01-01

    The aim of the present study was to investigate the effect of cucurbitacin B on MKN-45 gastric carcinoma cells. Cell proliferation was determined using a cell counting kit-8 assay, and commercial cell cycle and apoptosis analysis kits were used to determine the cell cycle by flow cytometry. The mRNA expression of genes which mediate cell cycle checkpoints and apoptosis was detected using reverse transcription-quantitative polymerase chain reaction, and a terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine apoptosis rate. Western blot analysis was used to detect the protein expression levels of JAK2/STAT3 signaling pathway-associated proteins. The presented data show that cucurbitacin B significantly inhibited the proliferation of MKN-45 cells in a dose- and time-dependent manner. In accordance with these findings, cucurbitacin B blocked the progression of the cell cycle from G0/G1 to S phase, which was confirmed by the mRNA expression analysis. Cucurbitacin B treatment significantly suppressed the expression of cyclin D1, cyclin E, cyclin-dependent kinase 4 (CDK4) and CDK2, while increasing the expression of p27. Cucurbitacin B also promoted cell apoptosis, as was determined by TUNEL assay and evaluation of mRNA expression. Further experiments suggested that the beneficial effect of cucurbitacin B on blocking the proliferation and inducing the apoptosis of MKN-45 cells may have been associated with suppression of the JAK2/STAT3 signaling pathway. Thus, the present results indicate that cucurbitacin B suppresses proliferation and promoted apoptosis of MKN-45 cells, which may be mediated by inhibition of the JAK2/STAT3 signaling pathway. Cucurbitacin B therefore may warrant further investigation as a feasible therapy for gastric carcinoma. PMID:27698776

  9. An O([Formula: see text]) algorithm for sorting signed genomes by reversals, transpositions, transreversals and block-interchanges.

    PubMed

    Yu, Shuzhi; Hao, Fanchang; Leong, Hon Wai

    2016-02-01

    We consider the problem of sorting signed permutations by reversals, transpositions, transreversals, and block-interchanges. The problem arises in the study of species evolution via large-scale genome rearrangement operations. Recently, Hao et al. gave a 2-approximation scheme called genome sorting by bridges (GSB) for solving this problem. Their result extended and unified the results of (i) He and Chen - a 2-approximation algorithm allowing reversals, transpositions, and block-interchanges (by also allowing transversals) and (ii) Hartman and Sharan - a 1.5-approximation algorithm allowing reversals, transpositions, and transversals (by also allowing block-interchanges). The GSB result is based on introduction of three bridge structures in the breakpoint graph, the L-bridge, T-bridge, and X-bridge that models goodreversal, transposition/transreversal, and block-interchange, respectively. However, the paper by Hao et al. focused on proving the 2-approximation GSB scheme and only mention a straightforward [Formula: see text] algorithm. In this paper, we give an [Formula: see text] algorithm for implementing the GSB scheme. The key idea behind our faster GSB algorithm is to represent cycles in the breakpoint graph by their canonical sequences, which greatly simplifies the search for these bridge structures. We also give some comparison results (running time and computed distances) against the original GSB implementation.

  10. Anesthetic efficacy of the intraosseous injection after an inferior alveolar nerve block.

    PubMed

    Dunbar, D; Reader, A; Nist, R; Beck, M; Meyers, W J

    1996-09-01

    The purpose of this study was to determine the contribution of the intraosseous (IO) injection to the inferior alveolar nerve (IAN) block in human first molars. Using a repeated-measures design, 40 subjects randomly received either a combination IAN block + IO injection (on the distal of the first molar) using 2% lidocaine with 1:100,000 epinephrine or an IAN block+mock IO injection (gingival penetration only) at two successive appointments. The first molar and adjacent teeth, and contralateral canine (+/-controls) were blindly tested with an Analytic Technology pulp tester at 2-min cycles for 60 min. An 80 reading was used as the criterion for pulpal anesthesia. One hundred percent of the subjects had lip numbness with the IAN block. For the first molar, anesthetic success, defined as achieving an 80 reading within 15 min and keeping this reading for 60 min, was 42% with the IAN and 90% with the IAN + IO. Anesthetic failure defined as never achieving two 80 readings during the 60 min was 32% with the IAN and 0% with the IAN + IO. The onset of anesthesia was immediate with the IO injection. Eighty percent of the subjects sampled had a subjective increase in heart rate with the IO injection. The IO injection and postinjection questionnaire recorded low pain ratings.

  11. Effect of electron contamination on in vivo dosimetry for lung block shielding during TBI

    PubMed Central

    Narayanasamy, Ganesh; Cruz, Wilbert; Saenz, Daniel L.; Stathakis, Sotirios; Papanikolaou, Niko

    2016-01-01

    Our institution performs in vivo verification measurement for each of our total body irradiation (TBI) patients with optically stimulated luminescent dosimeters (OSLD). The lung block verification measurements were commonly higher than expected. The aim of this work is to understand this discrepancy and improve the accuracy of these lung block verification measurements. Initially, the thickness of the lung block was increased to provide adequate lung sparing. Further tests revealed the increase was due to electron contamination dose emanating from the lung block. The thickness of the bolus material covering the OSLD behind the lung block was increased to offset the electron contamination. In addition, the distance from the lung block to the dosimeter was evaluated for its effect on the OSLD reading and found to be clinically insignificant over the range of variability in our clinic. The results show that the improved TBI treatment technique provides for better accuracy of measured dose in vivo and consistency of patient setup. PACS number(s): 87.53.Bn, 87.53.Kn, 87.55.N‐, 87.55.Qr PMID:27167290

  12. New thiol-responsive mono-cleavable block copolymer micelles labeled with single disulfides.

    PubMed

    Sourkohi, Behnoush Khorsand; Schmidt, Rolf; Oh, Jung Kwon

    2011-10-18

    Thiol-responsive symmetric triblock copolymers having single disulfide linkages in the middle blocks (called mono-cleavable block copolymers, ss-ABP(2)) were synthesized by atom transfer radical polymerization in the presence of a disulfide-labeled difunctional Br-initiator. These brush-like triblock copolymers consist of a hydrophobic polyacrylate block having pendent oligo(propylene oxide) and a hydrophilic polymethacrylate block having pendent oligo(ethylene oxide). Gel permeation chromatography and (1)H NMR results confirmed the synthesis of well-defined mono-cleavable block copolymers and revealed that polymerizations were well controlled. Because of amphiphilic nature, these copolymers self-assembled to form colloidally stable micelles above critical micellar concentration of 0.032 mg · mL(-1). In response to reductive reactions, disulfides in thiol-responsive micelles were cleaved. Atomic force microscopy and dynamic light scattering analysis suggested that the cleavage of disulfides caused dissociation of micelles to smaller-sized assembled structures in water. Moreover, in a biomedical perspective, the mono-cleavable block copolymer micelles are not cytotoxic and thus biocompatible. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effect of composite surface treatment and aging on the bond strength between a core build-up composite and a luting agent

    PubMed Central

    COTES, Caroline; CARDOSO, Mayra; de MELO, Renata Marques; VALANDRO, Luiz Felipe; BOTTINO, Marco Antonio

    2015-01-01

    Objective The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods Eighty blocks (8×8×4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5°C and 55°C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mm Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (µTBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5°C and 55°C, with a dwell time of 30 s in each bath) and µTBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (α=0.05). Results The µTBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement. PMID:25760269

  14. Tectonic deformation around the eastern Himalayan syntaxis: constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block

    NASA Astrophysics Data System (ADS)

    Tanaka, Kenji; Mu, Chuanlong; Sato, Ken; Takemoto, Kazuhiro; Miura, Daisuke; Liu, Yuyan; Zaman, Haider; Yang, Zhenyu; Yokoyama, Masahiko; Iwamoto, Hisanori; Uno, Koji; Otofuji, Yo-ichiro

    2008-11-01

    Lower to Middle Cretaceous red sandstones were sampled at four localities in the Lanpin-Simao fold belt of the Shan-Thai Block to describe its regional deformational features. Most of the samples revealed a characteristic remanent magnetization with unblocking temperatures around 680 °C. Primary natures of magnetization are ascertained through positive fold test. A tilt-corrected formation-mean direction for the Jingdong (24.5°N, 100.8°E) locality, which is located at a distance of 25 km from the Ailaoshan-Red River Fault, revealed northerly declination with steep inclination (Dec./Inc. = 8.3°/48.8°, α95 = 7.7°, N = 13). However, mean directions obtained from the Zhengyuan (24.0°N, 101.1°E), West Zhengyuan (24.0°N, 101.1°E) and South Mengla (21.4°N, 101.6°E) localities indicate an easterly deflection in declination; such as Dec./Inc. = 61.8°/46.1°, α95 = 8.1° (N = 7), Dec./Inc. = 324.2°/-49.4°, α95 = 6.4° (N = 4) and Dec./Inc. = 51.2°/46.4°, α95 = 5.6° (N = 13), respectively. The palaeomagnetic directions obtained from these four localities are incorporated into a palaeomagnetic database for the Shan-Thai Block. When combined with geological, geochronological and GPS data, the processes of deformation in the Shan-Thai Block is described as follows: Subsequent to its rigid block clockwise rotation of about 20° in the early stage of India-Asia collision, the Shan-Thai Block experienced a coherent but southward displacement along the Red River Fault prior to 32 Ma. This block was then subjected to a north-south compressive stresses during the 32-27 Ma period, which played a key role in shaping the structure of Chongshan-Lancang-Chiang Mai Belt. Following this some local clockwise rotational motion has occurred during the Pliocene-Quaternary time in central part of the Shan-Thai Block as a result of internal block movements along the reactivated network of faults.

  15. Glutamine promotes ovarian cancer cell proliferation through the mTOR/S6 pathway

    PubMed Central

    Yuan, Lingqin; Sheng, Xiugui; Willson, Adam K; Roque, Dario R; Stine, Jessica E; Guo, Hui; Jones, Hannah M; Zhou, Chunxiao; Bae-Jump, Victoria L

    2015-01-01

    Glutamine is one of the main nutrients used by tumor cells for biosynthesis. Therefore, targeted inhibition of glutamine metabolism may have anti-tumorigenic implications. In the present study, we aimed to evaluate the effects of glutamine on ovarian cancer cell growth. Three ovarian cancer cell lines, HEY, SKOV3, and IGROV-1, were assayed for glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis, cell stress, and glucose/glutamine metabolism. Our results revealed that administration of glutamine increased cell proliferation in all three ovarian cancer cell lines in a dose dependent manner. Depletion of glutamine induced reactive oxygen species and expression of endoplasmic reticulum stress proteins. In addition, glutamine increased the activity of glutaminase (GLS) and glutamate dehydrogenase (GDH) by modulating the mTOR/S6 and MAPK pathways. Inhibition of mTOR activity by rapamycin or blocking S6 expression by siRNA inhibited GDH and GLS activity, leading to a decrease in glutamine-induced cell proliferation. These studies suggest that targeting glutamine metabolism may be a promising therapeutic strategy in the treatment of ovarian cancer. PMID:26045471

  16. Quantum entanglement in strong-field ionization

    NASA Astrophysics Data System (ADS)

    Majorosi, Szilárd; Benedict, Mihály G.; Czirják, Attila

    2017-10-01

    We investigate the time evolution of quantum entanglement between an electron, liberated by a strong few-cycle laser pulse, and its parent ion core. Since the standard procedure is numerically prohibitive in this case, we propose a method to quantify the quantum correlation in such a system: we use the reduced density matrices of the directional subspaces along the polarization of the laser pulse and along the transverse directions as building blocks for an approximate entanglement entropy. We present our results, based on accurate numerical simulations, in terms of several of these entropies, for selected values of the peak electric-field strength and the carrier-envelope phase difference of the laser pulse. The time evolution of the mutual entropy of the electron and the ion-core motion along the direction of the laser polarization is similar to our earlier results based on a simple one-dimensional model. However, taking into account also the dynamics perpendicular to the laser polarization reveals a surprisingly different entanglement dynamics above the laser intensity range corresponding to pure tunneling: the quantum entanglement decreases with time in the over-the-barrier ionization regime.

  17. Rab1A is required for assembly of classical swine fever virus particle.

    PubMed

    Lin, Jihui; Wang, Chengbao; Liang, Wulong; Zhang, Jing; Zhang, Longxiang; Lv, Huifang; Dong, Wang; Zhang, Yanming

    2018-01-15

    Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    PubMed

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  20. FXR blocks the growth of liver cancer cells through inhibiting mTOR-s6K pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiongfei, E-mail: xiongfeihuang@hotmail.com; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian; Zeng, Yeting

    The nuclear receptor Farnesoid X Receptor (FXR) is likely a tumor suppressor in liver tissue but its molecular mechanism of suppression is not well understood. In this study, the gene expression profile of human liver cancer cells was investigated by microarray. Bioinformatics analysis of these data revealed that FXR might regulate the mTOR/S6K signaling pathway. This was confirmed by altering the expression level of FXR in liver cancer cells. Overexpression of FXR prevented the growth of cells and induced cell cycle arrest, which was enhanced by the mTOR/S6K inhibitor rapamycin. FXR upregulation also intensified the inhibition of cell growth bymore » rapamycin. Downregulation of FXR produced the opposite effect. Finally, we found that ectopic expression of FXR in SK-Hep-1 xenografts inhibits tumor growth and reduces expression of the phosphorylated protein S6K. Taken together, our data provide the first evidence that FXR suppresses proliferation of human liver cancer cells via the inhibition of the mTOR/S6K signaling pathway. FXR expression can be used as a biomarker of personalized mTOR inhibitor treatment assessment for liver cancer patients. -- Highlights: •FXR inhibits the proliferation of liver cancer cells by prolonging G0/G1 phase. •Microarray results indicate that mTOR-S6k signaling is involved in cellular processes in which FXR plays an important role. •FXR blocks the growth of liver cancer cells via the inhibition of the mTOR/S6K signaling pathway in vitro and in vivo.« less

  1. An Insulator Element Located at the Cyclin B1 Interacting Protein 1 Gene Locus Is Highly Conserved among Mammalian Species

    PubMed Central

    Yoshida, Wataru; Tomikawa, Junko; Inaki, Makoto; Kimura, Hiroshi; Onodera, Masafumi; Hata, Kenichiro; Nakabayashi, Kazuhiko

    2015-01-01

    Insulators are cis-elements that control the direction of enhancer and silencer activities (enhancer-blocking) and protect genes from silencing by heterochromatinization (barrier activity). Understanding insulators is critical to elucidate gene regulatory mechanisms at chromosomal domain levels. Here, we focused on a genomic region upstream of the mouse Ccnb1ip1 (cyclin B1 interacting protein 1) gene that was methylated in E9.5 embryos of the C57BL/6 strain, but unmethylated in those of the 129X1/SvJ and JF1/Ms strains. We hypothesized the existence of an insulator-type element that prevents the spread of DNA methylation within the 1.8 kbp segment, and actually identified a 242-bp and a 185-bp fragments that were located adjacent to each other and showed insulator and enhancer activities, respectively, in reporter assays. We designated these genomic regions as the Ccnb1ip1 insulator and the Ccnb1ip1 enhancer. The Ccnb1ip1 insulator showed enhancer-blocking activity in the luciferase assays and barrier activity in the colony formation assays. Further examination of the Ccnb1ip1 locus in other mammalian species revealed that the insulator and enhancer are highly conserved among a wide variety of species, and are located immediately upstream of the transcriptional start site of Ccnb1ip1. These newly identified cis-elements may be involved in transcriptional regulation of Ccnb1ip1, which is important in meiotic crossing-over and G2/M transition of the mitotic cell cycle. PMID:26110280

  2. 207Pb-206Pb zircon ages of eastern and western Dharwar craton, southern India : Evidence for contemporaneous Archaean crust

    NASA Astrophysics Data System (ADS)

    Maibam, B.; Goswami, J. N.; Srinivasan, R.

    2009-04-01

    Dharwar craton is one of the major Archaean crustal blocks in the Indian subcontinent. The craton is comprised of two blocks, western and eastern. The western domain is underlain by orthogneisses and granodiorites (ca. 2.9-3.3 Ga) collectively termed as Peninsular Gneiss [e.g., 1] interspersed with older tracts of metasedimentary and metamorphosed igneous suites (Sargur Group and Dharwar Group; [2]). The eastern part of the craton is dominated by Late Archaean (2.50-2.75 Ga) granitoids and their gneissic equivalents. They are interspersed with schist belts (also of Sargur Group and Dharwar Group), which are lithologically similar to the Dharwar Supergroup in the western block, but are in different metamorphic dress. Here we report 207Pb-206Pb age of zircons separated from the metasedimentary and gneissic samples from the two blocks to constrain the evolution of the Dharwar craton during the early Archaean. Detrital zircons of the metasedimentary rocks from both the blocks show a wide range of overlapping ages between ~2.9 to >3.5 Ga. Zircon ages of the orthogneisses from the two blocks showed that most of the analysed grains of the eastern Dharwar block are found to be of the age as old as the western Dharwar gneisses. Imprints of younger events could be discerned from the presence of overgrowths in zircons from the studied samples throughout the craton. Our data suggest that crust forming cycles in the two blocks of the Dharwar craton occurred contemporaneously during the Archaean. References [1] Beckinsale, R.D., Drury, S.A., Holt, R.W. (1980) Nature 283, 469-470. [2] Swami Nath J., Ramakrishnan M., Viswanatha M.N. (1976) Rec. Geol. Surv. Ind., 107, 149-175.

  3. Gene disruption reveals a dispensable role for plasmepsin VII in the Plasmodium berghei life cycle.

    PubMed

    Mastan, Babu S; Kumari, Anchala; Gupta, Dinesh; Mishra, Satish; Kumar, Kota Arun

    2014-06-01

    Plasmepsins (PM), aspartic proteases of Plasmodium, comprises a family of ten proteins that perform critical functions in Plasmodium life cycle. Except VII and VIII, functions of the remaining plasmepsin members have been well characterized. Here, we have generated a mutant parasite lacking PM VII in Plasmodium berghei using reverse genetics approach. Systematic comparison of growth kinetics and infection in both mosquito and vertebrate host revealed that PM VII depleted mutants exhibited no defects in development and progressed normally throughout the parasite life cycle. These studies suggest a dispensable role for PM VII in Plasmodium berghei life cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Does It Have a Life Cycle?

    ERIC Educational Resources Information Center

    Keeley, Page

    2010-01-01

    If life continues from generation to generation, then all plants and animals must go through a life cycle, even though it may be different from organism to organism. Is this what students have "learned," or do they have their own private conceptions about life cycles? The formative assessment probe "Does It Have a Life Cycle?" reveals some…

  5. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  6. MCT/MOSFET Switch

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.

    1990-01-01

    Metal-oxide/semiconductor-controlled thyristor (MCT) and metal-oxide/semiconductor field-effect transistor (MOSFET) connected in switching circuit to obtain better performance. Offers high utilization of silicon, low forward voltage drop during "on" period of operating cycle, fast turnon and turnoff, and large turnoff safe operating area. Includes ability to operate at high temperatures, high static blocking voltage, and ease of drive.

  7. Development and Implementation of a Scramjet Cycle Analysis Code with a Finite-Rate-Chemistry Combustion Model for Use on a Personal Computer

    DTIC Science & Technology

    1993-12-01

    2 3 9 V List of Fi-ures Figure 1 - Functional...Block Diagram of a Scramjet ........................................ 9 Figure 2 - ’Corrected’ Specific Impulse of Hydrogen-Oxygen Rocket ............. 35...38 Figure 8 - Schematic of Northam/Anderson Mixing Model ............................ 39 Figure 9 - Pressure-Area

  8. Protein painting reveals solvent-excluded drug targets hidden within native protein–protein interfaces

    PubMed Central

    Luchini, Alessandra; Espina, Virginia; Liotta, Lance A.

    2014-01-01

    Identifying the contact regions between a protein and its binding partners is essential for creating therapies that block the interaction. Unfortunately, such contact regions are extremely difficult to characterize because they are hidden inside the binding interface. Here we introduce protein painting as a new tool that employs small molecules as molecular paints to tightly coat the surface of protein–protein complexes. The molecular paints, which block trypsin cleavage sites, are excluded from the binding interface. Following mass spectrometry, only peptides hidden in the interface emerge as positive hits, revealing the functional contact regions that are drug targets. We use protein painting to discover contact regions between the three-way interaction of IL1β ligand, the receptor IL1RI and the accessory protein IL1RAcP. We then use this information to create peptides and monoclonal antibodies that block the interaction and abolish IL1β cell signalling. The technology is broadly applicable to discover protein interaction drug targets. PMID:25048602

  9. Synthesis of regional crust and upper-mantle structure from seismic and gravity data

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Lavin, P. M. (Principal Investigator)

    1982-01-01

    Analyses of regional gravity and magnetic patterns, LANDSAT images and geological information revealed two major lineaments crossing western Pennsylvania and parts of surrounding states. These lineaments are inferred to be expressions of fracture zones which penetrare deeply into the crust and possibly the upper mantle. The extensions of the Tyron-Mt. Union and the Pittsburgh-Washington lineaments bound a distinct crustal block (Lake Erie-Maryland block) over 100 km wide and probably more than 600 km in length. Evidence exists for the lateral displacement of this block at least 60 km northwestward during late Precambrian to Lower Ordovician time. Subsequent movements have been mainly vertical with respect to neighboring blocks. A possible crustal block that passes through eastern Kentucky, proposed by a TVA study on tectonics in the southern Appalachians, was also investigated. Finally, the use of regional gravity and magnetic data in identifying major crustal structures beneath western Pennsylvania is discussed.

  10. High-performance serial block-face SEM of nonconductive biological samples enabled by focal gas injection-based charge compensation.

    PubMed

    Deerinck, T J; Shone, T M; Bushong, E A; Ramachandra, R; Peltier, S T; Ellisman, M H

    2018-05-01

    A longstanding limitation of imaging with serial block-face scanning electron microscopy is specimen surface charging. This charging is largely due to the difficulties in making biological specimens and the resins in which they are embedded sufficiently conductive. Local accumulation of charge on the specimen surface can result in poor image quality and distortions. Even minor charging can lead to misalignments between sequential images of the block-face due to image jitter. Typically, variable-pressure SEM is used to reduce specimen charging, but this results in a significant reduction to spatial resolution, signal-to-noise ratio and overall image quality. Here we show the development and application of a simple system that effectively mitigates specimen charging by using focal gas injection of nitrogen over the sample block-face during imaging. A standard gas injection valve is paired with a precisely positioned but retractable application nozzle, which is mechanically coupled to the reciprocating action of the serial block-face ultramicrotome. This system enables the application of nitrogen gas precisely over the block-face during imaging while allowing the specimen chamber to be maintained under high vacuum to maximise achievable SEM image resolution. The action of the ultramicrotome drives the nozzle retraction, automatically moving it away from the specimen area during the cutting cycle of the knife. The device described was added to a Gatan 3View system with minimal modifications, allowing high-resolution block-face imaging of even the most charge prone of epoxy-embedded biological samples. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. Pattern-based IP block detection, verification, and variability analysis

    NASA Astrophysics Data System (ADS)

    Ahmad Ibrahim, Muhamad Asraf Bin; Muhsain, Mohamad Fahmi Bin; Kamal Baharin, Ezni Aznida Binti; Sweis, Jason; Lai, Ya-Chieh; Hurat, Philippe

    2018-03-01

    The goal of a foundry partner is to deliver high quality silicon product to its customers on time. There is an assumed trust that the silicon will yield, function and perform as expected when the design fits all the sign-off criteria. The use of Intellectual Property (IP) blocks is very common today and provides the customer with pre-qualified and optimized functions for their design thus shortening the design cycle. There are many methods by which an IP Block can be generated and placed within layout. Even with the most careful methods and following of guidelines comes the responsibility of sign-off checking. A foundry needs to detect where these IP Blocks have been placed and look for any violations. This includes DRC clean modifications to the IP Block which may or may not be intentional. Using a pattern-based approach to detect all IP Blocks used provides the foundry advanced capabilities to analyze them further for any kind of changes which could void the OPC and process window optimizations. Having any changes in an IP Block could cause functionality changes or even failures. This also opens the foundry to legal and cost issues while at the same time forcing re-spins of the design. In this publication, we discuss the methodology we have employed to avoid process issues and tape-out errors while at the same time reduce our manual work and improve the turnaround time. We are also able to use our pattern analysis to improve our OPC optimizations when modifications are encountered which have not been seen before.

  12. Organ size control is dominant over Rb family inactivation to restrict proliferation in vivo.

    PubMed

    Ehmer, Ursula; Zmoos, Anne-Flore; Auerbach, Raymond K; Vaka, Dedeepya; Butte, Atul J; Kay, Mark A; Sage, Julien

    2014-07-24

    In mammals, a cell's decision to divide is thought to be under the control of the Rb/E2F pathway. We previously found that inactivation of the Rb family of cell cycle inhibitors (Rb, p107, and p130) in quiescent liver progenitors leads to uncontrolled division and cancer initiation. Here, we show that, in contrast, deletion of the entire Rb gene family in mature hepatocytes is not sufficient for their long-term proliferation. The cell cycle block in Rb family mutant hepatocytes is independent of the Arf/p53/p21 checkpoint but can be abrogated upon decreasing liver size. At the molecular level, we identify YAP, a transcriptional regulator involved in organ size control, as a factor required for the sustained expression of cell cycle genes in hepatocytes. These experiments identify a higher level of regulation of the cell cycle in vivo in which signals regulating organ size are dominant regulators of the core cell cycle machinery. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Toxicity features of high glucose on endothelial cell cycle and protection by Dan Gua-Fang in ECV-304 in high glucose medium.

    PubMed

    Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Lin, Jiu-Mao; Zheng, Hai-Xia; Yang, Liu-Qing; Huang, Su-Ping; Lan, Yuan-Long; Chen, Ling; Guo, Fang

    2013-08-01

    To study the toxicity features of high glucose on the endothelial cell cycle and the influence of Dan Gua-Fang, a Chinese herbal compound prescription, on the reproductive cycle of vascular endothelial cells cultivated under a high glucose condition; to reveal the partial mechanisms of Dan Gua-Fang in the prevention and treatment of endothelial injury caused by hyperglycemia in diabetes mellitus (DM); and offer a reference for dealing with the vascular complications of DM patients with long-term high blood glucose. Based on the previous 3-(4,5)-dimethylthiahiazo (z-y1)-3-5-diphenytetrazoliumromide (MTT) experiment, under different medium concentrations of glucose and Dangua liquor, the endothelial cells of vein-304 (ECV-304) were divided into 6 groups as follows: standard culture group (Group A, 5.56 mmol/L glucose); 1/300 herb-standard group (Group B); high glucose culture group (Group C, 16.67 mmol/L glucose); 1/150 herb-high glucose group (Group D); 1/300 herb-high glucose group (Group E); and 1/600 herb-high glucose group (Group F). The cell cycle was assayed using flow cytometry after cells were cultivated for 36, 72 and 108 h, respectively. (1) The percentage of cells in the G0/G1 phase was significantly increased in Group C compared with that in Group A (P<0.05), while the percentage of S-phase (S%) cells in Group C was significantly reduced compared with Group A (P<0.05); the latter difference was dynamically related to the length of growing time of the endothelial cells in a high glucose environment. (2) The S% cells in Group A was decreased by 30.25% (from 40.23% to 28.06%) from 36 h to 72 h, and 12.33% (from 28.06% to 24.60%) from 72 h to 108 h; while in Group C, the corresponding decreases were 23.05% and 21.87%, respectively. The difference of S% cells between the two groups reached statistical significance at 108 h (P<0.05). (3) The percentage difference of cells in the G2/M phase between Group C and Group A was statistically significant at 72 h (P<0.01). (4) 1/300 Dan Gua-Fang completely reversed the harmful effect caused by 16.67 mmol/L high glucose on the cell cycle; moreover it did not disturb the cell cycle when the cell was cultivated in a glucose concentration of 5.56 mmol/L. High glucose produces an independent impact on the cell cycle. Persistent blocking of the cell cycle and its arrest at the G0/G1 phase are toxic effects of high glucose on the endothelial cell cycle. The corresponding variation of the arrest appears in the S phase. 1/300 Dan Gua-Fang completely eliminates the blockage of high glucose on the endothelial cell cycle.

  14. Protoparvovirus Interactions with the Cellular DNA Damage Response

    PubMed Central

    Majumder, Kinjal; Etingov, Igor

    2017-01-01

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection. PMID:29088070

  15. Protoparvovirus Interactions with the Cellular DNA Damage Response.

    PubMed

    Majumder, Kinjal; Etingov, Igor; Pintel, David J

    2017-10-31

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.

  16. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  17. Inadvertently programmed bits in Samsung 128 Mbit flash devices: a flaky investigation

    NASA Technical Reports Server (NTRS)

    Swift, G.

    2002-01-01

    JPL's X2000 avionics design pioneers new territory by specifying a non-volatile memory (NVM) board based on flash memories. The Samsung 128Mb device chosen was found to demonstrate bit errors (mostly program disturbs) and block-erase failures that increase with cycling. Low temperature, certain pseudo- random patterns, and, probably, higher bias increase the observable bit errors. An experiment was conducted to determine the wearout dependence of the bit errors to 100k cycles at cold temperature using flight-lot devices (some pre-irradiated). The results show an exponential growth rate, a wide part-to-part variation, and some annealing behavior.

  18. Correlation of 125I-LSD autoradiographic labeling with serotonin voltage clamp responses in Aplysia neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, M.L.; Kadan, M.J.; Hartig, P.R.

    Autoradiographic receptor binding studies using 125I-LSD (2-(125I)lysergic acid diethyamide) revealed intense labelling on the soma of a symmetrically located pair of cells in the abdominal ganglion of Aplysia californica. This binding was blocked by micromolar concentrations of serotonin and lower concentrations of the serotonergic antagonists, cyproheptadine and mianserin. Electrophysiological investigation of responses to serotonin of neurons in the left upper quadrant, where one of the labeled neurons is located, revealed a range of serotonin responses. Cells L3 and L6 have a K+ conductance increase in response to serotonin that is not blocked by cyproheptadine or mianserin. Cells L2 and L4more » have a biphasic response to serotonin: a Na+ conductance increase, which can be blocked by cyproheptadine and mianserin, followed by a voltage dependent Ca2+ conductance which is blocked by Co2+ but not the serotonergic antagonists. Cell L1, and its symmetrical pair, R1, have in addition to the Na+ and Ca2+ responses observed in L2 and L4, a Cl- conductance increase blocked by LSD, cyproheptadine and mianserin. LSD had little effect on the other responses. The authors conclude that the symmetrically located cells L1 and R1 have a Cl- channel linked to a cyproheptadine- and mianserin-sensitive serotonin receptor that is selectively labelled by 125I-LSD. This receptor has many properties in common with the mammalian serotonin 1C receptor.« less

  19. A combination of new screening assays for prioritization of transmission-blocking antimalarials reveals distinct dynamics of marketed and experimental drugs.

    PubMed

    Bolscher, J M; Koolen, K M J; van Gemert, G J; van de Vegte-Bolmer, M G; Bousema, T; Leroy, D; Sauerwein, R W; Dechering, K J

    2015-05-01

    The development of drugs to reduce malaria transmission is an important part of malaria eradication plans. We set out to develop and validate a combination of new screening assays for prioritization of transmission-blocking molecules. We developed high-throughput assays for screening compounds against gametocytes, the parasite stages responsible for onward transmission to mosquitoes. An existing gametocyte parasitic lactate dehydrogenase (pLDH) assay was adapted for use in 384-well plates, and a novel homogeneous immunoassay to monitor the functional transition of female gametocytes into gametes was developed. A collection of 48 marketed and experimental antimalarials was screened and subsequently tested for impact on sporogony in Anopheles mosquitoes, to directly quantify the transmission-blocking properties of antimalarials in relation to their effects on gametocyte pLDH activity or gametogenesis. The novel screening assays revealed distinct stage-specific kinetics and dynamics of drug effects. Peroxides showed the most potent transmission-blocking effects, with an intermediate speed of action and IC50 values that were 20-40-fold higher than the IC50s against the asexual stages causing clinical malaria. Finally, the novel synthetic peroxide OZ439 appeared to be a promising drug candidate as it exerted gametocytocidal and transmission-blocking effects at clinically relevant concentrations. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro.

    PubMed Central

    Bal, T; von Krosigk, M; McCormick, D A

    1995-01-01

    1. The cellular basis for generation of spindle waves and a slower synchronized oscillation resembling absence seizures was investigated with extracellular and intracellular recording techniques in slices of ferret dorsal lateral geniculate nucleus (LGNd) maintained in vitro. 2. Intracellular recording from LGNd relay cells in vitro revealed that spindle waves occurred once every 3-30 s and were associated with barrages of inhibitory postsynaptic potentials (IPSPs) occurring at a frequency of 6-10 Hz. These IPSPs resulted in the generation of rebound low threshold Ca2+ spikes at 2-4 Hz, owing to the intrinsic propensity of LGNd relay cells to generate oscillatory burst firing in this frequency range. These rebound bursts of action potentials were highly synchronized with local multiunit and single unit activity. 3. The spindle wave-associated IPSPs in LGNd relay cells exhibited a mean reversal potential of -86 mV. This reversal potential was shifted to more depolarized membrane potentials with the intracellular injection of Cl- through the use of KCl-filled microelectrodes. Simultaneous recording from the perigeniculate nucleus (PGN) and LGNd revealed the IPSPs to be synchronous with the occurrence of burst firing in the PGN. Excitation of PGN neurons with local electrical stimulation after pharmacological block of excitatory amino acid transmission resulted in bicuculline-sensitive IPSPs in relay neurons similar in amplitude and time course to those occurring during spindle waves. 4. Application of (-)-bicuculline methiodide resulted in the abolition of spindle wave-associated IPSPs or in the slowing of the rate of rise, an increase in amplitude and a prolongation of these IPSPs; this resulted in a synchronized 2-4 Hz oscillation, in which each relay cell strongly burst on nearly every cycle, thus forming a paroxysmal event. Bath application of the GABAB receptor antagonist 2-OH-saclofen blocked these slowed oscillations, indicating that they are mediated by the activation of GABAB receptors. In contrast, pharmacological antagonism of GABAB receptors did not block the generation of normal spindle waves. 5. These and other results indicate that spindle waves are generated in the ferret LGNd in vitro as a network phenomenon occurring through an interaction between the relay cells of the LGNd and the GABAergic neurons of the PGN. We propose that burst firing in PGN cells hyperpolarizes relay neurons through activation of GABAA receptors. These IPSPs result in rebound burst firing in LGNd cells, which then excite PGN neurons.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7776249

  1. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Organic-inorganic hybrid polymer electrolytes based on polyether diamine, alkoxysilane, and trichlorotriazine: Synthesis, characterization, and electrochemical applications

    NASA Astrophysics Data System (ADS)

    Saikia, Diganta; Wu, Cheng-Gang; Fang, Jason; Tsai, Li-Duan; Kao, Hsien-Ming

    2014-12-01

    A new type of highly conductive organic-inorganic hybrid polymer electrolytes has been synthesized by the reaction of poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether), 2,4,6-trichloro-1,3,5-triazine and alkoxysilane precursor 3-(glycidyloxypropyl)trimethoxysilane, followed by doping of LiClO4. The 13C and 29Si solid-sate NMR results confirm the successful synthesis of the organic-inorganic hybrid structure. The solid hybrid electrolyte thus obtained exhibits a maximum ionic conductivity of 1.6 × 10-4 S cm-1 at 30 °C, which is the highest among the organic-inorganic hybrid electrolytes. The hybrid electrolytes are electrochemically stable up to 4.2 V. The prototype electrochromic device with such a solid hybrid electrolyte demonstrates a good coloration efficiency value of 183 cm2 C-1 with a cycle life over 200 cycles. For the lithium-ion battery test, the salt free solid hybrid membrane is swelled with a LiPF6-containing electrolyte solution to reach an acceptable ionic conductivity value of 6.5 × 10-3 S cm-1 at 30 °C. The battery cell carries an initial discharge capacity of 100 mAh g-1 at 0.2C-rate and a coulombic efficiency of about 95% up to 30 cycles without the sign of cell failure. The present organic-inorganic hybrid electrolytes hold promise for applications in electrochromic devices and lithium ion batteries.

  3. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18.

    PubMed

    Pascoe, Jordan; Hollern, Douglas; Stamateris, Rachel; Abbasi, Munira; Romano, Lia C; Zou, Baobo; O'Donnell, Christopher P; Garcia-Ocana, Adolfo; Alonso, Laura C

    2012-03-01

    Pancreatic β-cell proliferation is infrequent in adult humans and is not increased in type 2 diabetes despite obesity and insulin resistance, suggesting the existence of inhibitory factors. Free fatty acids (FFAs) may influence proliferation. In order to test whether FFAs restrict β-cell proliferation in vivo, mice were intravenously infused with saline, Liposyn II, glucose, or both, continuously for 4 days. Lipid infusion did not alter basal β-cell proliferation, but blocked glucose-stimulated proliferation, without inducing excess β-cell death. In vitro exposure to FFAs inhibited proliferation in both primary mouse β-cells and in rat insulinoma (INS-1) cells, indicating a direct effect on β-cells. Two of the fatty acids present in Liposyn II, linoleic acid and palmitic acid, both reduced proliferation. FFAs did not interfere with cyclin D2 induction or nuclear localization by glucose, but increased expression of inhibitor of cyclin dependent kinase 4 (INK4) family cell cycle inhibitors p16 and p18. Knockdown of either p16 or p18 rescued the antiproliferative effect of FFAs. These data provide evidence for a novel antiproliferative form of β-cell glucolipotoxicity: FFAs restrain glucose-stimulated β-cell proliferation in vivo and in vitro through cell cycle inhibitors p16 and p18. If FFAs reduce proliferation induced by obesity and insulin resistance, targeting this pathway may lead to new treatment approaches to prevent diabetes.

  4. Inactivation of Mirk/Dyrk1b Kinase Targets Quiescent Pancreatic Cancer Cells *

    PubMed Central

    Ewton, Daina Z.; Hu, Jing; Vilenchik, Maria; Deng, Xiaobing; Luk, Kin-chun; Polonskaia, Ann; Hoffman, Ann F.; Zipf, Karen; Boylan, John F.; Friedman, Eileen A.

    2011-01-01

    A major problem in the treatment of cancer arises from quiescent cancer cells that are relatively insensitive to most chemotherapeutic drugs and radiation. Such residual cancer cells can cause tumor regrowth or recurrence when they re-enter the cell cycle. Earlier studies demonstrated that levels of the serine/theronine kinase Mirk/dyrk1B are elevated up to 10-fold in quiescent G0 tumor cells, that Mirk uses several mechanisms to block cell cycling, and that Mirk increases expression of antioxidant genes which lower ROS levels and increase quiescent cell viability. We now show that a novel small molecule Mirk kinase inhibitor blocked tumor cells from undergoing reversible arrest in a quiescent G0 state and enabled some cells to exit quiescence. The inhibitor increased cycling in Panc1, AsPc1 and SW620 cells that expressed Mirk, but not in HCT116 cells that did not. Mirk kinase inhibition elevated ROS levels and DNA damage detected by increased phosphorylation of the histone protein H2AX and by S phase checkpoints. The Mirk kinase inhibitor increased cleavage of the apoptotic proteins PARP and caspase 3, and increased tumor cell kill several-fold by gemcitabine and cisplatin. A phenocopy of these effects occurred following Mirk depletion, showing drug specificity. In prior studies Mirk knockout or depletion had no detectable effect on normal tissue, suggesting that the Mirk kinase inhibitor could have a selective effect on cancer cells expressing elevated levels of Mirk kinase. PMID:21878655

  5. The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells▿

    PubMed Central

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus. PMID:21084479

  6. Slope failures in Northern Vermont, USA

    USGS Publications Warehouse

    Lee, F.T.; Odum, J.K.; Lee, J.D.

    1997-01-01

    Rockfalls and debris avalanches from steep hillslopes in northern Vermont are a continuing hazard for motorists, mountain climbers, and hikers. Huge blocks of massive schist and gneiss can reach the valley floor intact, whereas others may trigger debris avalanches on their downward travel. Block movement is facilitated by major joints both parallel and perpendicular to the glacially over-steepened valley walls. The slope failures occur most frequently in early spring, accompanying freeze/thaw cycles, and in the summer, following heavy rains. The study reported here began in August 1986 and ended in June 1989. Manual and automated measurements of temperature and displacement were made at two locations on opposing valley walls. Both cyclic-reversible and permanent displacements occurred during the 13-month monitoring period. The measurements indicate that freeze/thaw mechanisms produce small irreversible incremental movements, averaging 0.53 mm/yr, that displace massive blocks and produce rockfalls. The initial freeze/thaw weakening of the rock mass also makes slopes more susceptible to attrition by water, and heavy rains have triggered rockfalls and consequent debris flows and avalanches. Temperature changes on the rock surface produced time-dependent cyclic displacements of the rock blocks that were not instantaneous but lagged behind the temperature changes. Statistical analyses of the data were used to produce models of cyclic time-dependent rock block behavior. Predictions based solely on temperature changes gave poor results. A model using time and temperature and incorporating the lag effect predicts block displacement more accurately.

  7. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcangeletti, Maria-Cristina, E-mail: mariacristina.arcangeletti@unipr.it; Germini, Diego; Rodighiero, Isabella

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promotingmore » cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.« less

  8. Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch

    PubMed Central

    Seidel, Hannah S; Kimble, Judith

    2015-01-01

    Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001 PMID:26551561

  9. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling.

  10. The CXCL12/CXCR4 Signaling Pathway: A New Susceptibility Factor in Human Papillomavirus Pathogenesis

    PubMed Central

    Meuris, Floriane; Carthagena, Laetitia; Cutolo, Pasquale; Xue, Yuezhen; Thierry, Françoise; Doorbar, John; Bachelerie, Françoise

    2016-01-01

    The productive human papillomavirus (HPV) life cycle is tightly linked to the differentiation and cycling of keratinocytes. Deregulation of these processes and stimulation of cell proliferation by the action of viral oncoproteins and host cell factors underlies HPV-mediated carcinogenesis. Severe HPV infections characterize the wart, hypogammaglobulinemia, infection, and myelokathexis (WHIM) immunodeficiency syndrome, which is caused by gain-of-function mutations in the CXCR4 receptor for the CXCL12 chemokine, one of which is CXCR41013. We investigated whether CXCR41013 interferes in the HPV18 life cycle in epithelial organotypic cultures. Expression of CXCR41013 promoted stabilization of HPV oncoproteins, thus disturbing cell cycle progression and proliferation at the expense of the ordered expression of the viral genes required for virus production. Conversely, blocking CXCR41013 function restored virus production and limited HPV-induced carcinogenesis. Thus, CXCR4 and its potential activation by genetic alterations in the course of the carcinogenic process can be considered as an important host factor for HPV carcinogenesis. PMID:27918748

  11. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    PubMed

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Multiblock thermoplastic polyurethanes for biomedical and shape memory applications

    NASA Astrophysics Data System (ADS)

    Gu, Xinzhu

    Polyurethanes are a class of polymers that are capable of tailoring the overall polymer structure and thus final properties by many factors. The great potential in tailoring polymer structures imparts PUs unique mechanical properties and good cytocompatibility, which make them good candidates for many biomedical devices. In this dissertation, three families of multiblock thermoplastic polyurethanes are synthesized and characterized for biomedical and shape memory applications. In the first case described in Chapters 2, 3 and 4, a novel family of multiblock thermoplastic polyurethanes consisting of poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) are presented. These materials were discovered to be very durable, with strain-to-break higher than 1200%. Heat-triggered reversible plasticity shape memory (RPSM) was observed, where the highly deformed samples completely recovered their as-cast shape within one minute when heating above the transition temperature. Instead of conventional "hard" blocks, entanglements, which result from high molecular weight, served as the physical crosslinks in this system, engendering shape recovery and preventing flow. Moreover, water-triggered shape memory effect of PCL-PEG TPUs is explored, wherein water permeated into the initially oriented PEG domains, causing rapid shape recovery toward the equilibrium shape upon contact with liquid water. The recovery behavior is found to be dependent on PEG weight percentage in the copolymers. By changing the material from bulk film to electrospun fibrous mat, recovery speed was greatly accelerated. The rate of water recovery was manipulated through structural variables, including thickness of bulk film and diameter of e-spun webs. A new, yet simple shape memory cycle, "wet-fixing" is also reported, where both the fixing and recovery ratios can be greatly improved. A detailed microstructural study on one particular composition is presented, revealing the evolution of microphase morphology during the shape memory cycle. Then, in Chapter 5, the role of Polyhedral oligosilsesquioxane (POSS) in suppressing enzymatic degradation of PCL-PEG TPUs is investigated. In vitro enzymatic hydrolytic biodegradation revealed that POSS incorporation significantly suppressed degradation of PCL-PEG TPUs. All TPUs were surface-eroded by enzymatic attack in which the chemical composition and the bulk mechanical properties exhibited little changes. A surface passivation mechanism is proposed to explain the protection of POSS-containing TPUs from enzymatic degradation. Finally, Chapter 6 presents another POSS-based TPUs system with PLA-based polyol as the glassy soft block. Manipulation of the final thermal and mechanical properties is discussed in terms of different polyols and POSS used. The free recovery and the constrained recovery responses of the polymer films were demonstrated as a function of the prior "fixing" deformation temperature. In addition, this family of materials was capable of memorizing their T g., where optimal recovery breadth and recovery stress were achieved when pre-deformation occurred right at Tg.

  13. Biological Redox Cycling Of Iron In Nontronite And Its Potential Application In Nitrate Removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Linduo; Dong, Hailiang; Kukkadapu, Ravi K.

    2015-05-05

    Redox cycling of structural Fe in phyllosilicates provides a potential method to remediate nitrate contamination in natural environment. Past research has only studied chemical redox cycles or a single biologically mediated redox cycle of Fe in phyllosilicates. The objective of this research was to study three microbially driven redox cycles of Fe in one phyllosilicate, nontronite (NAu-2). During the reduction phase structural Fe(III) in NAu-2 served as electron acceptor, lactate as electron donor, AQDS as electron shuttle, and dissimilatory Fe(III)-reducing bacteria Shewanella putrefaciens CN32 as mediator in bicarbonate-buffered and PIPES-buffered media. During the oxidation phase, biogenic Fe(II) served an electronmore » donor, nitrate as electron acceptor, and nitrate-dependent Fe(II)-oxidizing bacteria Pseudogulbenkiania sp. strain 2002 as mediator in the same media. For all three cycles, structural Fe in NAu-2 was able to reversibly undergo 3 redox cycles without significant reductive or oxidative dissolution. X-ray diffraction and scanning and transmission electron microscopy revealed that NAu-2 was the dominant residual mineral throughout the 3 redox cycles with some dissolution textures but no significant secondary mineralization. Mössbauer spectroscopy revealed that Fe(II) in bio-reduced samples likely occurred in two distinct environments, at edges and the interior of the NAu-2 structure. Nitrate was completely reduced to nitrogen gas under both buffer conditions and this extent and rate did not change with Fe redox cycles. Mössbauer spectroscopy further revealed that nitrate reduction was coupled to predominant/preferred oxidation of edge Fe(II). These results suggest that structural Fe in phyllosilicates may represent a renewable source to continuously remove nitrate in natural environments.« less

  14. Characterization of Highly Sulfonated SIBS Polymer Partially Neutralized With Mg(+2) Cations

    DTIC Science & Technology

    2008-08-01

    protective clothing, block copolymer ionomer membranes emerge. They are highly ordered sequence of both ionic and nonionic blocks, in which the ionic ...incorporated into the ionic polymer. Fourier-transform infrared spectroscopy results revealed that a significant amount of ordering occurred as a result on...increasing Mg content. This band indicates Mg complexation formed when two or more sulfonate groups ionically bonded to the Mg+2 cation

  15. Newborn infant with maternal anti-SSA antibody-induced complete heart block accompanying cardiomyopathy.

    PubMed

    Iida, Midori; Inamura, Noboru; Takeuchi, Makoto

    2006-01-01

    Newborn case of maternal anti-SSA antibody-induced congenital complete heart block (CCHB) accompanying cardiomyopathy is presented. Unexpectedly, she died of ventricular tachycardia, not bradycardia, 6 days after birth. Autopsy revealed left ventricular cardiomyopathy with endocardial fibroelastosis. Thus, when evaluating fetal cardiac performance in cases of maternal anti-SSA antibody-induced CCHB, it is necessary to pay attention to myocardial attributes such as endocardial hyperplasia.

  16. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    PubMed Central

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  17. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism.

    PubMed

    Spain, Anne M; Elshahed, Mostafa S; Najar, Fares Z; Krumholz, Lee R

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring's source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM) of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  18. Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives.

    PubMed

    Rokitskaya, Tatyana I; Nazarov, Pavel A; Golovin, Andrey V; Antonenko, Yuri N

    2017-06-06

    Measurements of ion conductance through α-hemolysin pore in a bilayer lipid membrane revealed blocking of the ion channel by a series of rhodamine 19 and rhodamine B esters. The longest dwell closed time of the blocking was observed with rhodamine 19 butyl ester (C4R1), whereas the octyl ester (C8R1) was of poor effect. Voltage asymmetry in the binding kinetics indicated that rhodamine derivatives bound to the stem part of the aqueous pore lumen. The binding frequency was proportional to a quadratic function of rhodamine concentrations, thereby showing that the dominant binding species were rhodamine dimers. Two levels of the pore conductance and two dwell closed times of the pore were found. The dwell closed times lengthened as the voltage increased, suggesting impermeability of the channel for the ligands. Molecular docking analysis revealed two distinct binding sites within the lumen of the stem of the α-hemolysin pore for the C4R1 dimer, but only one binding site for the C8R1 dimer. The blocking of the α-hemolysin nanopore by rhodamines could be utilized in DNA sequencing as additional optical sensing owing to bright fluorescence of rhodamines if used for DNA labeling. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Autophagy regulation revealed by SapM-induced block of autophagosome-lysosome fusion via binding RAB7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dong, E-mail: austhudong@126.com; Wu, Jing, E-mail: wujing8008@126.com; Wang, Wan

    The mechanism underlying autophagy alteration by mycobacterium tuberculosis remains unclear. Our previous study shows LpqH, a lipoprotein of mycobacterium tuberculosis, can cause autophagosomes accumulation in murine macrophages. It is well known that SapM, another virulence factor, plays an important role in blocking phagosome-endosome fusion. However, the mechanism that SapM interferes with autophagy remains poorly defined. In this study, we report that SapM suppresses the autophagy flux by blocking autophagosome fusion with lysosome. Exposure to SapM results in accumulations of autophagosomes and decreased co-localization of autophagosome with lysosome. Molecularly, Rab7, a small GTPase, is blocked by SapM through its CT domainmore » and is prevented from involvement of autophagosome-lysosome fusion. In conclusion, our study reveals that SapM takes Rab7 as a previously unknown target to govern a distinct molecular mechanism underlying autophagosome-lysosome fusion, which may bring light to a new thought about developing potential drugs or vaccines against tuberculosis. - Highlights: • A mechanism for disrupting autophagosome-lysosome fusion induced by SapM. • Rab7 is involved in SapM-inhibited autophagy. • SapM interacts with Rab7 by CT-domain. • CT-domain is indispensable to SapM-inhibited autophagy.« less

  20. Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating

    PubMed Central

    Zhang, Zhaocun; Lyon, Timothy D.; Kadow, Brian T.; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R.; de Groat, William C.

    2016-01-01

    This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5–30°C) or heating (42–54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5–15°C while heat block occurred at 50–54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50–54°C or 15 min of nonblock mild heating at 46–48°C significantly increased the cold block temperature to 15–30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15–30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534

Top