Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impactmore » statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.« less
LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE BGU-24
The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyrotechnic (PEP) materials of interest to the U.S. Department of Defense (DoD)...
LIFE-CYCLE IMPACT ASSESSMENT DEMONSTRATION FOR THE GBU-24
The primary goal of this project was to develop and demonstrate a life-cycle impact assessment (LCIA) approach using existing life-cycle inventory (LCI) data on one of the propellants, energetics, and pyro-technic (PEP) materials of interest to the U.S. Department of Defense (DoD...
Wabash River coal gasification repowering project -- first year operation experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troxclair, E.J.; Stultz, J.
1997-12-31
The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less
Development Activities on Airbreathing Combined Cycle Engines
NASA Technical Reports Server (NTRS)
McArthur, J. Craig; Lyles, Garry (Technical Monitor)
2000-01-01
Contents include the following: Advanced reusable transportation(ART); aerojet and rocketdyne tests, RBCC focused concept flowpaths,fabricate flight weigh, test select components, document ART project, Istar (Integrated system test of an airbreathing rocket); combined cycle propulsion testbed;hydrocarbon demonstrator tracebility; Istar engine system and vehicle system closure study; and Istar project planning.
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS PROFILES OF AT&T AND ALLIED SIGNAL
Life cycle design seeks to minimize the environmental burden associated with a product life cycle from raw materials acquisition through manufacturing, use, and end-of-life management. ife cycle design emphasizes integrating environmental requirements into the earliest phases of ...
LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS - PROFILES OF AT&T AND ALLIED SIGNAL
This document offers guidance and practical experience for integrating environmental considerations into product system development. Life cycle design seeks to minimize the environmental burden associated with a product's life cycle from raw materials acquisition through manufact...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Ratcliffe, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Plant Ratcliffe, an Integrated Gasification Combined-Cycle Facility located in Kemper County... Company (MPCo), and will demonstrate the feasibility of the Integrated Gasification Combined-Cycle (IGCC...
Review of Literature on Environmentally Conscious Design.
1995-12-01
framework for a demonstration project for a business phone (Keoleian, et al.). Pitney Bowes has developed a framework for implementing a Design for... developed for the U. S. EPA by the principle author and the University of Michigan, was used as a framework for this demonstration project for an...AT&T business phone. The purpose of the project was to explore the feasibility and applicability of the life cycle design framework
LIFE CYCLE DESIGN OF MILK AND JUICE PACKAGING
A life cycle design demonstration project was initiated between the U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Dow Chemical Company, and the University of Michigan to investigate milk and juice packagie design. The primary objective of ...
Energy survey study and report of hospitals in Chicago: South Suburban Hospital: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
This study is part of a three-phased demonstration project to reduce energy consumption in hospitals through practical life-cycle/cost-effective modifications and alteration. Funds for the demonstration project are provided by the American Hospital Association (AHA), the Department of Energy (DOE), and the Department of Health and Human Services (DHHS). A thorough study and evaluation of all building systems is made to identify opportunities for reduction in energy consumption and to determine the most cost effective approaches to energy conservation. The primary objective of the study is to investigate and analyze energy usage of the facility and to identify all life cycle,more » cost-effective changes required to effect a reduction in energy consumption. For the purpose of economic evaluation of the energy conservation projects identified, life-cycle cost and simple payback periods are used. Energy conservation measures with simple payback periods exceeding five years were dismissed from further detailed study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
This study is part of a three-phased demonstration project to reduce energy consumption in hospitals through practical life-cycle, cost-effective modifications and alterations. Funds for the demonstration project are provided by the American Hospital Association (AHA), the Department of Energy (DOE), and the Department of Health and Human Services (DHHS). Two hospitals in Michigan were selected for the project, Bay Medical Center in Bay City and St. Mary's Hospital in Grand Rapids. The objectives of this study, which is funded by HHS, are to investigate and analyze energy usage of the facilities and to identify all life-cycle, cost-effective changes required tomore » effect a reduction in energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
This study is part of a three-phased demonstration project to reduce energy consumption in hospitals through practical life-cycle, cost-effective modifications and alterations. Funds for the demonstration project are provided by the American Hospital Association (AHA), the Department of Energy (DOE), and the Department of Health and Human Services (DHHS). Two hospitals in Michigan were selected for the project, Bay Medical Center in Bay City and St. Mary's Hospital in Ground Rapids. The objectives of this study, which is funded by HHS, are to investigate and analyze energy usage of the facilities and to identify all life-cycle, cost-effective changes required tomore » effect a reduction in energy consumption.« less
An Interprofessional Collaborative Practice model for preparation of clinical educators.
Scarvell, Jennie M; Stone, Judy
2010-07-01
Work-integrated learning is essential to health professional education, but faces increasing academic and industry resource pressures. The aim of this pilot "Professional Practice Project" was to develop and implement an innovative education intervention for clinical educators across several health disciplines. The project used interprofessional collaboration as its underlying philosophy, and a participatory action research methodology in four cycles: Cycle 1: Formation of an interprofessional project executive and working party from academic staff. Data collection of student insights into work integrated learning. Cycle 2: Formation of an interprofessional reference group to inform curriculum development for a series of clinical education workshops. Cycle 3: Delivery of workshops; 174 clinical educators, supervisors and preceptors attended two workshops: "Introduction to experiential learning" and " utilizing available resources for learning". Cycle 4: Seminar discussion of the Professional Practice Project at a national health-education conference. This pilot project demonstrated the advantages of using collaborative synergies to allow innovation around clinical education, free from the constraints of traditional discipline-specific education models. The planning, delivery and evaluation of clinical education workshops describe the benefits of interprofessional collaboration through enhanced creative thinking, sharing of clinical education models and a broadening of experience for both learners and facilitators.
DOT National Transportation Integrated Search
2011-12-20
This report presents the results of the successful ethanol fuel demonstration program conducted from September 2007 to September 2010. This project was a part of the U.S. Department of Transportation (DOT) Alternative Fuels and Life Cycle Engineering...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrocco, M.
The Ohio Power Company`s Tidd Pressurized Fluidized Bed Combined Cycle (PFBC) program continues to be the only operating PFBC demonstration program in the nation. The 70 MWe Tidd Demonstration Plant is a Round 1 Clean Coal Technology Project constructed to demonstrate the viability of PFBC combined cycle technology. The plant is now in Rs fourth year of operation. The technology has clearly demonstrated Rs ability to achieve sulfur capture of greater than 95%. The calcium to sulfur molar ratios have been demonstrated to exceed original projections. Unit availability has steadily increased and has been demonstrated to be competitive with othermore » technologies. The operating experience of the first forty-four months of testing has moved the PFBC process from a {open_quotes}promising technology{close_quotes} to available, proven option for efficient, environmentally acceptable base load generation. Funding for the $210 million program is provided by Ohio Power Company, The U.S. Department of Energy, The Ohio Coal Development Office, and the PFBC process vendors - Asea Brown Boveri Carbon (ABBC) and Babcock and Wilcox (B&W).« less
2 kWe Solar Dynamic Ground Test Demonstration Project. Volume 1; Executive Summary
NASA Technical Reports Server (NTRS)
Alexander, Dennis
1997-01-01
The Solar Dynamic Ground Test Demonstration (SDGTD) successfully demonstrated a solar-powered closed Brayton cycle system in a relevant space thermal environment. In addition to meeting technical requirements the project was completed 4 months ahead of schedule and under budget. The following conclusions can be supported: 1. The component technology for solar dynamic closed Brayton cycle technology has clearly been demonstrated. 2. The thermal, optical, control, and electrical integration aspects of systems integration have also been successfully demonstrated. Physical integration aspects were not attempted as these tend to be driven primarily by mission-specific requirements. 3. System efficiency of greater than 15 percent (all losses fully accounted for) was demonstrated using equipment and designs which were not optimized. Some preexisting hardware was used to minimize cost and schedule. 4. Power generation of 2 kWe. 5. A NASA/industry team was developed that successfully worked together to accomplish project goals. The material presented in this report will show that the technology necessary to design and fabricate solar dynamic electrical power systems for space has been successfully developed and demonstrated. The data will further show that achieved results compare well with pretest predictions. The next step in the development of solar dynamic space power will be a flight test.
Pipeline bottoming cycle study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-06-01
The technical and economic feasibility of applying bottoming cycles to the prime movers that drive the compressors of natural gas pipelines was studied. These bottoming cycles convert some of the waste heat from the exhaust gas of the prime movers into shaft power and conserve gas. Three typical compressor station sites were selected, each on a different pipeline. Although the prime movers were different, they were similar enough in exhaust gas flow rate and temperature that a single bottoming cycle system could be designed, with some modifications, for all three sites. Preliminary design included selection of the bottoming cycle workingmore » fluid, optimization of the cycle, and design of the components, such as turbine, vapor generator and condensers. Installation drawings were made and hardware and installation costs were estimated. The results of the economic assessment of retrofitting bottoming cycle systems on the three selected sites indicated that profitability was strongly dependent upon the site-specific installation costs, how the energy was used and the yearly utilization of the apparatus. The study indicated that the bottoming cycles are a competitive investment alternative for certain applications for the pipeline industry. Bottoming cycles are technically feasible. It was concluded that proper design and operating practices would reduce the environmental and safety hazards to acceptable levels. The amount of gas that could be saved through the year 2000 by the adoption of bottoming cycles for two different supply projections was estimated as from 0.296 trillion ft/sup 3/ for a low supply projection to 0.734 trillion ft/sup 3/ for a high supply projection. The potential market for bottoming cycle equipment for the two supply projections varied from 170 to 500 units of varying size. Finally, a demonstration program plan was developed.« less
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
Medium- and Heavy-Duty Vehicle Duty Cycles for Electric Powertrains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth; Bennion, Kevin; Miller, Eric
2016-03-02
NREL's Fleet Test and Evaluation group has extensive in-use vehicle data demonstrating the importance of understanding the vocational duty cycle for appropriate sizing of electric vehicle (EV) and power electronics components for medium- and heavy-duty EV applications. This presentation includes an overview of recent EV fleet evaluation projects that have valuable in-use data that can be leveraged for sub-system research, analysis, and validation. Peak power and power distribution data from in-field EVs are presented for four different vocations, including class 3 delivery vans, class 6 delivery trucks, class 8 transit buses, and class 8 port drayage trucks, demonstrating the impactsmore » of duty cycle on performance requirements.« less
GEWEX America Prediction Project (GAPP) Science and Implementation Plan
NASA Technical Reports Server (NTRS)
2004-01-01
The purpose of this Science and Implementation Plan is to describe GAPP science objectives and the activities required to meet these objectives, both specifically for the near-term and more generally for the longer-term. The GEWEX Americas Prediction Project (GAPP) is part of the Global Energy and Water Cycle Experiment (GEWEX) initiative that is aimed at observing, understanding and modeling the hydrological cycle and energy fluxes at various time and spatial scales. The mission of GAPP is to demonstrate skill in predicting changes in water resources over intraseasonal-to-interannual time scales, as an integral part of the climate system.
Thermal Modeling and Testing of the Edison Demonstration of Smallsat Networks Project
NASA Technical Reports Server (NTRS)
Coker, Robert
2014-01-01
NASA's Edison program is intending to launch the Edison Demonstration of Smallsat Networks (EDSN) project, a swarm of 8 1.5U cubesats in the fall of 2014 to demonstrate intra-swarm communications and multi-point in situ space physics data acquisition. Due to late changes in the duty cycles of various components, potential overheating issues appeared. In addition, it was determined that capacity loss due to the coldness of the batteries was unacceptable, so mitigation was required. This paper will discuss the thermal modeling, testing, and results of the EDSN mission.
The scheme for evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Ternovykh, M. Yu; Fomichenko, P. A.; Gerasimov, A. S.
2017-01-01
The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of power. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. To solve the closed nuclear fuel modeling tasks REPRORYV code was developed. It simulates the mass flow for nuclides in the closed fuel cycle. This paper presents the results of modeling of a closed nuclear fuel cycle, nuclide flows considering the influence of the uncertainty on the outcome of neutron-physical characteristics of the reactor.
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Rapid Energy Modeling Workflow Demonstration Project
2014-01-01
Conditioning Engineers BIM Building Information Model BLCC building life cycle costs BPA Building Performance Analysis CAD computer assisted...invited to enroll in the Autodesk Building Performance Analysis ( BPA ) Certificate Program under a group 30 specifically for DoD installation
The Mesaba Energy Project: Clean Coal Power Initiative, Round 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Richard; Gray, Gordon; Evans, Robert
2014-07-31
The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a totalmore » of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.« less
Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Paul; Lindsay, Edward; McDowell, Michael
2015-04-23
AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.
RDD-100 and the systems engineering process
NASA Technical Reports Server (NTRS)
Averill, Robert D.
1994-01-01
An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.
32 CFR Appendix to Part 162 - Reporting Procedures
Code of Federal Regulations, 2014 CFR
2014-07-01
... generated. e. Projected Life-Cycle Savings. For each PIF project provide the estimated amount of savings the project is projected to earn over the project's economic life. f. Projected Life-Cycle Cost Avoidance. For... Projected Life-Cycle Savings. e. Total Projected Life-Cycle Cost Avoidance. 3. CSI. Each DoD Component that...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyler Gray; Jeremy Diez; Jeffrey Wishart
2013-07-01
The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration inmore » an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.« less
ERIC Educational Resources Information Center
Cochran, Effie Papatzikou; Collins, Carla
The Enrichment College Preparatory Program, an Elementary and Secondary Education Act, Title VII bilingual demonstration project at a Manhattan, New York City, high school, completed the final year of a two-year funding cycle in June 1983. The program, which provided cultural enrichment and advanced academic experiences to 160 intellectually…
Thermal Modeling in Support of the Edison Demonstration of Smallsat Networks Project
NASA Technical Reports Server (NTRS)
Coker, Robert
2013-01-01
NASA's Edison program is intending to launch a swarm of at least 8 small satellites in 2013. This swarm of 1.5U Cubesats, the Edison Demonstration of Smallsat Networks (EDSN) project, will demonstrate intra-swarm communications and multi-point in-situ space physics data acquisition. In support of the design and testing of the EDSN satellites, a geometrically accurate thermal model has been constructed. Due to the low duty cycle of most components, no significant overheating issues were found. The predicted mininum temperatures of the external antennas are low enough, however, that some mitigation may be in order. The development and application of the model will be discussed in detail.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions.
NASA Astrophysics Data System (ADS)
Coughlan, J. C.
2005-12-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle, human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future NASA missions.
NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions
NASA Technical Reports Server (NTRS)
Coughlan, Joseph C.
2005-01-01
The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.
Mississippi Basin Carbon Project science plan
Sundquist, E.T.; Stallard, R.F.; Bliss, N.B.; Markewich, H.W.; Harden, J.W.; Pavich, M.J.; Dean, M.D.
1998-01-01
Understanding the carbon cycle is one of the most difficult challenges facing scientists who study the global environment. Lack of understanding of global carbon cycling is perhaps best illustrated by our inability to balance the present-day global CO2 budget. The amount of CO2 produced by burning fossil fuels and by deforestation appears to exceed the amount accumulating in the atmosphere and oceans. The carbon needed to balance the CO2 budget (the so-called "missing" carbon) is probably absorbed by land plants and ultimately deposited in soils and sediments. Increasing evidence points toward the importance of these terrestrial processes in northern temperate latitudes. Thus, efforts to balance the global CO2 budget focus particular attention on terrestrial carbon uptake in our own North American "backyard."The USGS Mississippi Basin Carbon Project conducts research on the carbon budget in soils and sediments of the Mississippi River basin. The project focuses on the effects of land-use change on carbon storage and transport, nutrient cycles, and erosion and sedimentation throughout the Mississippi River Basin. Particular emphasis is placed on understanding the interactions among changes in erosion, sedimentation, and soil dynamics. The project includes spatial analysis of a wide variety of geographic data sets, estimation of whole-basin and sub-basin carbon and sediment budgets, development and implementation of terrestrial carbon-cycle models, and site-specific field studies of relevant processes. The USGS views this project as a "flagship" effort to demonstrate its capabilities to address the importance of the land surface to biogeochemical problems such as the global carbon budget.
Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.
Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre
2016-10-27
Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.
Investigation of welded interconnection of large area wraparound contacted silicon solar cells
NASA Technical Reports Server (NTRS)
Lott, D. R.
1984-01-01
An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Farner, B. R.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) cold-flow test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in November 2001. A total of 11 IPD OTP cold-flow tests were completed. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and the cold-flow testing of the IPD OTP. In addition, some of the facility challenges encountered during the test project are addressed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... Combined Cycle Project; Preliminary Staff Assessment and Draft Environmental Impact Statement AGENCY... Combined Cycle Project Preliminary Staff Assessment/Draft Environmental Impact Statement (PSA/DEIS) (DOE... Gasification Combined Cycle Project, which would be designed, constructed, and operated by HECA, LLC. HECA's...
CLOSED-CYCLE TEXTILE DYEING: FULL-SCALE HYPERFILTRATION DEMONSTRATION
The report gives results of a project of joining a full-scale dynamic-membrane hyperfiltration (HF) system with an operating dye range. (HF is a membrane separation technique that has been used successfully to desalinate natural water. The dye range is a multi-purpose unit with a...
Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring
NASA Technical Reports Server (NTRS)
Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.;
2016-01-01
In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.
Low-grade geothermal energy conversion by organic Rankine cycle turbine generator
NASA Astrophysics Data System (ADS)
Zarling, J. P.; Aspnes, J. D.
Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.
Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.
Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng
2018-01-01
To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.
How to Measure and Interpret Quality Improvement Data.
McQuillan, Rory Francis; Silver, Samuel Adam; Harel, Ziv; Weizman, Adam; Thomas, Alison; Bell, Chaim; Chertow, Glenn M; Chan, Christopher T; Nesrallah, Gihad
2016-05-06
This article will demonstrate how to conduct a quality improvement project using the change idea generated in "How To Use Quality Improvement Tools in Clinical Practice: How To Diagnose Solutions to a Quality of Care Problem" by Dr. Ziv Harel and colleagues in this Moving Points feature. This change idea involves the introduction of a nurse educator into a CKD clinic with a goal of increasing rates of patients performing dialysis independently at home (home hemodialysis or peritoneal dialysis). Using this example, we will illustrate a Plan-Do-Study-Act (PDSA) cycle in action and highlight the principles of rapid cycle change methodology. We will then discuss the selection of outcome, process, and balancing measures, and the practicalities of collecting these data in the clinic environment. We will also introduce the PDSA worksheet as a practical way to oversee the progress of a quality improvement project. Finally, we will demonstrate how run charts are used to visually illustrate improvement in real time, and how this information can be used to validate achievement, respond appropriately to challenges the project may encounter, and prove the significance of results. This article aims to provide readers with a clear and practical framework upon which to trial their own ideas for quality improvement in the clinical setting. Copyright © 2016 by the American Society of Nephrology.
NASA Technical Reports Server (NTRS)
Wolfson, R. G.; Sibley, C. B.
1978-01-01
The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.
NASA Astrophysics Data System (ADS)
Bottoms, SueAnn I.; Ciechanowski, Kathryn M.; Hartman, Brian
2015-12-01
Iterative cycles of enactment embedded in culturally and linguistically diverse contexts provide rich opportunities for preservice teachers (PSTs) to enact core practices of science. This study is situated in the larger Families Involved in Sociocultural Teaching and Science, Technology, Engineering and Mathematics (FIESTAS) project, which weaves together cycles of enactment, core practices in science education and culturally relevant pedagogies. The theoretical foundation draws upon situated learning theory and communities of practice. Using video analysis by PSTs and course artifacts, the authors studied how the iterative process of these cycles guided PSTs development as teachers of elementary science. Findings demonstrate how PSTs were drawing on resources to inform practice, purposefully noticing their practice, renegotiating their roles in teaching, and reconsidering "professional blindness" through cultural practice.
Satellite-based products for forest fire prevention and recovery: the PREFER experience
NASA Astrophysics Data System (ADS)
Laneve, Giovanni; Bernini, Guido; Fusilli, Lorenzo; Marzialetti, Pablo
2016-08-01
PREFER is a three years projects funded in 2012 in the framework of the FP7 Emergency call. The project objective was to set up a space-based service infrastructure and up-to-date cartographic products, based on remote sensing data, to support the preparedness, prevention, recovery and reconstruction phases of the Forest Fires emergency cycle in the European Mediterranean Region. The products of PREFER were tested and evaluated during the training and the demonstration period of the project, which coincided with the forest fire season of 2015. The products were tested using the online PREFER service and the tests were linked to the pilot areas of the project which are Minho (Portugal), Messenia (Greece), Andalucía (Spain), Sardinia (Italy) and Corse (France). Testing was performed by members of the User Advisory Board (UAB) starting from the training event organized in Coimbra, Portugal in June 2015. The tests continued till the end of the fire season (October 2015) and the end users were provided with updated information for the areas of interest during the entire demonstration period. Due to data availability restrictions (in particular to ancillary required data) not all products were available for testing in all the test areas. However all the PREFER products were tested at least in one pilot area and in cooperation with at least one end user organization. It has to be mentioned that beyond the product suitability and usefulness to the end users the tests included evaluation of the usability of the web-based service of PREFER and the respective quality of service provided. This paper aims at presenting the results of the demonstration activity, the lessons learned and ideas for further enhancement of the developed products devoted to support prevention and recovery phases of the wildfire cycle.
Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.
ERIC Educational Resources Information Center
Vick, James E.
These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…
Modular Biopower System Providing Combined Heat and Power for DoD Installations
2013-12-01
Cycle Cost evaluation using the experimental results of the 6-month field demonstration and the system’s projected cost and performance for the...34 5.6 SAMPLING RESULTS ...premises, which resulted in a significant program delay. After a short period of operation, the custom-designed engine developed mechanical
Life-Cycle Assessment of Cookstove Fuels in India and China ...
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs
NASA Astrophysics Data System (ADS)
Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.
2014-12-01
The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shonder, John A; Hughes, Patrick; Atkin, Erica
2006-11-01
A study was sponsored by FEMP in 2001 - 2002 to develop methods to compare life-cycle costs of federal energy conservation projects carried out through energy savings performance contracts (ESPCs) and projects that are directly funded by appropriations. The study described in this report follows up on the original work, taking advantage of new pricing data on equipment and on $500 million worth of Super ESPC projects awarded since the end of FY 2001. The methods developed to compare life-cycle costs of ESPCs and directly funded energy projects are based on the following tasks: (1) Verify the parity of equipmentmore » prices in ESPC vs. directly funded projects; (2) Develop a representative energy conservation project; (3) Determine representative cycle times for both ESPCs and appropriations-funded projects; (4) Model the representative energy project implemented through an ESPC and through appropriations funding; and (5) Calculate the life-cycle costs for each project.« less
Systems Engineering Provides Successful High Temperature Steam Electrolysis Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles V. Park; Emmanuel Ohene Opare, Jr.
2011-06-01
This paper describes two Systems Engineering Studies completed at the Idaho National Laboratory (INL) to support development of the High Temperature Stream Electrolysis (HTSE) process. HTSE produces hydrogen from water using nuclear power and was selected by the Department of Energy (DOE) for integration with the Next Generation Nuclear Plant (NGNP). The first study was a reliability, availability and maintainability (RAM) analysis to identify critical areas for technology development based on available information regarding expected component performance. An HTSE process baseline flowsheet at commercial scale was used as a basis. The NGNP project also established a process and capability tomore » perform future RAM analyses. The analysis identified which components had the greatest impact on HTSE process availability and indicated that the HTSE process could achieve over 90% availability. The second study developed a series of life-cycle cost estimates for the various scale-ups required to demonstrate the HTSE process. Both studies were useful in identifying near- and long-term efforts necessary for successful HTSE process deployment. The size of demonstrations to support scale-up was refined, which is essential to estimate near- and long-term cost and schedule. The life-cycle funding profile, with high-level allocations, was identified as the program transitions from experiment scale R&D to engineering scale demonstration.« less
Analyzing Real-World Light Duty Vehicle Efficiency Benefits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, Jeffrey; Wood, Eric; Chaney, Larry
Off-cycle technologies represent an important pathway to achieve real-world fuel savings, through which OEMs can potentially receive credit toward CAFE compliance. DOE national labs such as NREL are well positioned to provide objective input on these technologies using large, national data sets in conjunction with OEM- and technology-specific testing. This project demonstrates an approach that combines vehicle testing (dynamometer and on-road) with powertrain modeling and simulation over large, representative datasets to quantify real-world fuel economy. The approach can be applied to specific off-cycle technologies (engine encapsulation, start/stop, connected vehicle, etc.) in A/B comparisons to support calculation of realistic real-world impacts.more » Future work will focus on testing-based A/B technology comparisons that demonstrate the significance of this approach.« less
Research on the application of BIM technology in the whole life cycle of construction projects
NASA Astrophysics Data System (ADS)
Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE
2018-05-01
BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.
Thabrew, Lanka; Ries, Robert
2009-07-01
Development planning and implementation is a multifaceted and multiscale task mainly because of the involvement of multiple stakeholders across sectors and disciplines. Even though top-down sectoral planning is commonly practiced, bottom-up cross-sectoral planning involving all relevant stakeholders in a transdisciplinary learning environment has been recognized as a better option, especially if the goal is to drive development projects toward sustainable implementation (Rowe and Fudge 2003; Müller et al. 2005; Global Development Research Center 2008). Even though many planning approaches have this goal, there are limited decision frameworks that are suitable for achieving consensus among stakeholders from multiple disciplines with sectoral objectives and priorities. In most instances, the upstream and downstream effects of development decisions are not thoroughly investigated or communicated with the relevant stakeholders, strongly affecting cross-sectoral integration in the real world (Wiek, Brundiers, et al. 2006). This article presents methodological aspects of developing a stakeholder based life cycle assessment framework (SBLCA) for upstream-downstream decision analysis in a multistakeholder development planning context. The applicability of the framework is demonstrated using simple examples extracted from a pilot case study conducted in Sri Lanka for sustainable posttsunami reconstruction at a village scale. The applicability of SBLCA in specific planning stages, how it promotes transdisciplinary learning and cross-sectoral stakeholder integration in phases of project cycles, and how local stakeholders can practice life cycle thinking in their village development planning and implementation are discussed.
Khodyakov, Dmitry; Stockdale, Susan; Jones, Felica; Ohito, Elizabeth; Jones, Andrea; Lizaola, Elizabeth; Mango, Joseph
2011-01-01
Mental health research projects address sensitive issues for vulnerable populations and are implemented in complex environments. Community-Based Participatory Research approaches are recommended for health research on vulnerable populations, but little is known about how variation in participation affects outcomes of partnered research projects. We developed a conceptual model demonstrating the impact of community engagement in research on outcomes of partnered projects. We collected data on key constructs from community and academic leaders of 21 sampled partnered research projects in two cycles of an NIMH research center. We conducted empirical analyses to test the model. Our findings suggest that community engagement in research is positively associated with perceived professional development, as well as political and community impact. PMID:22582144
Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millard, W. David; Johnson, Daniel M.; Henderson, John M.
2014-07-28
Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedbackmore » during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.« less
The NASA ASTP Combined-Cycle Propulsion Database Project
NASA Technical Reports Server (NTRS)
Hyde, Eric H.; Escher, Daric W.; Heck, Mary T.; Roddy, Jordan E.; Lyles, Garry (Technical Monitor)
2000-01-01
The National Aeronautics and Space Administration (NASA) communicated its long-term R&D goals for aeronautics and space transportation technologies in its 1997-98 annual progress report (Reference 1). Under "Pillar 3, Goal 9" a 25-year-horizon set of objectives has been stated for the Generation 3 Reusable Launch Vehicle ("Gen 3 RLV") class of space transportation systems. An initiative referred to as "Spaceliner 100" is being conducted to identify technology roadmaps in support of these objectives. Responsibility for running "Spaceliner 100" technology development and demonstration activities have been assigned to NASA's agency-wide Advanced Space Transportation Program (ASTP) office located at the Marshall Space Flight Center. A key technology area in which advances will be required in order to meet these objectives is propulsion. In 1996, in order to expand their focus beyond "allrocket" propulsion systems and technologies (see Appendix A for further discussion), ASTP initiated technology development and demonstration work on combined-cycle airbreathing/rocket propulsion systems (ARTT Contracts NAS8-40890 through 40894). Combined-cycle propulsion (CCP) activities (see Appendix B for definitions) have been pursued in the U.S. for over four decades, resulting in a large documented knowledge base on this subject (see Reference 2). In the fall of 1999 the Combined-Cycle Propulsion Database (CCPD) project was established with the primary purpose of collecting and consolidating CCP related technical information in support of the ASTP's ongoing technology development and demonstration program. Science Applications International Corporation (SAIC) was selected to perform the initial development of the Database under its existing support contract with MSFC (Contract NAS8-99060) because of the company's unique combination of capabilities in database development, information technology (IT) and CCP knowledge. The CCPD is summarized in the descriptive 2-page flyer appended to this paper as Appendix C. The purpose of this paper is to provide the reader with an understanding of the objectives of the CCPD and relate the progress that has been made toward meeting those objectives.
Lean Development with the Morpheus Simulation Software
NASA Technical Reports Server (NTRS)
Brogley, Aaron C.
2013-01-01
The Morpheus project is an autonomous robotic testbed currently in development at NASA's Johnson Space Center (JSC) with support from other centers. Its primary objectives are to test new 'green' fuel propulsion systems and to demonstrate the capability of the Autonomous Lander Hazard Avoidance Technology (ALHAT) sensor, provided by the Jet Propulsion Laboratory (JPL) on a lunar landing trajectory. If successful, these technologies and lessons learned from the Morpheus testing cycle may be incorporated into a landing descent vehicle used on the moon, an asteroid, or Mars. In an effort to reduce development costs and cycle time, the project employs lean development engineering practices in its development of flight and simulation software. The Morpheus simulation makes use of existing software packages where possible to reduce the development time. The development and testing of flight software occurs primarily through the frequent test operation of the vehicle and incrementally increasing the scope of the test. With rapid development cycles, risk of loss of the vehicle and loss of the mission are possible, but efficient progress in development would not be possible without that risk.
NASA Astrophysics Data System (ADS)
Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.
2007-12-01
The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research questions from local to global scales with both present and future environmental conditions.
Charting the Course: Life Cycle Management of Mars Mission Digital Information
NASA Technical Reports Server (NTRS)
Reiz, Julie M.
2003-01-01
This viewgraph presentation reviews the life cycle management of MER Project information. This process was an essential key to the successful launch of the MER Project rovers. Incorporating digital information archive requirements early in the project life cycle resulted in: Design of an information system that included archive metadata, Reduced the risk of information loss through in-process appraisal, Easier transfer of project information to institutional online archive and Project appreciation for preserving information for reuse by future projects
Guidelines for NASA Missions to Engage the User Community as a Part of the Mission Life Cycle
NASA Astrophysics Data System (ADS)
Escobar, V. M.; Friedl, L.; Bonniksen, C. K.
2017-12-01
NASA continues to improve the Earth Science Directorate in the areas of thematic integration, stakeholder feedback and Project Applications Program tailoring for missions to transfer knowledge between scientists and projects. The integration of application themes and the implementation of application science activities in flight projects have evolved to formally include user feedback and stakeholder integration. NASA's new Flight Applied Science Program Guidelines are designed to bridge NASA Earth Science Directorates in Flight, Applied Sciences and Research and Development by agreeing to integrate the user community into mission life cycles. Thus science development and science applications will guide all new instruments launched by NASAs ESD. The continued integration with the user community has enabled socio-economic considerations into NASA Earth Science projects to advance significantly. Making users a natural part of mission science leverages future socio-economic impact research and provides a platform for innovative and more actionable product to be used in decision support systems by society. This presentation will give an overview of the new NASA Guidelines and provide samples that demonstrate how the user community can be a part of NASA mission designs.
Project Interface Requirements Process Including Shuttle Lessons Learned
NASA Technical Reports Server (NTRS)
Bauch, Garland T.
2010-01-01
Most failures occur at interfaces between organizations and hardware. Processing interface requirements at the start of a project life cycle will reduce the likelihood of costly interface changes/failures later. This can be done by adding Interface Control Documents (ICDs) to the Project top level drawing tree, providing technical direction to the Projects for interface requirements, and by funding the interface requirements function directly from the Project Manager's office. The interface requirements function within the Project Systems Engineering and Integration (SE&I) Office would work in-line with the project element design engineers early in the life cycle to enhance communications and negotiate technical issues between the elements. This function would work as the technical arm of the Project Manager to help ensure that the Project cost, schedule, and risk objectives can be met during the Life Cycle. Some ICD Lessons Learned during the Space Shuttle Program (SSP) Life Cycle will include the use of hardware interface photos in the ICD, progressive life cycle design certification by analysis, test, & operations experience, assigning interface design engineers to Element Interface (EI) and Project technical panels, and linking interface design drawings with project build drawings
Zhang, Q H; Wang, X C; Xiong, J Q; Chen, R; Cao, B
2010-03-01
In order to illuminate the benefit of a wastewater treatment and reuse project, a life cycle assessment (LCA) model was proposed by combining the process-based LCA and the input-output based LCA in one framework and using energy consumption as the sole parameter for quantitative evaluation of the project. The life cycle consumption was evaluated mainly by life cycle inventory (LCI) analysis taking into account the construction phase, operation phase and demolishment phase of the project. For evaluating the life cycle benefit of treated water reuse, attention was paid to the decrease of secondary effluent discharge and water saving. As a result of comprehensive LCA analysis of a case project in Xi'an, China, it was understood that the life cycle benefit gained from treated wastewater reuse much surpassed the life cycle energy consumption. The advantage of wastewater treatment and reuse was well shown by LCA analysis using the proposed model. 2009 Elsevier Ltd. All rights reserved.
The 4 K Stirling cryocooler demonstration
NASA Technical Reports Server (NTRS)
Stacy, W. Dodd
1992-01-01
This report briefly summarizes the results and conclusions from an SBIR program intended to demonstrate an innovative Stirling cycle cryocooler concept for efficiently lifting heat from 4 K. Refrigeration at 4 K, a temperature useful for superconductors and sensitive instruments, is beyond the reach of conventional regenerative thermodynamic cycles due to the rapid loss of regenerator matrix heat capacity at temperatures below about 20 K. To overcome this fundamental limit, the cryocooler developed under this program integrated three unique features: recuperative regeneration between the displacement gas flow streams of two independent Stirling cycles operating at a 180 degree phase angle, tailored distortion of the two expander volume waveforms from sinusoidal to perfectly match the instantaneous regenerator heat flux from the two cycles and thereby unload the regenerator, and metal diaphragm working volumes to promote near isothermal expansion and compression processes. Use of diaphragms also provides unlimited operating life potential and eliminates bearings and high precision running seals. A phase 1 proof-of-principle experiment demonstrated that counterflow regenerator operation between 77 K and 4 K increases regenerator effectiveness by minimizing metal temperature transient cycling. In phase 2, a detailed design package for a breadboard cryocooler was completed. Fabrication techniques were successfully developed for manufacturing high precision miniature parallel plate recuperators, and samples were produced and inspected. Process development for fabricating suitably flat diaphragms proved more difficult and expensive than anticipated, and construction of the cryocooler was suspended at a completion level of approximately 75%. Subsequent development efforts on other projects have successfully overcome diaphragm fabrication difficulties, and alternate funding is currently being sought for completion and demonstration testing of the 4 K Stirling cryocooler.
Coleman, Mary Thoesen; Nasraty, Soraya; Ostapchuk, Michael; Wheeler, Stephen; Looney, Stephen; Rhodes, Sandra
2003-05-01
The Accreditation Council for Graduate Medical Education (ACGME) recommends integrating improvement activities into residency training. A curricular change was designed at the Department of Family and Community Medicine, University of Louisville, to address selected ACGME competencies by incorporating practice-based improvement activities into the routine clinical work of family medicine residents. Teams of residents, faculty, and office staff completed clinical improvement projects at three ambulatory care training sites. Residents were given academic credit for participation in team meetings. After 6 months, residents presented results to faculty, medical students, other residents, and staff from all three training sites. Residents, staff, and faculty were recognized for their participation. Resident teams demonstrated ACGME competencies in practice-based improvement: Chart audits indicated improvement in clinical projects; quality improvement tools demonstrated analysis of root causes and understanding of the process; plan-do-study-act cycle worksheets demonstrated the change process. Improvement activities that affect patient care and demonstrate selected ACGME competencies can be successfully incorporated into the daily work of family medicine residents.
NASA Technical Reports Server (NTRS)
Remer, D. S.
1977-01-01
A mathematical model is developed for calculating the life cycle costs for a project where the operating costs increase or decrease in a linear manner with time. The life cycle cost is shown to be a function of the investment costs, initial operating costs, operating cost gradient, project life time, interest rate for capital and salvage value. The results show that the life cycle cost for a project can be grossly underestimated (or overestimated) if the operating costs increase (or decrease) uniformly over time rather than being constant as is often assumed in project economic evaluations. The following range of variables is examined: (1) project life from 2 to 30 years; (2) interest rate from 0 to 15 percent per year; and (3) operating cost gradient from 5 to 90 percent of the initial operating costs. A numerical example plus tables and graphs is given to help calculate project life cycle costs over a wide range of variables.
Recovery Act: Waste Energy Project at AK Steel Corporation Middletown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, Jeffrey
2012-06-30
In 2008, Air Products and Chemicals, Inc. (“Air Products”) began development of a project to beneficially utilize waste blast furnace “topgas” generated in the course of the iron-making process at AK Steel Corporation’s Middletown, Ohio works. In early 2010, Air Products was awarded DOE Assistance Agreement DE-EE002736 to further develop and build the combined-cycle power generation facility. In June 2012, Air Products and AK Steel Corporation terminated work when it was determined that the project would not be economically viable at that time nor in the foreseeable future. The project would have achieved the FOA-0000044 Statement of Project Objectives bymore » demonstrating, at a commercial scale, the technology to capture, treat, and convert blast furnace topgas into electric power and thermal energy.« less
Reengineering the Project Design Process
NASA Technical Reports Server (NTRS)
Casani, E.; Metzger, R.
1994-01-01
In response to NASA's goal of working faster, better and cheaper, JPL has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center and the Flight System Testbed. Reengineering at JPL implies a cultural change whereby the character of its design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and cost estimating.
Biorefinery Demonstration Project Final Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, David
2015-10-20
In this project we focused on various aspects of biorefinery technology development including algal-biorefinery technology, thermochemical conversion of biomass to bio-oils and biochar; we tested characteristics and applications of biochars and evaluated nutrient cycling with wastewater treatment by the coupling of algal culture systems and anaerobic digestion. Key results include a method for reducing water content of bio-oil through atomized alcohol addition. The effect included increasing the pH and reducing the viscosity and cloud point of the bio-oil. Low input biochar production systems were evaluated via literature reviews and direct experimental work. Additionally, emissions were evaluated and three biochar systemsmore » were compared via a life cycle analysis. Attached growth systems for both algal cultivation and algal harvesting were found to be superior to suspended growth cultures. Nutrient requirements for algal cultivation could be obtained by the recycling of anaerobic digester effluents, thus experimentally showing that these two systems could be directly coupled. Twenty-two journal articles and six intellectual property applications resulted from the cumulative work that this project contributed to programmatically.« less
Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mugerwa, Michael
2015-11-18
Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).
Can we Observe and Assess Whether the Global Hydrological Cycle is "Intensifying"?
NASA Astrophysics Data System (ADS)
Wood, E. F.; Sheffield, J.
2012-12-01
There is controversy over whether the hydrological cycle is "intensifying" (or "accelerating"), and if so how and where? Resolving this critical question is a central goal of both national (e.g. NASA's Energy and Water cycle Study: NEWS) and international (WCRP Global Energy and Water cycle Experiment: GEWEX) programs. Its resolution has significant implications for understanding changes in hydroclimatic states and variability, and in future water security at regional to global scales. Over the last decade a number of papers have addressed trends and change in specific water cycle variables with results that can best be described as inconclusive, regardless of the conclusions of specific papers. In this presentation a number of recent studies will be reviewed for their consistency in assessing whether collectively one can make conclusions regarding how the hydrologic cycle is changing. The presentation will also demonstrate a pathway for analyzing where to observe for the detection of change based on a NASA-supported, global, 1983-2009, terrestrial water cycle Earth System Data Record project being led by the author. Initial results will be presented and a discussion presented on the extent that the proposed strategy can be used to detect change in the terrestrial hydrological cycle.
The Eye Diagram: A New Perspective on the Project Life Cycle
ERIC Educational Resources Information Center
Jiang, Bin; Heiser, Daniel R.
2004-01-01
The project life cycle, a well-established concept in project management literature and education, is used to highlight the dynamic requirements placed on a typical project manager. As a project moves through the selection, planning, execution, and termination phases, the project manager and team are faced with different, vying areas of…
Development of high-rise buildings: digitalization of life cycle management
NASA Astrophysics Data System (ADS)
Gusakova, Elena
2018-03-01
The analysis of the accumulated long-term experience in the construction and operation of high-rise buildings reveals not only the engineering specificity of such projects, but also systemic problems in the field of project management. Most of the project decisions are made by the developer and the investor in the early stages of the life cycle - from the acquisition of the site to the start of operation, so most of the participants in the construction and operation of the high-rise building are far from the strategic life-cycle management of the project. The solution of these tasks due to the informatization of management has largely exhausted its efficiency resource. This is due to the fact that the applied IT-systems automated traditional "inherited" processes and management structures, and, in addition, they were focused on informatization of the activities of the construction company, rather than the construction project. Therefore, in the development of high-rise buildings, the tasks of researching approaches and methods for managing the full life cycle of projects that will improve their competitiveness become topical. For this purpose, the article substantiates the most promising approaches and methods of informational modeling of high-rise construction as a basis for managing the full life cycle of this project. Reengineering of information interaction schemes for project participants is considered; formation of a unified digital environment for the life cycle of the project; the development of systems for integrating data management and project management.
NASA Astrophysics Data System (ADS)
Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.
2015-04-01
Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.
Predictability of tick-borne encephalitis fluctuations.
Zeman, P
2017-10-01
Tick-borne encephalitis is a serious arboviral infection with unstable dynamics and profound inter-annual fluctuations in case numbers. A dependable predictive model has been sought since the discovery of the disease. The present study demonstrates that four superimposed cycles, approximately 2·4, 3, 5·4, and 10·4 years long, can account for three-fifths of the variation in the disease fluctuations over central Europe. Using harmonic regression, these cycles can be projected into the future, yielding forecasts of sufficient accuracy for up to 4 years ahead. For the years 2016-2018, this model predicts elevated incidence levels in most parts of the region.
Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine
NASA Technical Reports Server (NTRS)
Brown, T. M.; Smith, Norm
1999-01-01
Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.
NASA Technical Reports Server (NTRS)
Sass, J. P.; Raines, N. G.; Ryan, H. M.
2004-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is part of NASA's Next Generation Launch Technology (NGLT) program, which seeks to provide safe, dependable, cost-cutting technologies for future space launch systems. The project also is part of the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today s state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The intended full flow engine cycle is a key component in achieving all of the aforementioned goals. The IPD Program recently achieved a major milestone with the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in late 2004. Following an overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD Workhorse Preburner and the IPD Oxidizer Turbopump. In addition, some of the facility challenges encountered during the test project shall be addressed.
Integrated Ground Operations Demonstration Units Testing Plans and Status
NASA Technical Reports Server (NTRS)
Johnson, Robert G.; Notardonato, William U.; Currin, Kelly M.; Orozco-Smith, Evelyn M.
2012-01-01
Cryogenic propellant loading operations with their associated flight and ground systems are some of the most complex, critical activities in launch operations. Consequently, these systems and operations account for a sizeable portion of the life cycle costs of any launch program. NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite advances in cryogenics, system health management and command and control technologies. This project was developed to mature, integrate and demonstrate advancement in the current state of the art in these areas using two distinct integrated ground operations demonstration units (GODU): GODU Integrated Refrigeration and Storage (IRAS) and GODU Autonomous Control
Tomolo, A M; Lawrence, R H; Aron, D C
2009-10-01
In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.
Tomolo, A M; Lawrence, R H; Aron, D C
2009-06-01
In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.
Software Program: Software Management Guidebook
NASA Technical Reports Server (NTRS)
1996-01-01
The purpose of this NASA Software Management Guidebook is twofold. First, this document defines the core products and activities required of NASA software projects. It defines life-cycle models and activity-related methods but acknowledges that no single life-cycle model is appropriate for all NASA software projects. It also acknowledges that the appropriate method for accomplishing a required activity depends on characteristics of the software project. Second, this guidebook provides specific guidance to software project managers and team leaders in selecting appropriate life cycles and methods to develop a tailored plan for a software engineering project.
NASA Technical Reports Server (NTRS)
Lee, Jin-Ho; Krivanek, Thomas M.
2005-01-01
The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.
NASA Astrophysics Data System (ADS)
Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso
2017-06-01
The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.
Numerical Simulation of the RTA Combustion Rig
NASA Technical Reports Server (NTRS)
Davoudzadeh, Farhad; Buehrle, Robert; Liu, Nan-Suey; Winslow, Ralph
2005-01-01
The Revolutionary Turbine Accelerator (RTA)/Turbine Based Combined Cycle (TBCC) project is investigating turbine-based propulsion systems for access to space. NASA Glenn Research Center and GE Aircraft Engines (GEAE) planned to develop a ground demonstrator engine for validation testing. The demonstrator (RTA-1) is a variable cycle, turbofan ramjet designed to transition from an augmented turbofan to a ramjet that produces the thrust required to accelerate the vehicle from Sea Level Static (SLS) to Mach 4. The RTA-1 is designed to accommodate a large variation in bypass ratios from sea level static to Mach 4 conditions. Key components of this engine are new, such as a nickel alloy fan, advanced trapped vortex combustor, a Variable Area Bypass Injector (VABI), radial flameholders, and multiple fueling zones. A means to mitigate risks to the RTA development program was the use of extensive component rig tests and computational fluid dynamics (CFD) analysis.
NASA Technical Reports Server (NTRS)
Miller, Thomas
2007-01-01
The NASA Glenn Research Center (GRC), along with the Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), Johnson Space Center (JSC), Marshall Space Flight Center (MSFC), and industry partners, is leading a space-rated lithium-ion advanced development battery effort to support the vision for Exploration. This effort addresses the lithium-ion battery portion of the Energy Storage Project under the Exploration Technology Development Program. Key discussions focus on the lithium-ion cell component development activities, a common lithium-ion battery module, test and demonstration of charge/discharge cycle life performance and safety characterization. A review of the space-rated lithium-ion battery project will be presented highlighting the technical accomplishments during the past year.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Life Cycle Cost Analyses § 436.20 Net savings. For a retrofit project, net savings may be found by subtracting life cycle costs based on the proposed project from life cycle costs based on not having it. For a new building design, net savings is the difference between the life cycle costs of an alternative...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skszek, Tim
2015-12-29
The intent of the Multi-Material Lightweight Vehicle (“MMLV”) was to assess the feasibility of achieving a significant level of vehicle mass reduction, enabling engine downsizing resulting in a tangible fuel reduction and environmental benefit. The MMLV project included the development of two (2) lightweight vehicle designs, referred to as Mach-I and Mach-II MMLV variants, based on a 2013 Ford production C/D segment production vehicle (Fusion). Weight comparison, life cycle assessment and limited full vehicle testing are included in the project scope. The Mach-I vehicle variant was comprised of materials and processes that are commercially available or previously demonstrated. The 363more » kg mass reduction associated with the Mach-I design enabled use of a one-liter, three-cylinder, gasoline turbocharged direct injection engine, maintaining the performance and utility of the baseline vehicle. The full MMLV project produced seven (7) MMLV Mach-I “concept vehicles” which were used for testing and evaluation. The full vehicle tests confirmed that MMLV Mach-I concept vehicle performed approximately equivalent to the baseline 2013 Ford Fusion vehicle thereby validating the design of the multi material lightweight vehicle design. The results of the Life Cycle Assessment, conducted by third party consultant, indicated that if the MMLV Mach-I design was built and operated in North America for 250,000 km (155,343 miles) it would produce significant environmental and fuel economy benefits including a 16% reduction in Global Warming Potential (GWP) and 16% reduction in Total Primary Energy (TPE). The LCA calculations estimated the combined fuel economy of 34 mpg (6.9 l/100 km) associated with the MMLV Mach-I Design compared to 28 mpg (8.4 l/100 km) for the 2013 Ford Fusion.« less
Quantifying dynamic characteristics of human walking for comprehensive gait cycle.
Mummolo, Carlotta; Mangialardi, Luigi; Kim, Joo H
2013-09-01
Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.
NREL: U.S. Life Cycle Inventory Database - About the LCI Database Project
About the LCI Database Project The U.S. Life Cycle Inventory (LCI) Database is a publicly available data collection and analysis methods. Finding consistent and transparent LCI data for life cycle and maintain the database. The 2009 U.S. Life Cycle Inventory (LCI) Data Stakeholder meeting was an
On long-term periodicities in the sunspot record
NASA Technical Reports Server (NTRS)
Wilson, R. M.
1984-01-01
Sunspot records are systematically maintained, with the knowledge that an 11 year average period exists since about 1850. Thus, the sunspot record of highest quality and considered to be the most reliable is that of cycle eight through the present. On the basis of cycles 8 through 20, various combinations of sine curves were used to approximate the observed R sub MAX values (where R sub MAX is the smoothed sunspot number at cycle maximum). It is found that a three component sinusoidal function, having an 11 cycle and a 2 cycle variation on a 90 cycle periodicity, yields computed R sub MAX values which fit, reasonably well, observed R sub MAX values for the modern sunspot cycles. Extrapolation of the empirical functions forward in time allows for the projection of values of R sub MAX for cycles 21 and 22. For cycle 21, the function projects a value of 157.3, very close to the actually observed value of 164.5. For cycle 22, the function projects a value of about 107. Linear regressions applied to cycle 22 indicate a long-period cycle (cycle duration 132 months). An extensive bibliography on techniques used to estimate the time dependent behavior of sunspot cycles is provided.
Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retsina, Theodora
The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creationmore » and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds were contributed by American Process Inc. The facility will remain operational after the demonstration period. It will also be available as a pilot-plant “for hire,” where third parties can perform trials on emerging biorefinery technologies. Additional capital projects are underway outside of the scope of DOE project.« less
NASA Technical Reports Server (NTRS)
Darpel, Scott; Beckman, Sean
2016-01-01
Decades of systems engineering practice have demonstrated that the earlier the identification of requirements occurs, the lower the chance that costly redesigns will needed later in the project life cycle. A better understanding of all requirements can also improve the likelihood of a design's success. Significant effort has been put into developing tools and practices that facilitate requirements determination, including those that are part of the model-based systems engineering (MBSE) paradigm. These efforts have yielded improvements in requirements definition, but have thus far focused on a design's performance needs. The identification of safety & mission assurance (S&MA) related requirements, in comparison, can occur after preliminary designs are already established, yielding forced redesigns. Engaging S&MA expertise at an earlier stage, facilitated by the use of MBSE tools, and focused on actual project risk, can yield the same type of design life cycle improvements that have been realized in technical and performance requirements.
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
Project Management Life Cycle Models to Improve Management in High-rise Construction
NASA Astrophysics Data System (ADS)
Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana
2018-03-01
The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.
NREL: U.S. Life Cycle Inventory Database - Project Management Team
Project Management Team Information about the U.S. Life Cycle Inventory (LCI) Database project management team is listed on this page. Additional project information is available about the U.S. LCI Mechanical Engineering, Colorado State University Professional History Michael has worked as a Senior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; Burton, J.; Sindler, P.
2014-10-01
This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less
The JRC-ITU approach to the safety of advanced nuclear fuel cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanghaenel, T.; Rondinella, V.V.; Somers, J.
2013-07-01
The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimentalmore » facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.« less
Demonstration of Autonomous Rendezvous Technology (DART) Project Summary
NASA Technical Reports Server (NTRS)
Rumford, TImothy E.
2003-01-01
Since the 1960's, NASA has performed numerous rendezvous and docking missions. The common element of all US rendezvous and docking is that the spacecraft has always been piloted by astronauts. Only the Russian Space Program has developed and demonstrated an autonomous capability. The Demonstration of Autonomous Rendezvous Technology (DART) project currently funded under NASA's Space Launch Initiative (SLI) Cycle I, provides a key step in establishing an autonomous rendezvous capability for the United States. DART's objective is to demonstrate, in space, the hardware and software necessary for autonomous rendezvous. Orbital Sciences Corporation intends to integrate an Advanced Video Guidance Sensor and Autonomous Rendezvous and Proximity Operations algorithms into a Pegasus upper stage in order to demonstrate the capability to autonomously rendezvous with a target currently in orbit. The DART mission will occur in April 2004. The launch site will be Vandenburg AFB and the launch vehicle will be a Pegasus XL equipped with a Hydrazine Auxiliary Propulsion System 4th stage. All mission objectives will be completed within a 24 hour period. The paper provides a summary of mission objectives, mission overview and a discussion on the design features of the chase and target vehicles.
NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales
NASA Technical Reports Server (NTRS)
Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill
2011-01-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.
Solar Concentrator Advanced Development Program
NASA Technical Reports Server (NTRS)
Knasel, Don; Ehresman, Derik
1989-01-01
The Solar Concentrator Advanced Development Project has successfully designed, fabricated, and tested a full scale prototypical solar dynamic concentrator for space station applications. A Truss Hexagonal Panel reflector was selected as a viable solar concentrator concept to be used for space station applications. This concentrator utilizes a modular design approach and is flexible in attainable flux profiles and assembly techniques. The detailed design of the concentrator, which included structural, thermal and optical analysis, identified the feasibility of the design and specific technologies that were required to fabricate it. The needed surface accuracy of the reflectors surface was found to be very tight, within 5 mrad RMS slope error, and results in very close tolerances for fabrication. To meet the design requirements, a modular structure composed of hexagonal panels was used. The panels, made up of graphite epoxy box beams provided the strength, stiffness and dimensional stability needed. All initial project requirements were met or exceeded by hardware demonstration. Initial testing of structural repeatability of a seven panel portion of the concentrator was followed by assembly and testing of the full nineteen panel structure. The testing, which consisted of theodolite and optical measurements over an assembly-disassembly-reassembly cycle, demonstrated that the concentrator maintained the as-built contour and optical characteristics. The facet development effort within the project, which included developing the vapor deposited reflective facet, produced a viable design with demonstrated optical characteristics that are within the project goals.
NASA Astrophysics Data System (ADS)
Martz, L.
2004-05-01
The Water Resources Applications Project (WRAP) has been developed within the Global Energy and Water Cycle Experiment (GEWEX) to facilitate the testing of GEWEX products and their transfer to operational water managers. The WRAP activity builds upon projects within the GEWEX Continental Scale Experiments (CSEs), and facilitates dialogue between these CSEs and their local water management communities regarding their information needs and opportunities for GEWEX products to meet those needs. Participating Continental Scale Experiments are located in the United States, the Mackenzie River Basin in Canada, the Amazon River Basin in Brazil, the Baltic Sea drainage area, eastern Asia and the Murray-Darling Basin in Australia. In addition, the development of WRAP is facilitating the transfer of techniques and demonstration projects to other areas through collaboration with IAHS, UNESCO/WMO HELP, WMO Hydrology and WWAP. The initiation of CEOP presents a significant new opportunity for collaborations to support the application of global hydro-climatological scientific data and techniques to water resource management. Some important scientific and operational issues identified by water resource management professionals in earlier workshops will be reviewed, some scientific initiatives needed to address these issues will be presented, and some case study examples of the application of GEWEX knowledge to water resource problems will be presented. Against this background, the unique opportunities that CEOP provides to improve our use and management of water resources globally will be discussed.
Improving Life-Cycle Cost Management of Spacecraft Missions
NASA Technical Reports Server (NTRS)
Clardy, Dennon
2010-01-01
This presentation will explore the results of a recent NASA Life-Cycle Cost study and how project managers can use the findings and recommendations to improve planning and coordination early in the formulation cycle and avoid common pitfalls resulting in cost overruns. The typical NASA space science mission will exceed both the initial estimated and the confirmed life-cycle costs by the end of the mission. In a fixed-budget environment, these overruns translate to delays in starting or launching future missions, or in the worst case can lead to cancelled missions. Some of these overruns are due to issues outside the control of the project; others are due to the unpredictable problems (unknown unknowns) that can affect any development project. However, a recent study of life-cycle cost growth by the Discovery and New Frontiers Program Office identified a number of areas that are within the scope of project management to address. The study also found that the majority of the underlying causes for cost overruns are embedded in the project approach during the formulation and early design phases, but the actual impacts typically are not experienced until late in the project life cycle. Thus, project management focus in key areas such as integrated schedule development, management structure and contractor communications processes, heritage and technology assumptions, and operations planning, can be used to validate initial cost assumptions and set in place management processes to avoid the common pitfalls resulting in cost overruns.
A Demonstration and Analysis of Requirements for Maritime Navigation Planning.
1998-03-01
it the highest and 0-4 and above the lowest. Once again, the value added by grouping the data and comparing may be nothing...purpose behind a prototype is to ascertain user requirements. It should be created rapidly to speed up the system development life cycle ( SDLC ). Since...system is contained in Chapter II, Section B. 3. Internet to Sea (SEANET) Program The SeaNet Project is a collaborative effort to bring the
Lithium-Ion Battery Program Status
NASA Technical Reports Server (NTRS)
Surampudi, S.; Huang, C. K.; Smart, M.; Davies, E.; Perrone, D.; Distefano, S.; Halpert, G.
1996-01-01
The objective of this program is to develop rechargeable Li-ion cells for future NASA missions. Applications that would benefit from this project are: new millenium spacecraft; rovers; landers; astronaut equipment; and planetary orbiters. The approach of this program is: select electrode materials and electrolytes; identify failure modes and mechanisms and enhance cycle life; demonstrate Li-ion cell technology with liquid electrolyte; select candidate polymer electrolytes for Li-ion polymer cells; and develop Li-ion polymer cell technology.
Overview of waste heat utilization systems
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1984-01-01
The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.
Single-ion quantum Otto engine with always-on bath interaction
NASA Astrophysics Data System (ADS)
Chand, Suman; Biswas, Asoka
2017-06-01
We demonstrate how the reciprocating heat cycle of a quantum Otto engine (QOE) can be implemented using a single ion and an always-on thermal environment. The internal degree of freedom of the ion is chosen as the working fluid, while the motional degree of freedom can be used as the cold bath. We show, that by adiabatically changing the local magnetic field, the work efficiency can be asymptotically made unity. We propose a projective measurement of the internal state of the ion that mimics the release of heat from the working fluid during the engine cycle. In our proposal, the coupling to the hot and the cold baths need not be switched off and on in an alternate fashion during the engine cycle, unlike other existing proposals of QOE. This renders the proposal experimentally feasible using the available tapped-ion engineering technology.
Mapping of information and identification of construction waste at project life cycle
NASA Astrophysics Data System (ADS)
Wibowo, Mochamad Agung; Handayani, Naniek Utami; Nurdiana, Asri; Sholeh, Moh Nur; Pamungkas, Gita Silvia
2018-03-01
The development of construction project towards green construction is needed in order to improve the efficiency of construction projects. One that needs to be minimized is construction waste. Construction waste is waste generated from construction project activities, both solid waste and non solid waste. More specifically, the waste happens at every phase of the project life cycle. Project life cycle are the stage of idea, design, construction, and operation/maintenance. Each phase is managed by different stakeholders. Therefore it requires special handling from the involved stakeholders. The objective of the study is to map the information and identify the waste at each phase of the project life cycle. The purpose of mapping is to figure out the process of information and product flow and with its timeline. This mapping used Value Stream Mapping (VSM). Identification of waste was done by distributing questionnaire to respondents to know the waste according to owner, consultant planner, contractor, and supervisory consultant. The result of the study is the mapping of information flow and product flow at the phases of idea, design, construction, and operation/ maintenance.
On the linkages between the global carbon-nitrogen-phosphorus cycles
NASA Astrophysics Data System (ADS)
Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto
2013-04-01
State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.
Which Industries Are Sensitive to Business Cycles?
ERIC Educational Resources Information Center
Berman, Jay; Pfleeger, Janet
1997-01-01
An analysis of the 1994-2005 Bureau of Labor Statistics employment projections can be used to identify industries that are projected to move differently with business cycles in the future than with those of the past, and can be used to identify the industries and occupations that are most prone to business cycle swings. (Author)
Dyer, Bryce; Woolley, Howard
2017-10-01
It has been reported that cycling-specific research relating to participants with an amputation is extremely limited in both volume and frequency. However, practitioners might participate in the development of cycling-specific prosthetic limbs. This technical note presents the development of a successful design of a prosthetic limb developed specifically for competitive cycling. This project resulted in a hollow composite construction which was low in weight and shaped to reduce a rider's aerodynamic drag. The new prosthesis reduces the overall mass of more traditional designs by a significant amount yet provides a more aerodynamic shape over traditional approaches. These decisions have yielded a measurable increase in cycling performance. While further refinement is needed to reduce the aerodynamic drag as much as possible, this project highlights the benefits that can exist by optimising the design of sports-specific prosthetic limbs. Clinical relevance This project resulted in the creation of a cycling-specific prosthesis which was tailored to the needs of a high-performance environment. Whilst further optimisation is possible, this project provides insight into the development of sports-specific prostheses.
Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.
ERIC Educational Resources Information Center
Michaels, T. E.
1993-01-01
Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…
A Systems Development Life Cycle Project for the AIS Class
ERIC Educational Resources Information Center
Wang, Ting J.; Saemann, Georgia; Du, Hui
2007-01-01
The Systems Development Life Cycle (SDLC) project was designed for use by an accounting information systems (AIS) class. Along the tasks in the SDLC, this project integrates students' knowledge of transaction and business processes, systems documentation techniques, relational database concepts, and hands-on skills in relational database use.…
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-12-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA
NASA Astrophysics Data System (ADS)
Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.
2012-08-01
Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologues data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and interferences from humidity are the leading error sources. We introduce an a posteriori correction method of the humidity interference error and we recommend applying it for isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.
Rechargeable aluminum batteries with conducting polymers as positive electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudak, Nicholas S.
2013-12-01
This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole andmore » polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g -1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg -1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.« less
Implications of Network Topology on Stability
Kinkhabwala, Ali
2015-01-01
In analogy to chemical reaction networks, I demonstrate the utility of expressing the governing equations of an arbitrary dynamical system (interaction network) as sums of real functions (generalized reactions) multiplied by real scalars (generalized stoichiometries) for analysis of its stability. The reaction stoichiometries and first derivatives define the network’s “influence topology”, a signed directed bipartite graph. Parameter reduction of the influence topology permits simplified expression of the principal minors (sums of products of non-overlapping bipartite cycles) and Hurwitz determinants (sums of products of the principal minors or the bipartite cycles directly) for assessing the network’s steady state stability. Visualization of the Hurwitz determinants over the reduced parameters defines the network’s stability phase space, delimiting the range of its dynamics (specifically, the possible numbers of unstable roots at each steady state solution). Any further explicit algebraic specification of the network will project onto this stability phase space. Stability analysis via this hierarchical approach is demonstrated on classical networks from multiple fields. PMID:25826219
Roadside Tracker Portal-less Portal Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Klaus-Peter; Cheriyadat, Anil M.; Bradley, Eric Craig
2013-07-01
This report documents the full development cycle of the Roadside Tracker (RST) Portal-less Portal monitor (Fig. 1) funded by DHS DNDO. The project started with development of a proof-of-feasibility proto-type, proceeded through design and construction of a proof-of-concept (POC) prototype, a test-and-evaluation phase, participation in a Limited Use Exercise that included the Standoff Radiation Detections Systems developed under an Advanced Technology Demonstration and concluded with participation in a Characterization Study conducted by DNDO.
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1991-01-01
ATTAP activities were highlighted by test bed engine design and development activities; ceramic component design; materials and engine component characterization; ceramic component process development and fabrication; component rig testing; and test bed engine fabrication and testing. Specifically, ATTAP aims to develop and demonstrate the technology of structural ceramics that have the potential for competitive automotive engine life cycle cost and for operating for 3500 hours in a turbine engine environment at temperatures up to 1371 C (2500 F).
Digital electronic engine control history
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1984-01-01
Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.
[Tampa Electric Company IGCC project]. 1996 DOE annual technical report, January--December 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Tampa Electric Company`s Polk Power Station Unit 1 (PPS-1) Integrated Gasification Combined Cycle (IGCC) demonstration project uses a Texaco pressurized, oxygen-blown, entrained-flow coal gasifier to convert approximately 2,000 tons per day of coal to syngas. The gasification plant is coupled with a combined cycle power block to produce a net 250 MW electrical power output. Coal is slurried in water, combined with 95% pure oxygen from an air separation unit, and sent to the gasifier to produce a high temperature, high pressure, medium-Btu syngas with a heat content of about 250 BTUs/cf (HHV). The syngas then flows through a highmore » temperature heat recovery unit which cools the syngas prior to its entering the cleanup systems. Molten coal ash flows from the bottom of the high temperature heat recovery unit into a water-filled quench chamber where it solidifies into a marketable slag by-product. Approximately 10% of the raw, hot syngas at 900 F is designed to pass through an intermittently moving bed of metal-oxide sorbent which removes sulfur-bearing compounds from the syngas. PPS-1 will be the first unit in the world to demonstrate this advanced metal oxide hot gas desulfurization technology on a commercial unit. The emphasis during 1996 centered around start-up activities.« less
NASA Astrophysics Data System (ADS)
Moon, Suyeon; Ha, Kyung-Ja
2017-05-01
Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models' MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models' MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced onset. The Asian monsoon intensity becomes stronger with the passage of time. This study has important implication for assessment of CMIP5 models in terms of the prediction of time evolution and intensity of Asian monsoon based on the annual cycle of temperature and precipitation.
Development and Testing of an UltraBattery-Equipped Honda Civic Hybrid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sally; Tyler Gray; Pattie Hovorka
2012-08-01
The UltraBattery Retrofit Project DP1.8 and Carbon Enriched Project C3, performed by ECOtality North America (ECOtality) and funded by the U.S. Department of Energy and the Advanced Lead Acid Battery Consortium (ALABC), are established to demonstrate the suitability of advanced lead battery technology in hybrid electrical vehicles (HEVs). A profile, termed the “Simulated Honda Civic HEV Profile” (SHCHEVP) has been developed in Project DP1.8 in order to provide reproducible laboratory evaluations of different battery types under real-world HEV conditions. The cycle is based on the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles and simulates operation of amore » battery pack in a Honda Civic HEV. One pass through the SHCHEVP takes 2,140 seconds and simulates 17.7 miles of driving. A complete nickel metal hydride (NiMH) battery pack was removed from a Honda Civic HEV and operated under SHCHEVP to validate the profile. The voltage behavior and energy balance of the battery during this operation was virtually the same as that displayed by the battery when in the Honda Civic operating on the dynamometer under the Urban Dynamometer Driving Schedule and Highway Fuel Economy Test cycles, thus confirming the efficacy of the simulated profile. An important objective of the project has been to benchmark the performance of the UltraBatteries manufactured by both Furukawa Battery Co., Ltd., Japan (Furakawa) and East Penn Manufacturing Co., Inc. (East Penn). Accordingly, UltraBattery packs from both Furakawa and East Penn have been characterized under a range of conditions. Resistance measurements and capacity tests at various rates show that both battery types are very similar in performance. Both technologies, as well as a standard lead-acid module (included for baseline data), were evaluated under a simple HEV screening test. Both Furakawa and East Penn UltraBattery packs operated for over 32,000 HEV cycles, with minimal loss in performance; whereas the standard lead-acid unit experienced significant degradation after only 6,273 cycles. The high-carbon, ALABC battery manufactured in Project C3 also was tested under the advanced HEV schedule. Its performance was significantly better than the standard lead-acid unit, but was still inferior compared with the UltraBattery. The batteries supplied by Exide as part of the C3 Project performed well under the HEV screening test, especially at high temperatures. The results suggest that higher operating temperatures may improve the performance of lead-acid-based technologies operated under HEV conditions—it is recommended that life studies be conducted on these technologies under such conditions.« less
Ride 2 Recovery's Project HERO: using cycling as part of rehabilitation.
Springer, Barbara A
2013-05-01
Ride 2 Recovery was founded in 2008 by a former world-class cycling competitor and coach to enhance the physical and psychological recovery of our nation's wounded, ill and injured service members and veterans through the sport of cycling. Ride 2 Recovery's most notable endeavor is Project HERO (Healing Exercise Rehabilitation Opportunity) which uses staff members and volunteers to promote cycling as an integral part of rehabilitation at select military facilities to enhance physical, psychological, spiritual and social recovery. Project HERO is directed by a retired military physical therapist that spent the last decade caring for service men and women wounded in Iraq and Afghanistan. This article describes all facets of the Project HERO initiative and highlights the profound impact it has had in the lives of US military members and veterans. Copyright © 2012 Elsevier Ltd. All rights reserved.
Obtaining Life-Cycle Cost-Effective Facilities in the Department of Defense
2013-01-01
8 Step 3: Regional, Service- Level , and OSD Project Ranking...13 2.3. Actors and Barriers to Life-Cycle Cost-Effective Facilities in the Regional, Service- Level , and OSD Project Ranking...Congressional authorization and appropriation OMB evaluation Regional, service- level , and OSD project ranking Economic analysis and DD form 1391 completed
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
DE-NE0000735 - FINAL REPORT ON THORIUM FUEL CYCLE NEUP PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krahn, Steven; Ault, Timothy; Worrall, Andrew
The report is broken into six chapters, including this executive summary chapter. Following an introduction, this report discusses each of the project’s three major components (Fuel Cycle Data Package (FCDP) Development, Thorium Fuel Cycle Literature Analysis and Database Development, and the Thorium Fuel Cycle Technical Track and Proceedings). A final chapter is devoted to summarization. Various outcomes, publications, etc. originating from this project can be found in the Appendices at the end of the document.
Reengineering the project design process
NASA Astrophysics Data System (ADS)
Kane Casani, E.; Metzger, Robert M.
1995-01-01
In response to the National Aeronautics and Space Administration's goal of working faster, better, and cheaper, the Jet Propulsion Laboratory (JPL) has developed extensive plans to minimize cost, maximize customer and employee satisfaction, and implement small- and moderate-size missions. These plans include improved management structures and processes, enhanced technical design processes, the incorporation of new technology, and the development of more economical space- and ground-system designs. The Laboratory's new Flight Projects Implementation Development Office has been chartered to oversee these innovations and the reengineering of JPL's project design process, including establishment of the Project Design Center (PDC) and the Flight System Testbed (FST). Reengineering at JPL implies a cultural change whereby the character of the Laboratory's design process will change from sequential to concurrent and from hierarchical to parallel. The Project Design Center will support missions offering high science return, design to cost, demonstrations of new technology, and rapid development. Its computer-supported environment will foster high-fidelity project life-cycle development and more accurate cost estimating. These improvements signal JPL's commitment to meeting the challenges of space exploration in the next century.
NASA Technical Reports Server (NTRS)
Devolites, Jennifer L.; Olansen, Jon B.
2015-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a Liquid Oxygen (LOX)/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. In 2012, Morpheus began integrating the Autonomous Landing and Hazard Avoidance Technology (ALHAT) sensors and software onto the vehicle in order to demonstrate safe, autonomous landing and hazard avoidance. From the beginning, one of goals for the Morpheus Project was to streamline agency processes and practices. The Morpheus project accepted a challenge to tailor the traditional NASA systems engineering approach in a way that would be appropriate for a lower cost, rapid prototype engineering effort, but retain the essence of the guiding principles. This paper describes the tailored project life cycle and systems engineering approach for the Morpheus project, including the processes, tools, and amount of rigor employed over the project's multiple lifecycles since the project began in fiscal year (FY) 2011.
A COMPREHENSIVE TECHNICAL REVIEW OF THE DEMONSTRATION BULK VITRIFICATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
SCHAUS, P.S.
2006-09-29
In May 2006, CH2M Hill Hanford Group, Inc. chartered an Expert Review Panel (ERP) to review the current status of the Demonstration Bulk Vitrification System (DBVS). It is the consensus of the ERP that bulk vitrification is a technology that requires further development and evaluation to determine its potential for meeting the Hanford waste stabilization mission. No fatal flaws (issues that would jeopardize the overall DBVS mission that cannot be mitigated) were found, given the current state of the project. However, a number of technical issues were found that could significantly affect the project's ability to meet its overall missionmore » as stated in the project ''Justification of Mission Need'' document, if not satisfactorily resolved. The ERP recognizes that the project has changed from an accelerated schedule demonstration project to a formally chartered project that must be in full compliance with DOE 413.3 requirements. The perspective of the ERP presented herein, is measured against the formally chartered project as stated in the approved Justification of Mission Need document. A justification of Mission Need document was approved in July 2006 which defined the objectives for the DBVS Project. In this document, DOE concluded that bulk vitrification is a viable technology that requires additional development to determine its potential applicability to treatment of a portion of the Hanford low activity waste. The DBVS mission need statement now includes the following primary objectives: (1) process approximately 190,000 gallons of Tank S-109 waste into fifty 100 metric ton boxes of vitrified product; (2) store and dispose of these boxes at Hanford's Integrated Disposal Facility (IDF); (3) evaluate the waste form characteristics; (4) gather pilot plant operability data, and (5) develop the overall life cycle system performance of bulk vitrification and produce a comparison of the bulk vitrification process to building a second LAW Immobilization facility or other supplemental treatment alternatives as provided in M-62-08.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillen, Donna Post; Zia, Jalal
2013-09-01
This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating,more » evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the direct evaporator. A testbed was constructed and the prototype demonstrated at the GE GRC Niskayuna facility.« less
ERIC Educational Resources Information Center
Kocherla, Showry
2012-01-01
Information technology (IT) projects are considered successful if they are completed on time, within budget, and within scope. Even though, the required tools and methodologies are in place, IT projects continue to fail at a higher rate. Current literature lacks explanation for success within the stages of system development life-cycle (SDLC) such…
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design to actual tele-operation of the robot in simulated Mars conditions mining and collecting simulated regolith. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team's score for the competition's grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
Electric vehicle life cycle cost analysis : final research project report.
DOT National Transportation Integrated Search
2017-02-01
This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...
Agrawal, Parul
2016-01-01
In Drosophila, a transcriptional feedback loop that is activated by CLOCK-CYCLE (CLK-CYC) complexes and repressed by PERIOD-TIMELESS (PER-TIM) complexes keeps circadian time. The timing of CLK-CYC activation and PER-TIM repression is regulated post-translationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Although kinases that control PER, TIM, and CLK levels, activity, and/or subcellular localization have been identified, less is known about phosphatases that control clock protein dephosphorylation. To identify clock-relevant phosphatases, clock-cell-specific RNAi knockdowns of Drosophila phosphatases were screened for altered activity rhythms. One phosphatase that was identified, the receptor protein tyrosine phosphatase leukocyte-antigen-related (LAR), abolished activity rhythms in constant darkness (DD) without disrupting the timekeeping mechanism in brain pacemaker neurons. However, expression of the neuropeptide pigment-dispersing factor (PDF), which mediates pacemaker neuron synchrony and output, is eliminated in the dorsal projections from small ventral lateral (sLNv) pacemaker neurons when Lar expression is knocked down during development, but not in adults. Loss of Lar function eliminates sLNv dorsal projections, but PDF expression persists in sLNv and large ventral lateral neuron cell bodies and their remaining projections. In contrast to the defects in lights-on and lights-off anticipatory activity seen in flies that lack PDF, Lar RNAi knockdown flies anticipate the lights-on and lights-off transition normally. Our results demonstrate that Lar is required for sLNv dorsal projection development and suggest that PDF expression in LNv cell bodies and their remaining projections mediate anticipation of the lights-on and lights-off transitions during a light/dark cycle. SIGNIFICANCE STATEMENT In animals, circadian clocks drive daily rhythms in physiology, metabolism, and behavior via transcriptional feedback loops. Because key circadian transcriptional activators and repressors are regulated by phosphorylation, we screened for phosphatases that alter activity rhythms when their expression was reduced. One such phosphatase, leukocyte-antigen-related (LAR), abolishes activity rhythms, but does not disrupt feedback loop function. Rather, Lar disrupts clock output by eliminating axonal processes from clock neurons that release pigment-dispersing factor (PDF) neuropeptide into the dorsal brain, but PDF expression persists in their cell bodies and remaining projections. In contrast to flies that lack PDF, flies that lack Lar anticipate lights-on and lights-off transitions normally, which suggests that the remaining PDF expression mediates activity during light/dark cycles. PMID:27030770
Lock-in detection for pulsed electrically detected magnetic resonance
NASA Astrophysics Data System (ADS)
Hoehne, Felix; Dreher, Lukas; Behrends, Jan; Fehr, Matthias; Huebl, Hans; Lips, Klaus; Schnegg, Alexander; Suckert, Max; Stutzmann, Martin; Brandt, Martin S.
2012-04-01
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced non-resonant background. This is exemplarily demonstrated for spin-echo measurements in phosphorus-doped silicon. The modulation of the signal is achieved by cycling the phase of the projection pulse used in pEDMR for the readout of the spin state.
Heavy Duty Roots Expander Heat Energy Recovery (HD-REHER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami
2015-10-01
Eaton Corporation proposed a comprehensive project to develop and demonstrate advanced component technology that will reduce the cost of implementing Organic Rankine Cycle (ORC) Waste Heat Recovery (WHR) systems to Heavy-Duty Diesel engines, making adaptation of this fuel efficiency improving technology more commercially attractive to end-users in the next 5 to 10 year time period. Accelerated adaptation and implementation of new fuel efficiency technology into service is critical for reduction of fuel used in the commercial vehicle segment.
Research on cost control and management in high voltage transmission line construction
NASA Astrophysics Data System (ADS)
Xu, Xiaobin
2017-05-01
Enterprises. The cost control is of vital importance to the construction enterprises. It is the key to the profitability of the transmission line project, which is related to the survival and development of the electric power construction enterprises. Due to the long construction line, complex and changeable construction terrain as well as large construction costs of transmission line, it is difficult for us to take accurate and effective cost control on the project implementation of entire transmission line. Therefore, the cost control of transmission line project is a complicated and arduous task. It is of great theoretical and practical significance to study the cost control scheme of transmission line project by a more scientific and efficient way. Based on the characteristics of the construction project of the transmission line project, this paper analyzes the construction cost structure of the transmission line project and the current cost control problem of the transmission line project, and demonstrates the necessity and feasibility of studying the cost control scheme of the transmission line project more accurately. In this way, the dynamic cycle cost control process including plan, implementation, feedback, correction, modification and re-implement is achieved to realize the accurate and effective cost control of entire electric power transmission line project.
Reusability aspects for space transportation rocket engines: programmatic status and outlook
NASA Astrophysics Data System (ADS)
Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.
2011-09-01
Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.
Environmental qualification testing of payload G-534, the Pool Boiling Experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
Payload G-534, the prototype Pool Boiling Experiment (PBE), is scheduled to fly on the STS-47 mission in September 1992. This paper describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave wider latitude in determining which shuttle thermal attitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the hardware build laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mohit; Grape, Ulrik
2014-07-29
The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validatemore » the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.« less
NASA Astrophysics Data System (ADS)
Laneve, Giovanni; Fusilli, Lorenzo; Tampellini, Maria Lucia; Vimercati, Marco; Hirn, Barbara; Sebastian-Lopez, Ana; Diagourtas, Dimitri; Eftychidis, Georgios; Clandillon, Stephen; Caspard, Mathilde; Oliveira, Sandra; Lourenco, Luciano
2015-04-01
PREFER is a Copernicus Emergency project funded from the 2012 FP7 Space Work Programme, and it is aimed at developing products and services that will contribute to improve the European capacity to respond to the preparedness, prevention, and recovery management steps in the case of forest fire emergency cycle, with focus on the Mediterranean area. It is well known from the most recent reports on state of Europe's forests that the Mediterranean area is particularly affected by uncontrolled forest fires, with a number of negative consequences on ecosystems, such as desertification and soil erosion, and on the local economy. Most likely, the current risks of forest fires will be exacerbated by climate change. In particular, the climate of Southern Europe and the Mediterranean basin is projected to warm at a rate exceeding the global average. Wild fires will therefore remain the most serious threat to Southern European forests. In this situation, the need to collect better information and more knowledge concerning future risks of forest fires and fire prevention in the Mediterranean area is widely recognized to be a major urgent one. As part of the Copernicus programme (i.e. the European Earth Observation Programme), PREFER is based on advanced geo-information products using in particular the earth observation data acquired and developed in the frame of Copernicus. The objective of the PREFER project, started at the end of 2012, 8 partners (from Italy, Portugal, Spain, France and Greece) involved and three years schedule, is the design, development and demonstration of a pre-operational "end-to-end" information service, fully exploiting satellite sensors data and able to support prevention/ preparedness and recovery phases of the Forest Fires emergency cycle in the EU Mediterranean Region. The PREFER information is as general as to be usable in the different countries of the Mediterranean Region, and acts in full complement to already existing services, such as the EC JRC EFFIS System. This paper intends to provide a concise report about and major highlights and achievements of the PREFER project research and development phase, along with the first results of the demonstration activities and users' feedbacks.
Pinon Pine power project nears start-up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatar, G.A.; Gonzalez, M.; Mathur, G.K.
1997-12-31
The IGCC facility being built by Sierra Pacific Power Company (SPPCo) at their Tracy Station in Nevada is one of three IGCC facilities being cost-shared by the US Department of Energy (DOE) under their Clean Coal Technology Program. The specific technology to be demonstrated in SPPCo`s Round Four Project, known as the Pinon Pine IGCC Project, includes the KRW air blown pressurized fluidized bed gasification process with hot gas cleanup coupled with a combined cycle facility based on a new GE 6FA gas turbine. Construction of the 100 MW IGCC facility began in February 1995 and the first firing ofmore » the gas turbine occurred as scheduled on August 15, 1996 with natural gas. Mechanical completion of the gasifier and other outstanding work is due in January 1997. Following the startup of the plant, the project will enter a 42 month operating and testing period during which low sulfur western and high sulfur eastern or midwestern coals will be processed.« less
Midlatitude Summer Drying: An Underestimated Threat in CMIP5 Models?
NASA Astrophysics Data System (ADS)
Douville, H.; Plazzotta, M.
2017-10-01
Early assessments of the hydrological impacts of global warming suggested both an intensification of the global water cycle and an expansion of dry areas. Yet these alarming conclusions were challenged by a number of latter studies emphasizing the lack of evidence in observations and historical simulations, as well as the large uncertainties in climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Here several aridity indices and a two-tier attribution strategy are used to demonstrate that a summer midlatitude drying has recently emerged over the northern continents, which is mainly attributable to anthropogenic climate change. This emerging signal is shown to be the harbinger of a long-term drying in the CMIP5 projections. Linear trends in the observed aridity indices can therefore be used as observational constraints and suggest that the projected midlatitude summer drying was underestimated by most CMIP5 models. Mitigating global warming therefore remains a priority to avoid dangerous impacts on global water and food security.
Printed stretchable circuit on soft elastic substrate for wearable application
NASA Astrophysics Data System (ADS)
Yuan, Wei; Wu, Xinzhou; Gu, Weibing; Lin, Jian; Cui, Zheng
2018-01-01
In this paper, a flexible and stretchable circuit has been fabricated by the printing method based on Ag NWs/PDMS composite. The randomly oriented Ag NWs were buried in PDMS to form a conductive and stretchable electrode. Stable conductivity was achieved with a large range of tensile strain (0-50%) after the initial stretching/releasing cycle. The stable electrical response is due to the buckling of the Ag NWs/PDMS composite layer. Furthermore, printed stretchable circuits integrated with commercial ICs have been demonstrated for wearable applications. Project supported by the National Program on Key Basic Research Project (No. 2015CB351901), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09020201), and the National Science Foundation of China (Nos. 51603227, 51603228).
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.
2006-01-01
The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... DEPARTMENT OF AGRICULTURE Rural Utilities Service South Mississippi Electric Cooperative: Plant Ratcliff, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Combined-Cycle (IGCC) Project currently under construction in Kemper County, Mississippi (hereinafter ``the...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-26
... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment/Draft Environmental...
NASA Technical Reports Server (NTRS)
Stecklein, Jonette
2017-01-01
NASA has held an annual robotic mining competition for teams of university/college students since 2010. This competition is yearlong, suitable for a senior university engineering capstone project. It encompasses the full project life cycle from ideation of a robot design, through tele-operation of the robot collecting regolith in simulated Mars conditions, to disposal of the robot systems after the competition. A major required element for this competition is a Systems Engineering Paper in which each team describes the systems engineering approaches used on their project. The score for the Systems Engineering Paper contributes 25% towards the team’s score for the competition’s grand prize. The required use of systems engineering on the project by this competition introduces the students to an intense practical application of systems engineering throughout a full project life cycle.
NASA Technical Reports Server (NTRS)
Remer, D. S.
1977-01-01
The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.
NASA Technical Reports Server (NTRS)
Merrick, R. H.; Anderson, P. P.
1973-01-01
The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.
Advanced Guidance and Control Project for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Hanson, John M.
2000-01-01
The goals of this project are to significantly reduce the time and cost associated with guidance and control design for reusable launch vehicles, and to increase their safety and reliability. Success will lead to reduced cycle times during vehicle design and to reduced costs associated with flying to new orbits, with new payloads, and with modified vehicles. Success will also lead to more robustness to unforeseen circumstances in flight thereby enhancing safety and reducing risk. There are many guidance and control methods available that hold some promise for improvement in the desired areas. Investigators are developing a representative set of independent guidance and control methods for this project. These methods are being incorporated into a high-fidelity off is being conducted across a broad range of flight requirements. The guidance and control methods that perform the best will have demonstrated the desired qualities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Horst; Purgert, Robert Michael
Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine stop and control valve component has been designed to operate at full A-USC temperatures, and would be tested both in throttling operation and to accumulate accelerated, repetitive stroke cycles. A cycling header component has been designed to confirm the suitability of new high-temperature nickel alloys to cycling operation, expected of future coal-fired power plants. Current test plans would subject these components to A-USC operating conditions for at least 8,000 hours by September 2020. The ComTest project is managed by Energy Industries of Ohio, and technically directed by the Electric Power Research Institute, Inc., with General Electric designing the A-USC components. This consortium is completing the Detailed Engineering phase of the project, with procurement scheduled to begin in late 2017. The effort is primarily funded by the U.S. Department of Energy, through the National Energy Technology Laboratory, along with the Ohio Development Services Agency. This presentation outlines the motivation for the project, explains the project’s structure and schedule, and provides technical details on the design of the ComTest facility.« less
Pearce, Timothy C.; Karout, Salah; Rácz, Zoltán; Capurro, Alberto; Gardner, Julian W.; Cole, Marina
2012-01-01
We present a biologically-constrained neuromorphic spiking model of the insect antennal lobe macroglomerular complex that encodes concentration ratios of chemical components existing within a blend, implemented using a set of programmable logic neuronal modeling cores. Depending upon the level of inhibition and symmetry in its inhibitory connections, the model exhibits two dynamical regimes: fixed point attractor (winner-takes-all type), and limit cycle attractor (winnerless competition type) dynamics. We show that, when driven by chemosensor input in real-time, the dynamical trajectories of the model's projection neuron population activity accurately encode the concentration ratios of binary odor mixtures in both dynamical regimes. By deploying spike timing-dependent plasticity in a subset of the synapses in the model, we demonstrate that a Hebbian-like associative learning rule is able to organize weights into a stable configuration after exposure to a randomized training set comprising a variety of input ratios. Examining the resulting local interneuron weights in the model shows that each inhibitory neuron competes to represent possible ratios across the population, forming a ratiometric representation via mutual inhibition. After training the resulting dynamical trajectories of the projection neuron population activity show amplification and better separation in their response to inputs of different ratios. Finally, we demonstrate that by using limit cycle attractor dynamics, it is possible to recover and classify blend ratio information from the early transient phases of chemosensor responses in real-time more rapidly and accurately compared to a nearest-neighbor classifier applied to the normalized chemosensor data. Our results demonstrate the potential of biologically-constrained neuromorphic spiking models in achieving rapid and efficient classification of early phase chemosensor array transients with execution times well beyond biological timescales. PMID:23874265
NASA Technical Reports Server (NTRS)
Vane, Deborah
1993-01-01
A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.
NASA Technical Reports Server (NTRS)
Randall, David A.; Fowler, Laura D.; Lin, Xin
1998-01-01
In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.
Altair Lander Life Support: Requirement Analysis Cycles 1 and 2
NASA Technical Reports Server (NTRS)
Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan
2009-01-01
Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally-functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair s life support system.
Altair Lander Life Support: Requirements Analysis Cycles 1 and 2
NASA Technical Reports Server (NTRS)
Anderson, Molly; Curley, Su; Rotter, Henry; Yagoda, Evan
2010-01-01
Life support systems are a critical part of human exploration beyond low earth orbit. NASA's Altair Lunar Lander has unique missions to perform and will need a unique life support system to complete them. Initial work demonstrated a feasible minimally -functional Lander design. This work was completed in Design Analysis Cycles (DAC) 1, 2, and 3 were reported in a previous paper'. On October 21, 2008, the Altair project completed the Mission Concept Review (MCR), moving the project into Phase A. In Phase A activities, the project is preparing for the System Requirements Review (SRR). Altair has conducted two Requirements Analysis Cycles (RACs) to begin this work. During this time, the life support team must examine the Altair mission concepts, Constellation Program level requirements, and interfaces with other vehicles and spacesuits to derive the right set of requirements for the new vehicle. The minimum functionality design meets some of these requirements already and can be easily adapted to meet others. But Altair must identify which will be more costly in mass, power, or other resources to meet. These especially costly requirements must be analyzed carefully to be sure they are truly necessary, and are the best way of explaining and meeting the true need. If they are necessary and clear, they become important mass threats to track at the vehicle level. If they are not clear or do not seem necessary to all stakeholders, Altair must work to redefine them or push back on the requirements writers. Additionally, the life support team is evaluating new technologies to see if they are more effective than the existing baseline design at performing necessary functions in Altair's life support system.
LIFE CYCLE DESIGN OF A FUEL TANK SYSTEM
This life cycle design (LCD) project was a collaborative effort between the National Pollution Prevention Center at the University of Michigan, General Motors (GM), and the U.S. Environmental Protection Agency (EPA). The primary objective of this project was to apply life cyc...
NASA Technical Reports Server (NTRS)
Parrott, Edith L.; Weiland, Karen J.
2017-01-01
This is the presentation for the AIAA Space conference in September 2017. It highlights key information from Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews paper.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Ronald; Whitty, Kevin
2014-12-01
The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiplemore » species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.« less
Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H
2017-07-01
For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.
NCCLC: NETWORK FOR RAPID ASSESSMENT OF CHEMICAL LIFE CYCLE IMPACT
The project is expected to provide a platform for chemical and material life-cycle information exchange. A wide use of CLB will enable organically growing LCA database for chemicals and materials. The project is expected to help chemical producers understand potential envir...
Systems engineering real estate development projects
NASA Astrophysics Data System (ADS)
Gusakova, Elena; Titarenko, Boris; Stepanov, Vitaliy
2017-10-01
In recent years, real estate development has accumulated a wealth of experience in implementing major projects, which requires comprehension and systematization. The scientific instrument of system engineering is studied in the article and is substantively interpreted with reference to real estate development projects. The most perspective approaches and models are substantiated, allowing strategically to plan the life cycle of the project as a whole, and also to solve the engineering butt problems of the project. The relevance of further scientific studies of regularities and specifics of the life cycle of real estate development projects conducted at the Moscow State University of Economics and Management at the ISTA department is shown.
Field to fuel: developing sustainable biorefineries.
Jenkins, Robin; Alles, Carina
2011-06-01
Life-cycle assessment (LCA) can be used as a scientific decision support technique to quantify the environmental implications of various biorefinery process, feedstock, and integration options. The goal of DuPont's integrated corn biorefinery (ICBR) project, a cost-share project with the United States Department of Energy, was to demonstrate the feasibility of a cellulosic ethanol biorefinery concept. DuPont used LCA to guide research and development to the most sustainable cellulosic ethanol biorefinery design in its ICBR project and will continue to apply LCA in support of its ongoing effort with joint venture partners. Cellulosic ethanol is a biofuel which has the potential to provide a sustainable solution to the nation's growing concerns around energy supply and climate change. A successful biorefinery begins with sustainable removal of biomass from the field. Michigan State University (MSU) used LCA to estimate the environmental performance of corn grain, corn stover, and the corn cob portion of the stover, grown under various farming practices for several corn growing locations in the United States Corn Belt. In order to benchmark the future technology options for producing cellulosic ethanol with existing technologies, LCA results for fossil energy consumption and greenhouse gas (GHG) emissions are compared to alternative ethanol processes and conventional gasoline. Preliminary results show that the DuPont ICBR outperforms gasoline and other ethanol technologies in the life-cycle impact categories considered here.
The NEWS Water Cycle Climatology
NASA Astrophysics Data System (ADS)
Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.
2012-12-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.
The NEWS Water Cycle Climatology
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson
2012-01-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.
Performance Assessment of Baseline Cells for the High Efficiency Space Power Systems Project
NASA Technical Reports Server (NTRS)
Schneidegger, Brianne T.
2012-01-01
The Enabling Technology Development and Demonstration (ETDD) Program High Efficiency Space Power Systems (HESPS) Project, formerly the Exploration Technology Development Program (ETDP) Energy Storage Project is tasked with developing advanced lithium-ion cells for future NASA Exploration missions. Under this project, components under development via various in-house and contracted efforts are delivered to Saft America for scale-up and integration into cells. Progress toward meeting project goals will be measured by comparing the performance to these cells with cells of a similar format with Saft s state-of-the-art aerospace chemistry. This report discusses the results of testing performed on the first set of baseline cells delivered by Saft to the NASA Glenn Research Center. This build is a cylindrical "DD" geometry with a 10 Ah nameplate capacity. Testing is being performed to establish baseline cell performance at conditions relevant to ETDD HESPS Battery Key Performance Parameter (KPP) goals including various temperatures, rates, and cycle life conditions. Data obtained from these cells will serve as a performance baseline for future cell builds containing optimized ETDD HESPSdeveloped materials. A test plan for these cells was developed to measure cell performance against the high energy cell KPP goals. The goal for cell-level specific energy of the high energy technology is 180 Wh/kg at a C/10 discharge rate and 0 C. The cells should operate for at least 2000 cycles at 100 percent DOD with 80 percent capacity retention. Baseline DD cells delivered 152 Wh/kg at 20 C. This number decreased to 143.9 Wh/kg with a 0 C discharge. This report provides performance data and summarizes results of the testing performed on the DD cells.
Beyond clay: Towards an improved set of variables for predicting soil organic matter content
Rasmussen, Craig; Heckman, Katherine; Wieder, William R.; Keiluweit, Marco; Lawrence, Corey R.; Berhe, Asmeret Asefaw; Blankinship, Joseph C.; Crow, Susan E.; Druhan, Jennifer; Hicks Pries, Caitlin E.; Marin-Spiotta, Erika; Plante, Alain F.; Schadel, Christina; Schmiel, Joshua P.; Sierra, Carlos A.; Thompson, Aaron; Wagai, Rota
2018-01-01
Improved quantification of the factors controlling soil organic matter (SOM) stabilization at continental to global scales is needed to inform projections of the largest actively cycling terrestrial carbon pool on Earth, and its response to environmental change. Biogeochemical models rely almost exclusively on clay content to modify rates of SOM turnover and fluxes of climate-active CO2 to the atmosphere. Emerging conceptual understanding, however, suggests other soil physicochemical properties may predict SOM stabilization better than clay content. We addressed this discrepancy by synthesizing data from over 5,500 soil profiles spanning continental scale environmental gradients. Here, we demonstrate that other physicochemical parameters are much stronger predictors of SOM content, with clay content having relatively little explanatory power. We show that exchangeable calcium strongly predicted SOM content in water-limited, alkaline soils, whereas with increasing moisture availability and acidity, iron- and aluminum-oxyhydroxides emerged as better predictors, demonstrating that the relative importance of SOM stabilization mechanisms scales with climate and acidity. These results highlight the urgent need to modify biogeochemical models to better reflect the role of soil physicochemical properties in SOM cycling.
Assessment of soil organic carbon stocks under future climate and land cover changes in Europe.
Yigini, Yusuf; Panagos, Panos
2016-07-01
Soil organic carbon plays an important role in the carbon cycling of terrestrial ecosystems, variations in soil organic carbon stocks are very important for the ecosystem. In this study, a geostatistical model was used for predicting current and future soil organic carbon (SOC) stocks in Europe. The first phase of the study predicts current soil organic carbon content by using stepwise multiple linear regression and ordinary kriging and the second phase of the study projects the soil organic carbon to the near future (2050) by using a set of environmental predictors. We demonstrate here an approach to predict present and future soil organic carbon stocks by using climate, land cover, terrain and soil data and their projections. The covariates were selected for their role in the carbon cycle and their availability for the future model. The regression-kriging as a base model is predicting current SOC stocks in Europe by using a set of covariates and dense SOC measurements coming from LUCAS Soil Database. The base model delivers coefficients for each of the covariates to the future model. The overall model produced soil organic carbon maps which reflect the present and the future predictions (2050) based on climate and land cover projections. The data of the present climate conditions (long-term average (1950-2000)) and the future projections for 2050 were obtained from WorldClim data portal. The future climate projections are the recent climate projections mentioned in the Fifth Assessment IPCC report. These projections were extracted from the global climate models (GCMs) for four representative concentration pathways (RCPs). The results suggest an overall increase in SOC stocks by 2050 in Europe (EU26) under all climate and land cover scenarios, but the extent of the increase varies between the climate model and emissions scenarios. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Guided Inquiry Learning With Sea Water Battery Project
NASA Astrophysics Data System (ADS)
Mashudi, A.
2017-02-01
Science learning process is expected to produce valuable product, innovative and real learning environment, and provide memorable learning experience. That orientation can be contained in Inquiry Based Learning. SMP N 4 Juwana is located close to the beach. That’s why, Sea Water Battery Project is very suitable to be applied in learning activity as an effort to fulfill the renewable energy based on local wisdom. This study aims to increase interest, activity and achievement of students. Learning implementation stage, namely : Constructing Sea Water Battery project, observation, group presentations, and feedback. Sea Water Battery is renewable energy battery from materials easily found around the learner. The materials used are copper plate as the anode, zinc plate as the cathode and sea water as the electrolyte. Average score of students Interest on the first cycle 76, while on the second cycle 85. Average score of students Activity on the first cycle 76 and on the second cycle 86. Average score of students achievement on the first cycle 75, while on the second cycle 84. This learning process gave nurturant effect for students to keep innovating and construct engineering technology for the future.
Rapid Response Risk Assessment in New Project Development
NASA Technical Reports Server (NTRS)
Graber, Robert R.
2010-01-01
A capability for rapidly performing quantitative risk assessments has been developed by JSC Safety and Mission Assurance for use on project design trade studies early in the project life cycle, i.e., concept development through preliminary design phases. A risk assessment tool set has been developed consisting of interactive and integrated software modules that allow a user/project designer to assess the impact of alternative design or programmatic options on the probability of mission success or other risk metrics. The risk and design trade space includes interactive options for selecting parameters and/or metrics for numerous design characteristics including component reliability characteristics, functional redundancy levels, item or system technology readiness levels, and mission event characteristics. This capability is intended for use on any project or system development with a defined mission, and an example project will used for demonstration and descriptive purposes, e.g., landing a robot on the moon. The effects of various alternative design considerations and their impact of these decisions on mission success (or failure) can be measured in real time on a personal computer. This capability provides a high degree of efficiency for quickly providing information in NASA s evolving risk-based decision environment
NASA Technical Reports Server (NTRS)
Shull, Forrest; Godfrey, Sally; Bechtel, Andre; Feldmann, Raimund L.; Regardie, Myrna; Seaman, Carolyn
2008-01-01
A viewgraph presentation describing the NASA Software Assurance Research Program (SARP) project, with a focus on full life-cycle defect management, is provided. The topics include: defect classification, data set and algorithm mapping, inspection guidelines, and tool support.
NASA Astrophysics Data System (ADS)
Quesada, Benjamin; Arneth, Almut; Robertson, Eddy; de Noblet-Ducoudré, Nathalie
2018-06-01
Anthropogenic land-use and land cover changes (LULCC) affect global climate and global terrestrial carbon (C) cycle. However, relatively few studies have quantified the impacts of future LULCC on terrestrial carbon cycle. Here, using Earth system model simulations performed with and without future LULCC, under the RCP8.5 scenario, we find that in response to future LULCC, the carbon cycle is substantially weakened: browning, lower ecosystem C stocks, higher C loss by disturbances and higher C turnover rates are simulated. Projected global greening and land C storage are dampened, in all models, by 22% and 24% on average and projected C loss by disturbances enhanced by ~49% when LULCC are taken into account. By contrast, global net primary productivity is found to be only slightly affected by LULCC (robust +4% relative enhancement compared to all forcings, on average). LULCC is projected to be a predominant driver of future C changes in regions like South America and the southern part of Africa. LULCC even cause some regional reversals of projected increased C sinks and greening, particularly at the edges of the Amazon and African rainforests. Finally, in most carbon cycle responses, direct removal of C dominates over the indirect CO2 fertilization due to LULCC. In consequence, projections of land C sequestration potential and Earth’s greening could be substantially overestimated just because of not fully accounting for LULCC.
Increasing water cycle extremes in California and in relation to ENSO cycle under global warming
NASA Astrophysics Data System (ADS)
Yoon, Jin-Ho; Wang, S.-Y. Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.
2015-10-01
Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.
Increasing water cycle extremes in California and in relation to ENSO cycle under global warming.
Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J
2015-10-21
Since the winter of 2013-2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)--in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns.
Increasing water cycle extremes in California and in relation to ENSO cycle under global warming
Yoon, Jin-Ho; Wang, S-Y Simon; Gillies, Robert R.; Kravitz, Ben; Hipps, Lawrence; Rasch, Philip J.
2015-01-01
Since the winter of 2013–2014, California has experienced its most severe drought in recorded history, causing statewide water stress, severe economic loss and an extraordinary increase in wildfires. Identifying the effects of global warming on regional water cycle extremes, such as the ongoing drought in California, remains a challenge. Here we analyse large-ensemble and multi-model simulations that project the future of water cycle extremes in California as well as to understand those associations that pertain to changing climate oscillations under global warming. Both intense drought and excessive flooding are projected to increase by at least 50% towards the end of the twenty-first century; this projected increase in water cycle extremes is associated with a strengthened relation to El Niño and the Southern Oscillation (ENSO)—in particular, extreme El Niño and La Niña events that modulate California's climate not only through its warm and cold phases but also its precursor patterns. PMID:26487088
Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A.; Valenti, Ornella; Viney, Tim J.; Kotzadimitriou, Dimitrios; Klausberger, Thomas
2017-01-01
ABSTRACT Long‐range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O‐LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin‐labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave‐ripples, most projection cells, including a novel SOM+ GABAergic back‐projecting cell, increased their activity similar to bistratified cells, but unlike O‐LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O‐LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior‐ and network state‐dependent binding of neuronal assemblies amongst functionally‐related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27997999
Completing the audit cycle: the outcomes of audits in mental health services.
Balogh, R; Bond, S
2001-04-01
To assess how far those UK National Health Service mental health settings that tested, and prior to publication, used the Newcastle Clinical Audit Toolkit for Mental Health (NCAT) completed the audit cycle. Twelve clinical audit project reports, each focused on one of the five modules in the NCAT, from four rounds of activity over a 2-year period; clinical and managerial staff in the settings where audit projects had taken place. Interviews with audit project team members about the recommendations of the 12 audit project reports and about contextual issues; all projects had reported at least 2 years previously. In analysing the audit project outcomes, five categories of inaction were discernible and five further categories were needed to describe varying states of progress. It was necessary to discriminate between actions attributed to the NCAT audit projects and actions attributed mainly to other initiatives. In total, 26.4% of audit recommendations were still under discussion or in progress. A relatively low proportion of recommendations from audit report findings (34.7%) had been implemented, and these were divided almost equally between recommendations attributed to the NCAT projects (38) and those attributed to other initiatives in the organization (37). Investigation of the medium-term outcomes of clinical audit projects has provided an insight into what might usefully be termed the process of completing the audit cycle. The time-scales required to reach the point at which action is deemed to have been implemented or not may be as long as 3 years. Conceptualizing the action stage of the cycle as a single discrete event fails to do justice to the complexity of the process, and attributing the implementation of change in clinical settings to single causes such as individual audit projects is problematic.
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.; Atonison, Mark A. (Editor); Chen, Sammy G. (Editor); Decusatis, Casimer (Editor); Kusche, Karl P. (Editor); Minucci, Marco A. (Editor); Moder, Jeffrey P. (Editor); Morales, Ciro (Editor); Nelson, Caroline V. (Editor); Richard, Jacques C. (Editor)
1989-01-01
The ultimate goal for this NASA/USRA-sponsored Apollo Lightcraft Project is to develop a revolutionary manned launch vehicle technology which can potentially reduce payload transport costs by a factor of 1000 below the Space Shuttle Orbiter. The Rensselaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. The research effort focuses on the concept of a 100 MW-class, laser-boosted Lightcraft Technology Demonstrator (LTD) drone. The preliminary conceptual design of this 1.4 meter diameter microspacecraft involved an analytical performance analysis of the transatmospheric engine in its two modes of operation (including an assessment of propellant and tankage requirements), and a detailed design of internal structure and external aeroshell configuration. The central theme of this advanced propulsion research was to pick a known excellent working fluid (i.e., air or LN sub 2), and then to design a combined-cycle engine concept around it. Also, a structural vibration analysis was performed on the annular shroud pulsejet engine. Finally, the sensor satellite mission was examined to identify the requisite subsystem hardware: e.g., electrical power supply, optics and sensors, communications and attitude control systems.
Very-short range forecasting system for 2018 Pyeonchang Winter Olympic and Paralympic games
NASA Astrophysics Data System (ADS)
Nam, Ji-Eun; Park, Kyungjeen; Kim, Minyou; Kim, Changhwan; Joo, Sangwon
2016-04-01
The 23rd Olympic Winter and the 13th Paralympic Winter Games will be held in Pyeongchang, Republic of Korea respectively from 9 to 25 February 2018 and from 9 to 18 February 2018. The Korea Meteorological Administration (KMA) and the National Institute for Meteorological Science (NIMS) have the responsibility to provide weather information for the management of the Games and the safety of the public. NIMS will carry out a Forecast Demonstration Project (FDP) and a Research and Development Project (RDP) which will be called ICE-POP 2018. These projects will focus on intensive observation campaigns to understand severe winter weathers over the Pyeongchang region, and the research results from the RDP will be used to improve the accuracy of nowcasting and very short-range forecast systems during the Games. To support these projects, NIMS developed Very-short range Data Assimilation and Prediction System (VDAPS), which is run in real time with 1 hour cycling interval and up to 12 hour forecasts. The domain is covering Korean Peninsular and surrounding seas with 1.5km horizontal resolution. AWS, windprofiler, buoy, sonde, aircraft, scatwinds, and radar radial winds are assimilated by 3DVAR on 3km resolution inner domain. The rain rate is converted into latent heat and initialized via nudging. The visibility data are also assimilated with the addition of aerosol control variable. The experiments results show the improvement in rainfall over south sea of Korean peninsula. In order to reduce excessive rainfalls during first 2 hours due to the reduced cycling interval, the data assimilation algorithm is optimized.
Aluminum-oxygen batteries for space applications
NASA Technical Reports Server (NTRS)
Niksa, Marilyn J.; Wheeler, Douglas J.
1987-01-01
An aluminum oxygen fuel cell is under development. Several highly efficient cell designs were constructed and tested. Air cathodes catalyzed with cobalt tetramethoxy porphorin have demonstrated more than 2000 cycles in intermittant use conditions. Aluminum alloys have operated at 4.2 kWH/kg at 200 mA/sq cm. A novel separator device, an impeller fluidizer was coupled with the battery to remove the solid hydrargillite discharge product. A 60 kW, 720 kWH battery system is projected to weigh about 2200 lbs., for an energy density of 327 WH lb.
Noise Control: Pile Driver Demonstration Project, Waterloo, Iowa.
1981-07-01
SCHOMER CERL-08684--00-10 UNCLASSIFIED CERL-TR-N-111 Na MEuuIllllImN IiMMEIIMMMM . i ljj.25 fL l1. MICROCOP )IY RLSOUtiION TLSI CIIARi construction Unte...cycle the hammer is assisted by steam or air pressure, the hammer is called "double-acting," " compound ," or "differential" according to its specific... compound was applied in an unconstrained form in rings about 0.025 m (1 in.) thick at 2.4-m (8-ft.) intervals on the piles. As discussed in a later
Genome-to-Watershed Predictive Understanding of Terrestrial Environments
NASA Astrophysics Data System (ADS)
Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.
2014-12-01
Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and nitrogen cycling; geophysical identification of floodplain hotspots that are useful for model parameterization; and GEWaSC demonstration of how incorporation of identified microbial metabolic processes improves prediction of the larger system biogeochemical behavior.
NASA Technical Reports Server (NTRS)
Hueter, Uwe
2000-01-01
NASA's Office of Aeronautics and Space Transportation Technology (OASTT) established the following three major goals, referred to as "The Three Pillars for Success": Global Civil Aviation, Revolutionary Technology Leaps, and Access to Space. The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Propulsion Projects within ASTP under the investment area of Spaceliner100, focus on the earth-to-orbit (ETO) third generation reusable launch vehicle technologies. The goals of Spaceliner 100 is to reduce cost by a factor of 100 and improve safety by a factor of 10,000 over current conditions. The ETO Propulsion Projects in ASTP, are actively developing combination/combined-cycle propulsion technologies that utilized airbreathing propulsion during a major portion of the trajectory. System integration, components, materials and advanced rocket technologies are also being pursued. Over the last several years, one of the main thrusts has been to develop rocket-based combined cycle (RBCC) technologies. The focus has been on conducting ground tests of several engine designs to establish the RBCC flowpaths performance. Flowpath testing of three different RBCC engine designs is progressing. Additionally, vehicle system studies are being conducted to assess potential operational space access vehicles utilizing combined-cycle propulsion systems. The design, manufacturing, and ground testing of a scale flight-type engine are planned. The first flight demonstration of an airbreathing combined cycle propulsion system is envisioned around 2005. The paper will describe the advanced propulsion technologies that are being being developed under the ETO activities in the ASTP program. Progress, findings, and future activities for the propulsion technologies will be discussed.
Closed cycle construction: an integrated process for the separation and reuse of C&D waste.
Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens
2007-01-01
In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.
Kim, Ki Hwan; Park, Sung-Hong
2017-04-01
The balanced steady-state free precession (bSSFP) MR sequence is frequently used in clinics, but is sensitive to off-resonance effects, which can cause banding artifacts. Often multiple bSSFP datasets are acquired at different phase cycling (PC) angles and then combined in a special way for banding artifact suppression. Many strategies of combining the datasets have been suggested for banding artifact suppression, but there are still limitations in their performance, especially when the number of phase-cycled bSSFP datasets is small. The purpose of this study is to develop a learning-based model to combine the multiple phase-cycled bSSFP datasets for better banding artifact suppression. Multilayer perceptron (MLP) is a feedforward artificial neural network consisting of three layers of input, hidden, and output layers. MLP models were trained by input bSSFP datasets acquired from human brain and knee at 3T, which were separately performed for two and four PC angles. Banding-free bSSFP images were generated by maximum-intensity projection (MIP) of 8 or 12 phase-cycled datasets and were used as targets for training the output layer. The trained MLP models were applied to another brain and knee datasets acquired with different scan parameters and also to multiple phase-cycled bSSFP functional MRI datasets acquired on rat brain at 9.4T, in comparison with the conventional MIP method. Simulations were also performed to validate the MLP approach. Both the simulations and human experiments demonstrated that MLP suppressed banding artifacts significantly, superior to MIP in both banding artifact suppression and SNR efficiency. MLP demonstrated superior performance over MIP for the 9.4T fMRI data as well, which was not used for training the models, while visually preserving the fMRI maps very well. Artificial neural network is a promising technique for combining multiple phase-cycled bSSFP datasets for banding artifact suppression. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Monroe, George E.
The Fifth Cycle Teacher Corps Project was undertaken by the University of Illinois at Chicago Circle to a) fulfill a stated mission of a university especially created to help resolve urban problems, b) find effective ways to help an inner-city community utilize its own resources, and c) conduct research on the effective uses of evaluation in…
Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bollinger, Benjamin
This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAES TM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the samemore » mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.« less
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Project Status
NASA Technical Reports Server (NTRS)
Gromski, J.; Majamaki, A. N.; Chianese, S. G.; Weinstock, V. D.; Kim, T.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of the Exploration Initiative, with a particular focus on the needs of the Altair Project. To meet Altair requirements, several technical challenges need to be overcome, one of which is the ability for the lunar descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202, a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two phases of pintle injector testing. The first phase of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at several power levels across the designed 10:1 throttle range. The second phase of testing was performed on a calorimeter chamber and demonstrated injector performance at various power levels (75%, 50%, 25%, 10%, and 7.5%) across the throttle range as well as chamber heat flux to show that the engine can close an expander cycle design across the throttle range. This paper provides an overview of the TR202 program. It describes the different phases of the program with the key milestones of each phase. It then shows when those milestones were met. Next, it describes how the test data was used to update the conceptual design and how the test data has created a database for deep throttling cryogenic pintle technology that is readily scaleable and can be used to again update the design once the Altair program's requirements are firm. The final section of the paper describes the path forward, which includes demonstrating continuously throttling with an actuator and pursuing a path towards integrated engine sea-level test-bed testing.
Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
Ferreira, Elzimar Tadeu de F; Balestieri, José Antonio P
2018-03-01
The Brazilian National Solid Waste Policy has been implemented with some difficulty, especially in convincing the different actors of society about the importance of conscious awareness among every citizen and businesses concerning adequate solid waste disposal and recycling. Technologies for recovering energy from municipal solid waste were considered in National Solid Waste Policy (NSWP), given that their technical and environmental viability is ensured, being the landfill biogas burning in internal combustion engines and solid waste incineration suggested options. In the present work, an analysis of current technologies and a collection of basic data on electricity generation using biogas from waste/liquid effluents is presented, as well as an assessment of the installation of a facility that harnesses biogas from waste or liquid effluents for producing electricity. Two combined cycle concepts were evaluated with capacity in the range 4-11 MW, gas turbine burning landfill biogas and an incinerator that burns solid waste hybrid cycle, and a solid waste gasification system to burn syngas in gas turbines. A comparative analysis of them demonstrated that the cycle with gasification from solid waste has proved to be technically more appealing than the hybrid cycle integrated with incineration because of its greater efficiency and considering the initially defined guidelines for electricity generation. The economic analysis does not reveal significant attractive values; however, this is not a significant penalty to the project given the fact that this is a pilot low-capacity facility, which is intended to be constructed to demonstrate appropriate technologies of energy recovery from solid waste.
Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2000-01-01
This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.
Fleet DNA Phase 1 Refinement & Phase 2 Implementation; NREL (National Renewable Energy Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Kenneth; Duran, Adam
2015-06-11
Fleet DNA acts as a secure data warehouse for medium- and heavy-duty vehicle data. It demonstrates that vehicle drive cycle data can be collected and stored for large-scale analysis and modeling applications. The data serve as a real-world data source for model development and validation. Storage of the results of past/present/future data collection efforts improves analysis efficiency through pooling of shared data and provides the opportunity for 'big data' type analyses. Fleet DNA shows it is possible to develop a common database structure that can store/analyze/report on data sourced from multiple parties, each with unique data formats/types. Data filtration andmore » normalization algorithms developed for the project allow for a wide range of data types and inputs, expanding the project’s potential. Fleet DNA demonstrates the power of integrating Big Data with existing and future tools and analyses: it provides an enhanced understanding and education of users, users can explore greenhouse gases and economic opportunities via AFLEET and ADOPT modeling, drive cycles can be characterized and visualized using DRIVE, high-level vehicle modeling can be performed using real-world drive cycles via FASTSim, and data reporting through Fleet DNA Phase 1 and 2 websites provides external users access to analysis results and gives the opportunity to explore on their own.« less
Low-cost solar array project task 1: Silicon material. Gaseous melt replenishment system
NASA Technical Reports Server (NTRS)
Jewett, D. N.; Bates, H. E.; Hill, D. M.
1980-01-01
The operation of a silicon production technique was demonstrated. The essentials of the method comprise chemical vapor deposition of silicon, by hydrogen reduction of chlorosilanes, on the inside of a quartz reaction vessel having large internal surface area. The system was designed to allow successive deposition-melting cycles, with silicon removal being accomplished by discharging the molten silicon. The liquid product would be suitable for transfer to a crystal growth process, casting into solid form, or production of shots. A scaled-down prototype reactor demonstrated single pass conversion efficiency of 20 percent and deposition rates and energy consumption better than conventional Siemens reactors, via deposition rates of 365 microns/hr. and electrical consumption of 35 Kwhr/kg of silicon produced.
NASA Technical Reports Server (NTRS)
Kopasakis, George
2005-01-01
This year, an improved adaptive-feedback control method was demonstrated that suppresses thermoacoustic instabilities in a liquid-fueled combustor of a type used in aircraft engines. Extensive research has been done to develop lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle to reduce the environmental impact of aerospace propulsion systems. However, these lean-burning combustors are susceptible to thermoacoustic instabilities (high-frequency pressure waves), which can fatigue combustor components and even downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppressing the thermoacoustic combustor instabilities is an enabling technology for meeting the low-emission goals of the NASA Ultra-Efficient Engine Technology (UEET) Project.
Transportation life cycle assessment (LCA) synthesis : life cycle assessment learning module series.
DOT National Transportation Integrated Search
2015-03-12
The Life Cycle Assessment Learning Module Series is a set of narrated, self-advancing slideshows on : various topics related to environmental life cycle assessment (LCA). This research project produced the first 27 of such modules, which : are freely...
NASA Astrophysics Data System (ADS)
Rogacheva, Yana; Panenkov, Andrey; Petrikova, Zinaida; Nezhnikova, Ekaterina
2018-03-01
Improving the quality of high-rise buildings under modern conditions should be based not only on compliance with the norms of technical regulations, but also on ensuring energy efficiency, environmental friendliness, and intellectuality, which can be achieved only through the introduction of innovations at all stages of the life cycle of the investment project. Authors of this article justified the need for a mechanism of technological and price audit of projects. They also suggested the model of life cycle of organizational and economic changes, connected with implantation of the mechanism of projects audit. They showed innovation character of ecological high-rise construction for the whole life cycle. Authors also made proposals to change the audit system for high-rise construction projects in the focus of its environmental friendliness.
NASA Astrophysics Data System (ADS)
Domke, G. M.; Williams, C. A.; Birdsey, R.; Pendall, E.
2017-12-01
In North America forest and grassland ecosystems play a major role in the carbon cycle. Here we present the latest trends and projections of United States and North American carbon cycle processes, stocks, and flows in the context of interactions with global scale budgets and climate change impacts in managed and unmanaged grassland and forest ecosystems. We describe recent trends in natural and anthropogenic disturbances in these ecosystems as well as the carbon dynamics associated with land use and land cover change. We also highlight carbon management science and tools for informing decisions and opportunities for improving carbon measurements, observations, and projections in forests and grasslands.
The role of interest and inflation rates in life-cycle cost analysis
NASA Technical Reports Server (NTRS)
Eisenberger, I.; Remer, D. S.; Lorden, G.
1978-01-01
The effect of projected interest and inflation rates on life cycle cost calculations is discussed and a method is proposed for making such calculations which replaces these rates by a single parameter. Besides simplifying the analysis, the method clarifies the roles of these rates. An analysis of historical interest and inflation rates from 1950 to 1976 shows that the proposed method can be expected to yield very good projections of life cycle cost even if the rates themselves fluctuate considerably.
A Process for Transition to Sustainability: Implementation
ERIC Educational Resources Information Center
Wooltorton, Sandra; Palmer, Marilyn; Steele, Fran
2011-01-01
This paper reports the outcomes of the second action cycle of an ongoing project at Edith Cowan University (ECU) called "Transition to Sustainability: ECU South West" which is located in a small, single faculty regional university campus. The overall project has comprised three action research cycles, the first of which was the planning…
Lives in Context: Facilitating Online, Cross-Course, Collaborative Service Projects
ERIC Educational Resources Information Center
Elwood, Susan A.
2014-01-01
An inquiry-based, cross-course, collaborative structure is being implemented toward a graduate program's goals of using project-based learning as a consistent, core learning experience in each course cycle. This paper focuses upon the course collaborative structure and the two key forms of assessment used in each collaborative cycle: a progressive…
The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project
NASA Astrophysics Data System (ADS)
Brecheisen, Thomas; Theis, Thomas
2013-03-01
The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. Methodological note: data for this life-cycle assessment were obtained from project reports, construction blueprints and utility bills.
Human capital needs - teaching, training and coordination for nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retegan, T.; Ekberg, C.; John, J.
Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project formore » cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon
Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developedmore » system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to establish the optimal O&M strategy at the program-level. • It can be applied to any other country or sector in the global environment.« less
POLARIS: Helping Managers Get Answers Fast!
NASA Technical Reports Server (NTRS)
Corcoran, Patricia M.; Webster, Jeffery
2007-01-01
This viewgraph presentation reviews the Project Online Library and Resource Information System (POLARIS) system. It is NASA-wide, web-based system, providing access to information related to Program and Project Management. It will provide a one-stop shop for access to: a searchable, sortable database of all requirements for all product lines, project life cycle diagrams with reviews, project life cycle diagrams with reviews, project review definitions with products review information from NPR 7123.1, NASA Systems Engineering Processes and Requirements, templates and examples of products, project standard WBSs with dictionaries, and requirements for implementation and approval, information from NASA s Metadata Manager (MdM): Attributes of Missions, Themes, Programs & Projects, NPR7120.5 waiver form and instructions and much more. The presentation reviews the plans and timelines for future revisions and modifications.
Integrated solar thermochemical reaction system for steam methane reforming
Zheng, Feng; Diver, Rich; Caldwell, Dustin D.; ...
2015-06-05
Solar-aided upgrade of the energy content of fossil fuels, such as natural gas, can provide a near-term transition path towards a future solar-fuel economy and reduce carbon dioxide emission from fossil fuel consumption. Both steam and dry reforming a methane-containing fuel stream have been studied with concentrated solar power as the energy input to drive the highly endothermic reactions but the concept has not been demonstrated at a commercial scale. Under a current project with the U.S. Department of Energy, PNNL is developing an integrated solar thermochemical reaction system that combines solar concentrators with micro- and meso-channel reactors and heatmore » exchangers to accomplish more than 20% solar augment of methane higher heating value. The objective of our three-year project is to develop and prepare for commercialization such solar reforming system with a high enough efficiency to serve as the frontend of a conventional natural gas (or biogas) combined cycle power plant, producing power with a levelized cost of electricity less than 6¢/kWh, without subsidies, by the year 2020. In this paper, we present results from the first year of our project that demonstrated a solar-to-chemical energy conversion efficiency as high as 69% with a prototype reaction system.« less
Garrison, Louis P; Veenstra, David L
2009-01-01
Pharmacoeconomic analyses typically project the expected cost-effectiveness of a new product for a specific indication. This analysis develops a dynamic life-cycle model to conduct a multi-indication evaluation using the case of trastuzumab licensed in the United States for both early-stage and metastatic (or late-stage) human epidermal growth factor receptor 2 (HER2)-positive breast cancer therapy (early breast cancer [EBC]; metastatic breast cancer [MBC]), approved in 2006 and 1998, respectively. This dynamic model combined information on expected incremental cost-utility ratios for specific indications with an epidemiologically based projection of utilization by indication over the product life cycle-from 1998 to 2016. Net economic value was estimated as the cumulative quality-adjusted life years (QALYs) gained over the life cycle multiplied by a societal valuation of health gains ($/QALY) minus cumulative net direct treatment costs. Sensitivity analyses were performed under a range of assumptions. We projected that the annual number of EBC patients receiving trastuzumab will be more than three times that of MBC by 2016, in part because adjuvant treatment reduces the future incidence of MBC. Over this life cycle, the estimated overall incremental cost-effectiveness ratio (ICER) was $35,590/QALY with a total of 432,547 discounted QALYs gained. Under sensitivity analyses, the overall ICER varied from $21,000 to $53,000/QALY, and the projected net economic value resulting from trastuzumab treatment ranged from $6.2 billion to $49.5 billion. Average ICERs for multi-indication compounds can increase or decrease over the product life cycle. In this example, the projected overall life-cycle ICER for trastuzumab was less than one half of that in the initial indication. This dynamic perspective-versus the usual static one-highlights the interdependence of drug development decisions and investment incentives, raising important reimbursement policy issues.
Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
Kendrick, B. Jacob; DiTullio, Giacomo R.; Cyronak, Tyler J.; Fulton, James M.; Van Mooy, Benjamin A. S.; Bidle, Kay D.
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance. PMID:25405345
Temperature-induced viral resistance in Emiliania huxleyi (Prymnesiophyceae).
Kendrick, B Jacob; DiTullio, Giacomo R; Cyronak, Tyler J; Fulton, James M; Van Mooy, Benjamin A S; Bidle, Kay D
2014-01-01
Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi's susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.
Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status
NASA Technical Reports Server (NTRS)
Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.
2010-01-01
NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.
NASA Astrophysics Data System (ADS)
Steiner, S. M.; Wood, J. H.
2015-12-01
As decomposition rates are affected by climate change, understanding crucial soil interactions that affect plant growth and decomposition becomes a vital part of contributing to the students' knowledge base. The Global Decomposition Project (GDP) is designed to introduce and educate students about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. The Interactive Model of Leaf Decomposition (IMOLD) utilizes animations and modeling to learn about the carbon cycle, leaf anatomy, and the role of microbes in decomposition. Paired together, IMOLD teaches the background information and allows simulation of numerous scenarios, and the GDP is a data collection protocol that allows students to gather usable measurements of decomposition in the field. Our presentation will detail how the GDP protocol works, how to obtain or make the materials needed, and how results will be shared. We will also highlight learning objectives from the three animations of IMOLD, and demonstrate how students can experiment with different climates and litter types using the interactive model to explore a variety of decomposition scenarios. The GDP demonstrates how scientific methods can be extended to educate broader audiences, and data collected by students can provide new insight into global patterns of soil decomposition. Using IMOLD, students will gain a better understanding of carbon cycling in the context of litter decomposition, as well as learn to pose questions they can answer with an authentic computer model. Using the GDP protocols and IMOLD provide a pathway for scientists and educators to interact and reach meaningful education and research goals.
NASA Technical Reports Server (NTRS)
Hughes, Chris; Lord, Wed
2008-01-01
Current collaborative research with Pratt & Whitney on Ultra High Bypass Engine Cycle noise, performance and emissions improvements as part of the Subsonic Fixed Wing Project Ultra High Bypass Engine Partnership Element is discussed. The Subsonic Fixed Wing Project goals are reviewed, as well as their relative technology level compared to previous NASA noise program goals. Progress toward achieving the Subsonic Fixed Wing Project goals over the 2008 fiscal year by the UHB Partnership in this area of research are reviewed. The current research activity in Ultra High Bypass Engine Cycle technology, specifically the Pratt & Whitney Geared Turbofan, at NASA and Pratt & Whitney are discussed including the contributions each entity bring toward the research project, and technical plans and objectives. Pratt & Whitney Geared Turbofan current and future technology and business plans are also discussed, including the role the NASA SFW UHB partnership plays toward achieving those goals.
Project for Solar-Terrestrial Environment Prediction (PSTEP): Towards Predicting Next Solar Cycle
NASA Astrophysics Data System (ADS)
Imada, S.; Iijima, H.; Hotta, H.; Shiota, D.; Kanou, O.; Fujiyama, M.; Kusano, K.
2016-10-01
It is believed that the longer-term variations of the solar activity can affect the Earth's climate. Therefore, predicting the next solar cycle is crucial for the forecast of the "solar-terrestrial environment". To build prediction schemes for the activity level of the next solar cycle is a key for the long-term space weather study. Although three-years prediction can be almost achieved, the prediction of next solar cycle is very limited, so far. We are developing a five-years prediction scheme by combining the Surface Flux Transport (SFT) model and the most accurate measurements of solar magnetic fields as a part of the PSTEP (Project for Solar-Terrestrial Environment Prediction),. We estimate the meridional flow, differential rotation, and turbulent diffusivity from recent modern observations (Hinode and Solar Dynamics Observatory). These parameters are used in the SFT models to predict the polar magnetic fields strength at the solar minimum. In this presentation, we will explain the outline of our strategy to predict the next solar cycle. We also report the present status and the future perspective of our project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifa, Hesham
Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less
Kobayashi, Yumi; Peters, Greg M; Ashbolt, Nicholas J; Heimersson, Sara; Svanström, Magdalena; Khan, Stuart J
2015-08-01
Life cycle assessment (LCA) and quantitative risk assessment (QRA) are commonly used to evaluate potential human health impacts associated with proposed or existing infrastructure and products. Each approach has a distinct objective and, consequently, their conclusions may be inconsistent or contradictory. It is proposed that the integration of elements of QRA and LCA may provide a more holistic approach to health impact assessment. Here we examine the possibility of merging LCA assessed human health impacts with quantitative microbial risk assessment (QMRA) for waterborne pathogen impacts, expressed with the common health metric, disability adjusted life years (DALYs). The example of a recent large-scale water recycling project in Sydney, Australia was used to identify and demonstrate the potential advantages and current limitations of this approach. A comparative analysis of two scenarios - with and without the development of this project - was undertaken for this purpose. LCA and QMRA were carried out independently for the two scenarios to compare human health impacts, as measured by DALYs lost per year. LCA results suggested that construction of the project would lead to an increased number of DALYs lost per year, while estimated disease burden resulting from microbial exposures indicated that it would result in the loss of fewer DALYs per year than the alternative scenario. By merging the results of the LCA and QMRA, we demonstrate the advantages in providing a more comprehensive assessment of human disease burden for the two scenarios, in particular, the importance of considering the results of both LCA and QRA in a comparative assessment of decision alternatives to avoid problem shifting. The application of DALYs as a common measure between the two approaches was found to be useful for this purpose. Copyright © 2015 Elsevier Ltd. All rights reserved.
A new method for teaching physical examination to junior medical students.
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.
Performance evolution of 60 kA HTS cable prototypes in the EDIPO test facility
NASA Astrophysics Data System (ADS)
Bykovsky, N.; Uglietti, D.; Sedlak, K.; Stepanov, B.; Wesche, R.; Bruzzone, P.
2016-08-01
During the first test campaign of the 60 kA HTS cable prototypes in the EDIPO test facility, the feasibility of a novel HTS fusion cable concept proposed at the EPFL Swiss Plasma Center (SPC) was successfully demonstrated. While the measured DC performance of the prototypes at magnetic fields from 8 T to 12 T and for currents from 30 kA to 70 kA was close to the expected one, an initial electromagnetic cycling test (1000 cycles) revealed progressive degradation of the performance in both the SuperPower and SuperOx conductors. Aiming to understand the reasons for the degradation, additional cycling (1000 cycles) and warm up-cool down tests were performed during the second test campaign. I c performance degradation of the SuperOx conductor reached ∼20% after about 2000 cycles, which was reason to continue with a visual inspection of the conductor and further tests at 77 K. AC tests were carried out at 0 and 2 T background fields without transport current and at 10 T/50 kA operating conditions. Results obtained in DC and AC tests of the second test campaign are presented and compared with appropriate data published recently. Concluding the first iteration of the HTS cable development program at SPC, a summary and recommendations for the next activity within the HTS fusion cable project are also reported.
Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.
ERIC Educational Resources Information Center
Bonnet, Robert L.; Keen, G. Daniel
This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Guilliams, Mark E.; Moore, Alan D., Jr.; Williams, W. Jon; Greenisen, M. C.; Fortney, S. M.
1998-01-01
This demonstration project assessed the crew members' compliance to a portion of the exercise countermeasures planned for use onboard the International Space Station (ISS) and the outcomes of their performing these countermeasures. Although these countermeasures have been used separately in other projects and investigations, this was the first time they'd been used together for an extended period (60 days) in an investigation of this nature. Crew members exercised every day for six days, alternating every other day between aerobic and resistive exercise, and rested on the seventh day. On the aerobic exercise days, subjects exercised on an electronically braked cycle ergometer using a protocol that has been previously shown to maintain aerobic capacity in subjects exposed to a space flight analogue. On the resistive exercise days, crew members performed five major multijoint resistive exercises in a concentric mode, targeting those muscle groups and bones we believe are most severely affected by space flight. The subjects favorably tolerated both exercise protocols, with a 98% compliance to aerobic exercise prescription and a 91% adherence to the resistive exercise protocol. After 60 days, the crew members improved their peak aerobic capacity by an average 7%, and strength gains were noted in all subjects. These results suggest that these exercise protocols can be performed during ISS, lunar, and Mars missions, although we anticipate more frequent bouts with both protocols for long-duration spaceflight. Future projects should investigate the impact of increased exercise duration and frequency on subject compliance, and the efficacy of such exercise prescriptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Tarasankar DebRoy
In recent years, applications of numerical heat transfer and fluid flow models of fusion welding have resulted in improved understanding of both the welding processes and welded materials. They have been used to accurately calculate thermal cycles and fusion zone geometry in many cases. Here we report the following three major advancements from this project. First, we show how microstructures, grain size distribution and topology of welds of several important engineering alloys can be computed starting from better understanding of the fusion welding process through numerical heat transfer and fluid flow calculations. Second, we provide a conclusive proof that themore » reliability of numerical heat transfer and fluid flow calculations can be significantly improved by optimizing several uncertain model parameters. Third, we demonstrate how the numerical heat transfer and fluid flow models can be combined with a suitable global optimization program such as a genetic algorithm for the tailoring of weld attributes such as attaining a specified weld geometry or a weld thermal cycle. The results of the project have been published in many papers and a listing of these are included together with a list of the graduate thesis that resulted from this project. The work supported by the DOE award has resulted in several important national and international awards. A listing of these awards and the status of the graduate students are also presented in this report.« less
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
Research requirements to reduce civil helicopter life cycle cost
NASA Technical Reports Server (NTRS)
Blewitt, S. J.
1978-01-01
The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.
Climate Change and Expected Impacts on the Global Water Cycle
NASA Technical Reports Server (NTRS)
Rind, David; Hansen, James E. (Technical Monitor)
2002-01-01
How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.
Katona, Linda; Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A; Valenti, Ornella; Viney, Tim J; Kotzadimitriou, Dimitrios; Klausberger, Thomas; Somogyi, Peter
2017-04-01
Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Technology CAD for integrated circuit fabrication technology development and technology transfer
NASA Astrophysics Data System (ADS)
Saha, Samar
2003-07-01
In this paper systematic simulation-based methodologies for integrated circuit (IC) manufacturing technology development and technology transfer are presented. In technology development, technology computer-aided design (TCAD) tools are used to optimize the device and process parameters to develop a new generation of IC manufacturing technology by reverse engineering from the target product specifications. While in technology transfer to manufacturing co-location, TCAD is used for process centering with respect to high-volume manufacturing equipment of the target manufacturing equipment of the target manufacturing facility. A quantitative model is developed to demonstrate the potential benefits of the simulation-based methodology in reducing the cycle time and cost of typical technology development and technology transfer projects over the traditional practices. The strategy for predictive simulation to improve the effectiveness of a TCAD-based project, is also discussed.
Principles of continuous quality improvement applied to intravenous therapy.
Dunavin, M K; Lane, C; Parker, P E
1994-01-01
Documentation of the application of the principles of continuous quality improvement (CQI) to the health care setting is crucial for understanding the transition from traditional management models to CQI models. A CQI project was designed and implemented by the IV Therapy Department at Lawrence Memorial Hospital to test the application of these principles to intravenous therapy and as a learning tool for the entire organization. Through a prototype inventory project, significant savings in cost and time were demonstrated using check sheets, flow diagrams, control charts, and other statistical tools, as well as using the Plan-Do-Check-Act cycle. As a result, a primary goal, increased time for direct patient care, was achieved. Eight hours per week in nursing time was saved, relationships between two work areas were improved, and $6,000 in personnel costs, storage space, and inventory were saved.
Pulver, Lisa K; Tett, Susan E; Coombes, Judith
2009-01-01
Background Multicentre drug use evaluations are described in the literature infrequently and usually publish only the results. The purpose of this paper is to describe the experience of Queensland hospitals participating in the Community-Acquired Pneumonia Towards Improving Outcomes Nationally (CAPTION) project, specifically evaluating the implementation of this project, detailing benefits and drawbacks of involvement in a national drug use evaluation program. Methods Emergency departments from nine hospitals in Queensland, Australia, participated in CAPTION, a national quality improvement project, conducted in 37 Australian hospitals. CAPTION was aimed at optimising prescribing in the management of Community-Acquired Pneumonia according to the recommendations of the Australian Therapeutic Guidelines: Antibiotic 12th edition. The project involved data collection, and evaluation, feedback of results and a suite of targeted educational interventions including audit and feedback, group presentations and academic detailing. A baseline audit and two drug use evaluation cycles were conducted during the 2-year project. The implementation of the project was evaluated using feedback forms after each phase of the project (audit or intervention). At completion a group meeting with the hospital coordinators identified positive and negative elements of the project. Results Evaluation by hospitals of their participation in CAPTION demonstrated both benefits and drawbacks. The benefits were grouped into the impact on the hospital dynamic such as; improved interdisciplinary working relationships (e.g. between pharmacist and doctor), recognition of the educational/academic role of the pharmacist, creation of ED Pharmacist positions and enhanced involvement with the National Prescribing Service, and personal benefits. Personal benefits included academic detailing training for participants, improved communication skills and opportunities to present at conferences. The principal drawback of participation was the extra burden on already busy staff members. Conclusion A national multicentre drug use evaluation project such as CAPTION allows hospitals which would otherwise not undertake such projects the opportunity to participate. The Queensland arm of CAPTION demonstrated benefits to both the individual participants and their hospitals, highlighting the additional value of participating in a multicentre project of this type. PMID:19646287
Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G.
2014-11-18
Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures asmore » low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.« less
A Life Cycle Cost Analysis of Rigid Pavements
DOT National Transportation Integrated Search
1999-09-01
The Texas Department of Transportation (TxDOT)commissioned a research project in 1996, summarized here, to promote life cycle cost analysis of rigid pavements throughout the TxDOT districts by developing a uniform methodology for performing life cycl...
Intersection life cycle cost comparison tool user guide version 1.0.
DOT National Transportation Integrated Search
2016-05-01
The Intersection Life Cycle Cost Comparison Tool User Guide was developed as part of North : Carolina Department of Transportation Research Project No. 201411: Evaluation of Life Cycle : Impacts of Intersection Control Type Selection. : This sprea...
NASA Astrophysics Data System (ADS)
Midland, Susan
Media specialists are increasingly assuming professional development roles as they collaborate with teachers to design instruction that combines content with technology. I am a media specialist in an independent school, and collaborated with two science teachers over a three-year period to integrate technology with their instruction. This action study explored integration of a digital narrative project in three eighth-grade earth science units and one ninth-grade physics unit with each unit serving as a cycle of research. Students produced short digital documentaries that combined still images with an accompanying narration. Students participating in the project wrote scripts based on selected science topics. The completed scripts served as the basis for the narratives. These projects were compared with a more traditional science writing project. Barriers and facilitators for implementation of this type of media project in a science classroom were identified. Lack of adequate access to computers proved to be a significant mechanical barrier. Acquisition of a laptop cart reduced but did not eliminate the technology access issues. The complexity of the project increased implementation time in comparison with traditional alternatives. Evaluation of the completed media projects presented problems. Scores by outside evaluators reflected evaluator unfamiliarity with assessing multimedia projects rather than student performance. Despite several revisions of the assessment rubric, low inter-rater reliability remained a concern even in the last cycle. This suggests that evaluation of media could present issues for teachers who attempt projects of this kind. A writing frame was developed to facilitate production of scripts. This reduced the time required to produce the scripts, but produced writing that was formulaic in the teacher's estimate. A graphic organizer was adopted in the final cycle to address this concern. New insights emerged as the study progressed through the four cycles of the study. At the conclusion of the study, the two teachers and I had a better understanding of barriers that can prevent smooth integration of a technology-based project.
Pinceel, Tom; Buschke, Falko; Weckx, Margo; Brendonck, Luc; Vanschoenwinkel, Bram
2018-01-24
Higher temperatures and increased environmental variability under climate change could jeopardize the persistence of species. Organisms that rely on short windows of rainfall to complete their life-cycles, like desert annual plants or temporary pool animals, may be particularly at risk. Although some could tolerate environmental changes by building-up banks of propagules (seeds or eggs) that buffer against catastrophes, climate change will threaten this resilience mechanism if higher temperatures reduce propagule survival. Using a crustacean model species from temporary waters, we quantified experimentally the survival and dormancy of propagules under anticipated climate change and used these demographic parameters to simulate long term population dynamics. By exposing propagules to present-day and projected daily temperature cycles in an 8 month laboratory experiment, we showed how increased temperatures reduce survival rates in the propagule bank. Integrating these reduced survival rates into population models demonstrated the inability of the bank to maintain populations; thereby exacerbating extinction risk caused by shortened growing seasons. Overall, our study demonstrates that climate change could threaten the persistence of populations by both reducing habitat suitability and eroding life-history strategies that support demographic resilience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdichevsky, Gene
Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A majormore » goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).« less
Flight Demonstrations of Orbital Space Plane (OSP) Technologies
NASA Technical Reports Server (NTRS)
Turner, Susan
2003-01-01
The Orbital Space Plane (OSP) Program embodies NASA s priority to transport Space Station crews safely, reliably, and affordably, while it empowers the Nation s greater strategies for scientific exploration and space leadership. As early in the development cycle as possible, the OSP will provide crew rescue capability, offering an emergency ride home from the Space Station, while accommodating astronauts who are deconditioned due to long- duration missions, or those that may be ill or injured. As the OSP Program develops a fully integrated system, it will use existing technologies and employ computer modeling and simulation. Select flight demonstrator projects will provide valuable data on launch, orbital, reentry, and landing conditions to validate thermal protection systems, autonomous operations, and other advancements, especially those related to crew safety and survival.
Switchable Shape Memory Alloys (SMA) Thermal Materials Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Williams, Martha; Fesmire, James
2014-01-01
Develop 2-way switchable thermal systems for use in systems that function in cold to hot temperature ranges using different alloy designs for SMA system concepts. In this project, KSC will specifically address designs of two proof of concept SMA systems with transition temperatures in the 65-95 C range and investigate cycle fatigue and "memory loss" due to thermal cycling.
DOT National Transportation Integrated Search
2014-11-01
This document was developed for transportation professionals responsible for project : development and has three basic goals: : 1. Define project consistency and identify the causes of project inconsistencies and the : critical junctures in the proje...
FME Senior Project Managers: A Juggling Act of Multiple Projects | Poster
By Peggy Pearl, Contributing Writer It was not until the 1950s that organizations in the United States began to apply project management tools and techniques to complex construction and engineering projects (http://en.m.wikipedia.org/wiki/Project_life_cycle).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-02
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0195] Developing Software Life Cycle Processes Used in... revised regulatory guide (RG), revision 1 of RG 1.173, ``Developing Software Life Cycle Processes for... Developing a Software Project Life Cycle Process,'' issued 2006, with the clarifications and exceptions as...
NASA Technical Reports Server (NTRS)
2011-01-01
NASA is interested in developing technology that leads to more routine, safe, and affordable access to space. Access to space using airbreathing propulsion systems has potential to meet these objectives based on Airbreathing Access to Space (AAS) system studies. To this end, the NASA Fundamental Aeronautics Program (FAP) Hypersonic Project is conducting fundamental research on a Turbine Based Combined Cycle (TBCC) propulsion system. The TBCC being studied considers a dual flow-path inlet system. One flow-path includes variable geometry to regulate airflow to a turbine engine cycle. The turbine cycle provides propulsion from take-off to supersonic flight. The second flow-path supports a dual-mode scramjet (DMSJ) cycle which would be initiated at supersonic speed to further accelerate the vehicle to hypersonic speed. For a TBCC propulsion system to accelerate a vehicle from supersonic to hypersonic speed, a critical enabling technology is the ability to safely and effectively transition from the turbine to the DMSJ-referred to as mode transition. To experimentally test methods of mode transition, a Combined Cycle Engine (CCE) Large-scale Inlet testbed was designed with two flow paths-a low speed flow-path sized for a turbine cycle and a high speed flow-path designed for a DMSJ. This testbed system is identified as the CCE Large-Scale Inlet for Mode Transition studies (CCE-LIMX). The test plan for the CCE-LIMX in the NASA Glenn Research Center (GRC) 10- by 10-ft Supersonic Wind Tunnel (10x10 SWT) is segmented into multiple phases. The first phase is a matrix of inlet characterization (IC) tests to evaluate the inlet performance and establish the mode transition schedule. The second phase is a matrix of dynamic system identification (SysID) experiments designed to support closed-loop control development at mode transition schedule operating points for the CCE-LIMX. The third phase includes a direct demonstration of controlled mode transition using a closed loop control system developed with the data obtained from the first two phases. Plans for a fourth phase include mode transition experiments with a turbine engine. This paper, focusing on the first two phases of experiments, presents developed operational and analysis tools for streamlined testing and data reduction procedures.
When could global warming reach 4°C?
Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G
2011-01-13
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.
NASA Technical Reports Server (NTRS)
Reusser, P. U.; Coebergh, J. A. F.
1973-01-01
A high performing actuation system has been developed to drive one pair or a set of 9 pairs of louver blades. The system uses a Bourdon spiral as the driving member. The response time of the liquid expansion of the spiral system is in the order of three seconds. Besides performance tests, qualification tests have been carried out on a prototype system, demonstrating that the actuation system withstands normal launching conditions; projected operating life of 7 years with more than 7000 cycles can be expected.
A Hybrid Catalytic Route to Fuels from Biomass Syngas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, Laurel; Hallen, Richard; Lilga, Michael
LanzaTech partnered with the Pacific Northwest National Laboratory (PNNL), Imperium Aviation Fuels, InEnTec, Orochem Technologies, the University of Delaware, Michigan Technological University, the National Renewable Energy Laboratory, and The Boeing Company, to develop a cost-effective hybrid conversion technology for catalytic upgrading of biomass-derived syngas to sustainable alternative jet fuel (SAJF) meeting the price, quality and environmental requirements of the aviation industry. Alternative “synthetic paraffinic kerosene” (SPK) blendstock produced from syngas via “Fischer-Tropsch” (F-T) or from lipids via “hydroprocessing of esters and fatty acids” (HEFA) are currently being used in commercial jet fuel blends containing at least 50% petroleum-based fuel. Thismore » project developed an alternative route to SAJF from ethanol, a type of “alcohol to jet” (ATJ) SPK. The project objective was to demonstrate a pathway that combines syngas fermentation to ethanol with catalytic upgrading of ethanol to sustainable alternative jet fuel and shows attractive overall system economics to drive down the price of biomass-derived jet fuel. The hybrid pathway was to be demonstrated on three biomass feedstocks: corn stover, woody biomass, and third biomass feedstock, cellulosic residues. The objective also included the co-production of chemicals, exemplified by 2,3-Butanediol (2,3-BDO), which can be converted to key chemical intermediates. The team successfully demonstrated that biomass syngas fermentation followed by catalytic conversion is a viable alternative to the Fischer-Tropsch process and produces a fuel with properties comparable to F-T and HEFA SPKs. Plasma gasification and gas fermentation were successfully integrated and demonstrated in continuous fermentations on waste wood, corn stover, and cellulosic bagasse. Gas fermentation was demonstrated to produce ethanol suitable for catalytic upgrading, isolating the upgrading from variations in biomass feed, syngas composition, and impurities. Ethanol feedstocks from all three types of biomass were demonstrated to be comparable to grain derived ethanol and suitable for the LT-PNNL ATJ process. The LT-PNNL ATJ catalytic upgrading process was demonstrated at lab scale for over 2000 hours of continuous operation on a single catalyst load. LanzaTech scaled up the ATJ process, producing 4000 gallons of jet and 600 gallons of diesel for testing and a future proving flight. The LT-PNNL ATJ process, at lab and pilot scale, using commercial grain-based ethanol and steel mill waste gas-based ethanol (“Lanzanol”), produces high-quality fuel-range distillates containing primarily normal paraffins and isoparaffins. The LT-PNNL ATJ fuel has equivalent properties to previously-approved SPKs such as F-T, HEFA, and ATJ from isobutanol, and conforms with critical properties needed to blend with conventional jet fuel. The project showed that the 2,3-BDO fermentation co-product can be separated economically utilizing Simulated Moving Bed (SMB) technology. 2,3-BDO can be catalytically converted to 1,3-butadiene (BD) in a two-step process with at least 70% yield, producing a chemical intermediate suitable for downstream applications. Technoeconomic and life cycle analyses of the biomass to jet process with and without 2,3-BDO production showed that capital costs are sensitive to the proportion of the 2,3-BDO co-product and biomass feedstock. The co-product 2,3-BDO, converted through to BD, significantly reduces the cash cost of production of the hydrocarbon fuels. Life cycle GHG emissions of ATJ SPK produced from biomass using a steam gasification system are projected to be significantly lower than those of conventional jet fuel. The project demonstrated that a high quality ATJ SPK, can be produced from biomass via a hybrid gas fermentation/catalytic route. Validation of the LT-PNNL ATJ process using a variety of ethanol feedstocks demonstrated the viability of a future model of distributed ATJ production, in which ethanol may be produced at multiple facilities from local feedstocks and shipped to a central facility for conversion. The project demonstrated that co-production of chemicals has the potential to reduce jet cost of production, thereby accelerating commercial production of SAJF from biomass.« less
Robust and Heterogeneous Hydrological Changes under Global Warming
NASA Astrophysics Data System (ADS)
Kumar, S.; Zwiers, F. W.; Dirmeyer, P.; Lawrence, D. M.; Shrestha, R. R.; Werner, A. T.
2015-12-01
The Intergovernmental Panel on Climate Change (IPCC) has continued to find it difficult to make clear assessments of streamflow changes [Assessment Report 5, Working Group II, Chapter 3] in large part because of the heterogeneity of observed and projected hydrological changes. While prior studies have found some evidence of human influence on precipitation changes, the detection of streamflow changes is not robust. Here, we show that the terrestrial branch of the hydrological cycle, namely the partitioning of precipitation into evapotranspiration and runoff, is an important piece of the puzzle that may explain the apparent disconnect between the detectability of precipitation and streamflow changes. We apply Budyko framework to quantify sensitivity of hydrological changes to climate driven changes in water balance regionally. We demonstrate that the hydrological sensitivity is 3 times greater in regions where the hydrological cycle is energy limited (wet regions) than water limited (dry regions), and therefore the detectability of streamflow changes is also greater by 30-40% in wet regions. Evidence from observations in western North America and an analysis of Coupled Model Intercomparison Project Phase 5 climate models at global scales indicate that use of the Budyko framework can help identify robust and spatially heterogeneous hydrological responses to external forcing on the climate system.
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
Glover-Kudon, Rebecca; DeGroff, Amy; Rohan, Elizabeth A; Preissle, Judith; Boehm, Jennifer E
2013-08-01
In 2005 through 2009, the Centers for Disease Control and Prevention (CDC) funded 5 sites to implement a colorectal cancer screening program for uninsured, low-income populations. These 5 sites composed a demonstration project intended to explore the feasibility of establishing a national colorectal cancer screening program through various service delivery models. A longitudinal, multiple case study was conducted to understand and document program implementation processes. Using metaphor as a qualitative analytic technique, evaluators identified stages of maturation across the programmatic life cycle. Analysis rendered a working theory of program development during screening implementation. In early stages, program staff built relationships with CDC and local partners around screening readiness, faced real-world challenges putting program policies into practice, revised initial program designs, and developed new professional skills. Midterm implementation was defined by establishing program cohesiveness and expanding programmatic reach. In later stages of implementation, staff focused on sustainability and formal program closeout, which prompted reflection about personal and programmatic accomplishments. Demonstration sites evolved through common developmental stages during screening implementation. Findings elucidate ways to target technical assistance to more efficiently move programs along their maturation trajectory. In practical terms, the time and cost associated with guiding a program to maturity may be potentially shortened to maximize return on investment for both organizations and clients receiving service benefits. © 2013 American Cancer Society.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, P.
2015-12-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond", is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups 8 Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
CORDEX.be: COmbining Regional climate Downscaling EXpertise in Belgium
NASA Astrophysics Data System (ADS)
Termonia, Piet; Van Schaeybroeck, Bert; De Ridder, Koen; Fettweis, Xavier; Gobin, Anne; Luyten, Patrick; Marbaix, Philippe; Pottiaux, Eric; Stavrakou, Trissevgeni; Van Lipzig, Nicole; van Ypersele, Jean-Pascal; Willems, Patrick
2016-04-01
The main objective of the ongoing project CORDEX.be, "COmbining Regional Downscaling EXpertise in Belgium: CORDEX and Beyond" is to gather existing and ongoing Belgian research activities in the domain of climate modelling to create a coherent scientific basis for future climate services in Belgium. The project regroups eight Belgian Institutes under a single research program of the Belgian Science Policy (BELSPO). The project involves three regional climate models: the ALARO model, the COSMO-CLM model and the MAR model running according to the guidelines of the CORDEX project and at convection permitting resolution on small domains over Belgium. The project creates a framework to address four objectives/challenges. First, this projects aims to contribute to the EURO-CORDEX project. Secondly, RCP simulations are executed at convection-permitting resolutions (3 to 5 km) on small domains. Thirdly, the output of the atmospheric models is used to drive land surface models (the SURFEX model and the Urbclim model) with urban modules, a crop model (REGCROP), a tides and storm model (COHERENS) and the MEGAN-MOHYCAN model that simulates the fluxes emitted by vegetation. Finally, one work package will translate the uncertainty present in the CORDEX database to the high-resolution output of the CORDEX.be project. The organization of the project will be presented and first results will be shown, demonstrating that convection-permitting models can add extra skill to the mesoscale version of the regional climate models, in particular regarding the extreme value statistics and the diurnal cycle.
An Ethnography of the Navajo Reproductive Cycle.
ERIC Educational Resources Information Center
Wright, Anne
1982-01-01
Describes the reproductive cycle (menarche, menstrual cycle, fertility and contraceptive use, and menopause) as experienced by two groups of contemporary Navajo women. Eighty Navajo women, 40 traditional and 40 acculturated, participated in the 1978 research project which focused on influences of menopause. (ERB)
ERIC Educational Resources Information Center
Juntunen, M. K.; Aksela, M. K.
2014-01-01
The aim of the study discussed in this paper was to link existing research about the argumentation skills of students to the teaching of life-cycle analysis (LCA) in order to promote an evidence-based approach to the teaching of and learning about materials used in consumer products. This case-study is part of a larger design research project that…
NASA Astrophysics Data System (ADS)
Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.
2009-12-01
National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.
Montana Integrated Carbon to Liquids (ICTL) Demonstration Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiato, Rocco A.; Sharma, Ramesh; Allen, Mark
Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO 2 Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO 2, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526more » targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.« less
Downscaled projections of Caribbean coral bleaching that can inform conservation planning.
van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki
2015-09-01
Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES
The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...
Cycle/Cocycle Oblique Projections on Oriented Graphs
NASA Astrophysics Data System (ADS)
Polettini, Matteo
2015-01-01
It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.
Corrosion of Structural Materials for Advanced Supercritical Carbon- Dioxide Brayton Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar
The supercritical carbon-dioxide (referred to as SC-CO 2 hereon) Brayton cycle is being considered for power conversion systems for a number of nuclear reactor concepts, including the sodium fast reactor (SFR), fluoride saltcooled high temperature reactor (FHR), and high temperature gas reactor (HTGR), and several types of small modular reactors (SMR). The SC-CO 2 direct cycle gas fast reactor has also been recently proposed. The SC-CO 2 Brayton cycle (discussed in Chapter 1) provides higher efficiencies compared to the Rankine steam cycle due to less compression work stemming from higher SC-CO 2 densities, and allows for smaller components size, fewermore » components, and simpler cycle layout. For example, in the case of a SFR using a SC-CO 2 Brayton cycle instead of a steam cycle would also eliminate the possibility of sodium-water interactions. The SC-CO 2 cycle has a higher efficiency than the helium Brayton cycle, with the additional advantage of being able to operate at lower temperatures and higher pressures. In general, the SC-CO 2 Brayton cycle is well-suited for any type of nuclear reactor (including SMR) with core outlet temperature above ~ 500°C in either direct or indirect versions. In all the above applications, materials corrosion in high temperature SC-CO 2 is an important consideration, given their expected lifetimes of 20 years or longer. Our discussions with National Laboratories and private industry early on in this project indicated materials corrosion to be one of the significant gaps in the implementation of SC-CO 2 Brayton cycle. Corrosion can lead to a loss of effective load-bearing wall thickness of a component and can potentially lead to the generation of oxide particulate debris which can lead to three-body wear in turbomachinery components. Another environmental degradation effect that is rather unique to CO 2 environment is the possibility for simultaneous occurrence of carburization during oxidation of the material. Carburization can potentially lead to embrittlement of structural alloys in SC-CO 2 Brayton cycle. An important consideration in regards to corrosion is that the temperatures can vary widely across the various sections of the SC-CO 2 Brayton cycle, from room temperature to 750°C, with even higher temperatures being desirable for higher efficiencies. Thus the extent of corrosion and corrosion mechanisms in various components and SC-CO 2 Brayton cycle will be different, requiring a judicious selection of materials for different sections of the cycle. The goal of this project was to address materials corrosion-related challenges, identify appropriate materials, and advance the body of scientific knowledge in the area of high temperature SC-CO 2 corrosion. The focus was on corrosion of materials in SC-CO 2 environment in the temperature range of 450°C to 750°C at a pressure of 2900 psi for exposure duration for up to 1000 hours. The Table below lists the materials tested in the project. The materials were selected based on their high temperature strength, their code certification status, commercial availabilities, and their prior or current usage in the nuclear reactor industry. Additionally, pure Fe, Fe-12%Cr, and Ni-22%Cr were investigated as simple model materials to more clearly understand corrosion mechanisms. This first phase of the project involved testing in research grade SC-CO 2 (99.999% purity). Specially designed autoclaves with high fidelity temperature, pressure, and flow control capabilities were built or modified for this project.« less
Technical and economic assessments commercial success for IGCC technology in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, T.
1998-07-01
The experiences gained from several Integrated Gasification Combined Cycle (IGCC) demonstration plants operating in the US and Europe facilitate commercial success of this advanced coal-based power generation technology. However, commercialization of coal-based IGCC technology in the West, particularly in the US, is restricted due to the low price of natural gas. On the contrary, in China--the largest coal producer and consumer in the world--a lack of natural gas supply, strong demand for air pollution control and relatively low costs of manufacturing and construction provide tremendous opportunities for IGCC applications. The first Chinese IGCC demonstration project was initiated in 1994, andmore » other potential IGCC projects are in planning. IGCC applications in re-powering, fuel switching and multi-generation also show a great market potential in China. However, questions for IGCC development in China remain; where are realistic opportunities for IGCC projects and how can these opportunities be converted into commercial success? The answers to these questions should focus on the Chinese market needs and emphasize economic benefits, not just clean, or power. High price of imported equipment, high financing costs, and the technical risk of first-of-a-kind installation barricade IGCC development in China. This paper presents preliminary technical and economic assessments for four typical IGCC applications in the Chinese marketplace: central power station, fuel switching, re-powering, and multi-generation. The major factors affecting project economics--such as plant cost, financing, prices of fuel and electricity and operating capacity factor--are analyzed. The results indicate that well-proven technology for versatile applications, preferred financing, reduction of the plant cost, environmental superiority and appropriate project structure are the key for commercial success of IGCC in China.« less
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2016-01-01
Stirling Radioisotope Power Systems (RPSs) are under development to provide power on future space science missions where robotic spacecraft will orbit, fly by, land, or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. NASA Glenn Research Center's newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability and system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
Overview of Stirling Technology Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Schifer, Nicholas A.; Williams, Zachary D.; Metscher, Jonathan F.
2015-01-01
Stirling Radioisotope Power Systems (RPS) are under development to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove using less than a quarter of the plutonium the currently available RPS uses to produce about the same power. Glenn Research Center's (GRC's) newly formulated Stirling Cycle Technology Development Project (SCTDP) continues development of Stirling-based systems and subsystems, which include a flight-like generator and related housing assembly, controller, and convertors. The project also develops less mature technologies under Stirling Technology Research, with a focus on demonstration in representative environments to increase the technology readiness level (TRL). Matured technologies are evaluated for selection in future generator designs. Stirling Technology Research tasks focus on a wide variety of objectives, including increasing temperature capability to enable new environments, reducing generator mass and/or size, improving reliability or system fault tolerance, and developing alternative designs. The task objectives and status are summarized.
NASA Astrophysics Data System (ADS)
Hayden, Brian; Aldering, Gregory; Amanullah, Rahman; Barbary, Kyle; Bohringer, Hans; Boone, Kyle Robert; Brodwin, Mark; Cunha, Carlos; Currie, Miles; Deustua, Susana; Dixon, Samantha; Eisenhardt, Peter; Fassbender, Rene; Fruchter, Andrew; Gladders, Michael; Gonzalez, Anthony; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, Myungkook James; Kim, Alex; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Ruiz-Lapuente, Pilar; Rykoff, Eli; Santos, Joana; Myers Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, Spencer; Stern, Daniel; Suzuki, Nao; Webb, Tracy; Wechsler, Risa; Williams, Steven; Willis, Jon; Wilson, Gillian; Yen, Mike
2018-01-01
The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. We present the status of the ongoing blinded cosmology analysis, demonstrating substantial improvement to the uncertainty on the Dark Energy density above z~1. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.8, which is the highest spectroscopic redshift SN Ia currently known.
Understanding user needs for carbon monitoring information
NASA Astrophysics Data System (ADS)
Duren, R. M.; Macauley, M.; Gurney, K. R.; Saatchi, S. S.; Woodall, C. W.; Larsen, K.; Reidmiller, D.; Hockstad, L.; Weitz, M.; Croes, B.; Down, A.; West, T.; Mercury, M.
2015-12-01
The objectives of the Understanding User Needs project for NASA's Carbon Monitoring System (CMS) program are to: 1) engage the user community and identify needs for policy-relevant carbon monitoring information, 2) evaluate current and planned CMS data products with regard to their value for decision making, and 3) explore alternative methods for visualizing and communicating carbon monitoring information and associated uncertainties to decision makers and other stakeholders. To meet these objectives and help establish a sustained link between science and decision-making we have established a multi-disciplinary team that combines expertise in carbon-cycle science, engineering, economics, and carbon management and policy. We will present preliminary findings regarding emerging themes and needs for carbon information that may warrant increased attention by the science community. We will also demonstrate a new web-based tool that offers a common framework for facilitating user evaluation of carbon data products from multiple CMS projects.
NASA Astrophysics Data System (ADS)
Sass, J. P.; Fesmire, J. E.; Nagy, Z. F.; Sojourner, S. J.; Morris, D. L.; Augustynowicz, S. D.
2008-03-01
A technology demonstration test project was conducted by the Cryogenics Test Laboratory at the Kennedy Space Center (KSC) to provide comparative thermal performance data for glass microspheres, referred to as bubbles, and perlite insulation for liquid hydrogen tank applications. Two identical 1/15th scale versions of the 3,200,000 liter spherical liquid hydrogen tanks at Launch Complex 39 at KSC were custom designed and built to serve as test articles for this test project. Evaporative (boil-off) calorimeter test protocols, including liquid nitrogen and liquid hydrogen, were established to provide tank test conditions characteristic of the large storage tanks that support the Space Shuttle launch operations. This paper provides comparative thermal performance test results for bubbles and perlite for a wide range of conditions. Thermal performance as a function of cryogenic commodity (nitrogen and hydrogen), vacuum pressure, insulation fill level, tank liquid level, and thermal cycles will be presented.
Materials for advanced turbine engines. Volume 1: Advanced blade tip seal system
NASA Technical Reports Server (NTRS)
Zelahy, J. W.; Fairbanks, N. P.
1982-01-01
Project 3, the subject of this technical report, was structured toward the successful engine demonstration of an improved-efficiency, long-life, tip-seal system for turbine blades. The advanced tip-seal system was designed to maintain close operating clearances between turbine blade tips and turbine shrouds and, at the same time, be resistant to environmental effects including high-temperature oxidation, hot corrosion, and thermal cycling. The turbine blade tip comprised an environmentally resistant, activated-diffussion-bonded, monocrystal superalloy combined with a thin layer of aluminium oxide abrasive particles entrapped in an electroplated NiCr matrix. The project established the tip design and joint location, characterized the single-crystal tip alloy and abrasive tip treatment, and established the manufacturing and quality-control plans required to fully process the blades. A total of 171 blades were fully manufactured, and 100 were endurance and performance engine-tested.
Global R&D through the Intelligent Manufacturing Systems (IMS) program
NASA Astrophysics Data System (ADS)
Huray, Paul G.
1997-01-01
The industry-led, international intelligent manufacturing systems (IMS) program provides a special vehicle for joint research and development between government, industry and academia in the United States, Canada, Japan, Australia, and Europe. Since its beginning in 1989, the IMS program has progressed through a feasibility phase which demonstrated that international legal barriers, trade issues, and intellectual property problems could be overcome. The program is constructed to provide higher quality design, customized products, shorter delivery cycles and lower costs. Interactions between partner companies have led to new business opportunities for mutual profit and some claim to have learned strategic information about their international competitors. The IMS program is growing through the participation of hundreds of corporate and university partners who share responsibilities in specific projects and jointly reap benefits for their manufacturing products and processes. The logic for choosing or not choosing the IMS mechanisms will be discussed and R and D projects will be identified.
NASA Technical Reports Server (NTRS)
Depenbrock, Brett T.; Balint, Tibor S.; Sheehy, Jeffrey A.
2014-01-01
Research and development organizations that push the innovation edge of technology frequently encounter challenges when attempting to identify an investment strategy and to accurately forecast the cost and schedule performance of selected projects. Fast moving and complex environments require managers to quickly analyze and diagnose the value of returns on investment versus allocated resources. Our Project Assessment Framework through Design (PAFTD) tool facilitates decision making for NASA senior leadership to enable more strategic and consistent technology development investment analysis, beginning at implementation and continuing through the project life cycle. The framework takes an integrated approach by leveraging design principles of useability, feasibility, and viability and aligns them with methods employed by NASA's Independent Program Assessment Office for project performance assessment. The need exists to periodically revisit the justification and prioritization of technology development investments as changes occur over project life cycles. The framework informs management rapidly and comprehensively about diagnosed internal and external root causes of project performance.
The NASA CSTI high capacity power project
NASA Technical Reports Server (NTRS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-01-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
The NASA CSTI high capacity power project
NASA Astrophysics Data System (ADS)
Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R.; Schmitz, P.; Vandersande, J.
1992-08-01
The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the Civilian Space Technology Initiative (CSTI) High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project will develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.
The Process of Life Cycle Cost Analysis: Projecting Economic Consequences of Design Decisions
ERIC Educational Resources Information Center
AIA Journal, 1976
1976-01-01
Life-cycle cost analysis deals with both present and future costs and attempts to relate the two as a basis for making decisions. This article lays the groundwork for a better understanding of the techniques of life-cycle cost analysis. (Author/MLF)
2008-07-01
cycle Evolution of a system, product, service, project or other human-made entity from conception through retirement [ ISO 12207 ]. Logical line of...012 [ ISO 1995] International Organization for Standardization. ISO /IEC 12207 :1995—Information technology— Software life cycle processes. http...definitions, authors were asked to use or align with already existing standards such as those available through ISO and IEEE when possible. Literature
Error Cost Escalation Through the Project Life Cycle
NASA Technical Reports Server (NTRS)
Stecklein, Jonette M.; Dabney, Jim; Dick, Brandon; Haskins, Bill; Lovell, Randy; Moroney, Gregory
2004-01-01
It is well known that the costs to fix errors increase as the project matures, but how fast do those costs build? A study was performed to determine the relative cost of fixing errors discovered during various phases of a project life cycle. This study used three approaches to determine the relative costs: the bottom-up cost method, the total cost breakdown method, and the top-down hypothetical project method. The approaches and results described in this paper presume development of a hardware/software system having project characteristics similar to those used in the development of a large, complex spacecraft, a military aircraft, or a small communications satellite. The results show the degree to which costs escalate, as errors are discovered and fixed at later and later phases in the project life cycle. If the cost of fixing a requirements error discovered during the requirements phase is defined to be 1 unit, the cost to fix that error if found during the design phase increases to 3 - 8 units; at the manufacturing/build phase, the cost to fix the error is 7 - 16 units; at the integration and test phase, the cost to fix the error becomes 21 - 78 units; and at the operations phase, the cost to fix the requirements error ranged from 29 units to more than 1500 units
Change management methodologies trained for automotive infotainment projects
NASA Astrophysics Data System (ADS)
Prostean, G.; Volker, S.; Hutanu, A.
2017-01-01
An Automotive Electronic Control Units (ECU) development project embedded within a car Environment is constantly under attack of a continuous flow of modifications of specifications throughout the life cycle. Root causes for those modifications are for instance simply software or hardware implementation errors or requirement changes to satisfy the forthcoming demands of the market to ensure the later commercial success. It is unavoidable that from the very beginning until the end of the project “requirement changes” will “expose” the agreed objectives defined by contract specifications, which are product features, budget, schedule and quality. The key discussions will focus upon an automotive radio-navigation (infotainment) unit, which challenges aftermarket devises such as smart phones. This competition stresses especially current used automotive development processes, which are fit into a 4 Year car development (introduction) cycle against a one-year update cycle of a smart phone. The research will focus the investigation of possible impacts of changes during all phases of the project: the Concept-Validation, Development and Debugging-Phase. Building a thorough understanding of prospective threats is of paramount importance in order to establish the adequate project management process to handle requirement changes. Personal automotive development experiences and Literature review of change- and configuration management software development methodologies led the authors to new conceptual models, which integrates into the structure of traditional development models used in automotive projects, more concretely of radio-navigation projects.
Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..
The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.
Predicting Defects Using Information Intelligence Process Models in the Software Technology Project
Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy
2015-01-01
A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%–80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects. PMID:26495427
Participatory action research: involving students in parent education.
Fowler, Cathrine; Wu, Cynthia; Lam, Winsome
2014-01-01
Competition for scarce clinical placements has increased requiring new and innovative models to be developed to meet the growing need. A participatory action research project was used to provide a community nursing clinical experience of involvement in parent education. Nine Hong Kong nursing students self-selected to participate in the project to implement a parenting program called Parenting Young Children in a Digital World. Three project cycles were used: needs identification, skills development and program implementation. Students were fully involved in each cycle's planning, action and reflection phase. Qualitative and quantitative data were collected to inform the project. The overall outcome of the project was the provision of a rich and viable clinical placement experience that created significant learning opportunities for the students and researchers. This paper will explore the student's participation in this PAR project as an innovative clinical practice opportunity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.
Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy
2015-01-01
A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.
NASA Technical Reports Server (NTRS)
Irwin, Daniel
2010-01-01
Goal 1: Enhance Applications Research Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response. Key Actions: Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science. Goal 2: Increase Collaboration Establish a flexible program structure to meet diverse partner needs and applications objectives. Key Actions: Pursue partnerships to leverage resources and risks and extend the program s reach and impact. Goal 3:Accelerate Applications Ensure that NASA s flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle. Key Actions: Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning
DOT National Transportation Integrated Search
2016-07-01
Federal and state transportation planning statutory and regulatory laws require transportation projects to be : consistent with transportation plans and improvement programs before a federal action can be taken on a : project requiring one. Significa...
NASA Technical Reports Server (NTRS)
Parrott, Edith L.; Weiland, Karen J.
2017-01-01
The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.
Engineering Technical Review Planning Briefing
NASA Technical Reports Server (NTRS)
Gardner, Terrie
2012-01-01
The general topics covered in the engineering technical planning briefing are 1) overviews of NASA, Marshall Space Flight Center (MSFC), and Engineering, 2) the NASA Systems Engineering(SE) Engine and its implementation , 3) the NASA Project Life Cycle, 4) MSFC Technical Management Branch Services in relation to the SE Engine and the Project Life Cycle , 5) Technical Reviews, 6) NASA Human Factor Design Guidance , and 7) the MSFC Human Factors Team. The engineering technical review portion of the presentation is the primary focus of the overall presentation and will address the definition of a design review, execution guidance, the essential stages of a technical review, and the overall review planning life cycle. Examples of a technical review plan content, review approaches, review schedules, and the review process will be provided and discussed. The human factors portion of the presentation will focus on the NASA guidance for human factors. Human factors definition, categories, design guidance, and human factor specialist roles will be addressed. In addition, the NASA Systems Engineering Engine description, definition, and application will be reviewed as background leading into the NASA Project Life Cycle Overview and technical review planning discussion.
A life cycle greenhouse gas inventory of a tree production system
Alissa Kendall; E. Gregory McPherson
2012-01-01
PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....
LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD
The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...
25 CFR 700.463 - Requirements for applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... funding assistance. The preapplication shall be due by the closing date published by the Commission, and... funding cycle. Applications received after the due date will be considered for the next funding cycle, although the Commission, at its discretion, may select such a project for funding under the current cycle...
ERIC Educational Resources Information Center
Reeske, Mike
2000-01-01
Explains a project called "Life Cycle of a Pencil" which was developed by the National Science Teachers Association (NSTA) and the U.S. Environmental Protection Agency (USEPA). Describes the life cycle of a pencil in stages starting from the first stage of design to the sixth stage of product disposal. (YDS)
Barratt, Paul A; Selfe, James
2018-06-01
To improve outcomes of physiotherapy treatment for patients with Lateral Epicondylalgia. A systematic audit and quality improvement project over three phases, each of one year duration. Salford Royal NHS Foundation Trust Teaching Hospital Musculoskeletal Physiotherapy out-patients department. n=182. Phase one - individual discretion; Phase two - strengthening as a core treatment however individual discretion regarding prescription and implementation; Phase three - standardised protocol using high load isometric exercise, progressing on to slow combined concentric & eccentric strengthening. Global Rating of Change Scale, Pain-free grip strength, Patient Rated Tennis Elbow Evaluation, Tampa Scale of Kinesophobia-11. Phase three demonstrated a reduction in the average number of treatments by 42% whilst improving the number of responders to treatment by 8% compared to phase one. Complete cessation of non-evidence based treatments was also observed by phase three. Strengthening should be a core treatment for LE. Load setting needs to be sufficient. In phase three of the audit a standardised tendon loading programme using patient specific high load isometric exercises into discomfort/pain demonstrated a higher percentage of responders compared to previous phases. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Parkes, Olga; Lettieri, Paola; Bogle, I David L
2016-02-01
This paper presents a novel quantitative methodology for the evaluation and optimisation of the environmental impacts of the whole life cycle of a mega-event project: construction and staging the event and post-event site redevelopment and operation. Within the proposed framework, a mathematical model has been developed that takes into account greenhouse gas (GHG) emissions resulting from use of transportation fuel, energy, water and construction materials used at all stages of the mega-event project. The model is applied to a case study - the London Olympic Park. Three potential post-event site design scenarios of the Park have been developed: Business as Usual (BAU), Commercial World (CW) and High Rise High Density (HRHD). A quantitative summary of results demonstrates that the highest GHG emissions associated with the actual event are almost negligible compared to those associated with the legacy phase. The highest share of emissions in the legacy phase is attributed to embodied emissions from construction materials (almost 50% for the BAU and HRHD scenarios) and emissions resulting from the transportation of residents, visitors and employees to/from the site (almost 60% for the CW scenario). The BAU scenario is the one with the lowest GHG emissions compared to the other scenarios. The results also demonstrate how post-event site design scenarios can be optimised to minimise the GHG emissions. The overall outcomes illustrate how the proposed framework can be used to support decision making process for mega-event projects planning. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ninety to Nothing: a PDSA quality improvement project.
Prybutok, Gayle Linda
2018-05-14
Purpose The purpose of this paper is to present a case study of a successful quality improvement project in an acute care hospital focused on reducing the time of the total patient visit in the emergency department. Design/methodology/approach A multidisciplinary quality improvement team, using the PDSA (Plan, Do, Study, Act) Cycle, analyzed the emergency department care delivery process and sequentially made process improvements that contributed to project success. Findings The average turnaround time goal of 90 minutes or less per visit was achieved in four months, and the organization enjoyed significant collateral benefits both internal to the organization and for its customers. Practical implications This successful PDSA process can be duplicated by healthcare organizations of all sizes seeking to improve a process related to timely, high-quality patient care delivery. Originality/value Extended wait time in hospital emergency departments is a universal problem in the USA that reduces the quality of the customer experience and that delays necessary patient care. This case study demonstrates that a structured quality improvement process implemented by a multidisciplinary team with the authority to make necessary process changes can successfully redefine the norm.
A new method for teaching physical examination to junior medical students
Sayma, Meelad; Williams, Hywel Rhys
2016-01-01
Introduction Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using “core clinical cases”, overcoming the need for “rote” learning. Methods This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. Results and discussion A model core clinical case developed in this project is described, with gout as the basis for a “foot and ankle” examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in “content overload”. Conclusion This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems. PMID:26937208
Preparing project managers for faster-better-cheaper robotic planetary missions
NASA Technical Reports Server (NTRS)
Gowler, P.; Atkins, K.
2003-01-01
The authors have developed and implemented a week-long workshop for Jet Propulsion Laboratory Project Managers, designed around the development phases of the JPL Project Life Cycle. The workshop emphasizes the specific activities and deliverables that pertain to JPL managers of NASA robotic space exploration and instrument development projects.
Project MASTER, 1987-88. OREA Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; Hammack, Floyd
Project MASTER completed its 3-year funding cycle in 1987-88. The project aimed at providing enhanced science instruction to 575 Spanish-speaking limited-English-proficient students in 5 elementary schools. Project MASTER offered classes in English as a Second Language (ESL), mathematics, science, and computer skills with a hands-on, integrated…
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
1976-03-01
6- 18 6.5 Acceleration Mode - Purumeter Accuracy Comparison 6- 18 6.6 Acceleratiin Mode - Sensor Accuracy Cormpriwon 6- 0 6.7 .OP/P Surqt Control...Spool Speeds 6-42 6. 18 Fan Pressure Ratio Schedule 6-43 6.19 SFC with Control Mode 01 6-45 6.20 Optimal T4.1 vs. NHCl 6-46 6.21 Adjusted SFC for... 18 Intermediate Power to Idle Decelberation at Mach 2.2 and 36,089 Feet 7-39 7.19 Idle to Intermediate Power Acceleration at Mach 1.2 and 500 feet 7
Wooten, Kevin C; Dann, Sara M; Finnerty, Celeste C; Kotarba, Joseph A
2014-07-01
The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle.
Wooten, Kevin C.; Dann, Sara M.; Finnerty, Celeste C.; Kotarba, Joseph A.
2015-01-01
The development of leadership and project management skills is increasingly important to the evolution of translational science and team-based endeavors. Team science is dependent upon individuals at various stages in their careers, inclusive of postdocs. Data from case histories, as well as from interviews with current and former postdocs, and those supervising postdocs, indicate six essential tasks required of project managers in multidisciplinary translational teams, along with eight skill-related themes critical to their success. To optimize the opportunities available and to ensure sequential development of team project management skills, a life cycle model for the development of translational team skills is proposed, ranging from graduate trainees, postdocs, assistant professors, and finally to mature scientists. Specific goals, challenges and project management roles and tasks are recommended for each stage for the life cycle. PMID:25621288
Promoting Collaboration in a Project-Based E-Learning Context
ERIC Educational Resources Information Center
Papanikolaou, Kyparisia; Boubouka, Maria
2011-01-01
In this paper we investigate the value of collaboration scripts for promoting metacognitive knowledge in a project-based e-learning context. In an empirical study, 82 students worked individually and in groups on a project using the e-learning environment MyProject, in which the life cycle of a project is inherent. Students followed a particular…
ENCOMPASS: A SAGA based environment for the compositon of programs and specifications, appendix A
NASA Technical Reports Server (NTRS)
Terwilliger, Robert B.; Campbell, Roy H.
1985-01-01
ENCOMPASS is an example integrated software engineering environment being constructed by the SAGA project. ENCOMPASS supports the specification, design, construction and maintenance of efficient, validated, and verified programs in a modular programming language. The life cycle paradigm, schema of software configurations, and hierarchical library structure used by ENCOMPASS is presented. In ENCOMPASS, the software life cycle is viewed as a sequence of developments, each of which reuses components from the previous ones. Each development proceeds through the phases planning, requirements definition, validation, design, implementation, and system integration. The components in a software system are modeled as entities which have relationships between them. An entity may have different versions and different views of the same project are allowed. The simple entities supported by ENCOMPASS may be combined into modules which may be collected into projects. ENCOMPASS supports multiple programmers and projects using a hierarchical library system containing a workspace for each programmer; a project library for each project, and a global library common to all projects.
Final test results for the ground operations demonstration unit for liquid hydrogen
NASA Astrophysics Data System (ADS)
Notardonato, W. U.; Swanger, A. M.; Fesmire, J. E.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.
2017-12-01
Described herein is a comprehensive project-a large-scale test of an integrated refrigeration and storage system called the Ground Operations and Demonstration Unit for Liquid Hydrogen (GODU LH2), sponsored by the Advanced Exploration Systems Program and constructed at Kennedy Space Center. A commercial cryogenic refrigerator interfaced with a 125,000 l liquid hydrogen tank and auxiliary systems in a manner that enabled control of the propellant state by extracting heat via a closed loop Brayton cycle refrigerator coupled to a novel internal heat exchanger. Three primary objectives were demonstrating zero-loss storage and transfer, gaseous liquefaction, and propellant densification. Testing was performed at three different liquid hydrogen fill-levels. Data were collected on tank pressure, internal tank temperature profiles, mass flow in and out of the system, and refrigeration system performance. All test objectives were successfully achieved during approximately two years of testing. A summary of the final results is presented in this paper.
CHP Integrated with Burners for Packaged Boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, Carlo; Darby, Eric
2013-09-30
The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was dividedmore » into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.« less
A Unified Approach to Quantifying Feedbacks in Earth System Models
NASA Astrophysics Data System (ADS)
Taylor, K. E.
2008-12-01
In order to speed progress in reducing uncertainty in climate projections, the processes that most strongly influence those projections must be identified. It is of some importance, therefore, to assess the relative strengths of various climate feedbacks and to determine the degree to which various earth system models (ESMs) agree in their simulations of these processes. Climate feedbacks have been traditionally quantified in terms of their impact on the radiative balance of the planet, whereas carbon cycle responses have been assessed in terms of the size of the perturbations to the surface fluxes of carbon dioxide. In this study we introduce a diagnostic strategy for unifying the two approaches, which allows us to directly compare the strength of carbon-climate feedbacks with other conventional climate feedbacks associated with atmospheric and surface changes. Applying this strategy to a highly simplified model of the carbon-climate system demonstrates the viability of the approach. In the simple model we find that even if the strength of the carbon-climate feedbacks is very large, the uncertainty associated with the overall response of the climate system is likely to be dominated by uncertainties in the much larger feedbacks associated with clouds. This does not imply that the carbon cycle itself is unimportant, only that changes in the carbon cycle that are associated with climate change have a relatively small impact on global temperatures. This new, unified diagnostic approach is suitable for assessing feedbacks in even the most sophisticated earth system models. It will be interesting to see whether our preliminary conclusions are confirmed when output from the more realistic models is analyzed. This work was carried out at the University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
Laser-boosted lightcraft technology demonstrator
NASA Technical Reports Server (NTRS)
Antonison, M.; Myrabo, Leik; Chen, S.; Decusatis, C.; Kusche, K.; Minucci, M.; Moder, J.; Morales, C.; Nelson, C.; Richard, J.
1989-01-01
The ultimate goal for this NASA/USRA-sponsored 'Apollo Lightcraft Project' is to develop a revolutionary manned launch vehicle technology that can potentially reduce payload transport costs by a factor of 1000 below the space shuttle orbiter. The Rensellaer design team proposes to utilize advanced, highly energetic, beamed-energy sources (laser, microwave) and innovative combined-cycle (airbreathing/rocket) engines to accomplish this goal. This year's effort, the detailed description and performance analysis of an unmanned 1.4-m Lightcraft Technology Demonstrator (LTD) drone, is presented. The novel launch system employs a 100-MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120-kg LTD to orbit, with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high-quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware. A mass production cost goal of 10(exp 3)/kg for the LTD vehicle is probably realizable.
Rainfall-enhanced blooming in typhoon wakes
Lin, Y.-C.; Oey, L.-Y.
2016-01-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899
Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Turner, James
1999-01-01
NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.
Rainfall-enhanced blooming in typhoon wakes.
Lin, Y-C; Oey, L-Y
2016-08-22
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
Rainfall-enhanced blooming in typhoon wakes
NASA Astrophysics Data System (ADS)
Lin, Y.-C.; Oey, L.-Y.
2016-08-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
Rainfall-enhanced blooming in typhoon wakes
NASA Astrophysics Data System (ADS)
Lin, Y.; Oey, L. Y.
2016-12-01
Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.
DOT National Transportation Integrated Search
2002-04-01
Cost- benefit analyses of walking- and cycling track net-works in three Norwegian cities are presented in this study. A project group working with a National Cycling Strategy in Norway initialised the study. Motivation for starting the study is the P...
ERIC Educational Resources Information Center
Science Activities, 1995
1995-01-01
Presents a Project WET water education activity. Students simulate the movement of water within the water cycle by role-playing a water molecule's movements. Students learn the states of water as it moves through the water cycle. (LZ)
76 FR 51344 - Butte County Resource Advisory Committee (RAC)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
... Cycle 2 project applications for potential funding recommendations to Lassen, Plumas or Mendocino... Schools and Community Self-Determination Act of 2000. This is the last cycle of funding under the current...
NASA Astrophysics Data System (ADS)
Gorjian, Varoujan; Barth, Aaron; Brandt, Niel; Dawson, Kyle; Green, Paul; Ho, Luis; Horne, Keith; Jiang, Linhua; McGreer, Ian; Schneider, Donald; Shen, Yue; Tao, Charling
2018-05-01
Previous Spitzer reverberation monitoring projects searching for UV/optical light absorbed and re-emitted in the IR by dust have been limited to low luminosity active galactic nuclei (AGN) that could potentially show reverberation within a single cycle ( 1 year). Cycle 11-12's two year baseline allowed for the reverberation mapping of 17 high-luminosity quasars from the Sloan Digital Sky Survey Reverberation Mapping project. We continued this monitoring in Cycle 13 and now propose to extend this program in Cycle 14. By combining ground-based monitoring from Pan-STARRS, CFHT, and Steward Observatory telescopes with Spitzer data we have for the first time detected dust reverberation in quasars. By continuing observations with this unqiue combination of resources we should detect reverberation in more objects and reduce the uncertainties for the remaining sources.
The future of the North American carbon cycle - projections and associated climate change
NASA Astrophysics Data System (ADS)
Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.
2016-12-01
Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.
Seneca Compressed Air Energy Storage (CAES) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2012-11-30
Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant constructionmore » with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEG’s service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York State’s Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEG’s engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installed CAES plant cost estimate of approximately $2,300/KW for the 210MW CAES 1A and 2 cycles. The capital cost for the 136 MW CAES 1 cycle was even higher due to the lower generating capacity of the cycle. Notably, the large equipment could have generated additional capacity (up to 270MW) which would have improved the cost per KW; however, the output was limited by the night time transmission system capability. The research herein, therefore, is particular to the site-specific factors that influenced the design and the current and forecasted generation mix and energy prices in Upstate New York and may not necessarily indicate that CAES plants cannot be economically constructed in other places in New York State or the world.« less
Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Wilson, John W.
2000-01-01
Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.
NASA Technical Reports Server (NTRS)
Lucas, J.
1979-01-01
Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.
Computer-aided software development process design
NASA Technical Reports Server (NTRS)
Lin, Chi Y.; Levary, Reuven R.
1989-01-01
The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.
Evaluation of pipe-type cable joint restraint systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, D.A.; Seman, G.W.
1990-03-01
the purpose of this project was to evaluate two systems for restraining the movement of 345kV high-pressure oil-filled (HPOF) cable joints during load cycling. Problems with joints and adjacent cables due to thermomechanical bending (TMB) experienced by the Consolidated Edison Company of New York and Public Service Electric Gas Company of New Jersey are reviewed. Some approaches to reducing or preventing TMB induced damage to HPOF pipe type cable joints are discussed. The design and operation of a special test apparatus for simulating TMB effects under laboratory conditions is described. One of the two joint restraint systems evaluated under thismore » project was developed by PSE G and employed wedging devices, which could be retrofitted into existing installations, that limited the longitudinal movement of the joints during load cycling. The other system developed by Pirelli Cable Corporation applied the restraining force to the cylindrical portion of the hand applied joint insulation by means of support spiders and steel rods attached to the reducer faces. The test results show that the PSE G restraint system can effectively limit joint longitudinal movement while causing a minimal amount of mechanical disturbance to the joint stress cones. The test results obtained with the PCC system are inconclusive and indicate that further refinement and testing are required to demonstrate the effectiveness of this promising joint restraint system.« less
Design and Analysis of a Forging Die for Manufacturing of Multiple Connecting Rods
NASA Astrophysics Data System (ADS)
Megharaj, C. E.; Nagaraj, P. M.; Jeelan Pasha, K.
2016-09-01
This paper demonstrates to utilize the hammer capacity by modifying the die design such that forging hammer can manufacture more than one connecting rod in a given forging cycle time. To modify the die design study is carried out to understand the parameters that are required for forging die design. By considering these parameters, forging die is designed using design modelling tool solid edge. This new design now can produce two connecting rods in same capacity hammer. The new design is required to validate by verifying complete filing of metal in die cavities without any defects in it. To verify this, analysis tool DEFORM 3D is used in this project. Before start of validation process it is require to convert 3D generated models in to. STL file format to import the models into the analysis tool DEFORM 3D. After importing these designs they are analysed for material flow into the cavities and energy required to produce two connecting rods in new forging die design. It is found that the forging die design is proper without any defects and also energy graph shows that the forging energy required to produce two connecting rods is within the limit of that hammer capacity. Implementation of this project increases the production of connecting rods by 200% in less than previous cycle time.
TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Y; Zhang, Y; Shao, Y
Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less
NASA Astrophysics Data System (ADS)
Woods-Robinson, R.; Case, E.
2017-12-01
Engaging communities with renewable energy is key to fighting climate change. Cycle for Science, an innovative STEM outreach organization, has reached more than 3,000 K-12 students across the United States by bringing early-career female scientists into classrooms to teach basic physics and solar energy engineering through hands-on, DIY science activities. We designed a fleet of miniature, 3D-printed, solar-powered bicycles called "Sol Cycles" to use as teaching tools. Traveling by bicycle, Cycle for Science has brought them to rural and urban communities across the U.S. in two major efforts so far: one traversing the country (2015), and one through central California (2017). The program involves (1) introducing the scientists and why they value science, (2) running a skit to demonstrate how electrons and photons interact inside the solar panel, (3) assembling the Sol Cycles, (4) taking students outdoors to test the effects of variables (e.g. light intensity) on the Sol Cycles' movement, (5) and debriefing about the importance of renewable energy. In addition to physics and solar energy, the lessons teach the scientific process, provide tactile engagement with science, and introduce a platform to engage students with climate change impacts. By cycling to classrooms, we provide positive examples of low-impact transportation and a unique avenue for discussing climate action. It was important that this program extend beyond the trips, so the lesson and Sol Cycle design are open source to encourage teachers and students to play, change and improve the design, as well as incorporate new exercises (e.g. could you power the bicycle by wind?). Additionally, it has been permanently added to the XRaise Lending Library at Cornell University, so teachers across the world can implement the lesson. By sharing our project at AGU, we aim to connect with other scientists, educators, and concerned citizens about how to continue to bring renewable energy lessons into classrooms.
Tan, Ryan Y C; Met-Domestici, Marie; Zhou, Ke; Guzman, Alexis B; Lim, Soon Thye; Soo, Khee Chee; Feeley, Thomas W; Ngeow, Joanne
2016-03-01
To meet increasing demand for cancer genetic testing and improve value-based cancer care delivery, National Cancer Centre Singapore restructured the Cancer Genetics Service in 2014. Care delivery processes were redesigned. We sought to improve access by increasing the clinic capacity of the Cancer Genetics Service by 100% within 1 year without increasing direct personnel costs. Process mapping and plan-do-study-act (PDSA) cycles were used in a quality improvement project for the Cancer Genetics Service clinic. The impact of interventions was evaluated by tracking the weekly number of patient consultations and access times for appointments between April 2014 and May 2015. The cost impact of implemented process changes was calculated using the time-driven activity-based costing method. Our study completed two PDSA cycles. An important outcome was achieved after the first cycle: The inclusion of a genetic counselor increased clinic capacity by 350%. The number of patients seen per week increased from two in April 2014 (range, zero to four patients) to seven in November 2014 (range, four to 10 patients). Our second PDSA cycle showed that manual preappointment reminder calls reduced the variation in the nonattendance rate and contributed to a further increase in patients seen per week to 10 in May 2015 (range, seven to 13 patients). There was a concomitant decrease in costs of the patient care cycle by 18% after both PDSA cycles. This study shows how quality improvement methods can be combined with time-driven activity-based costing to increase value. In this paper, we demonstrate how we improved access while reducing costs of care delivery. Copyright © 2016 by American Society of Clinical Oncology.
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.
2017-11-01
A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.
Study protocol: Audit and Best Practice for Chronic Disease Extension (ABCDE) Project.
Bailie, Ross; Si, Damin; Connors, Christine; Weeramanthri, Tarun; Clark, Louise; Dowden, Michelle; O'Donohue, Lynette; Condon, John; Thompson, Sandra; Clelland, Nikki; Nagel, Tricia; Gardner, Karen; Brown, Alex
2008-09-17
A growing body of international literature points to the importance of a system approach to improve the quality of care in primary health care settings. Continuous Quality Improvement (CQI) concepts and techniques provide a theoretically coherent and practical way for primary care organisations to identify, address, and overcome the barriers to improvements. The Audit and Best Practice for Chronic Disease (ABCD) study, a CQI-based quality improvement project conducted in Australia's Northern Territory, has demonstrated significant improvements in primary care service systems, in the quality of clinical service delivery and in patient outcomes related to chronic illness care. The aims of the extension phase of this study are to examine factors that influence uptake and sustainability of this type of CQI activity in a variety of Indigenous primary health care organisations in Australia, and to assess the impact of collaborative CQI approaches on prevention and management of chronic illness and health outcomes in Indigenous communities. The study will be conducted in 40-50 Indigenous community health centres from 4 States/Territories (Northern Territory, Western Australia, New South Wales and Queensland) over a five year period. The project will adopt a participatory, quality improvement approach that features annual cycles of: 1) organisational system assessment and audits of clinical records; 2) feedback to and interpretation of results with participating health centre staff; 3) action planning and goal setting by health centre staff to achieve system changes; and 4) implementation of strategies for change. System assessment will be carried out using a System Assessment Tool and in-depth interviews of key informants. Clinical audit tools include two essential tools that focus on diabetes care audit and preventive service audit, and several optional tools focusing on audits of hypertension, heart disease, renal disease, primary mental health care and health promotion. The project will be carried out in a form of collaborative characterised by a sequence of annual learning cycles with action periods for CQI activities between each learning cycle. Key outcome measures include uptake and integration of CQI activities into routine service activity, state of system development, delivery of evidence-based services, intermediate patient outcomes (e.g. blood pressure and glucose control), and health outcomes (complications, hospitalisations and mortality). The ABCD Extension project will contribute directly to the evidence base on effectiveness of collaborative CQI approaches on prevention and management of chronic disease in Australia's Indigenous communities, and to inform the operational and policy environments that are required to incorporate CQI activities into routine practice.
Study protocol: Audit and Best Practice for Chronic Disease Extension (ABCDE) Project
Bailie, Ross; Si, Damin; Connors, Christine; Weeramanthri, Tarun; Clark, Louise; Dowden, Michelle; O'Donohue, Lynette; Condon, John; Thompson, Sandra; Clelland, Nikki; Nagel, Tricia; Gardner, Karen; Brown, Alex
2008-01-01
Background A growing body of international literature points to the importance of a system approach to improve the quality of care in primary health care settings. Continuous Quality Improvement (CQI) concepts and techniques provide a theoretically coherent and practical way for primary care organisations to identify, address, and overcome the barriers to improvements. The Audit and Best Practice for Chronic Disease (ABCD) study, a CQI-based quality improvement project conducted in Australia's Northern Territory, has demonstrated significant improvements in primary care service systems, in the quality of clinical service delivery and in patient outcomes related to chronic illness care. The aims of the extension phase of this study are to examine factors that influence uptake and sustainability of this type of CQI activity in a variety of Indigenous primary health care organisations in Australia, and to assess the impact of collaborative CQI approaches on prevention and management of chronic illness and health outcomes in Indigenous communities. Methods/design The study will be conducted in 40–50 Indigenous community health centres from 4 States/Territories (Northern Territory, Western Australia, New South Wales and Queensland) over a five year period. The project will adopt a participatory, quality improvement approach that features annual cycles of: 1) organisational system assessment and audits of clinical records; 2) feedback to and interpretation of results with participating health centre staff; 3) action planning and goal setting by health centre staff to achieve system changes; and 4) implementation of strategies for change. System assessment will be carried out using a System Assessment Tool and in-depth interviews of key informants. Clinical audit tools include two essential tools that focus on diabetes care audit and preventive service audit, and several optional tools focusing on audits of hypertension, heart disease, renal disease, primary mental health care and health promotion. The project will be carried out in a form of collaborative characterised by a sequence of annual learning cycles with action periods for CQI activities between each learning cycle. Key outcome measures include uptake and integration of CQI activities into routine service activity, state of system development, delivery of evidence-based services, intermediate patient outcomes (e.g. blood pressure and glucose control), and health outcomes (complications, hospitalisations and mortality). Conclusion The ABCD Extension project will contribute directly to the evidence base on effectiveness of collaborative CQI approaches on prevention and management of chronic disease in Australia's Indigenous communities, and to inform the operational and policy environments that are required to incorporate CQI activities into routine practice. PMID:18799011
Project Go-For-It, 1987-1988. OREA Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; De Megret, Wendy
In the first year of a 3-year funding cycle, Project Go-For-It, a multisite bilingual education project, provided instructional and support services to 292 gifted and talented limited-English-proficient speakers of Haitian Creole/French, Vietnamese, Chinese, Spanish, and Italian at 3 high schools. The project's aim was to provide individualized…
The Application of Project Management Techniques to College and University Admissions Activities.
ERIC Educational Resources Information Center
Bickers, Doyle
1993-01-01
The process of project management is illustrated through application to one activity, development of a new brochure, within the admissions program of a fictional college. The project life cycle is described, and a work responsibility schedule, project completion schedule, and critical path chart are used as planning and implementation tools. (MSE)
Influence of Selected Stakeholders of Construction Investment Projects on the Course of Project
NASA Astrophysics Data System (ADS)
Bizon-Górecka, Jadwiga; Górecki, Jarosław
2017-10-01
The article presents an entity perspective of the construction investment projects. In a course of the project there are stakeholders who have an indirect influence (e.g. decision-makers in the selection of projects) or a direct influence (e.g. members of the project team). An intuitive opinion about a significant influence of project stakeholders on the project’s course encouraged the authors to undertake a research in this area. The article illustrates the initial phases of the construction project life cycle in a perspective of the entities and, in particular, a role of different stakeholders in making decisions that affect a course of the project. An analysis of the structure of the construction project life cycle makes a substantial involvement of various subjects in the initial phases of the project, i.e. in an initial phase and during a creation of the structures. A key point is to underline the factors of decision-making by the participants of the construction process. It was indicated that the stakeholders have a different impact on the course of the project. In large projects, which have many stakeholders, their role in the implementation of the investment project can vary, depending on the life cycle of the project. They can have positive or negative impacts on achieving the project objectives. The paper presents the results of 100 surveys made among participants of the building processes, executors of the construction projects in the Kuyavian-Pomeranian region. The study was conducted in December 2016 and January 2017. It revealed what is the impact of individual stakeholders of the construction projects on the course of the project. A special attention was paid to a complex relationship between objectives of the project and stakeholders’ goals. A great care to the smallest possible number of risks, which may arise from the different objectives of the project and its stakeholders’ goals, should be focused on the augmentation of correlation of measures of the goals. It is crucial to identify the stakeholders, whereas it is a continuous and quite difficult process. However, when ignoring the impact of specific stakeholders on the implementation of the project, a duration of the project and its costs may increase. A main problem, in establishing a relationship of participants in the construction process, is to take into account the risk of all project stakeholders.
Creation of a U.S. Phosphorescent OLED Lighting Panel Manufacturing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Michael
Universal Display Corporation (UDC) has pioneered high efficacy phosphorescent OLED (PHOLED™) technology to enable the realization of an exciting new form of high quality, energy saving solid-date lighting. In laboratory test devices, we have demonstrated greater than 100 lm/W conversion efficacy. In this program, Universal Display will demonstrate the scalability of its proprietary UniversalPHOLED technology and materials for the manufacture of white OLED lighting panels that meet commercial lighting targets. Moser Baer Technologies will design and build a U.S.- based pilot facility. The objective of this project is to establish a pilot phosphorescent OLED (PHOLED) manufacturing line in the U.S.more » Our goal is that at the end of the project, prototype lighting panels could be provided to U.S. luminaire manufacturers for incorporation into products to facilitate the testing of design concepts and to gauge customer acceptance, so as to facilitate the growth of the embryonic U.S. OLED lighting industry. In addition, the team will provide a cost of ownership analysis to quantify production costs including OLED performance metrics which relate to OLED cost such as yield, materials usage, cycle time, substrate area, and capital depreciation. This project was part of a new DOE initiative designed to help establish and maintain U.S. leadership in this program will support key DOE objectives by showing a path to meet Department of Energy Solid-State Lighting Manufacturing Roadmap cost targets, as well as meeting its efficiency targets by demonstrating the energy saving potential of our technology through the realization of greater than 76 lm/W OLED lighting panels by 2012.« less
Facility Activation and Characterization for IPD Turbopump Testing at NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Sass, J. P.; Pace, J. S.; Raines, N. G.; Meredith, T. O.; Taylor, S. A.; Ryan, H. M.
2005-01-01
The Integrated Powerhead Demonstrator (IPD) is a 250K lbf (1.1 MN) thrust cryogenic hydrogen/oxygen engine technology demonstrator that utilizes a full flow staged combustion engine cycle. The Integrated Powerhead Demonstrator (IPD) is, in part, supported by NASA. IPD is also supported through the Department of Defense's Integrated High Payoff Rocket Propulsion Technology (IHPRPT) program, which seeks to increase the performance and capability of today's state-of-the-art rocket propulsion systems while decreasing costs associated with military and commercial access to space. The primary industry participants include Boeing-Rocketdyne and GenCorp Aerojet. The IPD Program recently achieved two major milestones. The first was the successful completion of the IPD Oxidizer Turbopump (OTP) hot-fire test project at the NASA John C. Stennis Space Center (SSC) E-1 test facility in June 2003. A total of nine IPD Workhorse Preburner tests were completed, and subsequently 12 IPD OTP hot-fire tests were completed. The second major milestone was the successful completion of the IPD Fuel Turbopump (FTP) cold-flow test project at the NASA SSC E-1 test facility in November 2003. A total of six IPD FTP cold-flow tests were completed. The next phase of development involves IPD integrated engine system testing also at the NASA SSC E-1 test facility scheduled to begin in early 2005. Following and overview of the NASA SSC E-1 test facility, this paper addresses the facility aspects pertaining to the activation and testing of the IPD oxidizer and fuel turbopumps. In addition, some of the facility challenges encountered and the lessons learned during the test projects shall be detailed.
Developing the User Experience for a Next Generation Nuclear Fuel Cycle Simulator (NGFCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Paul H.; Schneider, Erich; Pascucci, Valerio
This project made substantial progress on its original aim for providing a modern user experience for nuclear fuel cycle analysis while also creating a robust and functional next- generation fuel cycle simulator. The Cyclus kernel experienced a dramatic clari cation of its interfaces and data model, becoming a full- edged agent-based framework, with strong support for third party developers of novel archetypes. The most important contribution of this project to the the development of Cyclus was the introduction of tools to facilitate archetype development. These include automated code generation of routine archetype components, metadata annotations to provide re ection andmore » rich description of each data member's purpose, and mechanisms for input validation and output of complex data. A comprehensive social science investigation of decision makers' interests in nuclear fuel cycles, and speci cally their interests in nuclear fuel cycle simulators (NFCSs) as tools for understanding nuclear fuel cycle options, was conducted. This included document review and analysis, stakeholder interviews, and a survey of decision makers. This information was used to study the role of visualization formats and features in communicating information about nuclear fuel cycles. A exible and user-friendly tool was developed for building Cyclus analysis models, featuring a drag-and-drop interface and automatic input form generation for novel archetypes. Cycic allows users to design fuel cycles from arbitrary collections of facilities for the rst time, with mechanisms that contribute to consistency within that fuel cycle. Interacting with some of the metadata capabilities introduced in the above-mentioned tools to support archetype development, Cycic also automates the generation of user input forms for novel archetypes with little to no special knowledge required by the archetype developers. Translation of the fundamental metrics of Cyclus into more interesting quantities is accomplished in the Cymetric python package. This package is speci cally designed to support the introduction of new metrics by building upon existing metrics. This concept allows for multiple dependencies and encourages building complex metrics out of incremental transformations to those prior metrics. New archetype developers can contribute their own archetype-speci c metric using the same capability. A simple demonstration of this capability focused on generating time-dependent cash ows for reactor deployment that could then be analyzed in di erent ways. Cyclist, a dedicated application for exploration of Cyclus results, was developed. It's primary capabilities at this stage are best-suited to experienced fuel cycle analysts, but it provides a basic platform for simpler visualizations for other audiences. An important part of its interface is the ability to uidly examine di erent slices of what is fundamentally a ve-dimensional sparse data set. A drag-and-drop interface simpli es the process of selecting which data is displayed in the plot as well as which dimensions are being used for« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicek, Z.
This report describes a project proposal and implementation of two combined-cycle units of the Vresova Fuel Complex (PKV) with 2 x 200 MWe and heat supply. Participation of ENERGOPROJECT Praha a.s., in this project.
Data Flow in Relation to Life-Cycle Costing of Construction Projects in the Czech Republic
NASA Astrophysics Data System (ADS)
Biolek, Vojtěch; Hanák, Tomáš; Marović, Ivan
2017-10-01
Life-cycle costing is an important part of every construction project, as it makes it possible to take into consideration future costs relating to the operation and demolition phase of a built structure. In this way, investors can optimize the project design to minimize the total project costs. Even though there have already been some attempts to implement BIM software in the Czech Republic, the current state of affairs does not support automated data flow between the bill of costs and applications that support building facility management. The main aim of this study is to critically evaluate the current situation and outline a future framework that should allow for the use of the data contained in the bill of costs to manage building operating costs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... Management Demonstration Project for TRICARE Standard Beneficiaries AGENCY: Department of Defense. ACTION: Notice of Two-Year Continuation of Disease Management Demonstration Project for TRICARE Standard... System (MHS) demonstration project entitled ``Disease Management Demonstration Project for TRICARE...
Staley, S; Romlein, J; Chacko, A K; Wider, R
2000-05-01
Picture archiving and communication system (PACS) maintenance on an individual site basis has historically been a complex and costly challenge. With the advent of enterprise-wide PACS projects such as the Virtual Radiology Environment (VRE) project, the challenge of a maintenance program with even more complexities has presented itself. The approach of the project management team for the VRE project is not one of reactive maintenance, but one of highly proactive planning and negotiations, in hopes of capitalizing on the economies of scale of an enterprise-wide PACS maintenance program. A proactive maintenance program is one aspect of life-cycle management. As with any capital acquisition, life-cycle management may be used to manage the specific project aspects related to PACS. The purpose of an enterprise-wide warranty and maintenance life-cycle management approach is to maintain PACS at its maximum operational efficiency and utilization levels through a flexible, shared, yet symbiotic relationship between local, regional, and vendor resources. These goals include providing maximum operational performance levels on a local, regional, and enterprise basis, while maintaining acceptable costs and resource utilization levels. This goal must be achieved without negatively impacting point of care activities, regardless of changes to the clinical business environment.
NASA Technical Reports Server (NTRS)
Parrott, Edith L.; Weiland, Karen J.
2017-01-01
This paper is for the AIAA Space Conference. The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.
Gravbox - The First Augmented Reality Sandbox for Gravitational Dynamics
NASA Astrophysics Data System (ADS)
Isbell, Jacob; Deam, Sophie; Reed, Mason; Bettis, Wyatt; Lu, Jianbo; Luppen, Zachary; Maier, Erin; McCurdy, Ross; Moore, Sadie; Fu, Hai
2018-01-01
Gravitational effects are an overarching theme in astronomy education, yet existing classroom demonstrations are insufficient in elucidating complex gravitational interactions. Inspired by the augmented reality (AR) sandbox developed by geologists, we have developed Gravbox, the first AR sandbox to demonstrate gravitational dynamics. The arbitrary topography of the sand surface represents the mass distribution of a two-dimensional universe. The computer reads the topography with a Kinect camera, calculates the orbit of a test particle with user-defined position and velocity, and projects the topography contour map and orbit animation with an overhead projector, all within a duty cycle of one second. This creates an interactive and intuitive tool to help students at all levels understand gravitational effects. In this contribution, we will describe the development of the Gravbox prototype and show its current capabilities. The Gravbox software will be publicly available along with a building tutorial.
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2013 CFR
2013-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2011 CFR
2011-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2012 CFR
2012-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2014 CFR
2014-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
DOT National Transportation Integrated Search
2001-10-01
Public agencies across the country are pursuing innovative project delivery methods such as design-build (D-B) and construction manager-at-risk (CM-at-risk) to improve cycle-time performance on projects, and numerous transportation departments are cu...
Lessons Learned from a Third World Water and Sanitation Project.
ERIC Educational Resources Information Center
Jenkins-McLean, Terri
1991-01-01
The seven-step project cycle used in a water sanitation project in Belize from 1986-89 is described. The direct involvement of community organizations, village councils, family gatherings, parent-teacher organizations, political groups, Village Health Committees, and volunteer organizations is emphasized. (CW)
18 CFR 4.51 - Contents of application.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the total project as proposed specifying any projected changes in the costs (life-cycle costs) over the estimated financing or licensing period if the applicant takes such changes into account... lowest cost alternative source, specifying any projected changes in the cost of power from that source...
Hispanic Vocational Exploration Project. Final Report.
ERIC Educational Resources Information Center
Centro De La Comunidad, Inc., New London, CT.
During its second year, the Hispanic Vocational Exploration Project recruited eighth and ninth grade Hispanic youth for a four-week cycle, after-school, career exploratory program at Southeastern Regional Vocational Technical School, Groton, Connecticut. A series of career education workshops was the other major project activity. Supportive…
Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks
NASA Astrophysics Data System (ADS)
Mystakidis, Stefanos; Seneviratne, Sonia I.; Gruber, Nicolas; Davin, Edouard L.
2017-01-01
The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.
Global water resources affected by human interventions and climate change.
Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik
2014-03-04
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.
Global water resources affected by human interventions and climate change
Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik
2014-01-01
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275
Increasing water cycle extremes in California and relation to ENSO cycle under global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.
California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less
Increasing water cycle extremes in California and relation to ENSO cycle under global warming
Yoon, Jin -Ho; Wang, S. -Y. Simon; Gillies, Robert R.; ...
2015-10-21
California has experienced its most severe drought in recorded history since the winter of 2013-2014. The long duration of drought has stressed statewide water resources and the economy, while fueling an extraordinary increase in wildfires. The effects of global warming on the regional climate include a hotter and drier climate, as well as earlier snowmelt, both of which exacerbate drought conditions. However, connections between a changing climate and how climate oscillations modulate regional water cycle extremes are not well understood. Here we analyze large-ensemble simulations of future climate change in California using the Community Earth System Model version 1 (CESM1)more » and multiple climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Both intense drought and excessive flooding are projected to increase by at least 50% toward the end of the 21st century. Furthermore, the projected increase in water cycle extremes is associated with tighter relation to El Niño and Southern Oscillation (ENSO), particularly extreme El Niño and La Niña events, which modulates California’s climate not only through its warm and cold phases, but also ENSO’s precursor patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockie, S.; Franettovich, M.; Petkova-Timmer, V.
Two social impact assessment (SIA) studies of Central Queensland's Coppabella coal mine were undertaken in 2002-2003 and 2006-2007. As ex post studies of actual change, these provide a reference point for predictive assessments of proposed resource extraction projects at other sites, while the longitudinal element added by the second study illustrates how impacts associated with one mine may vary over time due to changing economic and social conditions. It was found that the traditional coupling of local economic vitality and community development to the life cycle of resource projects - the resource community cycle - was mediated by labour recruitmentmore » and social infrastructure policies that reduced the emphasis on localised employment and investment strategies. and by the cumulative impacts of multiple mining projects within relative proximity to each other. The resource community cycle was accelerated and local communities forced to consider ways of attracting secondary investment and/or alternative industries early in the operational life of the Coppabella mine in order to secure significant economic benefits and to guard against the erosion of social capital and the ability to cope with future downturns in the mining sector.« less
NASA Astrophysics Data System (ADS)
Nývlt, Vladimír; Prušková, Kristýna
2017-10-01
BIM today is much more than drafting in 3D only, and project participants are further challenging, what is the topic of both this paper, and further research. Knowledge of objects, their behaviour, and other characteristics has high impact on whole building life cycle. Other structured and unstructured knowledge is rightfully added (e.g. historically based experience, needs and requirements of users, investors, needs for project and objects revisions) Grasping of all attributes into system for collection, managing and time control of knowledge. Further important findings lie in the necessity of understanding how to manage knowledge needs with diverse and variable ways, when BIM maturity levels are advanced, as defined by Bew and Richards (2008). All decisions made would always rely on good, timely, and correct data. Usage of BIM models in terms of Building Information Management can support all decisions through data gathering, sharing, and using across all disciplines and all Life Cycle steps. It particularly significantly improves possibilities and level of life cycle costing. Experience and knowledge stored in data models of BIM, describing user requirements, best practices derived from other projects and/or research outputs will help to understand sustainability in its complexity and wholeness.
specified volumes of renewable fuels according to the categories below. EISA established life cycle GHG demonstrate a 20% reduction in life cycle GHG emissions. Advanced Biofuel: Any fuel derived from cellulosic or categories may be used to meet this category. Fuels in this category must demonstrate a life cycle GHG
10 MW Supercritical CO2 Turbine Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig
2014-01-29
The Supercritical CO2 Turbine Test project was to demonstrate the inherent efficiencies of a supercritical carbon dioxide (s-CO2) power turbine and associated turbomachinery under conditions and at a scale relevant to commercial concentrating solar power (CSP) projects, thereby accelerating the commercial deployment of this new power generation technology. The project involved eight partnering organizations: NREL, Sandia National Laboratories, Echogen Power Systems, Abengoa Solar, University of Wisconsin at Madison, Electric Power Research Institute, Barber-Nichols, and the CSP Program of the U.S. Department of Energy. The multi-year project planned to design, fabricate, and validate an s-CO2 power turbine of nominally 10 MWemore » that is capable of operation at up to 700°C and operates in a dry-cooled test loop. The project plan consisted of three phases: (1) system design and modeling, (2) fabrication, and (3) testing. The major accomplishments of Phase 1 included: Design of a multistage, axial-flow, s-CO2 power turbine; Design modifications to an existing turbocompressor to provide s-CO2 flow for the test system; Updated equipment and installation costs for the turbomachinery and associated support infrastructure; Development of simulation tools for the test loop itself and for more efficient cycle designs that are of greater commercial interest; Simulation of s-CO2 power cycle integration into molten-nitrate-salt CSP systems indicating a cost benefit of up to 8% in levelized cost of energy; Identification of recuperator cost as a key economic parameter; Corrosion data for multiple alloys at temperatures up to 650ºC in high-pressure CO2 and recommendations for materials-of-construction; and Revised test plan and preliminary operating conditions based on the ongoing tests of related equipment. Phase 1 established that the cost of the facility needed to test the power turbine at its full power and temperature would exceed the planned funding for Phases 2 and 3. Late in Phase 1 an opportunity arose to collaborate with another turbine-development team to construct a shared s-CO2 test facility. The synergy of the combined effort would result in greater facility capabilities than either separate project could produce and would allow for testing of both turbine designs within the combined budgets of the two projects. The project team requested a no-cost extension to Phase 1 to modify the subsequent work based on this collaborative approach. DOE authorized a brief extension, but ultimately opted not to pursue the collaborative facility and terminated the project.« less
Development of Hybrid Product Breakdown Structure for NASA Ground Systems
NASA Technical Reports Server (NTRS)
Monaghan, Mark W.; Henry, Robert J.
2013-01-01
The Product Breakdown Structure is traditionally a method of identification of the products of a project in a tree structure. It is a tool used to assess, plan, document, and display the equipment requirements for a project. It is part of a product based planning technique, and attempts to break down all components of a project in as much detail as possible, so that nothing is overlooked. The PBS for ground systems at the Kennedy Space Center is being developed to encompass the traditional requirements including the alignment of facility, systems, and components to the organizational hierarchy. The Ground Operations Product Breakdown Structure is a hybrid in nature in that some aspects of a work breakdown structure will be incorporated and merged with the Architecture Concept of Operations, Master Subsystem List, customer interface, and assigned management responsibility. The Ground Operations Product Breakdown Structure needs to be able to identify the flexibility of support differing customers (internal and external) usage of ground support equipment within the Kennedy Space Center launch and processing complex. The development of the Product Breakdown Structure is an iterative activity Initially documenting the organization hierarchy structure and relationships. The Product Breakdown Structure identifies the linkage between the customer program requirements, allocation of system resources, development of design goals, and identification logistics products. As the Product Breakdown Structure progresses the incorporation of the results of requirement planning for the customer occurs identifying facility needs and systems. The mature Product Breakdown Structure is baselined with a hierarchical drawing, the Product Breakdown Structure database, and an associated document identifying the verification of the data through the life cycle of the program/product line. This paper will document, demonstrate, and identify key aspects of the life cycle of a Hybrid Product Breakdown Structure. The purpose is to show how a project management and system engineering approach can be utilized for providing flexible customer service in an evolving manned space flight launch processing environment.
Canal, David F; Torbeck, Laura; Djuricich, Alexander M
2007-05-01
Surgery residents can learn continuous quality improvement (CQI) principles within a structured curriculum and propose quality improvement projects. Curriculum within a surgical residency program. A university surgical residency program with multiple hospital training sites. Fifteen surgical residents during the dedicated research year. A curriculum in CQI that focuses on devising a quality improvement project. Resident self-reported attitudes about quality improvement and implementation of resident-initiated quality improvement projects. Resident survey data demonstrated an improvement in knowledge, self-efficacy, and experiences within CQI. Fifteen individual residents, within smaller teams, created 4 quality improvement projects worthy of implementation. A structured CQI curriculum can be successfully integrated into a general surgery residency program. Residents can learn the skill of constructing CQI project ideas within the framework of the plan-do-study-act cycle. Residents are eager to make improvements in their local system of residency. By giving them the tools to critically investigate systems improvement and a much needed ear to hear their concerns and suggestions for improvement, we found ways to potentially enhance patient care and developed ideas to improve the education of future surgeons. In doing so, we provided the residents with "buy-in" into their residency program, while addressing the competency of practice-based learning and improvement required by the Accreditation Council for Graduate Medical Education for resident education.
GEWEX Radiative Flux Assessment
Atmospheric Science Data Center
2016-05-20
... The ultimate goal of the Global Energy and Water Cycle Experiment ( GEWEX ) global data analysis projects is to obtain observations of the elements of the global energy and water cycle with sufficient detail and accuracy to diagnose the causes of ...
Low/medium-Btu coal-gasification feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
This study examines the feasibility of applying the concepts of Coal Gasification and Combined Cycle Technology to the re-powering of existing steam turbine-electric generating facilities. The primary objectives of this study include: (1) the determination of the feasibility of designing a technically sound system embodying this technology; (2) the determination of the potential for displacing foreign oil by the project; (3) the identificaton of any constraints and/or barriers that might impede the accomplishment of such a project; and (4) the evaluation of the potential benefits of such a system. Although the system is designed around the use of commercially available,more » state-of-the-art components and equipment, a completely integrated, electric generating plant, such as is being proposed here, has not yet been demonstrated. However, the designs developed as part of this study combine these components, utilizing well developed and technically sound concepts in such a way as to provide a reasonable degree of confidence in the workability of the total system. This study offers the potential for reducing oil dependency; the possibility of improving cycle efficiency and extending the useful life of existing facilities; the feasibility of re-vitalizing a facility located within a major load center; and presents some attractive possibilities for a co-generation, district heating application in the central portions of Bridgeport. Although the results of the study produce a number of clear conclusions, they also stimulate additional questions, the resolution of which would require further study and more detailed design. The final resolution of these questions that still remain may have a significant effect on the final conclusions concerning the viability of this project, and it is for this reason that further study is required.« less
CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-01-15
To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less
Tools for Interdisciplinary Data Assimilation and Sharing in Support of Hydrologic Science
NASA Astrophysics Data System (ADS)
Blodgett, D. L.; Walker, J.; Suftin, I.; Warren, M.; Kunicki, T.
2013-12-01
Information consumed and produced in hydrologic analyses is interdisciplinary and massive. These factors put a heavy information management burden on the hydrologic science community. The U.S. Geological Survey (USGS) Office of Water Information Center for Integrated Data Analytics (CIDA) seeks to assist hydrologic science investigators with all-components of their scientific data management life cycle. Ongoing data publication and software development projects will be presented demonstrating publically available data access services and manipulation tools being developed with support from two Department of the Interior initiatives. The USGS-led National Water Census seeks to provide both data and tools in support of nationally consistent water availability estimates. Newly available data include national coverages of radar-indicated precipitation, actual evapotranspiration, water use estimates aggregated by county, and South East region estimates of streamflow for 12-digit hydrologic unit code watersheds. Web services making these data available and applications to access them will be demonstrated. Web-available processing services able to provide numerous streamflow statistics for any USGS daily flow record or model result time series and other National Water Census processing tools will also be demonstrated. The National Climate Change and Wildlife Science Center is a USGS center leading DOI-funded academic global change adaptation research. It has a mission goal to ensure data used and produced by funded projects is available via web services and tools that streamline data management tasks in interdisciplinary science. For example, collections of downscaled climate projections, typically large collections of files that must be downloaded to be accessed, are being published using web services that allow access to the entire dataset via simple web-service requests and numerous processing tools. Recent progress on this front includes, data web services for Climate Model Intercomparison Phase 5 based downscaled climate projections, EPA's Integrated Climate and Land Use Scenarios projections of population and land cover metrics, and MODIS-derived land cover parameters from NASA's Land Processes Distributed Active Archive Center. These new services and ways to discover others will be presented through demonstration of a recently open-sourced project from a web-application or scripted workflow. Development and public deployment of server-based processing tools to subset and summarize these and other data is ongoing at the CIDA with partner groups such as 52 Degrees North and Unidata. The latest progress on subsetting, spatial summarization to areas of interest, and temporal summarization via common-statistical methods will be presented.
ART/Ada design project, phase 1: Project plan
NASA Technical Reports Server (NTRS)
Allen, Bradley P.
1988-01-01
The plan and schedule for Phase 1 of the Ada based ESBT Design Research Project is described. The main platform for the project is a DEC Ada compiler on VAX mini-computers and VAXstations running the Virtual Memory System (VMS) operating system. The Ada effort and lines of code are given in tabular form. A chart is given of the entire project life cycle.
NASA Astrophysics Data System (ADS)
Davidson, Eric; Nifong, Rachel
2017-04-01
While deforestation has declined since its peak, land-use change continues to modify Amazonian landscapes. The responses and feedbacks of biogeochemical cycles to these changes play an important role in determining possible future trajectories of ecosystem function and for land stewardship through effects on rates of secondary forest regrowth, soil emissions of greenhouse gases, inputs of nutrients to groundwater and streamwater, and nutrient management in agroecosystems. Here we present a new synthetic analyses of data from the NASA-supported LBA-ECO project and others datasets on nutrient cycling in cattle pastures, secondary forests, and mature forests at Paragominas, Pará, Brazil. We have developed a stoichiometric model relating C-N-P interactions during original forest clearing, extensive and intensive pasture management, and secondary forest regrowth, constrained by multiple observations of ecosystem stocks and fluxes in each land use. While P is conservatively cycled in all land uses, we demonstrate that pyrolyzation of N during pasture formation and during additional burns for pasture management depletes available-N pools, consistent with observations of lower rates of N leaching and trace gas emission and consistent with secondary forest growth responses to experimental N amendments. The soils store large stocks of N and P, and our parameterization of available forms of these nutrients for steady-state dynamics in the mature forest yield reasonable estimates of net N and P mineralization available for grasses and secondary forest species at rates consistent with observed biomass accumulation and productivity in these modified ecosystems. Because grasses and forests have much different demands for N relative to P, the land use has important biogeochemical impacts. The model demonstrates the need for periodic P inputs for sustainable pasture management and for a period of significant biological N fixation for early-to-mid-successional secondary forest regrowth. The model framework illustrates the relative magnitudes of changing stocks and flows of nutrients and attendant ecosystem functions through the phases of land use change experienced in eastern Amazonia.
DUE GlobBiomass - Estimates of Biomass on a Global Scale
NASA Astrophysics Data System (ADS)
Eberle, J.; Schmullius, C.
2017-12-01
For the last three years, a new ESA Data User Element (DUE) project had focussed on creating improved knowledge about the Essential Climate Variable Biomass. The main purpose of the DUE GlobBiomass project is to better characterize and to reduce uncertainties of AGB estimates by developing an innovative synergistic mapping approach in five regional sites (Sweden, Poland, Mexico, Kalimantan, South Africa) for the epochs 2005, 2010 and 2015 and for one global map for the year 2010. The project team includes leading Earth Observation experts of Europe and is linked through Partnership Agreements with further national bodies from Brazil, Canada, China, Russia and South Africa. GlobBiomass has demonstrated how EO observation data can be integrated with in situ measurements and ecological understanding to provide improved biomass estimates that can be effectively exploited by users. The target users had mainly be drawn from the climate and carbon cycle modelling communities and included users concerned with carbon emissions and uptake due to biomass changes within initiatives such as REDD+. GlobBiomass provided a harmonised structure that can be exploited to address user needs for biomass information, but will be capable of being progressively refined as new data and methods become available. This presentation will give an overview of the technical prerequisites and final results of the GlobBiomass project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogucz, Edward A.
This project was part of a regional initiative in the five counties of Central New York (CNY) that received funding from the U.S. Department of Energy (DOE) and four other federal agencies through the 2012 Advanced Manufacturing Jobs and Innovation Accelerator Challenge (AMJIAC). The CNY initiative was focused on cultivating the emergent regional cluster in “Advanced Manufacturing for Thermal and Environmental Control (AM-TEC).” As one component of the CNY AM-TEC initiative, the DOE-funded project supported five research & development seed projects that strategically targeted: 1) needs and opportunities of CNY AM-TEC companies, and 2) the goal of DOE’s Advanced Manufacturingmore » Office (AMO) to reduce energy consumption by 50% across product life-cycles over 10 years. The project also sought to fulfill the AMO mission of developing and demonstrating new, energy-efficient processing and materials technologies at a scale adequate to prove their value to manufacturers and spur investment. The five seed projects demonstrated technologies and processes that can reduce energy intensity and improve production as well as use less energy throughout their lifecycles. The project was conducted over three years in two 18-month budget periods. During the first budget period, two projects proposed in the original AMJAIC application were successfully completed: Seed Project 1 focused on saving energy in heat transfer processes via development of nano structured surfaces to significantly increase heat flux; Seed Project 2 addressed saving energy in data centers via subzero cooling of the computing processors. Also during the first budget period, a process was developed and executed to select a second round of seed projects via a competitive request for proposals from regional companies and university collaborators. Applicants were encouraged to form industry-academic partnerships to leverage experience and resources of public and private sectors in the CNY region. Proposals were evaluated by a national panel of experts. Three projects were selected for awards and were completed successfully during the second budget period: Seed Project 3 focused on enabling self-powered furnaces to permit residents to shelter in place during power outages; Seed Project 4 addressed development of a novel method of controlling air conditioning systems that could enable flexible load matching in market segments not possible with existing technologies; and Seed Project 5 focused on the creation of smarter occupancy sensors to enable effective highly localized demand based ventilation.« less
NASA Astrophysics Data System (ADS)
Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.
2013-12-01
Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of future climate mitigation strategies. We find substantial effects on key integrated assessment projections including the magnitude of emissions to mitigate, the economic value of ecosystem carbon storage, future land-use patterns, food prices and energy technology.
DOT National Transportation Integrated Search
2014-03-01
Streamlined project delivery is a federally : mandated goal that the Texas Department of : Transportation (TxDOT) leadership supports to : achieve a more efficient and effective : transportation system in Texas. : Federal and state transportation pla...
PRA (Probabilistic Risk Assessments) Participation versus Validation
NASA Technical Reports Server (NTRS)
DeMott, Diana; Banke, Richard
2013-01-01
Probabilistic Risk Assessments (PRAs) are performed for projects or programs where the consequences of failure are highly undesirable. PRAs primarily address the level of risk those projects or programs posed during operations. PRAs are often developed after the design has been completed. Design and operational details used to develop models include approved and accepted design information regarding equipment, components, systems and failure data. This methodology basically validates the risk parameters of the project or system design. For high risk or high dollar projects, using PRA methodologies during the design process provides new opportunities to influence the design early in the project life cycle to identify, eliminate or mitigate potential risks. Identifying risk drivers before the design has been set allows the design engineers to understand the inherent risk of their current design and consider potential risk mitigation changes. This can become an iterative process where the PRA model can be used to determine if the mitigation technique is effective in reducing risk. This can result in more efficient and cost effective design changes. PRA methodology can be used to assess the risk of design alternatives and can demonstrate how major design changes or program modifications impact the overall program or project risk. PRA has been used for the last two decades to validate risk predictions and acceptability. Providing risk information which can positively influence final system and equipment design the PRA tool can also participate in design development, providing a safe and cost effective product.
Mohammadi, S Mehrdad; Mohammadi, S Farzad; Hedges, Jerris R; Zohrabi, Morteza; Ameli, Omid
2007-08-01
Reports addressing continuous quality improvement (CQI) methods in developing countries are scant and there are questions about the applicability of quality improvement methods in such settings. The structure and output of a formal quality improvement program implemented in a teaching hospital affiliated with the Tehran University of Medical Sciences is presented. OBJECTIVE METHOD: During a nine-month period, a multi-stage quality improvement program was implemented. It comprised: (i) training workshops; (ii) a steering committee; (iii) weekly consultation and facilitation of improvement projects; and (iv) a day-long demonstration and recognition meeting. Four cycles of workshops were held in which 132 employees were trained in the basics of CQI. Thirty improvement projects were initiated. Twenty-five of the projects were completed. In an evaluation survey more than 70% of respondents assessed a 'positive impact' on organizational culture, work efficiency and quality of services. More than 90% believed that the changes were sustained, and more than 60% reported that they have implemented additional improvement projects. Our quality improvement package supported rapid implementation of multiple projects. The underlying 'change structure' comprised the improvement teams, top management and the university's quality improvement office; it integrated project management, support and facilitation functions by the respective participant. Organization-wide change was more limited than anticipated. To institutionalize the program and ensure sustainability, a local structure for change should be organized, management coaching should be sustained, local facilitators should be developed, incentives should be established and physician involvement should be emphasized.
Quality management for space systems in ISRO
NASA Astrophysics Data System (ADS)
Satish, S.; Selva Raju, S.; Nanjunda Swamy, T. S.; Kulkarni, P. L.
2009-11-01
In a little over four decades, the Indian Space Program has carved a niche for itself with the unique application driven program oriented towards National development. The end-to-end capability approach of the space projects in the country call for innovative practices and procedures in assuring the quality and reliability of space systems. The System Reliability (SR) efforts initiated at the start of the projects continue during the entire life cycle of the project encompassing design, development, realisation, assembly, testing and integration and during launch. Even after the launch, SR groups participate in the on-orbit evaluation of transponders in communication satellites and camera systems in remote sensing satellites. SR groups play a major role in identification, evaluation and inculcating quality practices in work centres involved in the fabrication of mechanical, electronics and propulsion systems required for Indian Space Research Organization's (ISRO's) launch vehicle and spacecraft projects. Also the reliability analysis activities like prediction, assessment and demonstration as well as de-rating analysis, Failure Mode Effects and Criticality Analysis (FMECA) and worst-case analysis are carried out by SR groups during various stages of project realisation. These activities provide the basis for project management to take appropriate techno-managerial decisions to ensure that the required reliability goals are met. Extensive test facilities catering to the needs of the space program has been set up. A system for consolidating the experience and expertise gained for issue of standards called product assurance specifications to be used in all ISRO centres has also been established.
A Technology Plan for Enabling Commercial Space Business
NASA Technical Reports Server (NTRS)
Lyles, Garry M.
1997-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems beginning at the turn of the century and continuing far into the future.
Mir, Riyaz A; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A; Ammons, Shalis A; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B; Qiu, Fang; Band, Hamid; Band, Vimla
2015-12-28
Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mir, Riyaz A.; Bele, Aditya; Mirza, Sameer; Srivastava, Shashank; Olou, Appolinaire A.; Ammons, Shalis A.; Kim, Jun Hyun; Gurumurthy, Channabasavaiah B.; Qiu, Fang; Band, Hamid
2015-01-01
Ecdysoneless (ECD) is an evolutionarily conserved protein whose germ line deletion is embryonic lethal. Deletion of Ecd in cells causes cell cycle arrest, which is rescued by exogenous ECD, demonstrating a requirement of ECD for normal mammalian cell cycle progression. However, the exact mechanism by which ECD regulates cell cycle is unknown. Here, we demonstrate that ECD protein levels and subcellular localization are invariant during cell cycle progression, suggesting a potential role of posttranslational modifications or protein-protein interactions. Since phosphorylated ECD was recently shown to interact with the PIH1D1 adaptor component of the R2TP cochaperone complex, we examined the requirement of ECD phosphorylation in cell cycle progression. Notably, phosphorylation-deficient ECD mutants that failed to bind to PIH1D1 in vitro fully retained the ability to interact with the R2TP complex and yet exhibited a reduced ability to rescue Ecd-deficient cells from cell cycle arrest. Biochemical analyses demonstrated an additional phosphorylation-independent interaction of ECD with the RUVBL1 component of the R2TP complex, and this interaction is essential for ECD's cell cycle progression function. These studies demonstrate that interaction of ECD with RUVBL1, and its CK2-mediated phosphorylation, independent of its interaction with PIH1D1, are important for its cell cycle regulatory function. PMID:26711270
5 CFR 470.305 - Submission of proposals for demonstration projects.
Code of Federal Regulations, 2010 CFR
2010-01-01
... projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.305 Submission of proposals for demonstration projects. (a) OPM...
Tampa Electric Company Polk Power Station IGCC project: Project status
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, J.E.; Carlson, M.R.; Hurd, R.
1997-12-31
The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC andmore » Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.« less
NASA Astrophysics Data System (ADS)
Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.
2014-12-01
Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Gregory S; Braun, Robert J; Ma, Zhiwen
This project was motivated by the potential of reducible perovskite oxides for high-temperature, thermochemical energy storage (TCES) to provide dispatchable renewable heat for concentrating solar power (CSP) plants. This project sought to identify and characterize perovskites from earth-abundant cations with high reducibility below 1000 °C for coupling TCES of solar energy to super-critical CO2 (s-CO2) plants that operate above temperature limits (< 600 °C) of current molten-salt storage. Specific TCES > 750 kJ/kg for storage cycles between 500 and 900 °C was targeted with a system cost goal of $15/kWhth. To realize feasibility of TCES systems based on reducible perovskites,more » our team focused on designing and testing a lab-scale concentrating solar receiver, wherein perovskite particles capture solar energy by fast O2 release and sensible heating at a thermal efficiency of 90% and wall temperatures below 1100 °C. System-level models of the receiver and reoxidation reactor coupled to validated thermochemical materials models can assess approaches to scale-up a full TCES system based on reduction/oxidation cycles of perovskite oxides at large scales. After characterizing many Ca-based perovskites for TCES, our team identified strontium-doped calcium manganite Ca1-xSrxMnO3-δ (with x ≤ 0.1) as a composition with adequate stability and specific TCES capacity (> 750 kJ/kg for Ca0.95Sr0.05MnO3-δ) for cycling between air at 500 °C and low-PO2 (10-4 bar) N2 at 900 °C. Substantial kinetic tests demonstrated that resident times of several minutes in low-PO2 gas were needed for these materials to reach the specific TCES goals with particles of reasonable size for large-scale transport (diameter dp > 200 μm). On the other hand, fast reoxidation kinetics in air enables subsequent rapid heat release in a fluidized reoxidation reactor/ heat recovery unit for driving s-CO2 power plants. Validated material thermochemistry coupled to radiation and convective particle-gas transport models facilitated full TCES system analysis for CSP and results showed that receiver efficiencies approaching 85% were feasible with wall-to-particle heat transfer coefficients observed in laboratory experiments. Coupling these reactive particle-gas transport models to external SolTrace and CFD models drove design of a reactive-particle receiver with indirect heating through flux spreading. A lab-scale receiver using Ca0.9Sr0.1MnO3-δ was demonstrated at NREL’s High Flux Solar Furnace with particle temperatures reaching 900 °C while wall temperatures remained below 1100 °C and approximately 200 kJ/kg of chemical energy storage. These first demonstrations of on-sun perovskite reduction and the robust modeling tools from this program provide a basis for going forward with improved receiver designs to increase heat fluxes and solar-energy capture efficiencies. Measurements and modeling tools from this project provide the foundations for advancing TCES for CSP and other applications using reducible perovskite oxides from low-cost, earth-abundant elements. A perovskite composition has been identified that has the thermodynamic potential to meet the targeted TCES capacity of 750 kJ/kg over a range of temperatures amenable for integration with s-CO2 cycles. Further research needs to explore ways of accelerating effective particle kinetics through variations in composition and/or reactor/receiver design. Initial demonstrations of on-sun particle reduction for TCES show a need for testing at larger scales with reduced heat losses and improved particle-wall heat transfer. The gained insight into particle-gas transport and reactor design can launch future development of cost-effective, large-scale particle-based TCES as a technology for enabling increased renewable energy penetration.« less
The dynamics of software development project management: An integrative systems dynamic perspective
NASA Technical Reports Server (NTRS)
Vandervelde, W. E.; Abdel-Hamid, T.
1984-01-01
Rather than continuing to focus on software development projects per se, the system dynamics modeling approach outlined is extended to investigate a broader set of issues pertaining to the software development organization. Rather than trace the life cycle(s) of one or more software projects, the focus is on the operations of a software development department as a continuous stream of software products are developed, placed into operation, and maintained. A number of research questions are ""ripe'' for investigating including: (1) the efficacy of different organizational structures in different software development environments, (2) personnel turnover, (3) impact of management approaches such as management by objectives, and (4) the organizational/environmental determinants of productivity.
Life cycle and economic efficiency analysis: durable pavement markings.
DOT National Transportation Integrated Search
2009-07-01
This project examined the life cycle and economic efficiency of two pavement marking : materials inlaid tape and thermoplastic to find the most economical product for specific : traffic and weather conditions. Six locations in the state of Ma...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Mark A.; Roesler, Erika Louise; Bosler, Peter Andrew
The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.
Teachers' Perspectives on the Human-Nature Relationship: Implications for Environmental Education
NASA Astrophysics Data System (ADS)
Almeida, António; Vasconcelos, Clara
2013-02-01
This study based on a theoretical framework of three main environmental perspectives in the human-nature relationship (anthropocentrism, biocentrism and ecocentrism), aimed to identify their incidence in teachers involved with environmental projects when confronted with diverse environmental issues. 60 teachers drawn from four school cycles in Portugal (crèche; 1st cycle, 6-9 years old; 2nd cycle, 10-11 years old; 3rd cycle and Secondary school, 12-17 years old) were interviewed and divided into two groups: generalist teachers (crèche and 1st cycle) and specialists in different subjects (2nd and 3rd cycles and secondary). The results showed a higher occurrence of biocentric perceptions in all teachers (more significantly in those from the 1st group). Comparatively, the teachers from the 2nd group showed more ecocentric perceptions. These differences can be explained by the models of teacher education (initial and inservice) and by the influence of the specific characteristics of the cycles in question. In contrast, the teachers' environmental projects were mostly centred on sustainable use of resources, which inevitably favours anthropocentric arguments. The results allow us to conclude that different environmental approaches are possible, especially if teachers are aware of the importance of dealing with more controversial environmental issues.
76 FR 80907 - TRICARE Prime Urgent Care Demonstration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Prime Urgent Care Demonstration Project....S. Code, section 1092, entitled Department Of Defense TRICARE Prime Urgent Care Demonstration Project. The demonstration project is intended to test whether allowing four visits to an urgent care...
Bioenergy from willow. 1995 Annual report, November 1987--December 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E.H.; Abrahamson, L.P.
Experiments were established at Tully, New York, by the State University of New York College of Environmental Science and Forestry, in cooperation with the University of Toronto and the Ontario Ministry of Natural Resources, to assess the potential of willows for wood biomass production. Specific objectives included determining the effects of clone type, fertilization, spacing, cutting cycle, and irrigation on biomass production. Production was high, with willow clone SV1 yielding nearly 32 oven dry tons per acre (odt ac{sup -1}) with three-year harvest cycle, irrigation, and fertilization. Clone type, fertilization, spacing, cutting cycle, and irrigation all significantly affected biomass production.more » Willow clone-site trials planted at Massena, and Tully, NY in 1993 grew well during 1994 and 1995, but some clones in the Massena trial were severely damaged by deer browse. Several new cooperators joined the project, broadening the funding base, and enabling establishment of additional willow plantings. Willow clone-site trials were planted at Himrod, King Ferry, Somerset, and Tully, NY, during 1995. A willow cutting orchard was planted during 1995 at the NYS Department of Environmental Conservation Saratoga Tree Nursery in Saratoga, NY. Plans are to begin site preparation for a 100+ acre willow bioenergy demonstration farm in central New York, and additional clone-site trials, in 1996.« less
Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy
2014-01-01
The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation.
Matallana-Surget, Sabine; Derock, Jérémy; Leroy, Baptiste; Badri, Hanène; Deschoenmaeker, Frédéric; Wattiez, Ruddy
2014-01-01
The filamentous cyanobacterium Arthrospira platensis has a long history of use as a food supply and it has been used by the European Space Agency in the MELiSSA project, an artificial microecosystem which supports life during long-term manned space missions. This study assesses progress in the field of cyanobacterial shotgun proteomics and light/dark diurnal cycles by focusing on Arthrospira platensis. Several fractionation workflows including gel-free and gel-based protein/peptide fractionation procedures were used and combined with LC-MS/MS analysis, enabling the overall identification of 1306 proteins, which represents 21% coverage of the theoretical proteome. A total of 30 proteins were found to be significantly differentially regulated under light/dark growth transition. Interestingly, most of the proteins showing differential abundance were related to photosynthesis, the Calvin cycle and translation processes. A novel aspect and major achievement of this work is the successful improvement of the cyanobacterial proteome coverage using a 3D LC-MS/MS approach, based on an immobilized metal affinity chromatography, a suitable tool that enabled us to eliminate the most abundant protein, the allophycocyanin. We also demonstrated that cell growth follows a light/dark cycle in A. platensis. This preliminary proteomic study has highlighted new characteristics of the Arthrospira platensis proteome in terms of diurnal regulation. PMID:24914774
Detonation Jet Engine. Part 1--Thermodynamic Cycle
ERIC Educational Resources Information Center
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. The efficiency advantages of thermodynamic detonative combustion cycle over Humphrey combustion cycle at constant volume and Brayton combustion cycle at constant pressure were demonstrated. An ideal Ficket-Jacobs detonation cycle, and…
Amazonian forest dieback under climate-carbon cycle projections for the 21st century
NASA Astrophysics Data System (ADS)
Cox, P. M.; Betts, R. A.; Collins, M.; Harris, P. P.; Huntingford, C.; Jones, C. D.
The first GCM climate change projections to include dynamic vegetation and an interactive carbon cycle produced a very significant amplification of global warming over the 21st century. Under the IS92a ``business as usual'' emissions scenario CO2 concentrations reached about 980ppmv by 2100, which is about 280ppmv higher than when these feedbacks were ignored. The major contribution to the increased CO2 arose from reductions in soil carbon because global warming is assumed to accelerate respiration. However, there was also a lesser contribution from an alarming loss of the Amazonian rainforest. This paper describes the phenomenon of Amazonian forest dieback under elevated CO2 in the Hadley Centre climate-carbon cycle model.
2016-09-01
Support Strategies (PBPSS), throughout the system life cycle . Maximizing competition, to include small business participation. Developing...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA JOINT APPLIED PROJECT WHY ARMY PROGRAM MANAGERS STRUGGLE AS LIFE CYCLE MANAGERS...SUBTITLE WHY ARMY PROGRAM MANAGERS STRUGGLE AS LIFE CYCLE MANAGERS: A STUDY OF THE PM’S ROLES, RESPONSIBILITIES, AND BARRIERS IN THE EXECUTION OF
Reconciling carbon-cycle concepts, terminology, and methodology
F.S. III Chapin; G.M Woodwell; J.T. Randerson; G.M. Lovett; E.B. Rastetter; D.D. Baldocchi; D.A. Clark; M.E. Harmon; D.S. Schimel; Valentini R.; Wirth C.; Aber J.D.; Cole J.J.; Goulden M.L.; Harden J.W.; Heimann M.; Howarth R.W.; Matson P.A.; McGuire A.D.; Melillo J.M.; H.A. Mooney; J.C. Neff; R.A. Houghton; M.L. Pace; M.G. Ryan; S.W. Running; O.E. Sala; W.H. Schlesinger; E. D. Schulze
2005-01-01
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by...
ERIC Educational Resources Information Center
Juntunen, Marianne; Aksela, Maija
2013-01-01
The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, Ralph F.
The major goal of this project was to improve understanding of processes that control the exchanges of CO 2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO 2 concentration and the isotopes of CO 2 ( 13C/ 12C and 18O/ 16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years andmore » to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO 2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/ 12C. The core element of this project was providing partial support for continuing measurements of CO 2 concentrations and isotopes from the Scripps CO 2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO 2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/ 12C of CO 2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College« less
Pathfinder Innovation Projects: Awardees for 2013
PIP3 awardees will tackle high-risk, high-reward research ideas with gated funding. Projects include PM toxicity for zebrafish, lab-grown neuron networks, research bias for pharmaceutical chemicals, and innovative chemical life cycle assessments.
Progress Toward National Aeronautics Goals
NASA Technical Reports Server (NTRS)
Russo, Carlo J.; Sehra, Arun K.
1999-01-01
NASA has made definitive progress towards achieving several bold U.S. goals in aeronautics related to air breathing engines. The advanced technologies developed towards these goals span applications from general aviation to large subsonic and supersonic aircraft. The proof of successful technology development is demonstrated through successful technology transfer to U.S. industry and projected fleet impact. Specific examples of progress are discussed that quantifies the achievement towards these goals. In addition, a more detailed vision for NASA aeronautics is defined and key strategic issues are explored which invite international and national debate and involvement especially in reduced environmental impact for subsonic and supersonic aircraft, dramatic new capabilities in general aviation engines, and reduced development cycle time and costs.
NASA Technical Reports Server (NTRS)
Fasching, W. A.
1980-01-01
The improved single shank high pressure turbine design was evaluated in component tests consisting of performance, heat transfer and mechanical tests, and in core engine tests. The instrumented core engine test verified the thermal, mechanical, and aeromechanical characteristics of the improved turbine design. An endurance test subjected the improved single shank turbine to 1000 simulated flight cycles, the equivalent of approximately 3000 hours of typical airline service. Initial back-to-back engine tests demonstrated an improvement in cruise sfc of 1.3% and a reduction in exhaust gas temperature of 10 C. An additional improvement of 0.3% in cruise sfc and 6 C in EGT is projected for long service engines.
NASA Technical Reports Server (NTRS)
Huang, Adam
2016-01-01
The goal of the Solid State Inflation Balloon Active Deorbiter project is to develop and demonstrate a scalable, simple, reliable, and low-cost active deorbiting system capable of controlling the downrange point of impact for the full-range of small satellites from 1 kg to 180 kg. The key enabling technology being developed is the Solid State Gas Generator (SSGG) chip, generating pure nitrogen gas from sodium azide (NaN3) micro-crystals. Coupled with a metalized nonelastic drag balloon, the complete Solid State Inflation Balloon (SSIB) system is capable of repeated inflation/deflation cycles. The SSGG minimizes size, weight, electrical power, and cost when compared to the current state of the art.
NASA Technical Reports Server (NTRS)
Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.
2011-01-01
Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.
10 CFR 436.33 - Procedures and methods for contractor selection.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) May state that if the Federal agency requires a detailed energy survey which identifies life cycle... savings performance project, Federal agencies shall publish a Commerce Business Daily notice which... select a firm on a qualified list to conduct the project. (4) If a proposed energy cost savings project...
NASA Astrophysics Data System (ADS)
Shieh, Lih-Yir; Kan, Hung-Chih
2014-04-01
We demonstrate that plotting the P-V diagram of an ideal gas Carnot cycle on a logarithmic scale results in a more intuitive approach for deriving the final form of the efficiency equation. The same approach also facilitates the derivation of the efficiency of other thermodynamic engines that employ adiabatic ideal gas processes, such as the Brayton cycle, the Otto cycle, and the Diesel engine. We finally demonstrate that logarithmic plots of isothermal and adiabatic processes help with visualization in approximating an arbitrary process in terms of an infinite number of Carnot cycles.
Data Integration Support for Data Served in the OPeNDAP and OGC Environments
NASA Technical Reports Server (NTRS)
McDonald, Kenneth R.; Wharton, Stephen W. (Technical Monitor)
2006-01-01
NASA is coordinating a technology development project to construct a gateway between system components built upon the Open-source Project for a Network Data AcceSs Protocol (OPeNDAP) and those made available made available via interfaces specified by the Open Geospatial Consortium (OGC). This project is funded though the Advanced Collaborative Connections for Earth-Sun System Science (ACCESS) Program and is a NASA contribution to the Committee on Earth Satellites (CEOS) Working Group on Information Systems and Services (WGISS). The motivation for the project is the set of data integration needs that have been expressed by the Coordinated Enhanced Observing Period (CEOP), an international program that is addressing the study of the global water cycle. CEOP is assembling a large collection in situ and satellite data and mode1 results from a wide variety of sources covering 35 sites around the globe. The data are provided by systems based on either the OPeNDAP or OGC protocols but the research community desires access to the full range of data and associated services from a single client. This presentation will discuss the current status of the OPeNDAP/OGC Gateway Project. The project is building upon an early prototype that illustrated the feasibility of such a gateway and which was demonstrated to the CEOP science community. In its first year as an ACCESS project, the effort has been has focused on the design of the catalog and data services that will be provided by the gateway and the mappings between the metadata and services provided in the two environments.
The Many Dimensions of Program Management
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1992-01-01
For the purposes of this paper, program refers to a collection of activities or projects which must be performed according to a plan or schedule. The Space Exploration Initiative within the National Aeronautics and Space Administration (NASA) is an example. Dimensionality refers to both the various perspectives of a program and to the components within that perspective. It is, thus, appropriate to think of dimensions of dimensionality. For example, one dimension or perspective of a program is the projects which perform the program. Within the project dimension, the individual projects are the components of that dimensionality. The number of projects defines the spatial dimensionality of the project dimension. Thus, each perspective or dimension has a dimensionality of its own. The structure and associated values of all the various perspectives of a program define the program. A project refers to the collection of activities required to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a given system. A project thus effects the life cycle of given system. A project is, thus, the system to conceive, sell, design, develop, evaluate, produce, operate, support, evolve, and retire a system. A program, thus, effects the life cycle of the collection of projects required to effect the collection of systems required to implement the program.
Zhu, Yunhua; Frey, H Christopher
2006-12-01
Integrated gasification combined cycle (IGCC) technology is a promising alternative for clean generation of power and coproduction of chemicals from coal and other feedstocks. Advanced concepts for IGCC systems that incorporate state-of-the-art gas turbine systems, however, are not commercially demonstrated. Therefore, there is uncertainty regarding the future commercial-scale performance, emissions, and cost of such technologies. The Frame 7F gas turbine represents current state-of-practice, whereas the Frame 7H is the most recently introduced advanced commercial gas turbine. The objective of this study was to evaluate the risks and potential payoffs of IGCC technology based on different gas turbine combined cycle designs. Models of entrained-flow gasifier-based IGCC systems with Frame 7F (IGCC-7F) and 7H gas turbine combined cycles (IGCC-7H) were developed in ASPEN Plus. An uncertainty analysis was conducted. Gasifier carbon conversion and project cost uncertainty are identified as the most important uncertain inputs with respect to system performance and cost. The uncertainties in the difference of the efficiencies and costs for the two systems are characterized. Despite uncertainty, the IGCC-7H system is robustly preferred to the IGCC-7F system. Advances in gas turbine design will improve the performance, emissions, and cost of IGCC systems. The implications of this study for decision-making regarding technology selection, research planning, and plant operation are discussed.
Parametric Crowd Generation Software for MS&T Simulations and Training
2007-02-20
3 Technology Overview 5 Dynemotion System Components 5 Dynemotion System Architecture 6 Dynemotion-Enabled NPC Brain Cycles 9 Dynemotion API...Contents 10 Development Project Background Information 11 Potential Application and Impact for the DoD 13 Project Objectives, Scope...Methodology 13 Benefits of the Project 13 Project Innovation 14 *l_essons Learned and Open Questions 14 Research and Development Challenges 16
ERIC Educational Resources Information Center
Berney, Tomi D.; Cantalupo, Denise
This evaluation report describes the Bilingual Education Talented Academy--Gifted and Talented Project (Project BETA) in its first year of a 3-year Elementary and Secondary Education Act Title VII funding cycle. The project served 307 students of limited English proficiency in two Bronx (New York) high schools. The predominant native languages…
Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.
2018-04-01
In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.
Robotic Lunar Landers For Science And Exploration
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Bassler, J. A.; Morse, B. J.; Reed, C. L. B.
2010-01-01
NASA Marshall Space Flight Center and The Johns Hopkins University Applied Physics Laboratory have been conducting mission studies and performing risk reduction activities for NASA s robotic lunar lander flight projects. In 2005, the Robotic Lunar Exploration Program Mission #2 (RLEP-2) was selected as an ESMD precursor robotic lander mission to demonstrate precision landing and determine if there was water ice at the lunar poles; however, this project was canceled. Since 2008, the team has been supporting SMD designing small lunar robotic landers for science missions, primarily to establish anchor nodes of the International Lunar Network (ILN), a network of lunar geophysical nodes. Additional mission studies have been conducted to support other objectives of the lunar science community. This paper describes the current status of the MSFC/APL robotic lunar mission studies and risk reduction efforts including high pressure propulsion system testing, structure and mechanism development and testing, long cycle time battery testing, combined GN&C and avionics testing, and two autonomous lander test articles.
DASL-Data and Activities for Solar Learning
NASA Technical Reports Server (NTRS)
Jones, Harrison P.; Henney, Carl; Hill, Frank; Gearen, Michael; Pompca, Stephen; Stagg, Travis; Stefaniak, Linda; Walker, Connie
2004-01-01
DASL-Data and Activities for Solar Learning Data and Activities for Solar Learning (DASL) provides a classroom learning environment based on a twenty-five year record of solar magnetograms from the National Solar Observatory (NSO) at Kitt Peak, AZ. The data, together with image processing software for Macs or PCs, can be used to learn basic facts about the Sun and astronomy at the middle school level. At the high school level, students can study properties of the Sun's magnetic cycle with classroom exercises emphasizing data and error analysis and can participate in a new scientific study, Research in Active Solar Longitudes (RASL), in collaboration with classrooms throughout the country and scientists at NSO and NASA. We present a half-day course to train teachers in the scientific content of the project and its classroom use. We will provide a compact disc with the data and software and will demonstrate software installation and use, classroom exercises, and participation in RASL with computer projection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Bobby D.; Rodriguez, Salvador B.; Carlson, Matthew David
This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows formore » measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.« less
feasibility analysis Environmental analysis Strategic planning for market development Research Interests Life -1991) Other Affiliations Executive Board, American Center for Life Cycle Assessment, 2004-present Advisory member of the North American Life Cycle Inventory Database Project Member, Society of
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
A spectro-interferometric view of l Carinae's modulated pulsations
NASA Astrophysics Data System (ADS)
Anderson, Richard I.; Mérand, Antoine; Kervella, Pierre; Breitfelder, Joanne; Eyer, Laurent; Gallenne, Alexandre
Classical Cepheids are radially pulsating stars that enable important tests of stellar evolution and play a crucial role in the calibration of the local Hubble constant. l Carinae is a particularly well-known distance calibrator, being the closest long-period (P ~ 35.5 d) Cepheid and subtending the largest angular diameter. We have carried out an unprecedented observing program to investigate whether recently discovered cycle-to-cycle changes (modulations) of l Carinae's radial velocity (RV) variability are mirrored by its variability in angular size. To this end, we have secured a fully contemporaneous dataset of high-precision RVs and high-precision angular diameters. Here we provide a concise summary of our project and report preliminary results. We confirm the modulated nature of the RV variability and find tentative evidence of cycle-to-cycle differences in l Car's maximal angular diameter. Our analysis is exploring the limits of state-of-the-art instrumentation and reveals additional complexity in the pulsations of Cepheids. If confirmed, our result suggests a previously unknown pulsation cycle dependence of projection factors required for determining Cepheid distances via the Baade-Wesselink technique.
The study of operating an air conditioning system using Maisotsenko-Cycle
NASA Astrophysics Data System (ADS)
Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh
2018-03-01
The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.
Audit of Orthopaedic Audits in an English Teaching Hospital: Are We Closing the Loop?
Iqbal, H.J; Pidikiti, P
2010-01-01
Background: Clinical audit is an important tool to improve patient care and outcomes in health service. A significant proportion of time and economic resources are spent on activities related to clinical audit. Completion of audit cycle is essential to confirm the improvements in healthcare delivery. We aimed this study to evaluate audits carried out within trauma and orthopaedic unit of a teaching hospital over the last 4 years, and establish the proportions which were re-audited as per recommendations. Methods: Data was collected from records of the clinical audit department. All orthopaedic audit projects from 2005 to 2009 were included in this study. The projects were divided in to local, regional and national audits. Data regarding audit lead clinicians, completion and presentation of projects, recommendations and re-audits was recorded. Results: Out of 61 audits commenced during last four years, 19.7% (12) were abandoned, 72.1% (44) were presented and 8.2 % (5) were still ongoing. The audit cycle was completed in only 29% (13) projects. Conclusion: Change of junior doctors every 4~6 months is related to fewer re-audits. Active involvement by supervising consultant, reallocation of the project after one trainee has finished, and full support of audit department may increase the ratio of completion of audit cycles, thereby improving the patient care. PMID:20721318
Earthwork haul-truck cycle-time monitoring : a case study.
DOT National Transportation Integrated Search
2016-03-01
Recent developments in autonomous technologies have motivated practitioners to adopt new technologies in highway and : earthwork construction projects. This project set out to (1) identify new and emerging autonomous earthwork technologies and : (2) ...
48 CFR 307.104-70 - Acquisition strategy.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Enterprise Performance Life Cycle concept phase. .... Program and Project Managers responsible for major IT capital investments (and for any other investments... ASFR/OGAPA/DA Internet Web site. Program and Project Managers must initiate the acquisition strategy...
NASA Technical Reports Server (NTRS)
Harkness, J. D.
1976-01-01
An evaluation test program was conducted to insure that all cells put into the life cycle program are of high quality by the screening of cells found to have electrolyte leakage, internal shorts, low capacity, or inability of any cell to recover its open-circuit voltage above 1.150 volts during the internal short test. The 20 cells were manufactured for the National Aeronautics and Space Administration, Goddard Space Flight Center (GSFC). The cells are from a lot of 175 cells procured for the International Ultraviolet Explorer project. Due to a change in requirements, the project selected to use 6.0 ampere-hour cells. Therefore, the remaining cells of this lot have been placed in storage at GSFC for use on a future GSFC project. All the cells are rated at 12.0 ampere-hours and contain double ceramic seals. Test limits specify those values in which a cell is to be terminated from a particular charge or discharge. Requirements are referred to as normally expected values based on past performance of aerospace nickel cadmium cells with demonstrated life characteristics.
NASA Technical Reports Server (NTRS)
Dankanich, John W.
2014-01-01
Closing Remarks: ?(1) SmallSats hold significant potential for future low cost high value missions; (2) Propulsion remains a key limiting capability for SmallSats that Iodine can address: High ISP * Density for volume constrained spacecraft; Indefinite quiescence, unpressurized and non-hazardous as a secondary payload; (3) Iodine enables MicroSat and SmallSat maneuverability: Enables transfer into high value orbits, constellation deployment and deorbit; (4) Iodine may enable a new class of planetary and exploration class missions: Enables GTO launched secondary spacecraft to transit to the moon, asteroids, and other interplanetary destinations for approximately 150 million dollars full life cycle cost including the launch; (5) ESPA based OTVs are also volume constrained and a shift from xenon to iodine can significantly increase the transfer vehicle change in volume capability including transfers from GTO to a range of Lunar Orbits; (6) The iSAT project is a fast pace high value iodine Hall technology demonstration mission: Partnership with NASA GRC and NASA MSFC with industry partner - Busek; (7) The iSAT mission is an approved project with PDR in November of 2014 and is targeting a flight opportunity in FY17.
A Comparative Study of Welded ODS Cladding materials for AFCI/GNEP Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indrajit Charit; Megan Frary; Darryl Butt
2011-03-31
This research project involved working on the pressure resistance welding of oxide dispersion strengthened (ODS) alloys which will have a large role to play in advanced nuclear reactors. The project also demonstrated the research collaboration between four universities and one nation laboratory (Idaho National Laboratory) with participation from an industry for developing for ODS alloys. These alloys contain a high number density of very fine oxide particles that can impart high temperature strength and radiation damage resistance suitable for in-core applications in advanced reactors. The conventional fusion welding techniques tend to produce porosity-laden microstructure in the weld region and leadmore » to the agglomeration and non-uniform distribution of the neededoxide particles. That is why two solid state welding methods - pressure resistance welding (PRW) and friction stir welding (FSW) - were chosen to be evaluated in this project. The proposal is expected to support the development of Advanced Burner Reactors (ABR) under the GNEP program (now incorporated in Fuel Cycle R&D program). The outcomes of the concluded research include training of graduate and undergraduate students and get them interested in nuclear related research.« less
NASA Technical Reports Server (NTRS)
Eisenberg, J. D.
1977-01-01
The effect on fuel consumption of turbofans with intercooled, regenerative cycles and with intercooled, regenerative, reheat cycles was studied. The technology level for both engine and aircraft was that projected for 1985. The simulated mission was a 5556 km flight carrying 200 passengers at Mach 0.8 at 11582 min. Results indicate that these relatively complex cycles offer little, if any, fuel savings potential relative to a conventional turbofan cycle of comparable advanced technology. The intercooled, regenerative cycle yields about the same fuel economy as a conventional cycle at close to the same overall pressure ratio.
Moving Up the CMMI Capability and Maturity Levels Using Simulation
2008-01-01
Alternative Process Tools, Including NPV and ROI 6 Figure 3: Top-Level View of the Full Life-Cycle Version of the IEEE 12207 PSIM, Including IV&V Layer 19...Figure 4: Screenshot of the Incremental Version Model 19 Figure 5: IEEE 12207 PSIM Showing the Top-Level Life-Cycle Phases 22 Figure 6: IEEE 12207 ...Software Detailed Design for the IEEE 12207 Life- Cycle Process 24 Figure 8: Incremental Life Cycle PSIM Configured for a Specific Project Using SEPG
Harrington, J Timothy; Barash, Harvey L; Day, Sherry; Lease, Joellen
2005-04-15
To develop new processes that assure more reliable, population-based care of fragility fracture patients. A 4-year clinical improvement project was performed in a multispecialty, community practice health system using evidence-based guidelines and rapid cycle process improvement methods (plan-do-study-act cycles). Prior to this project, appropriate osteoporosis care was provided to only 5% of our 1999 hip fracture patients. In 2001, primary physicians were provided prompts about appropriate care (cycle 1), which resulted in improved care for only 20% of patients. A process improvement pilot in 2002 (cycle 2) and full program implementation in 2003 (cycle 3) have assured osteoporosis care for all willing and able patients with any fragility fracture. Altogether, 58% of 2003 fragility fracture patients, including 46% of those with hip fracture, have had a bone measurement, have been assigned to osteoporosis care with their primary physician or a consultant, and are being monitored regularly. Only 19% refused osteoporosis care. Key process improvements have included using orthopedic billings to identify patients, referring patients directly from orthopedics to an osteoporosis care program, organizing care with a nurse manager and process management computer software, assigning patients to primary or consultative physician care based on disease severity, and monitoring adherence to therapy by telephone. Reliable osteoporosis care is achievable by redesigning clinical processes. Performance data motivate physicians to reconsider traditional approaches. Improving the care of osteoporosis and other chronic diseases requires coordinated care across specialty boundaries and health system support.
2012-08-01
Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology Innovation In fo...is unlimited. ERDC/ITL TR-12-2 August 2012 Building Information Modeling ( BIM ) Primer Report 1: Facility Life-cycle Process and Technology...and to enhance the quality of projects through the design, construction, and handover phases. Building Information Modeling ( BIM ) is a
The DOE water cycle pilot study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, N. L.; King, A. W.; Miller, M. A.
In 1999, the U.S. Global Change Research Program (USGCRP) formed a Water Cycle Study Group (Hornberger et al. 2001) to organize research efforts in regional hydrologic variability, the extent to which this variability is caused by human activity, and the influence of ecosystems. The USGCRP Water Cycle Study Group was followed by a U.S. Department of Energy (DOE) Water Cycle Research Plan (Department of Energy 2002) that outlined an approach toward improving seasonal-to-interannual hydroclimate predictability and closing a regional water budget. The DOE Water Cycle Research Plan identified key research areas, including a comprehensive long-term observational database to support modelmore » development, and to develop a better understanding of the relationship between the components of local water budgets and large scale processes. In response to this plan, a multilaboratory DOE Water Cycle Pilot Study (WCPS) demonstration project began with a focus on studying the water budget and its variability at multiple spatial scales. Previous studies have highlighted the need for continued efforts to observationally close a local water budget, develop a numerical model closure scheme, and further quantify the scales in which predictive accuracy are optimal. A concerted effort within the National Oceanic and Atmospheric Administration (NOAA)-funded Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) put forth a strategy to understand various hydrometeorological processes and phenomena with an aim toward closing the water and energy budgets of regional watersheds (Lawford 1999, 2001). The GCIP focus on such regional budgets includes the measurement of all components and reduction of the error in the budgets to near zero. To approach this goal, quantification of the uncertainties in both measurements and modeling is required. Model uncertainties within regional climate models continue to be evaluated within the Program to Intercompare Regional Climate Simulations (Takle et al. 1999), and model uncertainties within land surface models are being evaluated within the Program to Intercompare Land Surface Schemes (e.g., Henderson-Sellers 1993; Wood et al. 1998; Lohmann et al. 1998). In the context of understanding the water budget at watershed scales, the following two research questions that highlight DOE's unique water isotope analysis and high-performance modeling capabilities were posed as the foci of this pilot study: (1) Can the predictability of the regional water budget be improved using high-resolution model simulations that are constrained and validated with new hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? To address these questions, numerical studies using regional atmospheric-land surface models and multiscale land surface hydrologic models were generated and, to the extent possible, the results were evaluated with observations. While the number of potential processes that may be important in the local water budget is large, several key processes were examined in detail. Most importantly, a concerted effort was made to understand water cycle processes and feedbacks at the land surface-atmosphere interface at spatial scales ranging from 30 m to hundreds of kilometers. A simple expression for the land surface water budget at the watershed scale is expressed as {Delta}S = P + G{sub in} - ET - Q - G{sub out}, where {Delta}S is the change in water storage, P is precipitation, ET is evapotranspiration, Q is streamflow, G{sub in} is groundwater entering the watershed, and G{sub out} is groundwater leaving the watershed, per unit time. The WCPS project identified data gaps and necessary model improvements that will lead to a more accurate representation of the terms in Eq. (1). Table 1 summarizes the components of this water cycle pilot study and the respective participants. The following section provides a description of the surface observation and modeling sites. This is followed by a section on model analyses, and then the summary and concluding remarks.« less
Developments in Turbo-Brayton Power Converters
NASA Astrophysics Data System (ADS)
Zagarola, Mark V.; Crowley, Christopher J.; Swift, Walter L.
2003-01-01
Design studies show that a Brayton cycle power unit is an extremely attractive option for thermal-to-electric power conversion on long-duration, space missions. At low power levels (50 to 100 We), a Brayton system should achieve a conversion efficiency between 20% and 40% depending on the radiative heat sink temperature. The expected mass of the converter for these power levels is about 3 kg. The mass of the complete system consisting of the converter, the electronics, a radiator, and a single general purpose heat source should be about 6 kg. The system is modular and the technology is readily scalable to higher power levels (to greater than 10 kWe) where conversion efficiencies of between 28% and 45% are expected, the exact value depending on sink temperature and power level. During a recently completed project, key physical features of the converter were determined, and key operating characteristics were demonstrated for a system of this size. The key technologies in these converters are derived from those which have been developed and successfully implemented in miniature turbo-Brayton cryogenic refrigerators for space applications. These refrigerators and their components have been demonstrated to meet rigorous requirements for vibration emittance and susceptibility, acoustic susceptibility, electromagnetic interference and susceptibility, environmental cycling, and endurance. Our progress in extending the underlying turbo-Brayton cryocooler technologies to thermal-to-electric power converters is the subject of this paper.
Status of the Combined Cycle Engine Rig
NASA Technical Reports Server (NTRS)
Saunders, Dave; Slater, John; Dippold, Vance
2009-01-01
Status for the past year is provided of the turbine-based Combined-Cycle Engine (CCE) Rig for the hypersonic project. As part of the first stage propulsion of a two-stage-to-orbit vehicle concept, this engine rig is designed with a common inlet that supplies flow to a turbine engine and a dual-mode ramjet / scramjet engine in an over/under configuration. At Mach 4 the inlet has variable geometry to switch the airflow from the turbine to the ramjet / scramjet engine. This process is known as inlet mode-transition. In addition to investigating inlet aspects of mode transition, the rig will allow testing of turbine and scramjet systems later in the test series. Fully closing the splitter cowl "cocoons" the turbine engine and increases airflow to the scramjet duct. The CCE Rig will be a testbed to investigate integrated propulsion system and controls technology objectives. Four phases of testing are planned to 1) characterize the dual inlet database, 2) collect inlet dynamics using system identification techniques, 3) implement an inlet control to demonstrate mode-transition scenarios and 4) demonstrate integrated inlet/turbine engine operation through mode-transition. Status of the test planning and preparation activities is summarized with background on the inlet design and small-scale testing, analytical CFD predictions and some details of the large-scale hardware. The final stages of fabrication are underway.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie A.; Reed, Sasha C.; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan
2017-01-01
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
NASA Astrophysics Data System (ADS)
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan
2017-10-01
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.
Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests
Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; ...
2017-10-23
For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less
NASA Technical Reports Server (NTRS)
1987-01-01
The detailed design of a small beam-powered trans-atmospheric vehicle, 'The Apollo Lightcraft,' was selected as the project for the design course. The vehicle has a lift-off gross weight of about six (6) metric tons and the capability to transport 500 kg of payload (five people plus spacesuits) to low Earth orbit. Beam power was limited to 10 gigawatts. The principal goal of this project is to reduce the low-Earth-orbit payload delivery cost by at least three orders of magnitude below the space shuttle orbiter--in the post 2020 era. The completely reusable, single-stage-to-orbit, shuttle craft will take off and land vertically, and have a reentry heat shield integrated with its lower surface--much like the Apollo command module. At the appropriate points along the launch trajectory, the combined cycle propulsion system will transition through three or four air breathing modes, and finally a pure rocket mode for orbital insertion. As with any revolutionary flight vehicle, engine development must proceed first. Hence, the objective for the spring semester propulsion course was to design and perform a detailed theoretical analysis on an advanced combined-cycle engine suitable for the Apollo Light craft. The analysis indicated that three air breathing cycles will be adequate for the mission, and that the ram jet cycle is unnecessary.
Case study for implementing RECIPPE as a quality control in construction projects.
DOT National Transportation Integrated Search
2008-04-01
The quality of construction is a very important factor in the life-cycle performance of flexible pavements. This is particularly true of the individual characteristics of construction and their relative effect on life-cycle performance of the pavemen...
Physics Parameterization for Seasonal Prediction
2012-09-30
comparison Project, a joint effort between the Year of Tropical Convection (YOTC) Program and the Global Energy and Water Cycle Experiment (GEWEX) Cloud...unified” representation of the water cycle in the model. One such area is the correspondence between diagnosed cloud cover and prognostic cloud
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Life cycle analysis. For new construction and substantial rehabilitation, the criteria to be used in equipping the proposed development with heating and cooling systems, which shall include a life-cycle cost... the proposed site, site plan, and neighborhood. (f) Market analysis. An analysis of the projected...
34 CFR 377.1 - What is the Demonstration Projects to Increase Client Choice Program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 34 Education 2 2010-07-01 2010-07-01 false What is the Demonstration Projects to Increase Client... PROJECTS TO INCREASE CLIENT CHOICE PROGRAM General § 377.1 What is the Demonstration Projects to Increase Client Choice Program? The Demonstration Projects to Increase Client Choice Program is designed to...
Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases
NASA Technical Reports Server (NTRS)
Moton, Tryshanda
2016-01-01
Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.
Solar Airplanes and Regenerative Fuel Cells
NASA Technical Reports Server (NTRS)
Bents, David J.
2007-01-01
A solar electric aircraft with the potential to "fly forever" has captured NASA's interest, and the concept for such an aircraft was pursued under Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project. Feasibility of this aircraft happens to depend on the successful development of solar power technologies critical to NASA's Exploration Initiatives; hence, there was widespread interest throughout NASA to bring these technologies to a flight demonstration. The most critical is an energy storage system to sustain mission power during night periods. For the solar airplane, whose flight capability is already limited by the diffuse nature of solar flux and subject to latitude and time of year constraints, the feasibility of long endurance flight depends on a storage density figure of merit better than 400-600 watt-hr per kilogram. This figure of merit is beyond the capability of present day storage technologies (other than nuclear) but may be achievable in the hydrogen-oxygen regenerative fuel cell (RFC). This potential has led NASA to undertake the practical development of a hydrogen-oxygen regenerative fuel cell, initially as solar energy storage for a high altitude UAV science platform but eventually to serve as the primary power source for NASAs lunar base and other planet surface installations. Potentially the highest storage capacity and lowest weight of any non-nuclear device, a flight-weight RFC aboard a solar-electric aircraft that is flown continuously through several successive day-night cycles will provide the most convincing demonstration that this technology's widespread potential has been realized. In 1998 NASA began development of a closed cycle hydrogen oxygen PEM RFC under the Aeronautics Environmental Research Aircraft and Sensor Technology (ERAST) project and continued its development, originally for a solar electric airplane flight, through FY2005 under the Low Emissions Alternative Power (LEAP) project. Construction of the closed loop system began in 2002 at the NASA Glenn Research Center in Cleveland, Ohio. System checkout was completed, and testing began, in July of 2003. The initial test sequences were done with only a fuel cell or electrolyzer in the test rig. Those tests were used to verify the test apparatus, procedures, and software. The first complete cycles of the fully closed loop, regenerative fuel cell system were successfully completed in the following September. Following some hardware upgrades to increase reactant recirculation flow, the test rig was operated at full power in December 2003 and again in January 2004. In March 2004 a newer generation of fuel cell and electrolyzer stacks was substituted for the original hardware and these stacks were successfully tested at full power under cyclic operation in June of 2004.
NASA Astrophysics Data System (ADS)
Dong, Z.; Driscoll, C. T.; Hayhoe, K.; Pourmokhtarian, A.; Stoner, A. M. K.
2016-12-01
Biogeochemical cycling of water, carbon, and nitrogen in alpine tundra ecosystems are closely related to the water and nutrient supply and ecosystem function of watersheds. While studies on the response of alpine tundra to climate change have largely focused on ecosystem structure, research on response of ecosystem function and element cycling are less well established. Using downscaled future climate scenarios under Representative Concentration Pathways (RCP) and revised algorithm of the ecosystem model, PnET-BGC, we investigated water, carbon, and nitrogen cycling of an alpine tundra ecosystem under different projections of future climate change at Saddle site of Niwot Ridge, Colorado. Simulations from this study suggest that future water supply from the alpine tundra was well predicted by the Budyko curve, which contrasts with findings from several previous studies. Although foliar display is projected to decrease due to summer water stress, an extend growing season and increasing atmospheric CO2 concentrations reverse its effects on carbon fixation by allowing longer period of photosynthesis and greater photosynthetic rate per leaf area. As a result of the increasing carbon sequestration, large increases in carbon storage are projected in living and dead biomass. Decomposition of soil organic carbon and mineralization of soil organic nitrogen increase with temperature and soil moisture, but also related to the period of snow cover which likely enhances microbial activity and associated soil decomposition and N immobilization. Future increase in winter precipitation leads to increasing snow water content which increases spring soil moisture and decomposition. Shorter future snow cover period and decreased summer soil moisture caused lower decomposition in both seasons, therefore negligible long-term pattern is projected. Future net N mineralization generally followed the pattern of organic carbon decomposition, but slightly increased because of decreasing winter immobilization due to projected shorter snow cover period. Nitrogen uptake is projected to be higher under radiative forcing scenarios of higher primary production and greater net N mineralization.
Project GET SET, 1987-88. OREA Evaluation Report.
ERIC Educational Resources Information Center
Berney, Tomi D.; Friedman, Grace Ibanez
In its second extension year following a 3-year federal funding cycle, Project GET SET served 163 junior high school students of limited ability in both English and Spanish at two Bronx junior high schools. The project's aim was to reinforce English and native language skills and to offer students personal counseling, informative programs that…
77 FR 13593 - PowerSmith Cogeneration Project, LP; Notice of Request for Waiver
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-07
...] PowerSmith Cogeneration Project, LP; Notice of Request for Waiver Take notice that on February 27, 2012... CFR 292.205(c), PowerSmith Cogeneration Project, LP (PowerSmith) filed a Request for Waiver, for... Regulations for the topping- cycle cogeneration facility owned and operated by PowerSmith located in Oklahoma...
Migration is one of the most poorly understood components of a bird’s life cycle. For that reason, migratory stopover habitats are often not part of conservation planning and may be overlooked when planning new development projects. This project highlights and addresses an overl...
Seward Park High School Project CABES 1984-1985. OEA Evaluation Report.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn. Office of Educational Assessment.
Career Advancement through Bilingual Educational Skills (Project CABES) completed the second year of a 3-year funding cycle at Seward Park High School on Manhattan's Lower East Side. Project CABES serves 233 recently immigrated, predominantly low-income, ninth through twelfth grade, Hispanic students of limited English proficiency (LEP). Included…
Study of Collaborative Management for Transportation Construction Project Based on BIM Technology
NASA Astrophysics Data System (ADS)
Jianhua, Liu; Genchuan, Luo; Daiquan, Liu; Wenlei, Li; Bowen, Feng
2018-03-01
Abstract. Building Information Modeling(BIM) is a building modeling technology based on the relevant information data of the construction project. It is an advanced technology and management concept, which is widely used in the whole life cycle process of planning, design, construction and operation. Based on BIM technology, transportation construction project collaborative management can have better communication through authenticity simulation and architectural visualization and can obtain the basic and real-time information such as project schedule, engineering quality, cost and environmental impact etc. The main services of highway construction management are integrated on the unified BIM platform for collaborative management to realize information intercommunication and exchange, to change the isolated situation of information in the past, and improve the level of information management. The final BIM model is integrated not only for the information management of project and the integration of preliminary documents and design drawings, but also for the automatic generation of completion data and final accounts, which covers the whole life cycle of traffic construction projects and lays a good foundation for smart highway construction.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Office of Research, Evaluation, and Assessment.
An evaluation was done of New York City Board of Education's Project Harmony in Career Learning and Scholastic System (Project HI-CLASS) for 1989-90. In its second year of a funding cycle, the project offered 635 Chinese- and Spanish-speaking high school students of limited English proficiency instruction in English as a Second Language (ESL),…
NASA Technical Reports Server (NTRS)
Escher, William J. D.
1999-01-01
A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.
Alternative refrigerants and refrigeration cycles for domestic refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Rice, C.L.; Vineyard, E.A.
1992-12-01
This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less
Prediction of Cycle 25 based on Polar Fields
NASA Astrophysics Data System (ADS)
Svalgaard, Leif; Sun, Xudong; Bobra, Monica
2016-10-01
WSO: The pole-most aperture measures the lineof-sight field between about 55° and the poles. Each 10 days the usable daily polar field measurements in a centered 30-day window are averaged. A 20nHz low pass filter eliminates yearly geometric projection effects. SDO-HMI: Line-of-sight magnetic observations (Blos above 60° lat.) at 720s cadence are converted to radial field (Br), under the assumption that the actual field vector is radial. Twice-per-day values are calculated as the mean weighted by de-projected image pixel areas for each latitudinal bin within ±45-deg longitude. These raw (12-hour) data have been averaged into the same windows as WSO's and reduced to the WSO scale taking saturation (1.8) and projection (COS(72°)) into account. We have argued that the 'poloidal' field in the years leading up to solar minimum is a good proxy for the size of the next cycle (SNmax≈ DM [WSO scale μT]). The successful prediction of Cycle 24 seems to bear that out, as well as the observed corroboration from previous cycles. As a measure of the poloidal field we used the average 'Dipole Moment', i.e. the difference, DM, between the fields at the North pole and the South pole. The 20nHz filtered WSO DM matches well the HMI DM on the WSO scale using the same 30-day window as WSO. So, we can extend WSO using HMI into the future as needed. Preliminarily, the polar fields now are as strong as before the last minimum and may increase further, so Cycle 25 may be at least a repeat of Cycle 24, not any smaller and possible a bit stronger.
Translating evidence-based guidelines to improve feedback practices: the interACT case study.
Barton, Karen L; Schofield, Susie J; McAleer, Sean; Ajjawi, Rola
2016-02-09
There has been a substantial body of research examining feedback practices, yet the assessment and feedback landscape in higher education is described as 'stubbornly resistant to change'. The aim of this paper is to present a case study demonstrating how an entire programme's assessment and feedback practices were re-engineered and evaluated in line with evidence from the literature in the interACT (Interaction and Collaboration via Technology) project. Informed by action research the project conducted two cycles of planning, action, evaluation and reflection. Four key pedagogical principles informed the re-design of the assessment and feedback practices. Evaluation activities included document analysis, interviews with staff (n = 10) and students (n = 7), and student questionnaires (n = 54). Descriptive statistics were used to analyse the questionnaire data. Framework thematic analysis was used to develop themes across the interview data. InterACT was reported by students and staff to promote self-evaluation, engagement with feedback and feedback dialogue. Streamlining the process after the first cycle of action research was crucial for improving engagement of students and staff. The interACT process of promoting self-evaluation, reflection on feedback, feedback dialogue and longitudinal perspectives of feedback has clear benefits and should be transferable to other contexts. InterACT has involved comprehensive re-engineering of the assessment and feedback processes using educational principles to guide the design taking into account stakeholder perspectives. These principles and the strategies to enact them should be transferable to other contexts.
Li, Cheng-Wei; Chen, Bor-Sen
2016-10-01
Recent studies have demonstrated that cell cycle plays a central role in development and carcinogenesis. Thus, the use of big databases and genome-wide high-throughput data to unravel the genetic and epigenetic mechanisms underlying cell cycle progression in stem cells and cancer cells is a matter of considerable interest. Real genetic-and-epigenetic cell cycle networks (GECNs) of embryonic stem cells (ESCs) and HeLa cancer cells were constructed by applying system modeling, system identification, and big database mining to genome-wide next-generation sequencing data. Real GECNs were then reduced to core GECNs of HeLa cells and ESCs by applying principal genome-wide network projection. In this study, we investigated potential carcinogenic and stemness mechanisms for systems cancer drug design by identifying common core and specific GECNs between HeLa cells and ESCs. Integrating drug database information with the specific GECNs of HeLa cells could lead to identification of multiple drugs for cervical cancer treatment with minimal side-effects on the genes in the common core. We found that dysregulation of miR-29C, miR-34A, miR-98, and miR-215; and methylation of ANKRD1, ARID5B, CDCA2, PIF1, STAMBPL1, TROAP, ZNF165, and HIST1H2AJ in HeLa cells could result in cell proliferation and anti-apoptosis through NFκB, TGF-β, and PI3K pathways. We also identified 3 drugs, methotrexate, quercetin, and mimosine, which repressed the activated cell cycle genes, ARID5B, STK17B, and CCL2, in HeLa cells with minimal side-effects.
PLANNING QUALITY IN GEOSPATIAL PROJECTS
This presentation will briefly review some legal drivers and present a structure for the writing of geospatial Quality Assurance Projects Plans. In addition, the Geospatial Quality Council geospatial information life-cycle and sources of error flowchart will be reviewed.
Rigor + Results = Impact: Measuring Impact with Integrity (Invited)
NASA Astrophysics Data System (ADS)
Davis, H. B.; Scalice, D.
2013-12-01
Are you struggling to measure and explain the impact of your EPO efforts? The NASA Astrobiology Institute (NAI) is using an evaluation process to determine the impact of its 15 EPO projects with over 200 activities. What is the current impact? How can it be improved in the future? We have developed a process that preserves autonomy at the project implementation level while still painting a picture of the entire portfolio. The impact evaluation process looks at an education/public outreach activity through its entire project cycle. Working with an external evaluator, education leads: 1) rate the quality/health of an activity in each stage of its cycle, and 2) determine the impact based on the results of the evaluation and the rigor of the methods used. The process has created a way to systematically codify a project's health and its impact, while offering support for improving both impact and how it is measured.
Phase I Final Scientific Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xijia; Fetvedt, Jeremy; Dimmig, Walker
This Final Scientific Report addresses the accomplishments achieved during Phase I of DE- FE0023985, Coal Syngas Combustor Development for Supercritical CO 2 Power Cycles. The primary objective of the project was to develop a coal syngas-fueled combustor design for use with high-pressure, high-temperature, oxy-fuel, supercritical CO 2 power cycles, with particular focus given to the conditions required by the Allam Cycle. The primary goals, from the Statement of Project Objectives, were to develop: (1) a conceptual design of a syngas-fueled combustor-turbine block for a 300MWe high-pressure, oxy-fuel, sCO2 power plant; (2) the preliminary design of a 5MWt test combustor; andmore » (3) the definition of a combustor test program. Accomplishments for each of these goals are discussed in this report.« less
Sustained Low Temperature NOx Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zha, Yuhui
Increasing regulatory, environmental, and customer pressure in recent years led to substantial improvements in the fuel efficiency of diesel engines, including the remarkable breakthroughs demonstrated through the Super Truck program supported by the U.S. Department of Energy (DOE). On the other hand, these improvements have translated into a reduction of exhaust gas temperatures, thus further complicating the task of controlling NOx emissions, especially in low power duty cycles. The need for improved NOx conversion over these low temperature duty cycles is also observed as requirements tighten with in-use emissions testing. Sustained NOx reduction at low temperatures, especially in the 150-200oCmore » range, shares some similarities with the more commonly discussed cold-start challenge, however poses a number of additional and distinct technical problems. In this project we set a bold target of achieving and maintaining a 90% NOx conversion at the SCR catalyst inlet temperature of 150oC. The project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015. Through this collaboration, we are exploring catalyst formulations and catalyst architectures with enhanced catalytic activity at 150°C; opportunities to approach the desirable ratio of NO and NO2 in the SCR feed gas; options for robust low-temperature reductant delivery; and the requirements for overall system integration. The program is expected to deliver an on-engine demonstration of the technical solution and an assessment of its commercial potential. In the SAE meeting, we will share the initial performance data on engine to highlight the path to achieve 90% NOx conversion at the SCR inlet temperature of 150oC.« less
Vrettos, Evangelos; Kara, Emre Can; MacDonald, Jason; ...
2016-11-15
This paper is the second part of a two-part series presenting the results from an experimental demonstration of frequency regulation in a commercial building test facility. We developed relevant building models and designed a hierarchical controller for reserve scheduling, building climate control and frequency regulation in Part I. In Part II, we introduce the communication architecture and experiment settings, and present extensive experimental results under frequency regulation. More specifically, we compute the day-ahead reserve capacity of the test facility under different assumptions and conditions. Furthermore, we demonstrate the ability of model predictive control to satisfy comfort constraints under frequency regulation,more » and show that fan speed control can track the fast-moving RegD signal of the Pennsylvania, Jersey, and Maryland Power Market (PJM) very accurately. In addition, we discuss potential effects of frequency regulation on building operation (e.g., increase in energy consumption, oscillations in supply air temperature, and effect on chiller cycling), and provide suggestions for real-world implementation projects. Our results show that hierarchical control is appropriate for frequency regulation from commercial buildings.« less
5 CFR 470.303 - Eligible parties.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.303... demonstration projects under 5 U.S.C. 4701(a)(1) and 4701(b) may conduct demonstration projects after approval...
40 CFR 117.14 - Demonstration projects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...
40 CFR 117.14 - Demonstration projects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...
40 CFR 117.14 - Demonstration projects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...
40 CFR 117.14 - Demonstration projects.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...
40 CFR 117.14 - Demonstration projects.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Demonstration projects. 117.14 Section... DETERMINATION OF REPORTABLE QUANTITIES FOR HAZARDOUS SUBSTANCES Applicability § 117.14 Demonstration projects... research or demonstration projects relating to the prevention, control, or abatement of hazardous substance...
Life cycle cost-based risk model for energy performance contracting retrofits
NASA Astrophysics Data System (ADS)
Berghorn, George H.
Buildings account for 41% of the primary energy consumption in the United States, nearly half of which is accounted for by commercial buildings. Among the greatest energy users are those in the municipalities, universities, schools, and hospitals (MUSH) market. Correctional facilities are in the upper half of all commercial building types for energy intensity. Public agencies have experienced reduced capital budgets to fund retrofits; this has led to the increased use of energy performance contracts (EPC), which are implemented by energy services companies (ESCOs). These companies guarantee a minimum amount of energy savings resulting from the retrofit activities, which in essence transfers performance risk from the owner to the contractor. Building retrofits in the MUSH market, especially correctional facilities, are well-suited to EPC, yet despite this potential and their high energy intensities, efficiency improvements lag behind that of other public building types. Complexities in project execution, lack of support for data requests and sub-metering, and conflicting project objectives have been cited as reasons for this lag effect. As a result, project-level risks must be understood in order to support wider adoption of retrofits in the public market, in particular the correctional facility sub-market. The goal of this research is to understand risks related to the execution of energy efficiency retrofits delivered via EPC in the MUSH market. To achieve this goal, in-depth analysis and improved understanding was sought with regard to ESCO risks that are unique to EPC in this market. The proposed work contributes to this understanding by developing a life cycle cost-based risk model to improve project decision making with regard to risk control and reduction. The specific objectives of the research are: (1) to perform an exploratory analysis of the EPC retrofit process and identify key areas of performance risk requiring in-depth analysis; (2) to construct a framework describing the sources of and mitigation strategies employed for assessing key risks in EPC retrofits; (3) to develop a strategy for analyzing and evaluating risks for EPC retrofits focused on managing expected costs throughout the project life cycle, and use data collected through this strategy to develop and parameterize a risk model; and (4) to demonstrate the applicability of the proposed life cost-based risk model through a pilot application to a case study site. Five major contributions to the body of knowledge resulting from the research include: (1) a consensus-based assessment of ESCO risk management; (2) characterization of EPC retrofit risks borne by ESCOs; (3) an empirical evaluation of scenario failure mode and effects analysis and its application to this domain; (4) development and pilot application of a life cycle cost-based risk model; and (5) future expansion of the research approach to other domains. The researcher envisions that full implementation of the research will further encourage the growth of the energy services industry, and support focused retrofits in complex building types that typically can benefit the most from such work. Ultimately, this will reduce the energy consumption of public sector buildings to levels that are more fitting with the global principles of sustainability and responsible management of constrained resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ver, L.M.B.; Mackenzie, F.T.; Lerman, A.
In the past three centuries, human perturbations of the environment have affected the biogeochemical behavior of the global carbon cycle and that of the other three nutrient elements closely coupled to carbon: nitrogen, phosphorus, and sulfur. The partitioning of anthropogenic CO{sub 2} among its various sinks in the past, for the present, and for projections into the near future is controlled by the interactions of these four elemental cycles within the major environmental domains of the land, atmosphere, coastal oceanic zone, and open ocean. The authors analyze the past, present, and future behavior of the global carbon cycle using themore » Terrestrial-Ocean-aTmosphere Ecosystem Model (TOTEM), a unique process-based model of the four global coupled biogeochemical cycles of carbon, nitrogen, phosphorus, and sulfur. They find that during the past 300 yrs, anthropogenic CO{sub 2} was mainly stored in the atmosphere and in the open ocean. Human activities on land caused an enhanced loss of mass from the terrestrial organic matter reservoirs (phytomass and humus) mainly through deforestation and consequently increased humus remineralization, erosion, and transport to the coastal margins by rivers and runoff. Photosynthetic uptake by the terrestrial phytomass was enhanced owing to fertilization by increasing atmospheric CO{sub 2} concentrations and supported by nutrients remineralized from organic matter. TOTEM results indicate that through most of the past 300 yrs, the loss of C from deforestation and other land-use activities was greater than the gain from the enhanced photosynthetic uptake. Since pre-industrial time (since 1700), the net flux of CO{sub 2} from the coastal waters has decreased by 40%, from 0.20 Gt C/yr to 0.12 Gt C/yr. TOTEM analyses of atmospheric CO{sub 2} concentrations for the 21st century were based on the fossil-fuel emission projections of IPCC (business as usual scenario) and of the more restrictive UN 1997 Kyoto Protocol. By the mid-21st century, the projected atmospheric CO{sub 2} concentrations range from about 550 ppmv (TOTEM, based on IPCC projected emissions) to 510 ppmv (IPCC projection) and to 460 ppmv (TOTEM, based on the Kyoto Protocol reduced emissions).« less
Transit bus life cycle cost and year 2007 emissions estimation.
DOT National Transportation Integrated Search
2007-06-01
The report presents a study of transit bus life cycle cost (LCC) analysis, and projected transit bus emissions and fuel economy for 2007 : model year buses. It covers four bus types: diesel buses using ultra low sulfur diesel (ULSD), diesel buses usi...
LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM
The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...
Landscape ecological security response to land use change in the tidal flat reclamation zone, China.
Zhang, Runsen; Pu, Lijie; Li, Jianguo; Zhang, Jing; Xu, Yan
2016-01-01
As coastal development becomes a national strategy in Eastern China, land use and landscape patterns have been affected by reclamation projects. In this study, taking Rudong County, China as a typical area, we analyzed land use change and its landscape ecological security responses in the tidal flat reclamation zone. The results show that land use change in the tidal flat reclamation zone is characterized by the replacement of natural tidal flat with agricultural and construction land, which has also led to a big change in landscape patterns. We built a landscape ecological security evaluation system, which consists of landscape interference degree and landscape fragile degree, and then calculated the landscape ecological security change in the tidal flat reclamation zone from 1990 to 2008 to depict the life cycle in tidal flat reclamation. Landscape ecological security exhibited a W-shaped periodicity, including the juvenile stage, growth stage, and maturation stage. Life-cycle analysis demonstrates that 37 years is required for the land use system to transform from a natural ecosystem to an artificial ecosystem in the tidal flat reclamation zone.
Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor
NASA Technical Reports Server (NTRS)
Heath, Christopher M.
2016-01-01
Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.
Calderon, M A; Demoly, P; Casale, T; Akdis, C A; Bachert, C; Bewick, M; Bilò, B M; Bohle, B; Bonini, S; Bush, A; Caimmi, D P; Canonica, G W; Cardona, V; Chiriac, A M; Cox, L; Custovic, A; De Blay, F; Devillier, P; Didier, A; Di Lorenzo, G; Du Toit, G; Durham, S R; Eng, P; Fiocchi, A; Fox, A T; van Wijk, R Gerth; Gomez, R M; Haathela, T; Halken, S; Hellings, P W; Jacobsen, L; Just, J; Tanno, L K; Kleine-Tebbe, J; Klimek, L; Knol, E F; Kuna, P; Larenas-Linnemann, D E; Linneberg, A; Matricardi, M; Malling, H J; Moesges, R; Mullol, J; Muraro, A; Papadopoulos, N; Passalacqua, G; Pastorello, E; Pfaar, O; Price, D; Del Rio, P Rodriguez; Ruëff, R; Samolinski, B; Scadding, G K; Senti, G; Shamji, M H; Sheikh, A; Sisul, J C; Sole, D; Sturm, G J; Tabar, A; Van Ree, R; Ventura, M T; Vidal, C; Varga, E M; Worm, M; Zuberbier, T; Bousquet, J
2016-01-01
Allergic diseases often occur early in life and persist throughout life. This life-course perspective should be considered in allergen immunotherapy. In particular it is essential to understand whether this al treatment may be used in old age adults. The current paper was developed by a working group of AIRWAYS integrated care pathways for airways diseases, the model of chronic respiratory diseases of the European Innovation Partnership on active and healthy ageing (DG CONNECT and DG Santé). It considered (1) the political background, (2) the rationale for allergen immunotherapy across the life cycle, (3) the unmet needs for the treatment, in particular in preschool children and old age adults, (4) the strategic framework and the practical approach to synergize current initiatives in allergen immunotherapy, its mechanisms and the concept of active and healthy ageing.
Plant hydraulic diversity buffers forest ecosystem responses to drought
NASA Astrophysics Data System (ADS)
Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.
2017-12-01
Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.
Resource tracking within and across continents in long-distance bird migrants.
Thorup, Kasper; Tøttrup, Anders P; Willemoes, Mikkel; Klaassen, Raymond H G; Strandberg, Roine; Vega, Marta Lomas; Dasari, Hari P; Araújo, Miguel B; Wikelski, Martin; Rahbek, Carsten
2017-01-01
Migratory birds track seasonal resources across and between continents. We propose a general strategy of tracking the broad seasonal abundance of resources throughout the annual cycle in the longest-distance migrating land birds as an alternative to tracking a certain climatic niche or shorter-term resource surplus occurring, for example, during spring foliation. Whether and how this is possible for complex annual spatiotemporal schedules is not known. New tracking technology enables unprecedented spatial and temporal mapping of long-distance movement of birds. We show that three Palearctic-African species track vegetation greenness throughout their annual cycle, adjusting the timing and direction of migratory movements with seasonal changes in resource availability over Europe and Africa. Common cuckoos maximize the vegetation greenness, whereas red-backed shrikes and thrush nightingales track seasonal surplus in greenness. Our results demonstrate that the longest-distance migrants move between consecutive staging areas even within the wintering region in Africa to match seasonal variation in regional climate. End-of-century climate projections indicate that optimizing greenness would be possible but that vegetation surplus might be more difficult to track in the future.
Resource tracking within and across continents in long-distance bird migrants
Thorup, Kasper; Tøttrup, Anders P.; Willemoes, Mikkel; Klaassen, Raymond H. G.; Strandberg, Roine; Vega, Marta Lomas; Dasari, Hari P.; Araújo, Miguel B.; Wikelski, Martin; Rahbek, Carsten
2017-01-01
Migratory birds track seasonal resources across and between continents. We propose a general strategy of tracking the broad seasonal abundance of resources throughout the annual cycle in the longest-distance migrating land birds as an alternative to tracking a certain climatic niche or shorter-term resource surplus occurring, for example, during spring foliation. Whether and how this is possible for complex annual spatiotemporal schedules is not known. New tracking technology enables unprecedented spatial and temporal mapping of long-distance movement of birds. We show that three Palearctic-African species track vegetation greenness throughout their annual cycle, adjusting the timing and direction of migratory movements with seasonal changes in resource availability over Europe and Africa. Common cuckoos maximize the vegetation greenness, whereas red-backed shrikes and thrush nightingales track seasonal surplus in greenness. Our results demonstrate that the longest-distance migrants move between consecutive staging areas even within the wintering region in Africa to match seasonal variation in regional climate. End-of-century climate projections indicate that optimizing greenness would be possible but that vegetation surplus might be more difficult to track in the future. PMID:28070557
Strategy on energy saving reconstruction of distribution networks based on life cycle cost
NASA Astrophysics Data System (ADS)
Chen, Xiaofei; Qiu, Zejing; Xu, Zhaoyang; Xiao, Chupeng
2017-08-01
Because the actual distribution network reconstruction project funds are often limited, the cost-benefit model and the decision-making method are crucial for distribution network energy saving reconstruction project. From the perspective of life cycle cost (LCC), firstly the research life cycle is determined for the energy saving reconstruction of distribution networks with multi-devices. Then, a new life cycle cost-benefit model for energy-saving reconstruction of distribution network is developed, in which the modification schemes include distribution transformers replacement, lines replacement and reactive power compensation. In the operation loss cost and maintenance cost area, the operation cost model considering the influence of load season characteristics and the maintenance cost segmental model of transformers are proposed. Finally, aiming at the highest energy saving profit per LCC, a decision-making method is developed while considering financial and technical constraints as well. The model and method are applied to a real distribution network reconstruction, and the results prove that the model and method are effective.
Building a Knowledge to Action Program in Stroke Rehabilitation.
Janzen, Shannon; McIntyre, Amanda; Richardson, Marina; Britt, Eileen; Teasell, Robert
2016-09-01
The knowledge to action (KTA) process proposed by Graham et al (2006) is a framework to facilitate the development and application of research evidence into clinical practice. The KTA process consists of the knowledge creation cycle and the action cycle. The Evidence Based Review of Stroke Rehabilitation is a foundational part of the knowledge creation cycle and has helped guide the development of best practice recommendations in stroke. The Rehabilitation Knowledge to Action Project is an audit-feedback process for the clinical implementation of best practice guidelines, which follows the action cycle. The objective of this review was to: (1) contextualize the Evidence Based Review of Stroke Rehabilitation and Rehabilitation Knowledge to Action Project within the KTA model and (2) show how this process led to improved evidence-based practice in stroke rehabilitation. Through this process, a single centre was able to change clinical practice and promote a culture that supports the use of evidence-based practices in stroke rehabilitation.
Understanding the Manager of the Project Front-End
NASA Technical Reports Server (NTRS)
Mulenburg, Gerald M.; Imprescia, Cliff (Technical Monitor)
2000-01-01
Historical data and new findings from interviews with managers of major National Aeronautics and Space Administration (NASA) projects confirm literature reports about the criticality of the front-end phase of project development, where systems engineering plays such a key role. Recent research into the management of ten contemporary NASA projects, combined with personal experience of the author in NASA, provide some insight into the relevance and importance of the project manager in this initial part of the project life cycle. The research findings provide evidence of similar approaches taken by the NASA project manager.
Concrete Durability in Harsh Environmental Conditions Exposed to Freeze Thaw Cycles
NASA Astrophysics Data System (ADS)
Hamze, Youssef
Under line Pathology of Materials; one of the environmental causes of damage effects on concrete is freeze thaw cycles, which deteriorate the concrete exposed to water in cold weather. An example of old concrete is a dam project that was built in Canada, in the early 1909-1913. This project was reconstructed in 1932, 1934 and 1972, and required renovation due to the ice abrasion with the freeze/thaw cycles. Before completing any renovation, it is required to analyze the structural stability and the concrete failures of this dam. An investigation was conducted to determine the quality of the concrete in the Piers and in the Bridge Deck Slab. It was also required to determine the basic materials' properties that constitute this project. This will improve the analysis of its stability [10]. Core samples were examined and used as test samples, for the Alkali-Silica reactivity test samples, as well as the compressive strength test, the Chloride Ion test, and the freeze thaw testing which was performed on two sets of 12 concrete core samples that were taken from different locations in the project. These locations are the representations of the age of the concrete. Thus, the age difference between the samples' two sets is four decades. Testing was performed on prisms cut from cores. ASTM C-666 procedure (A) was applied using an automatic test system [6]. It was suggested that a plan for renovation of this project should be performed after the analysis is undertaken to assess the conditions estimating the remaining life of the concrete in this project [15].
Commercialization of Medium Voltage HTS Triax TM Cable Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoll, David
2012-12-31
The original project scope that was established in 2007 aimed to install a 1,700 meter (1.1 mile) medium voltage HTS Triax{TM} cable system into the utility grid in New Orleans, LA. In 2010, however, the utility partner withdrew from the project, so the 1,700 meter cable installation was cancelled and the scope of work was reduced. The work then concentrated on the specific barriers to commercialization of HTS cable technology. The modified scope included long-length HTS cable design and testing, high voltage factory test development, optimized cooling system development, and HTS cable life-cycle analysis. In 2012, Southwire again analyzed themore » market for HTS cables and deemed the near term market acceptance to be low. The scope of work was further reduced to the completion of tasks already started and to testing of the existing HTS cable system in Columbus, OH. The work completed under the project included: • Long-length cable modeling and analysis • HTS wire evaluation and testing • Cable testing for AC losses • Optimized cooling system design • Life cycle testing of the HTS cable in Columbus, OH • Project management. The 200 meter long HTS Triax{TM} cable in Columbus, OH was incorporated into the project under the initial scope changes as a test bed for life cycle testing as well as the site for an optimized HTS cable cooling system. The Columbus cable utilizes the HTS TriaxTM design, so it provided an economical tool for these of the project tasks.« less
The ARTEMIS European driving cycles for measuring car pollutant emissions.
André, Michel
2004-12-01
In the past 10 years, various work has been undertaken to collect data on the actual driving of European cars and to derive representative real-world driving cycles. A compilation and synthesis of this work is provided in this paper. In the frame of the European research project: ARTEMIS, this work has been considered to derive a set of reference driving cycles. The main objectives were as follows: to derive a common set of reference real-world driving cycles to be used in the frame of the ARTEMIS project but also in the frame of on-going national campaigns of pollutant emission measurements, to ensure the compatibility and integration of all the resulting emission data in the European systems of emission inventory; to ensure and validate the representativity of the database and driving cycles by comparing and taking into account all the available data regarding driving conditions; to include in three real-world driving cycles (urban, rural road and motorway) the diversity of the observed driving conditions, within sub-cycles allowing a disaggregation of the emissions according to more specific driving conditions (congested and free-flow urban). Such driving cycles present a real advantage as they are derived from a large database, using a methodology that was widely discussed and approved. In the main, these ARTEMIS driving cycles were designed using the available data, and the method of analysis was based to some extent on previous work. Specific steps were implemented. The study includes characterisation of driving conditions and vehicle uses. Starting conditions and gearbox use are also taken into account.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-10
... Personnel Management Demonstration Project, Department of Navy, Office of Naval Research; Notice #0;#0..., authorizes the Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at... to execute a process and plan to employ the Department's personnel management demonstration project...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... adopt the Naval Research Laboratory (NRL) Personnel Management Demonstration Project with modifications... Secretary of Defense (SECDEF) to conduct personnel management demonstration projects at DoD laboratories... execute a process and plan to employ the personnel management demonstration project authorities granted to...
76 FR 12080 - TRICARE Access to Care Demonstration Project
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
... DEPARTMENT OF DEFENSE Office of the Secretary TRICARE Access to Care Demonstration Project AGENCY..., Section 1092, entitled Department of Defense TRICARE Access to Care Demonstration Project. The demonstration project is intended to improve access to urgent care including minor illness or injury for Coast...
Thermodynamic design of natural gas liquefaction cycles for offshore application
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
Developing New Epidemiologic Tools for Investigating Breast Cancer Risk
1999-09-01
project period. Thirty-seven premenopausal volunteers provided breast fluid samples on 2-4 visits over a single menstrual cycle. The methods and results...research because the fluctuation of ovarian steroid hormone levels during the menstrual cycle complicates interpretation of values from single blood...concerning the ’tracking’ of salivary steroid levels between menstrual cycles in individual women has been approved by co-authors and is now ready for
Performance Based Logistics... What’s Stopping Us
2016-03-01
performance-based life cycle product support, where outcomes are acquired through performance-based arrangements that deliver Warfighter requirements and...correlates to the acquisition life cycle framework: spend the time and effort to identify and lock in the PBL requirements; conduct an analysis to...PDASD[L&MR]) on PBL strategies. The study, Project Proof Point: A Study to Determine the Impact of Performance Based Logistics (PBL) on Life Cycle
I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue
2003-10-01
We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.
NASA Astrophysics Data System (ADS)
Zhang, Shu; Li, Wen-Jun; Ling, Shi-Gang; Li, Hong; Zhou, Zhi-Bin; Chen, Li-Quan
2015-07-01
The cycling performance, impedance variation, and cathode surface evolution of the Li/LiCoO2 cell using LiFSI-KFSI molten salt electrolyte are reported. It is found that this battery shows poor cycling performance, with capacity retention of only about 67% after 20 cycles. It is essential to understand the origin of the instability. It is noticed that the polarization voltage and the impedance of the cell both increase slowly upon cycling. The structure and the properties of the pristine and the cycled LiCoO2 cathodes are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is found that the LiCoO2 particles are corroded by this molten salt electrolyte, and the decomposition by-product covers the surface of the LiCoO2 cathode after 20 cycles. Therefore, the surface side reaction explains the instability of the molten salt electrolyte with LiCoO2. Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Basic Research Program of China (Grant No. 2012CB932900), and the National Natural Science Foundation of China (Grants Nos. 51325206 and 51421002).
39 CFR 778.4 - What are the Postal Service's general responsibilities under the Order?
Code of Federal Regulations, 2013 CFR
2013-07-01
... coordinate proposed direct Federal development projects, the Postal Service, to the extent permitted by law...) Communicates with state and local elected officials as early in a facility project action's planning cycle as...
39 CFR 778.4 - What are the Postal Service's general responsibilities under the Order?
Code of Federal Regulations, 2012 CFR
2012-07-01
... coordinate proposed direct Federal development projects, the Postal Service, to the extent permitted by law...) Communicates with state and local elected officials as early in a facility project action's planning cycle as...
39 CFR 778.4 - What are the Postal Service's general responsibilities under the Order?
Code of Federal Regulations, 2014 CFR
2014-07-01
... coordinate proposed direct Federal development projects, the Postal Service, to the extent permitted by law...) Communicates with state and local elected officials as early in a facility project action's planning cycle as...
39 CFR 778.4 - What are the Postal Service's general responsibilities under the Order?
Code of Federal Regulations, 2011 CFR
2011-07-01
... coordinate proposed direct Federal development projects, the Postal Service, to the extent permitted by law...) Communicates with state and local elected officials as early in a facility project action's planning cycle as...
39 CFR 778.4 - What are the Postal Service's general responsibilities under the Order?
Code of Federal Regulations, 2010 CFR
2010-07-01
... coordinate proposed direct Federal development projects, the Postal Service, to the extent permitted by law...) Communicates with state and local elected officials as early in a facility project action's planning cycle as...
A pavement management research program for Oregon highways : interim report.
DOT National Transportation Integrated Search
1985-03-01
This is the first in a series of reports documenting progress on a statewide pavement management research project. The overall project is conducting research into pavement life cycles of different rehabilitation treatment; the cost-effectiveness of e...
Evaluation of double drop beads pavement edge lines : SPR project description.
DOT National Transportation Integrated Search
2009-01-01
In UTCA projects 01465 and 04405, the retroreflectivities and the life cycle costs were measured and compared for standard Alabama Department of Transportation (ALDOT) thermoplastic edge : stripes that contained only one size of retroreflective beads...
Lander Propulsion Overview and Technology Requirements Discussion
NASA Technical Reports Server (NTRS)
Brown, Thomas M.
2007-01-01
This viewgraph presentation reviews the lunar lander propulsion requirements. It includes discussion on: Lander Project Overview, Project Evolution/Design Cycles, Lunar Architecture & Lander Reference Missions, Lander Concept Configurations, Descent and Ascent propulsion reviews, and a review of the technology requirements.
The Mars Express/NASA Project at JPL
NASA Astrophysics Data System (ADS)
Thompson, T. W.; Horttor, R. L.; Acton, C. H., Jr.; Zamani, P.; Johnson, W. T. K.; Plaut, J. J.; Holmes, D. P.; No, S.; Asmar, S.; Goltz, G.
2006-03-01
The Mars Express/NASA Project at JPL supports much of the U.S. involvement in ESA's Mars Express mission. Mars Express has just completed its prime mission in late 2005 and has embarked on its first extended mission cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisholoy Goswami
2005-10-11
The goal of this project is to construct a prototype carbon dioxide sensor that can be commercialized to offer a low-cost, autonomous instrument for long-term, unattended measurements. Currently, a cost-effective CO2 sensor system is not available that can perform cross-platform measurements (ground-based or airborne platforms such as balloon and unmanned aerial vehicle (UAV)) for understanding the carbon sequestration phenomenon. The CO2 sensor would support the research objectives of DOE-sponsored programs such as AmeriFlux and the North American Carbon Program (NACP). Global energy consumption is projected to rise 60% over the next 20 years and use of oil is projected tomore » increase by approximately 40%. The combustion of coal, oil, and natural gas has increased carbon emissions globally from 1.6 billion tons in 1950 to 6.3 billion tons in 2000. This figure is expected to reach 10 billon tons by 2020. It is important to understand the fate of this excess CO2 in the global carbon cycle. The overall goal of the project is to develop an accurate and reliable optical sensor for monitoring carbon dioxide autonomously at least for one year at a point remote from the actual CO2 release site. In Phase I of this project, InnoSense LLC (ISL) demonstrated the feasibility of an ormosil-monolith based Autonomous Sensor for Atmospheric CO2 (ASAC) device. All of the Phase I objectives were successfully met.« less
Towards answering the "so what" question in marine renewables environmental impact assessment.
NASA Astrophysics Data System (ADS)
Degraer, Steven; Birchenough, Silvana N. R.; Braeckman, Ulrike; Coolen, Joop W. P.; Dannheim, Jennifer; De Mesel, Ilse; Grégoire, Marilaure; Kerckhof, Francis; Lacroix, Geneviève; Lindeboom, Han; Moens, Tom; Soetaert, Karline; Vanaverbeke, Jan; Van Hoey, Gert
2016-04-01
Marine renewable energy (MRE) projects are increasingly occupying the European North-Atlantic coasts and this is clearly observed in the North Sea. Given the expected impacts on the marine environment, each individual project is accompanied by a legally mandatory, environmental monitoring programme. These programmes are focused on the resultant effects on ecosystem component structure (e.g. species composition, numbers and densities) of single industrial projects. To date, there is a tendency to further narrow down to only a selection of ecosystem components (e.g. marine mammals and birds). While a wide knowledge-based understanding of structural impacts on (a selection of) ecosystem components exists, this evidence is largely lacking when undertaking impact assessments at the ecosystem functioning level (e.g. trophic interactions, dispersal and nutrient cycling). This critical knowledge gap compromises a scientifically-underpinned answer to the "so what" question of environmental impacts, i.e. whether the observed impacts are considered to be good or bad, or acceptable or unacceptable. The importance of ecosystem functioning is further acknowledged in the descriptors 4 and 6 of the Marine Strategy Framework Directive (EU MSFD) and is at the heart of a sustainable use and management of our marine resources. There hence is a fundamental need to focus on ecosystem functioning at the spatial scales at which marine ecosystems function when assessing MRE impacts. Here, we make a plea for an increased investment in a large (spatial) scale impact assessment of MRE projects focused on ecosystem functioning. This presentation will cover a selection of examples from North Sea MRE monitoring programmes, where the current knowledge has limited conclusions on the "so what" question. We will demonstrate how an ecosystem functioning-focused approach at an appropriate spatial scale could advance our current understanding, whilst assessing these issues. These examples will cover biogeochemical cycling, food webs and connectivity in a cumulative MRE impact assessment context. This presentation will highlight both the available knowledge base and further elaborate on the knowledge gaps. We will offer guidance on how these knowledge gaps could be further investigated, based on examples taken from the recently started projects FaCE-It, Functional biodiversity in a changing sedimentary environment: implications for biogeochemistry and food webs in a managerial setting (financed by the Belgian Science Policy) and UNDINE, Understanding the influence of man-made structures on the ecosystem functions of the North Sea (financed by INSITE). This presentation will set the scene and offer further thinking on the current issues associated to MRE monitoring, particularly beyond the level of ecological structure and individual industrial projects. The overall message will aid advancing and strengthening a collaborative MRE monitoring, helping scientists, managers and regulators to answer the much needed "so what" question to support environmental assessments. Keywords: offshore wind farms, cumulative effects, spatial upscaling, ecosystem functioning, biogeochemical cycling, food webs Contact author: Steven Degraer, steven.degraer@naturalsciences.be
77 FR 21102 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... OMB Review; Comment Request Title: Child Welfare Demonstration Projects Information Collection. OMB No... child welfare waiver demonstration projects. CB is able to approve up to ten child welfare waiver demonstration projects in each of Fiscal Years 2012, 2013 and 2014. These waiver demonstration projects involve...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-20
...) Personnel Management Demonstration Projects AGENCY: Office of the Deputy Assistant Secretary of Defense... to demonstration project plans. SUMMARY: Section 342(b) of the National Defense Authorization Act... the NDAA for FY 2001, authorizes the Secretary of Defense to conduct personnel demonstration projects...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-18
... of coverage of the AFRL Personnel Demonstration Project to AFRL employees in Business Management and... conduct demonstration projects to determine whether a specified change in personnel management policies or... plan to employ the personnel management demonstration project authorities granted to the Office of...
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1992-01-01
This volume is the fifth in an ongoing series on aerospace project management at NASA. Articles in this volume cover: an overview of the project cycle; SE&I management for manned space flight programs; shared experiences from NASA Programs and Projects - 1975; cost control for Mariner Venus/Mercury 1973; and the Space Shuttle - a balancing of design and politics. A section on resources for NASA managers rounds out the publication.
Student Support using Project Adventure
NASA Astrophysics Data System (ADS)
Kawanishi, Toshimasa
University students become maladjustment at the time of entrance to school not to have friends. Project adventure is effective in the making of friend and brings up confidence with persons. General concepts of project adventure make from experimental learning cycle, full value contract and challenge by choice. This paper explains purpose of PA, practice, ice breaking, trust and initiative.
Project ESL-SEDAC. O.E.E. Annual Evaluation Report, E.S.E.A. Title VII. 1982-83.
ERIC Educational Resources Information Center
Tobias, Robert; And Others
During 1982-83, the first of three projected program cycles, the Title VII English as a Second Language, Special Education Developmental Approach Curriculum Project (ESL-SEDAC) provided direct instruction to 246 handicapped limited English proficient students in schools throughout New York City. Resource assistance, staff development, and parent…