Analysis of ProSEDS Test of Bare-Tether Collection
NASA Technical Reports Server (NTRS)
Sanmartin, J. R.; Lorenzini, E. C.; Estes, R. D.; Charro, M.; Cosmo, M. L.
2003-01-01
NASA's tether experiment ProSEDS will be placed in orbit on board a Delta-II rocket to test bare-tether electron collection, deorbiting of the rocket second stage, and the system dynamic stability. ProSEDS performance will vary because ambient conditions change along the orbit and tether-circuit bulk elements at the cathodic end follow the step-by-step sequence for the current cycles of operating modes (open-circuit, shunt and resistor modes for primary cycles; shunt and battery modes for secondary cycles). In this work we discuss expected ProSEDS values of the ratio L,/L*, which jointly with cathodic bulk elements determines bias and current tether profiles; L, is tether length, and L* (changing with tether temperature and ionospheric plasma density and magnetic field) is a characteristic length gauging ohmic versus baretether collection impedances. We discuss how to test bare-tether electron collection during primary cycles, using probe measurements of plasma density, measurements of cathodic current in resistor and shunt modes, and an estimate of tether temperature based on ProSEDS orbital position at the particular cycle concerned. We discuss how a temperature misestimate might occasionally affect the test of bare-tether collection, and how introducing the battery mode in some primary cycles, for an additional current measurement, could obviate the need of a temperature estimate. We also show how to test bare-tether collection by estimating orbit-decay rate from measurements of cathodic current for the shunt and battery modes of secondary cycles.
NASA Technical Reports Server (NTRS)
Hughes, Chris; Lord, Wed
2008-01-01
Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.
Regulatory cross-cutting topics for fuel cycle facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott
This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less
NASA Astrophysics Data System (ADS)
Gusain, S.
2017-12-01
We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.
Early Estimation of Solar Activity Cycle: Potential Capability and Limits
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and longterm sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
Current Status of an Organic Rankine Cycle Engine Development Program
NASA Technical Reports Server (NTRS)
Barber, R. E.
1984-01-01
The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.
Using Data Assimilation Methods of Prediction of Solar Activity
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy S.
2017-01-01
The variable solar magnetic activity known as the 11-year solar cycle has the longest history of solar observations. These cycles dramatically affect conditions in the heliosphere and the Earth's space environment. Our current understanding of the physical processes that make up global solar dynamics and the dynamo that generates the magnetic fields is sketchy, resulting in unrealistic descriptions in theoretical and numerical models of the solar cycles. The absence of long-term observations of solar interior dynamics and photospheric magnetic fields hinders development of accurate dynamo models and their calibration. In such situations, mathematical data assimilation methods provide an optimal approach for combining the available observational data and their uncertainties with theoretical models in order to estimate the state of the solar dynamo and predict future cycles. In this presentation, we will discuss the implementation and performance of an Ensemble Kalman Filter data assimilation method based on the Parker migratory dynamo model, complemented by the equation of magnetic helicity conservation and long-term sunspot data series. This approach has allowed us to reproduce the general properties of solar cycles and has already demonstrated a good predictive capability for the current cycle, 24. We will discuss further development of this approach, which includes a more sophisticated dynamo model, synoptic magnetogram data, and employs the DART Data Assimilation Research Testbed.
Solar Cycle 24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Schatten, K.
2007-01-01
We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.
NASA / GE Aviation Collaborative Partnership Research in Ultra High Bypass Cycle Propulsion Concepts
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Zeug, Theresa
2008-01-01
Current collaborative research with General Electric Aviation on Open Rotor propulsion as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. The current Open Rotor propulsion research activity at NASA and GE are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. GE Open Rotor propulsion technology and business plans currently and toward the future are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.
Cycling biomechanics: a literature review.
Wozniak Timmer, C A
1991-01-01
Submitted in partial fulfillment for a Master of Science degree at the University of Pittsburgh, School of Health Related Professions, Pittsburgh, PA 1.5213 This review of current literature on cycling biomechanics emphasizes lower extremity muscle actions and joint excursions, seat height, pedal position, pedaling rate, force application, and pedaling symmetry. Guidelines are discussed for optimal seat height, pedal position, and pedaling rate. Force application in the power and recovery phases of cycling and the relationship of force application to pedaling symmetry are discussed. The need for a biomechanical approach to cycling exists since a great deal of the literature is primarily physiologic in nature. The purpose of this review is to make cyclists and their advisors aware of the biomechanics of cycling and guidelines to follow. This approach is also important because cycling is a very common form of exercise prescribed by physical therapists for clinic or home programs. Biomechanical aspects of cycling should be considered by cyclists at any level of participation and by physical therapists in order for goal-oriented, efficient cycling to occur. J Orthop Sports Phys Ther 1991;14(3):106-113.
Energetic Particles in the Inner Heliosphere
NASA Astrophysics Data System (ADS)
Malandraki, Olga
2016-07-01
Solar Energetic Particle (SEP) events are a key ingredient of Solar-Terrestrial Physics both for fundamental research and space weather applications. SEP events are the defining component of solar radiation storms, contribute to radio blackouts in polar regions and are related to many of the fastest Coronal Mass Ejections (CMEs) driving major geomagnetic storms. In addition to CMEs, SEPs are also related to flares. In this work, the current state of knowledge on the SEP field will be reviewed. Key issues to be covered and discussed include: the current understanding of the origin, acceleration and transport processes of SEPs at the Sun and in the inner heliosphere, lessons learned from multi-spacecraft SEP observations, statistical quantification of the comparison of solar events and SEP events of the current solar cycle 24 with previous solar cycles, causes of the solar-cycle variations in SEP fluencies and composition, theoretical work and current SEP acceleration models. Furthermore, the outstanding issues that constitute a knowledge gap in the field will be presented and discussed, as well as future directions and expected advances from the observational and modeling perspective, also in view of the unique observations provided by the upcoming Solar Orbiter and Solar Probe Plus missions. Acknowledgement: This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 637324.
Updates on Modeling the Water Cycle with the NASA Ames Mars Global Climate Model
NASA Technical Reports Server (NTRS)
Kahre, M. A.; Haberle, R. M.; Hollingsworth, J. L.; Montmessin, F.; Brecht, A. S.; Urata, R.; Klassen, D. R.; Wolff, M. J.
2017-01-01
Global Circulation Models (GCMs) have made steady progress in simulating the current Mars water cycle. It is now widely recognized that clouds are a critical component that can significantly affect the nature of the simulated water cycle. Two processes in particular are key to implementing clouds in a GCM: the microphysical processes of formation and dissipation, and their radiative effects on heating/ cooling rates. Together, these processes alter the thermal structure, change the dynamics, and regulate inter-hemispheric transport. We have made considerable progress representing these processes in the NASA Ames GCM, particularly in the presence of radiatively active water ice clouds. We present the current state of our group's water cycle modeling efforts, show results from selected simulations, highlight some of the issues, and discuss avenues for further investigation.
Ghekiere, Ariane; Van Cauwenberg, Jelle; de Geus, Bas; Clarys, Peter; Cardon, Greet; Salmon, Jo; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2014-01-01
Background Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10–12 yr old children. The current qualitative study used ‘bike-along interviews’ with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood. Methods Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi-) urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library) within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach. Results The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (in)directly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities. Conclusion Road safety is of major concern in this 10–12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport. PMID:25250738
Ghekiere, Ariane; Van Cauwenberg, Jelle; de Geus, Bas; Clarys, Peter; Cardon, Greet; Salmon, Jo; De Bourdeaudhuij, Ilse; Deforche, Benedicte
2014-01-01
Environmental factors are found to influence transport-related physical activity, but have rarely been studied in relation with cycling for transport to various destinations in 10-12 yr old children. The current qualitative study used 'bike-along interviews' with children and parents to allow discussion of detailed environmental factors that may influence children's cycling for transport, while cycling in the participant's neighborhood. Purposeful convenience sampling was used to recruit 35 children and one of their parents residing in (semi-) urban areas. Bike-along interviews were conducted to and from a randomly chosen destination (e.g. library) within a 15 minutes' cycle trip in the participant's neighborhood. Participants wore a GoPro camera to objectively assess environmental elements, which were subsequently discussed with participants. Content analysis and arising themes were derived using a grounded theory approach. The discussed environmental factors were categorized under traffic, urban design, cycling facilities, road design, facilities at destination, aesthetics, topography, weather, social control, stranger danger and familiar environment. Across these categories many environmental factors were (in)directly linked to road safety. This was illustrated by detailed discussions of the children's visibility, familiarity with specific traffic situations, and degree of separation, width and legibility of cycle facilities. Road safety is of major concern in this 10-12 yr old study population. Bike-along interviews were able to identify new, detailed and context-specific physical environmental factors which could inform policy makers to promote children's cycling for transport. However, future studies should investigate whether hypothetical changes to such micro environmental features influence perceptions of safety and if this in turn could lead to changes in children's cycling for transport.
Field aligned current study during the solar declining- extreme minimum of 23 solar cycle
NASA Astrophysics Data System (ADS)
Nepolian, Jeni Victor; Kumar, Anil; C, Panneerselvam
Field Aligned Current (FAC) density study has been carried out during the solar declining phase from 2004 to 2006 of the 23rd solar cycle and the ambient terrestrial magnetic field of the extended minimum period of 2008 and 2009. We mainly depended on CHAMP satellite data (http://isdc.gfz-potsdam.de/) for computing the FAC density with backup of IGRF-10 model. The study indicates that, the FAC is controlled by quasi-viscous processes occurring at the flank of the earth’s magnetosphere. The dawn-dusk conventional pattern enhanced during disturbed days. The intensity of R1 current system is higher than the R2 current system. Detailed results will be discussed in the conference.
Current developments in electrochemical storage systems for satellites
NASA Technical Reports Server (NTRS)
Gutmann, G.
1986-01-01
The need for batteries with greater power capacity and service life for power satellites is examined. The Ni/Cd and Ni/H batteries now being used must be upgraded to meet advanced space requirements. Improvements in power capacity, service life, and cycle count for various satellites in LEO and GEO orbits are discussed. The Ni/Cd and Ni/H cell reactions are explained, and the solubility and volume changes for various charged and uncharged masses are described. A chart of the energy content and cycle count for various cell systems is presented, and the factors which cause aging and failure in the Ni/Cd and Ni/H cell systems are discussed. The advantages of the Ni/H battery are given and the need for more developed electrochemical storage systems because of an increase in the mass of satellites is explained. The requirements for space batteries and the work currently done by NASA and West Germany on advanced batteries are discussed.
[Genome organization and life cycle of the hepatitis c virus].
Kalinina, O V; Dmitriev, A V
2015-01-01
The review summarizes the current data about the hepatitis C viral genome and polyprotein organization. The functional role of the structural and non-structural viral proteins including their interaction with cellular regulatory proteins and cell structural elements is discussed. Specific peculiarities of the life cycle of the hepatitis C virus important for the understanding of the viral hepatitis C pathogenesis are summarized.
The Tense Situation of Slavic: Past, Present, Future.
ERIC Educational Resources Information Center
Cooper, Henry R., Jr.
1998-01-01
Discusses the challenges and difficulties of Slavic languages, a field that is notoriously cyclical and is currently at the bottom of a cycle. The article chronicles the history of Slavic studies in relation to political developments since World War II, draws parallels between current trends in Slavic and other modern language programs, and sees…
Strategies of bringing drug product marketing applications to meet current regulatory standards.
Wu, Yan; Freed, Anita; Lavrich, David; Raghavachari, Ramesh; Huynh-Ba, Kim; Shah, Ketan; Alasandro, Mark
2015-08-01
In the past decade, many guidance documents have been issued through collaboration of global organizations and regulatory authorities. Most of these are applicable to new products, but there is a risk that currently marketed products will not meet the new compliance standards during audits and inspections while companies continue to make changes through the product life cycle for continuous improvement or market demands. This discussion presents different strategies to bringing drug product marketing applications to meet current and emerging standards. It also discusses stability and method designs to meet process validation and global development efforts.
NASA Astrophysics Data System (ADS)
Rajagopal, Deepak
2013-06-01
The absence of a globally-consistent and binding commitment to reducing greenhouse emissions provides a rationale for partial policies, such as renewable energy mandates, product emission standards, etc to target lifecycle emissions of the regulated products or services. While appealing in principle, regulation of lifecycle emissions presents several practical challenges. Using biofuels as an illustrative example, we highlight some outstanding issues in the design and implementation of life cycle-based policies and discuss potential remedies. We review the literature on emissions due to price effects in fuel markets, which are akin to emissions due to indirect land use change, but are, unlike the latter, ignored under all current life cycle emissions-based regulations. We distinguish the current approaches to regulating indirect emissions into hard and soft approaches and discuss their implications.
Concepts associated with a unified life cycle analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, Gene; Peffers, Melissa S.; Tolle, Duane A.
There is a risk associated with most things in the world, and all things have a life cycle unto themselves, even brownfields. Many components can be described by a''cycle of life.'' For example, five such components are life-form, chemical, process, activity, and idea, although many more may exist. Brownfields may touch upon several of these life cycles. Each life cycle can be represented as independent software; therefore, a software technology structure is being formulated to allow for the seamless linkage of software products, representing various life-cycle aspects. Because classes of these life cycles tend to be independent of each other,more » the current research programs and efforts do not have to be revamped; therefore, this unified life-cycle paradigm builds upon current technology and is backward compatible while embracing future technology. Only when two of these life cycles coincide and one impacts the other is there connectivity and a transfer of information at the interface. The current framework approaches (e.g., FRAMES, 3MRA, etc.) have a design that is amenable to capturing (1) many of these underlying philosophical concepts to assure backward compatibility of diverse independent assessment frameworks and (2) linkage communication to help transfer the needed information at the points of intersection. The key effort will be to identify (1) linkage points (i.e., portals) between life cycles, (2) the type and form of data passing between life cycles, and (3) conditions when life cycles interact and communicate. This paper discusses design aspects associated with a unified life-cycle analysis, which can support not only brownfields but also other types of assessments.« less
Long dance of the bashful ballerina
NASA Astrophysics Data System (ADS)
Hiltula, T.; Mursula, K.
2006-02-01
In this letter we extend our earlier analysis of the north-south asymmetry of the heliospheric current sheet (HCS) using a recent data set of heliospheric magnetic field (HMF) sector polarities extracted from ground-based magnetic observations. We find that the heliospheric current sheet is similarly southward coned or shifted during the late declining to minimum phase of the solar cycle in the early part of the studied data interval (1926-1955), as earlier found for the more recent solar cycles. Accordingly, the HCS has been southward shifted; that is, the solar ballerina has been bashful at least during the last 80 years. We also discuss solar cycle 19 which presents a period of a very curious behaviour for the HCS with an exceptionally large HMF toward sector dominance in 1957, the year of cycle 19 maximum, and an equally strong HMF away sector dominance in 1960, the time of final solar polarity reversal.
Impact of uniform electrode current distribution on ETF
NASA Technical Reports Server (NTRS)
Bents, D. J.
1982-01-01
The design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution are examined and the alternate consolidation design which occur are presented compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is given for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
Climate Change and Expected Impacts on the Global Water Cycle
NASA Technical Reports Server (NTRS)
Rind, David; Hansen, James E. (Technical Monitor)
2002-01-01
How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.
LIFE CYCLE IMPACT ASSESSMENT SOPHISTICATION
An international workshop was held in Brussels on 11/29-30/1998, to discuss LCIA Sophistication. LCA experts from North America, Europs, and Asia attended. Critical reviews of associated factors, including current limitations of available assessment methodologies, and comparison...
Resource utilization during software development
NASA Technical Reports Server (NTRS)
Zelkowitz, Marvin V.
1988-01-01
This paper discusses resource utilization over the life cycle of software development and discusses the role that the current 'waterfall' model plays in the actual software life cycle. Software production in the NASA environment was analyzed to measure these differences. The data from 13 different projects were collected by the Software Engineering Laboratory at NASA Goddard Space Flight Center and analyzed for similarities and differences. The results indicate that the waterfall model is not very realistic in practice, and that as technology introduces further perturbations to this model with concepts like executable specifications, rapid prototyping, and wide-spectrum languages, we need to modify our model of this process.
Triple-effect absorption chiller cycle: A step beyond double-effect cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVault, R.C.
1990-01-01
Many advanced'' absorption cycles have been proposed during the current century. Of the hundreds of absorption cycles which have been patented throughout the world, all commercially manufactured products for air conditioning buildings have been variations of just two basic absorption cycles: single-effect and condenser-coupled double-effect cycles. The relatively low cooling coefficients of performance (COPs) inherent in single-effect and double-effect cycles limits the economic applicability of absorption air conditioners (chillers) in the United States. A triple-effect absorption chiller cycle is discussed. This cycle uses two condensers and two absorbers to achieve the triple effect.'' Depending on the absorption fluids selected, thismore » triple-effect cycle is predicted to improve cooling COPs by 18% to 60% compared with the equivalent double-effect cycle. This performance improvement is obtained without increasing the total amount of heat-transfer surface area needed for the heat exchangers. A comparison between the calculated performances of a double-effect cycle and a triple-effect cycle (both using ammonia-water (NH{sub 3}/H{sub 2}O) as the absorption fluid pair) is presented. The triple-effect cycle is predicted to have an 18% higher cooling COP (1.41 compared with 1.2 for a double-effect), lower pressure (47.70 atm (701 psi) instead of 68.05 atm (1000 psi)), significantly reduced pumping power (less than one-half that of the double-effect cycle), and potentially lower construction cost (33% less total heat exchange needed). Practical implications for this triple-effect cycle are discussed. 16 refs., 5 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Hansen, R. G.
1983-01-01
Various cryogenic techniques were used to evaluate state of the art electro-optic devices. As research, development, and production demands require more sensitive testing techniques, faster test results, and higher production throughput, the emphasis on supporting cryogenic systems increases. The three traditional methods currently utilized in electro-optic device testing are discussed: (1) liquid contaiment dewars; (2) liquid transfer systems; and (3) closed cycle refrigeration systems. Advantages, disadvantages, and the current state of the art of each of these cryogenic techniques is discussed.
Cell cycle regulation in human embryonic stem cells: links to adaptation to cell culture.
Barta, Tomas; Dolezalova, Dasa; Holubcova, Zuzana; Hampl, Ales
2013-03-01
Cell cycle represents not only a tightly orchestrated mechanism of cell replication and cell division but it also plays an important role in regulation of cell fate decision. Particularly in the context of pluripotent stem cells or multipotent progenitor cells, regulation of cell fate decision is of paramount importance. It has been shown that human embryonic stem cells (hESCs) show unique cell cycle characteristics, such as short doubling time due to abbreviated G1 phase; these properties change with the onset of differentiation. This review summarizes the current understanding of cell cycle regulation in hESCs. We discuss cell cycle properties as well as regulatory machinery governing cell cycle progression of undifferentiated hESCs. Additionally, we provide evidence that long-term culture of hESCs is accompanied by changes in cell cycle properties as well as configuration of several cell cycle regulatory molecules.
Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Chojnacki, Kent T.
1992-01-01
The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
Master and novice secondary science teachers' understandings and use of the learning cycle
NASA Astrophysics Data System (ADS)
Reap, Melanie Ann
2000-09-01
The learning cycle paradigm had been used in science classrooms for nearly four decades. This investigation seeks to reveal how the 1earning cycle, as originally designed, is currently understood and implemented by teachers in authentic classroom settings. The specific purposes of this study were: (1) to describe teachers who use the learning cycle and compare their understandings and perceptions of the learning cycle procedure in instruction; (2) to elicit novice and master teacher perspectives on their instruction and determine their perception of the process by which learning cycles are implemented in the science classroom; (3) to describe the context of science instruction in the novice and master teacher's classroom to ascertain how the teacher facilitates implementation of the learning cycle paradigm in their authentic classroom setting. The study used a learning cycle survey, interviews and classroom observations using the Learning Cycle Teacher Behavior Instruments and the Verbal Interaction Category System to explore these features of learning cycle instruction. The learning cycle survey was administered to a sample of teachers who use the learning cycle, including master and novice learning cycle teachers. One master and one novice learning cycle teacher were selected from this sample for further study. Analysis of the surveys showed no significant differences in master and novice teacher understandings of the learning cycle as assessed by the instrument. However, interviews and observations of the selected master and novice learning cycle teachers showed several differences in how the paradigm is understood and implemented in the classroom. The master learning cycle teacher showed a more developed teaching philosophy and had more engaged, extensive interactions with students. The novice learning cycle teacher held a more naive teaching philosophy and had fewer, less developed interactions with students. The most significant difference was seen in the use of questioning and discussion. The master teacher used diverse questioning techniques and guided students in discussion of their findings while the novice teachers used more rote response questions and controlled the discussion. The findings of this study have implications for science teacher education, especially in the preparation of teachers in science methods courses and student teaching, and in in-service education programs.
A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall
2004-01-01
Precipitation is a key link in the global water cycle and a proxy for changing climate; therefore proper assessment of the urban environment s impact on precipitation (land use, aerosols, thermal properties) will be increasingly important in ongoing climate diagnostics and prediction, Global Water and Energy Cycle (GWEC) analysis and modeling, weather forecasting, freshwater resource management, urban planning-design and land-atmosphere-ocean interface processes. These facts are particularly critical if current projections for global urban growth are accurate. The goal of this paper is to provide a concise review of recent (1990-present) studies related to how the urban environment affects precipitation. In addition to providing a synopsis of current work, recent findings are placed in context with historical investigations such as METROMEX studies. Both observational and modeling studies of urban-induced rainfall are discussed. Additionally, a discussion of the relative roles of urban dynamic and microphysical (e.g. aerosol) processes is presented. The paper closes with a set of recommendations for what observations and capabilities are needed in the future to advance our understanding of the processes.
Links between Immunologic Memory and Metabolic Cycling.
Cottam, Matthew A; Itani, Hana A; Beasley, Arch A; Hasty, Alyssa H
2018-06-01
Treatments for metabolic diseases, such as diet and therapeutics, often provide short-term therapy for metabolic stressors, but relapse is common. Repeated bouts of exposure to, and relief from, metabolic stimuli results in a phenomenon we call "metabolic cycling." Recent human and rodent data suggest metabolic cycling promotes an exaggerated response and ultimately worsened metabolic health. This is particularly evident with cycling of body weight and hypertension. The innate and adaptive immune systems have a profound impact on development of metabolic disease, and current data suggest that immunologic memory may partially explain this association, especially in the context of metabolic cycling. In this Brief Review, we highlight recent work in this field and discuss potential immunologic mechanisms for worsened disease prognosis in individuals who experience metabolic cycling. Copyright © 2018 by The American Association of Immunologists, Inc.
The Slow Cycling Phenotype: A Growing Problem for Treatment Resistance in Melanoma.
Ahn, Antonio; Chatterjee, Aniruddha; Eccles, Michael R
2017-06-01
Treatment resistance in metastatic melanoma is a longstanding issue. Current targeted therapy regimes in melanoma largely target the proliferating cancer population, leaving slow-cycling cancer cells undamaged. Consequently, slow-cycling cells are enriched upon drug therapy and can remain in the body for years until acquiring proliferative potential that triggers cancer relapse. Here we overview the molecular mechanisms of slow-cycling cells that underlie treatment resistance in melanoma. Three main areas of molecular reprogramming are discussed that mediate slow cycling and treatment resistance. First, a low microphthalmia-associated transcription factor (MITF) dedifferentiated state activates various signaling pathways. This includes WNT5A, EGFR, as well as other signaling activators, such as AXL and NF-κB. Second, the chromatin-remodeling factor Jumonji/ARID domain-containing protein 1B (JARID1B, KDM5B ) orchestrates and maintains slow cycling and treatment resistance in a small subpopulation of melanoma cells. Finally, a shift in metabolic state toward oxidative phosphorylation has been demonstrated to regulate treatment resistance in slow-cycling cells. Elucidation of the underlying processes of slow cycling and its utilization by melanoma cells may reveal new vulnerable characteristics as therapeutic targets. Moreover, combining current therapies with targeting slow-cycling subpopulations of melanoma cells may allow for more durable and greater treatment responses. Mol Cancer Ther; 16(6); 1002-9. ©2017 AACR . ©2017 American Association for Cancer Research.
DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov
Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less
The reliability-quality relationship for quality systems and quality risk management.
Claycamp, H Gregg; Rahaman, Faiad; Urban, Jason M
2012-01-01
Engineering reliability typically refers to the probability that a system, or any of its components, will perform a required function for a stated period of time and under specified operating conditions. As such, reliability is inextricably linked with time-dependent quality concepts, such as maintaining a state of control and predicting the chances of losses from failures for quality risk management. Two popular current good manufacturing practice (cGMP) and quality risk management tools, failure mode and effects analysis (FMEA) and root cause analysis (RCA) are examples of engineering reliability evaluations that link reliability with quality and risk. Current concepts in pharmaceutical quality and quality management systems call for more predictive systems for maintaining quality; yet, the current pharmaceutical manufacturing literature and guidelines are curiously silent on engineering quality. This commentary discusses the meaning of engineering reliability while linking the concept to quality systems and quality risk management. The essay also discusses the difference between engineering reliability and statistical (assay) reliability. The assurance of quality in a pharmaceutical product is no longer measured only "after the fact" of manufacturing. Rather, concepts of quality systems and quality risk management call for designing quality assurance into all stages of the pharmaceutical product life cycle. Interestingly, most assays for quality are essentially static and inform product quality over the life cycle only by being repeated over time. Engineering process reliability is the fundamental concept that is meant to anticipate quality failures over the life cycle of the product. Reliability is a well-developed theory and practice for other types of manufactured products and manufacturing processes. Thus, it is well known to be an appropriate index of manufactured product quality. This essay discusses the meaning of reliability and its linkages with quality systems and quality risk management.
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.
1990-01-01
The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.
Investigation of reliability attributes and accelerated stress factors on terrestrial solar cells
NASA Technical Reports Server (NTRS)
Prince, J. L.; Lathrop, J. W.
1979-01-01
The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, open circuit voltage, and output power, voltage, and current at the maximum power point. Incorporated in the report are the distributions of the prestress electrical data for all cell types. Data were also obtained on cell series and shunt resistance.
Computer-aided design development transition for IPAD environment
NASA Technical Reports Server (NTRS)
Owens, H. G.; Mock, W. D.; Mitchell, J. C.
1980-01-01
The relationship of federally sponsored computer-aided design/computer-aided manufacturing (CAD/CAM) programs to the aircraft life cycle design process, an overview of NAAD'S CAD development program, an evaluation of the CAD design process, a discussion of the current computing environment within which NAAD is developing its CAD system, some of the advantages/disadvantages of the NAAD-IPAD approach, and CAD developments during transition into the IPAD system are discussed.
NUMBER AND TYPE OF OPERATING CYCLES FOR THE FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, D. C.
1969-05-15
The choice of materials and other vessel design decisions necessary to provide the desired life expectancy for the FTR vessel are partially dependent upon estimates of the number and type of reactor shutdowns and startups which may be anticipated. Current estimates of these so-called "cycles" are given, including scram frequency, experimental outage frequency, standard shutdowns and startups, and rapid controlled shutdowns. Also discussed are abnormal heatup or cooldown, and tentative goals for temperature controls. MTR, ETR, and typical PRTR operating histories are tabulated.
Applications of a Wage-Turnover Model to the Shipbuilding Industry.
1980-02-08
wage differential leaving a firm indifferent between the two groups is 1 3 J2 Because older workers have a shorter work- life expectancy, their rate...discussion of the relationship between current and future wage rates over a worker’s life cycle, see Joanne Salop and Steven Salop, "Self Selection...existing wage scales. 24- F4or an optimal solution to the problem of life -cycle wage Fates from the perspective of the firm, Information is needed on
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Exploration of various types of power plant cycles for nuclear propelled aircraft has been continued during this quarter. The principal current objective of the project is the development of information which will make an intelligent choice of the basic power plant cycle possible. It is still hoped that this choice can be made late in 1950. The survey studies which have been under way for several months continued during the quarter. These consist of analyses and rough preliminary layouts for various types of aircraft, using each of the several basic cycles which have been seriously considered for each of themore » three phases of development. Although it is still extremely premature to discuss the relative merits of the various cycles, the information so for developed discloses some cycle differences which may, if confirmed by additional work, be significant. In this respect, there have been no recent major changes in the comparative standings of the cycles.« less
Vishne, Tali; Misgav, Sagit; Bunzel, Michael E
2008-05-01
The relationship between menstrual cycle and obsessive-compulsive disorder (OCD) has been documented in the past and is related to sexual hormone changes. In the ultra-orthodox Jewish population menstrual bleeding is associated both with meticulous rituals of cleanliness and with stressful meanings related to sin, impurity and punishment. Those aspects of the menstrual cycle can be related to specific OCD symptoms among ultra-orthodox women. The current study presents three cases related to the development of obsessive-compulsive symptoms in relation to the menstrual cycle among ultra-orthodox women, and discusses the biological and social-cultural basis of the disorder.
NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area
NASA Astrophysics Data System (ADS)
Entin, J. K.
2004-05-01
Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lihong, E-mail: huang.lihong@foxmail.com; Min, Zhonghua; Zhang, Qinyong
2015-06-15
Highlights: • We achieved a reversible capacity of 415 mAh g{sup −1} after 30 cycles for α-Fe{sub 2}O{sub 3} electrode in Li-ion battery. • Better electrical performance was obtained when using Cu foam as current collector. • As current collector for α-Fe{sub 2}O{sub 3} electrode, Cu foam is better than Cu foil and Ni foam. • It could avoid the active materials falling off from the current collector during cycling. • It is owe to smaller surface film resistance, charge-transfer resistance, etc. - Abstract: In this work, we reported a simple synthesis of submicron α-Fe{sub 2}O{sub 3} with rod-like structure.more » When it evaluated as electrode material for lithium ion battery, comparing with Cu foil and Ni foam, the as-prepared α-Fe{sub 2}O{sub 3} electrodes with Cu foam current collector exhibited higher reversible capacity of 415 mAh g{sup −1} and more stable cycle performance after 30 cycles. Comparative researches on electrochemical performances of the α-Fe{sub 2}O{sub 3} employing different current collectors (Cu foil, Cu foam and Ni foam) were discussed here in detail. According to our results, the improved electrochemical behaviors of α-Fe{sub 2}O{sub 3} electrode with Cu foam current collector could be attributed to its particular electrode structure, i.e., porous, good electric conductivity, closed adhere to the electrode materials. Just because of that, it may make sure an easy accessibility of electrolytes and fast transportation of lithium ions, importantly, it could avoid the active materials falling off from the current collector on account of volume expansion.« less
Single-cycle adenovirus vectors in the current vaccine landscape.
Barry, Michael
2018-02-01
Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.
Back to the future: personal digital assistants in nursing education.
McLeod, Renee P; Mays, Mary Z
2008-12-01
This article provides an overview of the current state of the art for incorporating personal digital assistants (PDAs) into nursing education. The development of PDA technology and the lessons learned by educators integrating PDA technology into nursing curricula are described. The current cycle of PDA evolution is discussed and contrasted with a proposed model for maximizing the impact of PDAs on technological innovation in nursing education and practice.
The Developmental Approach to Child and Adult Health
Conti, Gabriella; Heckman, James J.
2013-01-01
Pediatricians should consider the costs and benefits of preventing rather than treating childhood diseases. We present an integrated developmental approach to child and adult health that considers the costs and benefits of interventions over the life cycle. We suggest policies to promote child health that are currently outside the boundaries of conventional pediatrics. We discuss current challenges to the field and suggest avenues for future research. PMID:23547057
Focus on flaviviruses: current and future drug targets.
Geiss, Brian J; Stahla, Hillary; Hannah, Amanda M; Gari, Amanda M; Keenan, Susan M
2009-05-01
Infection by mosquito-borne flaviviruses (family Flaviviridae) is increasing in prevalence worldwide. The vast global, social and economic impact due to the morbidity and mortality associated with the diseases caused by these viruses necessitates therapeutic intervention. There is currently no effective clinical treatment for any flaviviral infection. Therefore, there is a great need for the identification of novel inhibitors to target the virus life cycle. In this article, we discuss structural and nonstructural viral proteins that are the focus of current target validation and drug discovery efforts. Both inhibition of essential enzymatic activities and disruption of necessary protein–protein interactions are considered. In addition, we address promising new targets for future research. As our molecular and biochemical understanding of the flavivirus life cycle increases, the number of targets for antiviral therapeutic discovery grows and the possibility for novel drug discovery continues to strengthen.
Observing Human-induced Linkages between Urbanization and Earth's Climate System
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Jin, Menglin
2004-01-01
Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.
Stones, Catherine; Cole, Frances
2014-01-01
The persistent pain cycle diagram is a common feature of pain management literature. but how is it designed and is it fulfilling its potential in terms of providing information to motivate behavioral change? This article examines on-line persistent pain diagrams and critically discusses their purpose and design approach. By using broad information design theories by Karabeg and particular approaches to dialogic visual communications in business, this article argues the need for motivational as well as cognitive diagrams. It also outlines the design of a new persistent pain cycle that is currently being used with chronic pain patients in NHS Bradford, UK. This new cycle adopts and then visually extends an established verbal metaphor within acceptance and commitment therapy (ACT) in an attempt to increase the motivational aspects of the vicious circle diagram format.
Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James
2003-01-01
The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to objectively summarize what progress has been made at MSFC in enabling CFD as an injector design tool.
Behavioral Concepts in the Analysis of Chronic Pain Syndromes.
ERIC Educational Resources Information Center
Keefe, Francis J.; Gil, Karen M.
1986-01-01
Reviews behavioral and psychological concepts currently applied to the assessment and treatment of chronic pain syndromes, including operant conditioning and psychophysiologic concepts such as the stress-pain hypothesis, the pain-muscle spasm-pain cycle, and the neuromuscular pain model. Discusses relaxation and biofeedback training and concepts…
Nillni, Yael I; Rohan, Kelly J; Zvolensky, Michael J
2012-12-01
The current study examined the interactive effects of anxiety sensitivity (AS; fear of anxiety and anxiety-related sensations) and menstrual cycle phase (premenstrual phase vs. follicular phase) on panic-relevant responding (i.e., cognitive and physical panic symptoms, subjective anxiety, and skin conductance level). Women completed a baseline session and underwent a 3-min 10 % CO(2)-enriched air biological challenge paradigm during her premenstrual and follicular menstrual cycle phases. Participants were 55 women with no current or past history of panic disorder recruited from the general community (M (age) = 26.18, SD = 8.9) who completed the biological challenge during both the premenstrual and follicular cycle phases. Results revealed that women higher on AS demonstrated increased cognitive panic symptoms in response to the challenge during the premenstrual phase as compared to the follicular phase, and as compared to women lower on AS assessed in either cycle phase. However, the interaction of AS and menstrual cycle phase did not significantly predict physical panic attack symptoms, subjective ratings of anxiety, or skin conductance level in response to the challenge. Results are discussed in the context of premenstrual exacerbations of cognitive, as opposed to physical, panic attack symptoms for high AS women, and the clinical implications of these findings.
Autonomous Precision Landing and Hazard Avoidance Technology (ALHAT) Project Status as of May 2010
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Epp, Chirold D.; Robertson, Edward A.
2010-01-01
This paper includes the current status of NASA s Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) Project. The ALHAT team has completed several flight tests and two major design analysis cycles. These tests and analyses examine terrain relative navigation sensors, hazard detection and avoidance sensors and algorithms, and hazard relative navigation algorithms, and the guidance and navigation system using these ALHAT functions. The next flight test is scheduled for July 2010. The paper contains results from completed flight tests and analysis cycles. ALHAT system status, upcoming tests and analyses is also addressed. The current ALHAT plans as of May 2010 are discussed. Application of the ALHAT system to landing on bodies other than the Moon is included
Studies of thermochemical water-splitting cycles
NASA Technical Reports Server (NTRS)
Remick, R. J.; Foh, S. E.
1980-01-01
Higher temperatures and more isothermal heat profiles of solar heat sources are developed. The metal oxide metal sulfate class of cycles were suited for solar heat sources. Electrochemical oxidation of SO2 and thermochemical reactions are presented. Electrolytic oxidation of sulfur dioxide in dilute sulfuric acid solutions were appropriate for metal oxide metal sulfate cycles. The cell voltage at workable current densities required for the oxidation of SO2 was critical to the efficient operation of any metal oxide metal sulfate cycle. A sulfur dioxide depolarized electrolysis cell for the splitting of water via optimization of the anode reaction is discussed. Sulfuric acid concentrations of 30 to 35 weight percent are preferred. Platinized platinum or smooth platinum gave the best anode kinetics at a given potential of the five materials examined.
Fei, Hailong; Feng, Wenjing; Xu, Tan
2017-02-15
It is important to discover new, cheap and environmental friendly electrode materials with high capacity and good cycling stability for lithium and sodium-ion batteries. Zinc 1,4-naphthalenedicarboxylate was firstly found to be stable anode materials for lithium and sodium-ion batteries. The discharge capacity can be up to 468.9mAhg -1 after 100 cycles at a current density of 100mAg -1 for lithium-ion batteries, while the second discharge capacity of 320.7mAhg -1 was achieved as anode materials for sodium-ion batteries. A possible electrochemical reaction mechanism was discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Direct conversion of nuclear radiation energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.
1970-01-01
This book presents a comprehensive study of methods for converting nuclear radiationi directly without resorting to a heat cycle. The concepts discussed primarily involve direct collection of charged particles released by radioisotopes and by nuclear and thermonuclear reactors. Areas considered include basic energy conversion, charged-particle transport theory, secondary-electron emission, and leakage currents and associated problems. Applications to both nuclear instrumentaion and power sources are discussed. Problems are also included as an aid to the reader or for classroom use.
Magnetic storm effects in electric power systems and prediction needs
NASA Technical Reports Server (NTRS)
Albertson, V. D.; Kappenman, J. G.
1979-01-01
Geomagnetic field fluctuations produce spurious currents in electric power systems. These currents enter and exit through points remote from each other. The fundamental period of these currents is on the order of several minutes which is quasi-dc compared to the normal 60 Hz or 50 Hz power system frequency. Nearly all of the power systems problems caused by the geomagnetically induced currents result from the half-cycle saturation of power transformers due to simultaneous ac and dc excitation. The effects produced in power systems are presented, current research activity is discussed, and magnetic storm prediction needs of the power industry are listed.
Roy, Debmalya; Sheng, Gao Ying; Herve, Semukunzi; Carvalho, Evandro; Mahanty, Arpan; Yuan, Shengtao; Sun, Li
2017-05-01
A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
New technologies for space avionics
NASA Technical Reports Server (NTRS)
Aibel, David W.; Dingus, Peter; Lanciault, Mark; Hurdlebrink, Debra; Gurevich, Inna; Wenglar, Lydia
1994-01-01
This report reviews a 1994 effort that continued 1993 investigations into issues associated with the definition of requirements, with the practice concurrent engineering and rapid prototyping in the context of the development of a prototyping of a next-generation reaction jet driver controller. This report discusses lessons learned, the testing of the current prototype, the details of the current design, and the nature and performance of a mathematical model of the life cycle of a pilot operated valve solenoid.
Space charge tune shift, fast resonance traversal, and current limits in circular accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, G.H.
1996-06-01
Space charge tune shifts, fast resonance traversals, and current limits are important design issues for low energy, high power circular accelerators. Areas of interest are accumulator rings and fast cycling synchrotrons, and typical applications are for pulsed spallation neutron sources, heavy ion fusion storage ring drivers, and booster injectors for high energy proton and ion facilities. Aspects of the three topics are discussed in the paper. {copyright} {ital 1996 American Institute of Physics.}
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Matera, Robert; Saif, Muhammad Wasif
2017-09-01
Pancreatic adenocarcinoma is a devastating malignancy with an extremely poor prognosis. These tumors progress rapidly and somewhat silently with few specific symptoms and are relatively resistant to chemotherapeutic agents. Many agents, including cell cycle inhibitors, are under development for the treatment of this cancer for which there are disappointingly few treatment options. Areas covered: Here we outline the existing approved treatments for advanced pancreatic disease and discuss a range of novel therapies currently under development including cell cycle inhibitors, stromal modifiers and conjugated therapies. We also describe the current state of the pancreatic cancer therapeutics market both past and future. Expert opinion: Despite the recent explosion of novel therapies with an array of unique targets, the core treatment of pancreatic cancer still with traditional cytotoxic agents with a few exceptions. However, as these novel treatments move through the pipeline, we are hopeful that there will soon be a number of effective options for patients with advanced pancreatic cancer.
Modeling the heliospheric current sheet: Solar cycle variations
NASA Astrophysics Data System (ADS)
Riley, Pete; Linker, J. A.; Mikić, Z.
2002-07-01
In this report we employ an empirically driven, three-dimensional MHD model to explore the evolution of the heliospheric current sheet (HCS) during the course of the solar cycle. We compare our results with a simpler ``constant-speed'' approach for mapping the HCS outward into the solar wind to demonstrate that dynamic effects can substantially deform the HCS in the inner heliosphere (<~5 AU). We find that these deformations are most pronounced at solar minimum and become less significant at solar maximum, when interaction regions are less effective. Although solar maximum is typically associated with transient, rather than corotating, processes, we show that even under such conditions, the HCS can maintain its structure over the course of several solar rotations. While the HCS may almost always be topologically equivalent to a ``ballerina skirt,'' we discuss an interval approaching the maximum of solar cycle 23 (Carrington rotations 1960 and 1961) when the shape would be better described as ``conch shell''-like. We use Ulysses magnetic field measurements to support the model results.
How reward and emotional stimuli induce different reactions across the menstrual cycle
Sakaki, Michiko; Mather, Mara
2012-01-01
Despite widespread belief that moods are affected by the menstrual cycle, researchers on emotion and reward have not paid much attention to the menstrual cycle until recently. However, recent research has revealed different reactions to emotional stimuli and to rewarding stimuli across the different phases of the menstrual cycle. The current paper reviews the emerging literature on how ovarian hormone fluctuation during the menstrual cycle modulates reactions to emotional stimuli and to reward. Behavioral and neuroimaging studies in humans suggest that estrogen and progesterone have opposing influences. That is, it appears that estrogen enhances reactions to reward, but progesterone counters the facilitative effects of estrogen and decreases reactions to rewards. In contrast, reactions to emotionally arousing stimuli (particularly negative stimuli) appear to be decreased by estrogen but enhanced by progesterone. Potential factors that can modulate the effects of the ovarian hormones (e.g., an inverse quadratic function of hormones’ effects; the structural changes of the hippocampus across the menstrual cycle) are also discussed. PMID:22737180
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-04
... Quality and Compliance Throughout the Product Life Cycle in a Global Regulatory Environment AGENCY: Food... Environment.'' The conference will cover current issues affecting the industry as well as explore strategies... improvement of safe and effective medical products. The conference establishes a unique forum to discuss the...
Figueroa, Rosa Isabel; Estrada, Marta; Garcés, Esther
2018-03-01
In coastal and offshore waters, Harmful Algal Blooms (HABs) currently threaten the well-being of coastal countries. These events, which can be localized or involve wide-ranging areas, pose risks to human health, marine ecosystems, and economic resources, such as tourism, fisheries, and aquaculture. Dynamics of HABs vary from one site to another, depending on the hydrographic and ecological conditions. The challenge in investigating HABs is that they are caused by organisms from multiple algal classes, each with its own unique features, including different life histories. The complete algal life cycle has been determined in <1% of the described species, although elucidation of the life cycles of bloom-forming species is essential in developing preventative measures. The knowledge obtained thus far has confirmed the complexity of the algal life cycle, which is composed of discrete life stages whose morphology, ecological niche (plankton/benthos), function, and lifespan vary. The factors that trigger transitions between the different stages in nature are mostly unknown, but it is clear that an understanding of this process provides the key to effectively forecasting bloom recurrence, maintenance, and decline. Planktonic stages constitute an ephemeral phase of the life cycle of most species whereas resistant, benthic stages enable a species to withstand adverse conditions for prolonged periods, thus providing dormant reservoirs for eventual blooms and facilitating organismal dispersal. Here we review current knowledge of the life cycle strategies of major groups of HAB producers in marine and brackish waters. Rather than providing a comprehensive discussion, the objective was to highlight several of the research milestones that have changed our understanding of the plasticity and frequency of the different life cycle stages as well as the transitions between them. We also discuss the relevance of benthic and planktonic forms and their implications for HAB dynamics. Copyright © 2018. Published by Elsevier B.V.
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Carter-Harris, Lisa; Tan, Andy S L; Salloum, Ramzi G; Young-Wolff, Kelly C
2016-11-01
In 2013, the USPSTF issued a Grade B recommendation that long-term current and former smokers receive lung cancer screening. Shared decision-making is important for individuals considering screening, and patient-provider discussions an essential component of the process. We examined prevalence and predictors of lung cancer screening discussions pre- and post-USPSTF guidelines. Data were obtained from two cycles of the Health Information National Trends Survey (2012; 2014). The analyzed sample comprised screening-eligible current and former smokers with no personal history of lung cancer (n=746 in 2012; n=795 in 2014). Descriptive and multiple logistic regression analyses were conducted; patient-reported discussion about lung cancer screening with provider was the outcome of interest. Contrary to expectations, patient-provider discussions about lung cancer screening were more prevalent pre-guideline, but overall patient-provider discussions were low in both years (17% in 2012; 10% in 2014). Current smokers were more likely to have had a discussion than former smokers. Significant predictors of patient-provider discussions included family history of cancer and having healthcare coverage. The prevalence of patient-provider discussions about lung cancer screening is suboptimal. There is a critical need for patient and provider education about shared decision-making and its importance in cancer screening decisions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The seasonal-cycle climate model
NASA Technical Reports Server (NTRS)
Marx, L.; Randall, D. A.
1981-01-01
The seasonal cycle run which will become the control run for the comparison with runs utilizing codes and parameterizations developed by outside investigators is discussed. The climate model currently exists in two parallel versions: one running on the Amdahl and the other running on the CYBER 203. These two versions are as nearly identical as machine capability and the requirement for high speed performance will allow. Developmental changes are made on the Amdahl/CMS version for ease of testing and rapidity of turnaround. The changes are subsequently incorporated into the CYBER 203 version using vectorization techniques where speed improvement can be realized. The 400 day seasonal cycle run serves as a control run for both medium and long range climate forecasts alsensitivity studies.
NASA Technical Reports Server (NTRS)
Pesnell, William Dean
2012-01-01
Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.
Cell Cycle Regulation of Stem Cells by MicroRNAs.
Mens, Michelle M J; Ghanbari, Mohsen
2018-06-01
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application.
Hydrogen-fueled postal vehicle performance evaluation
NASA Technical Reports Server (NTRS)
Hall, R. A.
1979-01-01
Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.
A mathematical approach for evaluating nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Leibecki, H. F.
1986-01-01
A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.
Lithium-Polymer battery based on polybithiophene as cathode material
NASA Astrophysics Data System (ADS)
Chen, J.; Wang, J.; Wang, C.; Too, C. O.; Wallace, G. G.
Stainless-steel mesh electrodes coated with polybithiophene, obtained by electrochemical polymerization (constant potential and constant current), have been investigated as cathode materials in a lithium-polybithiophene rechargeable battery by cyclic voltammetry, electrochemical impedance spectroscopy and long-term charge-discharge cycling process. The effects of different growth methods on the surface morphology of the films and the charge-discharge capacity are discussed in detail. The results show that polybithiophene-hexafluorophosphate is a very promising cathode material for manufacturing lithium-polymer rechargeable batteries with a highly stable discharge capacity of 81.67 mAh g -1 after 50 cycles.
Recent studies of tire braking performance. [for aircraft
NASA Technical Reports Server (NTRS)
Mccarty, J. L.; Leland, T. J. W.
1973-01-01
The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.
von Dohlen, C D; Gill, D E
1989-02-01
Two divergent life cycles associated with different elevations and latitudes have been documented for the witch-hazel leaf gall aphid, Hormaphis hamamelidis. At low elevation in northern Virginia, the aphid had seven distinct generations alternating between the primary host, witchhazel (Hamamelis virginiana), and a secondary host, river birch (Betula nigra). These findings confirm the original published life cycle description for the same locality. A second, abbreviated life cycle consisting of only three generations restricted to witch-hazel was discovered at high elevation (1000 m) in north central and northwestern Virginia. Aphids of both life cycles were sympatric at a middle elevation site. The life cycles and morphology suggest that the two forms are separate species. Although monoecious life cycles on primary hosts in aphids generally are thought to be ancestral to complex host-alternating ones, it is certainly possible that monoecious cycles are sometimes secondarily derived from complex cycles. By constructing a preliminary phylogeny of the described species in the tribe Hormaphidini, we propose that the abbreviated life cycle is derived from the complex one in the case of these witchhazel gall aphids. Our findings are discussed in the context of current theory regarding the evolutionary stability of complex life cycles.
ERIC Educational Resources Information Center
Beckmann, Jennifer; Weber, Peter
2016-01-01
Purpose: The purpose of this study is to introduce a virtual collaborative learning setting called "Net Economy", which we established as part of an international learning network of currently six universities, and present our approach to continuously improve the course in each cycle. Design/ Methodology/Approach: Using the community of…
The sleep–wake cycle and Alzheimer’s disease: what do we know?
Lim, Miranda M.; Gerstner, Jason R.; Holtzman, David M.
2014-01-01
SUMMARY Sleep–wake disturbances are a highly prevalent and often disabling feature of Alzheimer’s disease (AD). A cardinal feature of AD includes the formation of amyloid plaques, associated with the extracellular accumulation of the amyloid-β (Aβ) peptide. Evidence from animal and human studies suggests that Aβ pathology may disrupt the sleep–wake cycle, in that as Aβ accumulates, more sleep–wake fragmentation develops. Furthermore, recent research in animal and human studies suggests that the sleep–wake cycle itself may influence Alzheimer’s disease onset and progression. Chronic sleep deprivation increases amyloid plaque deposition, and sleep extension results in fewer plaques in experimental models. In this review geared towards the practicing clinician, we discuss possible mechanisms underlying the reciprocal relationship between the sleep–wake cycle and AD pathology and behavior, and present current approaches to therapy for sleep disorders in AD. PMID:25405649
The mysterious human epidermal cell cycle, or an oncogene-induced differentiation checkpoint
Gandarillas, Alberto
2012-01-01
Fifteen years ago, we reported that proto-oncogene MYC promoted differentiation of human epidermal stem cells, a finding that was surprising to the MYC and the skin research communities. MYC was one of the first human oncogenes identified, and it had been strongly associated with proliferation. However, it was later shown that MYC could induce apoptosis under low survival conditions. Currently, the notion that MYC promotes epidermal differentiation is widely accepted, but the cell cycle mechanisms that elicit this function remain unresolved. We have recently reported that keratinocytes respond to cell cycle deregulation and DNA damage by triggering terminal differentiation. This mechanism might constitute a homeostatic protection face to cell cycle insults. Here, I discuss recent and not-so-recent evidence suggesting the existence of a largely unexplored oncogene-induced differentiation response (OID) analogous to oncogene-induced apoptosis (OIA) or senescence (OIS). In addition, I propose a model for the role of the cell cycle in skin homeostasis maintenance and for the dual role of MYC in differentiation. PMID:23114621
Yiallourou, Stephanie R; Wallace, Euan M; Miller, Suzanne L; Horne, Rosemary S C
2016-04-01
Intrauterine growth restriction (IUGR) complicates 5-10% of pregnancies and is associated with increased risk of preterm birth, mortality and neurodevelopmental delay. The development of sleep and cardiovascular control are closely coupled and IUGR is known to alter this development. In the long-term, IUGR is associated with altered sleep and an increased risk of hypertension in adulthood. Melatonin plays an important role in the sleep-wake cycle. Experimental animal studies have shown that melatonin therapy has neuroprotective and cardioprotective effects in the IUGR fetus. Consequently, clinical trials are currently underway to assess the short and long term effects of antenatal melatonin therapy in IUGR pregnancies. Given melatonin's role in sleep regulation, this hormone could affect the developing infants' sleep-wake cycle and cardiovascular function after birth. In this review, we will 1) examine the role of melatonin as a therapy for IUGR pregnancies and the potential implications on sleep and the cardiovascular system; 2) examine the development of sleep-wake cycle in fetal and neonatal life; 3) discuss the development of cardiovascular control during sleep; 4) discuss the effect of IUGR on sleep and the cardiovascular system and 5) discuss the future implications of melatonin therapy in IUGR pregnancies. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb
Sánchez-Herrera, P.; Balaguer, C.; Jardón, A.
2018-01-01
Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed. PMID:29707189
Future prospects of therapeutic clinical trials in acute myeloid leukemia
Khan, Maliha; Mansoor, Armaghan-e-Rehman; Kadia, Tapan M
2017-01-01
Acute myeloid leukemia (AML) is a markedly heterogeneous hematological malignancy that is most commonly seen in elderly adults. The response to current therapies to AML is quite variable, and very few new drugs have been recently approved for use in AML. This review aims to discuss the issues with current trial design for AML therapies, including trial end points, patient enrollment, cost of drug discovery and patient heterogeneity. We also discuss the future directions in AML therapeutics, including intensification of conventional therapy and new drug delivery mechanisms; targeted agents, including epigenetic therapies, cell cycle regulators, hypomethylating agents and chimeric antigen receptor T-cell therapy; and detail of the possible agents that may be incorporated into the treatment of AML in the future. PMID:27771959
Cultural perceptions and practices around menarche and adolescent menstruation in the United States.
Stubbs, Margaret L
2008-01-01
This overview details the persistence of negative characterizations of the menstrual cycle as a feature of the current cultural context in which girls begin menstrual life in the United States. In addition, research on girls' current menstrual attitudes and experiences within this context are reviewed. Current research suggests that girls are not very knowledgeable about menstruation, and that menstrual education continues to provide girls with mixed messages, such as: menstruation is a normal, natural event, but it should be hidden. Girls' attitudes and expectations about menstruation are negatively biased and have been found to contribute to self-objectification, body shame, and lack of agency in sexual decision-making. Although preparation has been found to be associated with more positive menarcheal and menstrual experiences, specificity about what constitutes "good" preparation has not been well articulated. Implications for promoting the menstrual cycle among young girls as a vital sign in service of monitoring their health are discussed.
Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong
2016-11-30
Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.
2005-01-01
Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Treatment of early-stage Hodgkin lymphoma.
Engert, Andreas; Raemaekers, John
2016-07-01
Hodgkin lymphoma (HL) has become one of the best curable malignancies today. This is particularly true for patients with early-stage disease. Today, most patients in this risk group are treated with a combination of chemotherapy followed by small-field radiotherapy. More recent clinical trials such as the German Hodgkin Study Group (GHSG) HD10 study demonstrated, that even two cycles of ABVD followed by 20 Gy involved-field radiation therapy (IF-RT) are sufficient and result in more than 90% of patients being cured. The current treatment for early unfavorable patients is either four cycles of ABVD plus 30 Gy IF-RT or two cycles of BEACOPPbaseline followed by two cycles of ABVD plus IF-RT. Here, the European Organization for Research and Treatment of Cancer (EORTC) demonstrated that in positron emission tomography (PET)-positive patients after two cycles of ABVD, treatment switched to two cycles of BEACOPPbaseline plus radiotherapy results in significantly improved outcomes. Other aspects including attempts to further reduce intensity of treatment will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling
Sennett, Rachel; Rendl, Michael
2012-01-01
Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. PMID:22960356
Was Earth ever infected by martian biota? Clues from radioresistant bacteria.
Pavlov, Anatoly K; Kalinin, Vitaly L; Konstantinov, Alexei N; Shelegedin, Vladimir N; Pavlov, Alexander A
2006-12-01
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.
Mayer, Sandra V.; Tesh, Robert B.; Vasilakis, Nikos
2016-01-01
Arthropod-borne viruses (arboviruses) present a substantial threat to human and animal health worldwide. Arboviruses can cause a variety of clinical presentations that range from mild to life threatening symptoms. Many arboviruses are present in nature through two distinct cycles, the urban and sylvatic cycle that are maintained in complex biological cycles. In this review we briefly discuss the factors driving the emergence of arboviruses, such as the anthropogenic aspects of unrestrained human population growth, economic expansion and globalization. Also the important aspects of viruses and vectors in the occurrence of arboviruses epidemics. The focus of this review will be on dengue, zika and chikungunya viruses, particularly because these viruses are currently causing a negative impact on public health and economic damage around the world. PMID:27876643
Leenheer, Andrew Jay; Jungjohann, Katherine Leigh; Zavadil, Kevin Robert; ...
2015-03-18
Electrodeposited metallic lithium is an ideal negative battery electrode, but nonuniform microstructure evolution during cycling leads to degradation and safety issues. A better understanding of the Li plating and stripping processes is needed to enable practical Li-metal batteries. Here we use a custom microfabricated, sealed liquid cell for in situ scanning transmission electron microscopy (STEM) to image the first few cycles of lithium electrodeposition/dissolution in liquid aprotic electrolyte at submicron resolution. Cycling at current densities from 1 to 25 mA/cm 2 leads to variations in grain structure, with higher current densities giving a more needle-like, higher surface area deposit. Themore » effect of the electron beam was explored, and it was found that, even with minimal beam exposure, beam-induced surface film formation could alter the Li microstructure. The electrochemical dissolution was seen to initiate from isolated points on grains rather than uniformly across the Li surface, due to the stabilizing solid electrolyte interphase surface film. As a result, we discuss the implications for operando STEM liquid-cell imaging and Li-battery applications.« less
The physics behind the larger scale organization of DNA in eukaryotes.
Emanuel, Marc; Radja, Nima Hamedani; Henriksson, Andreas; Schiessel, Helmut
2009-07-01
In this paper, we discuss in detail the organization of chromatin during a cell cycle at several levels. We show that current experimental data on large-scale chromatin organization have not yet reached the level of precision to allow for detailed modeling. We speculate in some detail about the possible physics underlying the larger scale chromatin organization.
MEMS Stirling Cooler Development Update
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Wesolek, Danielle
2003-01-01
This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.
Overview of recent aero-optics flight tests
NASA Technical Reports Server (NTRS)
Otten, L. J., III
1980-01-01
A chronological overview of aero-optics test flights is presented highlighting the objectives and conclusions from the tests. Flight tests performed in coordination with the PRESS reentry observation missions and the ALL Cycle 2 laser propagation and tracking demonstrations are described addressing the identification and quantification of distortion phenomena. Finally, current aero-optics flight investigations of an atmospheric turbulence probe are briefly discussed.
Starspot detection and properties
NASA Astrophysics Data System (ADS)
Savanov, I. S.
2013-07-01
I review the currently available techniques for the starspots detection including the one-dimensional spot modelling of photometric light curves. Special attention will be paid to the modelling of photospheric activity based on the high-precision light curves obtained with space missions MOST, CoRoT, and Kepler. Physical spot parameters (temperature, sizes and variability time scales including short-term activity cycles) are discussed.
ERIC Educational Resources Information Center
Bourbeau-Walker, Micheline
1984-01-01
It is proposed that while the sciences have progressed steadily, language teaching methods have swung like a pendulum between two broad approaches: formal and functional. The history of this pattern is outlined, current practices are discussed, and the possibility of escaping from this polarizing cycle is examined. (MSE)
Solar Effects of Low-Earth Orbit objects in ORDEM 3.0
NASA Technical Reports Server (NTRS)
Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.
2014-01-01
Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.
Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L
2012-07-17
Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.
Dynamic array processing for computationally intensive expert systems in CLIPS
NASA Technical Reports Server (NTRS)
Athavale, N. N.; Ragade, R. K.; Fenske, T. E.; Cassaro, M. A.
1990-01-01
This paper puts forth an architecture for implementing a loop for advanced data structure of arrays in CLIPS. An attempt is made to use multi-field variables in such an architecture to process a set of data during the decision making cycle. Also, current limitations on the expert system shells are discussed in brief in this paper. The resulting architecture is designed to circumvent the current limitations set by the expert system shell and also by the operating environment. Such advanced data structures are needed for tightly coupling symbolic and numeric computation modules.
Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Brown, T. M.; Smith, Norm
1999-01-01
Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.
An integrative process model of leadership: examining loci, mechanisms, and event cycles.
Eberly, Marion B; Johnson, Michael D; Hernandez, Morela; Avolio, Bruce J
2013-09-01
Utilizing the locus (source) and mechanism (transmission) of leadership framework (Hernandez, Eberly, Avolio, & Johnson, 2011), we propose and examine the application of an integrative process model of leadership to help determine the psychological interactive processes that constitute leadership. In particular, we identify the various dynamics involved in generating leadership processes by modeling how the loci and mechanisms interact through a series of leadership event cycles. We discuss the major implications of this model for advancing an integrative understanding of what constitutes leadership and its current and future impact on the field of psychological theory, research, and practice. © 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Kedous-Lebouc, A.; Errard, S.; Cornut, B.; Brissonneau, P.
1994-05-01
The excess loss and hysteresis response of electrical steel are measured and discussed in the case of trapezoidal field excitation similar to the current provided by a current commutation supply of a self-synchronous rotating machine. Three industrial non-oriented SiFe samples of different magnetic grades and thicknesses are tested using an automatic Epstein frame equipment. The losses and the unusual observed B( H) loops are analysed in terms of the rate of change of the field, the diffusion of the induction inside the sheet and by the calculation of the theoretical hysteresis cycles due to the eddy currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutt, M.; Nuclear Engineering Division
2010-05-25
The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of themore » Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.« less
Advanced transgenic approaches to understand alcohol-related phenotypes in animals.
Bilbao, Ainhoa
2013-01-01
During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.
Ambient temperature secondary lithium cells containing inorganic electrolyte
NASA Astrophysics Data System (ADS)
Schlaikjer, Carl R.
The history and current status of rechargeable lithium cells using electrolytes based on liquid sulfur dioxide are reviewed. Three separate approaches currently under development include lithium/lithium dithionite/carbon cells with a supporting electrolyte salt; lithium/cupric chloride cells using sulfur dioxide/lithium tetrachloroaluminate; and several adaptations of a lithium/carbon cell using sulfur dioxide/lithium tetrachloroaluminate in which the discharge reaction involves the incorporation of aluminum into the positive electrode. The latter two chemistries have been studied in prototype hardware. For AA size cells with cupric chloride, 157 Whr/1 at 24 W/1 for 230 cycles was reported. For AA size cells containing 2LiCl-CaCl2-4AlCl3-12SO2, energy densities as high as 265 Whr/liter and 100 Whr/kg have been observed, but, at 26 W/1, for only 10 cycles. The advantages and remaining problems are discussed.
Challenges/issues of NIS used in particle accelerator facilities
NASA Astrophysics Data System (ADS)
Faircloth, Dan
2013-09-01
High current, high duty cycle negative ion sources are an essential component of many high power particle accelerators. This talk gives an overview of the state-of-the-art sources used around the world. Volume, surface and charge exchange negative ion production processes are detailed. Cesiated magnetron and Penning surface plasma sources are discussed along with surface converter sources. Multicusp volume sources with filament and LaB6 cathodes are described before moving onto RF inductively coupled volume sources with internal and external antennas. The major challenges facing accelerator facilities are detailed. Beam current, source lifetime and reliability are the most pressing. The pros and cons of each source technology is discussed along with their development programs. The uncertainties and unknowns common to these sources are discussed. The dynamics of cesium surface coverage and the causes of source variability are still unknown. Minimizing beam emittance is essential to maximizing the transport of high current beams; space charge effects are very important. The basic physics of negative ion production is still not well understood, theoretical and experimental programs continue to improve this, but there are still many mysteries to be solved.
NASA Astrophysics Data System (ADS)
Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.
2008-01-01
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.
Wolfgang Schott (1905-1989): the founder of quantitative paleoceanography
NASA Astrophysics Data System (ADS)
Dullo, Wolf-Christian; Pfaffl, Fritz A.
2016-11-01
Wolfgang Schott is the pioneer in paleoceanography and has established this research field within marine geology. His papers from the first half of the twentieth century are all published in German; therefore, the most inspiring results are given here as original quotes in English, since they paved the ground for all scientific discussions on climate stratigraphy, past ocean currents, and glacial interglacial cycles.
An RF amplifier for ICRF studies in the LAPD
NASA Astrophysics Data System (ADS)
Martin, M. J.; Pribyl, P.; Gekelman, W.; Lucky, Z.
2015-12-01
An RF amplifier system was designed and is under construction at the UCLA Basic Plasma Science Facility. The system is designed to output 200 kW peak RMS power at 1% duty cycle with a 1 Hz rep rate at frequencies of 2-6 MHz. This paper describes the RF amplifier system with preliminary benchmarks. Current design challenges and future work are discussed.
New Technological Platform for the National Nuclear Energy Strategy Development
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Rachkov, V. I.
2017-12-01
The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.
Alternative approaches to Hsp90 modulation for the treatment of cancer
Hall, Jessica A; Forsberg, Leah K; Blagg, Brian SJ
2015-01-01
Hsp90 is responsible for the conformational maturation of newly synthesized polypeptides (client proteins) and the re-maturation of denatured proteins via the Hsp90 chaperone cycle. Inhibition of the Hsp90 N-terminus has emerged as a clinically relevant strategy for anticancer chemotherapeutics due to the involvement of clients in a variety of oncogenic pathways. Several immunophilins, co-chaperones and partner proteins are also necessary for Hsp90 chaperoning activity. Alternative strategies to inhibit Hsp90 function include disruption of the C-terminal dimerization domain and the Hsp90 heteroprotein complex. C-terminal inhibitors and Hsp90 co-chaperone disruptors prevent cancer cell proliferation similar to N-terminal inhibitors and destabilize client proteins without induction of heat shock proteins. Herein, current Hsp90 inhibitors, the chaperone cycle, and regulation of this cycle will be discussed. PMID:25367392
Seasonal and Interannual Variation of Currents and Water Properties off the Mid-East Coast of Korea
NASA Astrophysics Data System (ADS)
Park, J. H.; Chang, K. I.; Nam, S.
2016-02-01
Since 1999, physical parameters such as current, temperature, and salinity off the mid-east coast of Korea have been continuously observed from the long-term buoy station called `East-Sea Real-time Ocean monitoring Buoy (ESROB)'. Applying harmonic analysis to 6-year-long (2007-2012) depth-averaged current data from the ESROB, a mean seasonal cycle of alongshore currents, characterized by poleward current in average and equatorward current in summer, is extracted which accounts for 5.8% of the variance of 40 hours low-pass filtered currents. In spite of the small variance explained, a robust seasonality of summertime equatorward reversal typifies the low-passed alongshore currents along with low-density water. To reveal the dynamics underlying the seasonal variation, each term of linearized, depth-averaged momentum equations is estimated using the data from ESROB, adjacent tide gauge stations, and serial hydrographic stations. The result indicates that the reversal of alongshore pressure gradient is a major driver of the equatorward reversals in summer. The reanalysis wind product (MERRA) and satellite altimeter-derived sea surface height (AVISO) data show correlated features between positive (negative) wind stress curl and sea surface depression (uplift). Quantitative estimates reveal that the wind-stress curl accounts for 42% of alongshore sea level variation. Summertime low-density water originating from the northern coastal region is a footprint of the buoyancy-driven equatorward current. An interannual variation (anomalies from the mean seasonal cycle) of alongshore currents and its possible driving mechanisms will be discussed.
Dynamic ubiquitin signaling in cell cycle regulation
Gilberto, Samuel
2017-01-01
The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. PMID:28684425
Dynamic ubiquitin signaling in cell cycle regulation.
Gilberto, Samuel; Peter, Matthias
2017-08-07
The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.
The geobiological nitrogen cycle: From microbes to the mantle.
Zerkle, A L; Mikhail, S
2017-05-01
Nitrogen forms an integral part of the main building blocks of life, including DNA, RNA, and proteins. N 2 is the dominant gas in Earth's atmosphere, and nitrogen is stored in all of Earth's geological reservoirs, including the crust, the mantle, and the core. As such, nitrogen geochemistry is fundamental to the evolution of planet Earth and the life it supports. Despite the importance of nitrogen in the Earth system, large gaps remain in our knowledge of how the surface and deep nitrogen cycles have evolved over geologic time. Here, we discuss the current understanding (or lack thereof) for how the unique interaction of biological innovation, geodynamics, and mantle petrology has acted to regulate Earth's nitrogen cycle over geologic timescales. In particular, we explore how temporal variations in the external (biosphere and atmosphere) and internal (crust and mantle) nitrogen cycles could have regulated atmospheric pN 2 . We consider three potential scenarios for the evolution of the geobiological nitrogen cycle over Earth's history: two in which atmospheric pN 2 has changed unidirectionally (increased or decreased) over geologic time and one in which pN 2 could have taken a dramatic deflection following the Great Oxidation Event. It is impossible to discriminate between these scenarios with the currently available models and datasets. However, we are optimistic that this problem can be solved, following a sustained, open-minded, and multidisciplinary effort between surface and deep Earth communities. © 2017 The Authors Geobiology Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neises, T. W.; Wagner, M. J.; Gray, A. K.
Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less
El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia
2017-01-01
Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102
Chen, Jing; Dick, Richard; Lin, Jih-Gaw; Gu, Ji-Dong
2016-12-01
Nitrite-dependent anaerobic methane oxidation (n-damo) process uniquely links microbial nitrogen and carbon cycles. Research on n-damo bacteria progresses quickly with experimental evidences through enrichment cultures. Polymerase chain reaction (PCR)-based methods for detecting them in various natural ecosystems and engineered systems play a very important role in the discovery of their distribution, abundance, and biodiversity in the ecosystems. Important characteristics of n-damo enrichments were obtained and their key significance in microbial nitrogen and carbon cycles was investigated. The molecular methods currently used in detecting n-damo bacteria were comprehensively reviewed and discussed for their strengths and limitations in applications with a wide range of samples. The pmoA gene-based PCR primers for n-damo bacterial detection were evaluated and, in particular, several incorrectly stated PCR primer nucleotide sequences in the published papers were also pointed out to allow correct applications of the PCR primers in current and future investigations. Furthermore, this review also offers the future perspectives of n-damo bacteria based on current information and methods available for a better acquisition of new knowledge about this group of bacteria.
Encore of the Bashful ballerina in solar cycle 23
NASA Astrophysics Data System (ADS)
Mursula, K.; Virtanen, I. I.
2009-04-01
The rotation averaged location of the heliospheric current sheet has been found to be shifted systematically southward for about three years in the late declining to minimum phase of the solar cycle. This behaviour, called by the concept of the Bashful ballerina, has earlier been shown to be valid at least during the active solar cycle of the last century since the late 1920s. Recently, Zhao et al have analysed the WSO observations and conclude that there is no southward coning in HCS or north-south difference in the heliospheric magnetic field during the late declining phase of solar cycle 23. In disagreement with these results, we find that there is a similar but smaller southward shift of the HCS and dominance of the northern field area as in all previous solar cycles. The present smaller asymmetry is in agreement with an earlier observation based on long-term geomagnetic activity that solar hemispheric asymmetry is larger during highly active solar cycles. Moreover, we connect the smallness of shift to the structure of the solar magnetic field with an exceptionally large tilt. We also discuss the cause of the differences between the two approaches reaching different conclusions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N.
2012-07-01
The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existingmore » facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)« less
Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator
NASA Technical Reports Server (NTRS)
Bents, D. J.
1982-01-01
A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
Strategies for immortalization of primary hepatocytes
Eva, Ramboer; Bram, De Craene; Joery, De Kock; Tamara, Vanhaecke; Geert, Berx; Vera, Rogiers; Mathieu, Vinken
2014-01-01
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications. PMID:24911463
Material research for environmental sustainability in Thailand: current trends
Niranatlumpong, Panadda; Ramangul, Nudjarin; Dulyaprapan, Pongsak; Nivitchanyong, Siriluck; Udomkitdecha, Werasak
2015-01-01
This article covers recent developments of material research in Thailand with a focus on environmental sustainability. Data on Thailand’s consumption and economic growth are briefly discussed to present a relevant snapshot of its economy. A selection of research work is classified into three topics, namely, (a) resource utilization, (b) material engineering and manufacturing, and (c) life cycle efficiency. Material technologies have been developed and implemented to reduce the consumption of materials, energy, and other valuable resources, thus reducing the burden we place on our ecological system. At the same time, product life cycle study allows us to understand the extent of the environmental impact we impart to our planet. PMID:27877788
[Bologna process and higher health education in Europe].
Decsi, Tamás; Barakonyi, Károly
2006-08-27
Introduction of the two cycles (Bachelor/Master) system represents sensitive aspect of the implementation of the Bologna process into higher health education. The authors used the methods of evidence based medicine to analyse available documents on the implementation of the Bologna process into the education of health sciences. Electronic search in the closed MEDLINE and open Internet databases. Electronic data collection resulted in so-called country reports (n=47) and in professional statements (n=7) of health education bodies. Majority of the country reports (n=26) did not mention at all the peculiar position of health education within the Bologna process. Many country reports stated with (n=8) or without (n=9) explanation that health sciences should be excluded from the introduction of the two educational cycles system. Only 4 country reports discussed future conditions and possibilities of introducing the two cycles system into higher health education; the German country report definitely declared that the two cycles educational system may be introduced also into health education. The seven statements of professional health educational bodies (including an ad hoc committee of the Hungarian medical faculties) did not support the introduction of the two cycles system into health education. The low demand for health professionals with Bachelor (i.e. unfinished) degree was repeatedly mentioned as strong argument for not introducing the two cycles system into health education. It should be noted, however, that the process of introducing the two cycles system has began: recent survey of EUA (European University Association) indicates that in three countries (Denmark, Flanders and Switzerland) the introduction in under current discussion. Among the principles of the Bologna process, the introduction of the two cycles system has not gain acceptance in the higher health education in Europe. However, most documents firmly support the introduction of other elements of the Bologna process (comparable degrees, system of credits, promotion of mobility of students and tutors, quality control, life long learning).
NASA Astrophysics Data System (ADS)
Risse, M. P.; Aikele, M. G.; Doettinger, S. G.; Huebener, R. P.; Tsuei, C. C.; Naito, M.
1997-06-01
We have studied the electric resistivity in superconducting amorphous Mo3Si films in a perpendicular magnetic field B0+B1 sin ωt with B1<
A brief history of magnetospheric physics before the spaceflight era
NASA Technical Reports Server (NTRS)
Stern, David P.
1989-01-01
Early research on the earth's magnetic environment is reviewed, with attention given to the period when only ground-based observations were possible. Early work on geomagnetism is discussed as well as the sunspot cycle, solar fares, the possibility of electron beams from the sun, and the Chapman-Ferraro cavity. Consideration is also given to the ring current, Alfvens theory and electric fields, interplanetary plasma, and polar magnetic storms.
ERIC Educational Resources Information Center
Molgaard, Virginia
These two documents address the issue of dealing with blame for farm families in crisis. The first document, for the adult student, discusses how and why people blame each other, with emphasis on the current farm financial crisis. It is noted that blaming occurs primarily at the anger and depression stages of the loss cycle and that, when losing…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullard, F.M.
Current knowledge of volcanoes and their effect on the environment and the people of the earth is presented. The book is based on actual field studies around the world. Discussion is presented in three sections entitled: facts and fiction about volcanoes; types of volcanic eruptions; and theory, cycles, utilization, and environmental effects of volcanoes. A chapter in the third section is devoted to man's use of geothermal energy. Two appendices, a glossary, bibliography, and index are included. (JGB)
A review of NASA's propulsion programs for aviation
NASA Technical Reports Server (NTRS)
Stewart, W. L.; Johnson, H. W.; Weber, R. J.
1978-01-01
A review of five NASA engine-oriented propulsion programs of major importance to civil aviation are presented and discussed. Included are programs directed at exploring propulsion system concepts for (1) energy conservation subsonic aircraft (improved current turbofans, advanced turbofans, and advanced turboprops); (2) supersonic cruise aircraft (variable cycle engines); (3) general aviation aircraft (improved reciprocating engines and small gas turbines); (4) powered lift aircraft (advanced turbofans); and (5) advanced rotorcraft.
Photo-oxidative stress in emerging and senescing leaves: a mirror image?
Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi
2013-08-01
The life cycle of a leaf can be characterized as consisting of different stages: from primordial leaf initiation in the shoot apical meristem (SAM) to leaf senescence. Leaf development, from early leaf growth to senescence, is tightly controlled by plant development and the environment. Here, we primarily focus on summarizing current evidence indicating that photo-oxidative stress occurs at the two extremes of a leaf's lifespan. Some recent studies clearly indicate that--as happens in senescing leaves--emerging new leaves suffer from photo-oxidative stress, which suggests that oxidative stress plays a key role at both ends of the leaf life cycle. We discuss the causes and consequences of suffering from photo-oxidative stress during leaf development, paying attention to the particularities of this process at the two extremes of leaf development. Of particular importance is the current evidence showing mechanisms that maintain an adequate cellular reactive oxygen species/antioxidant (redox) balance that allows growth and prevents oxidative damage in young emerging leaves, while later on photo-oxidative stress induces cell death in senescing leaves. Also of interest is the fact that reductions in the efficiency of photosystem II photochemistry may not necessarily indicate photo-oxidative stress in emerging leaves. In this review, we summarize current knowledge of photoinhibition, photoprotection, and photo-oxidative stress at the two ends of the leaf life cycle: early leaf growth and leaf senescence.
Second Conference on NDE for Aerospace Requirements
NASA Technical Reports Server (NTRS)
Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)
1990-01-01
Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.
NASA Astrophysics Data System (ADS)
Lohmüller, Theobald; Müller, Ulrich; Breisch, Stefanie; Nisch, Wilfried; Rudorf, Ralf; Schuhmann, Wolfgang; Neugebauer, Sebastian; Kaczor, Markus; Linke, Stephan; Lechner, Sebastian; Spatz, Joachim; Stelzle, Martin
2008-11-01
A porous metal-insulator-metal sensor system was developed with the ultimate goal of enhancing the sensitivity of electrochemical sensors by taking advantage of redox cycling of electro active molecules between closely spaced electrodes. The novel fabrication technology is based on thin film deposition in combination with colloidal self-assembly and reactive ion etching to create micro- or nanopores. This cost effective approach is advantageous compared to common interdigitated electrode arrays (IDA) since it does not require high definition lithography technology. Spin-coating and random particle deposition, combined with a new sublimation process are discussed as competing strategies to generate monolayers of colloidal spheres. Metal-insulator-metal layer systems with low leakage currents < 10 pA and an insulator thickness as low as 100 nm were obtained at high yield (typically > 90%). We also discuss possible causes of sensor failure with respect to critical fabrication processes. Short circuits which could occur during or as a result of the pore etching process were investigated in detail. Infrared microscopy in combination with focused ion beam etching/SEM were used to reveal a defect mechanism creating interconnects and increased leakage current between the top and bottom electrodes. Redox cycling provides for amplification factors of >100. A general applicability for electrochemical diagnostic assays is therefore anticipated.
Evaluation of life-cycle air emission factors of freight transportation.
Facanha, Cristiano; Horvath, Arpad
2007-10-15
Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.
The Measurement of Maximal (Anaerobic) Power Output on a Cycle Ergometer: A Critical Review
Driss, Tarak; Vandewalle, Henry
2013-01-01
The interests and limits of the different methods and protocols of maximal (anaerobic) power (P max) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of P max during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting P max in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices. PMID:24073413
Using CFD as a Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Canabal, Francisco; Rocker, marvin; Robles, Bryan; Garcia, Robert; Chenoweth, James
2005-01-01
New programs are forcing American propulsion system designers into unfamiliar territory. For instance, industry s answer to the cost and reliability goals set out by the Next Generation Launch Technology Program are engine concepts based on the Oxygen- Rich Staged Combustion Cycle. Historical injector design tools are not well suited for this new task. The empirical correlations do not apply directly to the injector concepts associated with the ORSC cycle. These legacy tools focus primarily on performance with environment evaluation a secondary objective. Additionally, the environmental capability of these tools is usually one-dimensional while the actual environments are at least two- and often three-dimensional. CFD has the potential to calculate performance and multi-dimensional environments but its use in the injector design process has been retarded by long solution turnaround times and insufficient demonstrated accuracy. This paper has documented the parallel paths of program support and technology development currently employed at Marshall Space Flight Center in an effort to move CFD to the forefront of injector design. MSFC has established a long-term goal for use of CFD for combustion devices design. The work on injector design is the heart of that vision and the Combustion Devices CFD Simulation Capability Roadmap that focuses the vision. The SRL concept, combining solution fidelity, robustness and accuracy, has been established as a quantitative gauge of current and desired capability. Three examples of current injector analysis for program support have been presented and discussed. These examples are used to establish the current capability at MSFC for these problems. Shortcomings identified from this experience are being used as inputs to the Roadmap process. The SRL evaluation identified lack of demonstrated solution accuracy as a major issue. Accordingly, the MSFC view of code validation and current MSFC-funded validation efforts were discussed in some detail. The objectives of each effort were noted. Issues relative to code validation for injector design were discussed in some detail. The requirement for CFD support during the design of the experiment was noted and discussed in terms of instrumentation placement and experimental rig uncertainty. In conclusion, MSFC has made significant progress in the last two years in advancing CFD toward the goal of application to injector design. A parallel effort focused on program support and technology development via the SCIT Task have enabled the progress.
Evolution of engine cycles for STOVL propulsion concepts
NASA Technical Reports Server (NTRS)
Bucknell, R. L.; Frazier, R. H.; Giulianetti, D. J.
1990-01-01
Short Take-off, Vertical Landing (STOVL) demonstrator concepts using a common ATF engine core are discussed. These concepts include a separate fan and core flow engine cycle, mixed flow STOVL cycles, separate flow cycles convertible to mixed flow, and reaction control system engine air bleed. STOVL propulsion controls are discussed.
Boninger, Michael L; Field-Fote, Edelle C; Kirshblum, Steven C; Lammertse, Daniel P; Dyson-Hudson, Trevor A; Hudson, Lesley; Heinemann, Allen W
2018-03-01
To describe current and future directions in spinal cord injury (SCI) research. The SCI Model Systems (SCIMS) programs funded by the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) during the 2011 to 2016 cycle provided abstracts describing findings from current research projects. Discussion among session participants generated ideas for research opportunities. Pre-conference workshop before the 2016 American Spinal Injury Association (ASIA) annual meeting. A steering committee selected by the SCIMS directors that included the moderators of the sessions at the ASIA pre-conference workshop, researchers presenting abstracts during the session, and the audience of over 100 attending participants in the pre-conference workshop. Group discussion followed presentations in 5 thematic areas of (1) Demographics and Measurement; (2) Functional Training; (3) Psychosocial Considerations; (4) Assistive Technology; and (5) Secondary Conditions. The steering committee reviewed and summarized discussion points on future directions for research and made recommendations for research based on the discussion in each of the five areas. Significant areas in need of research in SCI remain, the goal of which is continued improvement in the quality of life of individuals with SCI.
The elusive life cycle of scyphozoan jellyfish - metagenesis revisited
NASA Astrophysics Data System (ADS)
Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S.; Riascos, José M.
2015-07-01
Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) “metagenesis” which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed.
NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program
NASA Technical Reports Server (NTRS)
Fishbach, Laurence H.; Gordon, Sanford
1988-01-01
The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.
NASA Astrophysics Data System (ADS)
Leege, Brian J.
The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.
NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Gordon, S.
1989-01-01
The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.
The elusive life cycle of scyphozoan jellyfish – metagenesis revisited
Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S.; Riascos, José M.
2015-01-01
Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) “metagenesis” which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed. PMID:26153534
The elusive life cycle of scyphozoan jellyfish--metagenesis revisited.
Ceh, Janja; Gonzalez, Jorge; Pacheco, Aldo S; Riascos, José M
2015-07-08
Massive proliferations of scyphozoan jellyfish considerably affect human industries and irreversibly change food webs. Efforts to understand the role of jellyfish in marine ecosystems are based on a life cycle model described 200 years ago. According to this paradigm the pelagic medusae is considered seasonal and alternates with the benthic polyp stage from which it derives. However, we provide evidence that a) the occurrence of several species of medusae is not restricted to a season in the year, they overwinter, b) polyp- and medusa generations are neither temporally nor spatially separated, and c) "metagenesis" which is defined as the alternation between sexual and asexual generations does not always occur. Hence we recommend additions to the current model and argue that the scyphozoan life cycle should be considered multi-modal, rather than metagenetic. The implications of these findings for jellyfish proliferations, including possible consequences and associated environmental drivers, are discussed.
NASA Astrophysics Data System (ADS)
Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.
2015-12-01
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.
On the engineering of crucial software
NASA Technical Reports Server (NTRS)
Pratt, T. W.; Knight, J. C.; Gregory, S. T.
1983-01-01
The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described.
What, Where, When, Who and How: Accounting for Biogenic CO2 Emissions Fluxes
NASA Astrophysics Data System (ADS)
Ohrel, S. B.
2013-12-01
The world is facing a future with a changing climate as well as increasing energy needs. Many countries, including the United States, are therefore considering an increased role of biomass in domestic energy portfolios. Accounting for emissions related to biomass production and use for energy is a complex issue: determining the extent to which biomass utilization can contribute to meeting energy needs while not contributing additional GHG emissions to the atmosphere necessitates further research. Such analysis becomes more challenging when evaluating biogenic feedstocks with long rotations (i.e., woody biomass). Detailed analysis and new accounting methods are needed in order to better assess and understand the potential implications of increased bioenergy utilization in the United States energy portfolio. In response to the EPA's 2011 Draft Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, the Biogenic Carbon Emissions Panel (BCE Panel) appointed by the Science Advisory Board (2013) found that 'Carbon neutrality cannot be assumed for all biomass energy a priori. There are circumstances in which biomass is grown, harvested and combusted in a carbon neutral fashion but carbon neutrality is not an appropriate a priori assumption; it is a conclusion that should be reached only after considering a particular feedstock's production and consumption cycle. There is considerable heterogeneity in feedstock types, sources and production methods and thus net biogenic carbon emissions will vary considerably.' In that light, this study discusses the current policy discussion on biogenic feedstock use for energy in the United States. It then evaluates the question: how can we account for stationary source biogenic CO2 emissions while considering the biological cycling of carbon on the biogenic feedstock production landscape? The analysis discusses current biogenic feedstock usage in the U.S. and potential future impacts of increased biogenic feedstock production on U.S. land use, supply of non-energy commodities (e.g., timber, food crops), and related GHG emission fluxes. This paper first assesses current methods for accounting for land use sector biogenic CO2 emissions (i.e., IPCC approach). Based on the finding that no current methods exist for linking stationary source emissions with the land producing biogenic feedstocks, a unique method is needed that takes into consideration the biological cycling of carbon when accounting for biogenic emissions from energy use. The paper then describes the key technical and scientific considerations that should be taken in account, such as: the implications of baseline chosen; the important roles of temporal and spatial scales; emissions fluxes during feedstock production as well as transportation, storage and processing; the role of land use management and change, etc. It also discusses how these considerations can vary depending on feedstock type (e.g., long versus short rotation).
Code of Federal Regulations, 2010 CFR
2010-01-01
... cycle of the business, which is considered to be one year. (2) Current liabilities means obligations... consumed in the normal operating cycle of the business; (7) accounts due from employees, if collectable; (8... classifiable as current assets or the creation of other current liabilities during the one year operating cycle...
A brief history of magnetospheric physics before the spaceflight era
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, D.P.
1989-02-01
Early research on the earth's magnetic environment is reviewed, with attention given to the period when only ground-based observations were possible. Early work on geomagnetism is discussed as well as the sunspot cycle, solar fares, the possibility of electron beams from the sun, and the Chapman-Ferraro cavity. Consideration is also given to the ring current, Alfvens theory and electric fields, interplanetary plasma, and polar magnetic storms. 134 refs.
Current Strategies for Inhibition of Chikungunya Infection.
Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee; Kumar, Abhishek
2018-05-03
Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research.
Current Strategies for Inhibition of Chikungunya Infection
Subudhi, Bharat Bhusan; Chattopadhyay, Soma; Mishra, Priyadarsee
2018-01-01
Increasing incidences of Chikungunya virus (CHIKV) infection and co-infections with Dengue/Zika virus have highlighted the urgency for CHIKV management. Failure in developing effective vaccines or specific antivirals has fuelled further research. This review discusses updated strategies of CHIKV inhibition and provides possible future directions. In addition, it analyzes advances in CHIKV lifecycle, drug-target development, and potential hits obtained by in silico and experimental methods. Molecules identified with anti-CHIKV properties using traditional/rational drug design and their potential to succeed in subsequent stages of drug development have also been discussed. Possibilities of repurposing existing drugs based on their in vitro findings have also been elucidated. Probable modes of interference of these compounds at various stages of infection, including entry and replication, have been highlighted. The use of host factors as targets to identify antivirals against CHIKV has been addressed. While most of the earlier antivirals were effective in the early phases of the CHIKV life cycle, this review is also focused on drug candidates that are effective at multiple stages of its life cycle. Since most of these antivirals require validation in preclinical and clinical models, the challenges regarding this have been discussed and will provide critical information for further research. PMID:29751486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prince, J.L.; Lathrop, J.W.
1979-05-01
The results of accelerated stress testing of four different types of silicon terrestrial solar cells are discussed. The accelerated stress tests used included bias-temperature tests, bias-temperature-humidity tests, thermal cycle and thermal shock tests, and power cycle tests. Characterization of the cells was performed before stress testing and at periodic down-times, using electrical measurement, visual inspection, and metal adherence pull tests. Electrical parameters measured included short-circuit current, I/sub sc/, open circuit voltage, V/sub oc/, and output power, voltage, and current at the maximum power point, P/sub m/, V/sub m/, and I/sub m/ respectively. Incorporated in the report are the distributions ofmore » the prestress electrical data for all cell types. Data was also obtained on cell series and shunt resistance. Significant differences in the response to the various stress tests was observed between cell types. On the basis of the experience gained in this research work, a suggested Reliability Qualification Test Schedule was developed.« less
NASA Astrophysics Data System (ADS)
Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.
2017-12-01
Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.
Cardiac Myocyte Cell Cycle Control in Development, Disease and Regeneration
Ahuja, Preeti; Sdek, Patima; Maclellan, W. Robb
2009-01-01
Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle soon after birth in mammals. Although the extent to which adult cardiac myocytes are capable of cell cycle reentry is controversial and species-specific differences may exist, it appears that for the vast majority of adult cardiac myocytes the predominant form of growth postnatally is an increase in cell size (hypertrophy) not number. Unfortunately, this limits the ability of the heart to restore function after any significant injury. Interst in novel regenerative therapies has led to the accumulation of much information on the mechanisms that regulate the rapid proliferation of cardiac myocytes in utero, their cell cycle exit in the perinatal period and the permanent arrest (terminal differentiation) in adult myocytes. The recent identification of cardiac progenitor cells capable of giving rise to cardiac myocyte-like cells has challenged the dogma that the heart is a terminally differentiated organ and opened new prospects for cardiac regeneration. In this review, we summarize the current understanding of cardiomyocyte cell cycle control in normal development and disease. In addition, we also discuss the potential usefulness of cardiomyocyte self-renewal as well as feasibility of therapeutic manipulation of the cardiac myocyte cell cycle for cardiac regeneration. PMID:17429040
2013-01-01
Background There are repeated calls to build better cycling paths in Australian cities if the proportion of people cycling is to increase. Yet the full range of transport, health, environmental and economic impacts of new cycling infrastructure and the extent to which observed changes are sustained is not well understood. The City of Sydney is currently building a new bicycle network, which includes a new bicycle path separated from road traffic in the south Sydney area. This protocol paper describes a comprehensive method to evaluate this new cycling infrastructure. Method A cohort of residents within two kilometres of the new bicycle path will be surveyed at baseline before a new section of bicycle path is built, and again 12 and 24 months later to assess changes in travel behaviour, sense of community, quality of life and health behaviours. Residents in a comparable area of Sydney that will not get a new separated bike path will act as a comparison group. At baseline a sub-set of residents who volunteer will also take a small GPS device with them for one week to assess travel behaviour. Discussion This research should contribute to the advancement in evaluation and appraisal methods for cycling projects. PMID:24131667
Status of power generation experiments in the NASA Lewis closed cycle MHD facility
NASA Technical Reports Server (NTRS)
Sovie, R. J.; Nichols, L. D.
1971-01-01
The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.
NASA Astrophysics Data System (ADS)
Doty, F. D.; Hosford, Gregory S.; Spitzmesser, Jonathan B.
New developments in manufacturing automation permit the use of large, parallel arrays of very small diameter tubing for greatly increased performance in both spacecraft radiators and recuperators. Micro-tube strip (MTS) recuperators with normalized specific conductance above 1000 W/kgK (20 times the current state of the art) and pressure drops below 1 percent are shown to be realistic long-term goals. The same technology also promises an order of magnitude improvement in radiator specific mass. Some significant space power applications, including the Closed Brayton Cycle and Reverse Brayton Cycle, are discussed. A detailed analysis of the MTS recuperator is presented along with experimental results from prototypes, and some manufacturing considerations are mentioned.
Bonzongo, Jean Claude J; Donkor, Augustine K
2003-09-01
In the past two decades, a great deal of attention has been paid to the environmental fate of mercury (Hg), and this is exemplified by the growing number of international conferences devoted uniquely to Hg cycling and its impacts on ecosystem functions and life. This interest in the biogeochemistry of Hg has resulted in a significant improvement of our understanding of its impact on the environment and human health. However, both past and current research, have been primarily oriented toward the study of direct impact of anthropogenic activities on Hg cycling. Besides a few indirect effects such as the increase in Hg methylation observed in acid-rain impacted aquatic systems or the reported enhanced Hg bioaccumulation in newly flooded water reservoirs; changes in Hg transformations/fluxes that may be related to global change have received little attention. A case in point is the depletion of stratospheric ozone and the resulting increase in solar UV-radiation reaching the Earth. This review and critical discussion suggest that increasing UV-B radiation at earth's surface could have a significant and complex impact on Hg cycling including effects on Hg volatilization (photo-reduction), solubilization (photo-oxidation), methyl-Hg demethylation, and Hg methylation. Therefore, this paper is written to provoke discussions, and more importantly, to stimulate research on potential impacts of incoming solar UV-radiation on global Hg fluxes and any toxicity aspects of Hg that may become exacerbated by UV-radiation.
Towards greener and more sustainable batteries for electrical energy storage
NASA Astrophysics Data System (ADS)
Larcher, D.; Tarascon, J.-M.
2015-01-01
Ever-growing energy needs and depleting fossil-fuel resources demand the pursuit of sustainable energy alternatives, including both renewable energy sources and sustainable storage technologies. It is therefore essential to incorporate material abundance, eco-efficient synthetic processes and life-cycle analysis into the design of new electrochemical storage systems. At present, a few existing technologies address these issues, but in each case, fundamental and technological hurdles remain to be overcome. Here we provide an overview of the current state of energy storage from a sustainability perspective. We introduce the notion of sustainability through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability. With the same themes in mind, we also highlight current and future electrochemical storage systems beyond lithium-ion batteries. The complexity and importance of recycling battery materials is also discussed.
The Predictability of Advection-dominated Flux-transport Solar Dynamo Models
NASA Astrophysics Data System (ADS)
Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien
2014-01-01
Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ e . The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ e equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.
Vertical distribution of microphysical properties in radiation fogs - A case study
NASA Astrophysics Data System (ADS)
Egli, S.; Maier, F.; Bendix, J.; Thies, B.
2015-01-01
The present study investigates the validity of a theoretical liquid water content (LWC) profile in fog layers currently used for satellite based ground fog detection, with a special focus on the temporal dynamics during fog life cycle. For this purpose, LWC profiles recorded during two different fog events by means of a tethered balloon borne measurement system are presented and discussed. The results indicate a good agreement in trend and gradient between measured and theoretical LWC profiles during the mature stage of the fog life cycle. The profile obtained during the dissipation stage shows less accordance with the theoretical profile. To improve the agreement between theoretical and measured LWC profiles, the evolutionary stages during the fog life cycle should be incorporated. However, the variability within the prenoted measurements points out that more LWC profiles during a great variety of different fog events have to be collected for a well-justified adaptation of the theoretical LWC profile, considering fog life cycle phases in the future. In general, this underlines the existing knowledge gap regarding the vertical distribution of microphysical properties in natural fogs.
Geoeffectiveness during the early phase of Solar Cycle 24
NASA Astrophysics Data System (ADS)
Pande, Bimal
Geoeffectiveness during the early phase of Solar Cycle 24 \\underline{} Abstract\\underline{} It is very important and interesting to understand the solar eruptions because it produces the geoeffectiveness in our Earth environment. In the rise phase of the solar cycle, geoeffective events are less frequent, thus this provide us better opportunity to study these events including the detection of their source regions. Keeping this in mind, we have analysed the data of rise phase of current solar cycle 24 ( 2009-2012). During above time period, we have selected 59 geoeffective events having Disturbance Storm Time (Dst) index < -50 nT. Based on the Dst index, we divided the events into two categories i.e. moderate (< -50 nT > -100 nT ) and intense ( <-100 nT). To locate the solar source regions of geoeffective and SEPs associated events, we have used available images, movies and Solar Geophysical data (SGD) list: for example movies from SOHO/EIT, images and movies from the Solar Dynamic Observatory (SDO). In this study, we will discuss and compare the different properties of associated CMEs, flares and their relation with geoeffectiveness.
Galactic Cosmic Ray Intensity in the Upcoming Minimum of the Solar Activity Cycle
NASA Astrophysics Data System (ADS)
Krainev, M. B.; Bazilevskaya, G. A.; Kalinin, M. S.; Svirzhevskaya, A. K.; Svirzhevskii, N. S.
2018-03-01
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth's orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum ( 2019-2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).
Millet, G P; Vleck, V E
2000-10-01
Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed-that is, steady state or stochastic power output, drafting or non-drafting-are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise.
Predictions of Solar Cycle 24: How are We Doing?
NASA Technical Reports Server (NTRS)
Pesnell, William D.
2016-01-01
Predictions of solar activity are an essential part of our Space Weather forecast capability. Users are requiring usable predictions of an upcoming solar cycle to be delivered several years before solar minimum. A set of predictions of the amplitude of Solar Cycle 24 accumulated in 2008 ranged from zero to unprecedented levels of solar activity. The predictions formed an almost normal distribution, centered on the average amplitude of all preceding solar cycles. The average of the current compilation of 105 predictions of the annual-average sunspot number is 106 +/- 31, slightly lower than earlier compilations but still with a wide distribution. Solar Cycle 24 is on track to have a below-average amplitude, peaking at an annual sunspot number of about 80. Our need for solar activity predictions and our desire for those predictions to be made ever earlier in the preceding solar cycle will be discussed. Solar Cycle 24 has been a below-average sunspot cycle. There were peaks in the daily and monthly averaged sunspot number in the Northern Hemisphere in 2011 and in the Southern Hemisphere in 2014. With the rapid increase in solar data and capability of numerical models of the solar convection zone we are developing the ability to forecast the level of the next sunspot cycle. But predictions based only on the statistics of the sunspot number are not adequate for predicting the next solar maximum. I will describe how we did in predicting the amplitude of Solar Cycle 24 and describe how solar polar field predictions could be made more accurate in the future.
Rodriguez, Christina M; Tucker, Meagan C
2011-01-01
Although the concept of a cycle of violence presumes that the transmission of violence is expressed directly across generations, the role of the overall quality of the parent-child relationship may ultimately be more influential in later parenting behavior. This study investigated whether mothers' poorer attachment to their parents was associated with their current increased child abuse potential and dysfunctional disciplinary style independent of a personal history of child abuse. A sample of 73 at-risk mothers raising children with behavior problems reported on their parental attachment, abuse potential, dysfunctional parenting style, and personal abuse history. An at-risk sample, rather than a sample of identified abuse victims or perpetrators, was studied to better examine the potential continuity or discontinuity from history of abuse to current abuse risk, allowing consideration of those who may break the cycle versus those who potentially initiate abuse in the absence of a personal history. Findings indicate that poor attachment significantly predicted both dysfunctional parenting practices and elevated child abuse potential, controlling for personal child abuse history. Such results highlight the importance of the overall quality of the relationship between the parent and child in potentially shaping future abuse risk. Findings are discussed in terms of continuity or discontinuity in the cycle of violence and future directions for research on attachment in relation to the development of later child abuse risk.
Survey of advanced nuclear technologies for potential applications of sonoprocessing.
Rubio, Floren; Blandford, Edward D; Bond, Leonard J
2016-09-01
Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Robbins, L. L.; Coble, P. G.; Clayton, T. D.; Cai, W. J.
2008-01-01
Despite their relatively small surface area, ocean margins may have a significant impact on global biogeochemical cycles and, potentially, the global air-sea fluxes of carbon dioxide. Margins are characterized by intense geochemical and biological processing of carbon and other elements and exchange large amounts of matter and energy with the open ocean. The area-specific rates of productivity, biogeochemical cycling, and organic/inorganic matter sequestration are high in coastal margins, with as much as half of the global integrated new production occurring over the continental shelves and slopes (Walsh, 1991; Doney and Hood, 2002; Jahnke, in press). However, the current lack of knowledge and understanding of biogeochemical processes occurring at the ocean margins has left them largely ignored in most of the previous global assessments of the oceanic carbon cycle (Doney and Hood, 2002). A major source of North American and global uncertainty is the Gulf of Mexico, a large semi-enclosed subtropical basin bordered by the United States, Mexico, and Cuba. Like many of the marginal oceans worldwide, the Gulf of Mexico remains largely unsampled and poorly characterized in terms of its air-sea exchange of carbon dioxide and other carbon fluxes. The goal of the workshop was to bring together researchers from multiple disciplines studying terrestrial, aquatic, and marine ecosystems to discuss the state of knowledge in carbon fluxes in the Gulf of Mexico, data gaps, and overarching questions in the Gulf of Mexico system. The discussions at the workshop were intended to stimulate integrated studies of marine and terrestrial biogeochemical cycles and associated ecosystems that will help to establish the role of the Gulf of Mexico in the carbon cycle and how it might evolve in the face of environmental change.
Modi, Nishit B
2017-05-01
Increasing costs in discovering and developing new molecular entities and the continuing debate on limited company pipelines mean that pharmaceutical companies are under significant pressure to maximize the value of approved products. Life cycle management in the context of drug development comprises activities to maximize the effective life of a product. Life cycle approaches can involve new formulations, new routes of delivery, new indications or expansion of the population for whom the product is indicated, or development of combination products. Life cycle management may provide an opportunity to improve upon the current product through enhanced efficacy or reduced side effects and could expand the therapeutic market for the product. Successful life cycle management may include the potential for superior efficacy, improved tolerability, or a better prescriber or patient acceptance. Unlike generic products where bioequivalence to an innovator product may be sufficient for drug approval, life cycle management typically requires a series of studies to characterize the value of the product. This review summarizes key considerations in identifying product candidates that may be suitable for life cycle management and discusses the application of pharmacokinetics and pharmacodynamics in developing new products using a life cycle management approach. Examples and a case study to illustrate how pharmacokinetics and pharmacodynamics contributed to the selection of dosing regimens, demonstration of an improved therapeutic effect, or regulatory approval of an improved product label are presented.
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed.
NASA Astrophysics Data System (ADS)
Wang, Hongkang; Lu, Xuan; Li, Longchao; Li, Beibei; Cao, Daxian; Wu, Qizhen; Li, Zhihui; Yang, Guang; Guo, Baolin; Niu, Chunming
2016-03-01
The design of tin-based anode materials (SnO2 or Sn) has become a major concern for lithium ion batteries (LIBs) owing to their different inherent characteristics. Herein, particulate SnO2 or Sn crystals coupled with porous N-doped carbon nanofibers (denoted as SnO2/PCNFs and Sn/PCNFs, respectively) are fabricated via the electrospinning method. The electrochemical behaviors of both SnO2/PCNFs and Sn/PCNFs are systematically investigated as anodes for LIBs. When coupled with porous carbon nanofibers, both SnO2 nanoparticles and Sn micro/nanoparticles display superior cycling and rate performances. SnO2/PCNFs and Sn/PCNFs deliver discharge capacities of 998 and 710 mA h g-1 after 140 cycles (at 100, 200, 500 and 1000 mA g-1 each for 10 cycles and then 100 cycles at 100 mA g-1), respectively. However, the Sn/PCNF electrodes show better cycling stability at higher current densities, delivering higher discharge capacities of 700 and 550 mA h g-1 than that of SnO2/PCNFs (685 and 424 mA h g-1) after 160 cycles at 200 and 500 mA g-1, respectively. The different superior electrochemical performance is attributed to the introduction of porous N-doped carbon nanofibers and their self-constructed networks, which, on the one hand, greatly decrease the charge-transfer resistance due to the high conductivity of N-doped carbon fibers; on the other hand, the porous carbon nanofibers with numerous voids and flexible one-dimensional (1D) structures efficiently alleviate the volume changes of SnO2 and Sn during the Li-Sn alloying-dealloying processes. Moreover, the discussion of the electrochemical behaviors of SnO2vs. Sn would provide new insights into the design of tin-based anode materials for practical applications, and the current strategy demonstrates great potential in the rational design of metallic tin-based anode materials.The design of tin-based anode materials (SnO2 or Sn) has become a major concern for lithium ion batteries (LIBs) owing to their different inherent characteristics. Herein, particulate SnO2 or Sn crystals coupled with porous N-doped carbon nanofibers (denoted as SnO2/PCNFs and Sn/PCNFs, respectively) are fabricated via the electrospinning method. The electrochemical behaviors of both SnO2/PCNFs and Sn/PCNFs are systematically investigated as anodes for LIBs. When coupled with porous carbon nanofibers, both SnO2 nanoparticles and Sn micro/nanoparticles display superior cycling and rate performances. SnO2/PCNFs and Sn/PCNFs deliver discharge capacities of 998 and 710 mA h g-1 after 140 cycles (at 100, 200, 500 and 1000 mA g-1 each for 10 cycles and then 100 cycles at 100 mA g-1), respectively. However, the Sn/PCNF electrodes show better cycling stability at higher current densities, delivering higher discharge capacities of 700 and 550 mA h g-1 than that of SnO2/PCNFs (685 and 424 mA h g-1) after 160 cycles at 200 and 500 mA g-1, respectively. The different superior electrochemical performance is attributed to the introduction of porous N-doped carbon nanofibers and their self-constructed networks, which, on the one hand, greatly decrease the charge-transfer resistance due to the high conductivity of N-doped carbon fibers; on the other hand, the porous carbon nanofibers with numerous voids and flexible one-dimensional (1D) structures efficiently alleviate the volume changes of SnO2 and Sn during the Li-Sn alloying-dealloying processes. Moreover, the discussion of the electrochemical behaviors of SnO2vs. Sn would provide new insights into the design of tin-based anode materials for practical applications, and the current strategy demonstrates great potential in the rational design of metallic tin-based anode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09305h
Long-Range Solar Activity Predictions: A Reprieve from Cycle #24's Activity
NASA Technical Reports Server (NTRS)
Richon, K.; Schatten, K.
2003-01-01
We discuss the field of long-range solar activity predictions and provide an outlook into future solar activity. Orbital predictions for satellites in Low Earth Orbit (LEO) depend strongly on exospheric densities. Solar activity forecasting is important in this regard, as the solar ultra-violet (UV) and extreme ultraviolet (EUV) radiations inflate the upper atmospheric layers of the Earth, forming the exosphere in which satellites orbit. Rather than concentrate on statistical, or numerical methods, we utilize a class of techniques (precursor methods) which is founded in physical theory. The geomagnetic precursor method was originally developed by the Russian geophysicist, Ohl, using geomagnetic observations to predict future solar activity. It was later extended to solar observations, and placed within the context of physical theory, namely the workings of the Sun s Babcock dynamo. We later expanded the prediction methods with a SOlar Dynamo Amplitude (SODA) index. The SODA index is a measure of the buried solar magnetic flux, using toroidal and poloidal field components. It allows one to predict future solar activity during any phase of the solar cycle, whereas previously, one was restricted to making predictions only at solar minimum. We are encouraged that solar cycle #23's behavior fell closely along our predicted curve, peaking near 192, comparable to the Schatten, Myers and Sofia (1996) forecast of 182+/-30. Cycle #23 extends from 1996 through approximately 2006 or 2007, with cycle #24 starting thereafter. We discuss the current forecast of solar cycle #24, (2006-2016), with a predicted smoothed F10.7 radio flux of 142+/-28 (1-sigma errors). This, we believe, represents a reprieve, in terms of reduced fuel costs, etc., for new satellites to be launched or old satellites (requiring reboosting) which have been placed in LEO. By monitoring the Sun s most deeply rooted magnetic fields; long-range solar activity can be predicted. Although a degree of uncertainty in the long-range predictions remains, requiring future monitoring, we do not expect the next cycle's + 2-sigma value will rise significantly above solar cycle #23's activity level.
Questions, Curiosity and the Inquiry Cycle
ERIC Educational Resources Information Center
Casey, Leo
2014-01-01
This article discusses the conceptual relationship between questions, curiosity and learning as inquiry elaborated in the work of Chip Bruce and others as the Inquiry Cycle. The Inquiry Cycle describes learning in terms of a continuous dynamic of ask, investigate, create, discuss and reflect. Of these elements "ask" has a privileged…
NASA Technical Reports Server (NTRS)
Bolin, Bert; Fung, Inez
1992-01-01
Discussions during the Global Change Institute indicated a need to present, in some detail and as accurately as possible, our present knowledge about the carbon cycle, the uncertainties in this knowledge, and the reasons for these uncertainties. We discuss basic issues of internal consistency within the carbon cycle, and end by summarizing the key unknowns.
THE INTERNATIONAL WORKSHOP ON ELECTRICITY DATA FOR LIFE CYCLE INVENTORIES
A three day workshop was held in October 2001 to discuss life cycle inventory data for electricity production. Electricity was selected as the topic for discussion since it features very prominently in the LCA results for most product life cycles, yet there is no consistency in h...
[Carl Friedrich von Weizsäcker and the Bethe-Weizsäcker cycle].
Wiescher, Michael
2014-01-01
The Carbon- or Bethe-Weizsäcker Cycle plays an important role in astrophysics as one of the most important energy sources for a quiescent and explosive hydrogen burning in stars. This paper presents the historical background and the contributions by Carl Friedrich von Weizsäcker and Hans Bethe who provided the first predictions of the cycle. Furthermore, it discussed the experimental verification of the predicted process in the following decades. Also discussed is the extension of the initial Carbon cycle to the CNO multi-cycles and the hot CNO cycles which followed from the detailed experimental studies of the associated nuclear reactions. Finally discussed is the impact of the experimental and theoretical results on our present understanding of hydrogen burning in different stellar environments and on our understanding of the chemical evolution of our universe.
Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.
Haass, Nikolas K; Gabrielli, Brian
2017-07-01
The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wang, S.; Li, K. F.; Shia, R. L.; Yung, Y. L.; Sander, S. P.
2016-12-01
HO2 and OH (known as odd oxygen HOx), play an important role in middle atmospheric chemistry, in particular, O3 destruction through catalytic HOx reaction cycles. Due to their photochemical production and short chemical lifetimes, HOx species response rapidly to solar UV irradiance changes during solar cycles, resulting in variability in the corresponding O3 chemistry. Observational evidences for both OH and HO2 variability due to solar cycles have been reported. However, puzzling discrepancies remain. In particular, the large discrepancy between model and observations of solar 11-year cycle signal in OH and the significantly different model results when adopting different solar spectral irradiance (SSI) [Wang et al., 2013] suggest that both uncertainties in SSI variability and uncertainties in our current understanding of HOx-O3 chemistry could contribute to the discrepancy. Since the short-term SSI variability (e.g. changes during solar 27-day cycles) has little uncertainty, investigating 27-day solar cycle signals in HOx allows us to simplify the complex problem and to focus on the uncertainties in chemistry alone. We use the Caltech-JPL photochemical model to simulate observed HOx variability during 27-day cycles. The comparison between Aura Microwave Limb Sounder (MLS) observations and our model results (using standard chemistry and "adjusted chemistry", respectively) will be discussed. A better understanding of uncertainties in chemistry will eventually help us separate the contribution of chemistry from contributions of SSI uncertainties to the complex discrepancy between model and observations of OH responses to solar 11-year cycles.
Hildebrandt, Britny A.; Racine, Sarah E.; Keel, Pamela K.; Burt, S. Alexandra; Neale, Michael; Boker, Steven; Sisk, Cheryl L.; Klump, Kelly L.
2014-01-01
Objective Previous research has shown that fluctuations in ovarian hormones (i.e., estradiol and progesterone) predict changes in binge eating and emotional eating across the menstrual cycle. However, the extent to which other eating disorder symptoms fluctuate across the menstrual cycle and are influenced by ovarian hormones remains largely unknown. The current study sought to examine whether levels of weight preoccupation vary across the menstrual cycle and whether changes in ovarian hormones and/or other factors (i.e., emotional eating, negative affect) account for menstrual-cycle fluctuations in this eating disorder phenotype. Method For 45 consecutive days, 352 women ages 15–25 provided daily ratings of weight preoccupation, negative affect, and emotional eating. Daily saliva samples also were collected and assayed for estradiol and progesterone levels using enzyme-immunoassay techniques. Results Weight preoccupation varied significantly across the menstrual cycle, with the highest levels in the pre-menstrual and menstrual phases. However, ovarian hormones did not account for within-person changes in weight preoccupation across the menstrual cycle. Instead, the most significant predictor of menstrual-cycle changes in weight preoccupation was changes in emotional eating. Discussion Fluctuations in weight preoccupation across the menstrual cycle appear to be influenced primarily by emotional eating rather than ovarian hormones. Future research should continue to examine relationships among ovarian hormones, weight preoccupation, emotional eating, and other core eating disorder symptoms (e.g., body dissatisfaction, compensatory behaviors) in an effort to more fully understand the role of these biological and behavioral factors for the full spectrum of eating pathology. PMID:24965609
Caswell, Joseph M; Carniello, Trevor N; Murugan, Nirosha J
2016-01-01
Increasing research into heliobiology and related fields has revealed a myriad of potential relationships between space weather factors and terrestrial biology. Additionally, many studies have indicated cyclicity in incidence of various diseases along with many aspects of cardiovascular function. The current study examined annual mortality associated with hypertensive diseases in Canada from 1979 to 2009 for periodicities and linear relationships with a range of heliophysical parameters. Analyses indicated a number of significant lagged correlations between space weather and hypertensive mortality, with solar wind plasma beta identified as the likely source of these relationships. Similar periodicities were observed for geomagnetic activity and hypertensive mortality. A significant rhythm was revealed for hypertensive mortality centered on a 9.6-year cycle length, while geomagnetic activity was fit with a 10.1-year cycle. Cross-correlograms of mortality with space weather demonstrated a 10.67-year periodicity coinciding with the average 10.6-year solar cycle length for the time period examined. Further quantification and potential implications are discussed.
Brown, Jac
2012-07-01
This review article examined the gender symmetry debate in light of recent research relating to the feminist and family research perspectives on intimate partner violence, providing a context for rethinking perpetrator programs. The concept of coercive control is considered as an explanatory factor in an attempt to integrate the feminist and family research perspectives. The limited effectiveness of perpetrator programs is examined. Research highlighting potential factors that could improve the effectiveness of perpetrator programs is introduced, followed by a discussion of the rejection-abuse cycle, one attempt to incorporate current research into a more inclusive program. The rejection-abuse cycle identifies a pattern of perpetrator behavior, which links rejection, threat to self, defense against threat, and abuse. Finally, suggestions for changing perpetrator programs are elaborated, incorporating past research, which would make them appropriate for both male and female perpetrators. These implications are contextualized within a meta-theory to provide greater clarity for the development of future perpetrator programs.
Characterizing land processes in the biosphere
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Tuyahov, A. J.
1984-01-01
NASA long-term planning for the satellite remote sensing of land areas is discussed from the perspective of a holistic interdisciplinary approach to the study of the biosphere. The earth is characterized as a biogeochemical system; the impact of human activity on this system is considered; and the primary scientific goals for their study are defined. Remote-sensing programs are seen as essential in gaining an improved understanding of energy budgets, the hydrological cycle, other biogeological cycles, and the coupling between these cycles, with the construction of a global data base and eventually the development of predictive simulation models which can be used to assess the impact of planned human activities. Current sensor development at NASA includes a multilinear array for the visible and IR and the L-band Shuttle Imaging Radar B, both to be flown on Shuttle missions in the near future; for the 1990s, a large essentially permanent man-tended interdisciplinary multisensor platform connected to an advanced data network is being planned.
NASA Astrophysics Data System (ADS)
Caswell, Joseph M.; Carniello, Trevor N.; Murugan, Nirosha J.
2016-01-01
Increasing research into heliobiology and related fields has revealed a myriad of potential relationships between space weather factors and terrestrial biology. Additionally, many studies have indicated cyclicity in incidence of various diseases along with many aspects of cardiovascular function. The current study examined annual mortality associated with hypertensive diseases in Canada from 1979 to 2009 for periodicities and linear relationships with a range of heliophysical parameters. Analyses indicated a number of significant lagged correlations between space weather and hypertensive mortality, with solar wind plasma beta identified as the likely source of these relationships. Similar periodicities were observed for geomagnetic activity and hypertensive mortality. A significant rhythm was revealed for hypertensive mortality centered on a 9.6-year cycle length, while geomagnetic activity was fit with a 10.1-year cycle. Cross-correlograms of mortality with space weather demonstrated a 10.67-year periodicity coinciding with the average 10.6-year solar cycle length for the time period examined. Further quantification and potential implications are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru
2015-12-15
Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be bettermore » protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.« less
Zhu, Guibing; Jetten, Mike S M; Kuschk, Peter; Ettwig, Katharina F; Yin, Chengqing
2010-04-01
Anaerobic ammonium oxidation (anammox) and anaerobic methane oxidation (ANME coupled to denitrification) with nitrite as electron acceptor are two of the most recent discoveries in the microbial nitrogen cycle. Currently the anammox process has been relatively well investigated in a number of natural and man-made ecosystems, while ANME coupled to denitrification has only been observed in a limited number of freshwater ecosystems. The ubiquitous presence of anammox bacteria in marine ecosystems has changed our knowledge of the global nitrogen cycle. Up to 50% of N(2) production in marine sediments and oxygen-depleted zones may be attributed to anammox bacteria. However, there are only few indications of anammox in natural and constructed freshwater wetlands. In this paper, the potential role of anammox and denitrifying methanotrophic bacteria in natural and artificial wetlands is discussed in relation to global warming. The focus of the review is to explore and analyze if suitable environmental conditions exist for anammox and denitrifying methanotrophic bacteria in nitrogen-rich freshwater wetlands.
Another place, another timer: Marine species and the rhythms of life
Tessmar-Raible, Kristin; Raible, Florian; Arboleda, Enrique
2011-01-01
The marine ecosystem is governed by a multitude of environmental cycles, all of which are linked to the periodical recurrence of the sun or the moon. In accordance with these cycles, marine species exhibit a variety of biological rhythms, ranging from circadian and circatidal rhythms to circalunar and seasonal rhythms. However, our current molecular understanding of biological rhythms and clocks is largely restricted to solar-controlled circadian and seasonal rhythms in land model species. Here, we discuss the first molecular data emerging for circalunar and circatidal rhythms and present selected species suitable for further molecular analyses. We argue that a re-focus on marine species will be crucial to understand the principles, interactions and evolution of rhythms that govern a broad range of eukaryotes, including ourselves. PMID:21254149
NASA Astrophysics Data System (ADS)
Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin
2014-11-01
Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.
Millet, G.; Vleck, V.
2000-01-01
Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed—that is, steady state or stochastic power output, drafting or non-drafting—are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise. Key Words: triathlon; cycle to run transition; training; performance PMID:11049151
Antiretroviral therapy: current drugs.
Pau, Alice K; George, Jomy M
2014-09-01
The rapid advances in drug discovery and the development of antiretroviral therapy is unprecedented in the history of modern medicine. The administration of chronic combination antiretroviral therapy targeting different stages of the human immunodeficiency virus' replicative life cycle allows for durable and maximal suppression of plasma viremia. This suppression has resulted in dramatic improvement of patient survival. This article reviews the history of antiretroviral drug development and discusses the clinical pharmacology, efficacy, and toxicities of the antiretroviral agents most commonly used in clinical practice to date. Published by Elsevier Inc.
Harnessing the Prokaryotic Adaptive Immune System as a Eukaryotic Antiviral Defense
Price, Aryn A.; Grakoui, Arash; Weiss, David S.
2016-01-01
Clustered, regularly interspaced, short palindromic repeats - CRISPR associated (CRISPR-Cas) systems are sequence specific RNA-directed endonuclease complexes that bind and cleave nucleic acids. These systems evolved within prokaryotes as adaptive immune defenses to target and degrade nucleic acids derived from bacteriophages and other foreign genetic elements. The antiviral function of these systems has now been exploited to combat eukaryotic viruses throughout the viral life cycle. Here we discuss current advances in CRISPR-Cas9 technology as a eukaryotic antiviral defense. PMID:26852268
Fiber-Reinforced Superalloys For Rocket Engines
NASA Technical Reports Server (NTRS)
Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.
1990-01-01
Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.
NASA Technical Reports Server (NTRS)
Schock, H. J.
1984-01-01
The performance of internal combustion stratified-charge engines is highly dependent on the in-cylinder fuel-air mixing processes occurring in these engines. Current research concerning the in-cylinder airflow characteristics of rotary and piston engines is presented. Results showing the output of multidimensional models, laser velocimetry measurements and the application of a holographic optical element are described. Models which simulate the four-stroke cycle and seal dynamics of rotary engines are also discussed.
Munk, Aisha J L; Zoeller, Aaron C; Hennig, Juergen
2018-05-01
While several studies examined the reactivity towards negative emotional stimuli across women's menstrual cycle, only few investigated responses to positive emotional cues in association with sexual hormones on a neural level. Therefore, the aim of the current EEG-experiment was to study the differential reactivity towards positive (erotic) words during the menstrual cycle (i.e. with fluctuations in the steroids estradiol and progesterone) in the late positive potential (LPP). Regarding reactivity towards erotic stimuli, the LPP is seen as the most relevant ERP-component, as more positive amplitudes in the LPP reflect larger incentive salience and higher arousal. The LPP towards erotic words was expected to be more pronounced during fertile phases of the menstrual cycle (around ovulation). Furthermore, associations with hormonal concentrations of estradiol and progesterone were investigated. 19 young, free cycling women were tested in an Erotic Stroop paradigm during the follicular phase, ovulation, and the luteal phase in a balanced cross-over design, while electroencephalogram (EEG) was recorded. LPPs in reaction to erotic compared to neutral words were larger in every phase. During the follicular phase and ovulation, higher estradiol-concentrations were associated with more positive LPP-amplitudes towards erotic- than to neutral words. No effects of progesterone, as well as no effects of cycle phase, were evident. Results are being discussed regarding implications for further research. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Arnon, N.; Trela, W.
1983-01-01
The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.
Managing the life cycle of electronic clinical documents.
Payne, Thomas H; Graham, Gail
2006-01-01
To develop a model of the life cycle of clinical documents from inception to use in a person's medical record, including workflow requirements from clinical practice, local policy, and regulation. We propose a model for the life cycle of clinical documents as a framework for research on documentation within electronic medical record (EMR) systems. Our proposed model includes three axes: the stages of the document, the roles of those involved with the document, and the actions those involved may take on the document at each stage. The model includes the rules to describe who (in what role) can perform what actions on the document, and at what stages they can perform them. Rules are derived from needs of clinicians, and requirements of hospital bylaws and regulators. Our model encompasses current practices for paper medical records and workflow in some EMR systems. Commercial EMR systems include methods for implementing document workflow rules. Workflow rules that are part of this model mirror functionality in the Department of Veterans Affairs (VA) EMR system where the Authorization/ Subscription Utility permits document life cycle rules to be written in English-like fashion. Creating a model of the life cycle of clinical documents serves as a framework for discussion of document workflow, how rules governing workflow can be implemented in EMR systems, and future research of electronic documentation.
A POM–organic framework anode for Li-ion battery
Yue, Yanfeng; Li, Yunchao; Bi, Zhonghe; ...
2015-10-12
Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for portable electronic devices and electric vehicles, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge–discharge cycles. In this work, we demonstrate an approach to improving the cycling performance of lithium-ion battery anodes by constructing an extended 3D network of flexible redox active polyoxometalate (POM) clusters with redox active organic linkers, herein described as POMOF. In addition, this architecture enables the accommodation of large volumemore » changes during cycling at relatively high current rates. For example, the POMOF anode exhibits a high reversible capacity of 540 mA h g –1 after 360 cycles at a current rate of 0.25C and a long cycle life at a current rate of 1.25C (>500 cycles).« less
Influence of Fe(2+)-catalysed iron oxide recrystallization on metal cycling.
Latta, Drew E; Gorski, Christopher A; Scherer, Michelle M
2012-12-01
Recent work has indicated that iron (oxyhydr-)oxides are capable of structurally incorporating and releasing metals and nutrients as a result of Fe2+-induced iron oxide recrystallization. In the present paper, we briefly review the current literature examining the mechanisms by which iron oxides recrystallize and summarize how recrystallization affects metal incorporation and release. We also provide new experimental evidence for the Fe2+-induced release of structural manganese from manganese-doped goethite. Currently, the exact mechanism(s) for Fe2+-induced recrystallization remain elusive, although they are likely to be both oxide-and metal-dependent. We conclude by discussing some future research directions for Fe2+-catalysed iron oxide recrystallization.
Experiment study on an inductive superconducting fault current limiter using no-insulation coils
NASA Astrophysics Data System (ADS)
Qiu, D.; Li, Z. Y.; Gu, F.; Huang, Z.; Zhao, A.; Hu, D.; Wei, B. G.; Huang, H.; Hong, Z.; Ryu, K.; Jin, Z.
2018-03-01
No-insulation (NI) coil made of 2 G high temperature superconducting (HTS) tapes has been widely used in DC magnet due to its excellent performance of engineering current density, thermal stability and mechanical strength. However, there are few AC power device using NI coil at present. In this paper, the NI coil is firstly applied into inductive superconducting fault current limiter (iSFCL). A two-winding structure air-core iSFCL prototype was fabricated, composed of a primary copper winding and a secondary no-insulation winding using 2 G HTS coated conductors. Firstly, in order to testify the feasibility to use NI coil as the secondary winding, the impedance variation of the prototype at different currents and different cycles was tested. The result shows that the impedance increases rapidly with the current rises. Then the iSFCL prototype was tested in a 40 V rms/ 3.3 kA peak short circuit experiment platform, both of the fault current limiting and recovery property of the iSFCL are discussed.
Operational status and current trends in gas turbines for utility applications in Europe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, R.A.
1976-08-16
This investigation was conducted to ascertain the operational status and current trends in gas turbines for electric utility applications in Europe. A number of selected organizations were contacted by letter and personal visits and readily available pertinent literature was reviewed. The impact of business recovery in 1976 and increases in power demand on gas turbine operation and design trends is reflected in the following: annual operating hours on simple cycle gas turbines is very low in favor of more efficient combined cycle or steam plants which comprise part of the present excess reserve capacity; economics indicates the need for highermore » single unit ratings, e.g., in the 100 MW power range; inquiries and discussion of new plants are predominantly for more efficient systems--combined cycles and/or exhaust heat utilization; dual-purpose heat and power plants are getting much more attention; re-powering of existing steam plants is an attractive approach which has been demonstrated and should expand in use; ability to burn (or handle) dirty fuels is important; closed cycle gas turbine plants are receiving renewed consideration because of their good operational experience with dirty fuels including coal, flexibility in supplying varying amounts of heat and power with independent control, low pollution characteristics, ability to use over 80 percent of the heat content in thefuel, and potential for advantageous use in direct cycle, gas cooled nuclear power stations; the broad use of nuclear energy appears inevitable, and the potential advantages of direct cycle gas cooled systems with helium turbines offer incentives of increased efficiency, safety, and lower cost; and component trends are toward higher turbine inlet temperatures (1700 to 2000/sup 0/F) and toward higher compressor pressure ratios and variable geometry. Gas turbines are expected to play an important and continuing role in the utility industry in accordance with its changing requirements.« less
KSHV Targeted Therapy: An Update on Inhibitors of Viral Lytic Replication
Coen, Natacha; Duraffour, Sophie; Snoeck, Robert; Andrei, Graciela
2014-01-01
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma, primary effusion lymphoma and multicentric Castleman’s disease. Since the discovery of KSHV 20 years ago, there is still no standard treatment and the management of virus-associated malignancies remains toxic and incompletely efficacious. As the majority of tumor cells are latently infected with KSHV, currently marketed antivirals that target the virus lytic cycle have shown inconsistent results in clinic. Nevertheless, lytic replication plays a major role in disease progression and virus dissemination. Case reports and retrospective studies have pointed out the benefit of antiviral therapy in the treatment and prevention of KSHV-associated diseases. As a consequence, potent and selective antivirals are needed. This review focuses on the anti-KSHV activity, mode of action and current status of antiviral drugs targeting KSHV lytic cycle. Among these drugs, different subclasses of viral DNA polymerase inhibitors and compounds that do not target the viral DNA polymerase are being discussed. We also cover molecules that target cellular kinases, as well as the potential of new drug targets and animal models for antiviral testing. PMID:25421895
Efficient and lightweight current leads
NASA Astrophysics Data System (ADS)
Bromberg, L.; Dietz, A. J.; Michael, P. C.; Gold, C.; Cheadle, M.
2014-01-01
Current leads generate substantial cryogenic heat loads in short length High Temperature Superconductor (HTS) distribution systems. Thermal conduction, as well as Joule losses (I2R) along the current leads, comprises the largest cryogenic loads for short distribution systems. Current leads with two temperature stages have been designed, constructed and tested, with the goal of minimizing the electrical power consumption, and to provide thermal margin for the cable. We present the design of a two-stage current lead system, operating at 140 K and 55 K. This design is very attractive when implemented with a turbo-Brayton cycle refrigerator (two-stage), with substantial power and weight reduction. A heat exchanger is used at each temperature station, with conduction-cooled stages in-between. Compact, efficient heat exchangers are challenging, because of the gaseous coolant. Design, optimization and performance of the heat exchangers used for the current leads will be presented. We have made extensive use of CFD models for optimizing hydraulic and thermal performance of the heat exchangers. The methodology and the results of the optimization process will be discussed. The use of demountable connections between the cable and the terminations allows for ease of assembly, but require means of aggressively cooling the region of the joint. We will also discuss the cooling of the joint. We have fabricated a 7 m, 5 kA cable with second generation HTS tapes. The performance of the system will be described.
An Earth system view on boundaries for human perturbation of the N and P cycles
NASA Astrophysics Data System (ADS)
Cornell, Sarah; de Vries, Wim
2015-04-01
The appropriation and transformation of land, water, and living resources can alter Earth system functioning, and potentially undermine the basis for the sustainability of our societies. Human activities have greatly increased the flows of reactive forms of nitrogen (N) and phosphorus (P) in the Earth system. These non-substitutable nutrient elements play a fundamental role in the human food system. Furthermore, the current mode of social and economic globalization, and its effect on the present-day energy system, also has large effects including large NOx-N emissions through combustion. Until now, this perturbation of N and P cycles has been treated largely as a local/regional issue, and managed in terms of direct impacts (water, land or air pollution). However, anthropogenic N and P cycle changes affect physical Earth system feedbacks (through greenhouse gas and aerosol changes) and biogeochemical feedbacks (via ecosystem changes, links to the carbon cycle, and altered nutrient limitation) with impacts that can be far removed from the direct sources. While some form of N and P management at the global level seems likely to be needed for continued societal development, the current local-level and sectorial management is often problematically simplistic, as seen in the tensions between divergent N management needs for climate change mitigation, air pollution control, food production, and ecosystem conservation. We require a step change in understanding complex biogeochemical, physical and socio-economic interactions in order to analyse these effects together, and inform policy trade-offs to minimize emergent systemic risks. Planetary boundaries for N and P cycle perturbation have recently been proposed. We discuss the current status of these precautionary boundaries and how we may improve on these preliminary assessments. We present an overview of the human perturbation of the global biogeochemical cycles of N and P and its interaction with the functioning of the Earth system. There are various N and P impacts, which vary in space and time and are associated with multiple human drivers. There are multiple possible constraints that need to be considered; for P there is an issue with absolute availability, but not for N. The societal benefits (e.g. food production) and environmental impacts (e.g. eutrophication) are linked through stoichiometry, which differs in terrestrial and aquatic systems, presenting challenges for any global optimization approach. By setting out these features, we can better assess how to apply and improve our current analytic frameworks, models, and data for safer navigation of the biogeochemical complexities of global sustainability.
Does the Current Minimum Validate (or Invalidate) Cycle Prediction Methods?
NASA Technical Reports Server (NTRS)
Hathaway, David H.
2010-01-01
This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially faster on the approach to Cycle 24 minimum than at Cycle 23 minimum. In both dynamo predictions a faster meridional flow should have given a shorter cycle 23 with stronger polar fields. This suggests that these dynamo models are not yet ready for solar cycle prediction.
Rigamonti, L; Falbo, A; Grosso, M
2013-11-01
This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2011-04-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
NASA Astrophysics Data System (ADS)
Latief, Y.; Berawi, M. A.; Koesalamwardi, A. B.; Supriadi, L. S. R.
2018-03-01
Near Zero Energy House (NZEH) is a housing building that provides energy efficiency by using renewable energy technologies and passive house design. Currently, the costs for NZEH are quite expensive due to the high costs of the equipment and materials for solar panel, insulation, fenestration and other renewable energy technology. Therefore, a study to obtain the optimum design of a NZEH is necessary. The aim of the optimum design is achieving an economical life cycle cost performance of the NZEH. One of the optimization methods that could be utilized is Genetic Algorithm. It provides the method to obtain the optimum design based on the combinations of NZEH variable designs. This paper discusses the study to identify the optimum design of a NZEH that provides an optimum life cycle cost performance using Genetic Algorithm. In this study, an experiment through extensive design simulations of a one-level house model was conducted. As a result, the study provide the optimum design from combinations of NZEH variable designs, which are building orientation, window to wall ratio, and glazing types that would maximize the energy generated by photovoltaic panel. Hence, the design would support an optimum life cycle cost performance of the house.
NASA Astrophysics Data System (ADS)
Choi, Hyoung-Seuk; Choi, Soon-Mok; Choi, Duck-Kyun
2016-01-01
A Pb-free PTC (positive temperature coefficient thermistor) heater was developed in the Ba0.97(Bi0.5Na0.5)0.03TiO3 system especially for automotive part applications. The reliability was verified by using a thermal cycling test designed on the basis of the result from a quality function deployment (QFD) analysis. We compared the thermal cycling test results from the newly-developed Pb-free PTC heaters with the results from PTC heaters currently on the market, namely, PTC heaters containing Pb. Life prediction and stress-strength relationships were analyzed together with a thermal diffusivity evaluation. We discuss the potential failure mechanisms during the thermal cycling test, focusing on the fact that electrical degradation in PTC materials is closely related to mechanical degradation due to the internal stress in the materials that comes from repeated phase changes. Different grain size distributions on the sintered bulks were considered to a key factor for explaining the different results of the reliability tests between the new Pb-free PTC heaters developed in this study and the commercial PTC heaters containing Pb.
Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, Edward L.; Rothschild, William J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)
NASA Technical Reports Server (NTRS)
Keith, E. L.; Rothschild, W. J.
1998-01-01
This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.
NASA Technical Reports Server (NTRS)
Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun
2016-01-01
The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.
The solar dynamo and prediction of sunspot cycles
NASA Astrophysics Data System (ADS)
Dikpati, Mausumi
2012-07-01
Much progress has been made in understanding the solar dynamo since Parker first developed the concepts of dynamo waves and magnetic buoyancy around 1955, and the German school first formulated the solar dynamo using the mean-field formalism. The essential ingredients of these mean-field dynamos are turbulent magnetic diffusivity, a source of lifting of flux, or 'alpha-effect', and differential rotation. With the advent of helioseismic and other observations at the Sun's photosphere and interior, as well as theoretical understanding of solar interior dynamics, solar dynamo models have evolved both in the realm of mean-field and beyond mean-field models. After briefly discussing the status of these models, I will focus on a class of mean-field model, called flux-transport dynamos, which include meridional circulation as an essential additional ingredient. Flux-transport dynamos have been successful in simulating many global solar cycle features, and have reached the stage that they can be used for making solar cycle predictions. Meridional circulation works in these models like a conveyor-belt, carrying a memory of the magnetic fields from 5 to 20 years back in past. The lower is the magnetic diffusivity, the longer is the model's memory. In the terrestrial system, the great-ocean conveyor-belt in oceanic models and Hadley, polar and Ferrel circulation cells in the troposphere, carry signatures from the past climatological events and influence the determination of future events. Analogously, the memory provided by the Sun's meridional circulation creates the potential for flux-transport dynamos to predict future solar cycle properties. Various groups in the world have built flux-transport dynamo-based predictive tools, which nudge the Sun's surface magnetic data and integrated forward in time to forecast the amplitude of the currently ascending cycle 24. Due to different initial conditions and different choices of unknown model-ingredients, predictions can vary; so it is for their cycle 24 forecasts. We all await the peak of cycle 24. I will close by discussing the prospects of improving dynamo-based predictive tools using more sophisticated data-assimilation techniques, such as the Ensemble Kalman Filter method and variational approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com; Ometto, Aldo Roberto; Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP
Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, thismore » paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil. - Highlights: • A discussion is made on performing regionalized impact assessments using spatial differentiation in LCA. • A review is made of 20 characterization models for land use impacts in Life Cycle Impact Assessment. • Four characterization models are recommended according to different land use impact pathways for application in Brazil.« less
Three-dimensional printed models in congenital heart disease.
Cantinotti, Massimiliano; Valverde, Israel; Kutty, Shelby
2017-01-01
The purpose of this article is to discuss technical considerations and current applications of three-dimensional (3D) printing in congenital heart disease (CHD). CHD represent an attractive field for the application of 3D printed models, with consistent progress made in the past decade. Current 3D models are able to reproduce complex cardiac and extra-cardiac anatomy including small details with very limited range of errors (<1 mm), so this tool could be of value in the planning of surgical or percutaneous treatments for selected cases of CHD. However, the steps involved in the building of 3D models, consisting of image acquisition and selection, segmentation, and printing are highly operator dependent. Current 3D models may be rigid or flexible, but unable to reproduce the physiologic variations during the cardiac cycle. Furthermore, high costs and long average segmentation and printing times (18-24 h) limit a more extensive use. There is a need for better standardization of the procedure employed for collection of the images, the segmentation methods and processes, the phase of cardiac cycle used, and in the materials employed for printing. More studies are necessary to evaluate the diagnostic accuracy and cost-effectiveness of 3D printed models in congenital cardiac care.
Observations and analysis of a stratification-destratification event in a tropical estuary
NASA Astrophysics Data System (ADS)
Uncles, R. J.; Ong, J. E.; Gong, W. K.
1990-11-01
A data set comprising 31 continuous tidal cycles was collected in the Sungai Merbok Estuary, Malaysia, in June 1987 as part of an ecological study of nutrient fluxes from a tropical mangrove estuary. Currents, salinity and salinity stratification at a deep-channel (15 m) station near the mouth of the Merbok Estuary showed a pronounced spring-neap variability. The slow currents and weak vertical mixing at neap tides favoured the formation of a stratified water column and generated a neap-spring cycle of water column stabilization and destabilization. A strong stratification event occurred during the period of observations. This was partly driven by a modest freshwater spate which coincided with neap tides. An eddy viscosity-diffusivity model of the stratification, which assumed a constant, longitudinal salinity gradient, demonstrated a pronounced stratification-destratification cycle due to neap-spring variations in vertical mixing. Larger and more realistic stratification was modelled when the estimated, time-varying longitudinal salinity gradient was incorporated. This gradient maximized in response to the peak in freshwater runoff. The measured and modelled density-driven circulations showed qualitative similarities and were of the order of 10 cm s -1 at neap tides. The circulation was weaker during spring tides. The tidally-filtered salt transport due to vertical shear was directed up-estuary and was an order of magnitude smaller during spring tides. The results are discussed in terms of their relevance to mangrove system oceanography.
Carbon fluxes in North American coastal and shelf seas: Current status and trends
NASA Astrophysics Data System (ADS)
Fennel, K.; Alin, S. R.; Barbero, L.; Evans, W.; Martin Hernandez-Ayon, J. M.; Hu, X.; Lohrenz, S. E.; Muller-Karger, F. E.; Najjar, R.; Robbins, L. L.; Shadwick, E. H.; Siedlecki, S. A.; Steiner, N.; Turk, D.; Vlahos, P.; Wang, A. Z.
2016-12-01
Coastal and shelf seas represent an interface between all major components of the global carbon cycle: land, atmosphere, marine sediments and the ocean. Fluxes and transformations of carbon in coastal systems are complex and highly variable in space and time. The First State of the Carbon Cycle Report (http://cdiac.ornl.gov/SOCCR/final.html, Chapter 15, Chavez et al. 2007) concluded that carbon budgets of North American ocean margins were not well quantified because of insufficient observations and the complexity and highly localized spatial variability of coastal carbon dynamics. Since then significant progress has been made through the expansion of carbon observing networks, the implementation of modeling capabilities, and national and international coordination and synthesis activities. We will review the current understanding of coastal carbon fluxes around the North American continent including along the Atlantic and Pacific coasts, the northern Gulf of Mexico, and the North American Arctic region and provide a compilation of regional estimates of air-sea fluxes of CO2. We will discuss generalizable patterns in coastal air-sea CO2 exchange and other carbon fluxes as well as reasons underlying spatial heterogeneity. After providing an overview of the principal modes of carbon export from coastal systems, we will apply these mechanisms to the North American continent, and discuss observed and projected trends of key properties and fluxes. The presentation will illustrate that despite significant advances in capabilities and understanding, large uncertainties remain.
Phenomenological studies on sodium for CSP applications: A safety review
NASA Astrophysics Data System (ADS)
Armijo, Kenneth M.; Andraka, Charles E.
2016-05-01
Sodium Heat transfer fluids (HTF) such as sodium, can achieve temperatures above 700°C to obtain power cycle performance improvements for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF's (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transport starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable operating conditions that match proposed high temperature, isothermal power cycles. This advantage could increase the efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sensible sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium receiver designs, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Lessons obtained from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.
Solar cycle in current reanalyses: (non)linear attribution study
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2014-12-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.
NASA Astrophysics Data System (ADS)
Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.
2015-06-01
This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11-year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (support vector regression, neural networks) besides the multiple linear regression approach. The analysis was applied to several current reanalysis data sets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how these types of data resolve especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the tropical stratosphere were found to be in qualitative agreement with previous attribution studies, although the agreement with observational results was incomplete, especially for JRA-55. The analysis also pointed to the solar signal in the ozone data sets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. The results obtained by linear regression were confirmed by the nonlinear approach through all data sets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. The seasonal evolution of the solar response was also discussed in terms of dynamical causalities in the winter hemispheres. The hypothetical mechanism of a weaker Brewer-Dobson circulation at solar maxima was reviewed together with a discussion of polar vortex behaviour.
Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.
2000-01-01
Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.
Performance evaluation of two-stage fuel cycle from SFR to PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, T.; Hoffman, E.A.; Kim, T.K.
2013-07-01
One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with anmore » average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)« less
Chopper-controlled discharge life cycling studies on lead-acid batteries
NASA Technical Reports Server (NTRS)
Kraml, J. J.; Ames, E. P.
1982-01-01
State-of-the-art 6 volt lead-acid golf car batteries were tested. A daily charge/discharge cycling to failure points under various chopper controlled pulsed dc and continuous current load conditions was undertaken. The cycle life and failure modes were investigated for depth of discharge, average current chopper frequency, and chopper duty cycle. It is shown that battery life is primarily and inversely related to depth of discharge and discharge current. Failure mode is characterized by a gradual capacity loss with consistent evidence of cell element aging.
Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology
NASA Astrophysics Data System (ADS)
Goodwin, Bruce
2015-03-01
This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1992-01-01
The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.
Emerging hypersonic propulsion technology
NASA Technical Reports Server (NTRS)
Curran, E. T.; Beach, H. L., Jr.
1988-01-01
Currently there is a renewal of interest in the utilization of air breathing engines for hypersonic flight. The use of such engines in accelerative missions is discussed, and the nature of the trade-off between engine thrust-to-weight ratio and specific impulse is highlighted. It is also pointed out that the use of a cryogenic fuel such as liquid hydrogen offers the opportunity to develop both precooled derivatives of turboaccelerator engines and new cryogenic engine cycles, where the heat exchange process plays a significant role in the engine concept. The continuing challenges of developing high speed supersonic combustion ramjet engines are discussed. The paper concludes with a brief review of the difficult discipline of vehicle integration, and the challenges of both ground and flight testing.
Small water and wastewater systems: pathways to sustainable development?
Ho, G
2003-01-01
Globally we are faced with billions of people without access to safe water and adequate sanitation. These are generally located in developing communities. Even in developed communities the current large scale systems for supplying water, collecting wastewater and treating it are not environmentally sustainable, because it is difficult to close the cycle of water and nutrients. This paper discusses the advantages of small scale water and wastewater systems in overcoming the difficulties in providing water and wastewater systems in developing communities and in achieving sustainability in both developed and developing communities. Particular attention is given to technology and technology choice, even though technology alone does not provide the complete answer. Disadvantages of small scale systems and how they may be overcome are discussed.
Titus, Timothy N.; Byrne, Shane; Colaprete, Anthony; Forget, Francois; Michaels, Timothy I.; Prettyman, Thomas H.
2017-01-01
This chapter discusses the use of models, observations, and laboratory experiments to understand the cycling of CO2 between the atmosphere and seasonal Martian polar caps. This cycle is primarily controlled by the polar heat budget, and thus the emphasis here is on its components, including solar and infrared radiation, the effect of clouds (water- and CO2-ice), atmospheric transport, and subsurface heat conduction. There is a discussion about cap properties including growth and regression rates, albedos and emissivities, grain sizes and dust and/or water-ice contamination, and curious features like cold gas jets and araneiform (spider-shaped) terrain. The nature of the residual south polar cap is discussed as well as its long-term stability and ability to buffer atmospheric pressures. There is also a discussion of the consequences of the CO2 cycle as revealed by the non-condensable gas enrichment observed by Odyssey and modeled by various groups.
Exercise countermeasures for spaceflight.
Convertino, V A; Sandler, H
1995-01-01
The authors present a physiological basis for the use of exercise as a weightlessness countermeasure, outline special considerations for the development of exercise countermeasures, review and evaluate exercise used during space flight, and provide new approaches and concepts for the implementation of novel exercise countermeasures for future space flight. The discussion of the physiological basis for countermeasures examines maximal oxygen uptake, blood volume, metabolic responses to work, muscle function, bone loss, and orthostatic instability. The discussion of considerations for exercise prescriptions during space flight includes operational considerations, type of exercise, fitness considerations, age and gender, and psychological considerations. The discussion of exercise currently used in space flight examines cycle ergometry, the treadmill, strength training devices, electrical stimulation, and the Penguin suit worn by Russian crews. New approaches to exercise countermeasures include twin bicycles, dynamic resistance exercisers, maximal exercise effects, grasim (gravity simulators), and the relationship between exercise and LBNP.
Space Qualification Issues in Acousto-optic and Electro-optic Devices
NASA Technical Reports Server (NTRS)
Prasad, Narasimha S.; Taylor, Edward W.; Trivedi, Sudhir; Kutcher, Sue; Soos, Jolanta
2007-01-01
Satellite and space-based applications of photonic devices and systems require operational reliability in the harsh environment of space for extended periods of time. This in turn requires every component of the systems and their packaging to meet space qualifications. Acousto- and electro-optical devices form the major components of many current space based optical systems, which is the focus of this paper. The major space qualification issues are related to: mechanical stability, thermal effects and operation of the devices in the naturally occurring space radiation environment. This paper will discuss acousto- and electro-optic materials and devices with respect to their stability against mechanical vibrations, thermal cycling in operating and non-operating conditions and device responses to space ionizing and displacement radiation effects. Selection of suitable materials and packaging to meet space qualification criteria will also be discussed. Finally, a general roadmap for production and testing of acousto- and electro-optic devices will be discussed.
Understanding cell cycle and cell death regulation provides novel weapons against human diseases.
Wiman, K G; Zhivotovsky, B
2017-05-01
Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.
Cycle time and cost reduction in large-size optics production
NASA Astrophysics Data System (ADS)
Hallock, Bob; Shorey, Aric; Courtney, Tom
2005-09-01
Optical fabrication process steps have remained largely unchanged for decades. Raw glass blanks have been rough-machined, generated to near net shape, loose abrasive or fine bound diamond ground and then polished. This set of processes is sequential and each subsequent operation removes the damage and micro cracking induced by the prior operational step. One of the long-lead aspects of this process has been the glass polishing. Primarily, this has been driven by the need to remove relatively large volumes of glass material compared to the polishing removal rate to ensure complete damage removal. The secondary time driver has been poor convergence to final figure and the corresponding polish-metrology cycles. The overall cycle time and resultant cost due to labor, equipment utilization and shop efficiency is increased, often significantly, when the optical prescription is aspheric. In addition to the long polishing cycle times, the duration of the polishing time is often very difficult to predict given that current polishing processes are not deterministic processes. This paper will describe a novel approach to large optics finishing, relying on several innovative technologies to be presented and illustrated through a variety of examples. The cycle time reductions enabled by this approach promises to result in significant cost and lead-time reductions for large size optics. In addition, corresponding increases in throughput will provide for less capital expenditure per square meter of optic produced. This process, comparative cycles time estimates and preliminary results will be discussed.
Water cycles in closed ecological systems: effects of atmospheric pressure.
Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A
2002-01-01
In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.
Water cycles in closed ecological systems: effects of atmospheric pressure
NASA Technical Reports Server (NTRS)
Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)
2002-01-01
In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.
The Case for Treating Depression in Military Spouses
Verdeli, Helen; Baily, Charles; Vousoura, Eleni; Belser, Alexander; Singla, Daisy; Manos, Gail
2011-01-01
The increased operational tempo associated with current deployments to Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) is placing considerable strain on military families. Among other sequelae of OIF and OEF deployment, findings from recent studies suggest high rates of depression in spouses of service members. This review presents a rationale for targeting depression among military spouses. It examines how stressors relating to the deployment cycle may contribute to depression in spouses, and outlines the effects of spousal depression on the mental health of service members and their children. Mental health services currently available to military spouses as well as barriers to their care are also described. Considerations for the adaptation of treatment to their unique circumstances and needs are discussed. PMID:21842994
Terrestrial nitrogen cycling in Earth system models revisited
Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke
2016-01-01
Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.
Adam, Hélène; Collin, Myriam; Richaud, Frédérique; Beulé, Thierry; Cros, David; Omoré, Alphonse; Nodichao, Leifi; Nouy, Bruno; Tregear, James W
2011-12-01
The African oil palm (Elaeis guineensis) is a monoecious species of the palm subfamily Arecoideae. It may be qualified as 'temporally dioecious' in that it produces functionally unisexual male and female inflorescences in an alternating cycle on the same plant, resulting in an allogamous mode of reproduction. The 'sex ratio' of an oil palm stand is influenced by both genetic and environmental factors. In particular, the enhancement of male inflorescence production in response to water stress has been well documented. This paper presents a review of our current understanding of the sex determination process in oil palm and discusses possible insights that can be gained from other species. Although some informative phenological studies have been carried out, nothing is as yet known about the genetic basis of sex determination in oil palm, nor the mechanisms by which this process is regulated. Nevertheless new genomics-based techniques, when combined with field studies and biochemical and molecular cytological-based approaches, should provide a new understanding of the complex processes governing oil palm sex determination in the foreseeable future. Current hypotheses and strategies for future research are discussed.
Children of Darfur: a vulnerable population.
Chaikin, Jennifer
2008-02-01
Four years of intense war in Darfur has created an entire generation of children who might never recover. Children in this region are particularly vulnerable and suffer from issues including physical and psychological illness, malnutrition, rape and unlawful military recruitment. This international crisis is among the most important public health issues in the world. The responsibility of the international community to these children is significant and required to break this cycle. This paper will discuss the concerns surrounding these children, how current strategies are failing and proposed public health nursing interventions.
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Lessons learned from evaluating launch-site processing problems of Space Shuttle payloads
NASA Technical Reports Server (NTRS)
Flores, Carlos A.; Heuser, Robert E.; Sales, Johnny R.; Smith, Anthony M.
1992-01-01
The authors discuss a trend analysis program that is being conducted on the problem reports written during the processing of Space Shuttle payloads at Kennedy Space Center. The program is aimed at developing lessons learned that can both improve the effectiveness of the current payload processing cycles as well as help to guide the processing strategies for Space Station Freedom. The payload processing reports from STS 26R and STS 41 are used. A two-tier evaluation activity is described, and some typical results from the tier one analyses are presented.
Tick-Borne Relapsing Fever Spirochetes in the Americas
Lopez, Job E.; Krishnavahjala, Aparna; Garcia, Melissa N.; Bermudez, Sergio
2016-01-01
Relapsing fever spirochetes are tick- and louse-borne pathogens that primarily afflict those in impoverished countries. Historically the pathogens have had a significant impact on public health, yet currently they are often overlooked because of the nonspecific display of disease. In this review, we discuss aspects of relapsing fever (RF) spirochete pathogenesis including the: (1) clinical manifestation of disease; (2) ability to diagnose pathogen exposure; (3) the pathogen’s life cycle in the tick and mammal; and (4) ecological factors contributing to the maintenance of RF spirochetes in nature. PMID:28959690
NASA Astrophysics Data System (ADS)
Sipaun, S.
2017-01-01
Current development in thorium fueled reactors shows that they can be designed to operate in the fast or thermal spectrum. The thorium/uranium fuel cycle converts fertile thorium-232 into fissile uranium-233, which fissions and releases energy. This paper analyses the characteristics of thorium fueled reactors and discusses the thermal reactor option. It is found that thorium fuel can be utilized in molten salt reactors through many configurations and designs. A balanced assessment on the feasibility of adopting one reactor technology versus another could lead to optimized benefits of having thorium resource.
Cycling and bone health: a systematic review
2012-01-01
Background Cycling is considered to be a highly beneficial sport for significantly enhancing cardiovascular fitness in individuals, yet studies show little or no corresponding improvements in bone mass. Methods A scientific literature search on studies discussing bone mass and bone metabolism in cyclists was performed to collect all relevant published material up to April 2012. Descriptive, cross-sectional, longitudinal and interventional studies were all reviewed. Inclusion criteria were met by 31 studies. Results Heterogeneous studies in terms of gender, age, data source, group of comparison, cycling level or modality practiced among others factors showed minor but important differences in results. Despite some controversial results, it has been observed that adult road cyclists participating in regular training have low bone mineral density in key regions (for example, lumbar spine). Conversely, other types of cycling (such as mountain biking), or combination with other sports could reduce this unsafe effect. These results cannot yet be explained by differences in dietary patterns or endocrine factors. Conclusions From our comprehensive survey of the current available literature it can be concluded that road cycling does not appear to confer any significant osteogenic benefit. The cause of this may be related to spending long hours in a weight-supported position on the bike in combination with the necessary enforced recovery time that involves a large amount of time sitting or lying supine, especially at the competitive level. PMID:23256921
Norton-Thevenin Receptance Coupling (NTRC) as a Payload Design Tool
NASA Technical Reports Server (NTRS)
Gordon, Scott; Kaufman, Dan; Majed, Arya
2017-01-01
The NASA Engineering and Safety Center (NESC) is funding a study to develop an alternate method for performing coupled loads analysis called Norton-Thevenin Receptance Coupling (NTRC). NTRC combines Receptance Coupling (RC), a frequency-domain synthesis method and Norton-Thevenin (NT) theory, an impedance based approach for simulating the interaction between dynamic systems. The goal of developing the NTRC method is to provide a tool that payload developers can use to reduce the conservatism in defining preliminary design loads, assess the impact of design changes between formal load cycles, and to perform trade studies for design optimization with a minimum amount of data required from the launch vehicle (LV) provider. NTRC also has the ability to perform parametric loads analysis where many different design configurations can be evaluated. This will result in cost and schedule benefits to the payload developer that are currently not possible under the standard coupled loads analysis (CLA) flow where typically only 2-3 official load cycles are performed by the LV provider over the life of a payload program. NTRC is not envisioned as a replacement for the official load cycles performed by the LV provider but rather as a means to address the types of design issues faced by the payload developer before and between official load cycles.The presentation provides an overview of the NTRC methodology and discusses how NTRC can be used to replicate the results from a standard LV CLA. The presentation covers the benchmarking that has been performed as part of the NESC study to demonstrate the accuracy of the technique for both frequency and time domain dynamic analyses. Future plans for benchmarking the NTRC approach against CLA results for NASAs Space Launch System (SLS) and commercial launch vehicles are discussed and the role that NTRC is envisioned to play in the payload development cycle.
Fuel cycle cost reduction through Westinghouse fuel design and core management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, F.J.; Scherpereel, L.R.
1985-11-01
This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.
Thermal Performance Of Space Suit Elements With Aerogel Insulation For Moon And Mars Exploration
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Orndoff, Evelyne S.; Trevino, Luis A.
2006-01-01
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements. Thermal conductivity evaluations are proposed for different types of aerogels space suit elements to identify the lay-up concept that may have the best overall thermal performance for both Moon and Mars environments. Potential solutions in mitigating the silica dusting issue related to the application of these aerogels materials for the space suit elements are also discussed.
Efficiency Study of a Commercial Thermoelectric Power Generator (TEG) Under Thermal Cycling
NASA Astrophysics Data System (ADS)
Hatzikraniotis, E.; Zorbas, K. T.; Samaras, I.; Kyratsi, Th.; Paraskevopoulos, K. M.
2010-09-01
Thermoelectric generators (TEGs) make use of the Seebeck effect in semiconductors for the direct conversion of heat to electrical energy. The possible use of a device consisting of numerous TEG modules for waste heat recovery from an internal combustion (IC) engine could considerably help worldwide efforts towards energy saving. However, commercially available TEGs operate at temperatures much lower than the actual operating temperature range in the exhaust pipe of an automobile, which could cause structural failure of the thermoelectric elements. Furthermore, continuous thermal cycling could lead to reduced efficiency and lifetime of the TEG. In this work we investigate the long-term performance and stability of a commercially available TEG under temperature and power cycling. The module was subjected to sequential hot-side heating (at 200°C) and cooling for long times (3000 h) in order to measure changes in the TEG’s performance. A reduction in Seebeck coefficient and an increase in resistivity were observed. Alternating-current (AC) impedance measurements and scanning electron microscope (SEM) observations were performed on the module, and results are presented and discussed.
Life cycle assessment and grid electricity: what do we know and what can we know?
Weber, Christopher L; Jiaramillo, Paulina; Marriott, Joe; Samaras, Constantine
2010-03-15
The generation and distribution of electricity comprises nearly 40% of U.S. CO(2), emissions, as well as large shares of SO(2), NO(x), small particulates, and other toxins. Thus, correctly accounting for these electricity-related environmental releases is of great importance in life cycle assessment of products and processes. Unfortunately, there is no agreed-upon protocol for accounting for the environmental emissions associated with electricity, as well as significant uncertainty in the estimates. Here, we explore the limits of current knowledge about grid electricity in LCA and carbon footprinting for the U.S. electrical grid, and show that differences in standards, protocols, and reporting organizations can lead to important differences in estimates of CO(2) SO(2), and NO(x) emissions factors. We find a considerable divergence in published values for grid emissions factor in the U.S. We discuss the implications of this divergence and list recommendations for a standardized approach to accounting for air pollution emissions in life cycle assessment and policy analyses in a world with incomplete and uncertain information.
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle.
Arredondo, Silvia A; Kappe, Stefan H I
2017-06-01
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Single embryo transfer: the role of natural cycle/minimal stimulation IVF in the future.
Nygren, Karl-Gösta
2007-05-01
There are several good reasons to assume that single embryo transfer (SET) eventually will become the norm internationally in IVF treatments. A tendency is clearly visible, as demonstrated in the latest IVF World Report. The Nordic countries and Belgium have been leading the way. Sweden at present has 70% SET, with 5% twins and a pregnancy rate per transfer remaining constant at about 30%. As a consequence, recent data show a drastic reduction of the risk of prematurity and therefore of child morbidity and perinatal mortality. It is now time to discuss alternatives to the current clinical policy of quite an aggressive ovarian stimulation in settings where SET is the norm. When and at what proportion could natural cycle/soft stimulation be used? What group of patients would benefit? What will the consequences be in terms of efficacy, safety, cost, time and quality of life? Selection of the most beneficial, rather than the most aggressive, ovarian stimulation protocol by clinicians and by the couples themselves in the future may well include a much wider use of natural cycle/soft stimulation in IVF.
Ocean Color and the Equatorial Annual Cycle in the Pacific
NASA Astrophysics Data System (ADS)
Hammann, A. C.; Gnanadesikan, A.
2012-12-01
The presence of chlorophyll, colored dissolved organic matter (CDOM) and other scatterers in ocean surface waters affect the flux divergence of solar radiation and thus the vertical distribution of radiant heating of the ocean. While this may directly alter the local mixed-layer depth and temperature (Martin 1985; Strutton & Chavez 2004), non-local changes are propagated through advection (Manizza et al. 2005; Murtugudde et al. 2002; Nakamoto et al. 2001; Sweeny et al. 2005). In and coupled feedbacks (Lengaigne et al. 2007; Marzeion & Timmermann 2005). Anderson et al. (2007), Anderson et al. (2009) and Gnanadesikan & Anderson (2009) have performed a series of experiments with a fully coupled climate model which parameterizes the e-folding depth of solar irradiance in terms of surface chlorophyll-a concentration. The results have so far been discussed with respect to the climatic mean state and ENSO variability in the tropical Pacific. We extend the discussion here to the Pacific equatorial annual cycle. The focus of the coupled experiments has been the sensitivity of the coupled system to regional differences in chlorophyll concentration. While runs have been completed with realistic SeaWiFS-derived monthly composite chlorophyll ('green') and with a globally chlorophyll-free ocean ('blue'), the concentrations in two additional runs have been selectively set to zero in specific regions: the oligotrophic subtropical gyres ('gyre') in one case and the mesotrophic gyre margins ('margin') in the other. The annual cycle of ocean temperatures exhibits distinctly reduced amplitudes in the 'blue' and 'margin' experiments, and a slight reduction in 'gyre' (while ENSO variability almost vanishes in 'blue' and 'gyre', but amplifies in 'margin' - thus the frequently quoted inverse correlation between ENSO and annual amplitudes holds only for the 'green' / 'margin' comparison). It is well-known that on annual time scales, the anomalous divergence of surface currents and vertical upwelling acting on a mean temperature field contribute the largest term to SST variability (Köberle & Philander 1994; Li & Philander 1996). We examine whether it is changes in the surface currents (driven by the annual cycle of winds) or changes in the mean temperature fields (driven by enhanced penetration of solar radiation) that drive the differences between the coupled models. We do this using a simple linear equatorial-wave model, which, when forced with an annual harmonic of wind stresses, reproduces the essential characteristics of annual ocean current anomalies. The model solves the linearized Boussinesq equations by expansion into discrete modes in all spatial dimensions (McCreary 1981; Lighthill 1969). Both the wind forcing and the (laterally homogeneous) background density profile are constructed as approximations to the coupled model fields. The annual perturbation currents from the wave model are then used to advect the mean temperature fields from the coupled model experiments. While the difference in the mean stratification explains the difference between the 'green' and 'blue' cases. For the other two cases, it appears that changes in the annual wind fields need also be taken into account. An initial hypothesis is that the hemispheric asymmetry in the annual amplitude of wind stress curl that is most important in setting the amplitude of the annual cycle on the equator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunde, P.J.
1982-09-01
In a continuation of previous economic analyses, life-cycle economics of solar projects are discussed using the concept of net present value (NPV) or net worth. The discount rate is defined and illustrated and a life-cycle analysis is worked out based on no down payment and a 25-year loan. The advantages of rising NPV are discussed and illustrated using an energy conserving $100 storm window as an example. Real payback period is discussed and it is concluded that NPV is the only valid method for the evaluation of an investment. Return on investment is cited as a satisfactory alternative method. (MJJ)
Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni
2014-06-10
An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
Scanner qualification with IntenCD based reticle error correction
NASA Astrophysics Data System (ADS)
Elblinger, Yair; Finders, Jo; Demarteau, Marcel; Wismans, Onno; Minnaert Janssen, Ingrid; Duray, Frank; Ben Yishai, Michael; Mangan, Shmoolik; Cohen, Yaron; Parizat, Ziv; Attal, Shay; Polonsky, Netanel; Englard, Ilan
2010-03-01
Scanner introduction into the fab production environment is a challenging task. An efficient evaluation of scanner performance matrices during factory acceptance test (FAT) and later on during site acceptance test (SAT) is crucial for minimizing the cycle time for pre and post production-start activities. If done effectively, the matrices of base line performance established during the SAT are used as a reference for scanner performance and fleet matching monitoring and maintenance in the fab environment. Key elements which can influence the cycle time of the SAT, FAT and maintenance cycles are the imaging, process and mask characterizations involved with those cycles. Discrete mask measurement techniques are currently in use to create across-mask CDU maps. By subtracting these maps from their final wafer measurement CDU map counterparts, it is possible to assess the real scanner induced printed errors within certain limitations. The current discrete measurement methods are time consuming and some techniques also overlook mask based effects other than line width variations, such as transmission and phase variations, all of which influence the final printed CD variability. Applied Materials Aera2TM mask inspection tool with IntenCDTM technology can scan the mask at high speed, offer full mask coverage and accurate assessment of all masks induced source of errors simultaneously, making it beneficial for scanner qualifications and performance monitoring. In this paper we report on a study that was done to improve a scanner introduction and qualification process using the IntenCD application to map the mask induced CD non uniformity. We will present the results of six scanners in production and discuss the benefits of the new method.
Environmental Biochemistry--A New Approach for Teaching the Cycles of the Elements.
ERIC Educational Resources Information Center
Ricci, Juan C. Diaz; And Others
1988-01-01
Presents three dimensional models of biological pathways for the following cycles: carbon, nitrogen, sulfur, and a combination of the three. Discusses steps involved in each cycle and breaks each cycle into trophic and environmental regions. (MVL)
Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.
Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar
2016-01-01
We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.
Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt vs Solution Prepreg
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.
2002-01-01
Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property-in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.
Reliability improvements in tunable Pb1-xSnxSe diode lasers
NASA Technical Reports Server (NTRS)
Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.
1980-01-01
Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.
NASA Technical Reports Server (NTRS)
Schwartzberg, F. R.; King, R. G.; Todd, P. H., Jr.
1979-01-01
The requirements for proof testing and nondestructive inspection of aluminum pressure vessels were discussed. The following conclusions are (1) lack-of-fusion weld defects are sufficiently tight in the as-welded condition to be considered undetectable; (2) proof-level loads are required to fully open lack-of-fusion weld defects; (3) significant crack opening occurs at subproof levels so that an inspection enhancement loading treatment designed to avoid catastrophic failure is feasible; (4) currently used proof levels for 2219 pressure vessels are adequate for postproof inspection; (5) quantification of defect size and location using collimated ultrasonic pitch-catch techniques appears sufficiently feasible for tankage to warrant developmental work; (6) for short-time single-cycle pressure-vessel applications, postproof inspection is desirable; and (7) for long-term multiple-cycle pressure-vessel applications, postproof inspection is essential for life assurance.
Piezoelectric extraction of ECG signal
NASA Astrophysics Data System (ADS)
Ahmad, Mahmoud Al
2016-11-01
The monitoring and early detection of abnormalities or variations in the cardiac cycle functionality are very critical practices and have significant impact on the prevention of heart diseases and their associated complications. Currently, in the field of biomedical engineering, there is a growing need for devices capable of measuring and monitoring a wide range of cardiac cycle parameters continuously, effectively and on a real-time basis using easily accessible and reusable probes. In this paper, the revolutionary generation and extraction of the corresponding ECG signal using a piezoelectric transducer as alternative for the ECG will be discussed. The piezoelectric transducer pick up the vibrations from the heart beats and convert them into electrical output signals. To this end, piezoelectric and signal processing techniques were employed to extract the ECG corresponding signal from the piezoelectric output voltage signal. The measured electrode based and the extracted piezoelectric based ECG traces are well corroborated. Their peaks amplitudes and locations are well aligned with each other.
Grady, Haiyan; Elder, David; Webster, Gregory K; Mao, Yun; Lin, Yiqing; Flanagan, Talia; Mann, James; Blanchard, Andy; Cohen, Michael J; Lin, Judy; Kesisoglou, Filippos; Hermans, Andre; Abend, Andreas; Zhang, Limin; Curran, David
2018-01-01
This article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article. Specifically, this article discusses the purpose, advantages, and limitations of quality control, biorelevant, and clinically relevant dissolution methods. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
DeCarlo, P. F.; Jetter, J.; Khan, B.; Zhao, Y.; Yelverton, T.; Hays, M. D.
2011-12-01
Nearly half of the world's population relies on inefficient open fire or rudimentary cookstoves to prepare their food. Combustion of biomass or other fuels results in not only high indoor air pollution, but is also a large source of climate forcing species such as black and organic carbon species to the earth's atmosphere. Large-scale intervention programs are now underway to replace inefficient cooking methods with newer technologies. These intervention programs have as a goal the improvement of indoor air pollution and reduction of negative climate impacts. To characterize the current available alternatives, a major cookstove testing program was conducted at the US EPA. This presentation will focus on the characterization of the emission measurements for a variety of different cookstoves, fuels and cooking cycles. The work will focus on the aerosol optical properties measured with a PASS-3, and the climate impacts of various intervention pathways will be discussed.
Chaos in the sunspot cycle - Analysis and prediction
NASA Technical Reports Server (NTRS)
Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.
1991-01-01
The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.
Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.
Evaluation of Graphite Fiber/Polyimide PMCs from Hot Melt versus Solution Prepreg
NASA Technical Reports Server (NTRS)
Shin, Eugene E.; Sutter, James K.; Eakin, Howard; Inghram, Linda; McCorkle, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Thesken, John; Fink, Jeffrey E.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Carbon fiber reinforced high temperature polymer matrix composites (PMC) have been extensively investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines. The initial phase involves development of comprehensive composite material-process-structure-design-property in-service performance correlations and database, especially for a high stiffness facesheet of various sandwich structures. Overview of the program plan, technical approaches and current multi-team efforts will be presented. During composite fabrication, it was found that the two large volume commercial prepregging methods (hot-melt vs. solution) resulted in considerably different composite cure behavior. Details of the process-induced physical and chemical modifications in the prepregs, their effects on composite processing, and systematic cure cycle optimization studies will be discussed. The combined effects of prepregging method and cure cycle modification on composite properties and isothermal aging performance were also evaluated.
Creating a high-value delivery system for health care.
Teisberg, Elizabeth O; Wallace, Scott
2009-01-01
Health care reform that focuses on improving value enhances both the well-being of patients and the professional satisfaction of physicians. Value in health care is the improvement in health outcomes achieved for patients relative to the money spent. Dramatic and ongoing improvement in the value of health care delivered will require fundamental restructuring of the system. Current efforts to improve safety and reduce waste are truly important but not sufficient. The following three structural changes will drive simultaneous improvement in outcomes and efficiency: (1) reorganizing care delivery into clinically integrated teams defined by patient needs over the full cycle of care; (2) measuring and reporting patient outcomes by clinical teams, across the cycle of care and for identified clusters of medical circumstances; and (3) enabling reimbursement tied to value rather than to quantity of services. Many of these changes require physician leadership. We discuss steps on the journey to value-based care delivery.
Elastocaloric cooling materials and systems
NASA Astrophysics Data System (ADS)
Takeuchi, Ichiro
2015-03-01
We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.
2009-01-01
An overview of the NASA Fundamental Aeronautics Program (FAP) mission and goals is presented. One of the subprograms under the FAP, the Subsonic Fixed Wing Project (SFW), is the focus of the presentation. The SFW system environmental metrics are discussed, along with highlights of planned, systematic approach to research to reduce the environmental impact of commercial aircraft in the areas of acoustics, fuel burn and emissions. The presentation then focuses on collaborative research being conducted with U.S. Industry on the Ultra High Bypass (UHB) engine cycle, the propulsion cycle selected by the SFW to meet the system goals. The partnerships with General Electric Aviation to investigate Open Rotor propulsion concepts and with Pratt & Whitney to investigate the Geared Turbofan UHB engine are highlighted, including current and planned future collaborative research activities with NASA and each organization.
Social class culture cycles: how three gateway contexts shape selves and fuel inequality.
Stephens, Nicole M; Markus, Hazel Rose; Phillips, L Taylor
2014-01-01
America's unprecedented levels of inequality have far-reaching negative consequences for society as a whole. Although differential access to resources contributes to inequality, the current review illuminates how ongoing participation in different social class contexts also gives rise to culture-specific selves and patterns of thinking, feeling, and acting. We integrate a growing body of interdisciplinary research to reveal how social class culture cycles operate over the course of the lifespan and through critical gateway contexts, including homes, schools, and workplaces. We first document how each of these contexts socializes social class cultural differences. Then, we demonstrate how these gateway institutions, which could provide access to upward social mobility, are structured according to middle-class ways of being a self and thus can fuel and perpetuate inequality. We conclude with a discussion of intervention opportunities that can reduce inequality by taking into account the contextual responsiveness of the self.
Life cycle as a stable trait in the evaluation of diversity of Nostoc from biofilms in rivers.
Mateo, Pilar; Perona, Elvira; Berrendero, Esther; Leganés, Francisco; Martín, Marta; Golubić, Stjepko
2011-05-01
The diversity within the genus Nostoc is still controversial and more studies are needed to clarify its heterogeneity. Macroscopic species have been extensively studied and discussed; however, the microscopic forms of the genus, especially those from running waters, are poorly known and likely represented by many more species than currently described. Nostoc isolates from biofilms of two Spanish calcareous rivers were characterized comparing the morphology and life cycle in two culture media with different levels of nutrients and also comparing the 16S rRNA gene sequences. The results showed that trichome shape and cellular dimensions varied considerably depending on the culture media used, whereas the characteristics expressed in the course of the life cycle remained stable for each strain independent of the culture conditions. Molecular phylogenetic analysis confirmed the distinction between the studied strains established on morphological grounds. A balanced approach to the evaluation of diversity of Nostoc in the service of autecological studies requires both genotypic information and the evaluation of stable traits. The results of this study show that 16S rRNA gene sequence similarity serves as an important criterion for characterizing Nostoc strains and is consistent with stable attributes, such as the life cycle. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM
NASA Technical Reports Server (NTRS)
Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia
2015-01-01
Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.
GI stem cells – new insights into roles in physiology and pathophysiology
von Furstenberg, Richard J.
2016-01-01
Abstract This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles. PMID:27107928
NASA's Advanced Space Transportation Hypersonic Program
NASA Technical Reports Server (NTRS)
Hueter, Uwe; McClinton, Charles; Cook, Stephen (Technical Monitor)
2002-01-01
NASA's has established long term goals for access-to-space. NASA's third generation launch systems are to be fully reusable and operational in approximately 25 years. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
A stem cell apostasy: A tale of 4 H words
Quesenberry, Peter J.; Goldberg, Laura R.; Dooner, Mark S.
2014-01-01
The field of hematopoietic stem cell biology has become increasingly dominated by the pursuit and study of highly purified populations of hematopoietic stem cells (HSCs). Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self-generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self-renewal and differentiation capacity. Critical studies on un-separated whole bone marrow (WBM) have definitively shown that long-term engraftable hematopoietic stem cells are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self-renewal capacity, lineage-commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small sub-population of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification. PMID:25183450
Wood, Tamara M.; Gartner, Jeffrey W.
2010-01-01
Vertical velocity and acoustic backscatter measurements by acoustic Doppler current profilers were used to determine seasonal, subseasonal (days to weeks), and diel variation in suspended solids in a freshwater lake where massive cyanobacterial blooms occur annually. During the growing season, the suspended material in the lake is dominated by the buoyancy-regulating cyanobacteria, Aphanizomenon flos-aquae. Measured variables (water velocity, relative backscatter [RB], wind speed, and air and water temperatures) were averaged over the deployment season at each sample time of day to determine average diel cycles. Phase shifts between diel cycles in RB and diel cycles in wind speed, vertical water temperature differences (delta T(degree)), and horizontal current speeds were found by determining the lead or lag that maximized the linear correlation between the respective diel cycles. Diel cycles in RB were more in phase with delta T(degree) cycles, and, to a lesser extent, wind cycles, than to water current cycles but were out of phase with the cycle that would be expected if the vertical movement of buoyant cyanobacteria colonies was controlled primarily by light. Clear evidence of a diel cycle in vertical velocity was found only at the two deepest sites in the lake. Cycles of vertical velocity, where present, were out of phase with expected vertical motion of cyanobacterial colonies based on the theoretical cycle for light-driven vertical movement. This suggests that water column stability and turbulence were more important factors in controlling vertical distribution of colonies than light. Variations at subseasonal time scales were determined by filtering data to pass periods between 1.2 and 15 days. At subseasonal time scales, correlations between RB and currents or air temperature were consistent with increased concentration of cyanobacterial colonies near the surface when water column stability increased (higher air temperatures or weaker currents) and dispersal of colonies throughout the water column when the water column mixed more easily. RB was used to estimate suspended solids concentrations (SSC). Correlations of depth-integrated SSC with currents or air temperatures suggest that depth-integrated water column mass decreased under conditions of greater water column stability and weaker currents. Results suggest that the use of measured vertical velocity and acoustic backscatter as a surrogate for suspended material has the potential to contribute significant additional insight into dynamics of Aphanizomenon flos-aquae colonies in Upper Klamath Lake, south-central Oregon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi
Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less
Engine System Loads Development for the Fastrac 60K Flight Engine
NASA Technical Reports Server (NTRS)
Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph
2000-01-01
Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature
NASA Astrophysics Data System (ADS)
Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu
2017-10-01
A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.
Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.
ERIC Educational Resources Information Center
Bodner, George M.
1986-01-01
Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)
Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)
NASA Astrophysics Data System (ADS)
Veenadhari, B.; Alex, S.
2006-11-01
veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.
Minimizing the Health Effects of the Nuclear Accident in Fukushima on Thyroids.
Nagataki, Shigenobu
2016-12-01
Because of the March 2011 nuclear accident in Fukushima, Japan, the Fukushima Prefecture initiated a thyroid ultrasound examination program. The first cycle of examinations on all children (more than 300,000) of the Fukushima Prefecture identified 116 patients as having malignant or suspected malignant thyroid nodules, and in the second cycle 59 new cases were identified. According to the available data, the thyroid cancers found by the screening are unlikely to be due to radiation, but the possibility cannot be excluded. The current thyroid ultrasound examination program has been detecting thyroid cancers, regardless of the cause, in all children in the Fukushima Prefecture. Fukushima Prefecture is already taking measures against thyroid cancer, even if an increase occurs in radiation-induced thyroid cancer in Fukushima Prefecture. Therefore, the urgent challenge is how to treat children with thyroid cancer found by the screening. At the end of each cycle, the findings must be carefully discussed with experts around the world and among stakeholders in Fukushima, and a consensus must be reached regarding whether the current program will be continued or needs improvement. In addition, the survey should be improved as an epidemiological follow-up research program. Before starting this, a consensus must be reached with the inhabitants with regard to carrying out epidemiological research for several decades. Dialogue absolutely must continue among all stakeholders to determine how best to formulate a program to deal with urgent matters and to determine the next stage of any epidemiological research.
Supporting new graduate professional development: a clinical learning framework.
Fitzgerald, Cate; Moores, Alis; Coleman, Allison; Fleming, Jennifer
2015-02-01
New graduate occupational therapists are required to competently deliver health-care practices within complex care environments. An occupational therapy clinical education programme within a large public sector health service sought to investigate methods to support new graduates in their clinical learning and professional development. Three cycles of an insider action research approach each using the steps of planning, action, critical observation and reflection were undertaken to investigate new graduate learning strategies, develop a learning framework and pilot its utility. Qualitative research methods were used to analyse data gathered during the action research cycles. Action research identified variations in current practices to support new graduate learning and to the development of the Occupational Therapy Clinical Learning Framework (OTCLF). Investigation into the utility of the OTCLF revealed two themes associated with its implementation namely (i) contribution to learning goal development and (ii) compatibility with existing learning supports. The action research cycles aimed to review current practices to support new graduate learning. The learning framework developed encourages reflection to identify learning needs and the review, discussion of, and engagement in, goal setting and learning strategies. Preliminary evidence indicates that the OTCLF has potential as an approach to guide new graduate goal development supported by supervision. Future opportunity to implement a similar learning framework in other allied health professions was identified, enabling a continuation of the cyclical nature of enquiry, integral to this research approach within the workplace. © 2014 Occupational Therapy Australia.
Assessing the impact of radiative parameter uncertainty on plant growth simulation
NASA Astrophysics Data System (ADS)
Viskari, T.; Serbin, S.; Dietze, M.; Shiklomanov, A. N.
2015-12-01
Current Earth system models do not adequately project either the magnitude or the sign of carbon fluxes and storage associated with the terrestrial carbon cycle resulting in significant uncertainties in their potential feedbacks on the future climate system. A primary reason for the current uncertainty in these models is the lack of observational constraints of key biomes at relevant spatial and temporal scales. There is an increasingly large and highly resolved amount of remotely sensed observations that can provide the critical model inputs. However, effectively incorporating these data requires the use of radiative transfer models and their associated assumptions. How these parameter assumptions and uncertainties affect model projections for, e.g., leaf physiology, soil temperature or growth has not been examined in depth. In this presentation we discuss the use of high spectral resolution observations at the near surface to landscape scales to inform ecosystem process modeling efforts, particularly the uncertainties related to properties describing the radiation regime within vegetation canopies and the impact on C cycle projections. We illustrate that leaf and wood radiative properties and their associated uncertainties have an important impact on projected forest carbon uptake and storage. We further show the need for a strong data constraint on these properties and discuss sources of this remotely sensed information and methods for data assimilation into models. We present our approach as an efficient means for understanding and correcting implicit assumptions and model structural deficiencies in radiation transfer in vegetation canopies. Ultimately, a better understanding of the radiation balance of ecosystems will improve regional and global scale C and energy balance projections.
Phenomenological Studies on Sodium for CSP Applications: A Safety Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Andraka, Charles E.
Sodium as a heat transfer fluid (HTF) can achieve temperatures above 700°C to improve power cycle performance for reducing large infrastructure costs of high-temperature systems. Current concentrating solar power (CSP) sensible HTF’s (e.g. air, salts) have poor thermal conductivity, and thus low heat transfer capabilities, requiring a large receiver. The high thermal conductivity of sodium has demonstrated high heat transfer rates on dish and towers systems, which allow a reduction in receiver area by a factor of two to four, reducing re-radiation and convection losses and cost by a similar factor. Sodium produces saturated vapor at pressures suitable for transportmore » starting at 600°C and reaches one atmosphere at 870°C, providing a wide range of suitable latent operating conditions that match proposed high temperature, isothermal input power cycles. This advantage could increase the receiver and system efficiency while lowering the cost of CSP tower systems. Although there are a number of desirable thermal performance advantages associated with sodium, its propensity to rapidly oxidize presents safety challenges. This investigation presents a literature review that captures historical operations/handling lessons for advanced sodium systems, and the current state-of-knowledge related to sodium combustion behavior. Technical and operational solutions addressing sodium safety and applications in CSP will be discussed, including unique safety hazards and advantages using latent sodium. Operation and maintenance experience from the nuclear industry with sensible and latent systems will also be discussed in the context of safety challenges and risk mitigation solutions.« less
Remote sensing of ocean currents. [Loop Current in Gulf of Mexico
NASA Technical Reports Server (NTRS)
Maul, G. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A time series of the Loop Current in the Gulf of Mexico, covering an annual cycle of growth, spreading, and decay, has been obtained in synchronization with ERTS-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed either by color or sea state effects associated with the cyclonic boundary. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance. These calculations compare favorably with experimental measurements and show that the ratio of channels method gives ambiguous interpretative results. These results are used to discuss features in images where surface measurements were obtained and are extended to tentative explanation in others.
Versatile plasma ion source with an internal evaporator
NASA Astrophysics Data System (ADS)
Turek, M.; Prucnal, S.; Drozdziel, A.; Pyszniak, K.
2011-04-01
A novel construction of an ion source with an evaporator placed inside a plasma chamber is presented. The crucible is heated to high temperatures directly by arc discharge, which makes the ion source suitable for substances with high melting points. The compact ion source enables production of intense ion beams for wide spectrum of solid elements with typical separated beam currents of ˜100-150 μA for Al +, Mn +, As + (which corresponds to emission current densities of 15-25 mA/cm 2) for the extraction voltage of 25 kV. The ion source works for approximately 50-70 h at 100% duty cycle, which enables high ion dose implantation. The typical power consumption of the ion source is 350-400 W. The paper presents detailed experimental data (e.g. dependences of ion currents and anode voltages on discharge and filament currents and magnetic flux densities) for Cr, Fe, Al, As, Mn and In. The discussion is supported by results of Monte Carlo method based numerical simulation of ionisation in the ion source.
The report provides guidance on how to move from current practice to recommended practice in Life Cycle Impact Assessment. It is composed of three complementary parts elaborated in the first task force (TFI) of the LCIA programme, with contribution of the other three task forces:
Implications of Extended Solar Minima
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Davis, J. M.
2009-01-01
Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.
Dynamic estimator for determining operating conditions in an internal combustion engine
Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob
2016-01-05
Methods and systems are provided for estimating engine performance information for a combustion cycle of an internal combustion engine. Estimated performance information for a previous combustion cycle is retrieved from memory. The estimated performance information includes an estimated value of at least one engine performance variable. Actuator settings applied to engine actuators are also received. The performance information for the current combustion cycle is then estimated based, at least in part, on the estimated performance information for the previous combustion cycle and the actuator settings applied during the previous combustion cycle. The estimated performance information for the current combustion cycle is then stored to the memory to be used in estimating performance information for a subsequent combustion cycle.
BUZALAF, Marília Afonso Rabelo; HANNAS, Angélica Reis; MAGALHÃES, Ana Carolina; RIOS, Daniela; HONÓRIO, Heitor Marques; DELBEM, Alberto Carlos Botazzo
2010-01-01
Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments. PMID:20835565
Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-Flaring Active Regions
NASA Astrophysics Data System (ADS)
Kilcik, A.; Yurchyshyn, V.; Donmez, B.; Obridko, V. N.; Ozguc, A.; Rozelot, J. P.
2018-04-01
We analyzed temporal and periodic variations of sunspot counts (SSCs) in flaring (C-, M-, or X-class flares), and non-flaring active regions (ARs) for nearly three solar cycles (1986 through 2016). Our main findings are as follows: i) temporal variations of monthly means of the daily total SSCs in flaring and non-flaring ARs behave differently during a solar cycle and the behavior varies from one cycle to another; during Solar Cycle 23 temporal SSC profiles of non-flaring ARs are wider than those of flaring ARs, while they are almost the same during Solar Cycle 22 and the current Cycle 24. The SSC profiles show a multi-peak structure and the second peak of flaring ARs dominates the current Cycle 24, while the difference between peaks is less pronounced during Solar Cycles 22 and 23. The first and second SSC peaks of non-flaring ARs have comparable magnitude in the current solar cycle, while the first peak is nearly absent in the case of the flaring ARs of the same cycle. ii) Periodic variations observed in the SSCs profiles of flaring and non-flaring ARs derived from the multi-taper method (MTM) spectrum and wavelet scalograms are quite different as well, and they vary from one solar cycle to another. The largest detected period in flaring ARs is 113± 1.6 days while we detected much longer periodicities (327± 13, 312 ± 11, and 256± 8 days) in the non-flaring AR profiles. No meaningful periodicities were detected in the MTM spectrum of flaring ARs exceeding 55± 0.7 days during Solar Cycles 22 and 24, while a 113± 1.3 days period was detected in flaring ARs of Solar Cycle 23. For the non-flaring ARs the largest detected period was only 31± 0.2 days for Cycle 22 and 72± 1.3 days for the current Cycle 24, while the largest measured period was 327± 13 days during Solar Cycle 23.
Observing the Global Water Cycle from Space
NASA Technical Reports Server (NTRS)
Hildebrand, P. H.
2004-01-01
This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.
Hernández-Bule, María Luisa; Cid, María Antonia; Trillo, María Angeles; Leal, Jocelyne; Ubeda, Alejandro
2010-12-01
The capacitive-resistive electric transfer (CRet) therapy is a non-invasive technique that applies electrical currents of 0.4-0.6 MHz to the treatment of musculoskeletal injuries. Although this therapy has proved effective in clinical studies, its interaction mechanisms at the cellular level still are insufficiently investigated. Results from previous studies have shown that the application of CRet currents at subthermal doses causes alterations in cell cycle progression and decreased proliferation in hepatocarcinoma (HepG2) and neuroblastoma (NB69) human cell lines. The aim of the present study was to investigate the antiproliferative response of HepG2 to CRet currents. The results showed that 24-h intermittent treatment with 50 µA/mm(2) current density induced in HepG2 statistically significant changes in expression and activation of cell cycle control proteins p27Kip1 and cyclins D1, A and B1. The chronology of these changes is coherent with that of the alterations reported in the cell cycle of HepG2 when exposed to the same electric treatment. We propose that the antiproliferative effect exerted by the electric stimulus would be primarily mediated by changes in the expression and activation of proteins intervening in cell cycle regulation, which are among the targets of emerging chemical therapies. The capability to arrest the cell cycle through electrically-induced changes in cell cycle control proteins might open new possibilities in the field of oncology.
RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher
NASA Technical Reports Server (NTRS)
Balepin, Vladimir; Price, John; Filipenco, Victor
1999-01-01
This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.
Advanced Fuel Cycle Cost Basis – 2017 Edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B. W.; Ganda, F.; Williams, K. A.
This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less
Hydrogen production at hydro-power plants
NASA Astrophysics Data System (ADS)
Tarnay, D. S.
A tentative design for hydrogen-producing installations at hydropower facilities is discussed from technological, economic and applications viewpoints. The plants would use alternating current to electrolyze purified river water. The hydrogen would be stored in gas or liquid form and oxygen would be sold or vented to the atmosphere. The hydrogen could later be burned in a turbine generator for meeting peak loads, either in closed or open cycle systems. The concept would allow large hydroelectric plants to function in both base- and peak-load modes, thus increasing the hydraulic utilization of the plant and the capacity factor to a projected 0.90. Electrolyzer efficiencies ranging from 0.85-0.90 have been demonstrated. Excess hydrogen can be sold for other purposes or, eventually, as domestic and industrial fuel, at prices competitive with current industrial hydrogen.
Spacelab - Ten years of international cooperation
NASA Technical Reports Server (NTRS)
Bignier, M.; Harrington, J. C.; Sander, M. J.
1983-01-01
The history, current status, and future plans of the Spacelab program are reviewed, with a focus on the cooperative relationship between ESA and NASA. The initial decision to undertake the program and the three agreements signed to begin its implementation are examined, and the division of responsibilities and financial contributions is discussed insofar as it affected the management structure. Consideration is given to the major facilities, the 50-mission operational cycle, communications, the currently scheduled activities (through 1985), the prospective later uses, and the ten dedicated discipline laboratories. The importance of continuous mutual support during the planning and development phases is stressed. The program so far is considered a success, in terms of the goals set by the participants and in terms of the resolution of the problems inherent in international technological endeavors.
NASA Astrophysics Data System (ADS)
Ishikawa, Masashi; Tasaka, Yuko; Yoshimoto, Nobuko; Morita, Masayuki
Precycling of lithium (Li) metal on a nickel substrate at a low-temperature (-20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) enhanced Li cycleability in the subsequent cycles at a room temperature (25°C). In LiPF 6-PC/DMC, not only the low-temperature precycling in the initial 10 cycles was effective in the improvement of Li cycle life but also the first low-temperature Li deposition followed by room temperature cycling enhanced the Li cycle life. Such a precycling effect was observed with various current densities at the initial Li deposition and the subsequent cycling. When the current density of the cycling was high, improved cycling efficiency was observed and the efficiency of the Li electrode undergoing the precycling was close to that at a constant temperature of -20°C.
How Things Work. Teacher's Guide.
ERIC Educational Resources Information Center
Brown, Mark; And Others
This unit examines the earth's processes and systems from an energy perspective. A technical language for discussion of energy systems is developed. Objectives include the ability of students to discuss earth's carbon/oxygen cycle, hydrological cycle, and heat patterns and the functioning of producers, consumers and decomposers in the environment.…
The Rhetorical Cycle: Reading, Thinking, Speaking, Listening, Discussing, Writing.
ERIC Educational Resources Information Center
Keller, Rodney D.
The rhetorical cycle is a step-by-step approach that provides classroom experience before students actually write, thereby making the writing process less frustrating for them. This approach consists of six sequential steps: reading, thinking, speaking, listening, discussing, and finally writing. Readings serve not only as models of rhetorical…
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Mcdonald, G.
1982-01-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
NASA Astrophysics Data System (ADS)
Hendricks, R. C.; McDonald, G.
1982-02-01
An analysis of thermal cycle life data for four sets of eight thermal barrier coated specimens representing arc currents (plasma gun power) of 525, 600, 800, or 950 amps is presented. The ZrO2-8Y2O3/NiCrAlY plasma spray coated Rene 41 rods were thermal cycled to 1040 C in a Mach 0.3-Jet A/air burner flame. The experimental results indicate the existance of a minimum or threshold power level which coating life expectancy is less than 500 cycles. Above the threshold power level, coating life expectancy more than doubles and increases with arc current.
77 FR 823 - Guidance for Fuel Cycle Facility Change Processes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-06
... NUCLEAR REGULATORY COMMISSION [NRC-2009-0262] Guidance for Fuel Cycle Facility Change Processes... Fuel Cycle Facility Change Processes.'' This regulatory guide describes the types of changes for which fuel cycle facility licensees should seek prior approval from the NRC and discusses how licensees can...
Paradigm Change: Alternate Approaches to Constitutive and Necking Models for Sheet Metal Forming
NASA Astrophysics Data System (ADS)
Stoughton, Thomas B.; Yoon, Jeong Whan
2011-08-01
This paper reviews recent work proposing paradigm changes for the currently popular approach to constitutive and failure modeling, focusing on the use of non-associated flow rules to enable greater flexibility to capture the anisotropic yield and flow behavior of metals using less complex functions than those needed under associated flow to achieve that same level of fidelity to experiment, and on the use of stress-based metrics to more reliably predict necking limits under complex conditions of non-linear forming. The paper discusses motivating factors and benefits in favor of both associated and non-associated flow models for metal forming, including experimental, theoretical, and practical aspects. This review is followed by a discussion of the topic of the forming limits, the limitations of strain analysis, the evidence in favor of stress analysis, the effects of curvature, bending/unbending cycles, triaxial stress conditions, and the motivation for the development of a new type of forming limit diagram based on the effective plastic strain or equivalent plastic work in combination with a directional parameter that accounts for the current stress condition.
Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.
Neave, Matthew J; Apprill, Amy; Ferrier-Pagès, Christine; Voolstra, Christian R
2016-10-01
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
NASA Astrophysics Data System (ADS)
Adelkhani, H.; Ghaemi, M.; Jafari, S. M.
Pulse current electrodeposition (PCD) method has been applied to the preparation of novel electrolytic manganese dioxide (EMD) in order to enhance the cycle life of rechargeable alkaline MnO 2-Zn batteries (RAM). The investigation was carried out under atmospheric pressure through a systematic variation of pulse current parameters using additive free sulfuric acid-MnSO 4 electrolyte solutions. On time (t on) was varied from 0.1 to 98.5 ms, off time (t off) from 0.25 to 19.5 ms, pulse frequencies (f) from 10 to 1000 Hz and duty cycles (θ) from 0.02 to 0.985. A constant pulse current density (I p) of 0.8 A dm -2 and average current densities (I a) in the range of 0.08-0.8 A dm -2 were applied in all experiments. Resultant materials were characterized by analyzing their chemical compositions, X-ray diffractions (XRD) and scanning electron microscopy (SEM). Electrochemical characterizations carried out by charge/discharge cycling of samples in laboratory designed RAM batteries and cyclic voltammetric experiments (CV). It has been proved that specific selection of duty cycle, in the order of 0.25, and a pulse frequency of 500 Hz, results in the production of pulse deposited samples (pcMDs) with more uniform distribution of particles and more compact structure than those obtained by direct current techniques (dcMDs). Results of the test batteries demonstrated that, in spite of reduction of bath temperature in the order of 40 °C, the cycle life of batteries made of pcMDs (bath temperature: 60 °C) was rather higher than those made of conventional dcMDs (boiling electrolyte solution). Under the same conditions of EMD synthesis temperature of 80 °C and battery testing, the maximum obtainable cycle life of optimized pcMD was nearly 230 cycles with approximately 30 mAh g -1 MnO 2, compared to that of dcMD, which did not exceed 20 cycles. In accordance to these results, CV has confirmed that the pulse duty cycle is the most influential parameter on the cycle life than the pulse frequency. Because of operating at lower bath temperatures, the presented synthetic mode could improve its competitiveness in economical aspects.
Liquid-metal binary cycles for stationary power
NASA Technical Reports Server (NTRS)
Gutstein, M.; Furman, E. R.; Kaplan, G. M.
1975-01-01
The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.
Stable cycling in discrete-time genetic models.
Hastings, A
1981-11-01
Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.
Some heat engine cycles in which liquids can work.
Allen, P C; Paulson, D N; Wheatley, J C
1981-01-01
Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle.
Some heat engine cycles in which liquids can work
Allen, P. C.; Paulson, D. N.; Wheatley, J. C.
1981-01-01
Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle. PMID:16592952
Non-adiabatic pumping in an oscillating-piston model
NASA Astrophysics Data System (ADS)
Chuchem, Maya; Dittrich, Thomas; Cohen, Doron
2012-05-01
We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non-trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.
Aerospace nickel-cadmium cell separator qualifications program
NASA Technical Reports Server (NTRS)
Francis, R. W.; Haag, R. L.
1986-01-01
The present space qualified nylon separator, Pellon 2505 ML, is no longer available for aerospace nickel-cadmium (NiCd) cells. As a result of this anticipated unavailability, a joint Government program between the Air Force Space Division and the Naval Research Laboratory was established. Four cell types were procured with both the old qualified and the new unqualified separators. Acceptance, characterization, and life cycling tests are to be performed at the Naval Weapons Support Center, Crane, Ind. (NWSC/Crane). The scheduling and current status of this program are discussed and the progress of testing and available results are projected.
NASA Astrophysics Data System (ADS)
Ripani, M.
2015-08-01
The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.
Geomagnetic activity: Dependence on solar wind parameters
NASA Technical Reports Server (NTRS)
Svalgaard, L.
1977-01-01
Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.
On the seat of the solar cycle
NASA Technical Reports Server (NTRS)
Gough, D.
1981-01-01
A discussion of some of the issues raised in connection with the seat of the solar cycle are presented. Is the cycle controlled by a strictly periodic oscillator that operates in the core, or is it a turbulent dynamo confined to the convection zone and possibly a thin boundary layer beneath it? Sunspot statistics are discussed, with a view to ascertaining the length of the memory of the cycle, without drawing a definitive conclusion. Also discussed are some of the processes that might bring about variations delta L and delta R in the luminosity and the radius of the photosphere. It appears that the ratio W = delta lnR/delta lnL increases with the depth of the disturbance that produces the variations, so that imminent observations might determine whether or not the principal dynamical processes are confined to only the outer layers of the Sun.
Study on component interface evolution of a solid oxide fuel cell stack after long term operation
NASA Astrophysics Data System (ADS)
Yang, Jiajun; Huang, Wei; Wang, Xiaochun; Li, Jun; Yan, Dong; Pu, Jian; Chi, Bo; Li, Jian
2018-05-01
A 5-cell solid oxide fuel cell (SOFC) stack with external manifold structure is assembled and underwent a durability test with an output of 250 W for nearly 4400 h when current density and operating temperature are 355 mA/cm2 and 750 °C. Cells used in the stack are anode-supported cells (ASC) with yttria-stabilized zirconia (YSZ) electrolytes, Ni/YSZ hydrogen electrodes, and YSZ based composite cathode. The dimension of the cell is 150 × 150 mm (active area: 130 × 130 mm). Ceramic-glass sealant is used in the stack to keep the gas tightness between cells, interconnects and manifolds. Pure hydrogen and dry air are used as fuel and oxidant respectively. The stack has a maximum output of 340 W at 562 mA/cm2 current density at 750 °C. The stack shows a degradation of 1.5% per 1000 h during the test with 2 thermal cycles to room temperature. After the test, the stack was dissembled and examined. The relationship between microstructure changes of interfaces and degradation in the stack are discussed. The microstructure evolution of interfaces between electrode, contact material and current collector are unveiled and their relationship with the degradation is discussed.
The Problem of Ensuring Reliability of Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Nozhnitsky, Yu A.
2018-01-01
Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.
NASA Astrophysics Data System (ADS)
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-03-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.
NASA Astrophysics Data System (ADS)
Huybrechts, P.
2003-04-01
The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.
Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling
Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo
2015-01-01
A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687
Gougoulias, Christos; Clark, Joanna M; Shaw, Liz J
2014-01-01
It is well known that atmospheric concentrations of carbon dioxide (CO2) (and other greenhouse gases) have increased markedly as a result of human activity since the industrial revolution. It is perhaps less appreciated that natural and managed soils are an important source and sink for atmospheric CO2 and that, primarily as a result of the activities of soil microorganisms, there is a soil-derived respiratory flux of CO2 to the atmosphere that overshadows by tenfold the annual CO2 flux from fossil fuel emissions. Therefore small changes in the soil carbon cycle could have large impacts on atmospheric CO2 concentrations. Here we discuss the role of soil microbes in the global carbon cycle and review the main methods that have been used to identify the microorganisms responsible for the processing of plant photosynthetic carbon inputs to soil. We discuss whether application of these techniques can provide the information required to underpin the management of agro-ecosystems for carbon sequestration and increased agricultural sustainability. We conclude that, although crucial in enabling the identification of plant-derived carbon-utilising microbes, current technologies lack the high-throughput ability to quantitatively apportion carbon use by phylogentic groups and its use efficiency and destination within the microbial metabolome. It is this information that is required to inform rational manipulation of the plant–soil system to favour organisms or physiologies most important for promoting soil carbon storage in agricultural soil. PMID:24425529
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori
Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
Histone chaperones: an escort network regulating histone traffic.
De Koning, Leanne; Corpet, Armelle; Haber, James E; Almouzni, Geneviève
2007-11-01
In eukaryotes, DNA is organized into chromatin in a dynamic manner that enables it to be accessed for processes such as transcription and repair. Histones, the chief protein component of chromatin, must be assembled, replaced or exchanged to preserve or change this organization according to cellular needs. Histone chaperones are key actors during histone metabolism. Here we classify known histone chaperones and discuss how they build a network to escort histone proteins. Molecular interactions with histones and their potential specificity or redundancy are also discussed in light of chaperone structural properties. The multiplicity of histone chaperone partners, including histone modifiers, nucleosome remodelers and cell-cycle regulators, is relevant to their coordination with key cellular processes. Given the current interest in chromatin as a source of epigenetic marks, we address the potential contributions of histone chaperones to epigenetic memory and genome stability.
Van Hook, R I
1979-01-01
This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619
Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control
NASA Astrophysics Data System (ADS)
Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; Knight, Kim; Cassata, William S.; Hutcheon, Ian D.
2016-06-01
Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. This review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. The development of chronometric methods for age dating nuclear materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.
Patel, Bhavish; Guo, Miao; Izadpanah, Arash; Shah, Nilay; Hellgardt, Klaus
2016-01-01
The need for efficient and clean biomass conversion technologies has propelled Hydrothermal (HT) processing as a promising treatment option for biofuel production. This manuscript discussed its application for pre-treatment of microalgae biomass to solid (biochar), liquid (biocrude and biodiesel) and gaseous (hydrogen and methane) products via Hydrothermal Carbonisation (HTC), Hydrothermal Liquefaction (HTL) and Supercritical Water Gasification (SCWG) as well as the utility of HT water as an extraction medium and HT Hydrotreatment (HDT) of algal biocrude. In addition, the Solar Energy Retained in Fuel (SERF) using HT technologies is calculated and compared with benchmark biofuel. Lastly, the Life Cycle Assessment (LCA) discusses the limitation of the current state of art as well as introduction to new potential input categories to obtain a detailed environmental profile. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Van den bergh, Wim; Kara, Patricia; Anthonissen, Joke; Margaritis, Alexandros; Jacobs, Geert; Couscheir, Karolien
2017-09-01
In Flanders, using Reclaimed Asphalt Pavement (RAP) is allowed in asphalt mixes for base layers. Primary economic and secondary laboratory-measured mechanical properties are given as justification for higher amounts in specific mixes. However, one should evaluate the performance of these mixes on long-term by environmental impact of the production until end-of-life. In this paper recommendations and strategies for using RA, based on current research, are discussed in a broader perspective such as using a carbon-footprint tool and warm-mix asphalt production in the Flemish Region. The paper aims to a wide discussion by reporting several outcomes of laboratory research, statistics and practical application in order to set a general strategy for the road engineering sector in the Flemish Region.
Air impacts of increased natural gas acquisition, processing, and use: a critical review.
Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B
2014-01-01
During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.
Predictors of Drought Recovery across Forest Ecosystems
NASA Astrophysics Data System (ADS)
Anderegg, W.
2016-12-01
The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.
Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph; Lackner, Klaus S.
2012-02-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
Life cycle assessment of overhead and underground primary power distribution.
Bumby, Sarah; Druzhinina, Ekaterina; Feraldi, Rebe; Werthmann, Danae; Geyer, Roland; Sahl, Jack
2010-07-15
Electrical power can be distributed in overhead or underground systems, both of which generate a variety of environmental impacts at all stages of their life cycles. While there is considerable literature discussing the trade-offs between both systems in terms of aesthetics, safety, cost, and reliability, environmental assessments are relatively rare and limited to power cable production and end-of-life management. This paper assesses environmental impacts from overhead and underground medium voltage power distribution systems as they are currently built and managed by Southern California Edison (SCE). It uses process-based life cycle assessment (LCA) according to ISO 14044 (2006) and SCE-specific primary data to the extent possible. Potential environmental impacts have been calculated using a wide range of midpoint indicators, and robustness of the results has been investigated through sensitivity analysis of the most uncertain and potentially significant parameters. The studied underground system has higher environmental impacts in all indicators and for all parameter values, mostly due to its higher material intensity. For both systems and all indicators the majority of impact occurs during cable production. Promising strategies for impact reduction are thus cable failure rate reduction for overhead and cable lifetime extension for underground systems.
Life Cycle Impact Assessment Research Developments and Needs
Life Cycle Impact Assessment (LCIA) developments are explained along with key publications which record discussions which comprised ISO 14042 and SETAC document development, UNEP SETAC Life Cycle Initiative research, and research from public and private research institutions. It ...
Round and Round the Water Cycle
ERIC Educational Resources Information Center
Bradley, Barbara A.
2017-01-01
Children enjoy water play, and kindergarten children can learn about the water cycle. Teachers are already introducing elements of the water cycle when discussing weather and bodies of water. The water cycle also can be a springboard for teaching children about plants and animals and the importance of water for sustaining life and shaping our…
Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Melson, N. Duane
1998-01-01
We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.
Zivkovic, Danica; Créton, Robbert; Dohmen, René
1991-08-01
During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.
Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar
The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less
NASA Astrophysics Data System (ADS)
Hülse, Dominik; Arndt, Sandra; Ridgwell, Andy; Wilson, Jamie
2016-04-01
The ocean-sediment system, as the biggest carbon reservoir in the Earth's carbon cycle, plays a crucial role in regulating atmospheric carbon dioxide concentrations and climate. Therefore, it is essential to constrain the importance of marine carbon cycle feedbacks on global warming and ocean acidification. Arguably, the most important single component of the ocean's carbon cycle is the so-called "biological carbon pump". It transports carbon that is fixed in the light-flooded surface layer of the ocean to the deep ocean and the surface sediment, where it is degraded/dissolved or finally buried in the deep sediments. Over the past decade, progress has been made in understanding different factors that control the efficiency of the biological carbon pump and their feedbacks on the global carbon cycle and climate (i.e. ballasting = ocean acidification feedback; temperature dependant organic matter degradation = global warming feedback; organic matter sulphurisation = anoxia/euxinia feedback). Nevertheless, many uncertainties concerning the interplay of these processes and/or their relative significance remain. In addition, current Earth System Models tend to employ empirical and static parameterisations of the biological pump. As these parametric representations are derived from a limited set of present-day observations, their ability to represent carbon cycle feedbacks under changing climate conditions is limited. The aim of my research is to combine past carbon cycling information with a spatially resolved global biogeochemical model to constrain the functioning of the biological pump and to base its mathematical representation on a more mechanistic approach. Here, I will discuss important aspects that control the efficiency of the ocean's biological carbon pump, review how these processes of first order importance are mathematically represented in existing Earth system Models of Intermediate Complexity (EMIC) and distinguish different approaches to approximate biogeochemical processes in the sediments. The performance of the respective mathematical representations in constraining the importance of carbon pump feedbacks on marine biogeochemical dynamics is then compared and evaluated under different extreme climate scenarios (e.g. OAE2, Eocene) using the Earth system model 'GENIE' and proxy records. The compiled mathematical descriptions and the model results underline the lack of a complete and mechanistic framework to represent the short-term carbon cycle in most EMICs which seriously limits the ability of these models to constrain the response of the ocean's carbon cycle to past and in particular future climate change. In conclusion, this presentation will critically evaluate the approaches currently used in marine biogeochemical modelling and outline key research directions concerning model development in the future.
Patterns, structures and regulations of domestic water cycle systems in China
NASA Astrophysics Data System (ADS)
Chu, Junying; Wang, Hao; Wang, Jianhua; Qin, Dayong
2010-05-01
Domestic water cycle systems serving as one critical component of artificial water cycle at the catchment's scale, is so closely related to public healthy, human rights and social-economic development, and has gained the highest priority in strategic water resource and municipal infrastructure planning. In this paper, three basic patterns of domestic water cycle systems are identified and analyzed, including rural domestic water system (i.e. primary level), urban domestic water system (i.e. intermediate level) and metropolitan domestic water system (i.e. senior level), with different "abstract-transport-consume-discharge" mechanisms and micro-components of water consumption (such as drinking, cooking, toilet flushing, showering or cleaning). The rural domestic water system is general simple with three basic "abstract-consume-discharge" mechanisms and micro-components of basic water consumption such as drinking, cooking, washing and sanitation. The urban domestic water system has relative complex mechanisms of "abstract-supply-consume-treatment-discharge" and more micro-components of water consumption such as bath, dishwashing or car washing. The metropolitan domestic water system (i.e. senior level) has the most complex mechanisms by considering internal water reuse, external wastewater reclamation, and nutrient recycling processes. The detailed structures for different water cycle pattern are presented from the aspects of water quantity, wastewater quality and nutrients flow. With the speed up of urbanization and development of social-economy in China, those three basic patterns are interacting, transforming and upgrading. According to the past experiences and current situations, urban domestic water system (i.e. intermediate level) is the dominant pattern based on indicator of system number or system scale. The metropolitan domestic water system (i.e. senior level) is the idealized model for the future development and management. Current domestic water system management efforts typically fail in China, because the approach is generally narrowly-focused and fragmented. This paper put forward a total-process control framework following the water and pollutants (or nutrients) flows along the dualistic domestic water cycle process. Five key objectives of domestic water cycle system regulation are identified including water use safety, water use equity, water saving, wastewater reduction and nutrient recycling. Comprehensive regulatory framework regarding administrative, economic, technical and social measures is recommended to promote sustainable domestic water usage and demand management. Considering the relatively low affordability in rural area, economic measures should be mainly applied in urban domestic water systems and metropolitan domestic water systems. Engineering or technological measures which are suitable to the three domestic water cycle systems are discussed respectively.
Longitudinal changes in prevalence of respiratory symptoms among Canadian grain elevator workers.
Pahwa, Punam; McDuffie, Helen H; Dosman, James A
2006-06-01
To determine longitudinal changes in the prevalence of chronic respiratory symptoms among Canadian grain workers. Data on respiratory symptoms, smoking status, and pulmonary function were obtained approximately every 3 years (termed cycle) over 15 years beginning in 1978 from five regions of Canada. The number of grain workers participating in each cycle were as follows: cycle 1 (n = 5,702); cycle 2 (n = 5,491); cycle 3 (n = 3,713); cycle 4 (n = 2,847); and cycle 5 (n = 3,079). A procedure based on generalized estimating equations (PROC GENMOD; SAS Institute; Cary, NC) was used to fit marginal models to determine risk factors influencing the prevalence of chronic respiratory symptoms (wheeze, dyspnea, sputum, and cough). The prevalence (predicted probability based on the final model) of chronic respiratory symptoms had an increasing trend with increasing number of years in the grain industry from cycle 1 to cycle 3 (before dust control) for all three smoking categories (current smokers, ex-smokers, and nonsmokers). For cycle 4 and cycle 5 (after dust control), there was a reduction in the prevalence of these respiratory symptoms. For example, in cycle 1, the prevalence of chronic wheeze among current smoking grain workers increased from 12% (for those in the industry for < 5 years) to 44% (for those in the industry for > 35 years); in cycle 5, the prevalence of chronic wheeze among current smoking grain workers increased from 9% (for those in the industry for < 5 years) to 28% (for those in the industry for > 35 years). Similar trends were observed for ex-smokers and nonsmokers and for other chronic respiratory symptoms. Our results indicate that grain dust control was effective in reducing the prevalence of chronic respiratory symptoms among grain workers in all smoking and exposure categories.
A Scientific Synthesis and Assessment of the Arctic Carbon Cycle
NASA Astrophysics Data System (ADS)
Hayes, Daniel J.; Guo, Laodong; McGuire, A. David
2007-06-01
The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).
Lindsey, Derek P; Perez-Orribo, Luis; Rodriguez-Martinez, Nestor; Reyes, Phillip M; Newcomb, Anna; Cable, Alexandria; Hickam, Grace; Yerby, Scott A; Crawford, Neil R
2014-01-01
Introduction Sacroiliac (SI) joint pain has become a recognized factor in low back pain. The purpose of this study was to investigate the effect of a minimally invasive surgical SI joint fusion procedure on the in vitro biomechanics of the SI joint before and after cyclic loading. Methods Seven cadaveric specimens were tested under the following conditions: intact, posterior ligaments (PL) and pubic symphysis (PS) cut, treated (three implants placed), and after 5,000 cycles of flexion–extension. The range of motion (ROM) in flexion–extension, lateral bending, and axial rotation was determined with an applied 7.5 N · m moment using an optoelectronic system. Results for each ROM were compared using a repeated measures analysis of variance (ANOVA) with a Holm–Šidák post-hoc test. Results Placement of three fusion devices decreased the flexion–extension ROM. Lateral bending and axial rotation were not significantly altered. All PL/PS cut and post-cyclic ROMs were larger than in the intact condition. The 5,000 cycles of flexion–extension did not lead to a significant increase in any ROMs. Discussion In the current model, placement of three 7.0 mm iFuse Implants significantly decreased the flexion–extension ROM. Joint ROM was not increased by 5,000 flexion–extension cycles. PMID:24868175
The MYC Road to Hearing Restoration
Kopecky, Benjamin; Fritzsch, Bernd
2012-01-01
Current treatments for hearing loss, the most common neurosensory disorder, do not restore perfect hearing. Regeneration of lost organ of Corti hair cells through forced cell cycle re-entry of supporting cells or through manipulation of stem cells, both avenues towards a permanent cure, require a more complete understanding of normal inner ear development, specifically the balance of proliferation and differentiation required to form and to maintain hair cells. Direct successful alterations to the cell cycle result in cell death whereas regulation of upstream genes is insufficient to permanently alter cell cycle dynamics. The Myc gene family is uniquely situated to synergize upstream pathways into downstream cell cycle control. There are three Mycs that are embedded within the Myc/Max/Mad network to regulate proliferation. The function of the two ear expressed Mycs, N-Myc and L-Myc were unknown less than two years ago and their therapeutic potentials remain speculative. In this review, we discuss the roles the Mycs play in the body and what led us to choose them to be our candidate gene for inner ear therapies. We will summarize the recently published work describing the early and late effects of N-Myc and L-Myc on hair cell formation and maintenance. Lastly, we detail the translational significance of our findings and what future work must be performed to make the ultimate hearing aid: the regeneration of the organ of Corti. PMID:24710525
A hydrogen energy carrier. Volume 1: Summary. [for meeting energy requirements
NASA Technical Reports Server (NTRS)
Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. E. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)
1973-01-01
The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed.
Student Teaching: The Emotional Cycle.
ERIC Educational Resources Information Center
Brand, Manny
1978-01-01
The author discusses the emotional cycle of a beginning student teacher: fear/elation/enthusiasm/depression. He suggests that if the student teaching triad--student teacher, supervising teacher, and college supervisor--recognize this cycle, it will aid the supervisors in providing emotional support. (KC)
Solar Cycle #24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Schatten, Kenneth; Pesnell, W. Dean
2007-01-01
We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (SOlar Dynamo Amplitude) index, which provides the user with the ability to track the Sun's hidden, dynamo magnetic fields throughout the various stages of the Sun's cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modern observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.
Solar Cycle #24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Pesnell, W. Dean; Schatten, Kenneth
2007-01-01
We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears consistent with a weakening polar field, but coronal hole data must be scrutinized carefully as observing techniques have changed. We also discuss new solar dynamo ideas, and the SODA (Solar Dynamo Amplitude) index, which provides the user with the ability to track the Sun s hidden, dynamo magnetic fields throughout the various stages of the Sun s cycle. Our solar dynamo ideas are a modernization and rejuvenation of the Babcock-Leighton original idea of a shallow solar dynamo, using modem observations that appear to support their shallow dynamo viewpoint. We are in awe of being able to see an object the size of the Sun undergoing as dramatic a change as our model provides in a few short years. The Sun, however, has undergone changes as rapid as this before! The weather on the Sun is at least as fickle as the weather on the Earth.
NASA Astrophysics Data System (ADS)
Sempere, R.; van Wambeke, F.; Bianchi, M.; Dafner, E.; Lefevre, D.; Bruyant, F.; Prieur, L.
We investigated the dynamic of the total organic carbon (TOC) pool and the role it played in the carbon cycle during winter 1997-1998 in the Almeria-Oran jet-front (AOF) system resulting from the spreading of Atlantic surface water through the Gibraltar Strait in the Alboran Sea (Southwestern Mediterranean Sea). We determined TOC by using high temperature combustion technique (HTC) and bacterial produc- tion (BP; via [3H] leucine incorporation) during two legs in the frontal area. We also estimated labile TOC (l-TOC) and bacterial growth efficiency (BGE) by performing TOC biodegradation experiments on board during the cruise whereas water column semi-labile (sl-TOC), and refractory-TOC were determined from TOC profile exami- nation. These results are discussed in relation with current velocity measured by using accoustic doppler current profiler (ADCP). Lowest TOC stocks (6330-6853 mmol C m-2) over 0-100 m were measured in the northern side of the geostrophic Jet which is also the highest dynamic area (horizontal speed of 80 cm s-1 in the first 100 m di- rected eastward). Our results indicated variable turnover times of sl-TOC across the Jet-Front system, which might be explained by different coupling of primary produc- tion and bacterial production observed in these areas. We also estimated TOC and sl-TOC transports within the Jet core off the Alboran Sea as well as potential CO2 production through bacterial respiration produced from sl-TOC assimilation by het- erotrophic bacteria.
Li, Yiyang; El Gabaly, Farid; Ferguson, Todd R; Smith, Raymond B; Bartelt, Norman C; Sugar, Joshua D; Fenton, Kyle R; Cogswell, Daniel A; Kilcoyne, A L David; Tyliszczak, Tolek; Bazant, Martin Z; Chueh, William C
2014-12-01
Many battery electrodes contain ensembles of nanoparticles that phase-separate on (de)intercalation. In such electrodes, the fraction of actively intercalating particles directly impacts cycle life: a vanishing population concentrates the current in a small number of particles, leading to current hotspots. Reports of the active particle population in the phase-separating electrode lithium iron phosphate (LiFePO4; LFP) vary widely, ranging from near 0% (particle-by-particle) to 100% (concurrent intercalation). Using synchrotron-based X-ray microscopy, we probed the individual state-of-charge for over 3,000 LFP particles. We observed that the active population depends strongly on the cycling current, exhibiting particle-by-particle-like behaviour at low rates and increasingly concurrent behaviour at high rates, consistent with our phase-field porous electrode simulations. Contrary to intuition, the current density, or current per active internal surface area, is nearly invariant with the global electrode cycling rate. Rather, the electrode accommodates higher current by increasing the active particle population. This behaviour results from thermodynamic transformation barriers in LFP, and such a phenomenon probably extends to other phase-separating battery materials. We propose that modifying the transformation barrier and exchange current density can increase the active population and thus the current homogeneity. This could introduce new paradigms to enhance the cycle life of phase-separating battery electrodes.
Fowler, Eileen G; Knutson, Loretta M; DeMuth, Sharon K; Sugi, Mia; Siebert, Kara; Simms, Victoria; Azen, Stanley P; Winstein, Carolee J
2007-01-01
Background In the past, effortful exercises were considered inappropriate for children with spastic cerebral palsy (CP) due to concern that they would escalate abnormalities including spasticity and abnormal movement patterns. Current scientific evidence indicates that these concerns were unfounded and that therapeutic interventions focused on muscle strengthening can lead to improved functional ability. However, few studies have examined the potential benefits of cardiorespiratory fitness exercises in this patient population. Methods/design The rationale and design of a randomized controlled trial examining the effects of a stationary cycling intervention for children with CP are outlined here. Sixty children with spastic diplegic CP between the ages of 7 and 18 years and Gross Motor Function Classification System (GMFCS) levels of I, II, or III will be recruited for this study. Participants will be randomly assigned to either an intervention (cycling) or a control (no cycling) group. The cycling intervention will be divided into strengthening and cardiorespiratory endurance exercise phases. During the strengthening phase, the resistance to lower extremity cycling will be progressively increased using a uniquely designed limb-loaded mechanism. The cardiorespiratory endurance phase will focus on increasing the intensity and duration of cycling. Children will be encouraged to exercise within a target heart rate (HR) range (70 – 80% maximum HR). Thirty sessions will take place over a 10–12 week period. All children will be evaluated before (baseline) and after (follow-up) the intervention period. Primary outcome measures are: knee joint extensor and flexor moments, or torque; the Gross Motor Function Measure (GMFM); the 600 Yard Walk-Run test and the Thirty-Second Walk test (30 sec WT). Discussion This paper presents the rationale, design and protocol for Pediatric Endurance and Limb Strengthening (PEDALS); a Phase I randomized controlled trial evaluating the efficacy of a stationary cycling intervention for children with spastic diplegic cerebral palsy. PMID:17374171
NASA Astrophysics Data System (ADS)
Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.
2018-01-01
We apply the method of data-interpolating empirical orthogonal functions (EOFs) to ground-based magnetic vector data from the SuperMAG archive to produce a series of month length reanalyses of the surface external and induced magnetic field (SEIMF) in 110,000 km2 equal-area bins over the entire northern polar region at 5 min cadence over solar cycle 23, from 1997.0 to 2009.0. Each EOF reanalysis also decomposes the measured SEIMF variation into a hierarchy of spatiotemporal patterns which are ordered by their contribution to the monthly magnetic field variance. We find that the leading EOF patterns can each be (subjectively) interpreted as well-known SEIMF systems or their equivalent current systems. The relationship of the equivalent currents to the true current flow is not investigated. We track the leading SEIMF or equivalent current systems of similar type by intermonthly spatial correlation and apply graph theory to (objectively) group their appearance and relative importance throughout a solar cycle, revealing seasonal and solar cycle variation. In this way, we identify the spatiotemporal patterns that maximally contribute to SEIMF variability over a solar cycle. We propose this combination of EOF and graph theory as a powerful method for objectively defining and investigating the structure and variability of the SEIMF or their equivalent ionospheric currents for use in both geomagnetism and space weather applications. It is demonstrated here on solar cycle 23 but is extendable to any epoch with sufficient data coverage.
Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft
NASA Technical Reports Server (NTRS)
Mccoy, D. A.; Lackner, J. L.
1986-01-01
The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.
NASA Astrophysics Data System (ADS)
Zheng, X. J.; He, L.; Zhou, Y. C.; Tang, M. H.
2006-12-01
The effects of europium (Eu) content on the microstructure, fatigue endurance, leakage current density, and remnant polarization (2Pr) of Bi4-xEuxTi3O12 (BET) thin films prepared by metal-organic decomposition method at 700°C annealing temperature were studied in detail. The results showed that 2Pr (82μC/cm2 under 300kV/cm), fatigue endurance (2% loss of 2Pr after 9.0×109 switching cycles), and leakage current density (1×10-8A/cm2 at 200kV/cm) of BET thin film with x =0.85 are better than those of thin films with other contents. Additionally, the mechanism concerning the dependence of ferroelectric properties on Eu content was discussed.
The Development of Vocational Vehicle Drive Cycles and Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W.; Phillips, Caleb T.; Konan, Arnaud M.
Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize the on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNAmore » database. The Fleet DNA database contains millions of miles of historical real-world drive cycle data captured from medium- and heavy vehicles operating across the United States. The data encompass data from existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topology ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. The range of fleets, geographic locations, and total number of vehicles analyzed ensures results that include the influence of these factors. While no analysis will be perfect without unlimited resources and data, it is the researchers understanding that the Fleet DNA database is the largest and most thorough publicly accessible vocational vehicle usage database currently in operation. This report includes an introduction to the Fleet DNA database and the data contained within, a presentation of the results of the statistical analysis performed by NREL, review of the logistic model developed to predict cluster membership, and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work are also included in the report content.« less
Using Ada: The deeper challenges
NASA Technical Reports Server (NTRS)
Feinberg, David A.
1986-01-01
The Ada programming language and the associated Ada Programming Support Environment (APSE) and Ada Run Time Environment (ARTE) provide the potential for significant life-cycle cost reductions in computer software development and maintenance activities. The Ada programming language itself is standardized, trademarked, and controlled via formal validation procedures. Though compilers are not yet production-ready as most would desire, the technology for constructing them is sufficiently well known and understood that time and money should suffice to correct current deficiencies. The APSE and ARTE are, on the other hand, significantly newer issues within most software development and maintenance efforts. Currently, APSE and ARTE are highly dependent on differing implementer concepts, strategies, and market objectives. Complex and sophisticated mission-critical computing systems require the use of a complete Ada-based capability, not just the programming language itself; yet the range of APSE and ARTE features which must actually be utilized can vary significantly from one system to another. As a consequence, the need to understand, objectively evaluate, and select differing APSE and ARTE capabilities and features is critical to the effective use of Ada and the life-cycle efficiencies it is intended to promote. It is the selection, collection, and understanding of APSE and ARTE which provide the deeper challenges of using Ada for real-life mission-critical computing systems. Some of the current issues which must be clarified, often on a case-by-case basis, in order to successfully realize the full capabilities of Ada are discussed.
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
NASA Astrophysics Data System (ADS)
Collatz, G. J.; Kawa, S. R.; Liu, Y.; Zeng, F.; Ivanoff, A.
2013-12-01
We evaluate our understanding of the land biospheric carbon cycle by benchmarking a model and its variants to atmospheric CO2 observations and to an atmospheric CO2 inversion. Though the seasonal cycle in CO2 observations is well simulated by the model (RMSE/standard deviation of observations <0.5 at most sites north of 15N and <1 for Southern Hemisphere sites) different model setups suggest that the CO2 seasonal cycle provides some constraint on gross photosynthesis, respiration, and fire fluxes revealed in the amplitude and phase at northern latitude sites. CarbonTracker inversions (CT) and model show similar phasing of the seasonal fluxes but agreement in the amplitude varies by region. We also evaluate interannual variability (IAV) in the measured atmospheric CO2 which, in contrast to the seasonal cycle, is not well represented by the model. We estimate the contributions of biospheric and fire fluxes, and atmospheric transport variability to explaining observed variability in measured CO2. Comparisons with CT show that modeled IAV has some correspondence to the inversion results >40N though fluxes match poorly at regional to continental scales. Regional and global fire emissions are strongly correlated with variability observed at northern flask sample sites and in the global atmospheric CO2 growth rate though in the latter case fire emissions anomalies are not large enough to account fully for the observed variability. We discuss remaining unexplained variability in CO2 observations in terms of the representation of fluxes by the model. This work also demonstrates the limitations of the current network of CO2 observations and the potential of new denser surface measurements and space based column measurements for constraining carbon cycle processes in models.
Energy storage devices for future hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent
Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.
Results of deep DoD life cycle tests at high rates on 12Ah NiCd cells
NASA Technical Reports Server (NTRS)
Panneton, Paul E.; Meyer, John R.
1992-01-01
A 12 Ah Nickel-Cadmium (NiCd) Low Earth Orbit (LEO) life cycle test that induced 47 percent more deep Depth Of Discharge cycles by mixing them with shallow DOD cycles is discussed. The test showed how aggressive recharging to a C/D ratio of 1.15 nearly doubled performance over cycling below a C/D of 1.11.
Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle
NASA Astrophysics Data System (ADS)
Rogachev, K. A.; Shlyk, N. V.
2018-01-01
New oceanographic observations in the period 1990-2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.
NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales
NASA Technical Reports Server (NTRS)
Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill
2011-01-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.
NASA Astrophysics Data System (ADS)
Leske, R. A.; Cummings, A. C.; Mewaldt, R. A.; Cohen, C.; Stone, E. C.; Wiedenbeck, M. E.
2017-12-01
Anomalous cosmic ray (ACR) intensities at 1 AU generally track galactic cosmic ray (GCR) intensities, but with differences between solar polarity cycles: at high rigidities, GCRs reach higher peak intensities during A<0 cycles, while ACRs have been higher at A>0 solar minima. At present, during the approach to an A>0 solar minimum, ACR oxygen above 8 MeV/nucleon as measured by the Advanced Composition Explorer (ACE) has already reached the peak intensities seen during the 2009 A<0 solar minimum, but is still 40% below the levels seen in 1997 during the last A>0 minimum. The GCR iron intensity at 300 MeV/nucleon, on the other hand, is presently comparable to that in 1997 but remains 10% below its record-setting 2009 value. Drift effects play an important role in the modulation of both ACRs and GCRs. Positively charged ions drift inward along the heliospheric current sheet (HCS) during A<0 cycles and their intensities are thus sensitive to the HCS tilt angle, which remained high for much of the last solar cycle. We have previously shown that both ACR and GCR intensities were significantly higher for a given HCS tilt angle during the 2000-2012 A<0 cycle than they were during the prior (1980-1990) A<0 cycle, and this trend appears to be continuing into the new A>0 cycle. But while GCR intensities in 2009 reached the highest levels recorded during the last 50 years, ACR intensities were only similar to those in the 1980s A<0 minimum. Factors such as a weaker interplanetary magnetic field, perhaps with a reduction in the ACR source strength or greater sensitivity of ACRs than GCRs to the HCS tilt angle, may account for the difference in their modulation behavior.We present 20 years of ACR and GCR intensity data acquired by ACE throughout two solar cycles, with emphasis on recent observations, and discuss possible reasons for the differences in the relative behavior of ACRs and GCRs in the different solar cycles.
Modeling of Sonos Memory Cell Erase Cycle
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; MacLeond, Todd C.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile semiconductor memories (NVSMS) have many advantages. These memories are electrically erasable programmable read-only memories (EEPROMs). They utilize low programming voltages, endure extended erase/write cycles, are inherently resistant to radiation, and are compatible with high-density scaled CMOS for low power, portable electronics. The SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. The SONOS floating gate charge and voltage, tunneling current, threshold voltage, and drain current were characterized during an erase cycle. Comparisons were made between the model predictions and experimental device data.
NASA Technical Reports Server (NTRS)
Zamrik, S. Y.
1972-01-01
The effect of out-of-phase strain cycling on the low cycle fatigue of biaxially loaded specimens is discussed. A method to apply phase angles between two strains imposed in two different directions was developed. The data and the proposed theoretical analysis are part of a research program on biaxial strain cycling effect on fatigue life of structural materials.
Remote sensing of ocean current boundary layer. [Loop Current in Gulf of Mexico
NASA Technical Reports Server (NTRS)
Maul, G. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A time series of the Loop Current in the Gulf of Mexico, covering an annual cycle of growth, spreading, and decay, has been obtained in synchronization with ERTS-1. Computer enhanced images, which are necessary to extract useful oceanic information, show that the current can be observed either by color or sea state effects associated with the cyclonic boundary. The color effect relates to the spectral variations in the optical properties of the water and its suspended particles, and is studied by radiative transfer theory. Significant oceanic parameters identified are: the probability of forward scattering, and the ratio of scattering to total attenuation. Several spectra of upwelling diffuse light are computed as a function of the concentration of particles and yellow substance. These calculations compare favorably with experimental measurements and show that the ratio of channels method gives ambiguous interpretative results. These results are used to discuss features in images where surface measurements were obtained and are extended to tentative explanation in others.
ERIC Educational Resources Information Center
Al khawaldeh, Salem A.
2013-01-01
Background and Purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of…
ERIC Educational Resources Information Center
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-01-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by…
Sub-cycle light transients for attosecond, X-ray, four-dimensional imaging
NASA Astrophysics Data System (ADS)
Fattahi, Hanieh
2016-10-01
This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 ?m to more than 10 ?m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.
Two-dimensional heterostructures for energy storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury G.; Pomerantseva, Ekaterina
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associatedmore » shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. As a result, we also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.« less
Direct measurements of bed stress under swash in the field
NASA Astrophysics Data System (ADS)
Conley, Daniel C.; Griffin, John G.
2004-03-01
Utilizing flush mounted hot film anemometry, the bed stress under swash was measured directly in a field experiment conducted on Barret Beach, Fire Island, New York. The theory, development, and calibration of the instrument package are discussed, and results from the field experiment are presented. Examples of bed stress time series throughout a swash cycle are presented, and an ensemble averaged swash bed stress cycle is calculated. Strong asymmetry is observed between the uprush and backwash phases of the swash flow. The maximum bed shear stress exerted by the uprush is approximately double that of the backwash, while the duration of the backwash is 135% greater than that of the uprush. Friction coefficients in the swash zone are observed to be similar in magnitude to those from steady flow, with the mean observed friction coefficient equal to 0.0037. Swash friction coefficients derived from the current measurements exhibit a Reynolds number dependence similar to that observed for other flows. A systematic difference between coefficients for uprush and backwash is suggested.
Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter
NASA Technical Reports Server (NTRS)
Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.
2001-01-01
Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.
Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance.
Yang, Jia; Xu, Ming; Zhang, Xuezhi; Hu, Qiang; Sommerfeld, Milton; Chen, Yongsheng
2011-01-01
This research examines the life-cycle water and nutrients usage of microalgae-based biodiesel production. The influence of water types, operation with and without recycling, algal species, geographic distributions are analyzed. The results confirm the competitiveness of microalgae-based biofuels and highlight the necessity of recycling harvested water and using sea/wastewater as water source. To generate 1 kg biodiesel, 3726 kg water, 0.33 kg nitrogen, and 0.71 kg phosphate are required if freshwater used without recycling. Recycling harvest water reduces the water and nutrients usage by 84% and 55%. Using sea/wastewater decreases 90% water requirement and eliminates the need of all the nutrients except phosphate. The variation in microalgae species and geographic distribution are analyzed to reflect microalgae biofuel development in the US. The impacts of current federal and state renewable energy programs are also discussed to suggest suitable microalgae biofuel implementation pathways and identify potential bottlenecks. Copyright © 2010 Elsevier Ltd. All rights reserved.
Status of display systems in B-52H
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.; Meyer, Frederick M.; Wodke, Kenneth E.
1999-08-01
Display technologies for the B-52 were selected some 40 years ago have become unsupportable. Electromechanical and old cathode ray tube technologies, including an exotic six-gun 13 in. tube, have become unsupportable due to the vanishing vendor syndrome. Thus, it is necessary to insert new technologies which will be available for the next 40 years to maintain the capability heretofore provided by those now out of favor with the commercial sector. With this paper we begin a look at the status of displays in the B-52H, which will remain in inventory until 2046 according to current plans. From a component electronics technology perspective, such as displays, the B-52H provides several 10-year life cycle cost (LCC) planning cycles to consider multiple upgrades. Three Productivity, Reliability, Availability, and Maintainability (PRAM) projects are reviewed to replace 1950s CRTs in several sizes: 3, 9, and 13 in. A different display technology has been selected in each case. Additional display upgrades in may be anticipated and are discussed.
Chikungunya Virus–Vector Interactions
Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.
2014-01-01
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891
Developing a quality assurance program for online services.
Humphries, A W; Naisawald, G V
1991-01-01
A quality assurance (QA) program provides not only a mechanism for establishing training and competency standards, but also a method for continuously monitoring current service practices to correct shortcomings. The typical QA cycle includes these basic steps: select subject for review, establish measurable standards, evaluate existing services using the standards, identify problems, implement solutions, and reevaluate services. The Claude Moore Health Sciences Library (CMHSL) developed a quality assurance program for online services designed to evaluate services against specific criteria identified by research studies as being important to customer satisfaction. These criteria include reliability, responsiveness, approachability, communication, and physical factors. The application of these criteria to the library's existing online services in the quality review process is discussed with specific examples of the problems identified in each service area, as well as the solutions implemented to correct deficiencies. The application of the QA cycle to an online services program serves as a model of possible interventions. The use of QA principles to enhance online service quality can be extended to other library service areas. PMID:1909197
Developing a quality assurance program for online services.
Humphries, A W; Naisawald, G V
1991-07-01
A quality assurance (QA) program provides not only a mechanism for establishing training and competency standards, but also a method for continuously monitoring current service practices to correct shortcomings. The typical QA cycle includes these basic steps: select subject for review, establish measurable standards, evaluate existing services using the standards, identify problems, implement solutions, and reevaluate services. The Claude Moore Health Sciences Library (CMHSL) developed a quality assurance program for online services designed to evaluate services against specific criteria identified by research studies as being important to customer satisfaction. These criteria include reliability, responsiveness, approachability, communication, and physical factors. The application of these criteria to the library's existing online services in the quality review process is discussed with specific examples of the problems identified in each service area, as well as the solutions implemented to correct deficiencies. The application of the QA cycle to an online services program serves as a model of possible interventions. The use of QA principles to enhance online service quality can be extended to other library service areas.
Will Mount Etna erupt before EGU General Assembly 2017?
NASA Astrophysics Data System (ADS)
Aloisi, Marco; Cannavo', Flavio; Palano, Mimmo
2017-04-01
Mount Etna has historically recorded a long and very various series of eruptions. The eruptions have mostly shown an episodic character, despite a near continuous supply of magma. In the last years, activity at Mount Etna seems to follow a recurrent pattern characterized by very similar "inflation/paroxysmal events/deflation" dynamic. The paroxysms occurred in December 2015 and May 2016, which involved the "Voragine" crater, can be considered among the most violent observed during the last two decades. These events showed high lava fountains, in the order of hundreds of meters in height, and eruption columns, several kilometres high. A new cycle, characterized by a clear similar inflation of the whole volcano edifice is currently underway. Here, we analyse these recent volcanic cycles and discuss about a) a possible upper bound for the inflation dynamic, above which a paroxysmal event occurs, b) the comparison of the models generating the considered lava fountains and c) a possible time-predictable model of the expected paroxysmal event.
Capacity extended bismuth-antimony cathode for high-performance liquid metal battery
NASA Astrophysics Data System (ADS)
Dai, Tao; Zhao, Yue; Ning, Xiao-Hui; Lakshmi Narayan, R.; Li, Ju; Shan, Zhi-wei
2018-03-01
Li-Bi based liquid metal batteries (LMBs) have attracted interest due to their potential for solving grid scale energy storage problems. In this study, the feasibility of replacing the bismuth cathode with a bismuth-antimony alloy cathode in lithium based LMBs is investigated. The influence of the Bi:Sb ratio on voltage characteristics is evaluated via the constant current discharge method and electrochemical titration. On observing the cross section of the electrode at various stages of discharge, it is determined that both Sb and Bi form solid intermetallics with Li on the cathode. Additionally, the addition of Bi not only reduces the melting temperature of the Bi:Sb intermetallic but also actively contributes to the electrode capacity. Thereafter, a Li|LiCl-LiF|Sb-Bi liquid metal battery with 3 A h nameplate capacity, assembled and cycled at 1 C rate, is found to possess a stable capacity for over 160 cycles. The overall performance of this battery is discussed in the context of cost effectiveness, energy and coulombic efficiencies.
The magnetic field of the earth - Performance considerations for space-based observing systems
NASA Technical Reports Server (NTRS)
Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.
1985-01-01
Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.
Heliospheric Magnetic Field: The Bashful Ballerina dancing in Waltz Tempo
NASA Astrophysics Data System (ADS)
Mursula, K.
The recent developments in the long-term observations of the heliospheric magnetic field HMF observed at 1 AU have shown that the HMF sector coming from the northern solar hemisphere systematically dominates in the late declining to minimum phase of the solar cycle This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of the Bashful Ballerina This result has recently been verified by direct measurements of the solar magnetic field The average field intensity is smaller and the corresponding area is larger in the northern hemisphere Also ground-based observations of the HMF sector structure extend these results to 1920s Moreover it has been shown that the global HMF has persistent active longitudes whose dominance depicts an oscillation with a period of about 3 2 years Accordingly the Bashful Ballerina takes three such steps per activity cycle thus dancing in waltz tempo We discuss the implications of this behaviour
ERIC Educational Resources Information Center
Roodvoets, David L.
2003-01-01
Presents factors to consider when determining roofing life-cycle costs, explaining that costs do not tell the whole story; discussing components that should go into the decision (cost, maintenance, energy use, and environmental costs); and concluding that important elements in reducing life-cycle costs include energy savings through increased…
Do lipids shape the eukaryotic cell cycle?
Furse, Samuel; Shearman, Gemma C
2018-01-01
Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Altimeter‐derived seasonal circulation on the southwest Atlantic shelf: 27°–43°S
James, Corinne; Combes, Vincent; Matano, Ricardo P.; Piola, Alberto R.; Palma, Elbio D.; Saraceno, Martin; Guerrero, Raul A.; Fenco, Harold; Ruiz‐Etcheverry, Laura A.
2015-01-01
Abstract Altimeter sea surface height (SSH) fields are analyzed to define and discuss the seasonal circulation over the wide continental shelf in the SW Atlantic Ocean (27°–43°S) during 2001–2012. Seasonal variability is low south of the Rio de la Plata (RdlP), where winds and currents remain equatorward for most of the year. Winds and currents in the central and northern parts of our domain are also equatorward during autumn and winter but reverse to become poleward during spring and summer. Transports of shelf water to the deep ocean are strongest during summer offshore and to the southeast of the RdlP. Details of the flow are discussed using mean monthly seasonal cycles of winds, heights, and currents, along with analyses of Empirical Orthogonal Functions. Principle Estimator Patterns bring out the patterns of wind forcing and ocean response. The largest part of the seasonal variability in SSH signals is due to changes in the wind forcing (described above) and changes in the strong boundary currents that flow along the eastern boundary of the shelf. The rest of the variability contains a smaller component due to heating and expansion of the water column, concentrated in the southern part of the region next to the coast. Our results compare well to previous studies using in situ data and to results from realistic numerical models of the regional circulation. PMID:27656332
An Overview of Monthly Rhythms and Clocks
Raible, Florian; Takekata, Hiroki; Tessmar-Raible, Kristin
2017-01-01
Organisms have evolved to cope with geophysical cycles of different period lengths. In this review, we focus on the adaptations of animals to the lunar cycle, specifically, on the occurrence of biological rhythms with monthly (circalunar) or semi-monthly (circasemilunar) period lengths. Systematic experimental investigation, starting in the early twentieth century, has allowed scientists to distinguish between mythological belief and scientific facts concerning the influence of the lunar cycle on animals. These studies revealed that marine animals of various taxa exhibit circalunar or circasemilunar reproductive rhythms. Some of these rely on endogenous oscillators (circalunar or circasemilunar clocks), whereas others are directly driven by external cues, such as the changes in nocturnal illuminance. We review current insight in the molecular and cellular mechanisms involved in circalunar rhythms, focusing on recent work in corals, annelid worms, midges, and fishes. In several of these model systems, the transcript levels of some core circadian clock genes are affected by both light and endogenous circalunar oscillations. How these and other molecular changes relate to the changes in physiology or behavior over the lunar cycle remains to be determined. We further review the possible relevance of circalunar rhythms for terrestrial species, with a particular focus on mammalian reproduction. Studies on circalunar rhythms of conception or birth rates extend to humans, where the lunar cycle was suggested to also affect sleep and mental health. While these reports remain controversial, factors like the increase in “light pollution” by artificial light might contribute to discrepancies between studies. We finally discuss the existence of circalunar oscillations in mammalian physiology. We speculate that these oscillations could be the remnant of ancient circalunar oscillators that were secondarily uncoupled from a natural entrainment mechanism, but still maintained relevance for structuring the timing of reproduction or physiology. The analysis and comparison of circalunar rhythms and clocks are currently challenging due to the heterogeneity of samples concerning species diversity, environmental conditions, and chronobiological conditions. We suggest that future research will benefit from the development of standardized experimental paradigms, and common principles for recording and reporting environmental conditions, especially light spectra and intensities. PMID:28553258
Carmena, David; Cardona, Guillermo A
2014-05-28
Echinococcosis is a zoonosis caused by helminths of the genus Echinococcus. The infection, one of the 17 neglected tropical diseases listed by the World Health Organization, has a cosmopolitan distribution and can be transmitted through a variety of domestic, synanthropic, and sylvatic cycles. Wildlife has been increasingly regarded as a relevant source of infection to humans, as demonstrated by the fact that a significant proportion of human emerging infectious diseases have a wildlife origin. Based on available epidemiological and molecular evidence, of the nine Echinococcus species currently recognized as valid taxa, E. canadensis G8-G10, E. felidis, E. multilocularis, E. oligarthrus, E. shiquicus, and E. vogeli are primarily transmitted in the wild. E. canadensis G6-G7, E. equinus, E. granulosus s.s., and E. ortleppi are considered to be transmitted mainly through domestic cycles. We summarize here current knowledge on the global epidemiology, geographical distribution and genotype frequency of Echinococcus spp. in wild carnivorous species. Topics addressed include the significance of the wildlife/livestock/human interface, the sympatric occurrence of different Echinococcus species in a given epidemiological scenario, and the role of wildlife as natural reservoir of disease to human and domestic animal populations. We have also discussed the impact that human activity and intervention may cause in the transmission dynamics of echinococcosis, including the human population expansion an encroachment on shrinking natural habitats, the increasing urbanization of wildlife carnivorous species and the related establishment of synanthropic cycles of Echinococcus spp., the land use (e.g. deforestation and agricultural practices), and the unsupervised international trade and translocation of wildlife animals. Following the 'One Health' approach, we have also emphasized that successful veterinary public health interventions in the field of echinococcosis requires an holistic approach to integrate current knowledge on human medicine, veterinary medicine and environmental sciences. Copyright © 2014 Elsevier B.V. All rights reserved.
Automatic load sharing in inverter modules
NASA Technical Reports Server (NTRS)
Nagano, S.
1979-01-01
Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.
CarboNA: International Studies of the North American Carbon Cycle
NASA Astrophysics Data System (ADS)
Denning, S.; Cavallaro, N.; Ste-Marie, C.; Muhlia-Melo, A.
2009-05-01
A Science Steering Committee has been formed consisting of carbon cycle scientists from Canada, Mexico, and the United States and government agency contacts from each country, to draft a Science Plan for CarboNA. Science questions that we will address include: 1. What's the current carbon budget of NA and adjacent oceans, including spatial structure and seasonal-to- interannual variations? 2. What mechanisms are involved? What processes control the time mean vs the interannual variability? 3. When will sinks saturate? Will they become sources? Are there surprises in store? What roles will be played by melting permafrost, boreal warming, and subtropical desertification, and tropical development? 4. What are the likely responses of terrestrial ecosystems and coastal oceans to climate change and enhanced CO2? 5. What roles will economic development, energy technology, and trade play in mitigating increases in fossil fuel emissions? In addition to the national research programs already underway in the three countries, we anticipate special collaborative projects of international scope. For example: 1. Studies of the response of terrestrial ecosystems to climate change along an ecological gradient from the Arctic to the Tropics; 2. Truly continental budgets for atmospheric greenhouse gases using data from land-based, airborne, marine, and spaceborne platforms; 3. An aggressively interdisciplinary intensive experiment to understand and quantify carbon cycle processes and budgets in the Gulf of Mexico Basin; 4. Investigation of the turrent state and likely future changes in carbon cycling in coastal ocean environments, including river inputs of POC, DOC, DIC, and nutrients; impacts on fisheries and coastal economies; exchange between coastal oceans and deep ocean basins; and air-sea gas exchange; 5. Government-level agreements on data sharing and harmonization, including but not limited to forest inventories, agricultural data, fossil fuel emissions data, land-use data, energy and population and vehicle miles traveled, flux towers, trace gas measurements, etc. CarboNA will be introduced, and the process and content of current discussions will be presented.
Modeling and Simulations for the High Flux Isotope Reactor Cycle 400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Chandler, David; Ade, Brian J
2015-03-01
A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the designmore » of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.« less
Review of numerical methods for simulation of the aortic root: Present and future directions
NASA Astrophysics Data System (ADS)
Mohammadi, Hossein; Cartier, Raymond; Mongrain, Rosaire
2016-05-01
Heart valvular disease is still one of the main causes of mortality and morbidity in develop countries. Numerical modeling has gained considerable attention in studying hemodynamic conditions associated with valve abnormalities. Simulating the large displacement of the valve in the course of the cardiac cycle needs a well-suited numerical method to capture the natural biomechanical phenomena which happens in the valve. The paper aims to review the principal progress of the numerical approaches for studying the hemodynamic of the aortic valve. In addition, the future directions of the current approaches as well as their potential clinical applications are discussed.
Cost analysis of Navy acquisition alternatives for the NAVSTAR Global Positioning System
NASA Astrophysics Data System (ADS)
Darcy, T. F.; Smith, G. P.
1982-12-01
This research analyzes the life cycle cost (LCC) of the Navy's current and two hypothetical procurement alternatives for NAVSTAR Global Positioning System (GPS) user equipment. Costs are derived by the ARINC Research Corporation ACBEN cost estimating system. Data presentation is in a comparative format describing individual alternative LCC and differential costs between alternatives. Sensitivity analysis explores the impact receiver-processor unit (RPU) first unit production cost has on individual alternative LCC, as well as cost differentials between each alternative. Several benefits are discussed that might provide sufficient cost savings and/or system effectiveness improvements to warrant a procurement strategy other than the existing proposal.
Nuclear electric propulsion options for piloted Mars missions
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
1993-01-01
Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.
Development of a Gravity-Insensitive Heat Pump for Lunar Applications
NASA Technical Reports Server (NTRS)
Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.
2006-01-01
Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.
The laboratory astrophysics facility at University College
NASA Astrophysics Data System (ADS)
Hyland, A. R.; Smith, R. G.; Robinson, G.
A laboratory astrophysics facility for the study of the terrestrial analogues of interstellar dust grains is being developed in the Physics Department, University College, Australian Defence Force Academy. The facility consists of a gas handling system for the preparation of samples, a closed-cycle cooler and specimen chamber, and a Fourier Transform Infrared (FTIR) Spectrometer capable of high resolution (0.3/cm) and high sensitivity measurements, currently from 1-25 microns. The layout and construction of the laboratory are described, and the proposed initial experimental program aimed at determining the optical constants of ices, over a wide wavelength range for comparison with astronomical observations, is discussed.
High power, high frequency helix TWT's
NASA Astrophysics Data System (ADS)
Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.
The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.
NASA Technical Reports Server (NTRS)
Piccolo, R.
1979-01-01
The design, development, efficiency, manufacturability, production costs, life cycle cost, and safety of sodium-sulfur, nickel-zinc, and lead-acid batteries for electric hybrid vehicles are discussed. Models are given for simulating the vehicle handling quality, and for finding the value of: (1) the various magnetic quantities in the different sections in which the magnetic circuit of the DC electric machine is divided; (2) flux distribution in the air gap and the magnetization curve under load conditions; and (3) the mechanical power curves versus motor speed at different values of armature current.
NASA Technical Reports Server (NTRS)
Salyer, I. O.
1980-01-01
The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1974-01-01
A family of four dc-to-square-wave LC tuned inverters are analyzed using singular point. Limit cycles and waveshape characteristics are given for three modes of oscillation: quasi-harmonic, relaxation, and discontinuous. An inverter in which the avalanche breakdown of the transistor emitter-to-base junction occurs is discussed and the starting characteristics of this family of inverters are presented. The LC tuned inverters are shown to belong to a family of inverters with a common equivalent circuit consisting of only three 'series' elements: a five-segment piecewise-linear current-controlled resistor, linear inductor, and linear capacitor.
Parker, Michael G; Broughton, Alex J; Larsen, Ben R; Dinius, Josh W; Cimbura, Mac J; Davis, Matthew
2011-12-01
The purpose of this study was to compare electrically induced contraction levels produced by three patterns of alternating current in fatigued and nonfatigued skeletal muscles. Eighteen male volunteers without health conditions, with a mean (SD) age of 24.9 (3.4) yrs were randomly exposed to a fatiguing volitional isometric quadriceps contraction and one of three patterns of 2.5-KHz alternating current; two were modulated at 50 bursts per second (10% burst duty cycle with five cycles per burst and 90% burst duty cycle with 45 cycles per burst), and one pattern was modulated at 100 bursts per second (10% burst duty cycle with 2.5 cycles per burst). The electrically induced contraction levels produced by the three patterns of electrical stimulation were compared before and after the fatiguing contraction. The 10% burst duty cycles produced 42.9% (95% confidence interval, 29.1%-56.7%) and 32.1% (95% confidence interval, 18.2%-45.9%) more muscle force (P < 0.001) than did the 90% burst duty cycle pattern. There was no significant interaction effect (P = 0.392) of electrical stimulation patterns and fatigue on the electrically induced contraction levels. The lower burst duty cycle (10%) patterns of electrical stimulation produced stronger muscle contractions. Furthermore, the stimulation patterns had no influence on the difference in muscle force before and after the fatiguing quadriceps contraction. Consequently, for clinical applications in which high forces are desired, the patterns using the 10% burst duty cycle may be helpful.
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...
Measuring Nitrification: A Laboratory Approach to Nutrient Cycling.
ERIC Educational Resources Information Center
Hicks, David J.
1990-01-01
Presented is an approach to the study of nutrient cycling in the school laboratory. Discussed are obtaining, processing, and incubating samples; extraction of ions from soil; procedures for nitrate and ammonium analysis; data analysis; an example of results; and other aspects of the nitrogen cycle. (CW)
Caterpillars and moths: Part I. Dermatologic manifestations of encounters with Lepidoptera.
Hossler, Eric W
2010-01-01
Caterpillars are the larval forms of moths and butterflies and belong to the order Lepidoptera. Caterpillars, and occasionally moths, have evolved defense mechanisms, including irritating hairs, spines, venoms, and toxins that may cause human disease. The pathologic mechanisms underlying reactions to Lepidoptera are poorly understood. Lepidoptera are uncommonly recognized causes of localized stings, eczematous or papular dermatitis, and urticaria. Part I of this two-part series on caterpillars and moths reviews Lepidopteran life cycles, terminology, and the epidemiology of caterpillar and moth envenomation. It also reviews the known pathomechanisms of disease caused by Lepidopteran exposures and how they relate to diagnosis and management. Part II discusses the specific clinical patterns caused by Lepidopteran exposures, with particular emphasis on groups of caterpillars and moths that cause a similar pattern of disease. It also discusses current therapeutic options regarding each pattern of disease.
Part Marking and Identification Materials on MISSE
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Roxby, Donald L.
2008-01-01
Many different spacecraft materials were flown as part of the Materials on International Space Station Experiment (MISSE), including several materials used in part marking and identification. The experiment contained Data Matrix symbols applied using laser bonding, vacuum arc vapor deposition, gas assisted laser etch, chemical etch, mechanical dot peening, laser shot peening, and laser induced surface improvement. The effects of ultraviolet radiation on nickel acetate seal versus hot water seal on sulfuric acid anodized aluminum are discussed. These samples were exposed on the International Space Station to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was very limited for some samples. Results from the one-year exposure on MISSE-3 and MISSE-4 are compared to those from MISSE-1 and MISSE-2, which were exposed for four years. Part marking and identification materials on the current MISSE -6 experiment are also discussed.
Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control
Kristo, Michael J.; Gaffney, Amy M.; Marks, Naomi; ...
2016-05-11
Nuclear forensic science seeks to identify the origin of nuclear materials found outside regulatory control. It is increasingly recognized as an integral part of a robust nuclear security program. Our review highlights areas of active, evolving research in nuclear forensics, with a focus on analytical techniques commonly employed in Earth and planetary sciences. Applications of nuclear forensics to uranium ore concentrates (UOCs) are discussed first. UOCs have become an attractive target for nuclear forensic researchers because of the richness in impurities compared to materials produced later in the fuel cycle. Furthermore, the development of chronometric methods for age dating nuclearmore » materials is then discussed, with an emphasis on improvements in accuracy that have been gained from measurements of multiple radioisotopic systems. Finally, papers that report on casework are reviewed, to provide a window into current scientific practice.« less
Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma
Cruickshanks, Nichola; Zhang, Ying; Yuan, Fang; Pahuski, Mary; Gibert, Myron; Abounader, Roger
2017-01-01
Glioblastoma (GBM) is a lethal brain tumor with dismal prognosis. Current therapeutic options, consisting of surgery, chemotherapy and radiation, have only served to marginally increase patient survival. Receptor tyrosine kinases (RTKs) are dysregulated in approximately 90% of GBM; attributed to this, research has focused on inhibiting RTKs as a novel and effective therapy for GBM. Overexpression of RTK mesenchymal epithelial transition (MET), and its ligand, hepatocyte growth factor (HGF), in GBM highlights a promising new therapeutic target. This review will discuss the role of MET in cell cycle regulation, cell proliferation, evasion of apoptosis, cell migration and invasion, angiogenesis and therapeutic resistance in GBM. It will also discuss the modes of deregulation of HGF/MET and their regulation by microRNAs. As the HGF/MET pathway is a vital regulator of multiple pro-survival pathways, efforts and strategies for its exploitation for GBM therapy are also described. PMID:28696366
Costa Barbosa Bessa, Theolis; Santos de Aragão, Erika; Medeiros Guimarães, Jane Mary
2017-01-01
Based on an exploratory case study regarding the types of institutions funding the research and development to obtain new tuberculosis vaccines, this article intends to provoke discussion regarding the provision of new vaccines targeting neglected disease. Although our findings and discussion are mainly relevant to the case presented here, some aspects are more generally applicable, especially regarding the dynamics of development in vaccines to prevent neglected diseases. Taking into account the dynamics of innovation currently seen at work in the vaccine sector, a highly concentrated market dominated by few multinational pharmaceutical companies, we feel that global PDP models can play an important role throughout the vaccine development cycle. In addition, the authors call attention to issues surrounding the coordination of actors and resources in the research, development, manufacturing, and distribution processes of vaccine products arising from PDP involvement. PMID:28133608
Life-Cycle Assessment of Cookstove Fuels in India and China
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles; Park, Gyuhae; Farinholt, Kevin
2010-12-08
This seminar will provide an overview of structural health monitoring (SHM) research that is being undertaken at Los Alamos National Laboratory (LANL). The seminar will begin by stating that SHM should be viewed as an important component of the more comprehensive intelligent life-cycle engineering process. Then LANL's statistical pattern recognition paradigm for addressing SHM problems will be introduced and current research that is focused on each part of the paradigm will be discussed. In th is paradigm, the process can be broken down into four parts: (1) Operational Evaluation, (2) Data Acquisition and Cleansing, (3) Feature Extraction, and (4) Statisticalmore » Model Development for Feature Discrimination. When one attempts to apply this paradigm to data from real world structures, it quickly becomes apparent that the ability to cleanse, compress, normalize and fuse data to account for operational and environmental variability is a key implementation issue when addressing Parts 2-4 of this paradigm. This discussion will be followed by the introduction a new project entitled 'Intelligent Wind Turbines' which is the focus of much of our current SHM research . This summary will be followed by a discussion of issues that must be addressed if this technology is to make the transition from research to practice and new research directions that are emerging for SHM.« less
High voltage electrochemical double layer capacitors using conductive carbons as additives
NASA Astrophysics Data System (ADS)
Michael, M. S.; Prabaharan, S. R. S.
We describe here an interesting approach towards electrochemical capacitors (ECCs) using graphite materials (as being used as conductive additives in rechargeable lithium-ion battery cathodes) in a Li + containing organic electrolyte. The important result is that we achieved a voltage window of >4 V, which is rather large, compared to the standard window of 2.5 V for ordinary electric double layer capacitors (DLCs). The capacitor performance was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge techniques. From charge-discharge studies of the symmetrical device (for instance, SFG6 carbon electrode), a specific capacitance of up to 14.5 F/g was obtained at 16 mA/cm 2 current rate and at a low current rate (3 mA/cm 2), a higher value was obtained (63 F/g). The specific capacitance decreased about 25% after 1000 cycles compared to the initial discharge process. The performances of these graphites are discussed in the light of both double layer capacitance (DLC) and pseudocapacitance (battery-like behavior). The high capacitance obtained was not only derived from the current-transient capacitive behavior but is also attributed to pseudocapacitance associated with some kind of faradaic reaction, which could probably occur due to Li + intercalation/deintercalation reactions into graphitic layers of the carbons used. The ac impedance (electrochemical impedances spectroscopy, EIS) measurements were also carried out to evaluate the capacitor parameters such as equivalent series resistance (ESR) and frequency dependent capacitance ( Cfreq). Cyclic voltammetry measurements were also performed to evaluate the cycling behavior of the carbon electrodes and the non-rectangular shaped voltammograms revealed the non-zero time constant [ τ( RC)≠0] confirming that the current contains a transient as well as steady-state components.
Steinebach, Fabian; Müller-Späth, Thomas; Morbidelli, Massimo
2016-09-01
The economic advantages of continuous processing of biopharmaceuticals, which include smaller equipment and faster, efficient processes, have increased interest in this technology over the past decade. Continuous processes can also improve quality assurance and enable greater controllability, consistent with the quality initiatives of the FDA. Here, we discuss different continuous multi-column chromatography processes. Differences in the capture and polishing steps result in two different types of continuous processes that employ counter-current column movement. Continuous-capture processes are associated with increased productivity per cycle and decreased buffer consumption, whereas the typical purity-yield trade-off of classical batch chromatography can be surmounted by continuous processes for polishing applications. In the context of continuous manufacturing, different but complementary chromatographic columns or devices are typically combined to improve overall process performance and avoid unnecessary product storage. In the following, these various processes, their performances compared with batch processing and resulting product quality are discussed based on a review of the literature. Based on various examples of applications, primarily monoclonal antibody production processes, conclusions are drawn about the future of these continuous-manufacturing technologies. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A new global strategy for the elimination of schistosomiasis.
Ross, Allen G P; Chau, Thao N; Inobaya, Marianette T; Olveda, Remigio M; Li, Yuesheng; Harn, Donald A
2017-01-01
Mass drug administration utilising a single oral dose of 40mg/kg of praziquantel (PZQ) has been endorsed and advocated by the World Health Organisation (WHO) for the global control and elimination of schistosomiasis. However, this strategy is failing primarily because the drugs are not getting to the people who need them the most. The current global coverage is 20%, the drug compliance rate is less than 50%, and the drug efficacy is approximately 50%. Thus in reality, only about 5% of the reservoir human population is actually receiving intermittent chemotherapy. Despite claims that more of the drug will soon be made available the current strategy is inherently flawed and will not lead to disease elimination. We discuss the many practical issues related to this global strategy, and advocate for an integrated control strategy targeting the life cycle and the most at-risk. Moreover, we discuss how an integrated control package for schistosomiasis should fit within a larger integrated health package for rural and remote villages in the developing world. A holistic health system approach is required to achieve sustainable control and ultimately disease elimination. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Implications of improved measurements of the highest energy SEPs by AMS and PAMELA
NASA Astrophysics Data System (ADS)
Whitman, K.; Bindi, V.; Consolandi, C.; Corti, C.; Yamashiro, B.
2017-08-01
Solar energetic particles (SEP) are a key target of heliophysics research, not only as exemplars of particle acceleration and transport processes that are ubiquitous in astrophysical plasmas, but also as the most intense transient radiation hazard for human and robotic space explorers. SEPs are very well-observed by spacecraft covering particle energies below several hundred MeV/nucleon. Multiple missions, stretching back over decades, have yielded a fairly complete description of SEP intensity, energy spectra, and composition up to a few hundred MeV/nucleon. SEP characteristics at higher energies are, by comparison, only poorly understood due to the relative dearth of high-energy measurements. This lack of high energy measurements has contributed to a disagreement within the heliophysics community regarding the source regions and mechanisms that accelerate particles up to GeV energies. In solar cycle 24, the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) and the Alpha Magnetic Spectrometer (AMS) have been taking measurements of the highest energy SEPs from ∼ 100 MeV to the GeV. Since the literature has discussed SEP acceleration to GeV energies in terms of Ground Level Enhancements (GLE), we will review the findings for GLEs in solar cycle 23. We will discuss the models and theories that address acceleration up to the GeV and how AMS and PAMELA measurements have the potential to advance the current understanding of SEP acceleration physics. Lastly, only 1-2 GLEs have occurred during solar cycle 24, so we will explore a set of SEP events that were observed in the ⩾100 MeV GOES channels, most of which were also observed by PAMELA and AMS.
Investment and operating costs of binary cycle geothermal power plants
NASA Technical Reports Server (NTRS)
Holt, B.; Brugman, J.
1974-01-01
Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.
Application of solar energy to air conditioning systems
NASA Technical Reports Server (NTRS)
Nash, J. M.; Harstad, A. J.
1976-01-01
The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.
The Menstrual Cycle and the Female Athlete.
ERIC Educational Resources Information Center
Kolka, Margaret A.; Stephenson, Lou A.
1982-01-01
The effects of the menstrual cycle on the performance, heart rate, and body temperature of female athletes are discussed. Biological causes of menstrual problems such as dysmenorrhea and amenorrhea are explained. Research indicates that the higher the level of training achieved, the less effect each cycle phase has on physical performance. (PP)
Models of the Organizational Life Cycle: Applications to Higher Education.
ERIC Educational Resources Information Center
Cameron, Kim S.; Whetten, David A.
1983-01-01
A review of models of group and organization life cycle development is provided and the applicability of those models for institutions of higher education are discussed. An understanding of the problems and characteristics present in different life cycle stages can help institutions manage transitions more effectively. (Author/MLW)
ERIC Educational Resources Information Center
Schmidt, Stan M.; Palmer, Courtney
2000-01-01
Introduces an activity on the rock cycle. Sets 11 stages representing the transitions of an earth material in the rock cycle. Builds six-sided die for each station, and students move to the stations depending on the rolling side of the die. Evaluates students by discussing several questions in the classroom. Provides instructional information for…
ERIC Educational Resources Information Center
Kintzer, Frederick C.
1992-01-01
Defines short-cycle higher education (postcompulsory, subbaccalaureate education). Identifies characteristics shared by short-cycle systems worldwide and the ways in which individual systems differ. Discusses issues of low esteem, community education, articulation and transfer, business/industry relations, financial support. Offers recommendations…
Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai
2017-03-01
Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading ofmore » 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.« less
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
NASA Astrophysics Data System (ADS)
Philibosian, B.; Meltzner, A. J.; Sieh, K.
2017-12-01
Understanding earthquake cycle processes is key to both seismic hazard and fault mechanics. A concept that has come into focus recently is that rupture segmentation and cyclicity can be complex, and that simple models of periodically repeating similar earthquakes are inadequate. The term "supercycle" has been used to describe repeating longer periods of strain accumulation that involve multiple fault ruptures. However, this term has become broadly applied, lumping together several distinct phenomena that likely have disparate underlying causes. Earthquake recurrence patterns have often been described as "clustered," but this term is also imprecise. It is necessary to develop a terminology framework that consistently and meaningfully describes all types of behavior that are observed. We divide earthquake cycle patterns into four major classes, each having different implications for seismic hazard and fault mechanics: 1) quasi-periodic similar ruptures, 2) temporally clustered similar ruptures, 3) temporally clustered complementary ruptures, also known as rupture cascades, in which neighboring fault patches fail sequentially, and 4) superimposed cycles in which neighboring fault patches have cycles with different recurrence intervals, but may occasionally rupture together. Rupture segmentation is classified as persistent, frequent, or transient depending on how reliably ruptures terminate in a given area. We discuss the paleoseismic and historical evidence currently available for each of these types of behavior on subduction zone megathrust faults worldwide. Due to the unique level of paleoseismic and paleogeodetic detail provided by the coral microatoll technique, the Sumatran Sunda megathrust provides one of the most complete records over multiple seismic cycles. Most subduction zones with sufficient data exhibit examples of persistent and frequent segmentation, with cycle patterns 1, 3, and 4 on different segments. Pattern 2 is generally confined to overlap zones between segments. This catalog of seismic cycle observations provides a basis for exploring and modeling root causes of rupture segmentation and cycle behavior. Researchers should expect to discover similar behavior styles on other megathrust faults and perhaps major crustal faults around the world.
Modeling and analysis of tritium dynamics in a DT fusion fuel cycle
NASA Astrophysics Data System (ADS)
Kuan, William
1998-11-01
A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.
Discontinuous Mode Power Supply
NASA Technical Reports Server (NTRS)
Lagadinos, John; Poulos, Ethel
2012-01-01
A document discusses the changes made to a standard push-pull inverter circuit to avoid saturation effects in the main inverter power supply. Typically, in a standard push-pull arrangement, the unsymmetrical primary excitation causes variations in the volt second integral of each half of the excitation cycle that could lead to the establishment of DC flux density in the magnetic core, which could eventually cause saturation of the main inverter transformer. The relocation of the filter reactor normally placed across the output of the power supply solves this problem. The filter reactor was placed in series with the primary circuit of the main inverter transformer, and is presented as impedance against the sudden changes on the input current. The reactor averaged the input current in the primary circuit, avoiding saturation of the main inverter transformer. Since the implementation of the described change, the above problem has not reoccurred, and failures in the main power transistors have been avoided.
Larsen, Peter; Hamada, Yuki; Gilbert, Jack
2012-07-31
Never has there been a greater opportunity for investigating microbial communities. Not only are the profound effects of microbial ecology on every aspect of Earth's geochemical cycles beginning to be understood, but also the analytical and computational tools for investigating microbial Earth are undergoing a rapid revolution. This environmental microbial interactome, the system of interactions between the microbiome and the environment, has shaped the planet's past and will undoubtedly continue to do so in the future. We review recent approaches for modeling microbial community structures and the interactions of microbial populations with their environments. Different modeling approaches consider the environmental microbial interactome from different aspects, and each provides insights to different facets of microbial ecology. We discuss the challenges and opportunities for the future of microbial modeling and describe recent advances in microbial community modeling that are extending current descriptive technologies into a predictive science. Copyright © 2012 Elsevier B.V. All rights reserved.
Comparative modelling of human β tubulin isotypes and implications for drug binding
NASA Astrophysics Data System (ADS)
Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack
2006-02-01
The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.
NASA Technical Reports Server (NTRS)
Botez, D.
1981-01-01
Constricted double-heterojunction (CDH) diode lasers are presented as a class of nonplanar-substrate devices for which the lasing cavity is on the least resistive electrical path between the contact and the substrate. Various CDH structures are discussed while treating such topics as liquid-phase epitaxy over channeled substrates, lateral mode control, and current control in nonplanar-substrate devices. Ridge-guide CDH lasers with positive-index lateral mode confinement provides single-mode CW operation to 7 mW/facet at room temperature and to 3 mW/facet at 150 C, while exhibiting light-current characteristics with second-harmonic distortions as low as -57 dB below the fundamental level. Semileaky guide CDH lasers with an asymmetric leaky cavity provide single-mode operation to 15-20 mW/facet CW, and to 50 mW/facet at 50% duty cycle.
Mars atmospheric losses induced by the solar wind: current knowledge and perspective
NASA Astrophysics Data System (ADS)
Ermakov, Vladimir; Zelenyi, Lev; Vaisberg, Oleg; Sementsov, Egor; Dubinin, Eduard
2017-04-01
Solar wind induced atmospheric losses have been studied since earlier 1970th. Several loss channels have been identified including pick-up of exospheric photo-ions and ionospheric ions escape. Measurements performed during several solar cycles showed variation of these losses by about factor of 10, being largest at maximum solar activity. MAVEN spacecraft equipped with comprehensive set of instruments with high temporal and mass resolution operating at Mars since fall 2014 ensures much better investigation of solar wind enforcing Martian environment, Mars atmospheric losses processes and mass loss rate. These issues are very important for understanding of Martian atmospheric evolution including water loss during cosmogonic time. Simultaneous observations by MAVEN and MEX spacecraft open the new perspective in study of Martian environment. In this report we discuss results of past and current missions and preliminary analysis of heavy ions escape using simultaneous measurements of MEX and MAVEN spacecraft.
Satellite on-board applications of expert systems
NASA Astrophysics Data System (ADS)
Ciarlo, A.; Donzelli, P.; Katzenbelsser, R.; Moller, B. A.
The article discusses some aspects of the on-board application of expert systems (ES) in artificial satellites. The implementation of two prototypes on a dedicated AI machine are described. Consideration is given to: (1) the interrelationship between the ES and the architecture of the satellite and its impact on the mission-definition phase of the satellite life-cycle; (2) the identification of those tasks that at the current stage seem most likely to be delegated to on-board ES; and (3) the main obstacles that need to be overcome before operational use of ES on-board can take place, and particularly the matters of testing, knowledge collection, and availability of computing resources. Finally, the activities that are currently planned or that appear to be required in the near future to prepare the way for the full exploitation of this technology for satellite autonomy are briefly outlined.
[Health implications of the establishment and spread of Aedes albopictus in Spain].
Bueno Marí, Rubén; Jiménez Peydró, Ricardo
2012-01-01
The spread of Aedes albopictus by Eastern Spain has been constant since its first finding in 2004. Currently the species has been collected in the coastal provinces of Girona, Barcelona, Tarragona, Castellón, Alicante and Murcia. The high synanthropism of the species, together with its anthropophilic behaviour and vectorial capacity to transmit several arboviruses, have led to the return of active transmission cycles of common diseases in the past such as Dengue virus and even the appearance of new tropical viruses as Chikungunya in southern Europe. This manuscript discusses the public health implications of the expected expansion of Ae. albopictus for much of the Iberian Peninsula, in the context of current climatic and sociodemographic situation. Moreover, several issues related with the control of the species in urban and suburban environments are exposed. Finally the preliminary data about other invasive aedines recently collected in the European continent are presented.
Operational efficiency subpanel advanced mission control
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.
Design, fabrication, and testing of the BNL radio frequency quadrupole accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, H.; Clifford, T.; Giordano, S.
1984-01-01
The Brookhaven National Laboratory polarized H/sup -/ injection program for the AGS utilizes a Radio Frequency Quadrupole Accelerator for acceleration between the polarized source and the Alvarez Linac. Although operation has commenced with a few ..mu.. amperes of H/sup -/ beam, it is anticipated that future polarized H/sup -/ sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, andmore » removal of heat from the vanes. The design philosophy, details of cavity fabrication, and vane machining will be discussed. Results of low and high power rf testing will be presented together with the initial results of operations in the polarized H/sup -/ beam line.« less
NASA Technical Reports Server (NTRS)
Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory
2011-01-01
A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.
NASA Astrophysics Data System (ADS)
Li, Yu; Wang, Bichen; Chen, Huimin; Feng, Wei
Arrays of oriented poly(3,4-ethylenedioxythiophene) (PEDOT) micro/nanorods are synthesized by electrochemical galvanostatic method at the current density of 1 mA cm -2 in the cetyltrimethylammonium bromide (CTAB) aqueous solution whose pH value is 1. The CTAB is used both as the surfactant and the supporting salt in the electrolyte solution. The electrochemical properties of PEDOT films are characterized by cyclic voltammetry and galvanostatic charge/discharge techniques, which indicate that the arrays of oriented PEDOT micro/nanorods can be applied as the electrode materials of supercapacitors. In addition, the cycling performance of PEDOT micro/nanorods is much better than that of traditional PEDOT particles. The effects of the concentration of CTAB, the current density, and pH value of electrolyte solutions on the morphologies and electrochemical properties of PEDOT films are investigated. The mechanism of different morphologies formation is discussed in this study as well.
The NASA land processes program - Status and future directions
NASA Technical Reports Server (NTRS)
Murphy, R. E.
1984-01-01
For most of the past decade, NASA focused its efforts on the immediate exploitation of space-based sensors in earth-oriented programs. After an assessment of the current situation with respect to the conducted programs, NASA has restructured its earth-oriented programs to concentrate on the scientific use of its satellites while other agencies and private enterprise have assumed responsibility for programs of interest to them. In making this change of direction, NASA has conducted a series of studies to obtain information as a basis for its planning activities regarding future programs. Attention is given to a plan for Land Global Habitability, the development of a basic structure for the land program, a program plan for global biology, and a study on the role of biochemical cycles. The three major facets of the land processes program are discussed along with some examples of current work.
Enhancing the performance of gastrointestinal tumour board by improving documentation.
Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman
2018-01-01
Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan-Do-Study-Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts' input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process and outcomes.
Enhancing the performance of gastrointestinal tumour board by improving documentation
Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman
2018-01-01
Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan–Do–Study–Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts’ input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process and outcomes. PMID:29610771
Paper waste - recycling, incineration or landfilling? A review of existing life cycle assessments.
Villanueva, A; Wenzel, H
2007-01-01
A review of existing life cycle assessments (LCAs) on paper and cardboard waste has been undertaken. The objectives of the review were threefold. Firstly, to see whether a consistent message comes out of published LCA literature on optimum disposal or recycling solutions for this waste type. Such message has implications for current policy formulation on material recycling and disposal in the EU. Secondly, to identify key methodological issues of paper waste management LCAs, and enlighten the influence of such issues on the conclusions of the LCA studies. Thirdly, in light of the analysis made, to discuss whether it is at all valid to use the LCA methodology in its current development state to guide policy decisions on paper waste. A total of nine LCA studies containing altogether 73 scenarios were selected from a thorough, international literature search. The selected studies are LCAs including comparisons of different management options for waste paper. Despite claims of inconsistency, the LCAs reviewed illustrate the environmental benefits in recycling over incineration or landfill options, for paper and cardboard waste. This broad consensus was found despite differences in geographic location and definitions of the paper recycling/disposal systems studied. A systematic exploration of the LCA studies showed, however, important methodological pitfalls and sources of error, mainly concerning differences in the definition of the system boundaries. Fifteen key assumptions were identified that cover the three paper cycle system areas: raw materials and forestry, paper production, and disposal/recovery. It was found that the outcome of the individual LCA studies largely depended on the choices made in some of these assumptions, most specifically the ones concerning energy use and generation, and forestry.
NASA Astrophysics Data System (ADS)
Wrzesien, M.; Durand, M. T.; Pavelsky, T.
2017-12-01
The hydrologic cycle is a key component of many aspects of daily life, yet not all water cycle processes are fully understood. In particular, water storage in mountain snowpacks remains largely unknown. Previous work with a high resolution regional climate model suggests that global and continental models underestimate mountain snow accumulation, perhaps by as much as 50%. Therefore, we hypothesize that since snow water equivalent (one aspect of the water balance) is underestimated, accepted water balances for major river basins are likely wrong, particularly for mountainous river basins. Here we examine water balances for four major high latitude North American watersheds - the Columbia, Mackenzie, Nelson, and Yukon. The mountainous percentage of each basin ranges, which allows us to consider whether a bias in the water balance is affected by mountain area percentage within the watershed. For our water balance evaluation, we especially consider precipitation estimates from a variety of datasets, including models, such as WRF and MERRA, and observation-based, such as CRU and GPCP. We ask whether the precipitation datasets provide enough moisture for seasonal snow to accumulate within the basin and whether we see differences in the variability of annual and seasonal precipitation from each dataset. From our reassessment of high-latitude water balances, we aim to determine whether the current understanding is sufficient to describe all processes within the hydrologic cycle or whether datasets appear to be biased, particularly in high-elevation precipitation. Should currently-available datasets appear to be similarly biased in precipitation, as we have seen in mountain snow accumulation, we discuss the implications for the continental water budget.
Integrating risk assessment and life cycle assessment: a case study of insulation.
Nishioka, Yurika; Levy, Jonathan I; Norris, Gregory A; Wilson, Andrew; Hofstetter, Patrick; Spengler, John D
2002-10-01
Increasing residential insulation can decrease energy consumption and provide public health benefits, given changes in emissions from fuel combustion, but also has cost implications and ancillary risks and benefits. Risk assessment or life cycle assessment can be used to calculate the net impacts and determine whether more stringent energy codes or other conservation policies would be warranted, but few analyses have combined the critical elements of both methodologies In this article, we present the first portion of a combined analysis, with the goal of estimating the net public health impacts of increasing residential insulation for new housing from current practice to the latest International Energy Conservation Code (IECC 2000). We model state-by-state residential energy savings and evaluate particulate matter less than 2.5 microm in diameter (PM2.5), NOx, and SO2 emission reductions. We use past dispersion modeling results to estimate reductions in exposure, and we apply concentration-response functions for premature mortality and selected morbidity outcomes using current epidemiological knowledge of effects of PM2.5 (primary and secondary). We find that an insulation policy shift would save 3 x 10(14) British thermal units or BTU (3 x 10(17) J) over a 10-year period, resulting in reduced emissions of 1,000 tons of PM2.5, 30,000 tons of NOx, and 40,000 tons of SO2. These emission reductions yield an estimated 60 fewer fatalities during this period, with the geographic distribution of health benefits differing from the distribution of energy savings because of differences in energy sources, population patterns, and meteorology. We discuss the methodology to be used to integrate life cycle calculations, which can ultimately yield estimates that can be compared with costs to determine the influence of external costs on benefit-cost calculations.
NASA Technical Reports Server (NTRS)
Hathaway, David; Upton, Lisa
2013-01-01
The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. Here we discuss the observed characteristics of Cycle 24 and contrast them to the characteristics of previous cycles. We present observations and Magnetic Flux Transport simulations with data assimilated from SOHO/MDI and SDO/HMI that help to explain these differences and point the way to predictions of future activity levels.
Terrestrial and marine perspectives on modeling organic matter degradation pathways.
Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning
2016-01-01
Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. © 2015 John Wiley & Sons Ltd.
Liu, Suxing; Bishop, W Robert; Liu, Ming
2003-08-01
p21(WAF1/Cip1) was initially identified as a cell cycle regulatory protein that can cause cell cycle arrest. It is induced by both p53-dependent and p53-independent mechanisms. This mini-review briefly discusses its currently known functions in apoptosis and drug sensitivity. As an inhibitor of cell proliferation, p21(WAF1/Cip1) plays an important role in drug-induced tumor suppression. Nevertheless, a number of recent studies have shown that p21(WAF1/Cip1) can assume both pro- or anti-apoptotic functions in response to anti-tumor agents depending on cell type and cellular context. This dual role of p21(WAF1/Cip1) in cancer cells complicates using p21(WAF1/Cip1) status to predict response to anti-tumor agents. However, it is possible to develop p21(WAF1/Cip1)-targeted reagents or p21(WAF1/Cip1) gene transfer techniques to have a beneficial effect within a well-defined therapeutic context. Better understanding of the roles of p21(WAF1/Cip1) in tumors should enable a more rational approach to anti-tumor drug design and therapy.
Development of first generation aerospace NiMH cells
NASA Technical Reports Server (NTRS)
Tinker, Lawrence; Dell, Dan; Wu, Tony; Rampel, Guy
1993-01-01
Gates Aerospace Batteries in conjunction with Gates Energy Products (GEP) has been developing NiMH technology for aerospace use since 1990. GEP undertook the development of NiMH technology for commercial cell applications in 1987. This program focused on wound cell technology for replacement of current NiCd technology. As an off shoot of this program small, wound cells were used to evaluate initial design options for aerospace prismatic cell designs. Early in 1991, the first aerospace prismatic cell designs were built in a 6 Ah cell configuration. These cells were used to initially characterize performance in prismatic configurations and begin early life cycle testing. Soon after the 6 Ah cells were on test, several 22 Ah cells were built to test other options. The results of testing of these cells were used to identify potential problem areas for long lived cells and develop solutions to those problems. Following these two cell builds, a set of 7 Ah cells was built to evaluate improvements to the technology. To date results from these tests are very promising. Cycle lives in excess of 2,200 LEO cycles at 50 percent DoD were achieved with cells continuing on test. Results from these cell tests are discussed and data presented to demonstrate feasibility of this technology for aerospace programs.
Selenium Cycling Across Soil-Plant-Atmosphere Interfaces: A Critical Review
Winkel, Lenny H.E.; Vriens, Bas; Jones, Gerrad D.; Schneider, Leila S.; Pilon-Smits, Elizabeth; Bañuelos, Gary S.
2015-01-01
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels. PMID:26035246
Selenium cycling across soil-plant-atmosphere interfaces: a critical review.
Winkel, Lenny H E; Vriens, Bas; Jones, Gerrad D; Schneider, Leila S; Pilon-Smits, Elizabeth; Bañuelos, Gary S
2015-05-29
Selenium (Se) is an essential element for humans and animals, which occurs ubiquitously in the environment. It is present in trace amounts in both organic and inorganic forms in marine and freshwater systems, soils, biomass and in the atmosphere. Low Se levels in certain terrestrial environments have resulted in Se deficiency in humans, while elevated Se levels in waters and soils can be toxic and result in the death of aquatic wildlife and other animals. Human dietary Se intake is largely governed by Se concentrations in plants, which are controlled by root uptake of Se as a function of soil Se concentrations, speciation and bioavailability. In addition, plants and microorganisms can biomethylate Se, which can result in a loss of Se to the atmosphere. The mobilization of Se across soil-plant-atmosphere interfaces is thus of crucial importance for human Se status. This review gives an overview of current knowledge on Se cycling with a specific focus on soil-plant-atmosphere interfaces. Sources, speciation and mobility of Se in soils and plants will be discussed as well as Se hyperaccumulation by plants, biofortification and biomethylation. Future research on Se cycling in the environment is essential to minimize the adverse health effects associated with unsafe environmental Se levels.
Phosphoric acid as an electrolyte additive for lead/acid batteries in electric-vehicle applications
NASA Astrophysics Data System (ADS)
Meissner, E.
The influence of the addition of phosphoric acid to the electrolyte on the performance of gelled lead/acid electric-vehiicle batteries is investigated. This additive reduces the reversible capacity decay of the positive electrode significantly which is observed upon extended cycling when recharge of the battery is performed at low initial rate. This is important when low-rate on-board chargers are used. Pulsed discharge, typical for electric-vehicle application, induces reversible capacity decay more than constant-current discharge at a same depth-of-discharge, as well with as without the addition of phosphoric acid. By contrast, hindrance in presence of H 3PO 4 for both the recharge and the discharge reaction helps to homogenize the state of many individual cells during cycling in long battery strings. Reversible capacity loss, which occurs after extended cycling and when pulsed discharge is applied, can be recovered by a single discharge at very low rate with batteries with and without the addition of phosphoric acid. The discharge-rate dependency of the capacity is significantly reduced when phosphoric acid is added. The pulse discharge behaviour may be better, even if the nominal capacity is reduced. The experimental findings of the influence of phosphoric acid addition is discussed in terms of the aggregate-of-spheres model of reversible capacity decay.
Early-life origins of life-cycle well-being: research and policy implications.
Currie, Janet; Rossin-Slater, Maya
2015-01-01
Mounting evidence across different disciplines suggests that early-life conditions can have consequences on individual outcomes throughout the life cycle. Relative to other developed countries, the United States fares poorly on standard indicators of early-life health, and this disadvantage may have profound consequences not only for population well-being, but also for economic growth and competitiveness in a global economy. In this paper, we first discuss the research on the strength of the link between early-life health and adult outcomes, and then provide an evidence-based review of the effectiveness of existing U.S. policies targeting the early-life environment. We conclude that there is a robust and economically meaningful relationship between early-life conditions and well-being throughout the life cycle, as measured by adult health, educational attainment, labor market attachment, and other indicators of socioeconomic status. However, there is some variation in the degree to which current policies in the United States are effective in improving early-life conditions. Among existing programs, some of the most effective are the Special Supplemental Program for Women, Infants, and Children (WIC), home visiting with nurse practitioners, and high-quality, center-based early-childhood care and education. In contrast, the evidence on other policies such as prenatal care and family leave is more mixed and limited.
(Model) Peatlands in late Quaternary interglacials
NASA Astrophysics Data System (ADS)
Kleinen, Thomas; Brovkin, Victor
2016-04-01
Peatlands have accumulated a substantial amount of carbon, roughly 600 PgC, during the Holocene. Prior to the Holocene, there is relatively little direct evidence of peatlands, though coal deposits bear witness to a long history of peat-forming ecosystems going back to the Carboniferous. We therefore need to rely on models to investigate peatlands in times prior to the Holocene. We have developed a dynamical model of wetland extent and peat accumulation, integrated in the coupled climate carbon cycle model of intermediate complexity CLIMBER2-LPJ, in order to mechanistically model interglacial carbon cycle dynamics. This model consists of the climate model of intermediate complexity CLIMBER2 and the dynamic global vegetation model LPJ, which we have extended with modules to determine peatland extent and carbon accumulation. The model compares reasonably well to Holocene peat data. We have used this model to investigate the dynamics of atmospheric CO2 in the Holocene and two other late Quaternary interglacials, namely the Eemian, which is interesting due to its warmth, and Marine Isotope Stage 11 (MIS11), which is the longest interglacial during the last 500ka. We will also present model results of peatland extent and carbon accumulation for these interglacials. We will discuss model shortcomings and knowledge gaps currently preventing an application of the model to full glacial-interglacial cycles.
Fukaya, Keiichi; Kawamori, Ai; Osada, Yutaka; Kitazawa, Masumi; Ishiguro, Makio
2017-09-20
Women's basal body temperature (BBT) shows a periodic pattern that associates with menstrual cycle. Although this fact suggests a possibility that daily BBT time series can be useful for estimating the underlying phase state as well as for predicting the length of current menstrual cycle, little attention has been paid to model BBT time series. In this study, we propose a state-space model that involves the menstrual phase as a latent state variable to explain the daily fluctuation of BBT and the menstruation cycle length. Conditional distributions of the phase are obtained by using sequential Bayesian filtering techniques. A predictive distribution of the next menstruation day can be derived based on this conditional distribution and the model, leading to a novel statistical framework that provides a sequentially updated prediction for upcoming menstruation day. We applied this framework to a real data set of women's BBT and menstruation days and compared prediction accuracy of the proposed method with that of previous methods, showing that the proposed method generally provides a better prediction. Because BBT can be obtained with relatively small cost and effort, the proposed method can be useful for women's health management. Potential extensions of this framework as the basis of modeling and predicting events that are associated with the menstrual cycles are discussed. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Feierabend, K.
2010-12-01
Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.
On the reliable probing of discrete ‘plasma bullet’ propagation
NASA Astrophysics Data System (ADS)
Svarnas, P.; Gazeli, K.; Gkelios, A.; Amanatides, E.; Mataras, D.
2018-04-01
This report is devoted to the imaging of the spatiotemporal evolution of ‘plasma bullets’ during their propagation at atmospheric pressure. Although numerous studies have been realized on this topic with high gating rate cameras, triggering issues and statistical analyses of single-shot events over different cycles of the driving high voltage have not been discussed properly. The present work demonstrates the related difficulties faced due to the inherently erratic propagation of the bullets. A way of capturing and statistically analysing discrete bullet events is introduced, which is reliable even when low gating rate cameras are used and multiple bullets are formed within the voltage cycle. The method is based on plasma observations by means of two photoelectron multiplier tubes. It is suggested that these signals correlate better with bullet propagation events than the driving voltage or bullet current waveforms do, and allow either the elimination of issues arising from erratic propagation and hardware delays or at least the quantification of certain uncertainties. Herein, the entire setup, the related concept and the limits of accuracy are discussed in detail. Snapshots of the bullets are captured and commented on, with the bullets being produced by a sinusoidally driven single-electrode plasma jet reactor operating with helium. Finally, the instantaneous velocities of bullets on the order of 104-105 m s-1 are measured and propagation phases are distinguished in good agreement with the bibliography.
Difference between even and odd 11-year cycles in cosmic ray intensity
NASA Technical Reports Server (NTRS)
Otaola, J. A.; Perez-Enriquez, R.; Valdes-Galicia, J. F.
1985-01-01
Cosmic ray data for the period 1946-1984 are used to determine the run of the cosmic ray intensity over three complete solar cycles. The analysis shows a tendency towards a regular alternation of cosmic ray intensity cycles with double and single maxima. Whereas a saddle-like shape is characteristic of even cycles, odd cycles are characterized by a peak-like shape. The importance of this behavior is discussed in terms of different processes influencing cosmic ray transport in the heliosphere.
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
Bipolar rechargeable lithium battery for high power applications
NASA Technical Reports Server (NTRS)
Hossain, Sohrab; Kozlowski, G.; Goebel, F.
1993-01-01
Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.
Zheng, Caixian; Zheng, Kun; Shen, Yunming; Wu, Yunyun
2016-01-01
The content related to the quality during life-cycle in operation of medical device includes daily use, repair volume, preventive maintenance, quality control and adverse event monitoring. In view of this, the article aims at discussion on the quality evaluation method of medical devices during their life cycle in operation based on the Analytic Hierarchy Process (AHP). The presented method is proved to be effective by evaluating patient monitors as example. The method presented in can promote and guide the device quality control work, and it can provide valuable inputs to decisions about purchase of new device.
Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai
2017-03-01
Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less
Multi-element microelectropolishing method
Lee, Peter J.
1994-01-01
A method is provided for microelectropolishing a transmission electron microscopy nonhomogeneous multi-element compound foil. The foil is electrolyzed at different polishing rates for different elements by rapidly cycling between different current densities. During a first portion of each cycle at a first voltage a first element electrolyzes at a higher current density than a second element such that the material of the first element leaves the anode foil at a faster rate than the second element and creates a solid surface film, and such that the solid surface film is removed at a faster rate than the first element leaves the anode foil. During a second portion of each cycle at a second voltage the second element electrolyzes at a higher current density than the first element, and the material of the second element leaves the anode foil at a faster rate than the first element and creates a solid surface film, and the solid surface film is removed at a slower rate than the second element leaves the foil. The solid surface film is built up during the second portion of the cycle, and removed during the first portion of the cycle.
Cycles in oceanic teleconnections and global temperature change
NASA Astrophysics Data System (ADS)
Seip, Knut L.; Grøn, Øyvind
2018-06-01
Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Our results are obtained by a novel method, which identifies running average leading-lagging (LL) relations, between paired series. We find common cycle times for a paired series of 6-7 and 25-28 years and identify years when the LL relations switch. Switching occurs with 18.4 ± 14.3-year intervals for the short 6-7-year cycles and with 27 ± 15-year intervals for the 25-28-year cycles. During the period 1940-1950, the LL relations for the long cycles were circular (nomenclature x leads y: x → y): GTA → NAO → SOI → PDO → GTA. However, after 1960, the LL relations become more complex and there are indications that GTA leads to both NAO and PDO. The switching years are related to ocean current tie points and reversals reported in the literature.
Summary of Research 1998, Department of Meteorology.
1999-08-01
Marine Education, Vol. 15, No. 3, p. 28,1998. Murphree, X, "Hot and Cold Glasses: Activities on the Global Water Cycle ," Current: The Journal of...Marine Education, Vol. 15, No. 3, p. 28,1998. Murphree, T, "Hot and Cold Glasses: Activities on the Global Water Cycle ," Current: The Journal of Marine
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... the Total Product Life Cycle AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public... Evidence Appraisal Throughout the Total Product Life Cycle.'' The topic to be discussed is best practices...-cycle. For these reasons, FDA's Center for Devices and Radiological Health (CDRH) uses registries to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Chris, E-mail: cyuan@uwm.edu; Wang, Endong; Zhai, Qiang
Temporal homogeneity of inventory data is one of the major problems in life cycle assessment (LCA). Addressing temporal homogeneity of life cycle inventory data is important in reducing the uncertainties and improving the reliability of LCA results. This paper attempts to present a critical review and discussion on the fundamental issues of temporal homogeneity in conventional LCA and propose a theoretical framework for temporal discounting in LCA. Theoretical perspectives for temporal discounting in life cycle inventory analysis are discussed first based on the key elements of a scientific mechanism for temporal discounting. Then generic procedures for performing temporal discounting inmore » LCA is derived and proposed based on the nature of the LCA method and the identified key elements of a scientific temporal discounting method. A five-step framework is proposed and reported in details based on the technical methods and procedures needed to perform a temporal discounting in life cycle inventory analysis. Challenges and possible solutions are also identified and discussed for the technical procedure and scientific accomplishment of each step within the framework. - Highlights: • A critical review for temporal homogeneity problem of life cycle inventory data • A theoretical framework for performing temporal discounting on inventory data • Methods provided to accomplish each step of the temporal discounting framework.« less
Cho, Jeong-Hyun; Picraux, S Tom
2013-01-01
It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.
Accreditation status of U.S. military graduate medical education programs.
De Lorenzo, Robert A
2008-07-01
Military graduate medical education (GME) comprises a substantial fraction of U.S. physician training capacity. The wars in Iraq and Afghanistan have placed substantial stress on military medicine, and lay and professional press accounts have raised awareness of the effects on military GME. To date, however, objective data on military GME quality remains sparse. Determine the accreditation status of U.S. military GME programs. Additionally, military GME program data will be compared to national (U.S.) accreditation lengths. Retrospective review of Accreditation Council for Graduate Medical Education (ACGME) data. All military-sponsored core programs in specialties with at least three residencies were included. Military-affiliated but civilian-sponsored programs were excluded. The current and past cycle data were used for the study. For each specialty, the current mean accreditation length and the net change in cycle was calculated. National mean accreditation lengths by specialty for 2005 to 2006 were obtained from the ACGME. Comparison between the overall mean national and military accreditation lengths was performed with a z test. All other comparisons employed descriptive statistics. Ninety-nine military programs in 15 specialties were included in the analysis. During the study period, 1 program was newly accredited, and 6 programs had accreditation withdrawn or were closed. The mean accreditation length of the military programs was 4.0 years. The overall national mean for the same specialties is 3.5 years (p < 0.01). In previous cycles, 68% of programs had accreditation of 4 years or longer, compared to 70% in the current cycle, while 13% had accreditation of 2 years or less in the previous cycle compared to 14% in the current cycle. Ten (68%) of the military specialties had mean accreditation lengths greater than the national average, while 5 (33%) were below it. Ten (68%) specialties had stable or improving cycle lengths when compared to previous cycles. Military GME accreditation cycle lengths are, overall, longer than national averages. Trends show many military programs are experiencing either stable or slightly lengthening accreditation compared to previous cycles. A few specialties show a declining trend. There has been a modest 5% decline in the number of military core residency programs since 2000.
Rebirth of the Bashful ballerina
NASA Astrophysics Data System (ADS)
Mursula, Kalevi; Virtanen, Ilpo
2016-04-01
Heliospheric current sheet (HCS) is the continuation of the coronal magnetic equator into space, dividing the heliospheric magnetic field (HMF) into two sectors. Because of its wavy structure, the HCS is also called the ballerina skirt. Several recent studies have proven that the HCS is southward shifted during about three years in the solar declining to minimum phase. This persistent phenomenon, now called the Bashful ballerina, has been seen in geomagnetic indices since 1930s, OMNI data since 1960s, WSO data since mid-1970s and in Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. Here we study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet since 1975 using synoptic maps from six observatories (WSO, MWO, Kitt Peak, SOLIS, SOHO/MDI and SDO/HMI). All data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, and agree on the southward shift of the heliospheric current sheet during all the five included cycles. We show that during solar cycles 20 -- 22, the southward shift of the HCS is due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is, again, due to the axial quadrupole, repeating the pattern of most previous cycles.
Bashful ballerina: Multi-instrument verification and recent behaviour
NASA Astrophysics Data System (ADS)
Mursula, Kalevi; Virtanen, Ilpo
2016-07-01
Heliospheric current sheet (HCS) is the continuation of the coronal magnetic equator into space, dividing the heliospheric magnetic field (HMF) into two sectors. Because of its wavy structure, the HCS is also called the ballerina skirt. Several recent studies have proven that the HCS is southward shifted during about three years in the solar declining to minimum phase. This persistent phenomenon, now called the Bashful ballerina, has been seen in geomagnetic indices since 1930s, OMNI data since 1960s, WSO data since mid-1970s and in Ulysses probe measurements during the fast latitude scans in 1994-1995 and 2007. Here we study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet since 1975 using synoptic maps from six observatories (WSO, MWO, Kitt Peak, SOLIS, SOHO/MDI and SDO/HMI). All data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, and agree on the southward shift of the heliospheric current sheet during all the five included cycles. We show that during solar cycles 20 -- 22, the southward shift of the HCS is due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is, again, due to the axial quadrupole, repeating the pattern of most previous cycles.
Integrated groundwater data management
Fitch, Peter; Brodaric, Boyan; Stenson, Matt; Booth, Nathaniel; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew
2016-01-01
The goal of a data manager is to ensure that data is safely stored, adequately described, discoverable and easily accessible. However, to keep pace with the evolution of groundwater studies in the last decade, the associated data and data management requirements have changed significantly. In particular, there is a growing recognition that management questions cannot be adequately answered by single discipline studies. This has led a push towards the paradigm of integrated modeling, where diverse parts of the hydrological cycle and its human connections are included. This chapter describes groundwater data management practices, and reviews the current state of the art with enterprise groundwater database management systems. It also includes discussion on commonly used data management models, detailing typical data management lifecycles. We discuss the growing use of web services and open standards such as GWML and WaterML2.0 to exchange groundwater information and knowledge, and the need for national data networks. We also discuss cross-jurisdictional interoperability issues, based on our experience sharing groundwater data across the US/Canadian border. Lastly, we present some future trends relating to groundwater data management.
Electrochemical and thermodynamic studies of the electrode materials for lithium ion batteries
NASA Astrophysics Data System (ADS)
Bang, Hyun Joo
A series of graphite samples were tested for their electrochemical performance as anode material for lithium ion cells. Specially treated natural graphite samples showed good reversible capacities and relatively small irreversible capacity losses. The good performance of these samples can be explained by the low surface area associated with the rounded edges and absence of exfoliation due to the presence of the rhombohedral phase and defects in the grain boundaries. Graphitized cokes showed larger irreversible capacity losses while mesophase carbons showed lower reversible capacity. The treated natural graphite samples, especially LBG25 were found to be high performance, low cost anode materials for the lithium ion cells. The electrochemical and thermal behaviors of the spinels---LiMn 2O4, LiCo1/6Mn11/6O4, LiFe 1/6Mn11/6O4, and LiNi1/6Mn11/6 O4 were studied using electrochemical and thermochemical techniques. The electrochemical techniques included cyclic voltammetry, charge/discharge cycling of 2016 coin cells and diffusion coefficient measurements using Galvanostatic Intermittent Titration Technique. Better capacity retention(GITT) was observed for the substituted spinels (0.11% loss/cycle for LiCo1/6Mn 11/6O4; 0.3% loss/cycle for LiFe1/6Mn11/6 O4; and 0.2% loss/cycle for LiNi1/6Mn11/6 O4) than for the lithium manganese dioxide spinel (1.6% loss/cycle for first 10 cycles, 0.9% loss/cycle for 33 cycles) during 33 cycles. The Differential Scanning Calorimetry (DSC) results showed that the cobalt substituted spinel has better thermal stability than the lithium manganese oxide and other substituted spinels. The thermal profile of LiMn2O4 and LiAl0.17 Mn1.83O3.97S0.03 was measured in an isothermal micro-calorimeter. The heat contributions are discussed in terms of reversible and irreversible heat generation, in combination with the entropy change directly obtained by the dE/dT measurements and the over-potential measurements. The endothermic and exothermic heat profiles observed during the charge and discharge processes are related to the Li insertion/extraction reaction in the spinel host structure for both materials. The reversible heat generation due to the lithium insertion/extraction reaction in the host electrode is estimated on the basis of the cell entropy change. The heat generation calculated from DeltaS and the open circuit potential results is consistent with the heat profile (exothermic/endothermic) generated during the charge/discharge process and with the magnitude of the heat generation from the experimental results obtained from the IMC at a slow charge/discharge rate. The irreversible heat generation dependence on the current rate is discussed at different discharge rates.
NASA Astrophysics Data System (ADS)
Virtanen, Ilpo; Mursula, Kalevi
2016-06-01
Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.
NASA Technical Reports Server (NTRS)
Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)
1988-01-01
The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.
NASA Technical Reports Server (NTRS)
Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.
1994-01-01
A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.
The Path of Carbon in Photosynthesis XX. The Steady State
DOE R&D Accomplishments Database
Calvin, M.; Massini, Peter
1952-09-01
The separation of the phenomenon of photosynthesis in green plants into a photochemical reaction and into the light-dependent reduction of carbon dioxide is discussed, The reduction of carbon dioxide and the fate of the assimilated carbon were investigated with the help of the tracer technique (exposure of the planks to the radioactive C{sup 14}O{sub 2}) and of paper chromatography. A reaction cycle is proposed in which phosphoglyceric acid is the first isolable assimilations product. Analyses of the algal extracts which had assimilated radioactive carbon dioxide in a stationary condition ('steady-state' photosynthesis) for a long time provided further information concerning the proposed cycle and permitted the approximate estimation, for a number of compounds of what fraction of each compound was taking part in the cycle. The earlier supposition that light influences the respiration cycle was confirmed. The possibility of the assistance of {alpha}-lipoic acid, or of a related substance, in this influence and in the photosynthesis cycle, is discussed.
Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht
2016-07-01
Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
...) matching grant for the 2011 grant cycle (the 2011 grant cycle runs January 1, 2011, through December 31.... Based on the findings of this assessment, for the 2011 grant cycle, the LITC Program Office is... currently receiving a grant for the 2010 grant cycle, or (2) organizations servicing the following counties...
NASA Astrophysics Data System (ADS)
Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN
2018-05-01
For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.
Watanabe, M; Ortega, E; Bergier, I; Silva, J S V
2012-08-01
The increasing human demand for food, raw material and energy has radically modified both the landscape and biogeochemical cycles in many river basins in the world. The interference of human activities on the Biosphere is so significant that it has doubled the amount of reactive nitrogen due to industrial fertiliser production (Haber-Bosch), fossil fuel burning and land-use change over the last century. In this context, the Brazilian La Plata Basin contributes to the alteration of the nitrogen cycle in South America because of its huge agricultural and grazing area that meets the demands of its large urban centres - Sao Paulo, for instance - and also external markets abroad. In this paper, we estimate the current inputs and outputs of anthropogenic nitrogen (in kg N.km(-2).yr(-1)) in the basin. In the results, we observe that soybean plays a very important role in the Brazilian La Plata, since it contributes with an annual entrance of about 1.8 TgN due to biological nitrogen fixation. Moreover, our estimate indicates that the export of soybean products accounts for roughly 1.0 TgN which is greater than the annual nitrogen riverine exports from Brazilian Parana, Paraguay and Uruguay rivers together. Complimentarily, we built future scenarios representing changes in the nitrogen cycle profile considering two scenarios of climate change for 2070-2100 (based on IPCC's A2 and B2) that will affect land-use, nitrogen inputs, and loss of such nutrients in the basin. Finally, we discuss how both scenarios will affect human well-being since there is a connection between nitrogen cycle and ecosystem services that affect local and global populations, such as food and fibre production and climate regulation.
Seasonal cycle of the Canary Current.
NASA Astrophysics Data System (ADS)
Vélez-Belchí, P.; Hernandez-Guerra, A.; Pérez-Hernández, M. D.
2015-12-01
The Atlantic meridional overturning circulation (AMOC) is recognized as an important component of the climate system, contributing to the relatively mild climate of northwest Europe. Due to its importance, the strength of the AMOC is continually monitored along 26ºN with several moorings east of the Bahamas, in the Middle Atlantic Ridge and south of the Canary islands, known as the RAPID array. The measurements of the RAPID array show a 6 Sv seasonal cycle for the AMOC, and recent studies have pointed out the dynamics of the eastern Atlantic as the main driver for this seasonal cycle, specifically, rossby waves excited south of the Canary Islands. Due to the important role of the eastern Atlantic, in this study we describe the seasonal cycle of the Canary Current (CC) and the Canary Upwelling Current (CUC) using hydrographic data from two cruises carried out in a box around the Canary Islands, the region where the eastern component of the RAPID array is placed. CTD, VMADCP and LADCP data were combined with inverse modeling in order to determine absolute geostrophic transports in the Canary Islands region in fall and spring. During spring, the overall transport of Canary Current and the CUC was southward. In the Lanzarote Passage (LP), between the Canary Islands and Africa, the CUC transported 0.6±0.20 Sv southward, while the Canary Current transported 1.0±0.40 Sv in the oceanic waters of the Canary Islands Archipelago. During fall, the CUC transported 2.8±0.4Sv northward, while the CC transported 2.9±0.60 Sv southward in the oceanic waters of the Canary Islands Archipelago. The seasonal cycle observed has an amplitude of 3.4Sv for the CUC and 1.9Sv for the CC. Data from a mooring in the LP and the hydrographic data was used to calibrate geostrophic transport estimated using altimetry data. The amplitude of the seasonal cycle of the geostrophic transport obtained using the calibrated altimetry data (Figure 1) was quite similar to the seasonal cycle of the Eastern Atlantic contribution to the AMOC, as measured by the RAPID array. To understand the relationship between the seasonal cycle found in the CC and CUC, and the amplitude of the seasonal cycle of the AMOC transport associated with Rossby waves, a sensitivity study of the Rossby wave model is included.
NASA Astrophysics Data System (ADS)
Cook, Stephen; Hueter, Uwe
2003-08-01
NASA's Integrated Space Transportation Plan (ISTP) calls for investments in Space Shuttle safety upgrades, second generation Reusable Launch Vehicle (RLV) advanced development and third generation RLV and in-space research and technology. NASA's third generation launch systems are to be fully reusable and operation by 2025. The goals for third generation launch systems are to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current systems. The Advanced Space Transportation Program Office (ASTP) at NASA's Marshall Space Flight Center in Huntsville, AL has the agency lead to develop third generation space transportation technologies. The Hypersonics Investment Area, part of ASTP, is developing the third generation launch vehicle technologies in two main areas, propulsion and airframes. The program's major investment is in hypersonic airbreathing propulsion since it offers the greatest potential for meeting the third generation launch vehicles. The program will mature the technologies in three key propulsion areas, scramjets, rocket-based combined cycle and turbine-based combination cycle. Ground and flight propulsion tests are being planned for the propulsion technologies. Airframe technologies will be matured primarily through ground testing. This paper describes NASA's activities in hypersonics. Current programs, accomplishments, future plans and technologies that are being pursued by the Hypersonics Investment Area under the Advanced Space Transportation Program Office will be discussed.
Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb
2016-01-27
We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.
NASA Astrophysics Data System (ADS)
Park, Jin-Sung; Cho, Jung Sang; Kang, Yun Chan
2018-03-01
Closely in line with advances in next-generation energy storage materials, anode materials for lithium-ion batteries (LIBs) with high capacity and long cycle life have been widely explored. As part of the current effort, nickel molybdate (NiMoO4) microspheres with empty nanovoids are synthesized via spray drying process and subsequent one-step calcination in air. Dextrin in the atomized droplet is phase segregated during the spray drying process and calcined in air atmosphere, resulting in numerous empty nanovoids well-distributed within a microsphere. The empty nanovoids alleviate volume expansion during cycling, shorten lithium-ion diffusion length, and facilitate contact between electrode and electrolyte materials. Along with the high discharge capacity of NiMoO4 material, as high as 1240 mA h g-1 for the 2nd cycle at a high current density of 1 A g-1, uniquity of the structure enables longer cycle life and higher quality performances. The discharge capacity corresponding to the 500th cycle is 1020 mA h g-1 and the capacity retention calculated from the 2nd cycle is 82%. In addition, a discharge capacity of 413 mA g-1 is obtained at an extremely high current density of 10 A g-1.
20 CFR 667.825 - What special rules apply to reviews of NFJP and WIA INA grant selections?
Code of Federal Regulations, 2010 CFR
2010-04-01
... current grant cycle. Neither retroactive nor immediately effective selection status may be awarded as... have not been expended by the current grantee through its operation of the grant and its subsequent... the immediately subsequent two-year grant cycle. In such a situation, we will not issue a waiver of...
26 CFR 1.993-2 - Definition of qualified export assets.
Code of Federal Regulations, 2010 CFR
2010-04-01
... within the current normal operating cycle of the trade or business of the DISC whose satisfaction when... current normal operating cycle of the trade or business of the DISC, an amount reasonably needed to meet... corporation are— (1) Export property as defined in § 1.993-3 (see paragraph (b) of this section), (2) Business...
Counter-current acid leaching process for copper azole treated wood waste.
Janin, Amélie; Riche, Pauline; Blais, Jean-François; Mercier, Guy; Cooper, Paul; Morris, Paul
2012-09-01
This study explores the performance of a counter-current leaching process (CCLP) for copper extraction from copper azole treated wood waste for recycling of wood and copper. The leaching process uses three acid leaching steps with 0.1 M H2SO4 at 75degrees C and 15% slurry density followed by three rinses with water. Copper is recovered from the leachate using electrodeposition at 5 amperes (A) for 75 min. Ten counter-current remediation cycles were completed achieving > or = 94% copper extraction from the wood during the 10 cycles; 80-90% of the copper was recovered from the extract solution by electrodeposition. The counter-current leaching process reduced acid consumption by 86% and effluent discharge volume was 12 times lower compared with the same process without use of counter-current leaching. However, the reuse of leachates from one leaching step to another released dissolved organic carbon and caused its build-up in the early cycles.
ERIC Educational Resources Information Center
Alberta Dept. of Education, Edmonton. Language Services Branch.
Intended to aid teachers in charge of implementing drama programs, this guide (in French) is to be employed in conjunction with the "1992 Second Cycle Secondary Drama Program of Studies" (Alberta, Canada). The guide's sections are as follows: (1) Introduction; (2) L'Adolescent; (3) Securite (discussing both emotional and physical…
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2012 CFR
2012-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2012-01-01 2012-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2011 CFR
2011-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2011-01-01 2011-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2014 CFR
2014-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2014-01-01 2014-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
10 CFR 51.51 - Uranium fuel cycle environmental data-Table S-3.
Code of Federal Regulations, 2013 CFR
2013-01-01
... a discussion of the environmental significance of the data set forth in the table as weighed in the... 10 Energy 2 2013-01-01 2013-01-01 false Uranium fuel cycle environmental data-Table S-3. 51.51... cycle environmental data—Table S-3. (a) Under § 51.50, every environmental report prepared for the...
NASA Astrophysics Data System (ADS)
Vélez-Belchí, Pedro; Pérez-Hernández, M. Dolores; Casanova-Masjoan, María.; Cana, Luis; Hernández-Guerra, Alonso
2017-06-01
The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of -4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.
Massive binaries in R136 using Hubble
NASA Astrophysics Data System (ADS)
Caballero-Nieves, Saida; Crowther, Paul; Bostroem, K. Azalee; Maíz Apellániz, Jesus
2014-09-01
We have undertaken a complete HST/STIS spectroscopic survey of R136, the young, central dense starburst cluster of the LMC 30 Doradus nebula, which hosts the most massive stars currently known. Our CCD datasets, comprising 17 adjacent 0.2"×52" long slits, were split across Cycles 19 and 20 to allow us to search for spectroscopic binaries. We will present the results of our survey, including a comparison with the massive-star population in the wider 30 Doradus region from the VLT Flames Tarantula survey. We will also describe upcoming HST/FGS observations, which will probe intermediate-separation binaries in R136, and discuss this cluster in the context of unresolved young extragalactic star clusters.
Biotechnological Aspects of Microbial Extracellular Electron Transfer
Kato, Souichiro
2015-01-01
Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to global energy and material cycles. In this review, current knowledge on microbial EET and its application to diverse biotechnologies, including the bioremediation of toxic metals, recovery of useful metals, biocorrosion, and microbial electrochemical systems (microbial fuel cells and microbial electrosynthesis), were introduced. Two potential biotechnologies based on microbial EET, namely the electrochemical control of microbial metabolism and electrochemical stimulation of microbial symbiotic reactions (electric syntrophy), were also discussed. PMID:26004795
Bimodal Nuclear Thermal Rocket Analysis Developments
NASA Technical Reports Server (NTRS)
Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark
2014-01-01
Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.
Operational and theoretical temperature considerations in a Penning surface plasma source
NASA Astrophysics Data System (ADS)
Faircloth, D. C.; Lawrie, S. R.; Pereira Da Costa, H.; Dudnikov, V.
2015-04-01
A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.
Low-power wireless medical sensor platform.
Dolgov, Arseny B; Zane, Regan
2006-01-01
Long-term, low duty cycle monitoring of patients with a variety of disabilities or health concerns is often required. In this paper, we discuss the design considerations and implementation of an ultra-low power wireless medical sensor platform, suitable for a wide range of medical and sports applications. A hardware demonstration prototype based on readily available components is presented with sensors for 3-axis acceleration, temperature and galvanic skin response. Detailed power measurements and operation results are shown, demonstrating a sensor life span of more than 10 years on a single 200 mAh lithium watch battery using low current standby techniques with an average power of less than 5 muW and a 10 second sample interval.
The suppression of apoptosis by α-herpesvirus
You, Yu; Cheng, An-Chun; Wang, Ming-Shu; Jia, Ren-Yong; Sun, Kun-Feng; Yang, Qiao; Wu, Ying; Zhu, Dekang; Chen, Shun; Liu, Ma-Feng; Zhao, Xin-Xin; Chen, Xiao-Yue
2017-01-01
Apoptosis, an important innate immune mechanism that eliminates pathogen-infected cells, is primarily triggered by two signalling pathways: the death receptor pathway and the mitochondria-mediated pathway. However, many viruses have evolved various strategies to suppress apoptosis by encoding anti-apoptotic factors or regulating apoptotic signalling pathways, which promote viral propagation and evasion of the host defence. During its life cycle, α-herpesvirus utilizes an elegant multifarious anti-apoptotic strategy to suppress programmed cell death. This progress article primarily focuses on the current understanding of the apoptosis-inhibition mechanisms of α-herpesvirus anti-apoptotic genes and their expression products and discusses future directions, including how the anti-apoptotic function of herpesvirus could be targeted therapeutically. PMID:28406478
Fracture mechanics and corrosion fatigue.
NASA Technical Reports Server (NTRS)
Mcevily, A. J.; Wei, R. P.
1972-01-01
Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.
Emerging anti-insomnia drugs: tackling sleeplessness and the quality of wake time.
Wafford, Keith A; Ebert, Bjarke
2008-06-01
Sleep is essential for our physical and mental well being. However, when novel hypnotic drugs are developed, the focus tends to be on the marginal and statistically significant increase in minutes slept during the night instead of the effects on the quality of wakefulness. Recent research on the mechanisms underlying sleep and the control of the sleep-wake cycle has the potential to aid the development of novel hypnotic drugs; however, this potential has not yet been realized. Here, we review the current understanding of how hypnotic drugs act, and discuss how new, more effective drugs and treatment strategies for insomnia might be achieved by taking into consideration the daytime consequences of disrupted sleep.
Disturbance, life history, and optimal management for biodiversity
Guo, Q.
2003-01-01
Both frequency and intensity of disturbances in many ecosystems have been greatly enhanced by increasing human activities. As a consequence, the short-lived plant species including many exotics might have been dramatically increased in term of both richness and abundance on our planet while many long-lived species might have been lost. Such conclusions can be drawn from broadly observed successional cycles in both theoretical and empirical studies. This article discusses two major issues that have been largely overlooked in current ecosystem management policies and conservation efforts, i.e., life history constraints and future global warming trends. It also addresses the importance of these two factors in balancing disturbance frequency and intensity for optimal biodiversity maintenance and ecosystem management.