Sample records for cycle dna damage

  1. Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

    PubMed

    Chao, Hui Xiao; Poovey, Cere E; Privette, Ashley A; Grant, Gavin D; Chao, Hui Yan; Cook, Jeanette G; Purvis, Jeremy E

    2017-11-22

    Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate that, within early G1 and G2, checkpoints are stringent: DNA damage triggers an abrupt, all-or-none cell-cycle arrest. The duration of this arrest correlates with the severity of DNA damage. After the cell passes commitment points within G1 and G2, checkpoint stringency is relaxed. By contrast, all of S phase is comparatively insensitive to DNA damage. This checkpoint is graded: instead of halting the cell cycle, increasing DNA damage leads to slower S phase progression. In sum, we show that a cell's response to DNA damage depends on its exact cell-cycle position and that checkpoints are phase-dependent, stringent or relaxed, and graded or all-or-none. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.

    PubMed

    Vialard, J E; Gilbert, C S; Green, C M; Lowndes, N F

    1998-10-01

    The Saccharomyces cerevisiae RAD9 checkpoint gene is required for transient cell-cycle arrests and transcriptional induction of DNA repair genes in response to DNA damage. Polyclonal antibodies raised against the Rad9 protein recognized several polypeptides in asynchronous cultures, and in cells arrested in S or G2/M phases while a single form was observed in G1-arrested cells. Treatment with various DNA damaging agents, i.e. UV, ionizing radiation or methyl methane sulfonate, resulted in the appearance of hypermodified forms of the protein. All modifications detected during a normal cell cycle and after DNA damage were sensitive to phosphatase treatment, indicating that they resulted from phosphorylation. Damage-induced hyperphosphorylation of Rad9 correlated with checkpoint functions (cell-cycle arrest and transcriptional induction) and was cell-cycle stage- and progression-independent. In asynchronous cultures, Rad9 hyperphosphorylation was dependent on MEC1 and TEL1, homologues of the ATR and ATM genes. In G1-arrested cells, damage-dependent hyperphosphorylation required functional MEC1 in addition to RAD17, RAD24, MEC3 and DDC1, demonstrating cell-cycle stage specificity of the checkpoint genes in this response to DNA damage. Analysis of checkpoint protein interactions after DNA damage revealed that Rad9 physically associates with Rad53.

  3. The DNA damage response during mitosis.

    PubMed

    Heijink, Anne Margriet; Krajewska, Małgorzata; van Vugt, Marcel A T M

    2013-10-01

    Cells are equipped with a cell-intrinsic signaling network called the DNA damage response (DDR). This signaling network recognizes DNA lesions and initiates various downstream pathways to coordinate a cell cycle arrest with the repair of the damaged DNA. Alternatively, the DDR can mediate clearance of affected cells that are beyond repair through apoptosis or senescence. The DDR can be activated in response to DNA damage throughout the cell cycle, although the extent of DDR signaling is different in each cell cycle phase. Especially in response to DNA double strand breaks, only a very marginal response was observed during mitosis. Early on it was recognized that cells which are irradiated during mitosis continued division without repairing broken chromosomes. Although these initial observations indicated diminished DNA repair and lack of an acute DNA damage-induced cell cycle arrest, insight into the mechanistic re-wiring of DDR signaling during mitosis was only recently provided. Different mechanisms appear to be at play to inactivate specific signaling axes of the DDR network in mitosis. Importantly, mitotic cells not simply inactivate the entire DDR, but appear to mark their DNA damage for repair after mitotic exit. Since the treatment of cancer frequently involves agents that induce DNA damage as well as agents that block mitotic progression, it is clinically relevant to obtain a better understanding of how cancer cells deal with DNA damage during interphase versus mitosis. In this review, the molecular details concerning DDR signaling during mitosis as well as the consequences of encountering DNA damage during mitosis for cellular fate are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A NATURAL BIO-DEFENSE MECHANISM

    EPA Science Inventory

    DNA DAMAGE REPAIR AND CELL CYCLE CONTROL: A natural bio-defense mechanism
    Anuradha Mudipalli.

    Maintenance of genetic information, including the correct sequence of nucleotides in DNA, is essential for replication, gene expression, and protein synthesis. DNA lesions onto...

  5. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response.

    PubMed

    Cazzalini, Ornella; Scovassi, A Ivana; Savio, Monica; Stivala, Lucia A; Prosperi, Ennio

    2010-01-01

    Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response. 2010 Elsevier B.V. All rights reserved.

  6. DNA Damage during G2 Phase Does Not Affect Cell Cycle Progression of the Green Alga Scenedesmus quadricauda

    PubMed Central

    Vítová, Milada; Bišová, Kateřina; Zachleder, Vilém

    2011-01-01

    DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase. PMID:21603605

  7. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells

    PubMed Central

    Burke, Russell T.; Marcus, Joshua M.; Orth, James D.

    2017-01-01

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801

  8. Alteration/deficiency in activation-3 (Ada3) plays a critical role in maintaining genomic stability

    PubMed Central

    Mirza, Sameer; Katafiasz, Bryan J.; Kumar, Rakesh; Wang, Jun; Mohibi, Shakur; Jain, Smrati; Gurumurthy, Channabasavaiah Basavaraju; Pandita, Tej K.; Dave, Bhavana J.; Band, Hamid; Band, Vimla

    2012-01-01

    Cell cycle regulation and DNA repair following damage are essential for maintaining genome integrity. DNA damage activates checkpoints in order to repair damaged DNA prior to exit to the next phase of cell cycle. Recently, we have shown the role of Ada3, a component of various histone acetyltransferase complexes, in cell cycle regulation, and loss of Ada3 results in mouse embryonic lethality. Here, we used adenovirus-Cre-mediated Ada3 deletion in Ada3fl/fl mouse embryonic fibroblasts (MEFs) to assess the role of Ada3 in DNA damage response following exposure to ionizing radiation (IR). We report that Ada3 depletion was associated with increased levels of phospho-ATM (pATM), γH2AX, phospho-53BP1 (p53BP1) and phospho-RAD51 (pRAD51) in untreated cells; however, radiation response was intact in Ada3−/− cells. Notably, Ada3−/− cells exhibited a significant delay in disappearance of DNA damage foci for several critical proteins involved in the DNA repair process. Significantly, loss of Ada3 led to enhanced chromosomal aberrations, such as chromosome breaks, fragments, deletions and translocations, which further increased upon DNA damage. Notably, the total numbers of aberrations were more clearly observed in S-phase, as compared with G₁ or G₂ phases of cell cycle with IR. Lastly, comparison of DNA damage in Ada3fl/fl and Ada3−/− cells confirmed higher residual DNA damage in Ada3−/− cells, underscoring a critical role of Ada3 in the DNA repair process. Taken together, these findings provide evidence for a novel role for Ada3 in maintenance of the DNA repair process and genomic stability. PMID:23095635

  9. Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis[OPEN

    PubMed Central

    Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales

    2015-01-01

    DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162

  10. Mammalian Homologs of Yeast Checkpoint Genes

    DTIC Science & Technology

    2002-07-01

    pathway is sensitive to various forms of DNA damage Developmental Biology throughout the cell cycle . The DNA replication check- Yale University point...components would be ordered into pathways for mammalian checkpoint function, with emphasis on p53 regulation, cell cycle regulation, and complementation...structurally related to the human tumor suppressor ATM. MEC1 and RAD53, two essential genes, play a central role in DNA damage checkpoints at all cell cycle

  11. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  12. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Replicative stress and alterations in cell cycle checkpoint controls following acetaminophen hepatotoxicity restrict liver regeneration.

    PubMed

    Viswanathan, Preeti; Sharma, Yogeshwar; Gupta, Priya; Gupta, Sanjeev

    2018-03-05

    Acetaminophen hepatotoxicity is a leading cause of hepatic failure with impairments in liver regeneration producing significant mortality. Multiple intracellular events, including oxidative stress, mitochondrial damage, inflammation, etc., signify acetaminophen toxicity, although how these may alter cell cycle controls has been unknown and was studied for its significance in liver regeneration. Assays were performed in HuH-7 human hepatocellular carcinoma cells, primary human hepatocytes and tissue samples from people with acetaminophen-induced acute liver failure. Cellular oxidative stress, DNA damage and cell proliferation events were investigated by mitochondrial membrane potential assays, flow cytometry, fluorescence staining, comet assays and spotted arrays for protein expression after acetaminophen exposures. In experimental groups with acetaminophen toxicity, impaired mitochondrial viability and substantial DNA damage were observed with rapid loss of cells in S and G2/M and cell cycle restrictions or even exit in the remainder. This resulted from altered expression of the DNA damage regulator, ATM and downstream transducers, which imposed G1/S checkpoint arrest, delayed entry into S and restricted G2 transit. Tissues from people with acute liver failure confirmed hepatic DNA damage and cell cycle-related lesions, including restrictions of hepatocytes in aneuploid states. Remarkably, treatment of cells with a cytoprotective cytokine reversed acetaminophen-induced restrictions to restore cycling. Cell cycle lesions following mitochondrial and DNA damage led to failure of hepatic regeneration in acetaminophen toxicity but their reversibility offers molecular targets for treating acute liver failure. © 2018 John Wiley & Sons Ltd.

  14. Antiproliferative, DNA intercalation and redox cycling activities of dioxonaphtho[2,3-d]imidazolium analogs of YM155: A structure-activity relationship study.

    PubMed

    Ho, Si-Han Sherman; Sim, Mei-Yi; Yee, Wei-Loong Sherman; Yang, Tianming; Yuen, Shyi-Peng John; Go, Mei-Lin

    2015-11-02

    The anticancer agent YM155 is widely investigated as a specific survivin suppressant. More recently, YM155 was found to induce DNA damage and this has raised doubts as to whether survivin is its primary target. In an effort to assess the contribution of DNA damage to the anticancer activity of YM155, several analogs were prepared and evaluated for antiproliferative activity on malignant cells, participation in DNA intercalation and free radical generation by redox cycling. The intact positively charged scaffold was found to be essential for antiproliferative activity and intercalation but was less critical for redox cycling where the minimal requirement was a pared down bicyclic quinone. Side chain requirements at the N(1) and N(3) positions of the scaffold were more alike for redox cycling and intercalation than antiproliferative activity, underscoring yet again, the limited structural overlaps for these activities. Furthermore, antiproliferative activities were poorly correlated to DNA intercalation and redox cycling. Potent antiproliferative activity (IC50 9-23 nM), exceeding that of YM155, was found for a minimally substituted methyl analog AB7. Like YM155 and other dioxonaphthoimidazoliums, AB7 was a modest DNA intercalator but with weak redox cycling activity. Thus, the capacity of this scaffold to inflict direct DNA damage leading to cell death may not be significant and YM155 should not be routinely classified as a DNA damaging agent. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. DNA Damage Signaling Is Induced in the Absence of Epstein-Barr Virus (EBV) Lytic DNA Replication and in Response to Expression of ZEBRA.

    PubMed

    Wang'ondu, Ruth; Teal, Stuart; Park, Richard; Heston, Lee; Delecluse, Henri; Miller, George

    2015-01-01

    Epstein Barr virus (EBV), like other oncogenic viruses, modulates the activity of cellular DNA damage responses (DDR) during its life cycle. Our aim was to characterize the role of early lytic proteins and viral lytic DNA replication in activation of DNA damage signaling during the EBV lytic cycle. Our data challenge the prevalent hypothesis that activation of DDR pathways during the EBV lytic cycle occurs solely in response to large amounts of exogenous double stranded DNA products generated during lytic viral DNA replication. In immunofluorescence or immunoblot assays, DDR activation markers, specifically phosphorylated ATM (pATM), H2AX (γH2AX), or 53BP1 (p53BP1), were induced in the presence or absence of viral DNA amplification or replication compartments during the EBV lytic cycle. In assays with an ATM inhibitor and DNA damaging reagents in Burkitt lymphoma cell lines, γH2AX induction was necessary for optimal expression of early EBV genes, but not sufficient for lytic reactivation. Studies in lytically reactivated EBV-positive cells in which early EBV proteins, BGLF4, BGLF5, or BALF2, were not expressed showed that these proteins were not necessary for DDR activation during the EBV lytic cycle. Expression of ZEBRA, a viral protein that is necessary for EBV entry into the lytic phase, induced pATM foci and γH2AX independent of other EBV gene products. ZEBRA mutants deficient in DNA binding, Z(R183E) and Z(S186E), did not induce foci of pATM. ZEBRA co-localized with HP1β, a heterochromatin associated protein involved in DNA damage signaling. We propose a model of DDR activation during the EBV lytic cycle in which ZEBRA induces ATM kinase phosphorylation, in a DNA binding dependent manner, to modulate gene expression. ATM and H2AX phosphorylation induced prior to EBV replication may be critical for creating a microenvironment of viral and cellular gene expression that enables lytic cycle progression.

  16. 11th International Conference of Radiation Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1999-07-18

    Topics discussed in the conference included the following: Radiation Physics, Radiation Chemistry and modelling--Radiation physics and dosimetry; Electron transfer in biological media; Radiation chemistry; Biophysical and biochemical modelling; Mechanisms of DNA damage; Assays of DNA damage; Energy deposition in micro volumes; Photo-effects; Special techniques and technologies; Oxidative damage. Molecular and cellular effects-- Photobiology; Cell cycle effects; DNA damage: Strand breaks; DNA damage: Bases; DNA damage Non-targeted; DNA damage: other; Chromosome aberrations: clonal; Chromosomal aberrations: non-clonal; Interactions: Heat/Radiation/Drugs; Biochemical effects; Protein expression; Gene induction; Co-operative effects; ``Bystander'' effects; Oxidative stress effects; Recovery from radiation damage. DNA damage and repair -- DNAmore » repair genes; DNA repair deficient diseases; DNA repair enzymology; Epigenetic effects on repair; and Ataxia and ATM.« less

  17. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  18. Chromatin relaxation-mediated induction of p19INK4d increases the ability of cells to repair damaged DNA.

    PubMed

    Ogara, María F; Sirkin, Pablo F; Carcagno, Abel L; Marazita, Mariela C; Sonzogni, Silvina V; Ceruti, Julieta M; Cánepa, Eduardo T

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies.

  19. Radioprotection and Cell Cycle Arrest of Intestinal Epithelial Cells by Darinaparsin, a Tumor Radiosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Junqiang; Doi, Hiroshi; Saar, Matthias

    2013-12-01

    Purpose: It was recently reported that the organic arsenic compound darinaparsin (DPS) is a cytotoxin and radiosensitizer of tumor cells in vitro and in subcutaneous xenograft tumors. Surprisingly, it was also found that DPS protects normal intestinal crypt epithelial cells (CECs) from clonogenic death after ionizing radiation (IR). Here we tested the DPS radiosensitizing effect in a clinically relevant model of prostate cancer and explored the radioprotective effect and mechanism of DPS on CECs. Methods and Materials: The radiation modification effect of DPS was tested in a mouse model of orthotopic xenograft prostate cancer and of IR-induced acute gastrointestinal syndrome.more » The effect of DPS on CEC DNA damage and DNA damage responses was determined by immunohistochemistry. Results: In the mouse model of IR-induced gastrointestinal syndrome, DPS treatment before IR accelerated recovery from body weight loss and increased animal survival. DPS decreased post-IR DNA damage and cell death, suggesting that the radioprotective effect was mediated by enhanced DNA damage repair. Shortly after DPS injection, significant cell cycle arrest was observed in CECs at both G1/S and G2/M checkpoints, which was accompanied by the activation of cell cycle inhibitors p21 and growth arrest and DNA-damage-inducible protein 45 alpha (GADD45A). Further investigation revealed that DPS activated ataxia telangiectasia mutated (ATM), an important inducer of DNA damage repair and cell cycle arrest. Conclusions: DPS selectively radioprotected normal intestinal CECs and sensitized prostate cancer cells in a clinically relevant model. This effect may be, at least in part, mediated by DNA damage response activation and has the potential to significantly increase the therapeutic index of radiation therapy.« less

  20. Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?

    PubMed

    Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio

    2010-02-01

    The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.

  1. The Possible Crosstalk of MOB2 With NDR1/2 Kinases in Cell Cycle and DNA Damage Signaling.

    PubMed

    Gundogdu, Ramazan; Hergovich, Alexander

    2016-09-06

    This article is the authors' opinion of the roles of the signal transducer Mps one binder 2 (MOB2) in the control of cell cycle progression and the DNA Damage Response (DDR). We recently found that endogenous MOB2 is required to prevent the accumulation of endogenous DNA damage in order to prevent the undesired, and possibly detrimental, activation of cell cycle checkpoints. In this regard, it is noteworthy that MOB2 has been linked biochemically to the regulation of the NDR1/2 (aka STK38/STK38L) protein kinases, which themselves have functions at different steps of the cell cycle. Therefore, we are speculating in this article about the possible connections of MOB2 with NDR1/2 kinases in cell cycle and DDR Signaling.

  2. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism.

    PubMed

    Harley, Margaret E; Murina, Olga; Leitch, Andrea; Higgs, Martin R; Bicknell, Louise S; Yigit, Gökhan; Blackford, Andrew N; Zlatanou, Anastasia; Mackenzie, Karen J; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A M; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B; Nürnberg, Peter; Jackson, Stephen P; Hurles, Matthew E; Wollnik, Bernd; Stewart, Grant S; Jackson, Andrew P

    2016-01-01

    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.

  3. "Isogaba Maware": quality control of genome DNA by checkpoints.

    PubMed

    Kitazono, A; Matsumoto, T

    1998-05-01

    Checkpoints maintain the interdependency of cell cycle events by permitting the onset of an event only after the completion of the preceding event. The DNA replication checkpoint induces a cell cycle arrest until the completion of the DNA replication. Similarly, the DNA damage checkpoint arrests cell cycle progression if DNA repair is incomplete. A number of genes that play a role in the two checkpoints have been identified through genetic studies in yeasts, and their homologues have been found in fly, mouse, and human. They form signaling cascades activated by a DNA replication block or DNA damage and subsequently generate the negative constraints on cell cycle regulators. The failure of these signaling cascades results in producing offspring that carry mutations or that lack a portion of the genome. In humans, defects in the checkpoints are often associated with cancer-prone diseases. Focusing mainly on the studies in budding and fission yeasts, we summarize the recent progress.

  4. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease.

    PubMed

    Silva, Aderbal R T; Santos, Ana Cecília Feio; Farfel, Jose M; Grinberg, Lea T; Ferretti, Renata E L; Campos, Antonio Hugo Jose Froes Marques; Cunha, Isabela Werneck; Begnami, Maria Dirlei; Rocha, Rafael M; Carraro, Dirce M; de Bragança Pereira, Carlos Alberto; Jacob-Filho, Wilson; Brentani, Helena

    2014-01-01

    Alzheimer's disease (AD) is characterized by progressive cognitive decline associated with a featured neuropathology (neuritic plaques and neurofibrillary tangles). Several studies have implicated oxidative damage to DNA, DNA repair, and altered cell-cycle regulation in addition to cell death in AD post-mitotic neurons. However, there is a lack of studies that systematically assess those biological processes in patients with AD neuropathology but with no evidence of cognitive impairment. We evaluated markers of oxidative DNA damage (8-OHdG, H2AX), DNA repair (p53, BRCA1, PTEN), and cell-cycle (Cdk1, Cdk4, Cdk5, Cyclin B1, Cyclin D1, p27Kip1, phospho-Rb and E2F1) through immunohistochemistry and cell death through TUNEL in autopsy hippocampal tissue samples arrayed in a tissue microarray (TMA) composed of three groups: I) "clinical-pathological AD" (CP-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and clinical dementia (CDR ≥ 2, IQCODE>3.8); II) "pathological AD" (P-AD)--subjects with neuropathological AD (Braak ≥ IV and CERAD = B or C) and without cognitive impairment (CDR 0, IQCODE<3.2); and III) "normal aging" (N)--subjects without neuropathological AD (Braak ≤ II and CERAD 0 or A) and with normal cognitive function (CDR 0, IQCODE<3.2). Our results show that high levels of oxidative DNA damage are present in all groups. However, significant reductions in DNA repair and cell-cycle inhibition markers and increases in cell-cycle progression and cell death markers in subjects with CP-AD were detected when compared to both P-AD and N groups, whereas there were no significant differences in the studied markers between P-AD individuals and N subjects. This study indicates that, even in the setting of pathological AD, healthy cognition may be associated with a preserved repair to DNA damage, cell-cycle regulation, and cell death in post-mitotic neurons.

  5. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage

    PubMed Central

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein–protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage. PMID:24675884

  6. ATM-dependent E2F1 accumulation in the nucleolus is an indicator of ribosomal stress in early response to DNA damage.

    PubMed

    Jin, Ya-Qiong; An, Guo-Shun; Ni, Ju-Hua; Li, Shu-Yan; Jia, Hong-Ti

    2014-01-01

    The nucleolus plays a major role in ribosome biogenesis. Most genotoxic agents disrupt nucleolar structure and function, which results in the stabilization/activation of p53, inducing cell cycle arrest or apoptosis. Likewise, transcription factor E2F1 as a DNA damage responsive protein also plays roles in cell cycle arrest, DNA repair, or apoptosis in response to DNA damage through transcriptional response and protein-protein interaction. Furthermore, E2F1 is known to be involved in regulating rRNA transcription. However, how E2F1 displays in coordinating DNA damage and nucleolar stress is unclear. In this study, we demonstrate that ATM-dependent E2F1 accumulation in the nucleolus is a characteristic feature of nucleolar stress in early response to DNA damage. We found that at the early stage of DNA damage, E2F1 accumulation in the nucleolus was an ATM-dependent and a common event in p53-suficient and -deficient cells. Increased nucleolar E2F1 was sequestered by the nucleolar protein p14ARF, which repressed E2F1-dependent rRNA transcription initiation, and was coupled with S phase. Our data indicate that early accumulation of E2F1 in the nucleolus is an indicator for nucleolar stress and a component of ATM pathway, which presumably buffers elevation of E2F1 in the nucleoplasm and coordinates the diversifying mechanisms of E2F1 acts in cell cycle progression and apoptosis in early response to DNA damage.

  7. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate.

    PubMed

    Emanuele, Michael J; Ciccia, Alberto; Elia, Andrew E H; Elledge, Stephen J

    2011-06-14

    The anaphase-promoting complex/cyclosome (APC/C) is a cell cycle-regulated E3 ubiquitin ligase that controls the degradation of substrate proteins at mitotic exit and throughout the G1 phase. We have identified an APC/C substrate and cell cycle-regulated protein, KIAA0101/PAF15. PAF15 protein levels peak in the G2/M phase of the cell cycle and drop rapidly at mitotic exit in an APC/C- and KEN-box-dependent fashion. PAF15 associates with proliferating cell nuclear antigen (PCNA), and depletion of PAF15 decreases the number of cells in S phase, suggesting a role for it in cell cycle regulation. Following irradiation, PAF15 colocalized with γH2AX foci at sites of DNA damage through its interaction with PCNA. Finally, PAF15 depletion led to an increase in homologous recombination-mediated DNA repair, and overexpression caused sensitivity to UV-induced DNA damage. We conclude that PAF15 is an APC/C-regulated protein involved in both cell cycle progression and the DNA damage response.

  8. Identification of Primary Transcriptional Regulation of Cell Cycle-Regulated Genes upon DNA Damage

    PubMed Central

    Zhou, Tong; Chou, Jeff; Mullen, Thomas E.; Elkon, Rani; Zhou, Yingchun; Simpson, Dennis A.; Bushel, Pierre R.; Paules, Richard S.; Lobenhofer, Edward K.; Hurban, Patrick; Kaufmann, William K.

    2007-01-01

    The changes in global gene expression in response to DNA damage may derive from either direct induction or repression by transcriptional regulation or indirectly by synchronization of cells to specific cell cycle phases, such as G1 or G2. We developed a model that successfully estimated the expression levels of >400 cell cycle-regulated genes in normal human fibroblasts based on the proportions of cells in each phase of the cell cycle. By isolating effects on the gene expression associated with the cell cycle phase redistribution after genotoxin treatment, the direct transcriptional target genes were distinguished from genes for which expression changed secondary to cell synchronization. Application of this model to ionizing radiation (IR)-treated normal human fibroblasts identified 150 of 406 cycle-regulated genes as putative direct transcriptional targets of IR-induced DNA damage. Changes in expression of these genes after IR treatment derived from both direct transcriptional regulation and cell cycle synchronization. PMID:17404513

  9. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.

    PubMed

    Siede, W; Friedberg, A S; Friedberg, E C

    1993-09-01

    Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.

  10. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress*

    PubMed Central

    Kemp, Michael G.; Sancar, Aziz

    2016-01-01

    ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected non-replicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens. PMID:26940878

  11. ATM-dependent DNA damage checkpoint functions regulate gene expression in human fibroblasts

    PubMed Central

    Zhou, Tong; Chou, Jeff; Zhou, Yingchun; Simpson, Dennis A.; Cao, Feng; Bushel, Pierre R.; Paules, Richard S.; Kaufmann, William K.

    2013-01-01

    The relationships between profiles of global gene expression and DNA damage checkpoint functions were studied in cells from patients with ataxia telangiectasia (AT). Three telomerase-expressing AT fibroblast lines displayed the expected hypersensitivity to ionizing radiation (IR) and defects in DNA damage checkpoints. Profiles of global gene expression in AT cells were determined at 2, 6 and 24 h after treatment with 1.5 Gy IR or sham-treatment, and were compared to those previously recognized in normal human fibroblasts. Under basal conditions 160 genes or ESTs were differentially expressed in AT and normal fibroblasts, and these were associated by gene ontology with insulin-like growth factor binding and regulation of cell growth. Upon DNA damage, 1091 gene mRNAs were changed in at least two of the three AT cell lines. When compared with the 1811 genes changed in normal human fibroblasts after the same treatment, 715 were found in both AT and normal fibroblasts, including most genes categorized by gene ontology into cell cycle, cell growth and DNA damage response pathways. However, the IR-induced changes in these 715 genes in AT cells usually were delayed or attenuated in comparison to normal cells. The reduced change in DNA-damage-response genes and the attenuated repression of cell-cycle-regulated genes may account for the defects in cell cycle checkpoint function in AT cells. PMID:17699107

  12. TRAIP promotes DNA damage response during genome replication and is mutated in primordial dwarfism

    PubMed Central

    Leitch, Andrea; Higgs, Martin R.; Bicknell, Louise S.; Yigit, Gökhan; Blackford, Andrew N.; Zlatanou, Anastasia; Mackenzie, Karen J.; Reddy, Kaalak; Halachev, Mihail; McGlasson, Sarah; Reijns, Martin A. M.; Fluteau, Adeline; Martin, Carol-Anne; Sabbioneda, Simone; Elcioglu, Nursel H.; Altmüller, Janine; Thiele, Holger; Greenhalgh, Lynn; Chessa, Luciana; Maghnie, Mohamad; Salim, Mahmoud; Bober, Michael B.; Nürnberg, Peter; Jackson, Stephen P.; Hurles, Matthew E.; Wollnik, Bernd; Stewart, Grant S.; Jackson, Andrew P.

    2015-01-01

    DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism/Seckel syndrome. We establish that TRAIP relocalizes to sites of DNA damage where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to UV irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a novel component of the DNA damage response to replication-blocking DNA lesions. PMID:26595769

  13. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Lehman, Stacey L.; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J.; Mishra, Om P.; Koumenis, Constantinos; Goodwin, Thomas J.; Christofidou-Solomidou, Melpo

    2016-01-01

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O2 for 8 h only (O2), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O2 + IR) followed by 16 h of normoxia (ambient air containing 21% O2 and 5% CO2) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O2 + IR exacerbated cell death and DNA damage compared to individual exposures O2 or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest. PMID:27322243

  14. Novel Double-Hit Model of Radiation and Hyperoxia-Induced Oxidative Cell Damage Relevant to Space Travel.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Lehman, Stacey L; Arguiri, Evguenia; Solomides, Pantelis; Koch, Cameron J; Mishra, Om P; Koumenis, Constantinos; Goodwin, Thomas J; Christofidou-Solomidou, Melpo

    2016-06-16

    Spaceflight occasionally requires multiple extravehicular activities (EVA) that potentially subject astronauts to repeated changes in ambient oxygen superimposed on those of space radiation exposure. We thus developed a novel in vitro model system to test lung cell damage following repeated exposure to radiation and hyperoxia. Non-tumorigenic murine alveolar type II epithelial cells (C10) were exposed to >95% O₂ for 8 h only (O₂), 0.25 Gy ionizing γ-radiation (IR) only, or a double-hit combination of both challenges (O₂ + IR) followed by 16 h of normoxia (ambient air containing 21% O₂ and 5% CO₂) (1 cycle = 24 h, 2 cycles = 48 h). Cell survival, DNA damage, apoptosis, and indicators of oxidative stress were evaluated after 1 and 2 cycles of exposure. We observed a significant (p < 0.05) decrease in cell survival across all challenge conditions along with an increase in DNA damage, determined by Comet analysis and H2AX phosphorylation, and apoptosis, determined by Annexin-V staining, relative to cells unexposed to hyperoxia or radiation. DNA damage (GADD45α and cleaved-PARP), apoptotic (cleaved caspase-3 and BAX), and antioxidant (HO-1 and Nqo1) proteins were increased following radiation and hyperoxia exposure after 1 and 2 cycles of exposure. Importantly, exposure to combination challenge O₂ + IR exacerbated cell death and DNA damage compared to individual exposures O₂ or IR alone. Additionally levels of cell cycle proteins phospho-p53 and p21 were significantly increased, while levels of CDK1 and Cyclin B1 were decreased at both time points for all exposure groups. Similarly, proteins involved in cell cycle arrest was more profoundly changed with the combination challenges as compared to each stressor alone. These results correlate with a significant 4- to 6-fold increase in the ratio of cells in G2/G1 after 2 cycles of exposure to hyperoxic conditions. We have characterized a novel in vitro model of double-hit, low-level radiation and hyperoxia exposure that leads to oxidative lung cell injury, DNA damage, apoptosis, and cell cycle arrest.

  15. Chromatin Relaxation-Mediated Induction of p19INK4d Increases the Ability of Cells to Repair Damaged DNA

    PubMed Central

    Carcagno, Abel L.; Marazita, Mariela C.; Sonzogni, Silvina V.; Ceruti, Julieta M.; Cánepa, Eduardo T.

    2013-01-01

    The maintenance of genomic integrity is of main importance to the survival and health of organisms which are continuously exposed to genotoxic stress. Cells respond to DNA damage by activating survival pathways consisting of cell cycle checkpoints and repair mechanisms. However, the signal that triggers the DNA damage response is not necessarily a direct detection of the primary DNA lesion. In fact, chromatin defects may serve as initiating signals to activate those mechanisms. If the modulation of chromatin structure could initiate a checkpoint response in a direct manner, this supposes the existence of specific chromatin sensors. p19INK4d, a member of the INK4 cell cycle inhibitors, plays a crucial role in regulating genomic stability and cell viability by enhancing DNA repair. Its expression is induced in cells injured by one of several genotoxic treatments like cis-platin, UV light or neocarzinostatin. Nevertheless, when exogenous DNA damaged molecules are introduced into the cell, this induction is not observed. Here, we show that p19INK4d is enhanced after chromatin relaxation even in the absence of DNA damage. This induction was shown to depend upon ATM/ATR, Chk1/Chk2 and E2F activity, as is the case of p19INK4d induction by endogenous DNA damage. Interestingly, p19INK4d improves DNA repair when the genotoxic damage is caused in a relaxed-chromatin context. These results suggest that changes in chromatin structure, and not DNA damage itself, is the actual trigger of p19INK4d induction. We propose that, in addition to its role as a cell cycle inhibitor, p19INK4d could participate in a signaling network directed to detecting and eventually responding to chromatin anomalies. PMID:23593412

  16. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. DNA Damage Response Genes and the Development of Cancer Metastasis

    PubMed Central

    Broustas, Constantinos G.; Lieberman, Howard B.

    2014-01-01

    DNA damage response genes play vital roles in the maintenance of a healthy genome. Defects in cell cycle checkpoint and DNA repair genes, especially mutation or aberrant downregulation, are associated with a wide spectrum of human disease, including a predisposition to the development of neurodegenerative conditions and cancer. On the other hand, upregulation of DNA damage response and repair genes can also cause cancer, as well as increase resistance of cancer cells to DNA damaging therapy. In recent years, it has become evident that many of the genes involved in DNA damage repair have additional roles in tumorigenesis, most prominently by acting as transcriptional (co-) factors. Although defects in these genes are causally connected to tumor initiation, their role in tumor progression is more controversial and it seems to depend on tumor type. In some tumors like melanoma, cell cycle checkpoint/DNA repair gene upregulation is associated with tumor metastasis, whereas in a number of other cancers the opposite has been observed. Several genes that participate in the DNA damage response, such as RAD9, PARP1, BRCA1, ATM and TP53 have been associated with metastasis by a number of in vitro biochemical and cellular assays, by examining human tumor specimens by immunohistochemistry or by DNA genomewide gene expression profiling. Many of these genes act as transcriptional effectors to regulate other genes implicated in the pathogenesis of cancer. Furthermore, they are aberrantly expressed in numerous human tumors and are causally related to tumorigenesis. However, whether the DNA damage repair function of these genes is required to promote metastasis or another activity is responsible (e.g., transcription control) has not been determined. Importantly, despite some compelling in vitro evidence, investigations are still needed to demonstrate the role of cell cycle checkpoint and DNA repair genes in regulating metastatic phenotypes in vivo. PMID:24397478

  18. The Interaction between Checkpoint Kinase 1 (Chk1) and the Minichromosome Maintenance (MCM) Complex Is Required for DNA Damage-induced Chk1 Phosphorylation*

    PubMed Central

    Han, Xiangzi; Aslanian, Aaron; Fu, Kang; Tsuji, Toshiya; Zhang, Youwei

    2014-01-01

    Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage. PMID:25049228

  19. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction ofmore » numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.« less

  20. Parvovirus infection-induced DNA damage response

    PubMed Central

    Luo, Yong; Qiu, Jianming

    2014-01-01

    Parvoviruses are a group of small DNA viruses with ssDNA genomes flanked by two inverted terminal structures. Due to a limited genetic resource they require host cellular factors and sometimes a helper virus for efficient viral replication. Recent studies have shown that parvoviruses interact with the DNA damage machinery, which has a significant impact on the life cycle of the virus as well as the fate of infected cells. In addition, due to special DNA structures of the viral genomes, parvoviruses are useful tools for the study of the molecular mechanisms underlying viral infection-induced DNA damage response (DDR). This review aims to summarize recent advances in parvovirus-induced DDR, with a focus on the diverse DDR pathways triggered by different parvoviruses and the consequences of DDR on the viral life cycle as well as the fate of infected cells. PMID:25429305

  1. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.

    PubMed

    Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição

    2011-07-18

    Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society

  2. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways

    PubMed Central

    Rhind, Nicholas; Russell, Paul

    2010-01-01

    SUMMARY Recent work on the mechanisms of DNA damage and replication cell cycle checkpoints has revealed great similarity between the checkpoint pathways of organisms as diverse as yeasts, flies and humans. However, there are differences in the ways these organisms regulate their cell cycles. To connect the conserved checkpoint pathways with various cell cycle targets requires an adaptable link that can target different cell cycle components in different organisms. The Chk1 and Cds1 protein kinases, downstream effectors in the checkpoint pathways, seem to play just such roles. Perhaps more surprisingly, the two kinases not only have different targets in different organisms but also seem to respond to different signals in different organisms. So, whereas in fission yeast Chk1 is required for the DNA damage checkpoint and Cds1 is specifically involved in the replication checkpoint, their roles seem to be shuffled in metazoans. PMID:11058076

  3. DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107

    PubMed Central

    Jagot-Lacoussiere, Léonard; Faye, Audrey; Bruzzoni-Giovanelli, Heriberto; Villoutreix, Bruno O; Rain, Jean-Christophe; Poyet, Jean-Luc

    2015-01-01

    Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response. PMID:25695197

  4. Quantitative Profiling of DNA Damage and Apoptotic Pathways in UV Damaged Cells Using PTMScan Direct

    PubMed Central

    Stokes, Matthew P.; Silva, Jeffrey C.; Jia, Xiaoying; Lee, Kimberly A.; Polakiewicz, Roberto D.; Comb, Michael J.

    2013-01-01

    Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA. PMID:23344034

  5. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage.

    PubMed

    Weinert, T A; Hartwell, L H

    1990-12-01

    In eucaryotic cells, incompletely replicated or damaged chromosomes induce cell cycle arrest in G2 before mitosis, and in the yeast Saccharomyces cerevisiae the RAD9 gene is essential for the cell cycle arrest (T.A. Weinert and L. H. Hartwell, Science 241:317-322, 1988). In this report, we extend the analysis of RAD9-dependent cell cycle control. We found that both induction of RAD9-dependent arrest in G2 and recovery from arrest could occur in the presence of the protein synthesis inhibitor cycloheximide, showing that the mechanism of RAD9-dependent control involves a posttranslational mechanism(s). We have isolated and determined the DNA sequence of the RAD9 gene, confirming the DNA sequence reported previously (R. H. Schiestl, P. Reynolds, S. Prakash, and L. Prakash, Mol. Cell. Biol. 9:1882-1886, 1989). The predicted protein sequence for the Rad9 protein bears no similarity to sequences of known proteins. We also found that synthesis of the RAD9 transcript in the cell cycle was constitutive and not induced by X-irradiation. We constructed yeast cells containing a complete deletion of the RAD9 gene; the rad9 null mutants were viable, sensitive to X- and UV irradiation, and defective for cell cycle arrest after DNA damage. Although Rad+ and rad9 delta cells had similar growth rates and cell cycle kinetics in unirradiated cells, the spontaneous rate of chromosome loss (in unirradiated cells) was elevated 7- to 21-fold in rad9 delta cells. These studies show that in the presence of induced or endogenous DNA damage, RAD9 is a negative regulator that inhibits progression from G2 in order to preserve cell viability and to maintain the fidelity of chromosome transmission.

  6. cGAS Conducts Micronuclei DNA Surveillance.

    PubMed

    de Oliveira Mann, Carina C; Kranzusch, Philip J

    2017-10-01

    DNA damage elicits a potent proinflammatory immune response. A collection of four papers now reveals that micronuclear DNA is a new cell intrinsic immunostimulatory molecule, and that accumulation of the immune sensor cyclic GMP-AMP synthase (cGAS) in micronuclei leads to a cell-cycle-dependent proinflammatory response following DNA damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The RNA-binding proteins Zfp36l1 and Zfp36l2 enforce the thymic β-selection checkpoint by limiting DNA damage response signaling and cell cycle progression

    PubMed Central

    Galloway, Alison; Ahlfors, Helena; Turner, Martin

    2016-01-01

    The RNA binding proteins Zfp36l1 and Zfp36l2 act redundantly to enforce the β-selection checkpoint during thymopoiesis, yet their molecular targets remain largely unknown. Here, we identify these targets on a genome wide scale in primary mouse thymocytes and show that Zfp36l1/l2 regulate DNA damage response and cell cycle transcripts to ensure proper β-selection. DN3 thymocytes lacking Zfp36l1/l2 share a gene expression profile with post-selected DN3b cells despite the absence of intracellular TCRβ and reduced IL-7 signaling. Our findings show that in addition to controlling the timing of proliferation at β-selection post-transcriptional control by Zfp36l1/l2 limits DNA damage responses which are known to promote thymocyte differentiation. Zfp36l1/l2 therefore act as post-transcriptional safeguards against chromosomal instability and replication stress by integrating pre-TCR and IL-7 signaling with DNA damage and cell cycle control. PMID:27566829

  8. [Sea urchin embryo, DNA-damaged cell cycle checkpoint and the mechanisms initiating cancer development].

    PubMed

    Bellé, Robert; Le Bouffant, Ronan; Morales, Julia; Cosson, Bertrand; Cormier, Patrick; Mulner-Lorillon, Odile

    2007-01-01

    Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology. Prevention and early diagnosis are two decisive elements of human cancer therapy.

  9. DNA damage signaling regulates age-dependent proliferative capacity of quiescent inner ear supporting cells

    PubMed Central

    Laos, Maarja; Anttonen, Tommi; Kirjavainen, Anna; Hällström, Taija af; Laiho, Marikki; Pirvola, Ulla

    2014-01-01

    Supporting cells (SCs) of the cochlear (auditory) and vestibular (balance) organs hold promise as a platform for therapeutic regeneration of the sensory hair cells. Prior data have shown proliferative restrictions of adult SCs forced to re-enter the cell cycle. By comparing juvenile and adult SCs in explant cultures, we have here studied how proliferative restrictions are linked with DNA damage signaling. Cyclin D1 overexpression, used to stimulate cell cycle re-entry, triggered higher proliferative activity of juvenile SCs. Phosphorylated form of histone H2AX (γH2AX) and p53 binding protein 1 (53BP1) were induced in a foci-like pattern in SCs of both ages as an indication of DNA double-strand break formation and activated DNA damage response. Compared to juvenile SCs, γH2AX and the repair protein Rad51 were resolved with slower kinetics in adult SCs, accompanied by increased apoptosis. Consistent with the in vitro data, in a Rb mutant mouse model in vivo, cell cycle re-entry of SCs was associated with γH2AX foci induction. In contrast to cell cycle reactivation, pharmacological stimulation of SC-to-hair-cell transdifferentiation in vitro did not trigger γH2AX. Thus, DNA damage and its prolonged resolution are critical barriers in the efforts to stimulate proliferation of the adult inner ear SCs. PMID:25063730

  10. Inhibition of the Mitotic Exit Network in Response to Damaged Telomeres

    PubMed Central

    Valerio-Santiago, Mauricio; de los Santos-Velázquez, Ana Isabel; Monje-Casas, Fernando

    2013-01-01

    When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression. PMID:24130507

  11. Modulation of inflammation and disease tolerance by DNA damage response pathways.

    PubMed

    Neves-Costa, Ana; Moita, Luis F

    2017-03-01

    The accurate replication and repair of DNA is central to organismal survival. This process is challenged by the many factors that can change genetic information such as replication errors and direct damage to the DNA molecule by chemical and physical agents. DNA damage can also result from microorganism invasion as an integral step of their life cycle or as collateral damage from host defense mechanisms against pathogens. Here we review the complex crosstalk of DNA damage response and immune response pathways that might be evolutionarily connected and argue that DNA damage response pathways can be explored therapeutically to induce disease tolerance through the activation of tissue damage control processes. Such approach may constitute the missing pillar in the treatment of critical illnesses caused by multiple organ failure, such as sepsis and septic shock. © 2016 Federation of European Biochemical Societies.

  12. Absence of ERK5/MAPK7 delays tumorigenesis in Atm-/- mice.

    PubMed

    Granados-Jaén, Alba; Angulo-Ibáñez, Maria; Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X; Reina, Manuel; Espel, Enric

    2016-11-15

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm-/- mice. Compared with Atm-/- thymocytes, Mapk7-/-Atm-/- thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm-/- mice by partially restoring the DNA damage response in thymocytes.

  13. DNA Damage and Repair: Relevance to Mechanisms of Neurodegeneration

    PubMed Central

    Martin, Lee J.

    2008-01-01

    DNA damage is a form of cell stress and injury that has been implicated in the pathogenesis of many neurologic disorders, including amyotrophic lateral sclerosis, Alzheimer disease, Down syndrome, Parkinson disease, cerebral ischemia, and head trauma. However, most data reveal only associations, and the role for DNA damage in direct mechanisms of neurodegeneration is vague with respect to being a definitive upstream cause of neuron cell death, rather than a consequence of the degeneration. Although neurons seem inclined to develop DNA damage during oxidative stress, most of the existing work on DNA damage and repair mechanisms has been done in the context of cancer biology using cycling non-neuronal cells but not nondividing (i.e. postmitotic) neurons. Nevertheless, the identification of mutations in genes that encode proteins that function in DNA repair and DNA damage response in human hereditary DNA repair deficiency syndromes and ataxic disorders is establishing a mechanistic precedent that clearly links DNA damage and DNA repair abnormalities with progressive neurodegeneration. This review summarizes DNA damage and repair mechanisms and their potential relevance to the evolution of degeneration in postmitotic neurons. PMID:18431258

  14. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication.

    PubMed

    Zou, Wei; Wang, Zekun; Xiong, Min; Chen, Aaron Yun; Xu, Peng; Ganaie, Safder S; Badawi, Yomna; Kleiboeker, Steve; Nishimune, Hiroshi; Ye, Shui Qing; Qiu, Jianming

    2018-03-01

    Human parvovirus B19 (B19V) infection of human erythroid progenitor cells (EPCs) induces a DNA damage response and cell cycle arrest at late S phase, which facilitates viral DNA replication. However, it is not clear exactly which cellular factors are employed by this single-stranded DNA virus. Here, we used microarrays to systematically analyze the dynamic transcriptome of EPCs infected with B19V. We found that DNA metabolism, DNA replication, DNA repair, DNA damage response, cell cycle, and cell cycle arrest pathways were significantly regulated after B19V infection. Confocal microscopy analyses revealed that most cellular DNA replication proteins were recruited to the centers of viral DNA replication, but not the DNA repair DNA polymerases. Our results suggest that DNA replication polymerase δ and polymerase α are responsible for B19V DNA replication by knocking down its expression in EPCs. We further showed that although RPA32 is essential for B19V DNA replication and the phosphorylated forms of RPA32 colocalized with the replicating viral genomes, RPA32 phosphorylation was not necessary for B19V DNA replication. Thus, this report provides evidence that B19V uses the cellular DNA replication machinery for viral DNA replication. IMPORTANCE Human parvovirus B19 (B19V) infection can cause transient aplastic crisis, persistent viremia, and pure red cell aplasia. In fetuses, B19V infection can result in nonimmune hydrops fetalis and fetal death. These clinical manifestations of B19V infection are a direct outcome of the death of human erythroid progenitors that host B19V replication. B19V infection induces a DNA damage response that is important for cell cycle arrest at late S phase. Here, we analyzed dynamic changes in cellular gene expression and found that DNA metabolic processes are tightly regulated during B19V infection. Although genes involved in cellular DNA replication were downregulated overall, the cellular DNA replication machinery was tightly associated with the replicating single-stranded DNA viral genome and played a critical role in viral DNA replication. In contrast, the DNA damage response-induced phosphorylated forms of RPA32 were dispensable for viral DNA replication. Copyright © 2018 American Society for Microbiology.

  15. CDK1 promotes nascent DNA synthesis and induces resistance of cancer cells to DNA-damaging therapeutic agents

    PubMed Central

    Liao, Hongwei; Ji, Fang; Geng, Xinwei; Xing, Meichun; Li, Wen; Chen, Zhihua; Shen, Huahao; Ying, Songmin

    2017-01-01

    Cyclin dependent kinase 1 (CDK1) is essential for cell viability and plays a vital role in many biological events including cell cycle control, DNA damage repair, and checkpoint activation. Here, we identify an unanticipated role for CDK1 in promoting nascent DNA synthesis during S-phase. We report that a short duration of CDK1 inhibition, which does not perturb cell cycle progression, triggers a replication-associated DNA damage response (DDR). This DDR is associated with a disruption of replication fork progression and leads to genome instability. Moreover, we show that compromised CDK1 activity dramatically increases the efficacy of chemotherapeutic agents that kill cancer cells through perturbing DNA replication, including Olaparib, an FDA approved PARP inhibitor. Our study has revealed an important role for CDK1 in the DNA replication program, and suggests that the therapeutic targeting CDK1 may be a novel approach for combination chemotherapy. PMID:29207595

  16. Distinct mechanisms act in concert to mediate cell cycle arrest.

    PubMed

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  17. Polychlorinated biphenyl quinone induces oxidative DNA damage and repair responses: The activations of NHEJ, BER and NER via ATM-p53 signaling axis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Shi, Qiong; Song, Xiufang

    2015-07-01

    Our previous studies demonstrated that polychlorinated biphenyl (PCB) quinone induced oxidative DNA damage in HepG2 cells. To promote genomic integrity, DNA damage response (DDR) coordinates cell-cycle transitions, DNA repair and apoptosis. PCB quinone-induced cell cycle arrest and apoptosis have been documented, however, whether PCB quinone insult induce DNA repair signaling is still unknown. In this study, we identified the activation of DDR and corresponding signaling events in HepG2 cells upon the exposure to a synthetic PCB quinone, PCB29-pQ. Our data illustrated that PCB29-pQ induces the phosphorylation of p53, which was mediated by ataxia telangiectasia mutated (ATM) protein kinase. The observedmore » phosphorylated histone H2AX (γ-H2AX) foci and the elevation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) indicated that DDR was stimulated by PCB29-pQ treatment. Additionally, we found PCB29-pQ activates non-homologous end joining (NHEJ), base excision repair (BER) and nucleotide excision repair (NER) signalings. However, these repair pathways are not error-free processes and aberrant repair of DNA damage may cause the potential risk of carcinogenesis and mutagenesis. - Highlights: • Polychlorinated biphenyl quinone induces oxidative DNA damage in HepG2 cells. • The elevation of γ-H2AX and 8-OHdG indicates the activation of DNA damage response. • ATM-p53 signaling acts as the DNA damage sensor and effector. • Polychlorinated biphenyl quinone activates NHEJ, BER and NER signalings.« less

  18. DNA damage checkpoint recovery and cancer development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyong; Zhang, Xiaoshan; Teng, Lisong, E-mail: lsteng@zju.edu.cn

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observedmore » to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint recovery pathway plays a role in overriding tumor barrier in tumorigenesis. • Recovery protein dysregulation and human cancer development is correlated.« less

  19. Binding of Substrate Locks the Electrochemistry of CRY-DASH into DNA Repair.

    PubMed

    Gindt, Yvonne M; Messyasz, Adriana; Jumbo, Pamela I

    2015-05-12

    VcCry1, a member of the CRY-DASH family, may serve two diverse roles in vivo, including blue-light signaling and repair of UV-damaged DNA. We have discovered that the electrochemistry of the flavin adenine dinucleotide cofactor of VcCry1 is locked to cycle only between the hydroquinone and neutral semiquinone states when UV-damaged DNA is present. Other potential substrates, including undamaged DNA and ATP, have no discernible effect on the electrochemistry, and the kinetics of the reduction is unaffected by damaged DNA. Binding of the damaged DNA substrate determines the role of the protein and prevents the presumed photochemistry required for blue-light signaling.

  20. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    PubMed

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.

  1. Jungermannenone A and B induce ROS- and cell cycle-dependent apoptosis in prostate cancer cells in vitro

    PubMed Central

    Guo, Yan-xia; Lin, Zhao-min; Wang, Mei-juan; Dong, Yi-wen; Niu, Huan-min; Young, Charles YF; Lou, Hong-xiang; Yuan, Hui-qing

    2016-01-01

    Aim: Jungermannenone A and B (JA, JB) are new ent-kaurane diterpenoids isolated from Chinese liverwort Jungermannia fauriana, which show anti-proliferation activities in cancer cells. In this study we investigated the mechanisms underlying the anticancer action of JA and JB in PC3 human prostate cancer cells in vitro. Methods: A panel of 9 human cancer cell lines was tested. Cell proliferation was assessed with a real-time cell analyzer and MTT assay. Cell apoptosis, cell cycle distribution and ROS levels were measured using cytometry. Mitochondrial damage was examined by transmission electron microscopy. DNA damage was detected with comet assay. Apoptotic, DNA damage- and cell cycle-related proteins were analyzed using Western blotting. The expression of DNA repair genes was measured with qRT-PCR. Results: Both JA and JB exerted potent anti-proliferative action against the 9 cancer cell lines, and PC3 cells were more sensitive with IC50 values of 1.34±0.09 and 4.93±0.20 μmol/L, respectively. JA (1.5 μmol/L) and JB (5 μmol/L) induced PC3 cell apoptosis, which was attenuated by the caspase inhibitor Z-VAD. Furthermore, both JA and JB caused mitochondrial damage and ROS accumulation in PC3 cells, whereas vitamin C blocked the ROS accumulation and attenuated the cytotoxicity of JA and JB. Moreover, both JA and JB induced DNA damage, accompanied by downregulated DNA repair proteins Ku70/Ku80 and RDA51. JA induced marked cell cycle arrest at the G0/G1 phase, which was related to c-Myc suppression, whereas JB enforced the cell cycle blockade in the G2/M phase, which associated with activation of the JNK signaling. Conclusion: Both JA and JB induce prostate cancer apoptosis via ROS accumulation and induction of cell cycle arrest. PMID:27133304

  2. Jungermannenone A and B induce ROS- and cell cycle-dependent apoptosis in prostate cancer cells in vitro.

    PubMed

    Guo, Yan-Xia; Lin, Zhao-Min; Wang, Mei-Juan; Dong, Yi-Wen; Niu, Huan-Min; Young, Charles Yf; Lou, Hong-Xiang; Yuan, Hui-Qing

    2016-06-01

    Jungermannenone A and B (JA, JB) are new ent-kaurane diterpenoids isolated from Chinese liverwort Jungermannia fauriana, which show anti-proliferation activities in cancer cells. In this study we investigated the mechanisms underlying the anticancer action of JA and JB in PC3 human prostate cancer cells in vitro. A panel of 9 human cancer cell lines was tested. Cell proliferation was assessed with a real-time cell analyzer and MTT assay. Cell apoptosis, cell cycle distribution and ROS levels were measured using cytometry. Mitochondrial damage was examined by transmission electron microscopy. DNA damage was detected with comet assay. Apoptotic, DNA damage- and cell cycle-related proteins were analyzed using Western blotting. The expression of DNA repair genes was measured with qRT-PCR. Both JA and JB exerted potent anti-proliferative action against the 9 cancer cell lines, and PC3 cells were more sensitive with IC50 values of 1.34±0.09 and 4.93±0.20 μmol/L, respectively. JA (1.5 μmol/L) and JB (5 μmol/L) induced PC3 cell apoptosis, which was attenuated by the caspase inhibitor Z-VAD. Furthermore, both JA and JB caused mitochondrial damage and ROS accumulation in PC3 cells, whereas vitamin C blocked the ROS accumulation and attenuated the cytotoxicity of JA and JB. Moreover, both JA and JB induced DNA damage, accompanied by downregulated DNA repair proteins Ku70/Ku80 and RDA51. JA induced marked cell cycle arrest at the G0/G1 phase, which was related to c-Myc suppression, whereas JB enforced the cell cycle blockade in the G2/M phase, which associated with activation of the JNK signaling. Both JA and JB induce prostate cancer apoptosis via ROS accumulation and induction of cell cycle arrest.

  3. A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation

    PubMed Central

    Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio

    2014-01-01

    Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836

  4. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage.

    PubMed

    Perron, Nathan R; García, Carla R; Pinzón, Julio R; Chaur, Manuel N; Brumaghim, Julia L

    2011-05-01

    Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells

    PubMed Central

    Yedjou, Clement G.; Tchounwou, Hervey M.; Tchounwou, Paul B.

    2015-01-01

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO3)2] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO3)2 for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO3)2-treated cells, indicative of membrane rupture by Pb(NO3)2 compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO3)2 exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO3)2 exposure caused cell cycle arrest at the G0/G1 checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO3)2 inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G0/G1 checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO3)2 exposure and its associated adverse health effects. PMID:26703663

  6. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p < 0.05) increase of necrotic cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p < 0.05) in comet tail-length and percentages of DNA cleavage. Data generated from the flow cytometry assessment indicated that Pb(NO₃)₂ exposure significantly (p < 0.05) increased the proportion of caspase-3 positive cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  7. DNA damage and polyploidization.

    PubMed

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  8. Mechanisms of neurotoxicity induced in the developing brain of mice and rats by DNA-damaging chemicals.

    PubMed

    Doi, Kunio

    2011-01-01

    It is not widely known how the developing brain responds to extrinsic damage, although the developing brain is considered to be sensitive to diverse environmental factors including DNA-damaging agents. This paper reviews the mechanisms of neurotoxicity induced in the developing brain of mice and rats by six chemicals (ethylnitrosourea, hydroxyurea, 5-azacytidine, cytosine arabinoside, 6-mercaptopurine and etoposide), which cause DNA damage in different ways, especially from the viewpoints of apoptosis and cell cycle arrest in neural progenitor cells. In addition, this paper also reviews the repair process following damage in the developing brain.

  9. ERCC2/XPD Lys751Gln alter DNA repair efficiency of platinum-induced DNA damage through P53 pathway.

    PubMed

    Zhang, Guopei; Guan, Yangyang; Zhao, Yuejiao; van der Straaten, Tahar; Xiao, Sha; Xue, Ping; Zhu, Guolian; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Lu, Xiaobo

    2017-02-01

    Platinum-based treatment causes Pt-DNA adducts which lead to cell death. The platinum-induced DNA damage is recognized and repaired by the nucleotide excision repair (NER) system of which ERCC2/XPD is a critical enzyme. Single nucleotide polymorphisms in ERCC2/XPD have been found to be associated with platinum resistance. The aim of the present study was to investigate whether ERCC2/XPD Lys751Gln (rs13181) polymorphism is causally related to DNA repair capacity of platinum-induced DNA damage. First, cDNA clones expressing different genotypes of the polymorphism was transfected to an ERCC2/XPD defective CHO cell line (UV5). Second, all cells were treated with cisplatin. Cellular survival rate were investigated by MTT growth inhibition assay, DNA damage levels were investigated by comet assay and RAD51 staining. The distribution of cell cycle and the change of apoptosis rates were detected by a flow cytometric method (FCM). Finally, P53mRNA and phospho-P53 protein levels were further investigated in order to explore a possible explanation. As expected, there was a significantly increased in viability of UV5 ERCC2 (AA) as compared to UV5 ERCC2 (CC) after cisplatin treatment. The DNA damage level of UV5 ERCC2 (AA) was significant decreased compared to UV5 ERCC2 (CC) at 24 h of treatment. Mutation of ERCC2rs13181 AA to CC causes a prolonged S phase in cell cycle. UV5 ERCC2 (AA) alleviated the apoptosis compared to UV5 ERCC2 (CC) , meanwhile P53mRNA levels in UV ERCC2 (AA) was also lower when compared UV5 ERCC2 (CC) . It co-incides with a prolonged high expression of phospho-P53, which is relevant for cell cycle regulation, apoptosis, and the DNA damage response (DDR). We concluded that ERCC2/XPD rs13181 polymorphism is possibly related to the DNA repair capacity of platinum-induced DNA damage. This functional study provides some clues to clarify the relationship between cisplatin resistance and ERCC2/XPDrs13181 polymorphism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Controlling the response to DNA damage by the APC/C-Cdh1.

    PubMed

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  11. Absence of ERK5/MAPK7 delays tumorigenesis in Atm−/− mice

    PubMed Central

    Rovira-Clavé, Xavier; Gamez, Celina Paola Vasquez; Soriano, Francesc X.; Reina, Manuel; Espel, Enric

    2016-01-01

    Ataxia-telangiectasia mutated (ATM) is a cell cycle checkpoint kinase that upon activation by DNA damage leads to cell cycle arrest and DNA repair or apoptosis. The absence of Atm or the occurrence of loss-of-function mutations in Atm predisposes to tumorigenesis. MAPK7 has been implicated in numerous types of cancer with pro-survival and pro-growth roles in tumor cells, but its functional relation with tumor suppressors is not clear. In this study, we show that absence of MAPK7 delays death due to spontaneous tumor development in Atm−/− mice. Compared with Atm−/− thymocytes, Mapk7−/−Atm−/− thymocytes exhibited an improved response to DNA damage (increased phosphorylation of H2AX) and a restored apoptotic response after treatment of mice with ionizing radiation. These findings define an antagonistic function of ATM and MAPK7 in the thymocyte response to DNA damage, and suggest that the lack of MAPK7 inhibits thymic lymphoma growth in Atm−/− mice by partially restoring the DNA damage response in thymocytes. PMID:27793024

  12. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    PubMed Central

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  13. Defective Cell Cycle Checkpoint Functions in Melanoma Are Associated with Altered Patterns of Gene Expression

    PubMed Central

    Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.

    2009-01-01

    Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816

  14. Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    PubMed Central

    Adeyemi, Richard O.; Landry, Sebastien; Davis, Meredith E.; Weitzman, Matthew D.; Pintel, David J.

    2010-01-01

    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells. PMID:20949077

  15. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    PubMed

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  16. Control of G1 arrest after DNA damage.

    PubMed Central

    Kastan, M B; Kuerbitz, S J

    1993-01-01

    The temporal relationship between DNA damage and DNA replication may be critical in determining whether the genetic changes necessary for cellular transformation occur after DNA damage. Recent characterization of the mechanisms responsible for alterations in cell-cycle progression after DNA damage in our laboratory have implicated the p53 (tumor suppressor) protein in the G1 arrest that occurs after certain types of DNA damage. In particular, we found that levels of p53 protein increased rapidly and transiently after nonlethal doses of gamma irradiation (XRT) in hematopoietic cells with wild-type, but not mutant, p53 genes. These changes in p53 protein levels were temporally linked to a transient G1 arrest in these cells. Hematopoietic cells with mutant or absent p53 genes did not exhibit this G1 arrest, through they continued to demonstrate a G2 arrest. We recently extended these observations of a tight correlation between the status of the endogenous p53 genes and this G1 arrest after XRT and this cell-cycle alteration after XRT was then established by transfecting cells lacking endogenous p53 genes with a wild-type gene and observing acquisition of the G1 arrest and by transfecting cells processing endogenous wild-type p53 genes with a mutant p53 gene and observing loss of the G1 arrest after XRT. These observations and their significance for our understanding of the mechanisms of DNA damage-induced cellular transformation are discussed. PMID:8013425

  17. In situ analysis of DNA damage response and repair using laser microirradiation.

    PubMed

    Kim, Jong-Soo; Heale, Jason T; Zeng, Weihua; Kong, Xiangduo; Krasieva, Tatiana B; Ball, Alexander R; Yokomori, Kyoko

    2007-01-01

    A proper response to DNA damage is critical for the maintenance of genome integrity. However, it is difficult to study the in vivo kinetics and factor requirements of the damage recognition process in mammalian cells. In order to address how the cell reacts to DNA damage, we utilized a second harmonic (532 nm) pulsed Nd:YAG laser to induce highly concentrated damage in a small area in interphase cell nuclei and cytologically analyzed both protein recruitment and modification. Our results revealed for the first time the sequential recruitment of factors involved in two major DNA double-strand break (DSB) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR), and the cell cycle-specific recruitment of the sister chromatid cohesion complex cohesin to the damage site. In this chapter, the strategy developed to study the DNA damage response using the 532-nm Nd:YAG laser will be summarized.

  18. Evaluating In Vitro DNA Damage Using Comet Assay.

    PubMed

    Lu, Yanxin; Liu, Yang; Yang, Chunzhang

    2017-10-11

    DNA damage is a common phenomenon for each cell during its lifespan, and is defined as an alteration of the chemical structure of genomic DNA. Cancer therapies, such as radio- and chemotherapy, introduce enormous amount of additional DNA damage, leading to cell cycle arrest and apoptosis to limit cancer progression. Quantitative assessment of DNA damage during experimental cancer therapy is a key step to justify the effectiveness of a genotoxic agent. In this study, we focus on a single cell electrophoresis assay, also known as the comet assay, which can quantify single and double-strand DNA breaks in vitro. The comet assay is a DNA damage quantification method that is efficient and easy to perform, and has low time/budget demands and high reproducibility. Here, we highlight the utility of the comet assay for a preclinical study by evaluating the genotoxic effect of olaparib/temozolomide combination therapy to U251 glioma cells.

  19. DNA-Damage Response RNA-Binding Proteins (DDRBPs): Perspectives from a New Class of Proteins and Their RNA Targets.

    PubMed

    Dutertre, Martin; Vagner, Stéphan

    2017-10-27

    Upon DNA damage, cells trigger an early DNA-damage response (DDR) involving DNA repair and cell cycle checkpoints, and late responses involving gene expression regulation that determine cell fate. Screens for genes involved in the DDR have found many RNA-binding proteins (RBPs), while screens for novel RBPs have identified DDR proteins. An increasing number of RBPs are involved in early and/or late DDR. We propose to call this new class of actors of the DDR, which contain an RNA-binding activity, DNA-damage response RNA-binding proteins (DDRBPs). We then discuss how DDRBPs contribute not only to gene expression regulation in the late DDR but also to early DDR signaling, DNA repair, and chromatin modifications at DNA-damage sites through interactions with both long and short noncoding RNAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Day and night variations in the repair of ionizing-radiation-induced DNA damage in mouse splenocytes.

    PubMed

    Palombo, Philipp; Moreno-Villanueva, Maria; Mangerich, Aswin

    2015-04-01

    In mammals, biological rhythms synchronize physiological and behavioral processes to the 24-h light-dark (LD) cycle. At the molecular level, self-sustaining processes, such as oscillations of transcription-translation feedback loops, control the circadian clock, which in turn regulates a wide variety of cellular processes, including gene expression and cell cycle progression. Furthermore, previous studies reported circadian oscillations in the repair capacity of DNA lesions specifically repaired by nucleotide excision repair (NER). However, it is so far only poorly understood if DNA repair pathways other than NER are under circadian control, in particular base excision and DNA strand break repair. In the present study, we analyzed potential day and night variations in the repair of DNA lesions induced by ionizing radiation (i.e., mainly oxidative damage and DNA strand breaks) in living mouse splenocytes using a modified protocol of the automated FADU assay. Our results reveal that splenocytes isolated from mice during the light phase (ZT06) displayed higher DNA repair activity than those of the dark phase (ZT18). As analyzed by highly sensitive and accurate qPCR arrays, these alterations were accompanied by significant differences in expression profiles of genes involved in the circadian clock and DNA repair. Notably, the majority of the DNA repair genes were expressed at higher levels during the light phase (ZT06). This included genes of all major DNA repair pathways with the strongest differences observed for genes of base excision and DNA double strand break repair. In conclusion, here we provide novel evidence that mouse splenocytes exhibit significant differences in the repair of IR-induced DNA damage during the LD cycle, both on a functional and on a gene expression level. It will be interesting to test if these findings could be exploited for therapeutic purposes, e.g. time-of-the-day-specific application of DNA-damaging treatments used against blood malignancies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  2. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    PubMed

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  3. Function of the Plant DNA Polymerase Epsilon in Replicative Stress Sensing, a Genetic Analysis.

    PubMed

    Pedroza-García, José-Antonio; Mazubert, Christelle; Del Olmo, Ivan; Bourge, Mickael; Domenichini, Séverine; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Piñeiro, Manuel; Jarillo, José A; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2017-03-01

    Faithful transmission of the genetic information is essential in all living organisms. DNA replication is therefore a critical step of cell proliferation, because of the potential occurrence of replication errors or DNA damage when progression of a replication fork is hampered causing replicative stress. Like other types of DNA damage, replicative stress activates the DNA damage response, a signaling cascade allowing cell cycle arrest and repair of lesions. The replicative DNA polymerase ε (Pol ε) was shown to activate the S-phase checkpoint in yeast in response to replicative stress, but whether this mechanism functions in multicellular eukaryotes remains unclear. Here, we explored the genetic interaction between Pol ε and the main elements of the DNA damage response in Arabidopsis ( Arabidopsis thaliana ). We found that mutations affecting the polymerase domain of Pol ε trigger ATR-dependent signaling leading to SOG1 activation, WEE1-dependent cell cycle inhibition, and tolerance to replicative stress induced by hydroxyurea, but result in enhanced sensitivity to a wide range of DNA damaging agents. Using knock-down lines, we also provide evidence for the direct role of Pol ε in replicative stress sensing. Together, our results demonstrate that the role of Pol ε in replicative stress sensing is conserved in plants, and provide, to our knowledge, the first genetic dissection of the downstream signaling events in a multicellular eukaryote. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less

  5. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    PubMed

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  6. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Wyrobek, Andrew J.

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization.more » During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.« less

  7. Impaired Cytogenetic Damage Repair and Cell Cycle Regulation in Response to Ionizing Radiation in Human Fibroblast Cells with Individual Knock-down of 25 Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish; Jeevarajan, Antony; Pierson, Duane; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have demonstrated that genes with upregulated expression induced by IR may play important roles in DNA damage sensing, cell cycle checkpoint and chromosomal repair, the relationship between the regulation of gene expression by IR and its impact on cytogenetic responses to ionizing radiation has not been systematically studied. In our present study, the expression of 25 genes selected based on their transcriptional changes in response to IR or from their known DNA repair roles were individually knocked down by siRNA transfection in human fibroblast cells. Chromosome aberrations (CA) and micronuclei (MN) formation were measured as the cytogenetic endpoints. Our results showed that the yield of MN and/or CA formation were significantly increased by suppressed expression of 5 genes that included Ku70 in the DSB repair pathway; XPA in the NER pathway; RPA1 in the MMR pathway; RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes including MRE11A, RAD51 in the DSB pathway, and SESN1 and SUMO1 showed significant inhibition of cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, p21 and MLH1 expression resulted in both enhanced cell cycle progression and significantly higher yield of cytogenetic damage, indicating the involvement of these gene products in both cell cycle control and DNA damage repair. Of these 11 genes that affected the cytogenetic response, 9 were up-regulated in the cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulating the biological consequences after IR. Failure to express these IR-responsive genes, such as by gene mutation, could seriously change the outcome of the post IR scenario and lead to carcinogenesis.

  8. Protoparvovirus Interactions with the Cellular DNA Damage Response

    PubMed Central

    Majumder, Kinjal; Etingov, Igor

    2017-01-01

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection. PMID:29088070

  9. Protoparvovirus Interactions with the Cellular DNA Damage Response.

    PubMed

    Majumder, Kinjal; Etingov, Igor; Pintel, David J

    2017-10-31

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.

  10. Impaired tRNA nuclear export links DNA damage and cell-cycle checkpoint.

    PubMed

    Ghavidel, Ata; Kislinger, Thomas; Pogoutse, Oxana; Sopko, Richelle; Jurisica, Igor; Emili, Andrew

    2007-11-30

    In response to genotoxic stress, cells evoke a plethora of physiological responses collectively aimed at enhancing viability and maintaining the integrity of the genome. Here, we report that unspliced tRNA rapidly accumulates in the nuclei of yeast Saccharomyces cerevisiae after DNA damage. This response requires an intact MEC1- and RAD53-dependent signaling pathway that impedes the nuclear export of intron-containing tRNA via differential relocalization of the karyopherin Los1 to the cytoplasm. The accumulation of unspliced tRNA in the nucleus signals the activation of Gcn4 transcription factor, which, in turn, contributes to cell-cycle arrest in G1 in part by delaying accumulation of the cyclin Cln2. The regulated nucleocytoplasmic tRNA trafficking thus constitutes an integral physiological adaptation to DNA damage. These data further illustrate how signal-mediated crosstalk between distinct functional modules, namely, tRNA nucleocytoplasmic trafficking, protein synthesis, and checkpoint execution, allows for functional coupling of tRNA biogenesis and cell-cycle progression.

  11. A novel transcription factor gene FHS1 is involved in the DNA damage response in Fusarium graminearum

    PubMed Central

    Son, Hokyoung; Fu, Minmin; Lee, Yoonji; Lim, Jae Yun; Min, Kyunghun; Kim, Jin-Cheol; Choi, Gyung Ja; Lee, Yin-Won

    2016-01-01

    Cell cycle regulation and the maintenance of genome integrity are crucial for the development and virulence of the pathogenic plant fungus Fusarium graminearum. To identify transcription factors (TFs) related to these processes, four DNA-damaging agents were applied to screen a F. graminearum TF mutant library. Sixteen TFs were identified to be likely involved in DNA damage responses. Fhs1 is a fungal specific Zn(II)2Cys6 TF that localises exclusively to nuclei. fhs1 deletion mutants were hypersensitive to hydroxyurea and defective in mitotic cell division. Moreover, deletion of FHS1 resulted in defects in perithecia production and virulence and led to the accumulation of DNA damage. Our genetic evidence demonstrated that the FHS1-associated signalling pathway for DNA damage response is independent of the ATM or ATR pathways. This study identified sixteen genes involved in the DNA damage response and is the first to characterise the novel transcription factor gene FHS1, which is involved in the DNA damage response. The results provide new insights into mechanisms underlying DNA damage responses in fungi, including F. graminearum. PMID:26888604

  12. ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...

  13. Computation Molecular Kinetics Model of HZE Induced Cell Cycle Arrest

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Ren, Lei

    2004-01-01

    Cell culture models play an important role in understanding the biological effectiveness of space radiation. High energy and charge (HZE) ions produce prolonged cell cycle arrests at the G1/S and G2/M transition points in the cell cycle. A detailed description of these phenomena is needed to integrate knowledge of the expression of DNA damage in surviving cells, including the determination of relative effectiveness factors between different types of radiation that produce differential types of DNA damage and arrest durations. We have developed a hierarchical kinetics model that tracks the distribution of cells in various cell phase compartments (early G1, late G1, S, G2, and M), however with transition rates that are controlled by rate-limiting steps in the kinetics of cyclin-cdk's interactions with their families of transcription factors and inhibitor molecules. The coupling of damaged DNA molecules to the downstream cyclin-cdk inhibitors is achieved through a description of the DNA-PK and ATM signaling pathways. For HZE irradiations we describe preliminary results, which introduce simulation of the stochastic nature of the number of direct particle traversals per cell in the modulation of cyclin-cdk and cell cycle population kinetics. Comparison of the model to data for fibroblast cells irradiated photons or HZE ions are described.

  14. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage.

    PubMed

    Bot, Christopher; Pfeiffer, Annika; Giordano, Fosco; Manjeera, Dharani E; Dantuma, Nico P; Ström, Lena

    2017-03-15

    NIPBL is required to load the cohesin complex on to DNA. While the canonical role of cohesin is to couple replicated sister chromatids together until the onset of mitosis, it also promotes tolerance to DNA damage. Here, we show that NIPBL is recruited to DNA damage throughout the cell cycle via independent mechanisms, influenced by type of damage. First, the heterochromatin protein HP1γ (also known as CBX3) recruits NIPBL to DNA double-strand breaks (DSBs) through the corresponding HP1-binding motif within the N-terminus. By contrast, the C-terminal HEAT repeat domain is unable to recruit NIPBL to DSBs but independently targets NIPBL to laser microirradiation-induced DNA damage. Each mechanism is dependent on the RNF8 and RNF168 ubiquitylation pathway, while the recruitment of the HEAT repeat domain requires further ATM or ATR activity. Thus, NIPBL has evolved a sophisticated response to damaged DNA that is influenced by the form of damage, suggesting a highly dynamic role for NIPBL in maintaining genomic stability. © 2017. Published by The Company of Biologists Ltd.

  15. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    PubMed

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.

  16. [Ubiquitin-proteasome system and sperm DNA repair: An update].

    PubMed

    Zhang, Guo-Wei; Cai, Hong-Cai; Shang, Xue-Jun

    2016-09-01

    The ubiquitin-proteasome system (UPS) is a proteasome system widely present in the human body, which is composed of ubiquitin (Ub), ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin protein ligases (E3), 26S proteasome, and deubiquitinating enzymes (DUBs) and involved in cell cycle regulation, immune response, signal transduction, DNA repair as well as protein degradation. Sperm DNA is vulnerable to interference or damage in the progression of chromosome association and homologous recombination. Recent studies show that UPS participates in DNA repair in spermatogenesis by modulating DNA repair enzymes via ubiquitination, assisting in the identification of DNA damage sites, raising damage repair-related proteins, initiating the DNA repair pathway, maintaining chromosome stability, and ensuring the normal process of spermatogenesis.

  17. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  18. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Spatiotemporal recruitment of human DNA polymerase delta to sites of UV damage

    PubMed Central

    Chea, Jennifer; Zhang, Sufang; Zhao, Hong; Zhang, Zhongtao; Lee, Ernest Y.C.; Darzynkiewicz, Zbigniew; Lee, Marietta Y.W.T.

    2012-01-01

    Human DNA polymerase δ (Pol δ) is involved in various DNA damage responses in addition to its central role in DNA replication. The Pol δ4 holoenzyme consists of four subunits, p125, p50, p68 and p12. It has been established that the p12 subunit is rapidly degraded in response to DNA damage by UV leading to the in vivo conversion of Pol δ4 to Pol δ3, a trimeric form lacking the p12 subunit. We provide the first analysis of the time-dependent recruitment of the individual Pol δ subunits to sites of DNA damage produced by UV irradiation through 5 μm polycarbonate filters by immunofluorescence microscopy and laser scanning cytometry (LSC). Quantitative analysis demonstrates that the recruitments of the three large subunits was near complete by 2 h and did not change significantly up to 4 h after UV exposure. However, the recruitment of p12 was incomplete even at 4 h, with about 70% of the Pol δ lacking the p12 subunit. ChIP analysis of Pol δ after global UV irradiation further demonstrates that only p125, p50 and p68 were present. Thus, Pol δ3 is the predominant form of Pol δ at sites of UV damage as a result of p12 degradation. Using LSC, we have further confirmed that Pol δ was recruited to CPD damage sites in all phases of the cell cycle. Collectively, our results show that Pol δ at the DNA damage site is the Pol δ trimer lacking p12 regardless of the cell cycle phase. PMID:22801543

  20. EdU induces DNA damage response and cell death in mESC in culture.

    PubMed

    Kohlmeier, Fanni; Maya-Mendoza, Apolinar; Jackson, Dean A

    2013-03-01

    Recently, a novel DNA replication precursor analogue called 5-ethynyl-2'-deoxyuridine (EdU) has been widely used to monitor DNA synthesis as an alternative to bromodeoxyuridine. Use of EdU benefits from simplicity and reproducibility and the simple chemical detection systems allows excellent preservation of nuclear structure. However, the alkyne moiety is highly reactive, raising the possibility that incorporation might compromise genome stability. To assess the extent of possible DNA damage, we have analysed the effect of EdU incorporation into DNA during short- and long-term cell culture using a variety of cell lines. We show that EdU incorporation has no measurable impact on the rate of elongation of replication forks during synthesis. However, using different cell lines we find that during long-term cell culture variable responses to EdU incorporation are seen, which range from delayed cell cycle progression to complete cell cycle arrest. The most profound phenotypes were seen in mouse embryonic stem cells, which following incorporation of EdU accumulated in the G2/M-phase of the cell cycle before undergoing apoptosis. In long-term cell culture, EdU incorporation also triggered a DNA damage response in all cell types analysed. Our study shows that while EdU is extremely useful to tag sites of on-going replication, for long-term studies (i.e. beyond the cell cycle in which labelling is performed), a careful analysis of cell cycle perturbations must be performed in order to ensure that any conclusions made after EdU treatment are not a direct consequence of EdU-dependent activation of cell stress responses.

  1. DNA Damage Responses in Prokaryotes: Regulating Gene Expression, Modulating Growth Patterns, and Manipulating Replication Forks

    PubMed Central

    Kreuzer, Kenneth N.

    2013-01-01

    Recent advances in the area of bacterial DNA damage responses are reviewed here. The SOS pathway is still the major paradigm of bacterial DNA damage response, and recent studies have clarified the mechanisms of SOS induction and key physiological roles of SOS including a very major role in genetic exchange and variation. When considering diverse bacteria, it is clear that SOS is not a uniform pathway with one purpose, but rather a platform that has evolved for differing functions in different bacteria. Relating in part to the SOS response, the field has uncovered multiple apparent cell-cycle checkpoints that assist cell survival after DNA damage and remarkable pathways that induce programmed cell death in bacteria. Bacterial DNA damage responses are also much broader than SOS, and several important examples of LexA-independent regulation will be reviewed. Finally, some recent advances that relate to the replication and repair of damaged DNA will be summarized. PMID:24097899

  2. Unexpected Function of the Glucanosyltransferase Gas1 in the DNA Damage Response Linked to Histone H3 Acetyltransferases in Saccharomyces cerevisiae

    PubMed Central

    Eustice, Moriah; Pillus, Lorraine

    2014-01-01

    Chromatin organization and structure are crucial for transcriptional regulation, DNA replication, and damage repair. Although initially characterized in remodeling cell wall glucans, the β-1,3-glucanosyltransferase Gas1 was recently discovered to regulate transcriptional silencing in a manner separable from its activity at the cell wall. However, the function of Gas1 in modulating chromatin remains largely unexplored. Our genetic characterization revealed that GAS1 had critical interactions with genes encoding the histone H3 lysine acetyltransferases Gcn5 and Sas3. Specifically, whereas the gas1gcn5 double mutant was synthetically lethal, deletion of both GAS1 and SAS3 restored silencing in Saccharomyces cerevisiae. The loss of GAS1 also led to broad DNA damage sensitivity with reduced Rad53 phosphorylation and defective cell cycle checkpoint activation following exposure to select genotoxins. Deletion of SAS3 in the gas1 background restored both Rad53 phosphorylation and checkpoint activation following exposure to genotoxins that trigger the DNA replication checkpoint. Our analysis thus uncovers previously unsuspected functions for both Gas1 and Sas3 in DNA damage response and cell cycle regulation. PMID:24532730

  3. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  4. Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells.

    PubMed

    Shrotriya, Sangeeta; Deep, Gagan; Gu, Mallikarjuna; Kaur, Manjinder; Jain, Anil K; Inturi, Swetha; Agarwal, Rajesh; Agarwal, Chapla

    2012-04-01

    Head and neck squamous cell carcinoma (HNSCC) accounts for 6% of all malignancies in USA and unfortunately the recurrence of secondary primary tumors and resistance against conventional treatments decrease the overall 5 year survival rate in HNSCC patients. Thus, additional approaches are needed to control HNSCC. Here, for the first time, employing human HNSCC Detroit 562 and FaDu cells as well as normal human epidermal keratinocytes, we investigate grape seed extract (GSE) efficacy and associated mechanism in both cell culture and nude mice xenografts. GSE selectively inhibited the growth and caused cell cycle arrest and apoptotic death in both Detroit 562 and FaDu cells by activating DNA damage checkpoint cascade, including ataxia telangiectasia mutated/ataxia telangiectasia-Rad3-related-checkpoint kinase 1/2-cell division cycle 25C as well as caspases 8, 9 and 3. Consistent with these results, GSE treatment resulted in a strong DNA damage and a decrease in the levels of DNA repair molecules breast cancer gene 1 and Rad51 and DNA repair foci. GSE-caused accumulation of intracellular reactive oxygen species was identified as a major mechanism of its effect for growth inhibition, DNA damage and apoptosis, which was remarkably reversed by antioxidant N-acetylcysteine. GSE feeding to nude mice decreased Detroit 562 and FaDu xenograft tumor growth by 67 and 65% (P < 0.001), respectively. In immunohistochemical analysis, xenografts from GSE-fed groups showed decreased proliferation but increased DNA damage and apoptosis. Together, these findings show that GSE targets both DNA damage and repair and provide mechanistic insights for its efficacy selectively against HNSCC both in cell culture and mouse xenograft, supporting its translational potential against HNSCC.

  5. Origins and consequences of DNA damage in male germ cells.

    PubMed

    Aitken, R John; De Iuliis, Geoffry N

    2007-06-01

    DNA damage in the male germline is associated with poor fertilization rates following IVF, defective preimplantation embryonic development, and high rates of miscarriage and morbidity in the offspring, including childhood cancer. This damage is poorly characterized, but is known to involve hypomethylation of key genes, oxidative base damage, endonuclease-mediated cleavage and the formation of adducts with xenobiotics and the products of lipid peroxidation. There are many possible causes of such DNA damage, including abortive apoptosis, the oxidative stress associated with male genital tract infection, exposure to redox cycling chemicals, and defects of spermiogenesis associated with the retention of excess residual cytoplasm. Physical factors such as exposure to radiofrequency electromagnetic radiation or mild scrotal heating can also induce DNA damage in mammalian spermatozoa, although the underlying mechanisms are unclear. Ultimately, resolving the precise nature of the DNA lesions present in the spermatozoa of infertile men will be an important step towards uncovering the aetiology of this damage and developing strategies for its clinical management.

  6. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    PubMed Central

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  7. Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells.

    PubMed

    Fu, Yujie; Kadioglu, Onat; Wiench, Benjamin; Wei, Zuofu; Gao, Chang; Luo, Meng; Gu, Chengbo; Zu, Yuangang; Efferth, Thomas

    2015-04-15

    The low abundant cajanin stilbene acid (CSA) from Pigeon Pea (Cajanus cajan) has been shown to kill estrogen receptor α positive cancer cells in vitro and in vivo. Downstream effects such as cell cycle and apoptosis-related mechanisms have not been analyzed yet. We analyzed the activity of CSA by means of flow cytometry (cell cycle distribution, mitochondrial membrane potential, MMP), confocal laser scanning microscopy (MMP), DNA fragmentation assay (apoptosis), Western blotting (Bax and Bcl-2 expression, caspase-3 activation) as well as mRNA microarray hybridization and Ingenuity pathway analysis. CSA induced G2/M arrest and apoptosis in a concentration-dependent manner from 8.88 to 14.79 µM. The MMP broke down, Bax was upregulated, Bcl-2 downregulated and caspase-3 activated. Microarray profiling revealed that CSA affected BRCA-related DNA damage response and cell cycle-regulated chromosomal replication pathways. CSA inhibited breast cancer cells by DNA damage and cell cycle-related signaling pathways leading to cell cycle arrest and apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Assessing cell cycle progression of neural stem and progenitor cells in the mouse developing brain after genotoxic stress.

    PubMed

    Etienne, Olivier; Bery, Amandine; Roque, Telma; Desmaze, Chantal; Boussin, François D

    2014-05-07

    Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.

  9. A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage

    PubMed Central

    Moggs, Jonathan G.; Grandi, Paola; Quivy, Jean-Pierre; Jónsson, Zophonías O.; Hübscher, Ulrich; Becker, Peter B.; Almouzni, Geneviève

    2000-01-01

    Sensing DNA damage is crucial for the maintenance of genomic integrity and cell cycle progression. The participation of chromatin in these events is becoming of increasing interest. We show that the presence of single-strand breaks and gaps, formed either directly or during DNA damage processing, can trigger the propagation of nucleosomal arrays. This nucleosome assembly pathway involves the histone chaperone chromatin assembly factor 1 (CAF-1). The largest subunit (p150) of this factor interacts directly with proliferating cell nuclear antigen (PCNA), and critical regions for this interaction on both proteins have been mapped. To isolate proteins specifically recruited during DNA repair, damaged DNA linked to magnetic beads was used. The binding of both PCNA and CAF-1 to this damaged DNA was dependent on the number of DNA lesions and required ATP. Chromatin assembly linked to the repair of single-strand breaks was disrupted by depletion of PCNA from a cell-free system. This defect was rescued by complementation with recombinant PCNA, arguing for role of PCNA in mediating chromatin assembly linked to DNA repair. We discuss the importance of the PCNA–CAF-1 interaction in the context of DNA damage processing and checkpoint control. PMID:10648606

  10. Role of the Polymerase ϵ sub-unit DPB2 in DNA replication, cell cycle regulation and DNA damage response in Arabidopsis.

    PubMed

    Pedroza-Garcia, José Antonio; Domenichini, Séverine; Mazubert, Christelle; Bourge, Mickael; White, Charles; Hudik, Elodie; Bounon, Rémi; Tariq, Zakia; Delannoy, Etienne; Del Olmo, Ivan; Piñeiro, Manuel; Jarillo, Jose Antonio; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cécile

    2016-09-06

    Faithful DNA replication maintains genome stability in dividing cells and from one generation to the next. This is particularly important in plants because the whole plant body and reproductive cells originate from meristematic cells that retain their proliferative capacity throughout the life cycle of the organism. DNA replication involves large sets of proteins whose activity is strictly regulated, and is tightly linked to the DNA damage response to detect and respond to replication errors or defects. Central to this interconnection is the replicative polymerase DNA Polymerase ϵ (Pol ϵ) which participates in DNA replication per se, as well as replication stress response in animals and in yeast. Surprisingly, its function has to date been little explored in plants, and notably its relationship with DNA Damage Response (DDR) has not been investigated. Here, we have studied the role of the largest regulatory sub-unit of Arabidopsis DNA Pol ϵ: DPB2, using an over-expression strategy. We demonstrate that excess accumulation of the protein impairs DNA replication and causes endogenous DNA stress. Furthermore, we show that Pol ϵ dysfunction has contrasting outcomes in vegetative and reproductive cells and leads to the activation of distinct DDR pathways in the two cell types. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Indicators of replicative damage in equine tendon fibroblast monolayers

    PubMed Central

    2013-01-01

    Background Superficial digital flexor tendon (SDFT) injuries of horses usually follow cumulative matrix microdamage; it is not known why the reparative abilities of tendon fibroblasts are overwhelmed or subverted. Relevant in vitro studies of this process require fibroblasts not already responding to stresses caused by the cell culture protocols. We investigated indicators of replicative damage in SDFT fibroblast monolayers, effects of this on their reparative ability, and measures that can be taken to reduce it. Results We found significant evidence of replicative stress, initially observing consistently large numbers of binucleate (BN) cells. A more variable but prominent feature was the presence of numerous gammaH2AX (γH2AX) puncta in nuclei, this being a histone protein that is phosphorylated in response to DNA double-stranded breaks (DSBs). Enrichment for injury detection and cell cycle arrest factors (p53 (ser15) and p21) occurred most frequently in BN cells; however, their numbers did not correlate with DNA damage levels and it is likely that the two processes have different causative mechanisms. Such remarkable levels of injury and binucleation are usually associated with irradiation, or treatment with cytoskeletal-disrupting agents. Both DSBs and BN cells were greatest in subconfluent (replicating) monolayers. The DNA-damaged cells co-expressed the replication markers TPX2/repp86 and centromere protein F. Once damaged in the early stages of culture establishment, fibroblasts continued to express DNA breaks with each replicative cycle. However, significant levels of cell death were not measured, suggesting that DNA repair was occurring. Comet assays showed that DNA repair was delayed in proportion to levels of genotoxic stress. Conclusions Researchers using tendon fibroblast monolayers should assess their “health” using γH2AX labelling. Continued use of early passage cultures expressing initially high levels of γH2AX puncta should be avoided for mechanistic studies and ex-vivo therapeutic applications, as this will not be resolved with further replicative cycling. Low density cell culture should be avoided as it enriches for both DNA damage and mitotic defects (polyploidy). As monolayers differing only slightly in baseline DNA damage levels showed markedly variable responses to a further injury, studies of effects of various stressors on tendon cells must be very carefully controlled. PMID:24025445

  12. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  13. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  14. Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells.

    PubMed

    Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah; Pines, Alex; Bahjat, Mahnoush; Haazen, Lizette C J M; Olsen, Jesper V; Vrieling, Harry; Meerman, John H N; Mullenders, Leon H F; van de Water, Bob; Danen, Erik H J

    2013-01-22

    In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner. Instead, this response occurred through reduced abundance of Csnk1a1 (CK1α), a kinase that inhibits β-catenin. Together, our findings reveal a balance between p53-mediated elimination of stem cells (through loss of pluripotency and apoptosis) and Wnt signaling that attenuates this response to tune the outcome of the DDR.

  15. Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma.

    PubMed

    Hao, Shuyu; Song, Hua; Zhang, Wei; Seldomridge, Ashlee; Jung, Jinkyu; Giles, Amber J; Hutchinson, Marsha-Kay; Cao, Xiaoyu; Colwell, Nicole; Lita, Adrian; Larion, Mioara; Maric, Dragan; Abu-Asab, Mones; Quezado, Martha; Kramp, Tamalee; Camphausen, Kevin; Zhuang, Zhengping; Gilbert, Mark R; Park, Deric M

    2018-05-18

    Standard therapy for chordoma consists of surgical resection followed by high-dose irradiation. Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase involved in signal transduction, cell cycle progression, cell differentiation, and DNA repair. LB100 is a small-molecule inhibitor of PP2A designed to sensitize cancer cells to DNA damage from irradiation and chemotherapy. A recently completed phase I trial of LB100 in solid tumors demonstrated its safety. Here, we show the therapeutic potential of LB100 in chordoma. Three patient-derived chordoma cell lines were used: U-CH1, JHC7, and UM-Chor1. Cell proliferation was determined with LB100 alone and in combination with irradiation. Cell cycle progression was assessed by flow cytometry. Quantitative γ-H2AX immunofluorescence and immunoblot evaluated the effect of LB100 on radiation-induced DNA damage. Ultrastructural evidence for nuclear damage was investigated using Raman imaging and transmission electron microscopy. A xenograft model was established to determine potential clinical utility of adding LB100 to irradiation. PP2A inhibition in concert with irradiation demonstrated in vitro growth inhibition. The combination of LB100 and radiation also induced accumulation at the G2/M phase of the cell cycle, the stage most sensitive to radiation-induced damage. LB100 enhanced radiation-induced DNA double-strand breaks. Animals implanted with chordoma cells and treated with the combination of LB100 and radiation demonstrated tumor growth delay. Combining LB100 and radiation enhanced DNA damage-induced cell death and delayed tumor growth in an animal model of chordoma. PP2A inhibition by LB100 treatment may improve the effectiveness of radiation therapy for chordoma.

  16. Different DNA damage and cell cycle checkpoint control in low- and high-risk human papillomavirus infections of the vulva.

    PubMed

    Santegoets, Lindy A M; van Baars, Romy; Terlou, Annelinde; Heijmans-Antonissen, Claudia; Swagemakers, Sigrid M A; van der Spek, Peter J; Ewing, Patricia C; van Beurden, Marc; van der Meijden, Willem I; Helmerhorst, Theo J M; Blok, Leen J

    2012-06-15

    Human papillomavirus (HPV) infections may result in benign hyperplasia, caused by low-risk HPV types, or (pre)malignant lesions caused by high-risk HPV types. The molecular basis of this difference in malignant potential is not completely understood. Here, we performed gene profiling of different HPV infected vulvar tissues (condylomata acuminata (n = 5), usual type vulvar intraepithelial neoplasia (uVIN) (n = 9)) and control samples (n = 14) using Affymetrix Human U133A plus 2 GeneChips. Data were analyzed using OmniViz®, Partek® and Ingenuity® Software. Results were validated by real-time RT-PCR and immunostaining. Although similarities were observed between gene expression profiles of low- and high-risk HPV infected tissues (e.g., absence of estrogen receptor in condylomata and uVIN), high-risk HPV infected tissues showed more proliferation and displayed more DNA damage than tissues infected with low-risk HPV. These observations were confirmed by differential regulation of cell cycle checkpoints and by increased expression of DNA damage-biomarkers p53 and γH2AX. Furthermore, FANCA, FANCD2, BRCA1 and RAD51, key players in the DNA damage response, were significantly upregulated (p < 0.05). In addition, we compared our results with publicly available gene expression profiles of various other HPV-induced cancers (vulva, cervix and head-and-neck). This showed p16(INK4a) was the most significant marker to detect a high-risk HPV infection, but no other markers could be found. In conclusion, this study provides insight into the molecular basis of low- and high-risk HPV infections and indicates two main pathways (cell cycle and DNA damage response) that are much stronger affected by high-risk HPV as compared to low-risk HPV. Copyright © 2011 UICC.

  17. Synergy between Prkdc and Trp53 regulates stem cell proliferation and GI-ARS after irradiation.

    PubMed

    Gurley, Kay E; Ashley, Amanda K; Moser, Russell D; Kemp, Christopher J

    2017-11-01

    Ionizing radiation (IR) is one of the most widely used treatments for cancer. However, acute damage to the gastrointestinal tract or gastrointestinal acute radiation syndrome (GI-ARS) is a major dose-limiting side effect, and the mechanisms that underlie this remain unclear. Here we use mouse models to explore the relative roles of DNA repair, apoptosis, and cell cycle arrest in radiation response. IR induces DNA double strand breaks and DNA-PK mutant Prkdc scid/scid mice are sensitive to GI-ARS due to an inability to repair these breaks. IR also activates the tumor suppressor p53 to trigger apoptotic cell death within intestinal crypt cells and p53 deficient mice are resistant to apoptosis. To determine if DNA-PK and p53 interact to govern radiosensitivity, we compared the response of single and compound mutant mice to 8 Gy IR. Compound mutant Prkdc scid/scid /Trp53 -/- mice died earliest due to severe GI-ARS. While both Prkdc scid/scid and Prkdc scid/scid /Trp53 -/- mutant mice had higher levels of IR-induced DNA damage, particularly within the stem cell compartment of the intestinal crypt, in Prkdc scid/scid /Trp53 -/- mice these damaged cells abnormally progressed through the cell cycle resulting in mitotic cell death. This led to a loss of Paneth cells and a failure to regenerate the differentiated epithelial cells required for intestinal function. IR-induced apoptosis did not correlate with radiosensitivity. Overall, these data reveal that DNA repair, mediated by DNA-PK, and cell cycle arrest, mediated by p53, cooperate to protect the stem cell niche after DNA damage, suggesting combination approaches to modulate both pathways may be beneficial to reduce GI-ARS. As many cancers harbor p53 mutations, this also suggests targeting DNA-PK may be effective to enhance sensitivity of p53 mutant tumors to radiation.

  18. Resistance to DNA-damaging treatment in non-small cell lung cancer tumor-initiating cells involves reduced DNA-PK/ATM activation and diminished cell cycle arrest

    PubMed Central

    Lundholm, L; Hååg, P; Zong, D; Juntti, T; Mörk, B; Lewensohn, R; Viktorsson, K

    2013-01-01

    Increasing evidence suggests that tumor-initiating cells (TICs), also called cancer stem cells, are partly responsible for resistance to DNA-damaging treatment. Here we addressed if such a phenotype may contribute to radio- and cisplatin resistance in non-small cell lung cancer (NSCLC). We showed that four out of eight NSCLC cell lines (H125, A549, H1299 and H23) possess sphere-forming capacity when cultured in stem cell media and three of these display elevated levels of CD133. Indeed, sphere-forming NSCLC cells, hereafter called TICs, showed a reduced apoptotic response and increased survival after irradiation (IR), as compared with the corresponding bulk cell population. Decreased cytotoxicity and apoptotic signaling manifested by diminished poly (ADP-ribose) polymerase (PARP) cleavage and caspase 3 activity was also evident in TICs after cisplatin treatment. Neither radiation nor cisplatin resistance was due to quiescence as H125 TICs proliferated at a rate comparable to bulk cells. However, TICs displayed less pronounced G2 cell cycle arrest and S/G2-phase block after IR and cisplatin, respectively. Additionally, we confirmed a cisplatin-refractory phenotype of H125 TICs in vivo in a mouse xenograft model. We further examined TICs for altered expression or activation of DNA damage repair proteins as a way to explain their increased radio- and/or chemotherapy resistance. Indeed, we found that TICs exhibited increased basal γH2AX (H2A histone family, member X) expression and diminished DNA damage-induced phosphorylation of DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia-mutated (ATM), Krüppel-associated protein 1 (KAP1) and monoubiquitination of Fanconi anemia, complementation group D2 (FANCD2). As a proof of principle, ATM inhibition in bulk cells increased their cisplatin resistance, as demonstrated by reduced PARP cleavage. In conclusion, we show that reduced apoptotic response, altered DNA repair signaling and cell cycle perturbations in NSCLC TICs are possible factors contributing to their therapy resistance, which may be exploited for DNA damage-sensitizing purposes. PMID:23370278

  19. A Benzothiazole Derivative (5g) Induces DNA Damage And Potent G2/M Arrest In Cancer Cells.

    PubMed

    Hegde, Mahesh; Vartak, Supriya V; Kavitha, Chandagirikoppal V; Ananda, Hanumappa; Prasanna, Doddakunche S; Gopalakrishnan, Vidya; Choudhary, Bibha; Rangappa, Kanchugarakoppal S; Raghavan, Sathees C

    2017-05-31

    Chemically synthesized small molecules play important role in anticancer therapy. Several chemical compounds have been reported to damage the DNA, either directly or indirectly slowing down the cancer cell progression by causing a cell cycle arrest. Direct or indirect reactive oxygen species formation causes DNA damage leading to cell cycle arrest and subsequent cell death. Therefore, identification of chemically synthesized compounds with anticancer potential is important. Here we investigate the effect of benzothiazole derivative (5g) for its ability to inhibit cell proliferation in different cancer models. Interestingly, 5g interfered with cell proliferation in both, cell lines and tumor cells leading to significant G2/M arrest. 5g treatment resulted in elevated levels of ROS and subsequently, DNA double-strand breaks (DSBs) explaining observed G2/M arrest. Consistently, we observed deregulation of many cell cycle associated proteins such as CDK1, BCL2 and their phosphorylated form, CyclinB1, CDC25c etc. Besides, 5g treatment led to decreased levels of mitochondrial membrane potential and activation of apoptosis. Interestingly, 5g administration inhibited tumor growth in mice without significant side effects. Thus, our study identifies 5g as a potent biochemical inhibitor to induce G2/M phase arrest of the cell cycle, and demonstrates its anticancer properties both ex vivo and in vivo.

  20. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest.

    PubMed

    Qi, Fei; Yan, Qiang; Zheng, Zhaozheng; Liu, Jian; Chen, Yan; Zhang, Guiyang

    2018-01-01

    Colon cancer ranks second in mortality among all human malignancies, creating thus a need for exploration of novel molecules that would prove effective, cost-effective and with lower toxicity. In the recent past monoterpenes have gained tremendous attention for their anticancer activity. In the present study we evaluated the anticancer effects of two important monoterpenes, geraniol and geranyl acetate against colo-205 cancer cells. The antiproliferative activity was determined by MTT assay. Apoptosis was assessed by DAPI staining and DNA damage was checked by comet assay. The cell cycle analysis was carried out by flow cytometry and protein expression was examined by western blotting. The results showed that both geraniol and geranyl acetate exhibited significant anticancer activity against colo-205 cancer cell line with IC50 values of 20 and 30 μM respectively. To find out the underlying mechanism, DAPI staining was carried out and it was observed that both the monoterpenes, geraniol and geranyl acetate, induced apoptosis in colo-205 cells. The apoptosis was also associated with upregulation of Bax and downregulation of Bcl-2 expressions, indicative of mitochondrial apoptosis. Moreover, these two monoterpenes could trigger DNA damage and G2/M cell cycle arrest in colo-205 cells. Taken together, we propose that geraniol and geranyl acetate may prove to be important lead molecular candidates for the treatment of colon cancer. Their anticancer activity can be attributed to the ability to trigger apoptosis, DNA damage and cell cycle arrest.

  1. Mequindox induced cellular DNA damage via generation of reactive oxygen species.

    PubMed

    Liu, Jing; Ouyang, Man; Jiang, Jun; Mu, Peiqiang; Wu, Jun; Yang, Qi; Zhang, Caihui; Xu, Weiying; Wang, Lijuan; Huen, Michael S Y; Deng, Yiqun

    2012-01-24

    Mequindox, a quinoxaline-N-dioxide derivative that possesses antibacterial properties, has been widely used as a feed additive in the stockbreeding industry in China. While recent pharmacological studies have uncovered potential hazardous effects of mequindox, exactly how mequindox induces pathological changes and the cellular responses associated with its consumption remain largely unexplored. In this study, we investigated the cellular responses associated with mequindox treatment. We report here that mequindox inhibits cell proliferation by arresting cells at the G2/M phase of the cell cycle. Interestingly, this mequindox-associated deleterious effect on cell proliferation was observed in human, pig as well as chicken cells, suggesting that mequindox acts on evolutionarily conserved target(s). To further understand the mequindox-host interaction and the mechanism underlying mequindox-induced cell cycle arrest, we measured the cellular content of DNA damage, which is known to perturb cell proliferation and compromise cell survival. Accordingly, using γ-H2AX as a surrogate marker for DNA damage, we found that mequindox treatment induced cellular DNA damage, which paralleled the chemical-induced elevation of reactive oxygen species (ROS) levels. Importantly, expression of the antioxidant enzyme catalase partially alleviated these mequindox-associated effects. Taken together, our results suggest that mequindox cytotoxicity is attributable, in part, to its role as a potent inducer of DNA damage via ROS. © 2011 Elsevier B.V. All rights reserved.

  2. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    PubMed Central

    2013-01-01

    Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway. PMID:23347679

  3. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.

  4. Chromosome damage evolution after low and high LET irradiation

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be assessed at large times after initial acute irradiation. RBE for delayed aberrations depends on LET, time and cell line, which probably reflects a genetic background for bystander component. The proposed modeling approach creates a basis for integration of complex network of bystander/inflammatory signaling in systems-level platform for quantification of radiation induced CIN.

  5. Expanded CAG/CTG Repeat DNA Induces a Checkpoint Response That Impacts Cell Proliferation in Saccharomyces cerevisiae

    PubMed Central

    Sundararajan, Rangapriya; Freudenreich, Catherine H.

    2011-01-01

    Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases. PMID:21437275

  6. Centrosome Amplification: A Potential Marker of Breast Cancer Agressiveness

    DTIC Science & Technology

    2006-07-01

    centrosome amplification. Introduction of DNA damage in the MCF-7 cell line by treatment with hydroxyurea (HU) or daunorubicin (DR) resulted in the...cycles of DNA synthesis and mitotic division in hydroxyurea - arrested Chinese hamster ovary cells. J Cell Biol, 130: 105-115, 1995. 23. D’Assoro, A. B...from cycles of DNA synthesis and mitotic division in hydroxyurea -arrested Chinese hamster ovary cells. J Cell Biol, 1995. 130(1): p. 105-15. 22

  7. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway.

    PubMed

    Llanos, Susana; Serrano, Manuel

    2010-10-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.

  8. Comparing DNA damage-processing pathways by computer analysis of chromosome painting data.

    PubMed

    Levy, Dan; Vazquez, Mariel; Cornforth, Michael; Loucas, Bradford; Sachs, Rainer K; Arsuaga, Javier

    2004-01-01

    Chromosome aberrations are large-scale illegitimate rearrangements of the genome. They are indicative of DNA damage and informative about damage processing pathways. Despite extensive investigations over many years, the mechanisms underlying aberration formation remain controversial. New experimental assays such as multiplex fluorescent in situ hybridyzation (mFISH) allow combinatorial "painting" of chromosomes and are promising for elucidating aberration formation mechanisms. Recently observed mFISH aberration patterns are so complex that computer and graph-theoretical methods are needed for their full analysis. An important part of the analysis is decomposing a chromosome rearrangement process into "cycles." A cycle of order n, characterized formally by the cyclic graph with 2n vertices, indicates that n chromatin breaks take part in a single irreducible reaction. We here describe algorithms for computing cycle structures from experimentally observed or computer-simulated mFISH aberration patterns. We show that analyzing cycles quantitatively can distinguish between different aberration formation mechanisms. In particular, we show that homology-based mechanisms do not generate the large number of complex aberrations, involving higher-order cycles, observed in irradiated human lymphocytes.

  9. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.

    PubMed

    Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman

    2016-06-01

    An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  11. Mammalian Homologs of Yeast Checkpoint Genes

    DTIC Science & Technology

    2001-07-01

    previous cycle we developed systems and reagents for expression and analysis of all of the pertinent proteins, and are made headway on association of Chk2...function, with emphasis on p53 regulation, cell cycle regulation, and complementation of ATM defects. Saccharomyces Schizosaceharomy Homo sapiens...RAD53, two essential genes, play a central role in DNA damage checkpoints at all cell cycle stages. Our lab showed that Rad9 is a regulator coupling DNA

  12. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    PubMed

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. DNA Damage Response in Cisplatin-Induced Nephrotoxicity

    PubMed Central

    Zhu, Shiyao; Pabla, Navjotsingh; Tang, Chengyuan; He, Liyu; Dong, Zheng

    2015-01-01

    Cisplatin and its derivatives are widely used chemotherapeutic drugs for cancer treatment. However, they have debilitating side-effects in normal tissues and induce ototoxicity, neurotoxicity, and nephrotoxicity. In kidneys, cisplatin preferentially accumulates in renal tubular cells causing tubular cell injury and death, resulting in acute kidney injury (AKI). Recent studies have suggested that DNA damage and the associated DNA damage response (DDR) is an important pathogenic mechanism of AKI following cisplatin treatment. Activation of DDR may lead to cell cycle arrest and DNA repair for cell survival or, in the presence of severe injury, kidney cell death. Modulation of DDR may provide novel renoprotective strategies for cancer patients undergoing cisplatin chemotherapy. PMID:26564230

  14. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    PubMed Central

    Christoni, Larissa S. A.; Justo, Graça; Soeiro, Maria N. C.

    2018-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA. PMID:29849914

  15. BRCA1 and FancJ cooperatively promote interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1

    PubMed Central

    Zou, Jianqiu; Zhang, Deli; Qin, Guang; Chen, Xiangming; Wang, Hongmin; Zhang, Dong

    2014-01-01

    DNA damage response (DDR) and the centrosome cycle are 2 of the most critical cellular processes affecting the genome stability in animal cells. Yet the cross-talks between DDR and the centrosome are poorly understood. Here we showed that deficiency of the breast cancer 1, early onset gene (BRCA1) induces centrosome amplification in non-stressed cells as previously reported while attenuating DNA damage-induced centrosome amplification (DDICA) in cells experiencing prolonged genotoxic stress. Mechanistically, the function of BRCA1 in promoting DDICA is through binding and recruiting polo-like kinase 1 (PLK1) to the centrosome. In a recent study, we showed that FancJ also suppresses centrosome amplification in non-stressed cells while promoting DDICA in both hydroxyurea and mitomycin C treated cells. FancJ is a key component of the BRCA1 B-complex. Here, we further demonstrated that, in coordination with BRCA1, FancJ promotes DDICA by recruiting both BRCA1 and PLK1 to the centrosome in the DNA damaged cells. Thus, we have uncovered a novel role of BRCA1 and FancJ in the regulation of DDICA. Dysregulation of DDR or centrosome cycle leads to aneuploidy, which is frequently seen in both solid and hematological cancers. BRCA1 and FancJ are known tumor suppressors and have well-recognized functions in DNA damage checkpoint and DNA repair. Together with our recent findings, we demonstrated here that BRCA1 and FancJ also play an important role in centrosome cycle especially in DDICA. DDICA is thought to be an alternative fail-safe mechanism to prevent cells experiencing severe DNA damage from becoming carcinogenic. Therefore, BRCA1 and FancJ are potential liaisons linking early DDR with the DDICA. We propose that together with their functions in DDR, the role of BRCA1 and FancJ in the activation of DDICA is also crucial for their tumor suppression functions in vivo. PMID:25483079

  16. A damaged DNA binding protein 2 mutation disrupting interaction with proliferating-cell nuclear antigen affects DNA repair and confers proliferation advantage.

    PubMed

    Perucca, Paola; Mocchi, Roberto; Guardamagna, Isabella; Bassi, Elisabetta; Sommatis, Sabrina; Nardo, Tiziana; Prosperi, Ennio; Stivala, Lucia Anna; Cazzalini, Ornella

    2018-06-01

    In mammalian cells, Nucleotide Excision Repair (NER) plays a role in removing DNA damage induced by UV radiation. In Global Genome-NER subpathway, DDB2 protein forms a complex with DDB1 (UV-DDB), recognizing photolesions. During DNA repair, DDB2 interacts directly with PCNA through a conserved region in N-terminal tail and this interaction is important for DDB2 degradation. In this work, we sought to investigate the role of DDB2-PCNA association in DNA repair and cell proliferation after UV-induced DNA damage. To this end, stable clones expressing DDB2 Wt and DDB2 PCNA- were used. We have found that cells expressing a mutant DDB2 show inefficient photolesions removal, and a concomitant lack of binding to damaged DNA in vitro. Unexpected cellular behaviour after DNA damage, such as UV-resistance, increased cell growth and motility were found in DDB2 PCNA- stable cell clones, in which the most significant defects in cell cycle checkpoint were observed, suggesting a role in the new cellular phenotype. Based on these findings, we propose that DDB2-PCNA interaction may contribute to a correct DNA damage response for maintaining genome integrity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Chk1 Promotes DNA Damage Response Bypass following Oxidative Stress in a Model of Hydrogen Peroxide-Associated Ulcerative Colitis through JNK Inactivation and Chromatin Binding.

    PubMed

    Reissig, Kathrin; Silver, Andrew; Hartig, Roland; Schinlauer, Antje; Walluscheck, Diana; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert; Poehlmann-Nitsche, Angela

    2017-01-01

    Dysregulation of c-Jun N -terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression.

  18. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage.

    PubMed

    Brun, Sonia; Abella, Neus; Berciano, Maria T; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel; Agell, Neus

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.

  19. SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage

    PubMed Central

    Brun, Sonia; Abella, Neus; Berciano, Maria T.; Tapia, Olga; Jaumot, Montserrat; Freire, Raimundo; Lafarga, Miguel

    2017-01-01

    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus. PMID:28582471

  20. Piper nigrum ethanolic extract rich in piperamides causes ROS overproduction, oxidative damage in DNA leading to cell cycle arrest and apoptosis in cancer cells.

    PubMed

    de Souza Grinevicius, Valdelúcia Maria Alves; Kviecinski, Maicon Roberto; Santos Mota, Nádia Sandrini Ramos; Ourique, Fabiana; Porfirio Will Castro, Luiza Sheyla Evenni; Andreguetti, Rafaela Rafognato; Gomes Correia, João Francisco; Filho, Danilo Wilhem; Pich, Claus Tröger; Pedrosa, Rozangela Curi

    2016-08-02

    Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival.

    PubMed

    Siede, W; Friedberg, E C

    1992-03-01

    In the yeast Saccharomyces cerevisiae the RAD2 gene is absolutely required for damage-specific incision of DNA during nucleotide excision repair and is inducible by DNA-damaging agents. In the present study we correlated sensitivity to killing by DNA-damaging agents with the deletion of previously defined specific promoter elements. Deletion of the element DRE2 increased the UV sensitivity of cells in both the G1/early S and S/G2 phases of the cell cycle as well as in stationary phase. On the other hand, increased UV sensitivity associated with deletion of the sequence-related element DRE1 was restricted to cells irradiated in G1/S. Specific binding of protein(s) to the promoter elements DRE1 and DRE2 was observed under non-inducing conditions using gel retardation assays. Exposure of cells to DNA-damaging agents resulted in increased protein binding that was dependent on de novo protein synthesis.

  2. Cytotoxicity of mequindox and its metabolites in HepG2 cells in vitro and murine hepatocytes in vivo.

    PubMed

    Liu, Yingchun; Jiang, Wei; Chen, Yongjun; Liu, Yanyan; Zeng, Peng; Xue, Feiqun; Wang, Quan

    2016-02-01

    Mequindox, a quinoxaline 1,4-dioxide, is widely used as a feed additive in the Chinese livestock industry because of its effective antibacterial properties. Many recent studies have found that mequindox is rapidly metabolized to numerous metabolites following administration to animals. There have, however, been few reports describing the cytotoxicity of mequindox metabolites. In this study, HepG2 cells were treated with mequindox (0, 2, 10, 50 or 100 μg/ml) or its major metabolites (0, 40, 100, 250 or 500 μg/ml) for 24h. Mice were administrated with mequindox (0, 50, 200 or 500 mg/kg.bw) for five days. DNA damage in the HepG2 cells and mouse hepatocytes was then assessed using an SCGE assay. The cell cycle of the HepG2 cells was also determined by flow cytometry. Mequindox was found to induce cell cycle arrest to the G2/M phase and cause dose-dependent DNA damage in HepG2 cells in vitro and in murine hepatocytes in vivo. Compared with mequindox, the major metabolites had much smaller effects on the cell cycle and caused much less DNA damage in HepG2 cells. And the results indicated that the process of metabolites formed by reduction of the MEQ acetyl group or reduction of the N → O groups could contribute to DNA damage in murine hepatocytes in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2007-04-01

    Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage

  4. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.

    PubMed

    Chong, Ket Hing; Zhang, Xiaomeng; Zheng, Jie

    2018-01-01

    Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.

  5. DNA damage response in nephrotoxic and ischemic kidney injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Mingjuan; Tang, Chengyuan

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore reliesmore » on a thorough elucidation of the DDR pathways in various forms of AKI.« less

  6. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage

    PubMed Central

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-01-01

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459

  7. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    PubMed

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  8. Cell cycle stage-specific roles of Rad18 in tolerance and repair of oxidative DNA damage

    PubMed Central

    Yang, Yang; Durando, Michael; Smith-Roe, Stephanie L.; Sproul, Chris; Greenwalt, Alicia M.; Kaufmann, William; Oh, Sehyun; Hendrickson, Eric A.; Vaziri, Cyrus

    2013-01-01

    The E3 ubiquitin ligase Rad18 mediates tolerance of replication fork-stalling bulky DNA lesions, but whether Rad18 mediates tolerance of bulky DNA lesions acquired outside S-phase is unclear. Using synchronized cultures of primary human cells, we defined cell cycle stage-specific contributions of Rad18 to genome maintenance in response to ultraviolet C (UVC) and H2O2-induced DNA damage. UVC and H2O2 treatments both induced Rad18-mediated proliferating cell nuclear antigen mono-ubiquitination during G0, G1 and S-phase. Rad18 was important for repressing H2O2-induced (but not ultraviolet-induced) double strand break (DSB) accumulation and ATM S1981 phosphorylation only during G1, indicating a specific role for Rad18 in processing of oxidative DNA lesions outside S-phase. However, H2O2-induced DSB formation in Rad18-depleted G1 cells was not associated with increased genotoxin sensitivity, indicating that back-up DSB repair mechanisms compensate for Rad18 deficiency. Indeed, in DNA LigIV-deficient cells Rad18-depletion conferred H2O2-sensitivity, demonstrating functional redundancy between Rad18 and non-homologous end joining for tolerance of oxidative DNA damage acquired during G1. In contrast with G1-synchronized cultures, S-phase cells were H2O2-sensitive following Rad18-depletion. We conclude that although Rad18 pathway activation by oxidative lesions is not restricted to S-phase, Rad18-mediated trans-lesion synthesis by Polη is dispensable for damage-tolerance in G1 (because of back-up non-homologous end joining-mediated DSB repair), yet Rad18 is necessary for damage tolerance during S-phase. PMID:23295675

  9. Impact of radiotherapy and chemotherapy on biomarkers of oxidative DNA damage in lung cancer patients.

    PubMed

    Crohns, Marika; Saarelainen, Seppo; Erhola, Marina; Alho, Hannu; Kellokumpu-Lehtinen, Pirkko

    2009-07-01

    To assess oxidative damage to DNA during lung cancer (LC) treatments. Urinary levels of 8-oxoguanine (8-oxoGua) and levels of 8-oxo-2'-deoxyguanosine (8-oxodG) from urine and whole blood were determined in 36 non-cancer controls and 65 LC patients before any treatments. Samples were also obtained of LC patients during and after radiotherapy (RT, n=33) and chemotherapy (CT, n=16). Stage IV LC patients had higher urinary 8-oxoGua and 8-oxodG levels than patients with stage I-III disease (p=0.044 and p=0.034, respectively). Urinary 8-oxodG levels increased during the first week of RT (p<0.001). Nuclear 8-oxodG increased during RT and 3 months after start of RT. Nuclear 8-oxodG levels also rose between the first two CT cycles (p=0.043), and urinary 8-oxodG levels during the sixth CT cycle (p=0.009). Urinary DNA damage biomarker levels may be associated with LC stage. Both RT and CT increase the parameters of DNA oxidation.

  10. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    PubMed Central

    Asumen, Maritess Gay; Ifeacho, Tochukwu V; Cockerham, Luke; Pfandl, Christina; Wall, Nathan R

    2010-01-01

    Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK) phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light-initiated DNA damage and that its distribution may be responsible for its multifunctionality. PMID:20856848

  11. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuejiao; Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000; Zhang, Zhan

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose-more » and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8-MOP.« less

  12. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans.

    PubMed

    Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A

    2016-02-18

    We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Cell-cycle control in the face of damage--a matter of life or death.

    PubMed

    Clarke, Paul R; Allan, Lindsey A

    2009-03-01

    Cells respond to DNA damage or defects in the mitotic spindle by activating checkpoints that arrest the cell cycle. Alternatively, damaged cells can undergo cell death by the process of apoptosis. The correct balance between these pathways is important for the maintenance of genomic integrity while preventing unnecessary cell death. Although the molecular mechanisms of the cell cycle and apoptosis have been elucidated, the links between them have not been clear. Recent work, however, indicates that common components directly link the regulation of apoptosis with cell-cycle checkpoints operating during interphase, whereas in mitosis, the control of apoptosis is directly coupled to the cell-cycle machinery. These findings shed new light on how the balance between cell-cycle progression and cell death is controlled.

  14. Escin-induced DNA damage promotes escin-induced apoptosis in human colorectal cancer cells via p62 regulation of the ATM/γH2AX pathway.

    PubMed

    Wang, Zhong; Chen, Qiang; Li, Bin; Xie, Jia-Ming; Yang, Xiao-Dong; Zhao, Kui; Wu, Yong; Ye, Zhen-Yu; Chen, Zheng-Rong; Qin, Zheng-Hong; Xing, Chun-Gen

    2018-05-31

    Escin, a triterpene saponin isolated from horse chestnut seed, has been used to treat encephaledema, tissue swelling and chronic venous insufficiency. Recent studies show that escin induces cell cycle arrest, tumor proliferation inhibition and tumor cell apoptosis. But the relationship between escin-induced DNA damage and cell apoptosis in tumor cells remains unclear. In this study, we investigated whether and how escin-induced DNA damage contributed to escin-induced apoptosis in human colorectal cancer cells. Escin (5-80 μg/mL) dose-dependently inhibited the cell viability and colony formation in HCT116 and HCT8 cells. Escin treatment induced DNA damage, leading to p-ATM and γH2AX upregulation. Meanwhile, escin treatment increased the expression of p62, an adaptor protein, which played a crucial role in controlling cell survival and tumorigenesis, and had a protective effect against escin-induced DNA damage: knockdown of p62 apparently enhanced escin-induced DNA damage, whereas overexpression of p62 reduced escin-induced DNA damage. In addition, escin treatment induced concentration- and time-dependent apoptosis. Similarly, knockdown of p62 significantly increased escin-induced apoptosis in vitro and produced en escin-like antitumor effect in vivo. Overexpression of p62 decreased the rate of apoptosis. Further studies revealed that the functions of p62 in escin-induced DNA damage were associated with escin-induced apoptosis, and p62 knockdown combined with the ATM inhibitor KU55933 augmented escin-induced DNA damage and further increased escin-induced apoptosis. In conclusion, our results demonstrate that p62 regulates ATM/γH2AX pathway-mediated escin-induced DNA damage and apoptosis.

  15. Protective mechanisms of p53-p21-pRb proteins against DNA damage-induced cell death.

    PubMed

    Garner, Elizabeth; Raj, Kenneth

    2008-02-01

    There have been innumerate demonstrations of p53's activity as a tumour suppressor protein with the ability to stimulate cell signalling that can lead to cell cycle arrest and cell death in the event of DNA damage. Despite the solid body of evidence to support these properties of p53, reports have emerged that suggest a role for p53 in protecting cells from cell death. Our recent report highlighted a mechanism by which p53 activity can promote cell survival in the event of DNA damage. Here we present the various mechanisms that are activated by p53 signalling that can confer protection to cells with damaged DNA and emphasise the practical and clinical implications of a more balanced and context-dependent understanding of p53's pro-apoptotic and pro-survival activities.

  16. Oncogenic Ras regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence

    PubMed Central

    Tu, Zhigang; Aird, Katherine M.; Bitler, Benjamin G.; Nicodemus, Jasmine P.; Beeharry, Neil; Xia, Bing; Yen, Tim J.; Zhang, Rugang

    2011-01-01

    Summary Here, we report a cell-intrinsic mechanism by which oncogenic RAS promotes senescence while predisposing cells to senescence bypass by allowing for secondary hits. We show that oncogenic RAS inactivates the BRCA1 DNA repair complex by dissociating BRCA1 from chromatin. This event precedes senescence-associated cell cycle exit and coincides with the accumulation of DNA damage. Downregulation of BRIP1, a physiological partner of BRCA1 in the DNA repair pathway, triggers BRCA1 chromatin dissociation. Conversely, ectopic BRIP1 rescues BRCA1 chromatin dissociation and suppresses RAS-induced senescence and the DNA damage response. Significantly, cells undergoing senescence do not exhibit a BRCA1-dependent DNA repair response when exposed to DNA damage. Overall, our study provides a molecular basis by which oncogenic RAS promotes senescence. Since DNA damage has the potential to produce additional "hits" that promote senescence bypass, our findings may also suggest one way a small minority of cells might bypass senescence and contribute to cancer development. PMID:22137763

  17. Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.

    PubMed

    Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia

    2018-06-01

    There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV-associated hepatocellular carcinoma and suggests the potential for new biomarkers for early diagnostics. Copyright ©2018, American Association for Cancer Research.

  18. Antagonism between curcumin and the topoisomerase II inhibitor etoposide

    PubMed Central

    Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.

    2012-01-01

    The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their physiological program. PMID:22895066

  19. Cancer prevention, the need to preserve the integrity of the genome at all cost.

    PubMed

    Okafor, M T; Nwagha, T U; Anusiem, C; Okoli, U A; Nubila, N I; Al-Alloosh, F; Udenyia, I J

    2018-05-01

    The entire genetic information carried by an organism makes up its genome. Genes have a diverse number of functions. They code different proteins for normal proliferation of cells. However, changes in the base sequence of genes affect their protein by-products which act as messengers for normal cellular functions such as proliferation and repairs. Salient processes for maintaining the integrity of the genome are hinged on intricate mechanisms put in place for the evolution to tackle genomic stresses. To discuss how cells sense and repair damage to their deoxyribonucleic acid (DNA) as well as to highlight how defects in the genes involved in DNA repair contribute to cancer development. Methodology: Online searches on the following databases such as Google Scholar, PubMed, Biomed Central, and SciELO were done. Attempt was made to review articles with keywords such as cancer, cell cycle, tumor suppressor genes, and DNA repair. The cell cycle, tumor suppression genes, DNA repair mechanism, as well as their contribution to cancer development, were discussed and reviewed. Knowledge on how cells detect and repair DNA damage through an array of mechanisms should allay our anxiety as regards cancer development. More studies on DNA damage detection and repair processes are important toward a holistic approach to cancer treatment.

  20. Fanconi anemia: a disorder defective in the DNA damage response.

    PubMed

    Kitao, Hiroyuki; Takata, Minoru

    2011-04-01

    Fanconi anemia (FA) is a cancer predisposition disorder characterized by progressive bone marrow failure, congenital developmental defects, chromosomal abnormalities, and cellular hypersensitivity to DNA interstrand crosslink (ICL) agents. So far mutations in 14 FANC genes were identified in FA or FA-like patients. These gene products constitute a common ubiquitin-phosphorylation network called the "FA pathway" and cooperate with other proteins involved in DNA repair and cell cycle control to repair ICL lesions and to maintain genome stability. In this review, we summarize recent exciting discoveries that have expanded our view of the molecular mechanisms operating in DNA repair and DNA damage signaling.

  1. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    PubMed

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  2. Depletion of ribosomal protein L37 occurs in response to DNA damage and activates p53 through the L11/MDM2 pathway

    PubMed Central

    Llanos, Susana; Serrano, Manuel

    2013-01-01

    Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 by a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 constitutes a mechanistic link between DNA damage and the ribosomal stress pathway, and is a relevant contributing signaling pathway for the activation of p53 in response to DNA damage. PMID:20935493

  3. CFS-1686 causes cell cycle arrest at intra-S phase by interference of interaction of topoisomerase 1 with DNA.

    PubMed

    Lin, Ru-Wei; Yang, Chia-Ning; Ku, ShengYu; Ho, Cheng-Jung; Huang, Shih-Bo; Yang, Min-Chi; Chang, Hsin-Wen; Lin, Chun-Mao; Hwang, Jaulang; Chen, Yeh-Long; Tzeng, Cherg-Chyi; Wang, Chihuei

    2014-01-01

    CFS-1686 (chemical name (E)-N-(2-(diethylamino)ethyl)-4-(2-(2-(5-nitrofuran-2-yl)vinyl)quinolin-4-ylamino)benzamide) inhibits cell proliferation and triggers late apoptosis in prostate cancer cell lines. Comparing the effect of CFS-1686 on cell cycle progression with the topoisomerase 1 inhibitor camptothecin revealed that CFS-1686 and camptothecin reduced DNA synthesis in S-phase, resulting in cell cycle arrest at the intra-S phase and G1-S boundary, respectively. The DNA damage in CFS-1686 and camptothecin treated cells was evaluated by the level of ATM phosphorylation, γH2AX, and γH2AX foci, showing that camptothecin was more effective than CFS-1686. However, despite its lower DNA damage capacity, CFS-1686 demonstrated 4-fold higher inhibition of topoisomerase 1 than camptothecin in a DNA relaxation assay. Unlike camptothecin, CFS-1686 demonstrated no activity on topoisomerase 1 in a DNA cleavage assay, but nevertheless it reduced the camptothecin-induced DNA cleavage of topoisomerase 1 in a dose-dependent manner. Our results indicate that CFS-1686 might bind to topoisomerase 1 to inhibit this enzyme from interacting with DNA relaxation activity, unlike campothecin's induction of a topoisomerase 1-DNA cleavage complex. Finally, we used a computer docking strategy to localize the potential binding site of CFS-1686 to topoisomerase 1, further indicating that CFS-1686 might inhibit the binding of Top1 to DNA.

  4. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses

    PubMed Central

    Rubbi, Carlos P.; Milner, Jo

    2003-01-01

    p53 protects against cancer through its capacity to induce cell cycle arrest or apoptosis under a large variety of cellular stresses. It is not known how such diversity of signals can be integrated by a single molecule. However, the literature reveals that a common denominator in all p53-inducing stresses is nucleolar disruption. We thus postulated that the impairment of nucleolar function might stabilize p53 by preventing its degradation. Using micropore irradiation, we demonstrate that large amounts of nuclear DNA damage fail to stabilize p53 unless the nucleolus is also disrupted. Forcing nucleolar disruption by anti-upstream binding factor (UBF) microinjection (in the absence of DNA damage) also causes p53 stabilization. We propose that the nucleolus is a stress sensor responsible for maintenance of low levels of p53, which are automatically elevated as soon as nucleolar function is impaired in response to stress. Our model integrates all known p53-inducing agents and also explains cell cycle-related variations in p53 levels which correlate with established phases of nucleolar assembly/disassembly through the cell cycle. PMID:14609953

  5. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    PubMed

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  6. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection

    PubMed Central

    Bantele, Susanne CS; Ferreira, Pedro; Gritenaite, Dalia; Boos, Dominik; Pfander, Boris

    2017-01-01

    DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice. DOI: http://dx.doi.org/10.7554/eLife.21687.001 PMID:28063255

  7. Chk1 Promotes DNA Damage Response Bypass following Oxidative Stress in a Model of Hydrogen Peroxide-Associated Ulcerative Colitis through JNK Inactivation and Chromatin Binding

    PubMed Central

    Silver, Andrew; Guenther, Thomas; Siedentopf, Sandra; Ross, Jochen; Vo, Diep-Khanh; Roessner, Albert

    2017-01-01

    Dysregulation of c-Jun N-terminal kinase (JNK) activation promoted DNA damage response bypass and tumorigenesis in our model of hydrogen peroxide-associated ulcerative colitis (UC) and in patients with quiescent UC (QUC), UC-related dysplasia, and UC-related carcinoma (UC-CRC), thereby adapting to oxidative stress. In the UC model, we have observed features of oncogenic transformation: increased proliferation, undetected DNA damage, and apoptosis resistance. Here, we show that Chk1 was downregulated but activated in the acute and quiescent chronic phases. In both phases, Chk1 was linked to DNA damage response bypass by suppressing JNK activation following oxidative stress, promoting cell cycle progression despite DNA damage. Simultaneously, activated Chk1 was bound to chromatin. This triggered histone acetylation and the binding of histone acetyltransferases and transcription factors to chromatin. Thus, chromatin-immobilized activated Chk1 executed a dual function by suppressing DNA damage response and simultaneously inducing chromatin modulation. This caused undetected DNA damage and increased cellular proliferation through failure to transmit the appropriate DNA damage signal. Findings in vitro were corroborated by chromatin accumulation of activated Chk1, Ac-H3, Ac-H4, and c-Jun in active UC (AUC) in vivo. Targeting chromatin-bound Chk1, GCN5, PCAF, and p300/CBP could be a novel therapeutic strategy to prevent UC-related tumor progression. PMID:28751935

  8. A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects.

    PubMed

    Jeffries, Clark D; Johnson, Charles R; Zhou, Tong; Simpson, Dennis A; Kaufmann, William K

    2012-01-01

    This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.

  9. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light

    PubMed Central

    Jansen, Jacob G.; Temviriyanukul, Piya; Wit, Niek; Delbos, Frédéric; Reynaud, Claude-Agnès; Jacobs, Heinz; de Wind, Niels

    2014-01-01

    Short-wave ultraviolet light induces both mildly helix-distorting cyclobutane pyrimidine dimers (CPDs) and severely distorting (6–4) pyrimidine pyrimidone photoproducts ((6–4)PPs). The only DNA polymerase (Pol) that is known to replicate efficiently across CPDs is Polη, a member of the Y family of translesion synthesis (TLS) DNA polymerases. Phenotypes of Polη deficiency are transient, suggesting redundancy with other DNA damage tolerance pathways. Here we performed a comprehensive analysis of the temporal requirements of Y-family Pols ι and κ as backups for Polη in (i) bypassing genomic CPD and (6–4)PP lesions in vivo, (ii) suppressing DNA damage signaling, (iii) maintaining cell cycle progression and (iv) promoting cell survival, by using mouse embryonic fibroblast lines with single and combined disruptions in these Pols. The contribution of Polι is restricted to TLS at a subset of the photolesions. Polκ plays a dominant role in rescuing stalled replication forks in Polη-deficient mouse embryonic fibroblasts, both at CPDs and (6–4)PPs. This dampens DNA damage signaling and cell cycle arrest, and results in increased survival. The role of relatively error-prone Pols ι and κ as backups for Polη contributes to the understanding of the mutator phenotype of xeroderma pigmentosum variant, a syndrome caused by Polη defects. PMID:25170086

  10. Mechanisms involved in regulating DNA replication origins during the cell cycle and in response to DNA damage.

    PubMed Central

    Early, Anne; Drury, Lucy S; Diffley, John F X

    2004-01-01

    Replication origins in eukaryotic cells never fire more than once in a given S phase. Here, we summarize the role of cyclin-dependent kinases in limiting DNA replication origin usage to once per cell cycle in the budding yeast Saccharomyces cerevisiae. We have examined the role of different cyclins in the phosphorylation and regulation of several replication/regulatory factors including Cdc6, Sic1, ORC and DNA polymerase alpha-primase. In addition to being regulated by the cell cycle machinery, replication origins are also regulated by the genome integrity checkpoint kinases, Mec1 and Rad53. In response to DNA damage or drugs which interfere with the progression of replication forks, the activation of late-firing replication origins is inhibited. There is evidence indicating that the temporal programme of origin firing depends upon the local histone acetylation state. We have attempted to test the possibility that checkpoint regulation of late-origin firing operates through the regulation of the acetylation state. We found that overexpression of the essential histone acetylase, Esal, cannot override checkpoint regulation of origin firing. We have also constructed a temperature-sensitive esa1 mutant. This mutant is unable to resume cell cycle progression after alpha-factor arrest. This can be overcome by overexpression of the G1 cyclin, Cln2, revealing a novel role for Esal in regulating Start. PMID:15065654

  11. Sexual reproduction as a response to H sub 2 O sub 2 damage in Schizosaccharomyces pombe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, C.; Johns, V.

    1989-04-01

    Although sexual reproduction is widespread, its adaptive advantage over asexual reproduction is unclear. One major advantage of sex may be its promotion of recombinational repair of DNA damage during meiosis. This idea predicts that treatment of the asexual form of a facultatively sexual-asexual eucaryote with a DNA-damaging agent may cause it to enter the sexual cycle more frequently. Endogenous hydrogen peroxide is a major natural source of DNA damage. Thus, the authors treated vegetative cells of Schizosaccharomyces pombe with hydrogen peroxide to test if sexual reproduction increases. Among untreated stationary-phase S. pombe populations the sexual spores produced by meiosis representedmore » about 1% of the total cells. However, treatment of late-exponential-phase vegetative cells with hydrogen peroxide increased the percentage of meiotic spores in the stationary phase by 4- to 18-fold. Oxidative damage therefore induces sexual reproduction in a facultatively sexual organism, a result expected by the hypothesis that sex promotes DNA repair.« less

  12. The FHA domain determines Drosophila Chk2/Mnk localization to key mitotic structures and is essential for early embryonic DNA damage responses.

    PubMed

    Takada, Saeko; Collins, Eric R; Kurahashi, Kayo

    2015-05-15

    DNA damage responses, including mitotic centrosome inactivation, cell-cycle delay in mitosis, and nuclear dropping from embryo cortex, maintain genome integrity in syncytial Drosophila embryos. A conserved signaling kinase, Chk2, known as Mnk/Loki, is essential for the responses. Here we demonstrate that functional EGFP-Mnk expressed from a transgene localizes to the nucleus, centrosomes, interkinetochore/centromere region, midbody, and pseudocleavage furrows without DNA damage and in addition forms numerous foci/aggregates on mitotic chromosomes upon DNA damage. We expressed EGFP-tagged Mnk deletion or point mutation variants and investigated domain functions of Mnk in vivo. A triple mutation in the phosphopeptide-binding site of the forkhead-associated (FHA) domain disrupted normal Mnk localization except to the nucleus. The mutation also disrupted Mnk foci formation on chromosomes upon DNA damage. FHA mutations and deletion of the SQ/TQ-cluster domain (SCD) abolished Mnk transphosphorylations and autophosphorylations, indicative of kinase activation after DNA damage. A potent NLS was found at the C-terminus, which is required for normal Mnk function. We propose that the FHA domain in Mnk plays essential dual functions in mediating embryonic DNA damage responses by means of its phosphopeptide-binding ability: activating Mnk in the nucleus upon DNA damage and recruiting Mnk to multiple subcellular structures independently of DNA damage. © 2015 Takada et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. LRRK2 interacts with ATM and regulates Mdm2-p53 cell proliferation axis in response to genotoxic stress.

    PubMed

    Chen, Zhongcan; Cao, Zhen; Zhang, Wei; Gu, Minxia; Zhou, Zhi Dong; Li, Baojie; Li, Jing; Tan, Eng King; Zeng, Li

    2017-11-15

    Pathogenic leucine-rich repeat kinase 2 (LRRK2) mutations are recognized as the most common cause of familial Parkinson's disease in certain populations. Recently, LRRK2 mutations were shown to be associated with a higher risk of hormone-related cancers. However, how LRRK2 itself contributes to cancer risk remains unknown. DNA damage causes cancer, and DNA damage responses are among the most important pathways in cancer biology. To understand the role of LRRK2 in DNA damage response pathway, we induced DNA damage by applying genotoxic stress to the cells with Adriamycin. We found that DNA damage enhances LRRK2 phosphorylation at Serine 910, Serine 935 and Serine 1292. We further showed that LRRK2 phosphorylation is abolished in the absence of ATM, suggesting that LRRK2 phosphorylation requires ATM. It should also be noted that LRRK2 interacts with ATM. In contrast, overexpression or knockdown of LRRK2 does not affect ATM phosphorylation, indicating that LRRK2 is the downstream target of ATM in response to DNA damage. Moreover, we demonstrated that LRRK2 increases the expression of p53 and p21 by increasing the Mdm2 phosphorylation in response to DNA damage. Loss-of-function in LRRK2 has the opposite effect to that of LRRK2. In addition, FACS analysis revealed that LRRK2 enhances cell cycle progression into S phase in response to DNA damage, a finding that was confirmed by 5-bromo-2'-deoxyuridine immunostaining. Taken together, our findings demonstrate that LRRK2 plays an important role in the ATM-Mdm2-p53 pathway that regulates cell proliferation in response to DNA damage. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression.

    PubMed

    Sen, Onur; Saurin, Adrian T; Higgins, Jonathan M G

    2018-05-21

    SiR-Hoechst (SiR-DNA) is a far-red fluorescent DNA probe being used widely for time-lapse imaging of living cells that is reported to be minimally toxic at concentrations as high as 10-25 µM. However, measuring nuclear import of Cyclin B1, inhibition of mitotic entry, and the induction of γH2AX foci in cultured human cells reveals that SiR-Hoechst induces DNA damage responses and G2 arrest at concentrations well below 1 µM. SiR-Hoechst is useful for live cell imaging, but it should be used with caution and at the lowest practicable concentration.

  15. Review of Chromium (VI) Apoptosis, Cell-Cycle-Arrest, and Carcinogenesis

    PubMed Central

    Chiu, A; Shi, J; Lee, WKP; Hill, R; Wakeman, TP; Katz, A; Xu, B; Dalal, NS; Robertson, JD; Chen, C; Chiu, N; Donehower, L

    2014-01-01

    Hexavalent chromium combines with glutathione in chloride intracellular channel carrier to form tetravalent and pentavelent chromium in plasma and organelle membranes. It also combines with NADH/NADPH to form pentavalent chromium in mitochondria. Tetravalent- and pentavalent- chromium (directly and indirectly) mediated DNA double strand breaks activate DNA damage signaling sensors: DNA-dependent-protein-kinase signals p53-dependent intrinsic mitochorndrial apoptosis, and ataxia-telangiectasia-mutated and ataxia-telangiectasia-Rad3-related signal cell-arrest for DNA repair. Tetravalent chromium may be the most potent species since it causes DNA breaks and somatic recombination, but not apoptosis. Upon further failure of apoptosis and senescence/DNA-repair, damaged cells may become immortal with loss-of-heterozygosity and genetic plasticity. PMID:20859824

  16. Gene Expression in Mammalian Cells After Exposure to 95 MeV Argon Ions

    NASA Astrophysics Data System (ADS)

    Arenz, A.; Hellweg, C. E.; Baumstark-Khan, C.

    Cell response to genotoxic agents is complex and involves the participation of different classes of genes (DNA repair, cell cycle control, signal transduction, apoptosis and oncogenesis). The unique feature of the space radiation environment is the dominance of high-energy charged particles (HZE or high LET radiation) which present a significant hazard to space flight crews, and accelerator-based experiments are underway to quantify the health risks due to unavoidable radiation exposure. High linear energy transfer (LET) radiation has an increased relative biological effectiveness (RBE) as compared to X-rays for cell death induction, gene mutation, genomic instability, and carcinogenesis. The tumour suppressor gene p53 plays a crucial role in maintaining the integrity of the genome. The p53 protein acts as a transcription factor that mediates cell cycle arrest and apoptosis by binding to DNA and activating transcription of specific genes. It is also though to be involved in damage repair by transcriptional activation of the newly identified p53 dependent ribonuclease subunit R2 (p53R2) that is directly involved in the p53 cell cycle checkpoint for repair of damaged DNA. In that case it is responsible for nucleotide delivery for DNA repair synthesis. DNA damages of cultured human cells (e.g. MCF-7, AGS, A549) exposed to accelerated argon ions at the French heavy ion facility GANIL were analysed for expression levels of certain damage- and apoptosis-relevant genes. RNA was extracted from cells exposed to different particle fluences after various recovery times. A real-time QRT-PCR assay was applied, which employs both relative and absolute quantification of a candidate mRNA biomarker. The expressions of different DNA damage inducible genes (e.g. p53R2, GADD45, p21) were analysed. A reproducible up-regulation representing a twofold to fourfold change in p53R2 gene expression level was confirmed for X-irradiated and Ar-ion exposed cells dependent on dose. Kinetics of p53R2 gene expression modulations shows a response lasting up to 24 hours after irradiation.

  17. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed Central

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-01-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication. PMID:9725831

  18. The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage.

    PubMed

    Paulovich, A G; Armour, C D; Hartwell, L H

    1998-09-01

    In wild-type Saccharomyces cerevisiae, a checkpoint slows the rate of progression of an ongoing S phase in response to exposure to a DNA-alkylating agent. Mutations that eliminate S phase regulation also confer sensitivity to alkylating agents, leading us to suggest that, by regulating the S phase rate, cells are either better able to repair or better able to replicate damaged DNA. In this study, we determine the effects of mutations that impair S phase regulation on the ability of excision repair-defective cells to replicate irreparably UV-damaged DNA. We assay survival after UV irradiation, as well as the genetic consequences of replicating a damaged template, namely mutation and sister chromatid exchange induction. We find that RAD9, RAD17, RAD24, and MEC3 are required for UV-induced (although not spontaneous) mutagenesis, and that RAD9 and RAD17 (but not REV3, RAD24, and MEC3) are required for maximal induction of replication-dependent sister chromatid exchange. Therefore, checkpoint genes not only control cell cycle progression in response to damage, but also play a role in accommodating DNA damage during replication.

  19. Activation of a yeast replication origin near a double-stranded DNA break.

    PubMed

    Raghuraman, M K; Brewer, B J; Fangman, W L

    1994-03-01

    Irradiation in the G1 phase of the cell cycle delays the onset of DNA synthesis and transiently inhibits the activation of replication origins in mammalian cells. It has been suggested that this inhibition is the result of the loss of torsional tension in the DNA after it has been damaged. Because irradiation causes DNA damage at an undefined number of nonspecific sites in the genome, it is not known how cells respond to limited DNA damage, and how replication origins in the immediate vicinity of a damage site would behave. Using the sequence-specific HO endonuclease, we have created a defined double-stranded DNA break in a centromeric plasmid in G1-arrested cells of the yeast Saccharomyces cerevisiae. We show that replication does initiate at the origin on the cut plasmid, and that the plasmid replicates early in the S phase after linearization in vivo. These observations suggest that relaxation of a supercoiled DNA domain in yeast need not inactivate replication origins within that domain. Furthermore, these observations rule out the possibility that the late replication context associated with chromosomal termini is a consequence of DNA ends.

  20. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53.

    PubMed

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-11-02

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway.

  1. Doxorubicin-induced necrosis is mediated by poly-(ADP-ribose) polymerase 1 (PARP1) but is independent of p53

    PubMed Central

    Shin, Hyeon-Jun; Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Gui, Xiangai; Achek, Asma; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    Necrosis, unregulated cell death, is characterized by plasma membrane rupture as well as nuclear and cellular swelling. However, it has recently been reported that necrosis is a regulated form of cell death mediated by poly-(ADP-ribose) polymerase 1 (PARP1). PARP1 is thought to mediate necrosis by inducing DNA damage, although this remains unconfirmed. In this study, we examined the mechanisms of PARP1-mediated necrosis following doxorubicin (DOX)-induced DNA damage in human kidney proximal tubular (HK-2) cells. DOX initiated DNA damage response (DDR) and upregulated PARP1 and p53 expression, resulting in morphological changes similar to those observed during necrosis. Additionally, DOX induced mitochondrial hyper-activation, as evidenced by increased mitochondrial respiration and cytosolic ATP (cATP) production. However, DOX affected mitochondrial mass. DOX-induced DNA damage, cytosolic reactive oxygen species (cROS) generation, and mitochondrial hyper-activation decreased in cells with inhibited PARP1 expression, while generation of nitric oxide (NO) and mitochondrial ROS (mROS) remained unaffected. Moreover, DOX-induced DNA damage, cell cycle changes, and oxidative stress were not affected by p53 inhibition. These findings suggest that DNA damage induced necrosis through a PARP1-dependent and p53-independent pathway. PMID:26522181

  2. Augmentation of the therapeutic efficacy of WEE1 kinase inhibitor AZD1775 by inhibiting the YAP-E2F1-DNA damage response pathway axis.

    PubMed

    Oku, Yusuke; Nishiya, Naoyuki; Tazawa, Takaaki; Kobayashi, Takaya; Umezawa, Nanami; Sugawara, Yasuyo; Uehara, Yoshimasa

    2018-06-01

    The main reasons for failure of cancer chemotherapy are intrinsic and acquired drug resistance. The Hippo pathway effector Yes-associated protein (YAP) is associated with resistance to both cytotoxic and molecular targeted drugs. Several lines of evidence indicate that YAP activates transcriptional programmes to promote cell cycle progression and DNA damage responses. Therefore, we hypothesised that YAP is involved in the sensitivity of cancer cells to small-molecule agents targeting cell cycle-related proteins. Here, we report that the inactivation of YAP sensitises the OVCAR-8 ovarian cancer cell line to AZD1775, a small-molecule WEE1 kinase inhibitor. The accumulation of DNA damage and mitotic failures induced by AZD1775-based therapy were further enhanced by YAP depletion. YAP depletion reduced the expression of the Fanconi anaemia (FA) pathway components required for DNA repair and their transcriptional regulator E2F1. These results suggest that YAP activates the DNA damage response pathway, exemplified by the FA pathway and E2F1. Furthermore, we aimed to apply this finding to combination chemotherapy against ovarian cancers. The regimen containing dasatinib, which inhibits the nuclear localisation of YAP, improved the response to AZD1775-based therapy in the OVCAR-8 ovarian cancer cell line. We propose that dasatinib acts as a chemosensitiser for a subset of molecular targeted drugs, including AZD1775, by targeting YAP.

  3. Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome

    PubMed Central

    Kuwano, Yuki; Nishida, Kensei; Akaike, Yoko; Kurokawa, Ken; Nishikawa, Tatsuya; Masuda, Kiyoshi; Rokutan, Kazuhito

    2016-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator. PMID:27689990

  4. Tyrosine 370 phosphorylation of ATM positively regulates DNA damage response

    PubMed Central

    Lee, Hong-Jen; Lan, Li; Peng, Guang; Chang, Wei-Chao; Hsu, Ming-Chuan; Wang, Ying-Nai; Cheng, Chien-Chia; Wei, Leizhen; Nakajima, Satoshi; Chang, Shih-Shin; Liao, Hsin-Wei; Chen, Chung-Hsuan; Lavin, Martin; Ang, K Kian; Lin, Shiaw-Yih; Hung, Mien-Chie

    2015-01-01

    Ataxia telangiectasia mutated (ATM) mediates DNA damage response by controling irradiation-induced foci formation, cell cycle checkpoint, and apoptosis. However, how upstream signaling regulates ATM is not completely understood. Here, we show that upon irradiation stimulation, ATM associates with and is phosphorylated by epidermal growth factor receptor (EGFR) at Tyr370 (Y370) at the site of DNA double-strand breaks. Depletion of endogenous EGFR impairs ATM-mediated foci formation, homologous recombination, and DNA repair. Moreover, pretreatment with an EGFR kinase inhibitor, gefitinib, blocks EGFR and ATM association, hinders CHK2 activation and subsequent foci formation, and increases radiosensitivity. Thus, we reveal a critical mechanism by which EGFR directly regulates ATM activation in DNA damage response, and our results suggest that the status of ATM Y370 phosphorylation has the potential to serve as a biomarker to stratify patients for either radiotherapy alone or in combination with EGFR inhibition. PMID:25601159

  5. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins

    NASA Astrophysics Data System (ADS)

    Gaspar, Miguel; Shenk, Thomas

    2006-02-01

    The DNA damage checkpoint pathway responds to DNA damage and induces a cell cycle arrest to allow time for DNA repair. Several viruses are known to activate or modulate this cellular response. Here we show that the ataxia-telangiectasia mutated checkpoint pathway, which responds to double-strand breaks in DNA, is activated in response to human cytomegalovirus DNA replication. However, this activation does not propagate through the pathway; it is blocked at the level of the effector kinase, checkpoint kinase 2 (Chk2). Late after infection, several checkpoint proteins, including ataxia-telangiectasia mutated and Chk2, are mislocalized to a cytoplasmic virus assembly zone, where they are colocalized with virion structural proteins. This colocalization was confirmed by immunoprecipitation of virion proteins with an antibody that recognizes Chk2. Virus replication was resistant to ionizing radiation, which causes double-strand breaks in DNA. We propose that human CMV DNA replication activates the checkpoint response to DNA double-strand breaks, and the virus responds by altering the localization of checkpoint proteins to the cytoplasm and thereby inhibiting the signaling pathway. ionizing radiation | ataxia-telangiectasia mutated pathway

  6. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents

    PubMed Central

    Klapacz, Joanna; Pottenger, Lynn H.; Engelward, Bevin P.; Heinen, Christopher D.; Johnson, George E.; Clewell, Rebecca A.; Carmichael, Paul L.; Adeleye, Yeyejide; Andersen, Melvin E.

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. PMID:27036068

  7. Contributions of DNA repair and damage response pathways to the non-linear genotoxic responses of alkylating agents.

    PubMed

    Klapacz, Joanna; Pottenger, Lynn H; Engelward, Bevin P; Heinen, Christopher D; Johnson, George E; Clewell, Rebecca A; Carmichael, Paul L; Adeleye, Yeyejide; Andersen, Melvin E

    2016-01-01

    From a risk assessment perspective, DNA-reactive agents are conventionally assumed to have genotoxic risks at all exposure levels, thus applying a linear extrapolation for low-dose responses. New approaches discussed here, including more diverse and sensitive methods for assessing DNA damage and DNA repair, strongly support the existence of measurable regions where genotoxic responses with increasing doses are insignificant relative to control. Model monofunctional alkylating agents have in vitro and in vivo datasets amenable to determination of points of departure (PoDs) for genotoxic effects. A session at the 2013 Society of Toxicology meeting provided an opportunity to survey the progress in understanding the biological basis of empirically-observed PoDs for DNA alkylating agents. Together with the literature published since, this review discusses cellular pathways activated by endogenous and exogenous alkylation DNA damage. Cells have evolved conserved processes that monitor and counteract a spontaneous steady-state level of DNA damage. The ubiquitous network of DNA repair pathways serves as the first line of defense for clearing of the DNA damage and preventing mutation. Other biological pathways discussed here that are activated by genotoxic stress include post-translational activation of cell cycle networks and transcriptional networks for apoptosis/cell death. The interactions of various DNA repair and DNA damage response pathways provide biological bases for the observed PoD behaviors seen with genotoxic compounds. Thus, after formation of DNA adducts, the activation of cellular pathways can lead to the avoidance of a mutagenic outcome. The understanding of the cellular mechanisms acting within the low-dose region will serve to better characterize risks from exposures to DNA-reactive agents at environmentally-relevant concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Silencing of human DNA polymerase λ causes replication stress and is synthetically lethal with an impaired S phase checkpoint

    PubMed Central

    Zucca, Elisa; Bertoletti, Federica; Wimmer, Ursula; Ferrari, Elena; Mazzini, Giuliano; Khoronenkova, Svetlana; Grosse, Nicole; van Loon, Barbara; Dianov, Grigory; Hübscher, Ulrich; Maga, Giovanni

    2013-01-01

    Human DNA polymerase (pol) λ functions in base excision repair and non-homologous end joining. We have previously shown that DNA pol λ is involved in accurate bypass of the two frequent oxidative lesions, 7,8-dihydro-8-oxoguanine and 1,2-dihydro-2-oxoadenine during the S phase. However, nothing is known so far about the relationship of DNA pol λ with the S phase DNA damage response checkpoint. Here, we show that a knockdown of DNA pol λ, but not of its close homologue DNA pol β, results in replication fork stress and activates the S phase checkpoint, slowing S phase progression in different human cancer cell lines. We furthermore show that DNA pol λ protects cells from oxidative DNA damage and also functions in rescuing stalled replication forks. Its absence becomes lethal for a cell when a functional checkpoint is missing, suggesting a DNA synthesis deficiency. Our results provide the first evidence, to our knowledge, that DNA pol λ is required for cell cycle progression and is functionally connected to the S phase DNA damage response machinery in cancer cells. PMID:23118481

  9. Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells.

    PubMed

    Desai, Amar; Qing, Yulan; Gerson, Stanton L

    2014-02-01

    Hematopoietic stem cell (HSC) populations require DNA repair pathways to maintain their long-term survival and reconstitution capabilities, but mediators of these processes are still being elucidated. Exonuclease 1 (Exo1) participates in homologous recombination (HR) and Exo1 loss results in impaired 5' HR end resection. We use cultured Exo1(mut) fibroblasts and bone marrow to demonstrate that loss of Exo1 function results in defective HR in cycling cells. Conversely, in Exo1(mut) mice HR is not required for maintenance of quiescent HSCs at steady state, confirming the steady state HSC reliance on nonhomologous end joining (NHEJ). Exo1(mut) mice sustained serial repopulation, displayed no defect in competitive repopulation or niche occupancy, and exhibited no increased sensitivity to whole body ionizing radiation. However, when Exo1(mut) HSCs were pushed into cell cycle in vivo with 5-fluorouracil or poly IC, the hematopoietic population became hypersensitive to IR, resulting in HSC defects and animal death. We propose Exo1-mediated HR is dispensable for stem cell function in quiescent HSC, whereas it is essential to HSC response to DNA damage processing after cell cycle entry, and its loss is not compensated by intact NHEJ. In HSCs, the maintenance of stem cell function after DNA damage is dependent on the DNA repair capacity, segregated by active versus quiescent points in cell cycle. © AlphaMed Press.

  10. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1

    PubMed Central

    Dyson, Ossie F.; Pagano, Joseph S.

    2017-01-01

    ABSTRACT Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. PMID:28724765

  11. The Translesion Polymerase Pol η Is Required for Efficient Epstein-Barr Virus Infectivity and Is Regulated by the Viral Deubiquitinating Enzyme BPLF1.

    PubMed

    Dyson, Ossie F; Pagano, Joseph S; Whitehurst, Christopher B

    2017-10-01

    Epstein-Barr virus (EBV) infection and lytic replication are known to induce a cellular DNA damage response. We previously showed that the virally encoded BPLF1 protein interacts with and regulates several members of the translesion synthesis (TLS) pathway, a DNA damage tolerance pathway, and that these cellular factors enhance viral infectivity. BPLF1 is a late lytic cycle gene, but the protein is also packaged in the viral tegument, indicating that BPLF1 may function both early and late during infection. The BPLF1 protein expresses deubiquitinating activity that is strictly conserved across the Herpesviridae ; mutation of the active site cysteine results in a loss of enzymatic activity. Infection with an EBV BPLF1 knockout virus results in decreased EBV infectivity. Polymerase eta (Pol η), a specialized DNA repair polymerase, functions in TLS and allows for DNA replication complexes to bypass lesions in DNA. Here we report that BPLF1 interacts with Pol η and that Pol η protein levels are increased in the presence of functional BPLF1. BPLF1 promotes a nuclear relocalization of Pol η molecules which are focus-like in appearance, consistent with the localization observed when Pol η is recruited to sites of DNA damage. Knockdown of Pol η resulted in decreased production of infectious virus, and further, Pol η was found to bind to EBV DNA, suggesting that it may allow for bypass of damaged viral DNA during its replication. The results suggest a mechanism by which EBV recruits cellular repair factors, such as Pol η, to sites of viral DNA damage via BPLF1, thereby allowing for efficient viral DNA replication. IMPORTANCE Epstein-Barr virus is the causative agent of infectious mononucleosis and infects approximately 90% of the world's population. It causes lymphomas in individuals with acquired and innate immune disorders and is strongly associated with Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B-cell lymphomas, nasopharyngeal carcinoma (NPC), and lymphomas that develop in organ transplant recipients. Cellular DNA damage is a major determinant in the establishment of oncogenic processes and is well studied, but there are few studies of endogenous repair of viral DNA. This work evaluates how EBV's BPLF1 protein and its conserved deubiquitinating activity regulate the cellular DNA repair enzyme polymerase eta and recruit it to potential sites of viral damage and replication, resulting in enhanced production of infectious virus. These findings help to establish how EBV enlists and manipulates cellular DNA repair factors during the viral lytic cycle, contributing to efficient infectious virion production. Copyright © 2017 American Society for Microbiology.

  12. Exposure to welding fumes activates DNA damage response and redox-sensitive transcription factor signalling in Sprague-Dawley rats.

    PubMed

    Krishnaraj, Jayaraman; Kowshik, Jaganathan; Sebastian, Robin; Raghavan, Sathees C; Nagini, Siddavaram

    2017-05-15

    Occupational exposure to welding fumes containing a complex mixture of genotoxic heavy metals, radiation, gases and nanoparticles poses a serious health hazard to welders. Since their categorization as possible carcinogens, welding fumes have gained increasing attention as high priority agents for risk assessment. The present study was undertaken to investigate the effects of welding fume inhalation on oxidative stress, DNA damage response (DDR), and nuclear factor erythroid 2-related factor-2 (Nrf2) and nuclear factor kappa B (NFκB) signalling in the lung tissues of male Sprague-Dawley rats . METHODS: Animals were divided into five groups. Group 1 animals served as control. Rats in groups 2-5 were exposed to 50mg/m 3 stainless steel (SS) welding fumes for 1h for 1day, 1 week, 2 weeks, and 4 weeks respectively. Reactive oxygen species (ROS) generation, 8-oxo-2'-deoxyguanosine (8-oxodG), xenobiotic-metabolizing enzymes (XMEs) and antioxidants were analysed. DNA damage sensors, DNA repair enzymes, inflammatory mediators, cell cycle progression, apoptosis and key players in Nrf2 and NFκB signalling were assessed by flow cytometry, quantitative real-time reverse transcriptase PCR, immunoblotting, immunohistochemistry and immunofluorescence. Rats exposed to welding fumes showed increased levels of chromium and ROS in lung tissues associated with accumulation of 8-oxodG and enhanced expression of XMEs and antioxidants. This was accompanied by upregulation of DNA damage sensors, cell cycle arrest in G1/S phase, overexpression of a multitude of DNA repair enzymes and caspase-mediated apoptosis. In addition, exposure to welding fumes induced activation of Nrf2 and NFκB signalling with enhanced expression of inflammatory mediators. The results of the present study unequivocally demonstrate that exposure of rats to SS welding fumes alters the expression of 37 genes involved in oxidative stress, detoxification, inflammation, DNA repair, cell cycle progression, and apoptosis. Activation of DDR and the ROS-sensitive Nrf2 and NFκB signalling pathways may be key molecular events that mediate adaptive cellular response to welding fume exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Role of JMY in p53 Regulation.

    PubMed

    Adighibe, Omanma; Pezzella, Francesco

    2018-05-31

    Following the event of DNA damage, the level of tumour suppressor protein p53 increases inducing either cell cycle arrest or apoptosis. Junctional Mediating and Regulating Y protein (JMY) is a transcription co-factor involved in p53 regulation. In event of DNA damage, JMY levels also upregulate in the nucleus where JMY forms a co-activator complex with p300/CREB-binding protein (p300/CBP), Apoptosis-stimulating protein of p53 (ASPP) and Stress responsive activator of p53 (Strap). This co-activator complex then binds to and increases the ability of p53 to induce transcription of proteins triggering apoptosis but not cell cycle arrest. This then suggests that the increase of JMY levels due to DNA damage putatively "directs" p53 activity toward triggering apoptosis. JMY expression is also linked to increased cell motility as it: (1) downregulates the expression of adhesion molecules of the Cadherin family and (2) induces actin nucleation, making cells less adhesive and more mobile, favouring metastasis. All these characteristics taken together imply that JMY possesses both tumour suppressive and tumour metastasis promoting capabilities.

  14. MicroRNA-138 Regulates DNA Damage Response in Small Cell Lung Cancer Cells by Directly Targeting H2AX.

    PubMed

    Yang, Huan; Luo, Jinwen; Liu, Zhiguang; Zhou, Rui; Luo, Hong

    2015-04-01

    Lung cancer is the leading cause of cancer death worldwide and small cell lung cancer (SCLC) accounts for a significant proportion of all lung cancer cases. Even so, the underlying mechanism governing SCLC development remains poorly understood and SCLC related cancer death stands high despite decades of intensive investigation. We noted that both miR-138 and H2AX have been implicated in development of various malignancies. Also, there is a recent report showing the role of miR-138 in mediating DNA damage response by targeting H2AX. In light of these data, we sought to characterize the role of miR-138 for SCLC cell growth and cell-cycle progression by regulating H2AX expression. Results showed that miR-138 is significantly down-regulated in SCLC tumor tissues as well as in three SCLC cell lines. After successfully engineering miR-138 overexpression in one of the SCLC cell lines, NCI-H2081, we observed a remarkable reduction of cell growth and a significant inhibition on cell-cycle progression. Moreover, we were able to show that miR-138 potently inhibits H2AX expression, which suggests that H2AX may serve as a downstream executor for miR-138. Consistent with this hypothesis, we found that engineered H2AX knockdown achieves a similar effect as observed for miR-138 overexpression in terms of SCLC growth and cell cycle regulation. We also showed that H2AX overexpression largely abolished miR-138-mediated SCLC cancer cell growth and cell-cycle progression inhibition, which strongly suggests, at least in vitro, that miR-138 potently regulates SCLC development by targeting H2AX. In addition, we found lower miR-138 expression confers SCLC cells with greater DNA damage repair capacity. Finally, we were able to show miR-138 overexpression inhibits DNA damage repair in SCLC cells while miR-138 knockdown further facilitates DNA damage repair in these cells after IR. To date, there has been no study showing the role of miR-138/H2AX machinery in SCLC development. Our results may shed a light to development of new lines of SCLC diagnosis and treatment approaches.

  15. HTLV-1 Tax Oncoprotein Subverts the Cellular DNA Damage Response via Binding to DNA-dependent Protein Kinase*S⃞

    PubMed Central

    Durkin, Sarah S.; Guo, Xin; Fryrear, Kimberly A.; Mihaylova, Valia T.; Gupta, Saurabh K.; Belgnaoui, S. Mehdi; Haoudi, Abdelali; Kupfer, Gary M.; Semmes, O. John

    2008-01-01

    Human T-cell leukemia virus type-1 is the causative agent for adult T-cell leukemia. Previous research has established that the viral oncoprotein Tax mediates the transformation process by impairing cell cycle control and cellular response to DNA damage. We showed previously that Tax sequesters huChk2 within chromatin and impairs the response to ionizing radiation. Here we demonstrate that DNA-dependent protein kinase (DNA-PK) is a member of the Tax·Chk2 nuclear complex. The catalytic subunit, DNA-PKcs, and the regulatory subunit, Ku70, were present. Tax-containing nuclear extracts showed increased DNA-PK activity, and specific inhibition of DNA-PK prevented Tax-induced activation of Chk2 kinase activity. Expression of Tax induced foci formation and phosphorylation of H2AX. However, Tax-induced constitutive signaling of the DNA-PK pathway impaired cellular response to new damage, as reflected in suppression of ionizing radiation-induced DNA-PK phosphorylation and γH2AX stabilization. Tax co-localized with phospho-DNA-PK into nuclear speckles and a nuclear excluded Tax mutant sequestered endogenous phospho-DNA-PK into the cytoplasm, suggesting that Tax interaction with DNA-PK is an initiating event. We also describe a novel interaction between DNA-PK and Chk2 that requires Tax. We propose that Tax binds to and stabilizes a protein complex with DNA-PK and Chk2, resulting in a saturation of DNA-PK-mediated damage repair response. PMID:18957425

  16. BMAL1 and CLOCK proteins in regulating UVB-induced apoptosis and DNA damage responses in human keratinocytes.

    PubMed

    Sun, Yang; Wang, Peiling; Li, Hongyu; Dai, Jun

    2018-06-26

    A diverse array of biological processes are under circadian controls. In mouse skin, ultraviolet ray (UVR)-induced apoptosis and DNA damage responses are time-of-day dependent, which are controlled by core clock proteins. This study investigates the roles of clock proteins in regulating UVB responses in human keratinocytes (HKCs). We found that the messenger RNA expression of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) genes is altered by low doses (5 mJ/cm 2 ) of UVB in the immortalized HaCat HKCs cell line. Although depletion of BMAL1 or CLOCK has no effect on the activation of Rad3-related protein kinases-checkpoint kinase 1-p53 mediated DNA damage checkpoints, it leads to suppression of UVB-stimulated apoptotic responses, and downregulation of UVB-elevated expression of DNA damage marker γ-H2AX and cell cycle inhibitor p21. Diminished apoptotic responses are also observed in primary HKCs depleted of BMAL1 or CLOCK after UVB irradiation. While CLOCK depletion shows a suppressive effect on UVB-induced p53 protein accumulation, depletion of either clock gene triggers early keratinocyte differentiation of HKCs at their steady state. These results suggest that UVB-induced apoptosis and DNA damage responses are controlled by clock proteins, but via different mechanisms in the immortalized human adult low calcium temperature and primary HKCs. Given the implication of UVB in photoaging and photocarcinogenesis, mechanistic elucidation of circadian controls on UVB effects in human skin will be critical and beneficial for prevention and treatment of skin cancers and other skin-related diseases. © 2018 Wiley Periodicals, Inc.

  17. [Application of repair enzymes to improve the quality of degraded DNA templates for PCR amplification].

    PubMed

    Dovgerd, A P; Zharkov, D O

    2014-01-01

    PCR amplification of severely degraded DNA, including ancient DNA, forensic samples, and preparations from deeply processed foodstuffs, is a serious problem. Living organisms have a set of enzymes to repair lesions in their DNA. In this work, we have developed and characterized model systems of degraded high-molecular-weight DNA with a predominance of different types of damage. It was shown that depurination and oxidation of the model plasmid DNA template led to a decrease in the PCR efficiency. A set of enzymes performing a full cycle of excision repair of some lesions was determined. The treatment of model-damaged substrates with this set of enzymes resulted in an increased PCR product yield as compared with that of the unrepaired samples.

  18. Proliferating Cell Nuclear Antigen-dependent Rapid Recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged Sites after UV Irradiation in HeLa Cells*

    PubMed Central

    Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo

    2010-01-01

    The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861

  19. Differential Activation of Cellular DNA Damage Responses by Replication-Defective and Replication-Competent Adenovirus Mutants

    PubMed Central

    Prakash, Anand; Jayaram, Sumithra

    2012-01-01

    Adenovirus (Ad) mutants that lack early region 4 (E4) activate the phosphorylation of cellular DNA damage response proteins. In wild-type Ad type 5 (Ad5) infections, E1b and E4 proteins target the cellular DNA repair protein Mre11 for redistribution and degradation, thereby interfering with its ability to activate phosphorylation cascades important during DNA repair. The characteristics of Ad infection that activate cellular DNA repair processes are not yet well understood. We investigated the activation of DNA damage responses by a replication-defective Ad vector (AdRSVβgal) that lacks E1 and fails to produce the immediate-early E1a protein. E1a is important for activating early gene expression from the other viral early transcription units, including E4. AdRSVβgal can deliver its genome to the cell, but it is subsequently deficient for viral early gene expression and DNA replication. We studied the ability of AdRSVβgal-infected cells to induce cellular DNA damage responses. AdRSVβgal infection does activate formation of foci containing the Mdc1 protein. However, AdRSVβgal fails to activate phosphorylation of the damage response proteins Nbs1 and Chk1. We found that viral DNA replication is important for Nbs1 phosphorylation, suggesting that this step in the viral life cycle may provide an important trigger for activating at least some DNA repair proteins. PMID:23015708

  20. Transcriptional upregulation of p19INK4d upon diverse genotoxic stress is critical for optimal DNA damage response.

    PubMed

    Ceruti, Julieta M; Scassa, María E; Marazita, Mariela C; Carcagno, Abel C; Sirkin, Pablo F; Cánepa, Eduardo T

    2009-06-01

    p19INK4d promotes survival of several cell lines after UV irradiation due to enhanced DNA repair, independently of CDK4 inhibition. To further understand the action of p19INK4d in the cellular response to DNA damage, we aimed to elucidate whether this novel regulator plays a role only in mechanisms triggered by UV or participates in diverse mechanisms initiated by different genotoxics. We found that p19INK4d is induced in cells injured with cisplatin or beta-amyloid peptide as robustly as with UV. The mentioned genotoxics transcriptionally activate p19INK4d expression as demonstrated by run-on assay without influencing its mRNA stability and with partial requirement of protein synthesis. It is not currently known whether DNA damage-inducible genes are turned on by the DNA damage itself or by the consequences of that damage. Experiments carried out in cells transfected with distinct damaged DNA structures revealed that the damage itself is not responsible for the observed up-regulation. It is also not known whether the increased expression of DNA-damage-inducible genes is related to immediate protective responses such as DNA repair or to more delayed responses such as cell cycle arrest or apoptosis. We found that ectopic expression of p19INK4d improves DNA repair ability and protects neuroblastoma cells from apoptosis caused by cisplatin or beta-amyloid peptide. Using clonal cell lines where p19INK4d levels can be modified at will, we show that p19INK4d expression correlates with increased survival and clonogenicity. The results presented here, prompted us to suggest that p19INK4d displays an important role in an early stage of cellular DNA damage response.

  1. Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off.

    PubMed

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2012-08-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.

  2. Emerging links between the biological clock and the DNA damage response.

    PubMed

    Collis, Spencer J; Boulton, Simon J

    2007-08-01

    For life forms to survive, they must adapt to their environmental conditions. One such factor that impacts on both prokaryotic and eukaryotic organisms is the light-dark cycle, a consequence of planetary rotation in relation to our sun. In mammals, the daily light cycle has affected the regulation of many cellular processes such as sleep-wake and calorific intake activities, hormone secretion, blood pressure and immune system responses. Such rhythmic behaviour is the consequence of circadian rhythm/biological clock (BC) systems which are controlled in a light stimulus-dependent manner by a master clock called the suprachiasmatic nucleus (SCN) situated within the anterior hypothalamus. Peripheral clocks located in other organs such as the liver and kidneys relay signals from the SCN, which ultimately leads to tightly controlled expression of several protein families that in turn act on a broad range of cellular functions. Work in lower organisms has demonstrated a link between aging processes and BC factors, and studies in both animal models and clinical trials have postulated a role for certain BC-associated proteins in tumourigenesis and cancer progression. Recent exciting data reported within the last year or so have now established a molecular link between specific BC proteins and factors that control the mammalian cell cycle and DNA damage checkpoints. This mini review will focus on these discoveries and emphasise how such BC proteins may be involved, through their interplay with cell cycle/DNA damage response pathways, in the development of human disease such as cancer.

  3. Induction of a Cellular DNA Damage Response by Porcine Circovirus Type 2 Facilitates Viral Replication and Mediates Apoptotic Responses

    PubMed Central

    Wei, Li; Zhu, Shanshan; Wang, Jing; Quan, Rong; Yan, Xu; Li, Zixue; Hou, Lei; Wang, Naidong; Yang, Yi; Jiang, Haijun; Liu, Jue

    2016-01-01

    Cellular DNA damage response (DDR) triggered by infection of DNA viruses mediate cell cycle checkpoint activation, DNA repair, or apoptosis induction. In the present study, infection of porcine circovirus type 2 (PCV2), which serves as a major etiological agent of PCV2-associated diseases (PCVAD), was found to elicit a DNA damage response (DDR) as observed by the phosphorylation of H2AX and RPA32 following infection. The response requires active viral replication, and all the ATM (ataxia telangiectasia-mutated kinase), ATR (ATM- and Rad3-related kinase), and DNA-PK (DNA-dependent protein kinase) are the transducers of the DDR signaling events in the PCV2-infected cells as demonstrated by the phosphorylation of ATM, ATR, and DNA-PK signalings as well as reductions in their activations after treatment with specific kinase inhibitors. Inhibitions of ATM, ATR, and DNA-PK activations block viral replication and prevent apoptotic responses as observed by decreases in cleaved poly-ADP ribose polymerase (PARP) and caspase-3 as well as fragmented DNA following PCV2 infection. These results reveal that PCV2 is able to exploit the cellular DNA damage response machinery for its own efficient replication and for apoptosis induction, further extending our understanding for the molecular mechanism of PCV2 infection. PMID:27982097

  4. DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression

    PubMed Central

    Barr, Alexis R.; Cooper, Samuel; Heldt, Frank S.; Butera, Francesca; Stoy, Henriette; Mansfeld, Jörg; Novák, Béla; Bakal, Chris

    2017-01-01

    Following DNA damage caused by exogenous sources, such as ionizing radiation, the tumour suppressor p53 mediates cell cycle arrest via expression of the CDK inhibitor, p21. However, the role of p21 in maintaining genomic stability in the absence of exogenous DNA-damaging agents is unclear. Here, using live single-cell measurements of p21 protein in proliferating cultures, we show that naturally occurring DNA damage incurred over S-phase causes p53-dependent accumulation of p21 during mother G2- and daughter G1-phases. High p21 levels mediate G1 arrest via CDK inhibition, yet lower levels have no impact on G1 progression, and the ubiquitin ligases CRL4Cdt2 and SCFSkp2 couple to degrade p21 prior to the G1/S transition. Mathematical modelling reveals that a bistable switch, created by CRL4Cdt2, promotes irreversible S-phase entry by keeping p21 levels low, preventing premature S-phase exit upon DNA damage. Thus, we characterize how p21 regulates the proliferation-quiescence decision to maintain genomic stability. PMID:28317845

  5. Sterigmatocystin induces G1 arrest in primary human esophageal epithelial cells but induces G2 arrest in immortalized cells: key mechanistic differences in these two models.

    PubMed

    Wang, Juan; Huang, Shujuan; Xing, Lingxiao; Cui, Jinfeng; Tian, Ziqiang; Shen, Haitao; Jiang, Xiujuan; Yan, Xia; Wang, Junling; Zhang, Xianghong

    2015-11-01

    Sterigmatocystin (ST), a mycotoxin commonly found in food and feed commodities, has been classified as a "possible human carcinogen." Our previous studies suggested that ST exposure might be a risk factor for esophageal cancer and that ST may induce DNA damage and G2 phase arrest in immortalized human esophageal epithelial cells (Het-1A). To further confirm and explore the cellular responses of ST in human esophageal epithelia, we comparatively evaluated DNA damage, cell cycle distribution and the relative mechanisms in primary cultured human esophageal epithelial cells (EPC), which represent a more representative model of the in vivo state, and Het-1A cells. In this study, we found that ST could induce DNA damage in both EPC and Het-1A cells but led to G1 phase arrest in EPC cells and G2 phase arrest in Het-1A cells. Furthermore, our results indicated that the activation of the ATM-Chk2 pathway was involved in ST-induced G1 phase arrest in EPC cells, whereas the p53-p21 pathway activation in ST-induced G2 phase arrest in Het-1A cells. Studies have demonstrated that SV40 large T-antigen (SV40LT) may disturb cell cycle progression by inactivating some of the proteins involved in the G1/S checkpoint. Het-1A is a non-cancerous epithelial cell line immortalized by SV40LT. To evaluate the possible perturbation effect of SV40LT on ST-induced cell cycle disturbance in Het-1A cells, we knocked down SV40LT of Het-1A cells with siRNA and found that under this condition, ST-induced G2 arrest was significantly attenuated, whereas the proportion of cells in the G1 phase was significantly increased. Furthermore, SV40LT-siRNA also inhibited the activation of the p53-p21 signaling pathway induced by ST. In conclusion, our data indicated that ST could induce DNA damage in both primary cultured and immortalized esophageal epithelial cells. In primary human esophageal epithelial cells, ST induced DNA damage and then triggered the ATM-Chk2 pathway, resulting in G1 phase arrest, whereas in SV40LT-immortalized human esophageal epithelial cells, SV40LT-mediated G1 checkpoint inactivation occurred, and ST-DNA damage activated p53-p21 signaling pathway, up-regulating G2/M phase regulatory proteins and finally leading to a G2 phase arrest. Thus, the SV40LT-mediated G1 checkpoint inactivation is responsible for the difference in the cell cycle arrest by ST between immortalized and primary cultured human esophageal epithelial cells.

  6. RAD18 Activates the G2/M Checkpoint through DNA Damage Signaling to Maintain Genome Integrity after Ionizing Radiation Exposure

    PubMed Central

    Sasatani, Megumi; Xu, Yanbin; Kawai, Hidehiko; Cao, Lili; Tateishi, Satoshi; Shimura, Tsutomu; Li, Jianxiang; Iizuka, Daisuke; Noda, Asao; Hamasaki, Kanya; Kusunoki, Yoichiro; Kamiya, Kenji

    2015-01-01

    The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure. PMID:25675240

  7. Attenuated DNA damage repair by trichostatin A through BRCA1 suppression.

    PubMed

    Zhang, Yin; Carr, Theresa; Dimtchev, Alexandre; Zaer, Naghmeh; Dritschilo, Anatoly; Jung, Mira

    2007-07-01

    Recent studies have demonstrated that some histone deacetylase (HDAC) inhibitors enhance cellular radiation sensitivity. However, the underlying mechanism for such a radiosensitizing effect remains unexplored. Here we show evidence that treatment with the HDAC inhibitor trichostatin A (TSA) impairs radiation-induced repair of DNA damage. The effect of TSA on the kinetics of DNA damage repair was measured by performing the comet assay and gamma-H2AX focus analysis in radioresistant human squamous carcinoma cells (SQ-20B). TSA exposure increased the amount of radiation-induced DNA damage and slowed the repair kinetics. Gene expression profiling also revealed that a majority of the genes that control cell cycle, DNA replication and damage repair processes were down-regulated after TSA exposure, including BRCA1. The involvement of BRCA1 was further demonstrated by expressing ectopic wild-type BRCA1 in a BRCA1 null cell line (HCC-1937). TSA treatment enhanced radiation sensitivity of HCC-1937/wtBRCA1 clonal cells, which restored cellular radiosensitivity (D(0) = 1.63 Gy), to the control level (D(0) = 1.03 Gy). However, TSA had no effect on the level of radiosensitivity of BRCA1 null cells. Our data demonstrate for the first time that TSA treatment modulates the radiation-induced DNA damage repair process, in part by suppressing BRCA1 gene expression, suggesting that BRCA1 is one of molecular targets of TSA.

  8. Helicases as Prospective Targets for Anti-Cancer Therapy

    PubMed Central

    Gupta, Rigu; Brosh, Robert M.

    2008-01-01

    It has been proposed that selective inactivation of a DNA repair pathway may enhance anti-cancer therapies that eliminate cancerous cells through the cytotoxic effects of DNA damaging agents or radiation. Given the unique and critically important roles of DNA helicases in the DNA damage response, DNA repair, and maintenance of genomic stability, a number of strategies currently being explored or in use to combat cancer may be either mediated or enhanced through the modulation of helicase function. The focus of this review will be to examine the roles of helicases in DNA repair that might be suitably targeted by cancer therapeutic approaches. Treatment of cancers with anti-cancer drugs such as small molecule compounds that modulate helicase expression or function is a viable approach to selectively kill cancer cells through the inactivation of helicase-dependent DNA repair pathways, particularly those associated with DNA recombination, replication restart, and cell cycle checkpoint. PMID:18473724

  9. One-carbon cycle support rescues sperm damage in experimentally induced varicocoele in rats.

    PubMed

    Mohammadi, Parisa; Hassani-Bafrani, Hassan; Tavalaee, Marziyeh; Dattilo, Maurizio; Nasr-Esfahani, Mohammad H

    2018-05-11

    To investigate whether micronutrients in support of the one-carbon cycle and glutathione synthesis are effective in improving sperm damage after surgical varicocoele induction in rats and whether any effect is achieved without a rebound reductive stress as seen with oral antioxidants. Surgical varicocoele was induced in adult male Wistar rats and resulted in significant damage to the testis and sperm cells measured at 2 and 4 months after surgery. At 2 months after surgery, rats received a 2-month oral supplementation in support of the one-carbon cycle containing B vitamins (B2, B3, B6, folic acid and B12), N-acetyl-cysteine, zinc, small amounts of vitamin E, and a natural source of betalains and quercetine (Condensyl ® ; Parthenogen SAGL, Lugano, Switzerland and Nurilia SARL, Lyon, France). One-carbon cycle supplementation, compared to untreated controls, significantly improved the morphometric characteristics of testis (P < 0.05), sperm concentration, motility and abnormal morphology (P < 0.001), sperm chromatin condensation (aniline blue staining, P < 0.05), sperm DNA damage (acridine orange staining, P < 0.05) and sperm lipid peroxidation (BODIPY C11, P < 0.001). The improvement in both nuclear condensation and DNA damage and the lack of excessive inhibition of lipid peroxidation confirmed that no reductive stress had occurred. Micronutrients in support of the one-carbon cycle are effective in the treatment of surgically induced varicocoele in rats, probably by activating natural antioxidant defences and epigenetics. These results support the idea that essential micronutrients including B vitamins may also have a positive influence in clinical varicocoele, which should be tested in prospective clinical trials. © 2018 The Authors BJU International © 2018 BJU International Published by John Wiley & Sons Ltd.

  10. Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms.

    PubMed

    Lu, Jie; Kovach, John S; Johnson, Francis; Chiang, Jeffrey; Hodes, Richard; Lonser, Russell; Zhuang, Zhengping

    2009-07-14

    A variety of mechanisms maintain the integrity of the genome in the face of cell stress. Cancer cell response to chemotherapeutic and radiation-induced DNA damage is mediated by multiple defense mechanisms including polo-like kinase 1 (Plk-1), protein kinase B (Akt-1), and/or p53 pathways leading to either apoptosis or cell cycle arrest. Subsequently, a subpopulation of arrested viable cancer cells may remain and recur despite aggressive and repetitive therapy. Here, we show that modulation (activation of Akt-1 and Plk-1 and repression of p53) of these pathways simultaneously results in paradoxical enhancement of the effectiveness of cytotoxic chemotherapy. We demonstrate that a small molecule inhibitor, LB-1.2, of protein phosphatase 2A (PP2A) activates Plk-1 and Akt-1 and decreases p53 abundance in tumor cells. Combined with temozolomide (TMZ; a DNA-methylating chemotherapeutic drug), LB-1.2 causes complete regression of glioblastoma multiforme (GBM) xenografts without recurrence in 50% of animals (up to 28 weeks) and complete inhibition of growth of neuroblastoma (NB) xenografts. Treatment with either drug alone results in only short-term inhibition/regression with all xenografts resuming rapid growth. Combined with another widely used anticancer drug, Doxorubicin (DOX, a DNA intercalating agent), LB-1.2 also causes marked GBM xenograft regression, whereas DOX alone only slows growth. Inhibition of PP2A by LB-1.2 blocks cell-cycle arrest and increases progression of cell cycle in the presence of TMZ or DOX. Pharmacologic inhibition of PP2A may be a general method for enhancing the effectiveness of cancer treatments that damage DNA or disrupt components of cell replication.

  11. Xenopus egg extract: A powerful tool to study genome maintenance mechanisms.

    PubMed

    Hoogenboom, Wouter S; Klein Douwel, Daisy; Knipscheer, Puck

    2017-08-15

    DNA repair pathways are crucial to maintain the integrity of our genome and prevent genetic diseases such as cancer. There are many different types of DNA damage and specific DNA repair mechanisms have evolved to deal with these lesions. In addition to these repair pathways there is an extensive signaling network that regulates processes important for repair, such as cell cycle control and transcription. Despite extensive research, DNA damage repair and signaling are not fully understood. In vitro systems such as the Xenopus egg extract system, have played, and still play, an important role in deciphering the molecular details of these processes. Xenopus laevis egg extracts contain all factors required to efficiently perform DNA repair outside a cell, using mechanisms conserved in humans. These extracts have been used to study several genome maintenance pathways, including mismatch repair, non-homologous end joining, ICL repair, DNA damage checkpoint activation, and replication fork stability. Here we describe how the Xenopus egg extract system, in combination with specifically designed DNA templates, contributed to our detailed understanding of these pathways. Copyright © 2017. Published by Elsevier Inc.

  12. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea

    PubMed Central

    Jones, Daniel L.; Baxter, Bonnie K.

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a “first line of defense,” and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms. PMID:29033920

  13. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea.

    PubMed

    Jones, Daniel L; Baxter, Bonnie K

    2017-01-01

    Halophilic archaea push the limits of life at several extremes. In particular, they are noted for their biochemical strategies in dealing with osmotic stress, low water activity and cycles of desiccation in their hypersaline environments. Another feature common to their habitats is intense ultraviolet (UV) radiation, which is a challenge that microorganisms must overcome. The consequences of high UV exposure include DNA lesions arising directly from bond rearrangement of adjacent bipyrimidines, or indirectly from oxidative damage, which may ultimately result in mutation and cell death. As such, these microorganisms have evolved a number of strategies to navigate the threat of DNA damage, which we differentiate into two categories: DNA repair and photoprotection. Photoprotection encompasses damage avoidance strategies that serve as a "first line of defense," and in halophilic archaea include pigmentation by carotenoids, mechanisms of oxidative damage avoidance, polyploidy, and genomic signatures that make DNA less susceptible to photodamage. Photolesions that do arise are addressed by a number of DNA repair mechanisms that halophilic archaea efficiently utilize, which include photoreactivation, nucleotide excision repair, base excision repair, and homologous recombination. This review seeks to place DNA damage, repair, and photoprotection in the context of halophilic archaea and the solar radiation of their hypersaline environments. We also provide new insight into the breadth of strategies and how they may work together to produce remarkable UV-resistance for these microorganisms.

  14. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome

    PubMed Central

    Simon, Luke; Zini, Armand; Dyachenko, Alina; Ciampi, Antonio; Carrell, Douglas T

    2017-01-01

    Sperm DNA damage is prevalent among infertile men and is known to influence natural reproduction. However, the impact of sperm DNA damage on assisted reproduction outcomes remains controversial. Here, we conducted a meta-analysis of studies on sperm DNA damage (assessed by SCSA, TUNEL, SCD, or Comet assay) and clinical pregnancy after IVF and/or ICSI treatment from MEDLINE, EMBASE, and PUBMED database searches for this analysis. We identified 41 articles (with a total of 56 studies) including 16 IVF studies, 24 ICSI studies, and 16 mixed (IVF + ICSI) studies. These studies measured DNA damage (by one of four assays: 23 SCSA, 18 TUNEL, 8 SCD, and 7 Comet) and included a total of 8068 treatment cycles (3734 IVF, 2282 ICSI, and 2052 mixed IVF + ICSI). The combined OR of 1.68 (95% CI: 1.49–1.89; P < 0.0001) indicates that sperm DNA damage affects clinical pregnancy following IVF and/or ICSI treatment. In addition, the combined OR estimates of IVF (16 estimates, OR = 1.65; 95% CI: 1.34–2.04; P < 0.0001), ICSI (24 estimates, OR = 1.31; 95% CI: 1.08–1.59; P = 0.0068), and mixed IVF + ICSI studies (16 estimates, OR = 2.37; 95% CI: 1.89–2.97; P < 0.0001) were also statistically significant. There is sufficient evidence in the existing literature suggesting that sperm DNA damage has a negative effect on clinical pregnancy following IVF and/or ICSI treatment. PMID:27345006

  15. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation.

    PubMed

    Sonzogni, Silvina V; Ogara, María F; Castillo, Daniela S; Sirkin, Pablo F; Radicella, J Pablo; Cánepa, Eduardo T

    2015-01-01

    DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.

  16. Activation of WIP1 Phosphatase by HTLV-1 Tax Mitigates the Cellular Response to DNA Damage

    PubMed Central

    Dayaram, Tajhal; Lemoine, Francene J.; Donehower, Lawrence A.; Marriott, Susan J.

    2013-01-01

    Genomic instability stemming from dysregulation of cell cycle checkpoints and DNA damage response (DDR) is a common feature of many cancers. The cancer adult T cell leukemia (ATL) can occur in individuals infected with human T cell leukemia virus type 1 (HTLV-1), and ATL cells contain extensive chromosomal abnormalities, suggesting that they have defects in the recognition or repair of DNA damage. Since Tax is the transforming protein encoded by HTLV-1, we asked whether Tax can affect cell cycle checkpoints and the DDR. Using a combination of flow cytometry and DNA repair assays we showed that Tax-expressing cells exit G1 phase and initiate DNA replication prematurely following damage. Reduced phosphorylation of H2AX (γH2AX) and RPA2, phosphoproteins that are essential to properly initiate the DDR, was also observed in Tax-expressing cells. To determine the cause of decreased DDR protein phosphorylation in Tax-expressing cells, we examined the cellular phosphatase, WIP1, which is known to dephosphorylate γH2AX. We found that Tax can interact with Wip1 in vivo and in vitro, and that Tax-expressing cells display elevated levels of Wip1 mRNA. In vitro phosphatase assays showed that Tax can enhance Wip1 activity on a γH2AX peptide target by 2-fold. Thus, loss of γH2AX in vivo could be due, in part, to increased expression and activity of WIP1 in the presence of Tax. siRNA knockdown of WIP1 in Tax-expressing cells rescued γH2AX in response to damage, confirming the role of WIP1 in the DDR. These studies demonstrate that Tax can disengage the G1/S checkpoint by enhancing WIP1 activity, resulting in reduced DDR. Premature G1 exit of Tax-expressing cells in the presence of DNA lesions creates an environment that tolerates incorporation of random mutations into the host genome. PMID:23405243

  17. Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells

    PubMed Central

    Alonso-Lecue, Pilar; de Pedro, Isabel; Coulon, Vincent; Molinuevo, Rut; Lorz, Corina; Segrelles, Carmen; Ceballos, Laura; López-Aventín, Daniel; García-Valtuille, Ana; Bernal, José M; Mazorra, Francisco; Pujol, Ramón M; Paramio, Jesús; Ramón Sanz, J; Freije, Ana; Toll, Agustí; Gandarillas, Alberto

    2017-01-01

    Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy. PMID:28661481

  18. Colon Cancer-Upregulated Long Non-Coding RNA lincDUSP Regulates Cell Cycle Genes and Potentiates Resistance to Apoptosis.

    PubMed

    Forrest, Megan E; Saiakhova, Alina; Beard, Lydia; Buchner, David A; Scacheri, Peter C; LaFramboise, Thomas; Markowitz, Sanford; Khalil, Ahmad M

    2018-05-09

    Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.

  19. Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells

    PubMed Central

    Adeyemi, Richard O.; Pintel, David J.

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942

  20. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.

    PubMed

    Adeyemi, Richard O; Pintel, David J

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.

  1. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    PubMed

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The Aspergillus nidulans npkA gene encodes a Cdc2-related kinase that genetically interacts with the UvsBATR kinase.

    PubMed Central

    Fagundes, Marcia R V Z Kress; Lima, Joel Fernandes; Savoldi, Marcela; Malavazi, Iran; Larson, Roy E; Goldman, Maria H S; Goldman, Gustavo H

    2004-01-01

    The DNA damage response is a protective mechanism that ensures the maintenance of genomic integrity. We have used Aspergillus nidulans as a model system to characterize the DNA damage response caused by the antitopoisomerase I drug, camptothecin. We report the molecular characterization of a p34Cdc2-related gene, npkA, from A. nidulans. The npkA gene is transcriptionally induced by camptothecin and other DNA-damaging agents, and its induction in the presence of camptothecin is dependent on the uvsBATR gene. There were no growth defects, changes in developmental patterns, increased sensitivity to DNA-damaging agents, or effects on septation or growth rate in the A. nidulans npkA deletion strain. However, the DeltanpkA mutation can partially suppress HU sensitivity caused by the DeltauvsBATR and uvsD153ATRIP checkpoint mutations. We demonstrated that the A. nidulans uvsBATR gene is involved in DNA replication and the intra-S-phase checkpoints and that the DeltanpkA mutation can suppress its intra-S-phase checkpoint deficiency. There is a defect in both the intra-S-phase and DNA replication checkpoints due to the npkA inactivation when DNA replication is slowed at 6 mm HU. Our results suggest that the npkA gene plays a role in cell cycle progression during S-phase as well as in a DNA damage signal transduction pathway in A. nidulans. PMID:15342504

  3. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.

    PubMed

    Kim, June-Bum; Lim, Nary; Kim, Sung-Jo; Heo, Tae-Hwe

    2012-12-01

    Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N-acetylcysteine (NAC), a well-known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Effect of Treatment Media on the Agglomeration of Titanium Dioxide Nanoparticles: Impact on Genotoxicity, Cellular Interaction, and Cell Cycle

    EPA Science Inventory

    ABSTRACT The widespread use of titanium dioxide (TiO2) nanoparticles in consumer products increases the probability of exposure to humans and the environment. Although TiO2 nanoparticles have been shown to induce DNA damage (comet assay) and chromosome damage (micronucleus ass...

  5. Damage-induced ectopic recombination in the yeast Saccharomyces cerevisiae.

    PubMed

    Kupiec, M; Steinlauf, R

    1997-06-09

    Mitotic recombination in the yeast Saccharomyces cerevisiae is induced when cells are irradiated with UV or X-rays, reflecting the efficient repair of damage by recombinational repair mechanisms. We have used multiply marked haploid strains that allow the simultaneous detection of several types of ectopic recombination events. We show that inter-chromosomal ectopic conversion of lys2 heteroalleles and, to a lesser extent, direct repeat recombination (DRR) between non-tandem repeats, are increased by DNA-damaging agents; in contrast, ectopic recombination of the naturally occurring Ty element is not induced. We have tested several hypotheses that could explain the preferential lack of induction of Ty recombination by DNA-damaging agents. We have found that the lack of induction cannot be explained by a cell cycle control or by an effect of the mating-type genes. We also found no role for the flanking long terminal repeats (LTRs) of the Ty in preventing the induction. Ectopic conversion, DRR, and forward mutation of artificial repeats show different kinetics of induction at various positions of the cell cycle, reflecting different mechanisms of recombination. We discuss the mechanistic and evolutionary aspects of these results.

  6. On The Development of Biophysical Models for Space Radiation Risk Assessment

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Dicello, J. F.

    1999-01-01

    Experimental techniques in molecular biology are being applied to study biological risks from space radiation. The use of molecular assays presents a challenge to biophysical models which in the past have relied on descriptions of energy deposition and phenomenological treatments of repair. We describe a biochemical kinetics model of cell cycle control and DNA damage response proteins in order to model cellular responses to radiation exposures. Using models of cyclin-cdk, pRB, E2F's, p53, and GI inhibitors we show that simulations of cell cycle populations and GI arrest can be described by our biochemical approach. We consider radiation damaged DNA as a substrate for signal transduction processes and consider a dose and dose-rate reduction effectiveness factor (DDREF) for protein expression.

  7. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis.

    PubMed

    Xu, Deyang; Huang, Weihua; Li, Yang; Wang, Hua; Huang, Hai; Cui, Xiaofeng

    2012-03-01

    The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  8. Restriction Endonucleases from Invasive Neisseria gonorrhoeae Cause Double-Strand Breaks and Distort Mitosis in Epithelial Cells during Infection

    PubMed Central

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies. PMID:25460012

  9. Restriction endonucleases from invasive Neisseria gonorrhoeae cause double-strand breaks and distort mitosis in epithelial cells during infection.

    PubMed

    Weyler, Linda; Engelbrecht, Mattias; Mata Forsberg, Manuel; Brehwens, Karl; Vare, Daniel; Vielfort, Katarina; Wojcik, Andrzej; Aro, Helena

    2014-01-01

    The host epithelium is both a barrier against, and the target for microbial infections. Maintaining regulated cell growth ensures an intact protective layer towards microbial-induced cellular damage. Neisseria gonorrhoeae infections disrupt host cell cycle regulation machinery and the infection causes DNA double strand breaks that delay progression through the G2/M phase. We show that intracellular gonococci upregulate and release restriction endonucleases that enter the nucleus and damage human chromosomal DNA. Bacterial lysates containing restriction endonucleases were able to fragment genomic DNA as detected by PFGE. Lysates were also microinjected into the cytoplasm of cells in interphase and after 20 h, DNA double strand breaks were identified by 53BP1 staining. In addition, by using live-cell microscopy and NHS-ester stained live gonococci we visualized the subcellular location of the bacteria upon mitosis. Infected cells show dysregulation of the spindle assembly checkpoint proteins MAD1 and MAD2, impaired and prolonged M-phase, nuclear swelling, micronuclei formation and chromosomal instability. These data highlight basic molecular functions of how gonococcal infections affect host cell cycle regulation, cause DNA double strand breaks and predispose cellular malignancies.

  10. Replication-mediated disassociation of replication protein A–XPA complex upon DNA damage: implications for RPA handing off

    PubMed Central

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2013-01-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086

  11. Analysis of re-replication from deregulated origin licensing by DNA fiber spreading

    PubMed Central

    Dorn, Elizabeth S.; Chastain, Paul D.; Hall, Jonathan R.; Cook, Jeanette Gowen

    2009-01-01

    A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and tumorigenesis. In the absence of detectable increases in cellular DNA content however, it has been difficult to directly demonstrate re-replication or to determine if the ability to re-replicate is restricted to a particular cell-cycle phase. Using an adaptation of DNA fiber spreading we report the direct detection of re-replication on single DNA molecules from human chromosomes. Using this method we demonstrate substantial re-replication within 1 h of S phase entry in cells overproducing the replication factor, Cdt1. Moreover, a comparison of the HeLa cancer cell line to untransformed fibroblasts suggests that HeLa cells produce replication signals consistent with low-level re-replication in otherwise unperturbed cell cycles. Re-replication after depletion of the Cdt1 inhibitor, geminin, in an untransformed fibroblast cell line is undetectable by standard assays but readily quantifiable by DNA fiber spreading analysis. Direct evaluation of re-replicated DNA molecules will promote increased understanding of events that promote or perturb genome stability. PMID:19010964

  12. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    PubMed Central

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  13. Squalene Inhibits ATM-Dependent Signaling in γIR-Induced DNA Damage Response through Induction of Wip1 Phosphatase.

    PubMed

    Tatewaki, Naoto; Konishi, Tetsuya; Nakajima, Yuki; Nishida, Miyako; Saito, Masafumi; Eitsuka, Takahiro; Sakamaki, Toshiyuki; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.

  14. DNA damage bypass operates in the S and G2 phases of the cell cycle and exhibits differential mutagenicity

    PubMed Central

    Diamant, Noam; Hendel, Ayal; Vered, Ilan; Carell, Thomas; Reißner, Thomas; de Wind, Niels; Geacinov, Nicholas; Livneh, Zvi

    2012-01-01

    Translesion DNA synthesis (TLS) employs low-fidelity DNA polymerases to bypass replication-blocking lesions, and being associated with chromosomal replication was presumed to occur in the S phase of the cell cycle. Using immunostaining with anti-replication protein A antibodies, we show that in UV-irradiated mammalian cells, chromosomal single-stranded gaps formed in S phase during replication persist into the G2 phase of the cell cycle, where their repair is completed depending on DNA polymerase ζ and Rev1. Analysis of TLS using a high-resolution gapped-plasmid assay system in cell populations enriched by centrifugal elutriation for specific cell cycle phases showed that TLS operates both in S and G2. Moreover, the mutagenic specificity of TLS in G2 was different from S, and in some cases overall mutation frequency was higher. These results suggest that TLS repair of single-stranded gaps caused by DNA lesions can lag behind chromosomal replication, is separable from it, and occurs both in the S and G2 phases of the cell cycle. Such a mechanism may function to maintain efficient replication, which can progress despite the presence of DNA lesions, with TLS lagging behind and patching regions of discontinuity. PMID:21908406

  15. Urea transporter UT-B deletion induces DNA damage and apoptosis in mouse bladder urothelium.

    PubMed

    Dong, Zixun; Ran, Jianhua; Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders.

  16. Urea Transporter UT-B Deletion Induces DNA Damage and Apoptosis in Mouse Bladder Urothelium

    PubMed Central

    Zhou, Hong; Chen, Jihui; Lei, Tianluo; Wang, Weiling; Sun, Yi; Lin, Guiting; Bankir, Lise; Yang, Baoxue

    2013-01-01

    Background Previous studies found that urea transporter UT-B is abundantly expressed in bladder urothelium. However, the dynamic role of UT-B in bladder urothelial cells remains unclear. The objective of this study is to evaluate the physiological roles of UT-B in bladder urothelium using UT-B knockout mouse model and T24 cell line. Methodology/Principal Findings Urea and NO measurement, mRNA expression micro-array analysis, light and transmission electron microscopy, apoptosis assays, DNA damage and repair determination, and intracellular signaling examination were performed in UT-B null bladders vs wild-type bladders and in vitro T24 epithelial cells. UT-B was highly expressed in mouse bladder urothelium. The genes, Dcaf11, MCM2-4, Uch-L1, Bnip3 and 45 S pre rRNA, related to DNA damage and apoptosis were significantly regulated in UT-B null urothelium. DNA damage and apoptosis highly occurred in UT-B null urothelium. Urea and NO levels were significantly higher in UT-B null urothelium than that in wild-type, which may affect L-arginine metabolism and the intracellular signals related to DNA damage and apoptosis. These findings were consistent with the in vitro study in T24 cells that, after urea loading, exhibited cell cycle delay and apoptosis. Conclusions/Significance UT-B may play an important role in protecting bladder urothelium by balancing intracellular urea concentration. Disruption of UT-B function induces DNA damage and apoptosis in bladder, which can result in bladder disorders. PMID:24204711

  17. A novel single-cell method provides direct evidence of persistent DNA damage in senescent cells and aged mammalian tissues.

    PubMed

    Galbiati, Alessandro; Beauséjour, Christian; d'Adda di Fagagna, Fabrizio

    2017-04-01

    The DNA damage response (DDR) arrests cell cycle progression until DNA lesions, like DNA double-strand breaks (DSBs), are repaired. The presence of DSBs in cells is usually detected by indirect techniques that rely on the accumulation of proteins at DSBs, as part of the DDR. Such detection may be biased, as some factors and their modifications may not reflect physical DNA damage. The dependency on DDR markers of DSB detection tools has left questions unanswered. In particular, it is known that senescent cells display persistent DDR foci, that we and others have proposed to be persistent DSBs, resistant to endogenous DNA repair activities. Others have proposed that these peculiar DDR foci might not be sites of damaged DNA per se but instead stable chromatin modifications, termed DNA-SCARS. Here, we developed a method, named 'DNA damage in situ ligation followed by proximity ligation assay' (DI-PLA) for the detection and imaging of DSBs in cells. DI-PLA is based on the capture of free DNA ends in fixed cells in situ, by ligation to biotinylated double-stranded DNA oligonucleotides, which are next recognized by antibiotin anti-bodies. Detection is enhanced by PLA with a partner DDR marker at the DSB. We validated DI-PLA by demonstrating its ability to detect DSBs induced by various genotoxic insults in cultured cells and tissues. Most importantly, by DI-PLA, we demonstrated that both senescent cells in culture and tissues from aged mammals retain true unrepaired DSBs associated with DDR markers. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    PubMed

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  19. Enterococcus faecalis infection causes inflammation, intracellular oxphos-independent ROS production, and DNA damage in human gastric cancer cells.

    PubMed

    Strickertsson, Jesper A B; Desler, Claus; Martin-Bertelsen, Tomas; Machado, Ana Manuel Dantas; Wadstrøm, Torkel; Winther, Ole; Rasmussen, Lene Juel; Friis-Hansen, Lennart

    2013-01-01

    Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-κB inflammatory response as well as impaired DNA damage response and cell cycle control gene expression. Array Express accession number E-MEXP-3496.

  20. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents.

    PubMed

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-07-09

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents.

  1. Targeting neddylation induces DNA damage and checkpoint activation and sensitizes chronic lymphocytic leukemia B cells to alkylating agents

    PubMed Central

    Paiva, C; Godbersen, J C; Berger, A; Brown, J R; Danilov, A V

    2015-01-01

    Microenvironment-mediated upregulation of the B-cell receptor (BCR) and nuclear factor-κB (NF-κB) signaling in CLL cells resident in the lymph node and bone marrow promotes apoptosis evasion and clonal expansion. We recently reported that MLN4924 (pevonedistat), an investigational agent that inhibits the NEDD8-activating enzyme (NAE), abrogates stromal-mediated NF-κB pathway activity and CLL cell survival. However, the NAE pathway also assists degradation of multiple other substrates. MLN4924 has been shown to induce DNA damage and cell cycle arrest, but the importance of this mechanism in primary neoplastic B cells has not been studied. Here we mimicked the lymph node microenvironment using CD40 ligand (CD40L)-expressing stroma and interleukin-21 (IL-21) to find that inducing proliferation of the primary CLL cells conferred enhanced sensitivity to NAE inhibition. Treatment of the CD40-stimulated CLL cells with MLN4924 resulted in deregulation of Cdt1, a DNA replication licensing factor, and cell cycle inhibitors p21 and p27. This led to DNA damage, checkpoint activation and G2 arrest. Alkylating agents bendamustine and chlorambucil enhanced MLN4924-mediated DNA damage and apoptosis. These events were more prominent in cells stimulated with IL-21 compared with CD40L alone, indicating that, following NAE inhibition, the culture conditions were able to direct CLL cell fate from an NF-κB inhibition to a Cdt1 induction program. Our data provide insight into the biological consequences of targeting NAE in CLL and serves as further rationale for studying the clinical activity of MLN4924 in CLL, particularly in combination with alkylating agents. PMID:26158513

  2. Low power lasers on genomic stability.

    PubMed

    Trajano, Larissa Alexsandra da Silva Neto; Sergio, Luiz Philippe da Silva; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da

    2018-03-01

    Exposure of cells to genotoxic agents causes modifications in DNA, resulting to alterations in the genome. To reduce genomic instability, cells have DNA damage responses in which DNA repair proteins remove these lesions. Excessive free radicals cause DNA damages, repaired by base excision repair and nucleotide excision repair pathways. When non-oxidative lesions occur, genomic stability is maintained through checkpoints in which the cell cycle stops and DNA repair occurs. Telomere shortening is related to the development of various diseases, such as cancer. Low power lasers are used for treatment of a number of diseases, but they are also suggested to cause DNA damages at sub-lethal levels and alter transcript levels from DNA repair genes. This review focuses on genomic and telomere stabilization modulation as possible targets to improve therapeutic protocols based on low power lasers. Several studies have been carried out to evaluate the laser-induced effects on genome and telomere stabilization suggesting that exposure to these lasers modulates DNA repair mechanisms, telomere maintenance and genomic stabilization. Although the mechanisms are not well understood yet, low power lasers could be effective against DNA harmful agents by induction of DNA repair mechanisms and modulation of telomere maintenance and genomic stability. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Delgado, Oliver; Ding, Liang-Hao; Story, Michael D.; Minna, John D.; Shay, Jerry W.; Chen, David J.

    2011-01-01

    DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. PMID:21421565

  4. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs

    PubMed Central

    Furst, Audrey; Koch, Marc; Fischer, Benoit; Soutoglou, Evi

    2016-01-01

    DNA lesions are sensed by a network of proteins that trigger the DNA damage response (DDR), a signaling cascade that acts to delay cell cycle progression and initiate DNA repair. The Mediator of DNA damage Checkpoint protein 1 (MDC1) is essential for spreading of the DDR signaling on chromatin surrounding Double Strand Breaks (DSBs) by acting as a scaffold for PI3K kinases and for ubiquitin ligases. MDC1 also plays a role both in Non-Homologous End Joining (NHEJ) and Homologous Recombination (HR) repair pathways. Here we identify two novel binding partners of MDC1, the poly (ADP-ribose) Polymerases (PARPs) TNKS1 and 2. We find that TNKSs are recruited to DNA lesions by MDC1 and regulate DNA end resection and BRCA1A complex stabilization at lesions leading to efficient DSB repair by HR and proper checkpoint activation. PMID:26845027

  5. SMK-1/PPH-4.1–mediated silencing of the CHK-1 response to DNA damage in early C. elegans embryos

    PubMed Central

    Kim, Seung-Hwan; Holway, Antonia H.; Wolff, Suzanne; Dillin, Andrew; Michael, W. Matthew

    2007-01-01

    During early embryogenesis in Caenorhabditis elegans, the ATL-1–CHK-1 (ataxia telangiectasia mutated and Rad3 related–Chk1) checkpoint controls the timing of cell division in the future germ line, or P lineage, of the animal. Activation of the CHK-1 pathway by its canonical stimulus DNA damage is actively suppressed in early embryos so that P lineage cell divisions may occur on schedule. We recently found that the rad-2 mutation alleviates this checkpoint silent DNA damage response and, by doing so, causes damage-dependent delays in early embryonic cell cycle progression and subsequent lethality. In this study, we report that mutations in the smk-1 gene cause the rad-2 phenotype. SMK-1 is a regulatory subunit of the PPH-4.1 (protein phosphatase 4) protein phosphatase, and we show that SMK-1 recruits PPH-4.1 to replicating chromatin, where it silences the CHK-1 response to DNA damage. These results identify the SMK-1–PPH-4.1 complex as a critical regulator of the CHK-1 pathway in a developmentally relevant context. PMID:17908915

  6. Bimodal regulation of p21waf1 protein as function of DNA damage levels

    PubMed Central

    Buscemi, G; Ricci, C; Zannini, L; Fontanella, E; Plevani, P; Delia, D

    2014-01-01

    Human p21Waf1 protein is well known for being transcriptionally induced by p53 and activating the cell cycle checkpoint arrest in response to DNA breaks. Here we report that p21Waf1 protein undergoes a bimodal regulation, being upregulated in response to low doses of DNA damage but rapidly and transiently degraded in response to high doses of DNA lesions. Responsible for this degradation is the checkpoint kinase Chk1, which phosphorylates p21Waf1 on T145 and S146 residues and induces its proteasome-dependent proteolysis. The initial p21Waf1 degradation is then counteracted by the ATM-Chk2 pathway, which promotes the p53-dependent accumulation of p21Waf1 at any dose of damage. We also found that p21Waf1 ablation favors the activation of an apoptotic program to eliminate otherwise irreparable cells. These findings support a model in which in human cells a balance between ATM-Chk2-p53 and the ATR-Chk1 pathways modulates p21Waf1 protein levels in relation to cytostatic and cytotoxic doses of DNA damage. PMID:25486478

  7. Apoptosis-Like Death, an Extreme SOS Response in Escherichia coli

    PubMed Central

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav

    2014-01-01

    ABSTRACT In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. PMID:25028428

  8. NOTCH1 Inhibits Activation of ATM by Impairing the Formation of an ATM-FOXO3a-KAT5/Tip60 Complex.

    PubMed

    Adamowicz, Marek; Vermezovic, Jelena; d'Adda di Fagagna, Fabrizio

    2016-08-23

    The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Ultraviolet mutagenesis studies of [psi], a cytoplasmic determinant of Saccharomyces cerevisiae.

    PubMed

    Tuite, M F; Cox, B S

    1980-07-01

    UV mutagenesis was used to probe the molecular nature of [psi], a nonmitochondrial cytoplasmic determinant of Saccharomyces cerevisiae involved in the control of nonsense suppression. The UV-induced mutation from [psi+] to [psi-] showed characteristics of forward nuclear gene mutation in terms of frequency, induction kinetics, occurrence of whole and sectored mutant clones and the effect of the stage in the growth cycle on mutation frequency. The involvement of pyrimidine dimers in the premutational lesion giving the [psi-] mutation was demonstrated by photoreactivation. UV-induced damage to the [psi] genetic determinant was shown to be repaired by nuclear-coded repair enzymes that are responsible for the repair of nuclear DNA damage. UV-induced damage to mitochondrial DNA appeared to be, at least partly, under the control of different repair processes. The evidence obtained suggests that the [psi] determinant is DNA.

  10. NORF5/HUG1 is a component of the MEC1-mediated checkpoint response to DNA damage and replication arrest in Saccharomyces cerevisiae.

    PubMed

    Basrai, M A; Velculescu, V E; Kinzler, K W; Hieter, P

    1999-10-01

    Analysis of global gene expression in Saccharomyces cerevisiae by the serial analysis of gene expression technique has permitted the identification of at least 302 previously unidentified transcripts from nonannotated open reading frames (NORFs). Transcription of one of these, NORF5/HUG1 (hydroxyurea and UV and gamma radiation induced), is induced by DNA damage, and this induction requires MEC1, a homolog of the ataxia telangiectasia mutated (ATM) gene. DNA damage-specific induction of HUG1, which is independent of the cell cycle stage, is due to the alleviation of repression by the Crt1p-Ssn6p-Tup1p complex. Overexpression of HUG1 is lethal in combination with a mec1 mutation in the presence of DNA damage or replication arrest, whereas a deletion of HUG1 rescues the lethality due to a mec1 null allele. HUG1 is the first example of a NORF with important biological functional properties and defines a novel component of the MEC1 checkpoint pathway.

  11. 3′-Phosphoadenosine 5′-phosphosulfate synthase 1 (PAPSS1) knockdown sensitizes non-small cell lung cancer cells to DNA damaging agents

    PubMed Central

    Leung, Ada W. Y.; Dragowska, Wieslawa H.; Ricaurte, Daniel; Kwok, Brian; Mathew, Veena; Roosendaal, Jeroen; Ahluwalia, Amith; Warburton, Corinna; Laskin, Janessa J.; Stirling, Peter C.; Qadir, Mohammed A.; Bally, Marcel B.

    2015-01-01

    Standard treatment for advanced non-small cell lung cancer (NSCLC) with no known driver mutation is platinum-based chemotherapy, which has a response rate of only 30–33%. Through an siRNA screen, 3′-phosphoadenosine 5′-phosphosulfate (PAPS) synthase 1 (PAPSS1), an enzyme that synthesizes the biologically active form of sulfate PAPS, was identified as a novel platinum-sensitizing target in NSCLC cells. PAPSS1 knockdown in combination with low-dose (IC10) cisplatin reduces clonogenicity of NSCLC cells by 98.7% (p < 0.001), increases DNA damage, and induces G1/S phase cell cycle arrest and apoptosis. PAPSS1 silencing also sensitized NSCLC cells to other DNA crosslinking agents, radiation, and topoisomerase I inhibitors, but not topoisomerase II inhibitors. Chemo-sensitization was not observed in normal epithelial cells. Knocking out the PAPSS1 homolog did not sensitize yeast to cisplatin, suggesting that sulfate bioavailability for amino acid synthesis is not the cause of sensitization to DNA damaging agents. Rather, sensitization may be due to sulfation reactions involved in blocking the action of DNA damaging agents, facilitating DNA repair, promoting cancer cell survival under therapeutic stress or reducing the bioavailability of DNA damaging agents. Our study demonstrates for the first time that PAPSS1 could be targeted to improve the activity of multiple anticancer agents used to treat NSCLC. PMID:26220590

  12. Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break

    PubMed Central

    Lindgren, Emma; Hägg, Sara; Giordano, Fosco; Björkegren, Johan; Ström, Lena

    2014-01-01

    Genome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription based on its role as insulator. More recently, data are emerging indicating direct roles for gene regulation also in yeast. Here we extend these studies by investigating whether the cohesin loader Scc2 is involved in regulation of gene expression. We performed global gene expression profiling in the absence and presence of DNA damage, in wild type and Scc2 deficient G2/M arrested cells, when it is known that Scc2 is important for DNA double strand break repair and formation of damage induced cohesion. We found that not only the DNA damage specific transcriptional response is distorted after inactivation of Scc2 but also the overall transcription profile. Interestingly, these alterations did not correlate with changes in cohesin binding. PMID:25483075

  13. DNA repair and aging: the impact of the p53 family.

    PubMed

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-12-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.

  14. DNA repair and aging: the impact of the p53 family

    PubMed Central

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-01-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR. PMID:26668111

  15. DNA repair and tumorigenesis: lessons from hereditary cancer syndromes.

    PubMed

    Heinen, Christopher D; Schmutte, Christoph; Fishel, Richard

    2002-01-01

    The discovery that alterations of the DNA mismatch repair system (MMR) were linked to the common human cancer susceptibility syndrome hereditary nonpolyposis colon cancer (HNPCC) resulted in the declaration of a third class of genes involved in tumor development. In addition to oncogenes and tumor suppressors, alterations of DNA repair genes involved in maintaining genomic stability were found to be a clear cause of tum the level of the single nucleotides or chromosomes. This observation suggested that the establishment of genomic instability, termed the Mutator Phenotype, was an important aspect of tumor development.(1,2) Since the initial identification of the human MutS homolog hMSH2 nearly a decade ago,(3,4) more links have been described between human cancers and genes involved in maintaining genomic stability. Work in recent years has revealed that DNA repair proteins may also function in signaling pathways that provoke cell cycle arrest and apoptosis. This review will focus on the genetic and biochemical functions of DNA repair genes linked to hereditary cancer predisposition characterized by genomic instability (Table 1). Interestingly, the protein products of these genes have been directly or indirectly linked to the DNA damage-induce cell cycle arrest and apoptosis. We conclude that a robust connection between DNA repair proteins and damage-induced apoptosis may be as important for tumorigenesis as their role in maintaining genome stability.

  16. Curcumin and Vitamin E Protect against Adverse Effects of Benzo[a]pyrene in Lung Epithelial Cells

    PubMed Central

    Cai, Qingsong; Lv, Tangfeng; Singh, Kamaleshwar; Gao, Weimin

    2014-01-01

    Benzo[a]pyrene (BaP), a well-known environmental carcinogen, promotes oxidative stress and DNA damage. Curcumin and vitamin E (VE) have potent antioxidative activity that protects cells from oxidative stress and cellular damage. The objectives of the present study were to investigate the adverse effects of BaP on normal human lung epithelial cells (BEAS-2B), the potential protective effects of curcumin and VE against BaP-induced cellular damage, and the molecular mechanisms of action. MTT assay, flow cytometry, fluorescence microplate assay, HPLC, qRT-PCR, and western blot were performed to analyze cytotoxicity, cell cycle, reactive oxygen species (ROS), BaP diol-epoxidation (BPDE)-DNA adducts, gene expression, and protein expression, respectively. Curcumin or VE prevented cells from BaP-induced cell cycle arrest and growth inhibition, significantly suppressed BaP-induced ROS levels, and decreased BPDE-DNA adducts. While CYP1A1 and 1B1 were induced by BaP, these inductions were not significantly reduced by curcumin or VE. Moreover, the level of activated p53 and PARP-1 were significantly induced by BaP, whereas this induction was markedly reduced after curcumin and VE co-treatment. Survivin was significantly down-regulated by BaP, and curcumin significantly restored survivin expression in BaP-exposed cells. The ratio of Bax/Bcl-2 was also significantly increased in cells exposed to BaP and this increase was reversed by VE co-treatment. Taken together, BaP-induced cytotoxicity occurs through DNA damage, cell cycle arrest, ROS production, modulation of metabolizing enzymes, and the expression/activation of p53, PARP-1, survivin, and Bax/Bcl-2. Curcumin and VE could reverse some of these BaP-mediated alterations and therefore be effective natural compounds against the adverse effects of BaP in lung cells. PMID:24664296

  17. Enhanced anticancer effects of a mixture of low-dose mushrooms and Panax ginseng root extracts in human colorectal cancer cells.

    PubMed

    Lee, Mi So; Kim, Mi-Sook; Yoo, Jae Kuk; Lee, Ji Young; Ju, Jae Eun; Jeong, Youn Kyoung

    2017-09-01

    Worldwide, colorectal cancer is the third most common cancer in men and the second most common in women. As conventional colorectal cancer therapies result in various side effects, there is a need for adjuvant therapy that can enhance the conventional therapies without complications. In this study, we investigated the anticancer effects of combined mixture of the several medicinal mushrooms and Panax ginseng root extracts (also called Amex7) as an adjuvant compound in the treatment of human colorectal cancer. We observed the in vivo inhibitory effect of Amex7 (1.25, 6.25, and 12.5 ml/kg, oral administration, twice daily) on tumor growth in a mouse model xenografted with HT-29 human colorectal cancer cells. In vitro, at 6, 12, and 24 h after 4% Amex7 treatment, we analyzed cell cycle by flow cytometry and the expression levels of cell cycle progression, apoptosis, and DNA damage repair-related proteins using immunoblotting and immunofluorescence staining in HT-29 cell line. As a result, Amex7 significantly suppressed tumor growth in HT-29 human colorectal cancer cells and xenografts. In vitro, Amex7 induced G2/M arrest through the regulation of cell cycle proteins and cell death by apoptosis and autophagy. Additionally, Amex7 consistently induced DNA damage and delayed the repair of Amex7-induced DNA damage by reducing the level of HR repair proteins. In conclusion, Amex7 enhanced anticancer effects through the induction of G2/M arrest and cell death, including apoptosis and autophagy. Furthermore, Amex7 impaired DNA damage repair. The present study provides a scientific rationale for the clinical use of a combined mixture of medicinal mushrooms and P. ginseng root extracts as an adjuvant treatment in human colorectal cancer.

  18. A DNA damage checkpoint pathway coordinates the division of dikaryotic cells in the ink cap mushroom Coprinopsis cinerea.

    PubMed

    de Sena-Tomás, Carmen; Navarro-González, Mónica; Kües, Ursula; Pérez-Martín, José

    2013-09-01

    The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.

  19. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2006-04-01

    replication in yeast cells. In the prior reporting period we demonstrated that re-replication induces a rapid and significant decrease in cell viability...repair, DNA replication, checkpoint, cell cycle, yeast , RAD9 16. SECURITY CLASSIFICATION OF: 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...initiation, our laboratory has been able to conditionally induce varying amounts of re- replication in yeast cells. Effectively, cells enter, but do not

  20. Apoptosis-like death, an extreme SOS response in Escherichia coli.

    PubMed

    Erental, Ariel; Kalderon, Ziva; Saada, Ann; Smith, Yoav; Engelberg-Kulka, Hanna

    2014-07-15

    In bacteria, SOS is a global response to DNA damage, mediated by the recA-lexA genes, resulting in cell cycle arrest, DNA repair, and mutagenesis. Previously, we reported that Escherichia coli responds to DNA damage via another recA-lexA-mediated pathway resulting in programmed cell death (PCD). We called it apoptosis-like death (ALD) because it is characterized by membrane depolarization and DNA fragmentation, which are hallmarks of eukaryotic mitochondrial apoptosis. Here, we show that ALD is an extreme SOS response that occurs only under conditions of severe DNA damage. Furthermore, we found that ALD is characterized by additional hallmarks of eukaryotic mitochondrial apoptosis, including (i) rRNA degradation by the endoribonuclease YbeY, (ii) upregulation of a unique set of genes that we called extensive-damage-induced (Edin) genes, (iii) a decrease in the activities of complexes I and II of the electron transport chain, and (iv) the formation of high levels of OH˙ through the Fenton reaction, eventually resulting in cell death. Our genetic and molecular studies on ALD provide additional insight for the evolution of mitochondria and the apoptotic pathway in eukaryotes. Importance: The SOS response is the first described and the most studied bacterial response to DNA damage. It is mediated by a set of two genes, recA-lexA, and it results in DNA repair and thereby in the survival of the bacterial culture. We have shown that Escherichia coli responds to DNA damage by an additional recA-lexA-mediated pathway resulting in an apoptosis-like death (ALD). Apoptosis is a mode of cell death that has previously been reported only in eukaryotes. We found that E. coli ALD is characterized by several hallmarks of eukaryotic mitochondrial apoptosis. Altogether, our results revealed that recA-lexA is a DNA damage response coordinator that permits two opposite responses: life, mediated by the SOS, and death, mediated by the ALD. The choice seems to be a function of the degree of DNA damage in the cell. Copyright © 2014 Erental et al.

  1. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice.

    PubMed

    Hilbig, Josiane; Policarpi, Priscila de Britto; Grinevicius, Valdelúcia Maria Alves de Souza; Mota, Nádia Sandrine Ramos Santos; Toaldo, Isabela Maia; Luiz, Marilde Terezinha Bordignon; Pedrosa, Rozangela Curi; Block, Jane Mara

    2018-01-30

    In Brazil many health disorders are treated with the consumption of different varieties of tea. Shell extracts of pecan nut (Carya illinoinensis), which have significant amounts of phenolic compounds in their composition, are popularly taken as tea to prevent diverse pathologies. Phenolic compounds from pecan nut shell extract have been associated with diverse biological effects but the effect on tumor cells has not been reported yet. The aim of the current work was to evaluate the relationship between DNA fragmentation, cell cycle arrest and apoptosis induced by pecan nut shell extract and its antitumor activity. Cytotoxicity, proliferation, cell death and cell cycle were evaluated in MCF-7 cells by MTT, colony assay, differential coloring and flow cytometry assays, respectively. DNA damage effects were evaluated through intercalation into CT-DNA and plasmid DNA cleavage. Tumor growth inhibition, survival time increase, apoptosis and cell cycle arrest were assessed in Ehrlich ascites tumor in Balb/C mice. The cytotoxic effect of pecan nut shell extracts, the induction of cell death by apoptosis and also the cell cycle arrest in MCF-7 cells have been demonstrated. The survival time in mice with Ehrlich ascites tumor increased by 67%. DNA damage was observed in the CT-DNA, plasmid DNA and comet assays. The mechanism involved in the antitumor effect of pecan nut shell extracts may be related to the activation of key proteins involved in apoptosis cell death (Bcl-XL, Bax and p53) and on the cell cycle regulation (cyclin A, cyclin B and CDK2). These results were attributed to the phenolic profile of the extract, which presented compounds such as gallic, 4-hydroxybenzoic, chlorogenic, vanillic, caffeic and ellagic acid, and catechin, epicatechin, epigallocatechin and epicatechin gallate. The results indicated that pecan nut shell extracts are effective against tumor cells growth and may be considered as an alternative to the treatment of cancer. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.

    PubMed

    Haoudi, Abdelali; Daniels, Rodney C; Wong, Eric; Kupfer, Gary; Semmes, O John

    2003-09-26

    The virally encoded oncoprotein Tax has been implicated in HTLV-1-mediated cellular transformation. The exact mechanism by which this protein contributes to the oncogenic process is not known. However, it has been hypothesized that Tax induces genomic instability via repression of cellular DNA repair. We examined the effect of de novo Tax expression upon the cell cycle, because appropriate activation of cell cycle checkpoints is essential to a robust damage-repair response. Upon induction of tax expression, Jurkat T-cells displayed a pronounced accumulation in G2/M that was reversible by caffeine. We examined the G2-specific checkpoint signaling response in these cells and found activation of the ATM/chk2-mediated pathway, whereas the ATR/chk1-mediated response was unaffected. Immunoprecipitation with anti-chk2 antibody results in co-precipitation of Tax demonstrating a direct interaction of Tax with a chk2-containing complex. We also show that Tax targets a discrete nuclear site and co-localizes with chk2 and not chk1. This nuclear site, previously identified as Tax Speckled Structures (TSS), also contains the early damage response factor 53BP1. The recruitment of 53BP1 to TSS is dependent upon ATM signaling and requires expression of Tax. Specifically, Tax expression induces redistribution of diffuse nuclear 53BP1 to the TSS foci. Taken together these data suggest that the TSS describe a unique nuclear site involved in DNA damage recognition, repair response, and cell cycle checkpoint activation. We suggest that association of Tax with this multifunctional subnuclear site results in disruption of a subset of the site-specific activities and contributes to cellular genomic instability.

  3. Rapid DNA double-strand breaks resulting from processing of Cr-DNA cross-links by both MutS dimers.

    PubMed

    Reynolds, Mindy F; Peterson-Roth, Elizabeth C; Bespalov, Ivan A; Johnston, Tatiana; Gurel, Volkan M; Menard, Haley L; Zhitkovich, Anatoly

    2009-02-01

    Mismatch repair (MMR) strongly enhances cyto- and genotoxicity of several chemotherapeutic agents and environmental carcinogens. DNA double-strand breaks (DSB) formed after two replication cycles play a major role in MMR-dependent cell death by DNA alkylating drugs. Here, we examined DNA damage detection and the mechanisms of the unusually rapid induction of DSB by MMR proteins in response to carcinogenic chromium(VI). We found that MSH2-MSH6 (MutSalpha) dimer effectively bound DNA probes containing ascorbate-Cr-DNA and cysteine-Cr-DNA cross-links. Binary Cr-DNA adducts, the most abundant form of Cr-DNA damage, were poor substrates for MSH2-MSH6, and their toxicity in cells was weak and MMR independent. Although not involved in the initial recognition of Cr-DNA damage, MSH2-MSH3 (MutSbeta) complex was essential for the induction of DSB, micronuclei, and apoptosis in human cells by chromate. In situ fractionation of Cr-treated cells revealed MSH6 and MSH3 chromatin foci that originated in late S phase and did not require replication of damaged DNA. Formation of MSH3 foci was MSH6 and MLH1 dependent, whereas MSH6 foci were unaffected by MSH3 status. DSB production was associated with progression of cells from S into G(2) phase and was completely blocked by the DNA synthesis inhibitor aphidicolin. Interestingly, chromosome 3 transfer into MSH3-null HCT116 cells activated an alternative, MSH3-like activity that restored dinucleotide repeat stability and sensitivity to chromate. Thus, sequential recruitment and unprecedented cooperation of MutSalpha and MutSbeta branches of MMR in processing of Cr-DNA cross-links is the main cause of DSB and chromosomal breakage at low and moderate Cr(VI) doses.

  4. The MluI cell cycle box (MCB) motifs, but not damage-responsive elements (DREs), are responsible for the transcriptional induction of the rhp51+ gene in response to DNA replication stress.

    PubMed

    Sartagul, Wugangerile; Zhou, Xin; Yamada, Yuki; Ma, Ning; Tanaka, Katsunori; Furuyashiki, Tomoyuki; Ma, Yan

    2014-01-01

    DNA replication stress induces the transcriptional activation of rhp51+, a fission yeast recA homolog required for repair of DNA double strand breaks. However, the mechanism by which DNA replication stress activates rhp51+ transcription is not understood. The promoter region of rhp51+ contains two damage-responsive elements (DREs) and two MluI cell cycle box (MCB) motifs. Using luciferase reporter assays, we examined the role of these elements in rhp51+ transcription. The full-length rhp51+ promoter and a promoter fragment containing MCB motifs only, but not a fragment containing DREs, mediated transcriptional activation upon DNA replication stress. Removal of the MCB motifs from the rhp51+ promoter abolished the induction of rhp51+ transcription by DNA replication stress. Consistent with a role for MCB motifs in rhp51+ transcription activation, deletion of the MBF (MCB-binding factor) co-repressors Nrm1 and Yox1 precluded rhp51+ transcriptional induction in response to DNA replication stress. Using cells deficient in checkpoint signaling molecules, we found that the Rad3-Cds1/Chk1 pathway partially mediated rhp51+ transcription in response to DNA replication stress, suggesting the involvement of unidentified checkpoint signaling pathways. Because MBF is critical for G1/S transcription, we examined how the cell cycle affected rhp51+ transcription. The transcription of rhp51+ and cdc18+, an MBF-dependent G1/S gene, peaked simultaneously in synchronized cdc25-22 cells. Furthermore, DNA replication stress maintained transcription of rhp51+ similarly to cdc18+. Collectively, these results suggest that MBF and its regulators mediate rhp51+ transcription in response to DNA replication stress, and underlie rhp51+ transcription at the G1/S transition.

  5. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    PubMed Central

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  6. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Chia-Wen; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan; Yao, Ju-Hsien

    2011-11-15

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivomore » in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: Black-Right-Pointing-Pointer ATO and SAHA are therapeutic agents with different action modes. Black-Right-Pointing-Pointer Combination of ATO and SAHA synergistically inhibits tumor cell growth. Black-Right-Pointing-Pointer SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. Black-Right-Pointing-Pointer ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.« less

  7. Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells

    PubMed Central

    Park, Soyoung; Li, Cen; Zhao, Hong; Darzynkiewicz, Zbigniew; Xu, Dazhong

    2016-01-01

    Hexavalent Chromium [Cr(VI)] compounds are human lung carcinogens and environmental/occupational hazards. The molecular mechanisms of Cr(VI) carcinogenesis appear to be complex and are poorly defined. In this study, we investigated the potential role of Gene 33 (ERRFI1, Mig6), a multifunctional adaptor protein, in Cr(VI)-mediated lung carcinogenesis. We show that the level of Gene 33 protein is suppressed by both acute and chronic Cr(VI) treatments in a dose- and time-dependent fashion in BEAS-2B lung epithelial cells. The inhibition also occurs in A549 lung bronchial carcinoma cells. Cr(VI) suppresses Gene 33 expression mainly through post-transcriptional mechanisms, although the mRNA level of gene 33 also tends to be lower upon Cr(VI) treatments. Cr(VI)-induced DNA damage appears primarily in the S phases of the cell cycle despite the high basal DNA damage signals at the G2M phase. Knockdown of Gene 33 with siRNA significantly elevates Cr(VI)-induced DNA damage in both BEAS-2B and A549 cells. Depletion of Gene 33 also promotes Cr(VI)-induced micronucleus (MN) formation and cell transformation in BEAS-2B cells. Our results reveal a novel function of Gene 33 in Cr(VI)-induced DNA damage and lung epithelial cell transformation. We propose that in addition to its role in the canonical EGFR signaling pathway and other signaling pathways, Gene 33 may also inhibit Cr(VI)-induced lung carcinogenesis by reducing DNA damage triggered by Cr(VI). PMID:26760771

  8. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.

    PubMed

    Weeden, Clare E; Asselin-Labat, Marie-Liesse

    2018-01-01

    Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DNA damage in children with scoliosis following X-ray exposure.

    PubMed

    Himmetoglu, S; Guven, M F; Bilsel, N; Dincer, Y

    2014-10-14

    It has been suggested that cancer incidence is high in subjects with scoliosis who are relatively more often exposed to X--ray for diagnosis and follow--up. X--ray is a kind of ionizing radiation and leads to formation of oxygen free radicals which are capable of damage to DNA, thus altered gen expression and mutation. p53 tumor suppressor gene plays a crucial role in the damage response. It controls the checkpoint of cell cycle and redirects the cell metabolism to either repair of damaged DNA or apoptosis as response to DNA damage. The aim of the present study was to examine serum levels of 8--Hydroxydeoxyguanosine (8--OHdG), a strongly mutagenic product of oxidative DNA damage, p53, superoxide dismutase (SOD) and glutathione peroxidase (G--Px), as antioxidant activity, in children with scoliosis who had got whole spine radiograph two times during the last year. A total of 31 children with adolescent idiopathic scoliosis and age--matched 21 healthy children were included in the study. Serum levels of 8--OHdG and p53 were measured with ELISA kits. SOD and G--Px activities were determined with spectrophotometric assays. Serum levels of 8--OHdG and p53 were found to be higher (P<0.001 and P<0.01, respectively), SOD activity was found to be lower (P<0.001) in the children with scoliosis as compared to age--matched controls. There was no significant difference between the groups for G--Px activity. Our data show that X--ray exposure causes increased 8--OHdG level, and decreased SOD activity, which both may reflect a tumor promoting condition. Increased p53 level may be interpreted as a compensatory effort of cell to X--ray mediated DNA damage.

  10. DNA damage in children with scoliosis following X-ray exposure.

    PubMed

    Himmetoglu, S; Guven, M F; Bilsel, N; Dincer, Y

    2015-06-01

    It has been suggested that cancer incidence is high in subjects with scoliosis who are relatively more often exposed to X-ray for diagnosis and follow-up. X-ray is a kind of ionizing radiation and leads to formation of oxygen free radicals which are capable of damage to DNA, thus altered gen expression and mutation. p53 tumor suppressor gene plays a crucial role in the damage response. It controls the checkpoint of cell cycle and redirects the cell metabolism to either repair of damaged DNA or apoptosis as response to DNA damage. The aim of the present study was to examine serum levels of 8-Hydroxydeoxyguanosine (8-OHdG), a strongly mutagenic product of oxidative DNA damage, p53, superoxide dismutase (SOD) and glutathione peroxidase (G-Px), as antioxidant activity, in children with scoliosis who had got whole spine radiograph two times during the last year. A total of 31 children with adolescent idiopathic scoliosis and 21 age-matched healthy children were included in the study. Serum levels of 8-OHdG and p53 were measured with ELISA kits. SOD and G-Px activities were determined with spectrophotometric assays. Serum levels of 8-OHdG and p53 were found to be higher (P<0.001 and P<0.01, respectively), SOD activity was found to be lower (P<0.001) in the children with scoliosis as compared to age-matched controls. There was no significant difference between the groups for G-Px activity. Our data show that X-ray exposure causes increased 8-OHdG level, and decreased SOD activity, which both may reflect a tumor promoting condition. Increased p53 level may be interpreted as a compensatory effort of cell to X-ray mediated DNA damage.

  11. Predicted Role of NAD Utilization in the Control of Circadian Rhythms during DNA Damage Response

    PubMed Central

    Luna, Augustin; McFadden, Geoffrey B.; Aladjem, Mirit I.; Kohn, Kurt W.

    2015-01-01

    The circadian clock is a set of regulatory steps that oscillate with a period of approximately 24 hours influencing many biological processes. These oscillations are robust to external stresses, and in the case of genotoxic stress (i.e. DNA damage), the circadian clock responds through phase shifting with primarily phase advancements. The effect of DNA damage on the circadian clock and the mechanism through which this effect operates remains to be thoroughly investigated. Here we build an in silico model to examine damage-induced circadian phase shifts by investigating a possible mechanism linking circadian rhythms to metabolism. The proposed model involves two DNA damage response proteins, SIRT1 and PARP1, that are each consumers of nicotinamide adenine dinucleotide (NAD), a metabolite involved in oxidation-reduction reactions and in ATP synthesis. This model builds on two key findings: 1) that SIRT1 (a protein deacetylase) is involved in both the positive (i.e. transcriptional activation) and negative (i.e. transcriptional repression) arms of the circadian regulation and 2) that PARP1 is a major consumer of NAD during the DNA damage response. In our simulations, we observe that increased PARP1 activity may be able to trigger SIRT1-induced circadian phase advancements by decreasing SIRT1 activity through competition for NAD supplies. We show how this competitive inhibition may operate through protein acetylation in conjunction with phosphorylation, consistent with reported observations. These findings suggest a possible mechanism through which multiple perturbations, each dominant during different points of the circadian cycle, may result in the phase advancement of the circadian clock seen during DNA damage. PMID:26020938

  12. Pre-Exposure to 50 Hz Magnetic Fields Modifies Menadione-Induced Genotoxic Effects in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-01-01

    Background Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Methodology/Principal Findings Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. Conclusions The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome. PMID:21448285

  13. Mitochondrial Cardiomyopathy Caused by Elevated Reactive Oxygen Species and Impaired Cardiomyocyte Proliferation.

    PubMed

    Zhang, Donghui; Li, Yifei; Heims-Waldron, Danielle; Bezzerides, Vassilios; Guatimosim, Silvia; Guo, Yuxuan; Gu, Fei; Zhou, Pingzhu; Lin, Zhiqiang; Ma, Qing; Liu, Jianming; Wang, Da-Zhi; Pu, William T

    2018-01-05

    Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. Tfam inactivation by Nkx2.5 Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction. © 2017 American Heart Association, Inc.

  14. An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint.

    PubMed

    van Brabant, A J; Buchanan, C D; Charboneau, E; Fangman, W L; Brewer, B J

    2001-04-01

    Checkpoint controls coordinate entry into mitosis with the completion of DNA replication. Depletion of nucleotide precursors by treatment with the drug hydroxyurea triggers such a checkpoint response. However, it is not clear whether the signal for this hydroxyurea-induced checkpoint pathway is the presence of unreplicated DNA, or rather the persistence of single-stranded or damaged DNA. In a yeast artificial chromosome (YAC) we have engineered an approximately 170 kb region lacking efficient replication origins that allows us to explore the specific effects of unreplicated DNA on cell cycle progression. Replication of this YAC extends the length of S phase and causes cells to engage an S/M checkpoint. In the absence of Rad9 the YAC becomes unstable, undergoing deletions within the origin-free region.

  15. Epstein-Barr Virus Hijacks DNA Damage Response Transducers to Orchestrate Its Life Cycle.

    PubMed

    Hau, Pok Man; Tsao, Sai Wah

    2017-11-16

    The Epstein-Barr virus (EBV) is a ubiquitous virus that infects most of the human population. EBV infection is associated with multiple human cancers, including Burkitt's lymphoma, Hodgkin's lymphoma, a subset of gastric carcinomas, and almost all undifferentiated non-keratinizing nasopharyngeal carcinoma. Intensive research has shown that EBV triggers a DNA damage response (DDR) during primary infection and lytic reactivation. The EBV-encoded viral proteins have been implicated in deregulating the DDR signaling pathways. The consequences of DDR inactivation lead to genomic instability and promote cellular transformation. This review summarizes the current understanding of the relationship between EBV infection and the DDR transducers, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase), and discusses how EBV manipulates the DDR signaling pathways to complete the replication process of viral DNA during lytic reactivation.

  16. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development

    PubMed Central

    Brodsky, Michael H.; Sekelsky, Jeff J.; Tsang, Garson; Hawley, R. Scott; Rubin, Gerald M.

    2000-01-01

    Checkpoints block cell cycle progression in eukaryotic cells exposed to DNA damaging agents. We show that several Drosophila homologs of checkpoint genes, mei-41, grapes, and 14-3-3ε, regulate a DNA damage checkpoint in the developing eye. We have used this assay to show that the mutagen-sensitive gene mus304 is also required for this checkpoint. mus304 encodes a novel coiled-coil domain protein, which is targeted to the cytoplasm. Similar to mei-41, mus304 is required for chromosome break repair and for genomic stability. mus304 animals also exhibit three developmental defects, abnormal bristle morphology, decreased meiotic recombination, and arrested embryonic development. We suggest that these phenotypes reflect distinct developmental consequences of a single underlying checkpoint defect. Similar mechanisms may account for the puzzling array of symptoms observed in humans with mutations in the ATM tumor suppressor gene. PMID:10733527

  17. Processes involved in assisted reproduction technologies significantly increase sperm DNA fragmentation and phosphatidylserine translocation.

    PubMed

    Balasuriya, A; Serhal, P; Doshi, A; Harper, J C

    2014-03-01

    Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART. © 2012 Blackwell Verlag GmbH.

  18. Involvement of Matrin 3 and SFPQ/NONO in the DNA damage response.

    PubMed

    Salton, Maayan; Lerenthal, Yaniv; Wang, Shih-Ya; Chen, David J; Shiloh, Yosef

    2010-04-15

    The DNA damage response (DDR) is a complex signaling network that is induced by DNA lesions and vigorously activated by double strand breaks (DSBs). The DSB response is mobilized by the nuclear protein kinase ATM, which phosphorylates key players in its various branches. SFPQ (PSF) and NONO (p54) are nuclear proteins that interact with each other and have diverse roles in nucleic acids metabolism. The SFPQ/NONO heterodimer was previously found to enhance DNA strand break rejoining in vitro. Our attention was drawn to these two proteins as they interact with the nuclear matrix protein Matrin 3 (MATR3), which we found to be a novel ATM target. We asked whether SFPQ and NONO too are involved in the DSB response. Proteins that function at the early phase of this response are often recruited to the damaged sites. We observed rapid recruitment of SFPQ/NONO to sites of DNA damage induced by laser microbeam. In MATR3 knockdown cells SFPQ/NONO retention at DNA damage sites was prolonged. SFPQ and MATR3 depletion led to abnormal accumulation of cells at the S-phase of the cell cycle following treatment with the radiomimetic chemical neocarzinostatin. Notably, proteins involved in DSB repair via nonhomologous end-joining co-immunoprecipitated with NONO; SFPQ depletion delayed DSB repair. Collectively the data suggest that SFPQ, NONO and MATR3 are involved in the early stage of the DSB response, setting the scene for DSB repair.

  19. Regulators of homologous recombination repair as novel targets for cancer treatment

    PubMed Central

    Krajewska, Małgorzata; Fehrmann, Rudolf S. N.; de Vries, Elisabeth G. E.; van Vugt, Marcel A. T. M.

    2015-01-01

    To cope with DNA damage, cells possess a complex signaling network called the ‘DNA damage response’, which coordinates cell cycle control with DNA repair. The importance of this network is underscored by the cancer predisposition that frequently goes along with hereditary mutations in DNA repair genes. One especially important DNA repair pathway in this respect is homologous recombination (HR) repair. Defects in HR repair are observed in various cancers, including hereditary breast, and ovarian cancer. Intriguingly, tumor cells with defective HR repair show increased sensitivity to chemotherapeutic reagents, including platinum-containing agents. These observations suggest that HR-proficient tumor cells might be sensitized to chemotherapeutics if HR repair could be therapeutically inactivated. HR repair is an extensively regulated process, which depends strongly on the activity of various other pathways, including cell cycle pathways, protein-control pathways, and growth factor-activated receptor signaling pathways. In this review, we discuss how the mechanistic wiring of HR is controlled by cell-intrinsic or extracellular pathways. Furthermore, we have performed a meta-analysis on available genome-wide RNA interference studies to identify additional pathways that control HR repair. Finally, we discuss how these HR-regulatory pathways may provide therapeutic targets in the context of radio/chemosensitization. PMID:25852742

  20. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae

    PubMed Central

    Szyjka, Shawn J.; Aparicio, Jennifer G.; Viggiani, Christopher J.; Knott, Simon; Xu, Weihong; Tavaré, Simon; Aparicio, Oscar M.

    2008-01-01

    Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2–Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Δ cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair. PMID:18628397

  1. Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression.

    PubMed

    Karlsson, Asa; Deb-Basu, Debabrita; Cherry, Athena; Turner, Stephanie; Ford, James; Felsher, Dean W

    2003-08-19

    DNA repair mechanisms are essential for the maintenance of genomic integrity. Disruption of gene products responsible for DNA repair can result in chromosomal damage. Improperly repaired chromosomal damage can result in the loss of chromosomes or the generation of chromosomal deletions or translocations, which can lead to tumorigenesis. The MYC protooncogene is a transcription factor whose overexpression is frequently associated with human neoplasia. MYC has not been previously implicated in a role in DNA repair. Here we report that the overexpression of MYC disrupts the repair of double-strand DNA breaks, resulting in a several-magnitude increase in chromosomal breaks and translocations. We found that MYC inhibited the repair of gamma irradiation DNA breaks in normal human cells and blocked the repair of a single double-strand break engineered to occur in an immortal cell line. By spectral karyotypic analysis, we found that MYC even within one cell division cycle resulted in a several-magnitude increase in the frequency of chromosomal breaks and translocations in normal human cells. Hence, MYC overexpression may be a previously undescribed example of a dominant mutator that may fuel tumorigenesis by inducing chromosomal damage.

  2. DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation

    PubMed Central

    Hernández-Gómez, Mariana

    2017-01-01

    DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature. PMID:29238724

  3. Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

    PubMed Central

    Palii, Stela S.; Cui, Yuxia; Innes, Cynthia L.; Paules, Richard S.

    2013-01-01

    Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments. PMID:23462183

  4. Nucleotide Excision Repair and Vitamin D--Relevance for Skin Cancer Therapy.

    PubMed

    Pawlowska, Elzbieta; Wysokinski, Daniel; Blasiak, Janusz

    2016-04-06

    Ultraviolet (UV) radiation is involved in almost all skin cancer cases, but on the other hand, it stimulates the production of pre-vitamin D3, whose active metabolite, 1,25-dihydroxyvitamin D3 (1,25VD3), plays important physiological functions on binding with its receptor (vitamin D receptor, VDR). UV-induced DNA damages in the form of cyclobutane pyrimidine dimers or (6-4)-pyrimidine-pyrimidone photoproducts are frequently found in skin cancer and its precursors. Therefore, removing these lesions is essential for the prevention of skin cancer. As UV-induced DNA damages are repaired by nucleotide excision repair (NER), the interaction of 1,25VD3 with NER components can be important for skin cancer transformation. Several studies show that 1,25VD3 protects DNA against damage induced by UV, but the exact mechanism of this protection is not completely clear. 1,25VD3 was also shown to affect cell cycle regulation and apoptosis in several signaling pathways, so it can be considered as a potential modulator of the cellular DNA damage response, which is crucial for mutagenesis and cancer transformation. 1,25VD3 was shown to affect DNA repair and potentially NER through decreasing nitrosylation of DNA repair enzymes by NO overproduction by UV, but other mechanisms of the interaction between 1,25VD3 and NER machinery also are suggested. Therefore, the array of NER gene functioning could be analyzed and an appropriate amount of 1.25VD3 could be recommended to decrease UV-induced DNA damage important for skin cancer transformation.

  5. Nedd4 Family Interacting Protein 1 (Ndfip1) Is Required for Ubiquitination and Nuclear Trafficking of BRCA1-associated ATM Activator 1 (BRAT1) during the DNA Damage Response*

    PubMed Central

    Low, Ley-Hian; Chow, Yuh-Lit; Li, Yijia; Goh, Choo-Peng; Putz, Ulrich; Silke, John; Ouchi, Toru; Howitt, Jason; Tan, Seong-Seng

    2015-01-01

    During injury, cells are vulnerable to apoptosis from a variety of stress conditions including DNA damage causing double-stranded breaks. Without repair, these breaks lead to aberrations in DNA replication and transcription, leading to apoptosis. A major response to DNA damage is provided by the protein kinase ATM (ataxia telangiectasia mutated) that is capable of commanding a plethora of signaling networks for DNA repair, cell cycle arrest, and even apoptosis. A key element in the DNA damage response is the mobilization of activating proteins into the cell nucleus to repair damaged DNA. BRAT1 is one of these proteins, and it functions as an activator of ATM by maintaining its phosphorylated status while also keeping other phosphatases at bay. However, it is unknown how BRAT1 is trafficked into the cell nucleus to maintain ATM phosphorylation. Here we demonstrate that Ndfip1-mediated ubiquitination of BRAT1 leads to BRAT1 trafficking into the cell nucleus. Without Ndfip1, BRAT1 failed to translocate to the nucleus. Under genotoxic stress, cells showed increased expression of both Ndfip1 and phosphorylated ATM. Following brain injury, neurons show increased expression of Ndfip1 and nuclear translocation of BRAT1. These results point to Ndfip1 as a sensor protein during cell injury and Ndfip1 up-regulation as a cue for BRAT1 ubiquitination by Nedd4 E3 ligases, followed by nuclear translocation of BRAT1. PMID:25631046

  6. Glutathione-deficient Plasmodium berghei parasites exhibit growth delay and nuclear DNA damage.

    PubMed

    Padín-Irizarry, Vivian; Colón-Lorenzo, Emilee E; Vega-Rodríguez, Joel; Castro, María Del R; González-Méndez, Ricardo; Ayala-Peña, Sylvette; Serrano, Adelfa E

    2016-06-01

    Plasmodium parasites are exposed to endogenous and exogenous oxidative stress during their complex life cycle. To minimize oxidative damage, the parasites use glutathione (GSH) and thioredoxin (Trx) as primary antioxidants. We previously showed that disruption of the Plasmodium berghei gamma-glutamylcysteine synthetase (pbggcs-ko) or the glutathione reductase (pbgr-ko) genes resulted in a significant reduction of GSH in intraerythrocytic stages, and a defect in growth in the pbggcs-ko parasites. In this report, time course experiments of parasite intraerythrocytic development and morphological studies showed a growth delay during the ring to schizont progression. Morphological analysis shows a significant reduction in size (diameter) of trophozoites and schizonts with increased number of cytoplasmic vacuoles in the pbggcs-ko parasites in comparison to the wild type (WT). Furthermore, the pbggcs-ko mutants exhibited an impaired response to oxidative stress and increased levels of nuclear DNA (nDNA) damage. Reduced GSH levels did not result in mitochondrial DNA (mtDNA) damage or protein carbonylations in neither pbggcs-ko nor pbgr-ko parasites. In addition, the pbggcs-ko mutant parasites showed an increase in mRNA expression of genes involved in oxidative stress detoxification and DNA synthesis, suggesting a potential compensatory mechanism to allow for parasite proliferation. These results reveal that low GSH levels affect parasite development through the impairment of oxidative stress reduction systems and damage to the nDNA. Our studies provide new insights into the role of the GSH antioxidant system in the intraerythrocytic development of Plasmodium parasites, with potential translation into novel pharmacological interventions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro.

    PubMed

    Djelić, Ninoslav; Radaković, Milena; Spremo-Potparević, Biljana; Zivković, Lada; Bajić, Vladan; Stevanović, Jevrosima; Stanimirović, Zoran

    2015-02-01

    Catechol groups can be involved in redox cycling accompanied by generation of reactive oxygen species (ROS) which may lead to oxidative damage of cellular macromolecules including DNA. The objective of this investigation was to evaluate possible genotoxic effects of a natural catecholamine adrenaline in cultured human lymphocytes using cytogenetic (sister chromatid exchange and micronuclei) and the single cell gel electrophoresis (Comet) assay. In cytogenetic tests, six experimental concentrations of adrenaline were used in a range from 0.01-500 μM. There were no indications of genotoxic effects of adrenaline in sister chromatid exchange and micronucleus tests. However, at four highest concentrations of adrenaline (5 μM, 50 μM, 150 μM and 300 μM) we observed a decreased mitotic index and cell-cycle delay. In addition, in the Comet assay we used adrenaline in a range from 0.0005-500 μM, at two treatment times: 15 min or 60 min. In contrast to cytogenetic analysis, there was a dose-dependent increase of DNA damage detected in the Comet assay. These effects were significantly reduced by concomitant treatment with quercetin or catalase. Therefore, the obtained results indicate that adrenaline may exhibit genotoxic effects in cultured human lymphocytes, most likely due to production of reactive oxygen species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response

    PubMed Central

    Guidi, Riccardo; Guerra, Lina; Levi, Laura; Stenerlöw, Bo; Fox, James G.; Josenhans, Christine; Masucci, Maria G.; Frisan, Teresa

    2014-01-01

    Summary Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process. PMID:22998585

  9. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    PubMed

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  10. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos

    PubMed Central

    Jacob, Vinitha; Chernyavskaya, Yelena; Chen, Xintong; Tan, Poh Seng; Kent, Brandon; Hoshida, Yujin; Sadler, Kirsten C.

    2015-01-01

    UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. PMID:25564650

  11. DNA hypomethylation induces a DNA replication-associated cell cycle arrest to block hepatic outgrowth in uhrf1 mutant zebrafish embryos.

    PubMed

    Jacob, Vinitha; Chernyavskaya, Yelena; Chen, Xintong; Tan, Poh Seng; Kent, Brandon; Hoshida, Yujin; Sadler, Kirsten C

    2015-02-01

    UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) recruits DNMT1 to hemimethylated DNA during replication and is essential for maintaining DNA methylation. uhrf1 mutant zebrafish have global DNA hypomethylation and display embryonic defects, including a small liver, and they die as larvae. We make the surprising finding that, despite their reduced organ size, uhrf1 mutants express high levels of genes controlling S-phase and have many more cells undergoing DNA replication, as measured by BrdU incorporation. In contrast to wild-type hepatocytes, which are continually dividing during hepatic outgrowth and thus dilute the BrdU label, uhrf1 mutant hepatocytes retain BrdU throughout outgrowth, reflecting cell cycle arrest. Pulse-chase-pulse experiments with BrdU and EdU, and DNA content analysis indicate that uhrf1 mutant cells undergo DNA re-replication and that apoptosis is the fate of many of the re-replicating and arrested hepatocytes. Importantly, the DNA re-replication phenotype and hepatic outgrowth failure are preceded by global loss of DNA methylation. Moreover, uhrf1 mutants are phenocopied by mutation of dnmt1, and Dnmt1 knockdown in uhrf1 mutants enhances their small liver phenotype. Together, these data indicate that unscheduled DNA replication and failed cell cycle progression leading to apoptosis are the mechanisms by which DNA hypomethylation prevents organ expansion in uhrf1 mutants. We propose that cell cycle arrest leading to apoptosis is a strategy that restricts propagation of epigenetically damaged cells during embryogenesis. © 2015. Published by The Company of Biologists Ltd.

  12. ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair.

    PubMed

    Brown, Adam D; Sager, Brian W; Gorthi, Aparna; Tonapi, Sonal S; Brown, Eric J; Bishop, Alexander J R

    2014-01-01

    DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it's role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.

  13. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0.12 Gy(-1) for protons), which suggests that the higher level of survival of gamma-irradiated cells could be attributed to the persistence of nonlethally irradiated thyrocytes and/or the capacity to repair damage more effectively than cells exposed to equal physical doses of protons. The final assessment in this study was radiation-induced cell cycle phase redistribution. Gamma rays and protons produced a similar dose-dependent redistribution toward a predominantly G(2)-phase population. From our cumulative results, it seems likely that a majority of the proton-irradiated cells would not continue to divide. In conclusion, these findings suggest that there are quantitative and qualitative differences in the biological effects of proton beams and gamma rays. These differences could be due to structured energy deposition from the tracks of primary protons and the associated high-LET secondary particles produced in the targets. The results suggest that a simple dose-equivalent approach to dosimetry may be inadequate to compare the biological responses of cells to photons and protons.

  14. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    PubMed

    Schuler, Nadine; Palm, Jan; Kaiser, Mareike; Betten, Dominik; Furtwängler, Rhoikos; Rübe, Christian; Graf, Norbert; Rübe, Claudia E

    2014-01-01

    In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA) suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  15. The use of comet assay in plant toxicology: recent advances

    PubMed Central

    Santos, Conceição L. V.; Pourrut, Bertrand; Ferreira de Oliveira, José M. P.

    2015-01-01

    The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage. PMID:26175750

  16. [Epigenetics of prostate cancer].

    PubMed

    Yi, Xiao-Ming; Zhou, Wen-Quan

    2010-07-01

    Prostate cancer is one of the most common malignant tumors in males, and its etiology and pathogenesis remain unclear. Epigenesis is involved in prostate cancer at all stages of the process, and closely related with its growth and metastasis. DNA methylation and histone modification are the most important manifestations of epigenetics in prostate cancer. The mechanisms of carcinogenesis of DNA methylation include whole-genome hypomethylation, aberrant local hypermethylation of promoters and genomic instability. DNA methylation is closely related to the process of prostate cancer, as in DNA damage repair, hormone response, tumor cell invasion/metastasis, cell cycle regulation, and so on. Histone modification causes corresponding changes in chromosome structure and the level of gene transcription, and it may affect the cycle, differentiation and apoptosis of cells, resulting in prostate cancer. Some therapies have been developed targeting the epigenetic changes in prostate cancer, including DNA methyltransferases and histone deacetylase inhibitors, and have achieved certain desirable results.

  17. Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy.

    PubMed

    Tewari, Shikha; Zhong, Qing; Santos, Julia M; Kowluru, Renu A

    2012-07-24

    Diabetic retinopathy fails to halt after cessation of hyperglycemic insult, and a vicious cycle of mitochondria damage continues. The aim of our study was to investigate the effect of termination of hyperglycemia on retinal mtDNA replication, and elucidate the mechanism responsible for the continued mtDNA damage. Polymerase gamma 1 (POLG1), the catalytic subunit of the mitochondrial DNA replication enzyme, and the damage to the displacement loop region of mtDNA (D-loop) were analyzed in the retina from streptozotocin-diabetic rats maintained in poor glycemic control (PC, glycated hemoglobin ∼11%) or in good glycemic control (GC, glycated hemoglobin ∼6%) for 6 months, or in PC for three months followed by GC for three months (Rev). To understand the mechanism DNA methylation status of POLG1 promoter was investigated by methylation-specific PCR. The key parameters were confirmed in the isolated retinal endothelial cells exposed to high glucose, followed by normal glucose. POLG1 continued to be down-regulated, the D-loop region damaged, and the CpG islands at the regulatory region of POLG hyper-methylated even after three months of GC that had followed three months of PC (Rev group). Similar results were observed in the retinal endothelial cells exposed to normal glucose after being exposed to high glucose. Continued hypermethylation of the CpG sites at the regulatory region of POLG affects its binding to the mtDNA, compromising the transcriptional activity. Modulation of DNA methylation using pharmaceutic or molecular means could help maintain mitochondria homeostasis, and prevent further progression of diabetic retinopathy.

  18. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responsesmore » and repair pathways that were differentially expressed between the two groups (Log 2 ratio >1 or <−1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. - Highlights: • We compared concentration of POPs, ROS and micronucleus rate in POPs exposed area. • Significant accumulation of POPs homologous in the e-waste exposed residents. • DNA damage and DNA damage repair pathways have been differentially activated. • Females and males in the exposed group have different responses to the DNA damage. • Exposed males may be more prone to undergo malignant transformation.« less

  19. Chromium-picolinate therapy in diabetes care: individual outcomes require new guidelines and navigation by predictive diagnostics

    PubMed Central

    Yeghiazaryan, Kristina; Schild, Hans H.; Golubnitschaja, Olga

    2013-01-01

    Aims Nephropathy is the leading secondary complication of metabolic syndrome. Nutritional supplement by chromium-picolinate is assumed to have renoprotective effects. However, potential toxic effects reported increase concerns about safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm individual oucomes through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. Methods The study was performed in a double-blind manner. Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium-picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using “Comet Assay”-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to get insights into central detoxification and cell-cycle regulating pathways under treatment conditions. Results Experimental data revealed highly individual reaction under treatment conditions. Highest variability of DNA-damage was monitored under prolonged treatment with high dosage of CrPic. Expression patterns demonstrated a correlation with subcellular imaging and dosage-dependent suppression under chromium-picolinate treatment. Interpretation and recommendations Population at-risk for diabetes is huge and increasing in pandemic scale. One of the reasons might be the failed attempt to prevent the disease by application of artificial supplements and drugs with hardly recognised individual risks. Consequently, a multimodal approach of integrative medicine by predictive diagnostics, targeted prevention and individually created treatment algorithms is highly desirable. PMID:23017160

  20. DNA damage mediated transcription arrest: Step back to go forward.

    PubMed

    Mullenders, Leon

    2015-12-01

    The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Redox cycling of Cu(II) by 6-mercaptopurine leads to ROS generation and DNA breakage: possible mechanism of anticancer activity.

    PubMed

    Rehman, Sayeed Ur; Zubair, Haseeb; Sarwar, Tarique; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Nehar, Shamshun; Tabish, Mohammad

    2015-02-01

    6-Mercaptopurine (6MP) is a well-known purine antimetabolite used to treat childhood acute lymphoblastic leukemia and other diseases. Cancer cells as compared to normal cells are under increased oxidative stress and show high copper level. These differences between cancer cells and normal cells can be targeted to develop effective cancer therapy. Pro-oxidant property of 6MP in the presence of metal ions is not well documented. Redox cycling of Cu(II) to Cu(I) was found to be efficiently mediated by 6MP. We have performed a series of in vitro experiments to demonstrate the pro-oxidant property of 6MP in the presence of Cu(II). Studies on human lymphocytes confirmed the DNA damaging ability of 6MP in the presence of Cu(II). Since 6MP possesses DNA damaging ability by producing reactive oxygen species (ROS) in the presence of Cu(II), it may also possess apoptosis-inducing activity by involving endogenous copper ions. Essentially, this would be an alternative and copper-dependent pathway for anticancer activity of 6MP.

  2. Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma.

    PubMed

    Barbosa, Flavio A R; Siminski, Tâmila; Canto, Rômulo F S; Almeida, Gabriela M; Mota, Nádia S R S; Ourique, Fabiana; Pedrosa, Rozangela Curi; Braga, Antonio Luiz

    2018-06-11

    Novel pyrimidinic selenoureas were synthesized and evaluated against tumour and normal cell lines. Among these, the compound named 3j initially showed relevant cytotoxicity and selectivity for tumour cells. Three analogues of 3j were designed and synthesized keeping in view the structural requirements of this compound. Almost all the tested compounds displayed considerable cytotoxicity. However, 8a, one of the 3j analogues, was shown to be highly selective and cytotoxic, especially for breast carcinoma cells (MCF-7) (IC 50  = 3.9 μM). Furthermore, 8a caused DNA damage, inhibited cell proliferation, was able to arrest cell cycle in S phase, and induced cell death by apoptosis in human breast carcinoma cells. Moreover, predictions of pharmacokinetic properties showed that 8a may present good absorption and permeation characteristics for oral administration. Overall, the current study established 8a as a potential drug prototype to be employed as a DNA interactive cytotoxic agent for the treatment of breast cancer. Copyright © 2018. Published by Elsevier Masson SAS.

  3. Phospho-Bcl-x(L)(Ser62) plays a key role at DNA damage-induced G(2) checkpoint.

    PubMed

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2012-06-01

    Accumulating evidence suggests that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. Analysis of a series of phosphorylation site mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G 2 checkpoint and enter mitosis more rapidly than cells expressing wild-type Bcl-xL or Bcl-xL phosphorylation site mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Analysis of the dynamic phosphorylation and location of phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G 2 arrest discloses that a pool of phospho-Bcl-xL(Ser62) accumulates into nucleolar structures in etoposide-exposed cells during G 2 arrest. In a series of in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G 2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with Cdk1(cdc2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that during G 2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G 2 arrest by timely trapping of Cdk1(cdc2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a piece of the DNA damage response.

  4. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  5. Opposing effects of pericentrin and microcephalin on the pericentriolar material regulate CHK1 activation in the DNA damage response.

    PubMed

    Antonczak, A K; Mullee, L I; Wang, Y; Comartin, D; Inoue, T; Pelletier, L; Morrison, C G

    2016-04-14

    Genotoxic stresses lead to centrosome amplification, a frequently-observed feature in cancer that may contribute to genome instability and to tumour cell invasion. Here we have explored how the centrosome controls DNA damage responses. For most of the cell cycle, centrosomes consist of two centrioles embedded in the proteinaceous pericentriolar material (PCM). Recent data indicate that the PCM is not an amorphous assembly of proteins, but actually a highly organised scaffold around the centrioles. The large coiled-coil protein, pericentrin, participates in PCM assembly and has been implicated in the control of DNA damage responses (DDRs) through its interactions with checkpoint kinase 1 (CHK1) and microcephalin (MCPH1). CHK1 is required for DNA damage-induced centrosome amplification, whereas MCPH1 deficiency greatly increases the amplification seen after DNA damage. We found that the PCM showed a marked expansion in volume and a noticeable change in higher-order organisation after ionising radiation treatment. PCM expansion was dependent on CHK1 kinase activity and was potentiated by MCPH1 deficiency. Furthermore, pericentrin deficiency or mutation of a separase cleavage site blocked DNA damage-induced PCM expansion. The extent of nuclear CHK1 activation after DNA damage reflected the level of PCM expansion, with a reduction in pericentrin-deficient or separase cleavage site mutant-expressing cells, and an increase in MCPH1-deficient cells that was suppressed by the loss of pericentrin. Deletion of the nuclear export signal of CHK1 led to its hyperphosphorylation after irradiation and reduced centrosome amplification. Deletion of the nuclear localisation signal led to low CHK1 activation and low centrosome amplification. From these data, we propose a feedback loop from the PCM to the nuclear DDR in which CHK1 regulates pericentrin-dependent PCM expansion to control its own activation.

  6. Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells

    PubMed Central

    Osawa, T; Davies, D; Hartley, J A

    2011-01-01

    DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting from ICLs in mammalian cells. This characteristic ‘giant' cell death, observed by using time-lapse video microscopy, was reduced in ICL repair ERCC1- and XRCC3-deficient cells. Collectively, the results illustrate the coordination of ICL-induced cellular responses, including cell-cycle arrest, DNA damage repair, and cell death. PMID:21814285

  7. Posttranslational Regulation of Human DNA Polymerase ι.

    PubMed

    McIntyre, Justyna; McLenigan, Mary P; Frank, Ekaterina G; Dai, Xiaoxia; Yang, Wei; Wang, Yinsheng; Woodgate, Roger

    2015-11-06

    Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys(11)- and Lys(48)-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys(11) and Lys(48) rather than oxidative damage per se. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

    PubMed Central

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-01-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. PMID:24666325

  9. Cell cycle perturbations and genotoxic effects in human primary fibroblasts induced by low-energy protons and X/gamma-rays.

    PubMed

    Antoccia, Antonio; Sgura, Antonella; Berardinelli, Francesco; Cavinato, Maria; Cherubini, Roberto; Gerardi, Silvia; Tanzarella, Caterina

    2009-09-01

    The effect of graded doses of high-linear energy transfer (LET) low-energy protons to induce cycle perturbations and genotoxic damage was investigated in normal human fibroblasts. Furthermore, such effects were compared with those produced by low-LET radiations. HFFF2, human primary fibroblasts were exposed to either protons (LET = 28.5 keV/microm) or X/gamma-rays, and endpoints related to cell cycle kinetics and DNA damage analysed. Following both type of irradiations, unsynchronized cells suffered an inhibition to entry into S-phase for doses of 1-4 Gy and remained arrested in the G(1)-phase for several days. The levels of induction of regulator proteins, such as TP53 and CDKN1A showed a clear LET-dependence. DSB induction and repair as measured by scoring for gamma-H2AX foci indicated that protons, with respect to X-rays, yielded a lower number of DSBs per Gy, which showed a slower kinetics of disappearance. Such result was in agreement with the extent of MN induction in binucleated cells after X-irradiation. No significant differences between the two types of radiations were observed with the clonogenic assay, resulting anyway the slope of gamma-ray curve higher than that the proton one. In conclusion, in normal human primary fibroblasts cell cycle arrest at the G(1)/S transition can be triggered shortly after irradiation and maintained for several hours post-irradiation of both protons and X-rays. DNA damage produced by protons appears less amenable to be repaired and could be transformed in cytogenetic damage in the form of MN.

  10. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

    PubMed Central

    Kalayda, Ganna V.; Mannewitz, Mareike; Cinatl, Jindrich; Rothweiler, Florian; Michaelis, Martin; Saafan, Hisham; Ritter, Christoph A.; Jaehde, Ulrich

    2017-01-01

    The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis. PMID:28746345

  11. Consequences of acute oxidative stress in Leishmania amazonensis: From telomere shortening to the selection of the fittest parasites.

    PubMed

    da Silva, Marcelo Santos; Segatto, Marcela; Pavani, Raphael Souza; Gutierrez-Rodrigues, Fernanda; Bispo, Vanderson da Silva; de Medeiros, Marisa Helena Gennari; Calado, Rodrigo Tocantins; Elias, Maria Carolina; Cano, Maria Isabel Nogueira

    2017-01-01

    Leishmaniasis is a spectrum of diseases caused by parasites of the genus Leishmania that affects millions of people around the world. During infection, the parasites use different strategies to survive the host's defenses, including overcoming exposure to reactive oxidant species (ROS), responsible for causing damage to lipids, proteins and DNA. This damage especially affects telomeres, which frequently results in genome instability, senescence and cell death. Telomeres are the physical ends of the chromosomes composed of repetitive DNA coupled with proteins, whose function is to protect the chromosomes termini and avoid end-fusion and nucleolytic degradation. In this work, we induced acute oxidative stress in promastigote forms of Leishmania amazonensis by treating parasites with 2mM hydrogen peroxide (H 2 O 2 ) for 1h, which was able to increase intracellular ROS levels. In addition, oxidative stress induced DNA damage, as confirmed by 8-oxodGuo quantification and TUNEL assays and the dissociation of LaRPA-1 from the 3' G-overhang, leading to telomere shortening. Moreover, LaRPA-1 was observed to interact with newly formed C-rich single-stranded telomeric DNA, probably as a consequence of the DNA damage response. Nonetheless, acute oxidative stress caused the death of some of the L. amazonensis population and induced cell cycle arrest at the G2/M phase in survivor parasites, which were able to continue proliferating and replicating DNA and became more resistant to oxidative stress. Taken together, these results suggest that adaptation occurs through the selection of the fittest parasites in terms of repairing oxidative DNA damage at telomeres and maintaining genome stability in a stressful environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway.

    PubMed

    Kuo, Ching-Ying; Zupkó, István; Chang, Fang-Rong; Hunyadi, Attila; Wu, Chin-Chung; Weng, Teng-Song; Wang, Hui-Chun

    2016-11-15

    Flavonoids are the most common group of polyphenolic compounds and abundant in dietary fruits and vegetables. Diet high in vegetables or dietary flavonoid supplements is associated with reduced mortality rate for patients with breast cancer. Many studies have been proposed for mechanisms linking flavonoids to improving chemotherapy efficacy in many types of cancers, but data on this issue is still limited. Herein, we report on a new mechanism through which dietary flavonoids inhibit DNA damage checkpoints and repair pathways. We found that dietary flavonoids could inhibit Chk1 phosphorylation and decrease clonogenic cell growth once breast cancer cells receive ultraviolet irradiation, cisplatin, or etoposide treatment. Since the ATR-Chk1 pathway mainly involves response to DNA replication stress, we propose that flavonoid derivatives reduce the side effect of chemotherapy by improving the sensitivity of cycling cells. Therefore, we propose that increasing intake of common dietary flavonoids is beneficial to breast cancer patients who are receiving DNA-damaging chemotherapy, such as cisplatin or etoposide-based therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation To Regulate Cell Proliferation

    PubMed Central

    Matsunuma, Ryoichi; Ohhata, Tatsuya; Kitagawa, Kyoko; Sakai, Satoshi; Uchida, Chiharu; Shiotani, Bunsyo; Matsumoto, Masaki; Nakayama, Keiichi I.; Ogura, Hiroyuki; Shiiya, Norihiko; Kitagawa, Masatoshi

    2015-01-01

    Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4DDB2. Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation. PMID:26572825

  14. Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe.

    PubMed

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C

    2007-11-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.

  15. Msc1 Acts Through Histone H2A.Z to Promote Chromosome Stability in Schizosaccharomyces pombe

    PubMed Central

    Ahmed, Shakil; Dul, Barbara; Qiu, Xinxing; Walworth, Nancy C.

    2007-01-01

    As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage. PMID:17947424

  16. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis.

    PubMed

    Lindström, Mikael S; Jurada, Deana; Bursac, Sladana; Orsolic, Ines; Bartek, Jiri; Volarevic, Sinisa

    2018-05-01

    The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.

  17. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    PubMed

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  18. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchetti, Francesco; Bishop, Jack; Gingerich, John

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  19. Meiotic interstrand DNA damage escapes paternal repair and causes chromosomal aberrations in the zygote by maternal misrepair

    DOE PAGES

    Marchetti, Francesco; Bishop, Jack; Gingerich, John; ...

    2015-01-08

    De novo point mutations and chromosomal structural aberrations (CSA) detected in offspring of unaffected parents show a preferential paternal origin with higher risk for older fathers. Studies in rodents suggest that heritable mutations transmitted from the father can arise from either paternal or maternal misrepair of damaged paternal DNA, and that the entire spermatogenic cycle can be at risk after mutagenic exposure. Understanding the susceptibility and mechanisms of transmission of paternal mutations is important in family planning after chemotherapy and donor selection for assisted reproduction. We report that treatment of male mice with melphalan (MLP), a bifunctional alkylating agent widelymore » used in chemotherapy, induces DNA lesions during male mouse meiosis that persist unrepaired as germ cells progress through DNA repair-competent phases of spermatogenic development. After fertilization, unrepaired sperm DNA lesions are mis-repaired into CSA by the egg's DNA repair machinery producing chromosomally abnormal offspring. In conclusion, these findings highlight the importance of both pre- and post-fertilization DNA repair in assuring the genomic integrity of the conceptus.« less

  20. Development of a high-throughput screening system for identification of novel reagents regulating DNA damage in human dermal fibroblasts.

    PubMed

    Bae, Seunghee; An, In-Sook; An, Sungkwan

    2015-09-01

    Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.

  1. The Achene Mucilage Hydrated in Desert Dew Assists Seed Cells in Maintaining DNA Integrity: Adaptive Strategy of Desert Plant Artemisia sphaerocephala

    PubMed Central

    Yang, Xuejun; Zhang, Wenhao; Dong, Ming; Boubriak, Ivan; Huang, Zhenying

    2011-01-01

    Despite proposed ecological importance of mucilage in seed dispersal, germination and seedling establishment, little is known about the role of mucilage in seed pre-germination processes. Here we investigated the role of mucilage in assisting achene cells to repair DNA damage during dew deposition in the desert. Artemisia sphaerocephala achenes were first treated γ-irradiation to induce DNA damage, and then they were repaired in situ in the desert dew. Dew deposition duration can be as long as 421 min in early mornings. Intact achenes absorbed more water than demucilaged achenes during dew deposition and also carried water for longer time following sunrise. After 4-d dew treatment, DNA damage of irradiated intact and demucilaged achenes was reduced to 24.38% and 46.84%, respectively. The irradiated intact achenes exhibited much higher DNA repair ratio than irradiated demucilaged achenes. Irradiated intact achenes showed an improved germination and decreased nonviable achenes after dew treatment, and significant differences in viability between the two types of achenes were detected after 1020 min of dew treatment. Achene mucilage presumably plays an ecologically important role in the life cycle of A. sphaerocephala by aiding DNA repair of achene cells in genomic-stressful habitats. PMID:21912689

  2. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Wei, E-mail: Wei.Ding@fda.hhs.gov; Petibone, Dayton M.; Latendresse, John R.

    2012-06-01

    Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 andmore » 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of DNA damage repair-related genes is reduced in furan-treated rat livers. ► Furan induces rat liver cancer mainly through a secondary genotoxic mechanism.« less

  3. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    PubMed

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  4. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins.

    PubMed

    Colin, Didier J; Hain, Karolina O; Allan, Lindsey A; Clarke, Paul R

    2015-03-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.

  5. Cellular responses to a prolonged delay in mitosis are determined by a DNA damage response controlled by Bcl-2 family proteins

    PubMed Central

    Colin, Didier J.; Hain, Karolina O.; Allan, Lindsey A.; Clarke, Paul R.

    2015-01-01

    Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies. PMID:25761368

  6. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability

    PubMed Central

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-01-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. PMID:25287622

  7. Dietary flavonoid derivatives enhance chemotherapeutic effect by inhibiting the DNA damage response pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Ching-Ying

    Flavonoids are the most common group of polyphenolic compounds and abundant in dietary fruits and vegetables. Diet high in vegetables or dietary flavonoid supplements is associated with reduced mortality rate for patients with breast cancer. Many studies have been proposed for mechanisms linking flavonoids to improving chemotherapy efficacy in many types of cancers, but data on this issue is still limited. Herein, we report on a new mechanism through which dietary flavonoids inhibit DNA damage checkpoints and repair pathways. We found that dietary flavonoids could inhibit Chk1 phosphorylation and decrease clonogenic cell growth once breast cancer cells receive ultraviolet irradiation,more » cisplatin, or etoposide treatment. Since the ATR-Chk1 pathway mainly involves response to DNA replication stress, we propose that flavonoid derivatives reduce the side effect of chemotherapy by improving the sensitivity of cycling cells. Therefore, we propose that increasing intake of common dietary flavonoids is beneficial to breast cancer patients who are receiving DNA-damaging chemotherapy, such as cisplatin or etoposide-based therapy. - Highlights: • First report on inhibition of both DNA damage and repair by dietary flavonoids • Dietary flavonoids inhibit cisplatin- and UV-induced Chk1 phosphorylation. • Flavonoids combined with cisplatin or UV treatment show notable growth inhibition. • Promising treatment proposal for patients who are receiving adjuvant chemotherapy.« less

  8. Gadd45a deletion aggravates hematopoietic stem cell dysfunction in ATM-deficient mice.

    PubMed

    Chen, Yulin; Yang, Runan; Guo, Peng; Ju, Zhenyu

    2014-01-01

    Ataxia telangiectasia mutated (ATM) kinase plays an essential role in the maintenance of genomic stability. ATM-deficient (ATM(-/-)) mice exhibit hematopoietic stem cell (HSC) dysfunction and a high incidence of lymphoma. Gadd45a controls cell cycle arrest, apoptosis and DNA repair, and is involved in the ATM-p53 mediated DNA damage response. However, the role of Gadd45a in regulating the functionality of ATM(-/-) HSCs is unknown. Here we report that Gadd45a deletion did not rescue the defects of T-cells and B-cells development in ATM(-/-) mice. Instead, ATM and Gadd45a double knockout (ATM(-/-) Gadd45a(-/-)) HSCs exhibited an aggravated defect in long-term self-renewal capacity compared to ATM(-/-) HSCs in HSC transplantation experiments. Further experiments revealed that the aggravated defect of ATM(-/-) Gadd45a(-/-) HSCs was due to a reduction of cell proliferation, associated with an accumulation of DNA damage and subsequent activation of DNA damage response including an up-regulation of p53-p21 signaling pathway. Additionally, ATM(-/-) Gadd45a(-/-) mice showed an increased incidence of hematopoietic malignancies, as well as an increased rate of metastasis than ATM(-/-) mice. In conclusion, Gadd45a deletion aggravated the DNA damage accumulation, which subsequently resulted in a further impaired self-renewal capacity and an increased malignant transformation in ATM(-/-) HSCs.

  9. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    PubMed

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  10. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPIImore » expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.« less

  11. Viability and DNA damage responses of TPPII-deficient Myc- and Ras-transformed fibroblasts.

    PubMed

    Tsurumi, Chizuko; Firat, Elke; Gaedicke, Simone; Huai, Jisen; Mandal, Pankaj Kumar; Niedermann, Gabriele

    2009-09-04

    Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.

  12. Copper-redox cycling by coumarin-di(2-picolyl)amine hybrid molecule leads to ROS-mediated DNA damage and apoptosis: A mechanism for cancer chemoprevention.

    PubMed

    Khan, Saman; Zafar, Atif; Naseem, Imrana

    2018-06-25

    Coumarin is an important bioactive pharmacophore. It is found in plants as a secondary metabolite and exhibits diverse pharmacological properties including anticancer effects against different malignancies. Therapeutic efficacy of coumarin derivatives depends on the pattern of substitution and conjugation with different moieties. Cancer cells contain elevated copper as compared to normal cells that plays a role in angiogenesis. Thus, targeting copper in malignant cells via copper chelators can serve as an attractive targeted anticancer strategy. Our previous efforts led to the synthesis of di(2-picolyl)amine-3(bromoacetyl)coumarin hybrid molecule (ligand-L) endowed with DNA/Cu(II) binding properties, and ROS generation ability in the presence of copper ions. In the present study, we aimed to validate copper-dependent cytotoxic action of ligand-L against malignant cells. For this, we used a cellular model system of copper (Cu) overloaded lymphocytes (CuOLs) to simulate malignancy-like condition. In CuOLs, lipid peroxidation/protein carbonylation, ROS generation, DNA fragmentation and apoptosis were investigated in the presence of ligand-L. Results showed that ligand-L-Cu(II) interaction leads to ROS generation, lipid peroxidation/protein carbonylation (oxidative stress parameters), DNA damage, up-regulation of p53 and mitochondrial-mediated apoptosis in treated lymphocytes. Further, pre-incubation with neocuproine (membrane permeable copper chelator) and ROS scavengers attenuated the DNA damage and apoptosis. These results suggest that cellular copper acts as molecular target for ligand-L to propagate redox cycling and generation of ROS via Fenton-like reaction leading to DNA damage and apoptosis. Further, we showed that ligand-L targets elevated copper in breast cancer MCF-7 and colon cancer HCT116 cells leading to a pro-oxidant inhibition of proliferation of cancer cells. In conclusion, we propose copper-dependent ROS-mediated mechanism for the cytotoxic action of ligand-L in malignant cells. Thus, targeting elevated copper represents an effective therapeutic strategy for selective cytotoxicity against malignant cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    PubMed

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  14. Radiation Exposure Enhances Hepatocyte Proliferation in Neonatal Mice but not in Adult Mice.

    PubMed

    Shang, Yi; Sawa, Yurika; Blyth, Benjamin J; Tsuruoka, Chizuru; Nogawa, Hiroyuki; Shimada, Yoshiya; Kakinuma, Shizuko

    2017-08-01

    There is a natural tendency to expect that irradiation of an infant organ prior to development-related expansion will result in a higher risk of developing cancer than that of fully-developed adult tissue, and this has generally been observed. However, if tissues also vary in their initial responses to radiation depending on age, the interplay between tissue- and age-dependent risk would potentially be quite complex. We have previously shown opposing age-dependent induction of apoptosis for the intestinal epithelium and hematopoietic cells in mice, but such data are not yet available for the liver. Here, we have examined markers of DNA damage, initiation of DNA damage responses, cell cycle arrest, apoptosis and proliferation, as well as gene expression, in the B6C3F1 mouse liver over the hours and days after irradiation of mice at 1 or 7 weeks of age. We found that induction and resolution of radiation-induced DNA damage is not accompanied by significant changes in these cellular end points in the adult liver, while in infant hepatocytes modest induction of p53 accumulation and p21-mediated cell cycle arrest in a small fraction of damaged cells was overshadowed by a further stimulation of proliferation over the relatively high levels already found in the neonatal liver. We observed distinct expression of genes that regulate cell division between the ages, which may contribute to the differential responses. These data suggest that the growth factor signaling environment of the infant liver may mediate radiation-induced proliferation and increased liver cancer risk after irradiation during early life.

  15. Chromium-picolinate therapy in diabetes care: individual outcomes require new guidelines and navigation by predictive diagnostics.

    PubMed

    Yeghiazaryan, Kristina; Schild, Hans H; Golubnitschaja, Olga

    2012-10-01

    Nephropathy is the leading secondary complication of metabolic syndrome. Nutritional supplement by chromium-picolinate is assumed to have renoprotective effects. However, potential toxic effects reported increase the concerns about the safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm individual oucomes through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. The study was performed in a double-blind manner. Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium- picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using "Comet Assay"-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to get insights into central detoxification and cell-cycle regulating pathways under the treatment conditions. Experimental data revealed highly individual reaction towards the treatment conditions. The highest variability of DNA-damage was monitored under the prolonged treatment with high dosage of CrPic. Expression patterns demonstrated a correlation with the subcellular imaging and dosage-dependent suppression under the chromium-picolinate treatment. INTERPRETATION AND RECOMMENDATIONS: Population at-risk for diabetes is huge and increasing in pandemic scale. One of the reasons might be the failed attempt to prevent the disease by application of artificial supplements and drugs with hardly recognised individual risks. Consequently, a multimodal approach of integrative medicine by predictive diagnostics, targeted prevention and individually created treatment algorithms is highly desirable.

  16. Sodium valproate, a histone deacetylase inhibitor, enhances the efficacy of vinorelbine-cisplatin-based chemoradiation in non-small cell lung cancer cells.

    PubMed

    Gavrilov, Vladimir; Lavrenkov, Konstantin; Ariad, Samuel; Shany, Shraga

    2014-11-01

    To enhance the anticancer activity of vinorelbine, cisplatin and ionizing radiation (IR) combination against non-small cell lung cancer (NSCLC) cells by co-administration of sodium valproate (VPA), a histone deacetylase inhibitor, and to elucidate molecular events underpinning treatment efficacy. The NSCLC A549 cell line was treated with cisplatin (0.2 μg/ml), vinorelbine (2 nM), VPA (1 mM) and IR (2.5 Gy) alone, or in combination. Cell proliferation, cell-cycle distribution, apoptosis, and levels of DNA double-strand breaks, activated DNA damage checkpoint kinases pCHK1, pCHK2, cell-cycle inhibitors p21CIP1/WAF1 and p27KIP1 were assessed. VPA markedly enhanced the DNA-damaging effect of the cisplatin-vinorelbine-IR combination and induced increased DSBs, and expression of pCHK2, pCHK1, p21CIP1/WAF1 and p27KIP1. These molecular changes led to cell-cycle arrest and increased apoptosis and consequently markedly curtailed cancer cell growth. VPA markedly enhances the anticancer activity of cisplatin-vinorelbine-IR combination. This finding has translational implications for enhancing the efficacy of anticancer treatment and for reducing side-effects by reducing doses of radiation and drugs. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    PubMed

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  18. Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during S Phase

    PubMed Central

    Buisson, Rémi; Boisvert, Jessica L.; Benes, Cyril H.; Zou, Lee

    2015-01-01

    The ATR-Chk1 pathway is critical for DNA damage responses and cell cycle progression. Chk1 inhibition is more deleterious to cycling cells than ATR inhibition, raising questions about ATR and Chk1 functions in the absence of extrinsic replication stress. Here, we show that a key role of ATR in S phase is to coordinate RRM2 accumulation and origin firing. ATR inhibitor (ATRi) induces massive ssDNA accumulation and replication catastrophe in a fraction of early S-phase cells. In other S-phase cells, however, ATRi induces moderate ssDNA and triggers a DNA-PK and Chk1-mediated backup pathway to suppress origin firing. The backup pathway creates a threshold such that ATRi selectively kills cells under high replication stress, whereas Chk1 inhibitor induces cell death at a lower threshold. The levels of ATRi-induced ssDNA correlate with ATRi sensitivity in a panel of cell lines, suggesting that ATRi-induced ssDNA could be predictive of ATRi sensitivity in cancer cells. PMID:26365377

  19. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets.

    PubMed

    Pinto-Fernandez, Adan; Kessler, Benedikt M

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.

  20. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets

    PubMed Central

    Pinto-Fernandez, Adan; Kessler, Benedikt M.

    2016-01-01

    Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors. PMID:27516771

  1. Cellular distribution of cell cycle-related molecules in the renal tubules of rats treated with renal carcinogens for 28 days: relationship between cell cycle aberration and carcinogenesis.

    PubMed

    Taniai, Eriko; Hayashi, Hitomi; Yafune, Atsunori; Watanabe, Maiko; Akane, Hirotoshi; Suzuki, Kazuhiko; Mitsumori, Kunitoshi; Shibutani, Makoto

    2012-09-01

    Some renal carcinogens can induce karyomegaly, which reflects aberrant cell division in the renal tubules, from the early stages of exposure. To clarify the cell cycle-related changes during the early stages of renal carcinogenesis, we performed immunohistochemical analysis of tubular cells in male F344 rats treated with carcinogenic doses of representative renal carcinogens for 28 days. For this purpose, the karyomegaly-inducing carcinogens ochratoxin A (OTA), ferric nitrilotriacetic acid, and monuron, and the non-karyomegaly-inducing carcinogens tris(2-chloroethyl) phosphate and potassium bromate were examined. For comparison, a karyomegaly-inducing non-carcinogen, p-nitrobenzoic acid, and a non-carcinogenic non-karyomegaly-inducing renal toxicant, acetaminophen, were also examined. The outer stripe of the outer medulla (OSOM) and the cortex + OSOM were subjected to morphometric analysis of immunoreactive proximal tubular cells. Renal carcinogens, irrespective of their karyomegaly-inducing potential, increased proximal tubular cell proliferation accompanied by an increase in topoisomerase IIα-immunoreactive cells, suggesting a reflection of cell proliferation. Karyomegaly-inducing carcinogens increased nuclear Cdc2-, γH2AX-, and phosphorylated Chk2-immunoreactive cells in both areas, the former two acting in response to DNA damage and the latter one suggestive of sustained G₂. OTA, an OSOM-targeting carcinogen, could easily be distinguished from untreated controls and non-carcinogens by evaluation of molecules responding to DNA damage and G₂/M transition in the OSOM. Thus, all renal carcinogens examined facilitated proximal tubular proliferation by repeated short-term treatment. Among these, karyomegaly-inducing carcinogens may cause DNA damage and G₂ arrest in the target tubular cells.

  2. miR-300 regulates cellular radiosensitivity through targeting p53 and apaf1 in human lung cancer cells.

    PubMed

    He, Jinpeng; Feng, Xiu; Hua, Junrui; Wei, Li; Lu, Zhiwei; Wei, Wenjun; Cai, Hui; Wang, Bing; Shi, Wengui; Ding, Nan; Li, He; Zhang, Yanan; Wang, Jufang

    2017-10-18

    microRNAs (miRNAs) play a crucial role in mediation of the cellular sensitivity to ionizing radiation (IR). Previous studies revealed that miR-300 was involved in the cellular response to IR or chemotherapy drug. However, whether miR-300 could regulate the DNA damage responses induced by extrinsic genotoxic stress in human lung cancer and the underlying mechanism remain unknown. In this study, the expression of miR-300 was examined in lung cancer cells treated with IR, and the effects of miR-300 on DNA damage repair, cell cycle arrest, apoptosis and senescence induced by IR were investigated. It was found that IR induced upregulation of endogenous miR-300, and ectopic expression of miR-300 by transfected with miR-300 mimics not only greatly enhanced the cellular DNA damage repair ability but also substantially abrogated the G2 cell cycle arrest and apoptosis induced by IR. Bioinformatic analysis predicted that p53 and apaf1 were potential targets of miR-300, and the luciferase reporter assay showed that miR-300 significantly suppressed the luciferase activity through binding to the 3'-UTR of p53 or apaf1 mRNA. In addition, overexpression of miR-300 significantly reduced p53/apaf1 and/or IR-induced p53/apaf1 protein expression levels. Flow cytomertry analysis and colony formation assay showed that miR-300 desensitized lung cancer cells to IR by suppressing p53-dependent G2 cell cycle arrest, apoptosis and senescence. These data demonstrate that miR-300 regulates the cellular sensitivity to IR through targeting p53 and apaf1 in lung cancer cells.

  3. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells.

    PubMed

    Wei, Ren-Jie; Lin, Su-Shuan; Wu, Wen-Ren; Chen, Lih-Ren; Li, Chien-Feng; Chen, Han-De; Chou, Chien-Ting; Chen, Ya-Chun; Liang, Shih-Shin; Chien, Shang-Tao; Shiue, Yow-Ling

    2016-11-15

    The objective was to investigate the upstream mechanisms of apoptosis which were triggered by a novel anti-microtubule drug, ABT-751, in hepatocellular carcinoma-derived Huh-7 cells. Effects of ABT-751 were evaluated by immunocytochemistry, flow cytometric, alkaline comet, soft agar, immunoblotting, CytoID, green fluorescent protein-microtubule associated protein 1 light chain 3 beta detection, plasmid transfection, nuclear/cytosol fractionation, coimmunoprecipitation, quantitative reverse transcription-polymerase chain reaction, small-hairpin RNA interference and mitochondria/cytosol fractionation assays. Results showed that ABT-751 caused dysregulation of microtubule, collapse of mitochondrial membrane potential, generation of reactive oxygen species (ROS), DNA damage, G 2 /M cell cycle arrest, inhibition of anchorage-independent cell growth and apoptosis in Huh-7 cells. ABT-751 also induced early autophagy via upregulation of nuclear TP53 and downregulation of the AKT serine/threonine kinase (AKT)/mechanistic target of rapamycin (MTOR) pathway. Through modulation of the expression levels of DNA damage checkpoint proteins and G 2 /M cell cycle regulators, ABT-751 induced G 2 /M cell cycle arrest. Subsequently, ABT-751 triggered apoptosis with marked downregulation of B-cell CLL/lymphoma 2, upregulation of mitochondrial BCL2 antagonist/killer 1 and BCL2 like 11 protein levels, and cleavages of caspase 8 (CASP8), CASP9, CASP3 and DNA fragmentation factor subunit alpha proteins. Suppression of ROS significantly decreased ABT-751-induced autophagic and apoptotic cells. Pharmacological inhibition of autophagy significantly increased the percentages of ABT-751-induced apoptotic cells. The autophagy induced by ABT-751 plays a protective role to postpone apoptosis by exerting adaptive responses following microtubule damage, ROS and/or impaired mitochondria. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. SV40 Utilizes ATM Kinase Activity to Prevent Non-homologous End Joining of Broken Viral DNA Replication Products

    PubMed Central

    Sowd, Gregory A.; Mody, Dviti; Eggold, Joshua; Cortez, David; Friedman, Katherine L.; Fanning, Ellen

    2014-01-01

    Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from breakage of a moving replication fork as it converges with a stalled fork. However, the repair pathways that ATM and ATR orchestrate to prevent these aberrant SV40 DNA replication products are unclear. Using two-dimensional gel electrophoresis and Southern blotting, we show that ATR kinase activity, but not DNA-PKcs kinase activity, facilitates some aspects of double strand break (DSB) repair when ATM is inhibited during SV40 infection. To clarify which repair factors associate with viral DNA replication centers, we examined the localization of DSB repair proteins in response to SV40 infection. Under normal conditions, viral replication centers exclusively associate with homology-directed repair (HDR) and do not colocalize with non-homologous end joining (NHEJ) factors. Following ATM inhibition, but not ATR inhibition, activated DNA-PKcs and KU70/80 accumulate at the viral replication centers while CtIP and BLM, proteins that initiate 5′ to 3′ end resection during HDR, become undetectable. Similar to what has been observed during cellular DSB repair in S phase, these data suggest that ATM kinase influences DSB repair pathway choice by preventing the recruitment of NHEJ factors to replicating viral DNA. These data may explain how ATM prevents concatemerization of the viral genome and promotes viral propagation. We suggest that inhibitors of DNA damage signaling and DNA repair could be used during infection to disrupt productive viral DNA replication. PMID:25474690

  5. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.

    PubMed

    Ahmed, Emad A; Vélaz, Eukene; Rosemann, Michael; Gilbertz, Klaus-P; Scherthan, Harry

    2017-03-01

    Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G 1 -like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc -/- and Ku -/- mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc -/- cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku -/- MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.

  6. The critical role of p16/Rb pathway in the inhibition of GH3 cell cycle induced by T-2 toxin.

    PubMed

    Fatima, Zainab; Guo, Pu; Huang, Deyu; Lu, Qirong; Wu, Qinghua; Dai, Menghong; Cheng, Guyue; Peng, Dapeng; Tao, Yanfei; Ayub, Muhammad; Ul Qamar, Muhammad Tahir; Ali, Muhammad Waqar; Wang, Xu; Yuan, Zonghui

    2018-05-01

    T-2 toxin is a worldwide trichothecenetoxin and can cause various toxicities.T-2 toxin is involved in G1 phase arrest in several cell lines but molecular mechanism is still not clear. In present study, we used rat pituitary GH3 cells to investigate the mechanism involved in cell cycle arrest against T-2 toxin (40 nM) for 12, 24, 36 and 48 h as compared to control cells. GH3 cells showed a considerable increase in reactive oxygen species (ROS) as well as loss in mitochondrial membrane potential (△Ym) upon exposure to the T-2 toxin. Flow cytometry showed a significant time-dependent increase in percentage of apoptotic cells and gel electrophoresis showed the hallmark of apoptosis oligonucleosomal DNA fragmentation. Additionally, T-2 toxin-induced oxidative stress and DNA damage with a time-dependent significant increased expression of p53 favors the apoptotic process by the activation of caspase-3 in T-2 toxin treated cells. Cell cycle analysis by flow cytometry revealed a time-dependent increase ofG1 cell population along with the significant time-dependent up-regulation of mRNA and protein expression of p16 and p21 and significant down-regulation of cyclin D1, CDK4, and p-RB levels further verify the G1 phase arrest in GH3 cells. Morphology of GH3 cells by TEM clearly showed the damage and dysfunction to mitochondria and the cell nucleus. These findings for the first time demonstrate that T-2 toxin induces G1 phase cell cycle arrest by the involvement of p16/Rb pathway, along with ROS mediated oxidative stress and DNA damage with p53 and caspase cascade interaction, resulting in apoptosis in GH3 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    PubMed

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  8. Lack of a p21waf1/cip -dependent G1/S checkpoint in neural stem and progenitor cells after DNA damage in vivo.

    PubMed

    Roque, Telma; Haton, Céline; Etienne, Olivier; Chicheportiche, Alexandra; Rousseau, Laure; Martin, Ludovic; Mouthon, Marc-André; Boussin, François D

    2012-03-01

    The cyclin-dependent kinase inhibitor p21(waf1/cip) mediates the p53-dependent G1/S checkpoint, which is generally considered to be a critical requirement to maintain genomic stability after DNA damage. We used staggered 5-ethynyl-2'deoxyuridine/5-bromo-2'-deoxyuridine double-labeling in vivo to investigate the cell cycle progression and the role of p21(waf1/cip) in the DNA damage response of neural stem and progenitor cells (NSPCs) after exposure of the developing mouse cortex to ionizing radiation. We observed a radiation-induced p21-dependent apoptotic response in migrating postmitotic cortical cells. However, neural stem and progenitor cells (NSPCs) did not initiate a p21(waf1/cip1) -dependent G1/S block and continued to enter S-phase at a similar rate to the non-irradiated controls. The G1/S checkpoint is not involved in the mechanisms underlying the faithful transmission of the NSPC genome and/or the elimination of critically damaged cells. These processes typically involve intra-S and G2/M checkpoints that are rapidly activated after irradiation. p21 is normally repressed in neural cells during brain development except at the G1 to G0 transition. Lack of activation of a G1/S checkpoint and apoptosis of postmitotic migrating cells after DNA damage appear to depend on the expression of p21 in neural cells, since substantial cell-to-cell variations are found in the irradiated cortex. This suggests that repression of p21 during brain development prevents the induction of the G1/S checkpoint after DNA damage. Copyright © 2011 AlphaMed Press.

  9. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation

    PubMed Central

    Houlihan, Shauna L; Feng, Yuanyi

    2014-01-01

    Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders. DOI: http://dx.doi.org/10.7554/eLife.03297.001 PMID:25245017

  10. Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.

    PubMed

    Tognetti, Silvia; Riera, Alberto; Speck, Christian

    2015-03-01

    A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.

  11. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.

    PubMed

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-02

    Previously, we analyzed protein abundance changes across a 'minimally perturbed' cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (

  12. Impact of α-targeted radiation therapy on gene expression in a pre-clinical model for disseminated peritoneal disease when combined with paclitaxel.

    PubMed

    Yong, Kwon Joong; Milenic, Diane E; Baidoo, Kwamena E; Brechbiel, Martin W

    2014-01-01

    To better understand the molecular basis of the enhanced cell killing effected by the combined modality of paclitaxel and ²¹²Pb-trastuzumab (Pac/²¹²Pb-trastuzumab), gene expression in LS-174T i.p. xenografts was investigated 24 h after treatment. Employing a real time quantitative PCR array (qRT-PCR array), 84 DNA damage response genes were quantified. Differentially expressed genes following therapy with Pac/²¹²Pb-trastuzumab included those involved in apoptosis (BRCA1, CIDEA, GADD45α, GADD45γ, GML, IP6K3, PCBP4, PPP1R15A, RAD21, and p73), cell cycle (BRCA1, CHK1, CHK2, GADD45α, GML, GTSE1, NBN, PCBP4, PPP1R15A, RAD9A, and SESN1), and damaged DNA repair (ATRX, BTG2, EXO1, FEN1, IGHMBP2, OGG1, MSH2, MUTYH, NBN, PRKDC, RAD21, and p73). This report demonstrates that the increased stressful growth arrest conditions induced by the Pac/²¹²Pb-trastuzumab treatment suppresses cell proliferation through the regulation of genes which are involved in apoptosis and damaged DNA repair including single and double strand DNA breaks. Furthermore, the study demonstrates that ²¹²Pb-trastuzumab potentiation of cell killing efficacy results from the perturbation of genes related to the mitotic spindle checkpoint and BASC (BRCA1-associated genome surveillance complex), suggesting cross-talk between DNA damage repair and the spindle damage response.

  13. Possible role of PAPR-1 in protecting human HaCaT cells against cytotoxicity of SiO2 nanoparticles.

    PubMed

    Gong, Chunmei; Yang, Linqing; Zhou, Jichang; Guo, Xiang; Zhuang, Zhixiong

    2017-10-05

    Nano-SiO 2 materials play a significant role in the engineered nanomaterials (ENMs) field. The ease of their production as well as their relatively low cost has promoted the wide use of these products in many fields. Nano-SiO 2 exposure is known to cause severe DNA damage; however, the underlying mechanisms remain poorly understood. In a previous study, we found that nano-SiO 2 exposure regulate the expression of the poly(ADP-ribose) polymerases-1 (PARP-1), a pivotal DNA repair gene, in human HaCaT cells. Here, we employed lentivirus-mediated RNA interference (RNAi) to knock down PAPR-1 expression in HaCaT cells and explored the potential role of PARP-1 in nano-SiO 2 induced cytotoxicity. We found that nano-SiO 2 treatment of HaCaT cells causes decreased cell viability, increased apoptosis and DNA damage. Nano-SiO 2 -treated HaCaT cells were also found to have slightly changed cell cycle distribution. Lentivirus-mediated PAPR-1 knockdown partially aggravated cytotoxicity and increased apoptosis induced by nano-SiO 2 treatment. Nano-SiO 2 had significant toxicity to human HaCaT cells and causes DNA damage. PAPR-1 knock-down cell line appears more sensitive to nano-SiO 2 than the control cells in DNA damage. The results suggest that PAPR-1 is involved in protecting cells from damage caused by nano-SiO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Milk phospholipid's protective effects against UV damage in skin equivalent models

    NASA Astrophysics Data System (ADS)

    Dargitz, Carl; Russell, Ashley; Bingham, Michael; Achay, Zyra; Jimenez-Flores, Rafael; Laiho, Lily H.

    2012-03-01

    Exposure of skin tissue to UV radiation has been shown to cause DNA photodamage. If this damaged DNA is allowed to replicate, carcinogenesis may occur. DNA damage is prevented from being passed on to daughter cells by upregulation of the protein p21. p21 halts the cells cycle allowing the cell to undergo apoptosis, or repair its DNA before replication. Previous work suggested that milk phospholipids may possess protective properties against UV damage. In this study, we observed cell morphology, cell apoptosis, and p21 expression in tissue engineered epidermis through the use of Hematoxylin and Eosin staining, confocal microscopy, and western blot respectively. Tissues were divided into four treatment groups including: a control group with no UV and no milk phospholipid treatment, a group exposed to UV alone, a group incubated with milk phospholipids alone, and a group treated with milk phospholipids and UV. All groups were incubated for twenty-four hours after treatment. Tissues were then fixed, processed, and embedded in paraffin. Performing western blots resulted in visible p21 bands for the UV group only, implying that in every other group, p21 expression was lesser. Numbers of apoptotic cells were determined by observing the tissues treated with Hoechst dye under a confocal microscope, and counting the number of apoptotic and total cells to obtain a percentage of apoptotic cells. We found a decrease in apoptotic cells in tissues treated with milk phospholipids and UV compared to tissues exposed to UV alone. Collectively, these results suggest that milk phospholipids protect cell DNA from damage incurred from UV light.

  15. Significant accumulation of persistent organic pollutants and dysregulation in multiple DNA damage repair pathways in the electronic-waste-exposed populations.

    PubMed

    He, Xiaobo; Jing, Yaqing; Wang, Jianhai; Li, Keqiu; Yang, Qiaoyun; Zhao, Yuxia; Li, Ran; Ge, Jie; Qiu, Xinghua; Li, Guang

    2015-02-01

    Electronic waste (e-waste) has created a worldwide environmental and health problem, by generating a diverse group of hazardous compounds such as persistent organic pollutants (POPs). Our previous studies demonstrated that populations from e-waste exposed region have a significantly higher level of chromosomal aberrancy and incidence of DNA damage. In this study, we further demonstrated that various POPs persisted at a significantly higher concentration in the exposed group than those in the unexposed group. The level of reactive oxygen species and micronucleus rate were also significantly elevated in the exposed group. RNA sequencing analysis revealed 31 genes in DNA damage responses and repair pathways that were differentially expressed between the two groups (Log2 ratio >1 or <-1). Our data demonstrated that both females and males of the exposed group have activated a series of DNA damage response genes; however many important DNA repair pathways have been dysregulated. Expressions of NEIL1/3 and RPA3, which are critical in initiating base pair and nucleotide excision repairs respectively, have been downregulated in both females and males of the exposed group. In contrast, expression of RNF8, an E3 ligase involved in an error prone non-homologous end joining repair for DNA double strand break, was upregulated in both genders of the exposed group. The other genes appeared to be differentially expressed only when the males or females of the two groups were compared respectively. Importantly, the expression of cell cycle regulatory gene CDC25A that has been implicated in multiple kinds of malignant transformation was significantly upregulated among the exposed males while downregulated among the exposed females. In conclusion, our studies have demonstrated significant correlations between e-waste disposing and POPs accumulation, DNA lesions and dysregulation of multiple DNA damage repair mechanisms in the residents of the e-waste exposed region. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability.

    PubMed

    Myers, Katie N; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J; Howard, Anna E; Beveridge, Ryan D; Maslen, Sarah; Skehel, J Mark; Collis, Spencer J

    2016-10-14

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions.

  17. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    PubMed

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G 2 /M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of ATM and ATR did not rescue the A549 cells subjected to ionizing irradiation. Therefore, future studies on DNA-PKcs, ATM and ATR may lead to novel specific therapies that supplement general radiotherapy for the treatment of lung cancer.

  18. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems.

  19. Accumulation of p21 proteins at DNA damage sites independent of p53 and core NHEJ factors following irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Manabu, E-mail: m_koike@nirs.go.jp; Yutoku, Yasutomo; Graduate School of Science, Chiba University, Chiba 263-8522

    2011-08-19

    Highlights: {yields} p21 accumulated rapidly at laser-irradiated sites via its C-terminal region. {yields} p21 colocalized with the DSB marker {gamma}-H2AX and the DSB sensor Ku80. {yields} Accumulation of p21 is dependent on PCNA, but not p53 and the NHEJ core factors. {yields} Accumulation activity of p21 was conserved among human and animal cells. {yields} p21 is a useful tool as a detection marker of DNA damaged sites. -- Abstract: The cyclin-dependent kinase (CDK) inhibitor p21 plays key roles in p53-dependent DNA-damage responses, i.e., cell cycle checkpoints, senescence, or apoptosis. p21 might also play a role in DNA repair. p21 focimore » arise at heavy-ion-irradiated DNA-double-strand break (DSB) sites, which are mainly repaired by nonhomologous DNA-end-joining (NHEJ). However, no mechanisms of p21 accumulation at double-strand break (DSB) sites have been clarified in detail. Recent works indicate that Ku70 and Ku80 are essential for the accumulation of other NHEJ core factors, e.g., DNA-PKcs, XRCC4 and XLF, and other DNA damage response factors, e.g., BRCA1. Here, we show that p21 foci arise at laser-irradiated sites in cells from various tissues from various species. The accumulation of EGFP-p21 was detected in not only normal cells, but also transformed or cancer cells. Our results also showed that EGFP-p21 accumulated rapidly at irradiated sites, and colocalized with the DSB marker {gamma}-H2AX and with the DSB sensor protein Ku80. On the other hand, the accumulation occurred in Ku70-, Ku80-, or DNA-PKcs-deficient cell lines and in human papillomavirus 18-positive cells, whereas the p21 mutant without the PCNA-binding region (EGFP-p21(1-146)) failed to accumulate at the irradiated sites. These findings suggest that the accumulation of p21, but not functional p53 and the NHEJ core factors, is dependent on PCNA. These findings also suggest that the accumulation activity of p21 at DNA damaged sites is conserved among human and animal cells, and p21 is a useful tool as a detection marker of DNA damaged sites.« less

  20. Polo-like kinase 1 inhibits DNA damage response during mitosis

    PubMed Central

    Benada, Jan; Burdová, Kamila; Lidak, Tomáš; von Morgen, Patrick; Macurek, Libor

    2015-01-01

    In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis. PMID:25607646

  1. Polo-like kinase 1 inhibits DNA damage response during mitosis.

    PubMed

    Benada, Jan; Burdová, Kamila; Lidak, Tomáš; von Morgen, Patrick; Macurek, Libor

    2015-01-01

    In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.

  2. Physical interaction between replication protein A (RPA) and MRN: involvement of RPA2 phosphorylation and the N-terminus of RPA1.

    PubMed

    Oakley, Greg G; Tillison, Kristin; Opiyo, Stephen A; Glanzer, Jason G; Horn, Jeffrey M; Patrick, Steve M

    2009-08-11

    Replication protein A (RPA) is a heterotrimeric protein consisting of RPA1, RPA2, and RPA3 subunits that binds to single-stranded DNA (ssDNA) with high affinity. The response to replication stress requires the recruitment of RPA and the MRE11-RAD50-NBS1 (MRN) complex. RPA bound to ssDNA stabilizes stalled replication forks by recruiting checkpoint proteins involved in fork stabilization. MRN can bind DNA structures encountered at stalled or collapsed replication forks, such as ssDNA-double-stranded DNA (dsDNA) junctions or breaks, and promote the restart of DNA replication. Here, we demonstrate that RPA2 phosphorylation regulates the assembly of DNA damage-induced RPA and MRN foci. Using purified proteins, we observe a direct interaction between RPA with both NBS1 and MRE11. By utilizing RPA bound to ssDNA, we demonstrate that substituting RPA with phosphorylated RPA or a phosphomimetic weakens the interaction with the MRN complex. Also, the N-terminus of RPA1 is a critical component of the RPA-MRN protein-protein interaction. Deletion of the N-terminal oligonucleotide-oligosaccharide binding fold (OB-fold) of RPA1 abrogates interactions of RPA with MRN and individual proteins of the MRN complex. Further identification of residues critical for MRN binding in the N-terminus of RPA1 shows that substitution of Arg31 and Arg41 with alanines disrupts the RPA-MRN interaction and alters cell cycle progression in response to DNA damage. Thus, the N-terminus of RPA1 and phosphorylation of RPA2 regulate RPA-MRN interactions and are important in the response to DNA damage.

  3. Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi.

    PubMed

    van Haaften, Gijs; Romeijn, Ron; Pothof, Joris; Koole, Wouter; Mullenders, Leon H F; Pastink, Albert; Plasterk, Ronald H A; Tijsterman, Marcel

    2006-07-11

    Ionizing radiation is extremely harmful for human cells, and DNA double-strand breaks (DSBs) are considered to be the main cytotoxic lesions induced. Improper processing of DSBs contributes to tumorigenesis, and mutations in DSB response genes underlie several inherited disorders characterized by cancer predisposition. Here, we performed a comprehensive screen for genes that protect animal cells against ionizing radiation. A total of 45 C. elegans genes were identified in a genome-wide RNA interference screen for increased sensitivity to ionizing radiation in germ cells. These genes include orthologs of well-known human cancer predisposition genes as well as novel genes, including human disease genes not previously linked to defective DNA-damage responses. Knockdown of eleven genes also impaired radiation-induced cell-cycle arrest, and seven genes were essential for apoptosis upon exposure to irradiation. The gene set was further clustered on the basis of increased sensitivity to DNA-damaging cancer drugs cisplatin and camptothecin. Almost all genes are conserved across animal phylogeny, and their relevance for humans was directly demonstrated by showing that their knockdown in human cells results in radiation sensitivity, indicating that this set of genes is important for future cancer profiling and drug development.

  4. The natural absence of RPA1N domain did not impair Leishmania amazonensis RPA-1 participation in DNA damage response and telomere protection.

    PubMed

    Da Silveira, Rita De Cássia Viveiros; Da Silva, Marcelo Santos; Nunes, Vinícius Santana; Perez, Arina Marina; Cano, Maria Isabel Nogueira

    2013-04-01

    We have previously shown that the subunit 1 of Leishmania amazonensis RPA (LaRPA-1) alone binds the G-rich telomeric strand and is structurally different from other RPA-1. It is analogous to telomere end-binding proteins described in model eukaryotes whose homologues were not identified in the protozoan´s genome. Here we show that LaRPA-1 is involved with damage response and telomere protection although it lacks the RPA1N domain involved with the binding with multiple checkpoint proteins. We induced DNA double-strand breaks (DSBs) in Leishmania using phleomycin. Damage was confirmed by TUNEL-positive nuclei and triggered a G1/S cell cycle arrest that was accompanied by nuclear accumulation of LaRPA-1 and RAD51 in the S phase of hydroxyurea-synchronized parasites. DSBs also increased the levels of RAD51 in non-synchronized parasites and of LaRPA-1 and RAD51 in the S phase of synchronized cells. More LaRPA-1 appeared immunoprecipitating telomeres in vivo and associated in a complex containing RAD51, although this interaction needs more investigation. RAD51 apparently co-localized with few telomeric clusters but it did not immunoprecipitate telomeric DNA. These findings suggest that LaRPA-1 and RAD51 work together in response to DNA DSBs and at telomeres, upon damage, LaRPA-1 works probably to prevent loss of single-stranded DNA and to assume a capping function.

  5. Noncanonical ATM Activation and Signaling in Response to Transcription-Blocking DNA Damage.

    PubMed

    Marteijn, Jurgen A; Vermeulen, Wim; Tresini, Maria

    2017-01-01

    Environmental genotoxins and metabolic byproducts generate DNA lesions that can cause genomic instability and disrupt tissue homeostasis. To ensure genomic integrity, cells employ mechanisms that convert signals generated by stochastic DNA damage into organized responses, including activation of repair systems, cell cycle checkpoints, and apoptotic mechanisms. DNA damage response (DDR) signaling pathways coordinate these responses and determine cellular fates in part, by transducing signals that modulate RNA metabolism. One of the master DDR coordinators, the Ataxia Telangiectasia Mutated (ATM) kinase, has a fundamental role in mediating DNA damage-induced changes in mRNA synthesis. ATM acts by modulating a variety of RNA metabolic pathways including nascent RNA splicing, a process catalyzed by the spliceosome. Interestingly, ATM and the spliceosome influence each other's activity in a reciprocal manner by a pathway that initiates when transcribing RNA polymerase II (RNAPII) encounters DNA lesions that prohibit forward translocation. In response to stalling of RNAPII assembly of late-stage spliceosomes is disrupted resulting in increased splicing factor mobility. Displacement of spliceosomes from lesion-arrested RNA polymerases facilitates formation of R-loops between the nascent RNA and DNA adjacent to the transcription bubble. R-loops signal for noncanonical ATM activation which in quiescent cells occurs in absence of detectable dsDNA breaks. In turn, activated ATM signals to regulate spliceosome dynamics and AS genome wide.This chapter describes the use of fluorescence microscopy methods that can be used to evaluate noncanonical ATM activation by transcription-blocking DNA damage. First, we present an immunofluorescence-detection method that can be used to evaluate ATM activation by autophosphorylation, in fixed cells. Second, we present a protocol for Fluorescence Recovery After Photobleaching (FRAP) of GFP-tagged splicing factors, a highly sensitive and reproducible readout to measure in living cells, the ATM influence on the spliceosome. These approaches have been extensively used in our laboratory for a number of cell lines of various origins and are particularly informative when used in primary cells that can be synchronized in quiescence, to avoid generation of replication stress-induced dsDNA breaks and consequent ATM activation through its canonical pathway.

  6. New orally active DNA minor groove binding small molecule CT-1 acts against breast cancer by targeting tumor DNA damage leading to p53-dependent apoptosis.

    PubMed

    Saini, Karan Singh; Hamidullah; Ashraf, Raghib; Mandalapu, Dhanaraju; Das, Sharmistha; Siddiqui, Mohd Quadir; Dwivedi, Sonam; Sarkar, Jayanta; Sharma, Vishnu Lal; Konwar, Rituraj

    2017-04-01

    Targeting tumor DNA damage and p53 pathway is a clinically established strategy in the development of cancer chemotherapeutics. Majority of anti-cancer drugs are delivered through parenteral route for reasons like severe toxicity, lack of stability, and poor enteral absorption. Current DNA targeting drugs in clinical like anthracycline suffers from major drawbacks like cardiotoxicity. Here, we report identification of a new orally active small molecule curcumin-triazole conjugate (CT-1) with significant anti-breast cancer activity in vitro and in vivo. CT-1 selectively and significantly inhibits viability of breast cancer cell lines; retards cells cycle progression at S phase and induce mitochondrial-mediated cell apoptosis. CT-1 selectively binds to minor groove of DNA and induces DNA damage leading to increase in p53 along with decrease in its ubiquitination. Inhibition of p53 with pharmacological inhibitor as well as siRNA revealed the necessity of p53 in CT-1-mediated anti-cancer effects in breast cancer cells. Studies using several other intact p53 and deficient p53 cancer cell lines further confirmed necessity of p53 in CT-1-mediated anti-cancer response. Pharmacological inhibition of pan-caspase showed CT-1 induces caspase-dependent cell death in breast cancer cells. Most interestingly, oral administration of CT-1 induces significant inhibition of tumor growth in LA-7 syngeneic orthotropic rat mammary tumor model. CT-1 treated mammary tumor shows enhancement in DNA damage, p53 upregulation, and apoptosis. Collectively, CT-1 exhibits potent anti-cancer effect both in vitro and in vivo and could serve as a safe orally active lead for anti-cancer drug development. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    PubMed

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  8. The Role of p21 in Apoptosis, Proliferation, Cell Cycle Arrest, and Antioxidant Activity in UVB-Irradiated Human HaCaT Keratinocytes

    PubMed Central

    Chen, Aijun; Huang, Xin; Xue, Zhenan; Cao, Di; Huang, Kun; Chen, Jin; Pan, Yun; Gao, Yongliang

    2015-01-01

    Background Skin cancer is the most common cancer in the United States, and ultraviolet B (UVB) radiation-induced DNA damage is the major environmental factor underlying skin cancer development. p21, a p53-inducible protein, plays a key role in the cellular response to UVB-induced DNA damage. Material/Methods Through p21 silencing and overexpression, we investigated the role of p21 in apoptosis, proliferation, cell cycle arrest, and oxidative stress in UVB-irradiated HaCaT keratinocytes. Results We found that UVB exposure induced significant p21 downregulation (p<0.05) and was associated with significantly increased apoptosis, significantly decreased proliferation, and significantly increased G2 phase arrest (p<0.05) in UVB-irradiated HaCaT keratinocytes. p21 silencing significantly promoted apoptosis, significantly inhibited G2 phase arrest, and significantly inhibited proliferation (p<0.05), but after UVB irradiation, p21 silencing demonstrated a less significant pro-apoptotic effect and a more significant inhibition of G2 phase arrest (p<0.05), which was reflected in significantly higher proliferative activity (p<0.05). p21 overexpression acted in an anti-apoptotic manner in the absence of UVB-induced DNA damage but acted in a pro-apoptotic manner in the presence of UVB-induced DNA damage, displaying an “antagonistic duality” similar to other growth-promoting oncoproteins. p53 expression mirrored p21 expression, suggesting a regulatory feedback mechanism between p21 and p53 expression. p21 overexpression significantly downregulated glutathione peroxidase and superoxide dismutase antioxidant activity (p<0.05) while significantly upregulating hydrogen peroxide and malondialdehyde content (p<0.05), suggesting a role in decreasing antioxidant defense capabilities in UVB-irradiated HaCaT keratinocytes. Conclusions These findings reveal that p21 may play a key role in HaCaT keratinocytes’ response to UVB exposure. PMID:25925725

  9. Chemopreventive effect of different ratios of fish oil and corn oil on prognostic markers, DNA damage and cell cycle in colon carcinogenesis.

    PubMed

    Sarotra, Pooja; Kansal, Shevali; Sandhir, Rajat; Agnihotri, Navneet

    2012-03-01

    Fish oil (FO) rich in n-3 polyunsaturated fatty acids (PUFAs) have a protective role in autoimmune disorders, type 2 diabetes, rheumatoid arthritis, and cancer, whereas corn oil (CO) rich in n-6 PUFAs has a proinflammatory and procarcinogenic effect. A balanced n-3/n-6 PUFA ratio in diet rather than absolute intake of either may be responsible for decreasing cancer incidence. This study was designed to evaluate the chemopreventive effect of different ratios of FO and CO on prognostic markers, DNA damage, and cell cycle distribution in colon carcinogenesis. Male Wistar rats were divided into control, N,N'-dimethylhydrazine dihydrochloride (DMH) treated, FO+CO(1 : 1)+DMH, and FO+CO(2.5 : 1)+DMH. All the groups, except control, received a weekly injection of DMH for 4 weeks. The animals were given modified AIN-76A diets and killed either 48 h later (initiation phase) or kept for 16 weeks (postinitiation phase). The animals treated with DMH in both the phases showed an increase in multiple plaque lesions, total sialic acid, lipid associated sialic acid, DNA damage and cell proliferation. However, levels of p53 in the postinitiation and cyclin D1 in both the phases were significantly elevated. FO+CO(2.5 : 1)+DMH treatment in both the phases led to a decrease in multiple plaque lesions, DNA damage, total sialic acid, lipid associated sialic acid as compared with the DMH treated group. There was a G1 arrest with a decrease in p53 and cyclin D1 levels in FO+CO(2.5 : 1) in both the phases whereas treatment with FO+CO(1 : 1)+DMH led to same results in the postinitiation phase only. This study suggests that FO+CO(2.5 : 1) is more effective in chemoprevention of experimental colon carcinogenesis.

  10. 4β-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest

    PubMed Central

    2010-01-01

    Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063

  11. 4beta-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest.

    PubMed

    Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang

    2010-02-18

    The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.

  12. The Role of AKT/mTOR Pathway in Stress Response to UV-Irradiation: Implication in Skin Carcinogenesis by Regulation of Apoptosis, Autophagy and Senescence

    PubMed Central

    Strozyk, Elwira; Kulms, Dagmar

    2013-01-01

    Induction of DNA damage by UVB and UVA radiation may generate mutations and genomic instability leading to carcinogenesis. Therefore, skin cells being repeatedly exposed to ultraviolet (UV) light have acquired multilayered protective mechanisms to avoid malignant transformation. Besides extensive DNA repair mechanisms, the damaged skin cells can be eliminated by induction of apoptosis, which is mediated through the action of tumor suppressor p53. In order to prevent the excessive loss of skin cells and to maintain the skin barrier function, apoptotic pathways are counteracted by anti-apoptotic signaling including the AKT/mTOR pathway. However, AKT/mTOR not only prevents cell death, but is also active in cell cycle transition and hyper-proliferation, thereby also counteracting p53. In turn, AKT/mTOR is tuned down by the negative regulators being controlled by the p53. This inhibition of AKT/mTOR, in combination with transactivation of damage-regulated autophagy modulators, guides the p53-mediated elimination of damaged cellular components by autophagic clearance. Alternatively, p53 irreversibly blocks cell cycle progression to prevent AKT/mTOR-driven proliferation, thereby inducing premature senescence. Conclusively, AKT/mTOR via an extensive cross talk with p53 influences the UV response in the skin with no black and white scenario deciding over death or survival. PMID:23887651

  13. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    PubMed

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  14. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  15. C/EBPα expression is downregulated in human nonmelanoma skin cancers and inactivation of C/EBPα confers susceptibility to UVB-induced skin squamous cell carcinomas.

    PubMed

    Thompson, Elizabeth A; Zhu, Songyun; Hall, Jonathan R; House, John S; Ranjan, Rakesh; Burr, Jeanne A; He, Yu-Ying; Owens, David M; Smart, Robert C

    2011-06-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G(1) checkpoint, and diminished or ablated expression of C/EBPα results in G(1) checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB.

  16. C/EBPα Expression Is Downregulated in Human Nonmelanoma Skin Cancers and Inactivation of C/EBPα Confers Susceptibility to UVB-Induced Skin Squamous Cell Carcinomas

    PubMed Central

    Thompson, Elizabeth A.; Zhu, Songyun; Hall, Jonathan R.; House, John S.; Ranjan, Rakesh; Burr, Jeanne A.; He, Yu-Ying; Owens, David M.; Smart, Robert C.

    2012-01-01

    Human epidermis is routinely subjected to DNA damage induced by UVB solar radiation. Cell culture studies have revealed an unexpected role for C/EBPα (CCAAT/enhancer-binding protein-α) in the DNA damage response network, where C/EBPα is induced following UVB DNA damage, regulates the G1 checkpoint, and diminished or ablated expression of C/EBPα results in G1 checkpoint failure. In the current study we observed that C/EBPα is induced in normal human epidermal keratinocytes and in the epidermis of human subjects exposed to UVB radiation. The analysis of human skin precancerous and cancerous lesions (47 cases) for C/EBPα expression was conducted. Actinic keratoses, a precancerous benign skin growth and precursor to squamous cell carcinoma (SCC), expressed levels of C/EBPα similar to normal epidermis. Strikingly, all invasive SCCs no longer expressed detectable levels of C/EBPα. To determine the significance of C/EBPα in UVB-induced skin cancer, SKH-1 mice lacking epidermal C/EBPα (CKOα) were exposed to UVB. CKOα mice were highly susceptible to UVB-induced SCCs and exhibited accelerated tumor progression. CKOα mice displayed keratinocyte cell cycle checkpoint failure in vivo in response to UVB that was characterized by abnormal entry of keratinocytes into S phase. Our results demonstrate that C/EBPα is silenced in human SCC and loss of C/EBPα confers susceptibility to UVB-induced skin SCCs involving defective cell cycle arrest in response to UVB. PMID:21346772

  17. Mitotic UV Irradiation Induces a DNA Replication-Licensing Defect that Potentiates G1 Arrest Response

    PubMed Central

    Morino, Masayuki; Nukina, Kohei; Sakaguchi, Hiroki; Maeda, Takeshi; Takahara, Michiyo; Shiomi, Yasushi; Nishitani, Hideo

    2015-01-01

    Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis. PMID:25798850

  18. DNA Damage: Quantum Mechanics/Molecular Mechanics Study on the Oxygen Binding and Substrate Hydroxylation Step in AlkB Repair Enzymes

    PubMed Central

    Quesne, Matthew G; Latifi, Reza; Gonzalez-Ovalle, Luis E; Kumar, Devesh; de Visser, Sam P

    2014-01-01

    AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1-methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate-determining hydrogen-atom abstraction on competitive σ-and π-pathways on a quintet spin-state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen-bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained. PMID:24339041

  19. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    PubMed Central

    Ghorai, Atanu; Bhattacharyya, Nitai P.; Sarma, Asitikantha; Ghosh, Utpal

    2014-01-01

    Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C), is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose) polymerase (PARP) inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray) is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma. PMID:25018892

  20. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    PubMed

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  1. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster.

    PubMed

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-07-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed D: rosophila, R: bf, E: 2F A: nd M: yb/ M: ulti-vulva class B: (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. Copyright © 2016 by the Genetics Society of America.

  2. Roles for the Histone Modifying and Exchange Complex NuA4 in Cell Cycle Progression in Drosophila melanogaster

    PubMed Central

    Flegel, Kerry; Grushko, Olga; Bolin, Kelsey; Griggs, Ellen; Buttitta, Laura

    2016-01-01

    Robust and synchronous repression of E2F-dependent gene expression is critical to the proper timing of cell cycle exit when cells transition to a postmitotic state. Previously NuA4 was suggested to act as a barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we show that NuA4 activity is required for proper cell cycle exit and the repression of cell cycle genes during the transition to a postmitotic state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-independent DNA damage response. A reduction in NuA4 function ultimately produces a paradoxical cell cycle gene expression program, where certain cell cycle genes become derepressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 delay when NuA4 is inhibited leads to abnormal mitoses and results in severe tissue defects. NuA4 physically and genetically interacts with components of the E2F complex termed Drosophila, Rbf, E2F and Myb/Multi-vulva class B (DREAM/MMB), and modulates a DREAM/MMB-dependent ectopic neuron phenotype in the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage response, which is required to coordinate proper S and G2 cell cycle progression with differentiation and cell cycle gene expression. PMID:27184390

  3. Pathophysiology of ocular surface squamous neoplasia

    PubMed Central

    Gichuhi, Stephen; Ohnuma, Shin-ichi; Sagoo, Mandeep S.; Burton, Matthew J.

    2014-01-01

    The incidence of ocular surface squamous neoplasia (OSSN) is strongly associated with solar ultraviolet (UV) radiation, HIV and human papilloma virus (HPV). Africa has the highest incidence rates in the world. Most lesions occur at the limbus within the interpalpebral fissure particularly the nasal sector. The nasal limbus receives the highest intensity of sunlight. Limbal epithelial crypts are concentrated nasally and contain niches of limbal epithelial stem cells in the basal layer. It is possible that these are the progenitor cells in OSSN. OSSN arises in the basal epithelial cells spreading towards the surface which resembles the movement of corneo-limbal stem cell progeny before it later invades through the basement membrane below. UV radiation damages DNA producing pyrimidine dimers in the DNA chain. Specific CC → TT base pair dimer transformations of the p53 tumour-suppressor gene occur in OSSN allowing cells with damaged DNA past the G1-S cell cycle checkpoint. UV radiation also causes local and systemic photoimmunosuppression and reactivates latent viruses such as HPV. The E7 proteins of HPV promote proliferation of infected epithelial cells via the retinoblastoma gene while E6 proteins prevent the p53 tumour suppressor gene from effecting cell-cycle arrest of DNA-damaged and infected cells. Immunosuppression from UV radiation, HIV and vitamin A deficiency impairs tumour immune surveillance allowing survival of aberrant cells. Tumour growth and metastases are enhanced by; telomerase reactivation which increases the number of cell divisions a cell can undergo; vascular endothelial growth factor for angiogenesis and matrix metalloproteinases (MMPs) that destroy the intercellular matrix between cells. Despite these potential triggers, the disease is usually unilateral. It is unclear how HPV reaches the conjunctiva. PMID:25447808

  4. Nucleo-cytoplasmic shuttling of the endonuclease ankyrin repeats and LEM domain-containing protein 1 (Ankle1) is mediated by canonical nuclear export- and nuclear import signals.

    PubMed

    Zlopasa, Livija; Brachner, Andreas; Foisner, Roland

    2016-06-01

    Ankyrin repeats and LEM domain containing protein 1 (Ankle1) belongs to the LEM protein family, whose members share a chromatin-interacting LEM motif. Unlike most other LEM proteins, Ankle1 is not an integral protein of the inner nuclear membrane but shuttles between the nucleus and the cytoplasm. It contains a GIY-YIG-type nuclease domain, but its function is unknown. The mammalian genome encodes only one other GIY-YIG domain protein, termed Slx1. Slx1 has been described as a resolvase that processes Holliday junctions during homologous recombination-mediated DNA double strand break repair. Resolvase activity is regulated in a spatial and temporal manner during the cell cycle. We hypothesized that Ankle1 may have a similar function and its nucleo-cytoplasmic shuttling may contribute to the regulation of Ankle1 activity. Hence, we aimed at identifying the domains mediating Ankle1 shuttling and investigating whether cellular localization is affected during DNA damage response. Sequence analysis predicts the presence of two canonical nuclear import and export signals in Ankle1. Immunofluorescence microscopy of cells expressing wild-type and various mutated Ankle1-fusion proteins revealed a C-terminally located classical monopartite nuclear localization signal and a centrally located CRM1-dependent nuclear export signal that mediate nucleo-cytoplasmic shuttling of Ankle1. These sequences are also functional in heterologous proteins. The predominant localization of Ankle1 in the cytoplasm, however, does not change upon induction of several DNA damage response pathways throughout the cell cycle. We identified the domains mediating nuclear import and export of Ankle1. Ankle1's cellular localization was not affected following DNA damage.

  5. Chromium-picolinate therapy in diabetes care: molecular and subcellular profiling revealed a necessity for individual outcome prediction, personalised treatment algorithms & new guidelines

    PubMed Central

    Yeghiazaryan, Kristina; Peeva, Viktoriya; Shenoy, Aparna; Schild, Hans H.; Golubnitschaja, Olga

    2013-01-01

    Aims Global figures clearly demonstrate inadequacy of current diabetes care: every 10 seconds one patient dies of diabetes-related pathologies. Nephropathy is the leading secondary complication of the disease. Nutritional supplement by chromium-picolinate is assumed to have beneficial therapeutic effects. However, potential toxic effects reported increase concerns about safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. Methods Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium-picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using “Comet Assay”-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to give a clue about central detoxification and cell-cycle regulating pathways under treatment conditions. The study was performed in a double-blind manner. Results Experimental data revealed highly individual reaction under treatment conditions. However, group-specific patterns were monitored: highest amount of damaged DNA - under the longest treatment with high doses, in contrast to groups with low doses of chromium-picolinate. Comet patterns were intermediate between untreated diabetized and control animals. Expression patterns demonstrated a correlation with subcellular imaging and dosage-dependent suppression under chromium-picolinate treatment. Conclusions This article highlights possible risks for individual long-term effects, when chromium-picolinate is used freely as a therapeutic nutritional modality agent without application of advanced diagnostic tools to predict risks and individual outcomes. Targeted measures require a creation of new guidelines for advanced Diabetes care. PMID:21470100

  6. Chromium-picolinate therapy in diabetes care: molecular and subcellular profiling revealed a necessity for individual outcome prediction, personalised treatment algorithms and new guidelines.

    PubMed

    Yeghiazaryan, Kristina; Peeva, Viktoriya; Shenoy, Aparna; Schild, Hans H; Golubnitschaja, Olga

    2011-04-01

    Global figures clearly demonstrate inadequacy of current diabetes care: every 10 seconds one patient dies of diabetes-related pathologies. Nephropathy is the leading secondary complication of the disease. Nutritional supplement by chromium-picolinate is assumed to have beneficial therapeutic effects. However, potential toxic effects reported increase concerns about safety of chromium-picolinate. The experimental design aimed at determining, whether the treatment with clinically relevant doses of chromium-picolinate can harm through DNA damage and extensive alterations in central detoxification / cell-cycle regulating pathways in treatment of diabetes. Well-acknowledged animal model of db/db-mice and clinically relevant doses of chromium-picolinate were used. As an index of DNA-damage, measurement of DNA-breaks was performed using "Comet Assay"-analysis. Individual and group-specific expression patterns of SOD-1 and P53 were evaluated to give a clue about central detoxification and cell-cycle regulating pathways under treatment conditions. The study was performed in a double-blind manner. Experimental data revealed highly individual reaction under treatment conditions. However, group-specific patterns were monitored: highest amount of damaged DNA--under the longest treatment with high doses, in contrast to groups with low doses of chromium-picolinate. Comet patterns were intermediate between untreated diabetised and control animals. Expression patterns demonstrated a correlation with subcellular imaging and dosage-dependent suppression under chromium-picolinate treatment. This article highlights possible risks for individual long-term effects, when chromium-picolinate is used freely as a therapeutic nutritional modality agent without application of advanced diagnostic tools to predict risks and individual outcomes. Targeted measures require a creation of new guidelines for advanced Diabetes care.

  7. Differential responses of EGFR-/AGT-expressing cells to the "combi-triazene" SMA41.

    PubMed

    Matheson, Stephanie L; McNamee, James P; Jean-Claude, Bertrand J

    2003-01-01

    Previous studies have demonstrated enhanced potency associated with the binary [DNA/epidermal growth factor receptor (EGFR)] targeting properties of SMA41 (a chimeric 3-(alkyl)-1,2,3-triazene linked to a 4-anilinoquinazoline backbone) in the A431 (epidermal carcinoma of the vulva) cell line. We now report on the dependence of its antiproliferative effects (e.g. DNA damage, cell survival) on the EGFR and the DNA repair protein O6-alkylguanine DNA alkyltransferase (AGT) contents of 12 solid tumor cell lines, two of which, NIH3T3 and NIH3T3 HER14 (engineered to overexpress EGFR), were isogenic. Receptor type specificity was determined using ELISA for competitive binding, as well as growth factor-stimulation assays. DNA damage was studied using single-cell microelectrophoresis (comet) assays, and levels of EGFR were determined by Western blotting. The effects of SMA41 on the cell cycle of NIH3T3 cells were investigated using univariate flow cytometry. Studies of receptor type specificity showed that SMA41: (a) preferentially inhibited the kinase activity of EGFR over those of Src, insulin receptor and protein kinase C (PKC, a serine/threonine kinase), (b) induced stronger inhibition of growth stimulated with EGF than of growth stimulated with platelet-derived growth factor (PDGF) or fetal bovine serum (FBS). Despite the EGFR specificity of SMA41, there was an absence of a linear correlation between the EGFR status of our solid tumor cell lines and levels of DNA damage induced by the alkylating component. Similarly, EGFR levels did not correlate with IC(50) values. The antiproliferative activities of SMA41 correlated more with the AGT status of these cells and paralleled those of the clinical triazene temozolomide (TEM). However, throughout the panel, tumor cell sensitivity to SMA41 was consistently stronger than to its closest analogue TEM. Experiments performed with the isogenic cells showed that SMA41 was capable of inducing twofold higher levels of DNA damage in the EGFR transfectant and delayed cell entry to G(2)/M in both cell types. When the cells were starved and growth-stimulated with FBS (conditions under which both cell types were growth-stimulated), in contrast to TEM, SMA41 and its hydrolytic metabolite SMA52 exhibited approximately nine- and threefold stronger inhibition of growth of the EGFR transfectant. These results suggest that, in addition to its ability to induce DNA damage and cell cycle perturbations, SMA41 is capable of selectively targeting the cells with a growth advantage conferred by EGFR transfection. When compared with the monoalkyltriazene prodrug TEM, its potency may be further enhanced by its ability to hydrolyze to another signal transduction inhibitor (SMA52) plus a DNA alkylating agent that may further contribute to chemosensitivity. Thus, our new "combi-targeting" strategy may well represent a tandem approach to selectively blocking receptor tyrosine kinase-mediated growth signaling while inducing significant levels of cytotoxic DNA lesions in refractory tumors.

  8. WE-EF-BRA-08: Cell Survival in Modulated Radiation Fields and Altered DNA-Repair at Field Edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartzsch, S; Oelfke, U; Eismann, S

    2015-06-15

    Purpose: Tissue damage prognoses in radiotherapy are based on clonogenic assays that provide dose dependent cell survival rates. However, recent work has shown that apart from dose, systemic reactions and cell-cell communication crucially influence the radiation response. These effects are probably a key in understanding treatment approaches such as microbeam radiation therapy (MRT). In this study we tried to quantify the effects on a cellular level in spatially modulated radiation fields. Methods: Pancreas carcinoma cells were cultured, plated and irradiated by spatially modulated radiation fields with an X-ray tube and at a synchrotron. During and after treatment cells were ablemore » to communicate via the intercellular medium. Afterwards we stained for DNA and DNA damage and imaged with a fluorescence microscope. Results: Intriguingly we found that DNA damage does not strictly increase with dose. Two cell entities appear that have either a high or a low amount of DNA lesions, indicating that DNA damage is also a cell stress reaction. Close to radiation boundaries damage-levels became alike; they were higher than expected at low and lower than expected at high doses. Neighbouring cells reacted similarly. 6 hours after exposure around 40% of the cells resembled in their reactions neighbouring cells more than randomly chosen cells that received the same dose. We also observed that close to radiation boundaries the radiation induced cell-cycle arrest disappeared and the size of DNA repair-centres increased. Conclusion: Cell communication plays an important role in the radiation response of tissues and may be both, protective and destructive. These effects may not only have the potential to affect conventional radiotherapy but may also be exploited to spare organs at risk by intelligently designing irradiation geometries. To that end intensive work is required to shed light on the still obscure processes in cell-signalling and radiation biology.« less

  9. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle checkpoint responses that show both similarities and differences in their molecular signaling. Images Figure 3 PMID:10229703

  10. The effect of cholesterol loaded cyclodextrins on post-thawing quality of buffalo semen in relation to sperm DNA damage and ultrastructure.

    PubMed

    Ezz, Mohamed Aboul; Montasser, Abd Elmonem; Hussein, Mamdouh; Eldesouky, Ashraf; Badr, Magdy; Hegab, Abd Elraouf; Balboula, Ahmed; Zaabel, Samy M

    2017-03-01

    The cryopreservation of germ cells is a major tool for the propagation of animals with desired genetic traits. Although cryopreservation of spermatozoa in some animals is effective, its effectiveness is variable. For example, cryopreservation efficiency of buffalo bull spermatozoa remains very poor. In this study, we evaluated sperm DNA damage and ultrastructure in buffalo bull spermatozoa vitrified in the presence or absence of cholesterol-loaded cyclodextrins (CLC). Our results showed that cryopreserved buffalo spermatozoa had elevated levels of deteriorated plasma and mitochondrial membranes, which are the likely causes of DNA damage after vitrification. Accordingly, the levels of the activity of Alanine Aminotransferase (ALT), Alkaline phosphatase (ALP) and Aspartate Aminotransferase (AST) were also elevated following exposure of buffalo bull spermatozoa to a cycle of freezing-thawing. Importantly, supplementation of Tris-Egg Yolk-Glucose (TEYG) extender with (CLC) improved the quality of buffalo spermatozoa following cryopreservation. This protective effect of CLC is likely due to decreasing mitochondrial and plasma membrane deterioration with subsequent inhibition of DNA damage. These results suggest that cholesterol loss is the likely reason for poor semen quality in buffaloes following cryopreservation, and provide evidence that manipulating lipid content during cryopreservation is a promising strategy to improve the quality of buffalo semen. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  11. Implications of caspase-dependent proteolytic cleavage of cyclin A1 in DNA damage-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Sang Hyeok; Seo, Sung-Keum; An, Sungkwan

    Highlights: • Caspase-1 mediates doxorubicin-induced downregulation of cyclin A1. • Active caspase-1 effectively cleaved cyclin A1 at D165. • Cyclin A1 expression is involved in DNA damage-induced cell death. - Abstract: Cyclin A1 is an A-type cyclin that directly binds to CDK2 to regulate cell-cycle progression. In the present study, we found that doxorubicin decreased the expression of cyclin A1 at the protein level in A549 lung cancer cells, while markedly downregulating its mRNA levels. Interestingly, doxorubicin upregulated caspase-1 in a concentration-dependent manner, and z-YAVD-fmk, a specific inhibitor of caspase-1, reversed the doxorubicin-induced decrease in cyclin A1 in A549 lungmore » cancer and MCF7 breast cancer cells. Active caspase-1 effectively cleaved cyclin A1 at D165 into two fragments, which in vitro cleavage assays showed were further cleaved by caspase-3. Finally, we found that overexpression of cyclin A1 significantly reduced the cytotoxicity of doxorubicin, and knockdown of cyclin A1 by RNA interference enhanced the sensitivity of cells to ionizing radiation. Our data suggest a new mechanism for the downregulation of cyclin A1 by DNA-damaging stimuli that could be intimately involved in the cell death induced by DNA damage-inducing stimuli, including doxorubicin and ionizing radiation.« less

  12. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mytych, Jennifer, E-mail: jennifermytych@gmail.com; Centre of Applied Biotechnology and Basic Sciences, University of Rzeszow, Werynia 502, 36-100 Kolbuszowa; Wos, Izabela

    Monocytes ensure proper functioning and maintenance of epithelial cells, while good condition of monocytes is a key factor of these interactions. Although, it was shown that in some circumstances, a population of altered monocytes may appear, there is no data regarding their effect on epithelial cells. In this study, using direct co-culture model with LPS-activated and Dox-induced senescent THP-1 monocytes, we reported for the first time ROS-induced DNA damage, reduced metabolic activity, proliferation inhibition and cell cycle arrest followed by p16-, p21- and p27-mediated DNA damage response pathways activation, premature senescence and apoptosis induction in HeLa cells. Also, we showmore » that klotho protein possessing anti-aging and anti-inflammatory characteristics reduced cytotoxic and genotoxic events by inhibition of insulin/IGF-IR and downregulation of TRF1 and TRF2 proteins. Therefore, klotho protein could be considered as a protective factor against changes caused by altered monocytes in epithelial cells. - Highlights: • Activated and senescent THP-1 monocytes induced cyto- and genotoxicity in HeLa cells. • Altered monocytes provoked oxidative and nitrosative stress-induced DNA damage. • DNA damage activated DDR pathways and lead to premature senescence and apoptosis. • Klotho reduced ROS/RNS-mediated toxicity through insulin/IGF-IR pathway inhibition. • Klotho protects HeLa cells from cyto- and genotoxicity induced by altered monocytes.« less

  13. COMPUTATIONAL MODELING OF SIGNALING PATHWAYS MEDIATING CELL CYCLE AND APOPTOTIC RESPONSES TO IONIZING RADIATION MEDIATED DNA DAMAGE

    EPA Science Inventory

    Demonstrated of the use of a computational systems biology approach to model dose response relationships. Also discussed how the biologically motivated dose response models have only limited reference to the underlying molecular level. Discussed the integration of Computational S...

  14. Study of the circadian rhythm in radiation response

    USDA-ARS?s Scientific Manuscript database

    Gamma-Radiation is often used for the treatment of solid tumors. It induces DNA double-stranded breaks that lead to cell cycle arrest or apoptosis of tumor cells. However, such treatment could also damage normal host tissues that need cell proliferation for function. We have reported previously that...

  15. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    PubMed

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  16. Screening for modulators of cisplatin sensitivity: unbiased screens reveal common themes.

    PubMed

    Nijwening, Jeroen H; Kuiken, Hendrik J; Beijersbergen, Roderick L

    2011-02-01

    Cisplatin is a widely used chemotherapeutic agent to treat a variety of solid tumors. The cytotoxic mode of action of cisplatin is mediated by inducing conformational changes in DNA including intra- and inter-strand crosslink adducts. Recognition of these adducts results in the activation of the DNA damage response resulting in cell cycle arrest, repair, and potentially, apoptosis. Despite the clinical efficacy of cisplatin, many tumors are either intrinsically resistant or acquire resistance during treatment. The identification of cisplatin drug response modulators can help us understand these resistance mechanisms, provide biomarkers for treatment strategies, or provide drug targets for combination therapy. Here we discuss functional genetic screens, including one performed by us, set up to identify genes whose inhibition results in increased sensitivity to cisplatin. In summary, the validated genes identified in these screens mainly operate in DNA damage response including nucleotide excision repair, translesion synthesis, and homologous recombination.

  17. Genotoxin induced mutagenesis in the model plant Physcomitrella patens.

    PubMed

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype.

  18. Genotoxin Induced Mutagenesis in the Model Plant Physcomitrella patens

    PubMed Central

    Holá, Marcela; Kozák, Jaroslav; Vágnerová, Radka; Angelis, Karel J.

    2013-01-01

    The moss Physcomitrella patens is unique for the high frequency of homologous recombination, haploid state, and filamentous growth during early stages of the vegetative growth, which makes it an excellent model plant to study DNA damage responses. We used single cell gel electrophoresis (comet) assay to determine kinetics of response to Bleomycin induced DNA oxidative damage and single and double strand breaks in wild type and mutant lig4 Physcomitrella lines. Moreover, APT gene when inactivated by induced mutations was used as selectable marker to ascertain mutational background at nucleotide level by sequencing of the APT locus. We show that extensive repair of DSBs occurs also in the absence of the functional LIG4, whereas repair of SSBs is seriously compromised. From analysis of induced mutations we conclude that their accumulation rather than remaining lesions in DNA and blocking progression through cell cycle is incompatible with normal plant growth and development and leads to sensitive phenotype. PMID:24383055

  19. Phosphatase Complex Pph3/Psy2 Is Involved in Regulation of Efficient Non-Homologous End-Joining Pathway in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Omidi, Katayoun; Hooshyar, Mohsen; Jessulat, Matthew; Samanfar, Bahram; Sanders, Megan; Burnside, Daniel; Pitre, Sylvain; Schoenrock, Andrew; Xu, Jianhua; Babu, Mohan; Golshani, Ashkan

    2014-01-01

    One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression. PMID:24498054

  20. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery

    PubMed Central

    Bordignon, Valentina; Trento, Elisabetta; D’Agosto, Giovanna; Cavallo, Ilaria; Pontone, Martina; Pimpinelli, Fulvia; Mariani, Luciano; Ensoli, Fabrizio

    2017-01-01

    The DNA damage response (DDR) is a complex signalling network activated when DNA is altered by intrinsic or extrinsic agents. DDR plays important roles in genome stability and cell cycle regulation, as well as in tumour transformation. Viruses have evolved successful life cycle strategies in order to ensure a chronic persistence in the host, virtually avoiding systemic sequelae and death. This process promotes the periodic shedding of large amounts of infectious particles to maintain a virus reservoir in individual hosts, while allowing virus spreading within the community. To achieve such a successful lifestyle, the human papilloma virus (HPV) needs to escape the host defence systems. The key to understanding how this is achieved is in the virus replication process that provides by itself an evasion mechanism by inhibiting and delaying the host immune response against the viral infection. Numerous studies have demonstrated that HPV exploits both the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and rad3-related (ATR) DDR pathways to replicate its genome and maintain a persistent infection by downregulating the innate and cell-mediated immunity. This review outlines how HPV interacts with the ATM- and ATR-dependent DDR machinery during the viral life cycle to create an environment favourable to viral replication, and how the interaction with the signal transducers and activators of transcription (STAT) protein family and the deregulation of the Janus kinase (JAK)–STAT pathways may impact the expression of interferon-inducible genes and the innate immune responses. PMID:29257060

  1. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae.

    PubMed

    Omidi, Katayoun; Hooshyar, Mohsen; Jessulat, Matthew; Samanfar, Bahram; Sanders, Megan; Burnside, Daniel; Pitre, Sylvain; Schoenrock, Andrew; Xu, Jianhua; Babu, Mohan; Golshani, Ashkan

    2014-01-01

    One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.

  2. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  3. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.

    PubMed

    Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga

    2013-04-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).

  4. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2.

    PubMed

    Xie, Suqing; Wu, Huiyun; Wang, Qi; Kunicki, Jan; Thomas, Raymond O; Hollingsworth, Robert E; Cogswell, John; Dai, Wei

    2002-01-01

    Polo-like kinase 3 (Plk3, alternatively termed Prk) is involved in the regulation of DNA damage checkpoint as well as in M-phase function. Plk3 physically interacts with p53 and phosphorylates this tumor suppressor protein on serine-20, suggesting that the role of Plk3 in cell cycle progression is mediated, at least in part, through direct regulation of p53. Here we show that Plk3 is rapidly activated by reactive oxygen species in normal diploid fibroblast cells (WI-38), correlating with a subsequent increase in p53 protein level. Plk3 physically interacts with Chk2 and the interaction is enhanced upon DNA damage. In addition, Chk2 immunoprecipitated from cell lysates of Daudi (which expressed little Plk3) is capable of stimulating the kinase activity of purified recombinant Plk3 in vitro, and this stimulation is more pronounced when Plk3 is supplemented with Chk2 immunoprecipitated from Daudi after DNA damage. Furthermore, ectopic expression Chk2 activates cellular Plk3. Together, our studies suggest Chk2 may mediate direct activation of Plk3 in response to genotoxic stresses.

  5. Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells.

    PubMed

    Saffi, Jenifer; Agnoletto, Mateus H; Guecheva, Temenouga N; Batista, Luís F Z; Carvalho, Helotonio; Henriques, João A P; Stary, Anne; Menck, Carlos F M; Sarasin, Alain

    2010-01-02

    Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gammaH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIalpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  6. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    PubMed Central

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  7. Downregulation of VRK1 by p53 in Response to DNA Damage Is Mediated by the Autophagic Pathway

    PubMed Central

    Valbuena, Alberto; Castro-Obregón, Susana; Lazo, Pedro A.

    2011-01-01

    Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H. Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway, and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle progression induced by p53 as part of its DNA damage response. PMID:21386980

  8. The G2 block induced by DNA damage: a caffeine-resistant component independent of Cdc25C, MPM-2 phosphorylation, and H1 kinase activity.

    PubMed

    Barratt, R A; Kao, G; McKenna, W G; Kuang, J; Muschel, R J

    1998-06-15

    Treatment of cells with agents that cause DNA damage often results in a delay in G2. There is convincing evidence showing that inhibition of p34cdc2 kinase activation is involved in the DNA damage-induced G2 delay. In this study, we have demonstrated the existence of an additional pathway, independent of the p34cdc2 kinase activation pathway, that leads to a G2 arrest in etoposide-treated cells. Both the X-ray-induced and the etoposide-induced G2 arrest were associated with inhibition of the p34cdc2 H1 kinase activation pathway as judged by p34cdc2 H1 kinase activity and phosphorylation of cdc25C. Caffeine treatment restored these activities after either of the treatments. However, the etoposide-treated cells did not resume cycling, revealing the presence of an alternative pathway leading to a G2 arrest. To explore the possibility that this additional pathway involved phosphorylation of the MPM-2 epitope that is shared by a large family of mitotic phosphoproteins, we monitored the phosphorylation status of the MPM-2 epitope after DNA damage and after treatment with caffeine. Phosphorylation of the MPM-2 epitope was depressed in both X-ray and etoposide-treated cells, and the depression was reversed by caffeine in both cases. The results indicate that the pathway affecting MPM-2 epitope phosphorylation is involved in the G2 delay caused by DNA damage. However, it is not part of the caffeine-insensitive pathway leading to a G2 block seen in etoposide-treated cells.

  9. Current perspectives on CHEK2 mutations in breast cancer

    PubMed Central

    Apostolou, Panagiotis; Papasotiriou, Ioannis

    2017-01-01

    Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data. PMID:28553140

  10. Current perspectives on CHEK2 mutations in breast cancer.

    PubMed

    Apostolou, Panagiotis; Papasotiriou, Ioannis

    2017-01-01

    Checkpoint kinase 2 (CHEK2) is a serine/threonine kinase which is activated upon DNA damage and is implicated in pathways that govern DNA repair, cell cycle arrest or apoptosis in response to the initial damage. Loss of kinase function has been correlated with different types of cancer, mainly breast cancer. CHEK2 functionality is affected by different missense or deleterious mutations. CHEK2*1100delC and I157T are most studied in populations all over the world. Although these variants have been identified in patients with breast cancer, their frequency raises doubts about their importance as risk factors. The present article reviews the recent advances in research on CHEK2 mutations, focusing on breast cancer, based on the latest experimental data.

  11. Chromium genotoxicity: a double-edged sword

    PubMed Central

    Nickens, Kristen P.; Patierno, Steven R.; Ceryak, Susan

    2010-01-01

    Certain forms of hexavalent chromium [Cr(VI)] are known respiratory carcinogens that induce a broad spectrum of DNA damage. Cr(VI)-carcinogenesis may be initiated or promoted through several mechanistic processes including, the intracellular metabolic reduction of Cr(VI) producing chromium species capable of interacting with DNA to yield genotoxic and mutagenic effects, Cr(VI)-induced inflammatory/immunological responses, and alteration of survival signaling pathways. Cr(VI) enters the cell through nonspecific anion channels, and is metabolically reduced by agents including ascorbate, glutathione, and cysteine to Cr(V), Cr(IV), and Cr(III). Cr(III) has a weak membrane permeability capacity and is unable to cross the cell membrane, thereby trapping it within the cell where it can bind to DNA and produce genetic damage leading to genomic instability. Structural genetic lesions produced by the intracellular reduction of Cr(VI) include DNA adducts, DNA strand breaks, DNA-protein crosslinks, oxidized bases, abasic sites, and DNA inter- and intrastrand crosslinks. The damage induced by Cr(VI) can lead to dysfunctional DNA replication and transcription, aberrant cell cycle checkpoints, dysregulated DNA repair mechanisms, microsatelite instability, inflammatory responses, and the disruption of key regulatory gene networks responsible for the balance of cell survival and cell death, which may all play an important role in Cr(VI) carcinogenesis. Several lines of evidence have indicated that neoplastic progression is a result of consecutive genetic/epigenetic changes that provide cellular survival advantages, and ultimately lead to the conversion of normal human cells to malignant cancer cells. This review is based on studies that provide a glimpse into Cr(VI) carcinogenicity via mechanisms including Cr(VI)-induced death-resistance, the involvement of DNA repair mechanisms in survival after chromium exposure, and the activation of survival signaling cascades in response to Cr(VI) genotoxicity. PMID:20430016

  12. Novel Chromosome Organization Pattern in Actinomycetales-Overlapping Replication Cycles Combined with Diploidy.

    PubMed

    Böhm, Kati; Meyer, Fabian; Rhomberg, Agata; Kalinowski, Jörn; Donovan, Catriona; Bramkamp, Marc

    2017-06-06

    Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicum IMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum , an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods. Copyright © 2017 Böhm et al.

  13. LIM Protein Ajuba associates with the RPA complex through direct cell cycle-dependent interaction with the RPA70 subunit.

    PubMed

    Fowler, Sandy; Maguin, Pascal; Kalan, Sampada; Loayza, Diego

    2018-06-22

    DNA damage response pathways are essential for genome stability and cell survival. Specifically, the ATR kinase is activated by DNA replication stress. An early event in this activation is the recruitment and phosphorylation of RPA, a single stranded DNA binding complex composed of three subunits, RPA70, RPA32 and RPA14. We have previously shown that the LIM protein Ajuba associates with RPA, and that depletion of Ajuba leads to potent activation of ATR. In this study, we provide evidence that the Ajuba-RPA interaction occurs through direct protein contact with RPA70, and that their association is cell cycle-regulated and is reduced upon DNA replication stress. We propose a model in which Ajuba negatively regulates the ATR pathway by directly interacting with RPA70, thereby preventing inappropriate ATR activation. Our results provide a framework to further our understanding of the mechanism of ATR regulation in human cells in the context of cellular transformation.

  14. Enhancement of DNA ligase I level by gemcitabine in human cancer cells.

    PubMed

    Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve

    2002-04-01

    DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of gemcitabine triphosphate into replicating DNA and inhibition of ribonucleotide reductase would trigger an increase in DNA ligase I levels in cancer cells. The elevated presence of DNA ligase I in S-phase-arrested cells leads us to speculate that DNA ligase I might have an important role in repairing DNA damage caused by stalled replication forks.

  15. Role of Chromatin assembly factor 1 in DNA replication of Plasmodium falciparum.

    PubMed

    Gupta, Mohit Kumar; Agarawal, Meetu; Banu, Khadija; Reddy, K Sony; Gaur, Deepak; Dhar, Suman Kumar

    2018-01-01

    Nucleosome assembly in P. falciparum could be the key process in maintaining its genomic integrity as DNA replicates more than once per cell cycle during several stages of its life cycle. Here, we report the functional characterization of P. falciparum chromatin assembly factor 1 (CAF1), which interacts with several proteins namely PfCAF2, Histones, PfHP1 and others. Consistent with the above findings, we demonstrate the presence of PfCAF1 at the telomeric repeat regions, central and subtelomeric var genes of multiple var gene family along with PfHP1. Further, we report the upregulation of PfCAF1 after treatment with genotoxic agents like MMS and HU. Together, these findings establish role of PfCAF1 in heterochromatin maintenance and as histone chaperone in nucleosome assembly and DNA damage repair. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The mechanistic effects of the dioxonaphthoimidazolium analog YM155 in renal cell carcinoma cell cycling and apoptosis.

    PubMed

    Sim, Mei Yi; Go, Mei Lin; Yuen, John Shyi Peng

    2018-06-15

    To investigate the effect of dioxonaphthoimidazolium analog YM155 on cell cycle progression of the clear-cell variant of renal cell carcinoma (ccRCC). Cell cycle analysis was performed using bromodeoxyuridine (BrdU) and PI, apoptosis initiation was monitored using Annexin V and proteins expression was determined using western immunoblotting. Here, we showed that YM155 activated stress-related molecules (histone H2AX, checkpoint kinases Chk1 and Chk2, p53) that mediate DNA damage checkpoint responses. The coordinated activation of these effector molecules disrupts progression of the cell cycle at the S phase as deduced from BrdU pulsing experiments and the ensuing changes in the levels of proteins (cyclins, CDKs, CDK inhibitors, phosphatases) that control cell cycle progression. Notably, we found increases in cyclin E and Cdc2 which regulate transition of cells from G1 to S, even as losses were observed for other CDKs and their cyclin partners. Furthermore, by inducing a loss in total pRb possibly by promoting its degradation, YM155 promoted the E2F transcription of genes that regulate entry into the S phase. After 24 h, cell cycle arrest to repair YM155-inflicted DNA damage was overtaken by p53-mediated apoptosis. YM155 induced increases in pro-apoptotic proteins (Bax and Bad), diminished anti-apoptotic proteins (Mcl-1, Bcl-xl, XIAP, survivin) and initiated cleavage of apoptotic marker proteins caspase 3 and PARP. Taken together, the added insight provided on the cell cycle perturbative effects of YM155 may assist clinicians in framing rational choices for combining YM155 with other anti-cancer drugs or treatment modalities in ccRCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Radioprotective effect of orally administered beta-d-glucan derived from Saccharomyces cerevisiae.

    PubMed

    Liu, Fang; Wang, Zhuanzi; Liu, Jia; Li, Wenjian

    2018-04-21

    The present study was to evaluate the in vivo radioprotective effect of oral administration of Saccharomyces cerevisiae-derived-beta-d-glucan (S. cerevisiae-BG) and to investigate the protective mechanism. The results demonstrated that oral pretreatment with 350 mg/kg S. cerevisiae-BG once daily for 14 consecutive days significantly increased the survival rate of mice from 6 Gy X-rays irradiation. At the 30th day after irradiation, cellularity and the percentage of hematopoietic stem/progenitor cells in bone marrow (BM) of surviving mice were increased by S. cerevisiae-BG. Further studies showed that S. cerevisiae-BG decreased BM cell DNA damage and improved BM cell cycle progress in irradiated mice. And the reactive oxygen species (ROS) levels in BM cells of irradiated mice were also decreased by S. cerevisiae-BG. These results indicated that oral S. cerevisiae-BG exhibited obviously radioprotective effect in mice and the protective effect may be attributed to the polysaccharide's hematopoiesis-modulating action and free radical scavenging property. S. cerevisiae-BG protects BM cells from radiation damage through scavenging BM cell ROS, mitigating BM cell DNA damage and improving cell cycle progress, and thus mitigated myelosuppression induced by irradiation and stimulated hematopoiesis, ultimately increased the survival of radiated mice. Copyright © 2018. Published by Elsevier B.V.

  18. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    NASA Astrophysics Data System (ADS)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  19. Geminin deficiency enhances survival in a murine medulloblastoma model by inducing apoptosis of preneoplastic granule neuron precursors

    PubMed Central

    Sankar, Savita; Patterson, Ethan; Lewis, Emily M.; Waller, Laura E.; Tong, Caili; Dearborn, Joshua; Wozniak, David; Rubin, Joshua B.; Kroll, Kristen L.

    2017-01-01

    Medulloblastoma is the most common malignant brain cancer of childhood. Further understanding of tumorigenic mechanisms may define new therapeutic targets. Geminin maintains genome fidelity by controlling re-initiation of DNA replication within a cell cycle. In some contexts, Geminin inhibition induces cancer-selective cell cycle arrest and apoptosis and/or sensitizes cancer cells to Topoisomerase IIα inhibitors such as etoposide, which is used in combination chemotherapies for medulloblastoma. However, Geminin's potential role in medulloblastoma tumorigenesis remained undefined. Here, we found that Geminin is highly expressed in human and mouse medulloblastomas and in murine granule neuron precursor (GNP) cells during cerebellar development. Conditional Geminin loss significantly enhanced survival in the SmoA1 mouse medulloblastoma model. Geminin loss in this model also reduced numbers of preneoplastic GNPs persisting at one postnatal month, while at two postnatal weeks these cells exhibited an elevated DNA damage response and apoptosis. Geminin knockdown likewise impaired human medulloblastoma cell growth, activating G2 checkpoint and DNA damage response pathways, triggering spontaneous apoptosis, and enhancing G2 accumulation of cells in response to etoposide treatment. Together, these data suggest preneoplastic and cancer cell-selective roles for Geminin in medulloblastoma, and suggest that targeting Geminin may impair tumor growth and enhance responsiveness to Topoisomerase IIα-directed chemotherapies. PMID:29234490

  20. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    PubMed Central

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-01-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle. PMID:26898711

  1. Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells

    PubMed Central

    2014-01-01

    Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758

  2. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides.

    PubMed

    Kobayashi, Kaori; Guilliam, Thomas A; Tsuda, Masataka; Yamamoto, Junpei; Bailey, Laura J; Iwai, Shigenori; Takeda, Shunichi; Doherty, Aidan J; Hirota, Kouji

    2016-08-02

    PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol(-/-) and PrimPol(-/-)/Polη(-/-)/Polζ (-/-) gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol(-/-) cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol(-/-) cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol(-/-) cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol(-/-) cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol(-/-) cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol(-/-) cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.

  3. Functional link between DNA damage responses and transcriptional regulation by ATM in response to a histone deacetylase inhibitor TSA.

    PubMed

    Lee, Jong-Soo

    2007-09-01

    Mutations in the ATM (ataxia-telangiectasia mutated) gene, which encodes a 370 kd protein with a kinase catalytic domain, predisposes people to cancers, and these mutations are also linked to ataxia-telangiectasia (A-T). The histone acetylaion/deacetylation- dependent chromatin remodeling can activate the ATM kinase-mediated DNA damage signal pathway (in an accompanying work, Lee, 2007). This has led us to study whether this modification can impinge on the ATM-mediated DNA damage response via transcriptional modulation in order to understand the function of ATM in the regulation of gene transcription. To identify the genes whose expression is regulated by ATM in response to histone deaceylase (HDAC) inhibition, we performed an analysis of oligonucleotide microarrays with using the appropriate cell lines, isogenic A-T (ATM(-)) and control (ATM(+)) cells, following treatment with a HDAC inhibitor TSA. Treatment with TSA reprograms the differential gene expression profile in response to HDAC inhibition in ATM(-) cells and ATM(+) cells. We analyzed the genes that are regulated by TSA in the ATM-dependent manner, and we classified these genes into different functional categories, including those involved in cell cycle/DNA replication, DNA repair, apoptosis, growth/differentiation, cell- cell adhesion, signal transduction, metabolism and transcription. We found that while some genes are regulated by TSA without regard to ATM, the patterns of gene regulation are differentially regulated in an ATM-dependent manner. Taken together, these finding indicate that ATM can regulate the transcription of genes that play critical roles in the molecular response to DNA damage, and this response is modulated through an altered HDAC inhibition-mediated gene expression.

  4. DNA damage, p53, Ki-67 and COX-2 expression in rat tongue cells exposed to nandrolone decanoate.

    PubMed

    Pozzi, Renan; Fernandes, Kelly Rosseti; Foot Gomes de Moura, Carolina; Ferrari, Raquel Agnelli Mesquita; Fernandes, Kristianne Porta Santos; Chaves, Marcelo Donizeti; Renno, Ana Claudia Muniz; Ribeiro, Daniel Araki

    2013-05-01

    The objective of this article was to evaluate the impact potential of nandrolone decanoate on DNA damage, cellular regulatory proteins and cyclooxygenase (COX)-2 in oral mucosa cells of Wistar rats. A total of 40 rats were distributed into four groups. Two experimental groups were treated with nandrolone decanoate, at 5 mg/kg doses, subcutaneously, three times a week in two periods: 15 and 30 days. The remaining groups received only 0.9% saline subcutaneously, three times a week. To evaluate genetic damage, nandrolone decanoate at 15 mg/kg dose was exposed to 24 h. In the histopathological analysis, no remarkable morphological changes were observed in tongue tissue in all groups. Significant increase in immunoexpression of Ki-67, p53, COX-2 proteins was detected in the groups treated with nandrolone decanoate during 15 and 30 days, when compared to their respective controls. A positive correlation between immunoexpression of p53 and COX-2 protein was detected following nandrolone decanoate exposure. DNA damage was induced by nandrolone decanoate in oral mucosa cells at 15 mg/kg dose. Our results suggest that nandrolone decanoate was able to alter the expression of cell cycle-related proteins, as well as to induce genetic damage and COX-2 immunoexpression in tongue cells of Wistar rats.

  5. Telomere attrition and genomic instability in xeroderma pigmentosum type-b deficient fibroblasts under oxidative stress

    PubMed Central

    Ting, Aloysius Poh Leong; Low, Grace Kah Mun; Gopalakrishnan, Kalpana; Hande, M Prakash

    2010-01-01

    Abstract Xeroderma pigmentosum B (XPB/ERCC3/p89) is an ATP-dependent 3′→5′ directed DNA helicase involved in basal RNA transcription and the nucleotide excision repair (NER) pathway. While the role of NER in alleviating oxidative DNA damage has been acknowledged it remains poorly understood. To study the involvement of XPB in repair of oxidative DNA damage, we utilized primary fibroblasts from a patient suffering from XP with Cockayne syndrome and hydrogen peroxide (H2O2) to induce oxidative stress. Mutant cells retained higher viability and cell cycle dysfunction after H2O2 exposure. Cytokinesis blocked micronucleus assay revealed increased genome instability induced by H2O2. Single cell gel electrophoresis (comet) assay showed that the missense mutation caused a reduced repair capacity for oxidative DNA damage. Mutant fibroblasts also displayed decreased population doubling rate, increased telomere attrition rate and early emergence of senescent characteristics under chronic low dose exposure to H2O2. Fibroblasts from a heterozygous individual displayed intermediate traits in some assays and normal traits in others, indicating possible copy number dependence. The results show that a deficiency in functional XPB paradoxically renders cells more sensitive to the genotoxic effects of oxidative stress while reducing the cytotoxic effects. These findings have implications in the mechanisms of DNA repair, mutagenesis and carcinogenesis and ageing in normal physiological systems. PMID:19840190

  6. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi

    PubMed Central

    Bourret, Travis J; Boylan, Julie A; Lawrence, Kevin A; Gherardini, Frank C

    2011-01-01

    Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi. PMID:21564333

  7. Cytometry of DNA Replication and RNA Synthesis: Historical Perspective and Recent Advances Based on “Click Chemistry”

    PubMed Central

    Darzynkiewicz, Zbigniew; Traganos, Frank; Zhao, Hong; Halicka, H. Dorota; Li, Jiangwei

    2011-01-01

    This review covers progress in the development of cytometric methodologies designed to assess DNA replication and RNA synthesis. The early approaches utilizing autoradiography to detect incorporation of 3H- or 14C-labeled thymidine were able to identify the four fundamental phases of the cell cycle G1, S, G2, and M, and by analysis of the fraction of labeled mitosis (FLM), to precisely define the kinetics of cell progression through these phases. Analysis of 3H-uridine incorporation and RNA content provided the means to distinguish quiescent G0 from cycling G1 cells. Subsequent progress in analysis of DNA replication was based on the use of BrdU as a DNA precursor and its detection by the quenching of the fluorescence intensity of DNA-bound fluorochromes such as Hoechst 33358 or acridine orange as measured by flow cytometry. Several variants of this methodology have been designed and used in studies to detect anticancer drug-induced perturbations of cell cycle kinetics. The next phase of method development, which was particularly useful in studies of the cell cycle in vivo, including clinical applications, relied on immunocytochemical detection of incorporated halogenated DNA or RNA precursors. This approach however was hampered by the need for DNA denaturation, which made it difficult to concurrently detect other cell constituents for multiparametric analysis. The recently introduced “click chemistry” approach has no such limitation and is the method of choice for analysis of DNA replication and RNA synthesis. This method is based on the use of 5-ethynyl-2′deoxyuridine (EdU) as a DNA precursor or 5-ethynyluridine (EU) as an RNA precursor and their detection with fluorochrome-tagged azides utilizing a copper (I) catalyzed [3+2] cycloaddition. Several examples are presented that illustrate incorporation of EdU or EU in cells subjected to DNA damage detected as histone H2AX phosphorylation that have been analyzed by flow or laser scanning cytometry. PMID:21425239

  8. Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells

    PubMed Central

    Ly, Tony; Endo, Aki; Lamond, Angus I

    2015-01-01

    Abstract Previously, we analyzed protein abundance changes across a ‘minimally perturbed’ cell cycle by using centrifugal elutriation to differentially enrich distinct cell cycle phases in human NB4 cells (Ly et al., 2014). In this study, we compare data from elutriated cells with NB4 cells arrested at comparable phases using serum starvation, hydroxyurea, or RO-3306. While elutriated and arrested cells have similar patterns of DNA content and cyclin expression, a large fraction of the proteome changes detected in arrested cells are found to reflect arrest-specific responses (i.e., starvation, DNA damage, CDK1 inhibition), rather than physiological cell cycle regulation. For example, we show most cells arrested in G2 by CDK1 inhibition express abnormally high levels of replication and origin licensing factors and are likely poised for genome re-replication. The protein data are available in the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/), an online, searchable resource. DOI: http://dx.doi.org/10.7554/eLife.04534.001 PMID:25555159

  9. Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.

    PubMed

    Bihari, Nevenka

    2017-01-01

    Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.

  10. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity

    PubMed Central

    Pokrzywinski, Kaytee L.; Biel, Thomas G.; Kryndushkin, Dmitry; Rao, V. Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis. PMID:28030582

  11. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity.

    PubMed

    Pokrzywinski, Kaytee L; Biel, Thomas G; Kryndushkin, Dmitry; Rao, V Ashutosh

    2016-01-01

    Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.

  12. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis

    PubMed Central

    Grace, Marcy B.; Singh, Vijay K.; Rhee, Juong G.; Jackson, William E.; Kao, Tzu-Cheg; Whitnall, Mark H.

    2012-01-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis. PMID:22843381

  13. 5-AED enhances survival of irradiated mice in a G-CSF-dependent manner, stimulates innate immune cell function, reduces radiation-induced DNA damage and induces genes that modulate cell cycle progression and apoptosis.

    PubMed

    Grace, Marcy B; Singh, Vijay K; Rhee, Juong G; Jackson, William E; Kao, Tzu-Cheg; Whitnall, Mark H

    2012-11-01

    The steroid androst-5-ene-3ß,17ß-diol (5-androstenediol, 5-AED) elevates circulating granulocytes and platelets in animals and humans, and enhances survival during the acute radiation syndrome (ARS) in mice and non-human primates. 5-AED promotes survival of irradiated human hematopoietic progenitors in vitro through induction of Nuclear Factor-κB (NFκB)-dependent Granulocyte Colony-Stimulating Factor (G-CSF) expression, and causes elevations of circulating G-CSF and interleukin-6 (IL-6). However, the in vivo cellular and molecular effects of 5-AED are not well understood. The aim of this study was to investigate the mechanisms of action of 5-AED administered subcutaneously (s.c.) to mice 24 h before total body γ- or X-irradiation (TBI). We used neutralizing antibodies, flow cytometric functional assays of circulating innate immune cells, analysis of expression of genes related to cell cycle progression, DNA repair and apoptosis, and assessment of DNA strand breaks with halo-comet assays. Neutralization experiments indicated endogenous G-CSF but not IL-6 was involved in survival enhancement by 5-AED. In keeping with known effects of G-CSF on the innate immune system, s.c. 5-AED stimulated phagocytosis in circulating granulocytes and oxidative burst in monocytes. 5-AED induced expression of both bax and bcl-2 in irradiated animals. Cdkn1a and ddb1, but not gadd45a expression, were upregulated by 5-AED in irradiated mice. S.c. 5-AED administration caused decreased DNA strand breaks in splenocytes from irradiated mice. Our results suggest 5-AED survival enhancement is G-CSF-dependent, and that it stimulates innate immune cell function and reduces radiation-induced DNA damage via induction of genes that modulate cell cycle progression and apoptosis.

  14. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevatedmore » the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic cancer.« less

  15. Frying oils with high natural or added antioxidants content, which protect against postprandial oxidative stress, also protect against DNA oxidation damage.

    PubMed

    Rangel-Zuñiga, Oriol A; Haro, Carmen; Tormos, Carmen; Perez-Martinez, Pablo; Delgado-Lista, Javier; Marin, Carmen; Quintana-Navarro, Gracia M; Cerdá, Concha; Sáez, Guillermo T; Lopez-Segura, Fernando; Lopez-Miranda, Jose; Perez-Jimenez, Francisco; Camargo, Antonio

    2017-06-01

    Using sunflower oil as frying oil increases postprandial oxidative stress, which is considered the main endogenous source of DNA oxidative damage. We aimed to test whether the protective effect of virgin olive oil and oil models with added antioxidants against postprandial oxidative stress may also protect against DNA oxidative damage. Twenty obese people received four breakfasts following a randomized crossover design consisting of different oils [virgin olive oil (VOO), sunflower oil (SFO), and a mixed seed oil (SFO/canola oil) with added dimethylpolysiloxane (SOX) or natural antioxidants from olives (SOP)], which were subjected to 20 heating cycles. We observed the postprandial increase in the mRNA levels of p53, OGG1, POLB, and GADD45b after the intake of the breakfast prepared with SFO and SOX, and an increase in the expression of MDM2, APEX1, and XPC after the intake of the breakfast prepared with SFO, whereas no significant changes at the postprandial state were observed after the intake of the other breakfasts (all p values <0.05). We observed lower 8-OHdG postprandial levels after the intake of the breakfast prepared with VOO and SOP than after the intake of the breakfast prepared with SFO and SOX (all p values <0.05). Our results support the beneficial effect on DNA oxidation damage of virgin olive oil and the oil models with added antioxidants, as compared to the detrimental use of sunflower oil, which induces p53-dependent DNA repair pathway activation.

  16. Induction of a G1-S checkpoint in fission yeast.

    PubMed

    Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta

    2012-06-19

    Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.

  17. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are potential biomarkers for glioblastoma therapy.

  18. Dietary polyphenols influence antimetabolite agents: methotrexate, 6-mercaptopurine and 5-fluorouracil in leukemia cell lines

    PubMed Central

    Mahbub, Amani; Le Maitre, Christine; Haywood-Small, Sarah; Cross, Neil; Jordan-Mahy, Nicola

    2017-01-01

    Polyphenols have been previously shown to sensitize leukemia cell lines to topoisomerase inhibitors. Here, we assess the effects of five polyphenols when used alone and in combination with antimetabolites: methotrexate, 6-mercaptopurine and 5-fluorouracil; in lymphoid and myeloid leukemia cells lines, and non-tumor control cells. The effects of combined treatments were investigated on ATP and glutathione levels, cell-cycle progression, DNA damage and apoptosis. Polyphenols antagonized methotrexate and 6-mercaptopurine induced cell-cycle arrest and apoptosis in most leukemia cell lines. This was associated with reduced DNA damage and increased glutathione levels, greater than that seen following individual treatments alone. In contrast, 5-fluorouracil when combined with quercetin, apigenin and rhein caused synergistic decrease in ATP levels, induction of cell-cycle arrest and apoptosis in some leukemia cell lines. However, antagonistic effects were observed when 5-fluorouracil was combined with rhein and cis-stilbene in myeloid cell lines. The effects were dependant on polyphenol type and chemotherapy agent investigated, and cell type treated. Interestingly treatment of non-tumor control cells with polyphenols protected cells from antimetabolite treatments. This suggests that polyphenols modulate the action of antimetabolite agents; more importantly they antagonized methotrexate and 6-mercaptopurine actions, thus suggesting the requirement of polyphenol-exclusion during their use. PMID:29285220

  19. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents.

    PubMed

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-06-22

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to S(N)2 alkylating agents. We show that after treatment of cells with the S(N)2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by S(N)2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage.

  20. A Novel Acetylation Cycle of Transcription Co-activator Yes-associated Protein That Is Downstream of Hippo Pathway Is Triggered in Response to SN2 Alkylating Agents*

    PubMed Central

    Hata, Shoji; Hirayama, Jun; Kajiho, Hiroaki; Nakagawa, Kentaro; Hata, Yutaka; Katada, Toshiaki; Furutani-Seiki, Makoto; Nishina, Hiroshi

    2012-01-01

    Yes-associated protein (YAP) is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes. Although cytoplasmic retention of YAP is known to be mediated by Hippo pathway-dependent phosphorylation, post-translational modifications that regulate YAP in the nucleus remain unclear. Here we report the discovery of a novel cycle of acetylation/deacetylation of nuclear YAP induced in response to SN2 alkylating agents. We show that after treatment of cells with the SN2 alkylating agent methyl methanesulfonate, YAP phosphorylation mediated by the Hippo pathway is markedly reduced, leading to nuclear translocation of YAP and its acetylation. This YAP acetylation occurs on specific and highly conserved C-terminal lysine residues and is mediated by the nuclear acetyltransferases CBP (CREB binding protein) and p300. Conversely, the nuclear deacetylase SIRT1 is responsible for YAP deacetylation. Intriguingly, we found that YAP acetylation is induced specifically by SN2 alkylating agents and not by other DNA-damaging stimuli. These results identify a novel YAP acetylation cycle that occurs in the nucleus downstream of the Hippo pathway. Intriguingly, our findings also indicate that YAP acetylation is involved in responses to a specific type of DNA damage. PMID:22544757

  1. Understanding the mechanism of circadian modulation to improve the quality of life for cancer patients

    USDA-ARS?s Scientific Manuscript database

    The strategy of anticancer treatment varies for different types of cancers, but most of them are aimed at inducing cell-cycle arrest or apoptosis in proliferating tumor cells by generating genomic DNA-damage or blocking intracellular mitogenic signaling. Although these treatments could reduce the ra...

  2. High-polyphenol sorghum bran extract inhibits cancer cell growth through DNA damage, cell cycle arrest, and apoptosis

    USDA-ARS?s Scientific Manuscript database

    As diet is one of the major controllable factors in cancer development, potentially chemopreventive foods are of significant interest to public health. One such food is sorghum (Sorghum bicolor), a cereal grain that contains varying concentrations of polyphenols. In a panel of 15 sorghum germplasm...

  3. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells.

    PubMed

    Lin, Zhi-Kun; Liu, Jia; Jiang, Guo-Qiang; Tan, Guang; Gong, Peng; Luo, Hai-Feng; Li, Hui-Min; Du, Jian; Ning, Zhen; Xin, Yi; Wang, Zhong-Yu

    2017-03-01

    Hepatocellular carcinoma (HCC) accounts for approximately 90% of all cases of primary liver cancer, and the majority of patients with HCC are deprived of effective curative methods. Osthole is a Chinese herbal medicine which has been reported to possess various pharmacological functions, including hepatocellular protection. In the present study, we investigated the anticancer activity of osthole using HCC cell lines. We found that osthole inhibited HCC cell proliferation, induced cell cycle arrest, triggered DNA damage and suppressed migration in HCC cell lines. Furthermore, we demonstrated that osthole not only contributed to cell cycle G2/M phase arrest via downregulation of Cdc2 and cyclin B1 levels, but also induced DNA damage via an increase in ERCC1 expression. In addition, osthole inhibited the migration of HCC cell lines by significantly downregulating MMP-2 and MMP-9 levels. Finally, we demonstrated that osthole inhibited epithelial-mesenchymal transition (EMT) via increasing the expression of epithelial biomarkers E-cadherin and β-catenin, and significantly decreasing mesenchymal N-cadherin and vimentin protein expression. These results suggest that osthole may have potential chemotherapeutic activity against HCC.

  4. Mec1/ATR, the Program Manager of Nucleic Acids Inc.

    PubMed

    Feng, Wenyi

    2016-12-28

    Eukaryotic cells are equipped with surveillance mechanisms called checkpoints to ensure proper execution of cell cycle events. Among these are the checkpoints that detect DNA damage or replication perturbations and coordinate cellular activities to maintain genome stability. At the forefront of damage sensing is an evolutionarily conserved molecule, known respectively in budding yeast and humans as Mec1 (Mitosis entry checkpoint 1) and ATR (Ataxia telangiectasia and Rad3-related protein). Through phosphorylation, Mec1/ATR activates downstream components of a signaling cascade to maintain nucleotide pool balance, protect replication fork integrity, regulate activation of origins of replication, coordinate DNA repair, and implement cell cycle delay. This list of functions continues to expand as studies have revealed that Mec1/ATR modularly interacts with various protein molecules in response to different cellular cues. Among these newly assigned functions is the regulation of RNA metabolism during checkpoint activation and the coordination of replication-transcription conflicts. In this review, I will highlight some of these new functions of Mec1/ATR with a focus on the yeast model organism.

  5. The bornavirus-derived human protein EBLN1 promotes efficient cell cycle transit, microtubule organisation and genome stability

    PubMed Central

    Myers, Katie N.; Barone, Giancarlo; Ganesh, Anil; Staples, Christopher J.; Howard, Anna E.; Beveridge, Ryan D.; Maslen, Sarah; Skehel, J. Mark; Collis, Spencer J.

    2016-01-01

    It was recently discovered that vertebrate genomes contain multiple endogenised nucleotide sequences derived from the non-retroviral RNA bornavirus. Strikingly, some of these elements have been evolutionary maintained as open reading frames in host genomes for over 40 million years, suggesting that some endogenised bornavirus-derived elements (EBL) might encode functional proteins. EBLN1 is one such element established through endogenisation of the bornavirus N gene (BDV N). Here, we functionally characterise human EBLN1 as a novel regulator of genome stability. Cells depleted of human EBLN1 accumulate DNA damage both under non-stressed conditions and following exogenously induced DNA damage. EBLN1-depleted cells also exhibit cell cycle abnormalities and defects in microtubule organisation as well as premature centrosome splitting, which we attribute in part, to improper localisation of the nuclear envelope protein TPR. Our data therefore reveal that human EBLN1 possesses important cellular functions within human cells, and suggest that other EBLs present within vertebrate genomes may also possess important cellular functions. PMID:27739501

  6. Apigenin inhibits renal cell carcinoma cell proliferation.

    PubMed

    Meng, Shuai; Zhu, Yi; Li, Jiang-Feng; Wang, Xiao; Liang, Zhen; Li, Shi-Qi; Xu, Xin; Chen, Hong; Liu, Ben; Zheng, Xiang-Yi; Xie, Li-Ping

    2017-03-21

    Apigenin, a natural flavonoid found in vegetables and fruits, has antitumor activity in several cancer types. The present study evaluated the effects and mechanism of action of apigenin in renal cell carcinoma (RCC) cells. We found that apigenin suppressed ACHN, 786-0, and Caki-1 RCC cell proliferation in a dose- and time-dependent manner. A comet assay suggested that apigenin caused DNA damage in ACHN cells, especially at higher doses, and induced G2/M phase cell cycle arrest through ATM signal modulation. Small interfering RNA (siRNA)-mediated p53 knockdown showed that apigenin-induced apoptosis was likely p53 dependent. Apigenin anti-proliferative effects were confirmed in an ACHN cell xenograft mouse model. Apigenin treatment reduced tumor growth and volume in vivo, and immunohistochemical staining revealed lower Ki-67 indices in tumors derived from apigenin-treated mice. These findings suggest that apigenin exposure induces DNA damage, G2/M phase cell cycle arrest, p53 accumulation and apoptosis, which collectively suppress ACHN RCC cell proliferation in vitro and in vivo. Given its antitumor effects and low in vivo toxicity, apigenin is a highly promising agent for treatment of RCC.

  7. Cisplatin intrastrand adducts sensitize DNA to base damage by hydrated electrons.

    PubMed

    Behmand, B; Wagner, J R; Sanche, L; Hunting, D J

    2014-05-08

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative electron attachment, and (2) the hydrated electron interacts directly with the platinum-guanine adduct and induces detachment of the cisplatin moiety via dissociative electron attachment. Although the precise mechanism remains to be elucidated, our results provide important insights into the radiosensitization of DNA by cisplatin.

  8. Cisplatin Intrastrand Adducts Sensitize DNA to Base Damage by Hydrated Electrons

    PubMed Central

    Behmand, B.; Wagner, J. R.; Sanche, L.; Hunting, D. J.

    2015-01-01

    The oligonucleotide TTTTTGTGTTT with or without a cisplatin adduct was reacted with hydrated electrons generated by ionizing radiation. Hydroxyl radicals were quenched with ethylenediaminetetraacetic acid (EDTA), and the solutions were bubbled with wet nitrogen to eliminate oxygen, a scavenger of hydrated electrons. Prior to irradiation, the structure of the initial cisplatin adduct was identified by mass spectrometry as G-cisplatin-G. Radiation damage to DNA bases was quantified by high-performance liquid chromatography (HPLC), after enzymatic digestion of the TTTTTGTGTTT-cisplatin complex to deoxyribonucleosides. The masses of the platinum adducts following digestion and separation by HPLC were measured by mass spectrometry. Our results demonstrate that hydrated electrons induce damage to thymines as well as detachment of the cisplatin moiety from both guanines in the oligonucleotide. This detachment regenerates both unmodified guanine and damaged guanine, in equimolar amounts. At 1000 Gy, a net average of 2.5 thymines and 1 guanine are damaged for each platinum lost from the oligonucleotide. Given the extensive base damage that occurs for each cisplatin adduct lost, it is clear that, prior to undergoing detachment, these adducts must catalyze several cycles of reactions of hydrated electrons with DNA bases. It is likely that a single reaction leads to the loss of the cisplatin adduct and the damage observed on the guanine base; however, the damage to the thymine bases must require the continued presence of the cisplatin adduct, acting as a catalyst. To our knowledge, this is the first time that platinum-DNA adducts have been shown to have catalytic activity. We propose two pathways for the interaction of hydrated electrons with TTTTTGTGTTT-cisplatin: (1) the hydrated electron is initially captured by a thymine base and transferred by base to base electron hopping to the guanine site, where the cisplatin moiety detaches from the oligonucleotide via dissociative electron attachment, and (2) the hydrated electron interacts directly with the platinum-guanine adduct and induces detachment of the cisplatin moiety via dissociative electron attachment. Although the precise mechanism remains to be elucidated, our results provide important insights into the radiosensitization of DNA by cisplatin. PMID:24779712

  9. Design checkpoint kinase 2 inhibitors by pharmacophore modeling and virtual screening techniques.

    PubMed

    Wang, Yen-Ling; Lin, Chun-Yuan; Shih, Kuei-Chung; Huang, Jui-Wen; Tang, Chuan-Yi

    2013-12-01

    Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The endoperoxide ascaridol shows strong differential cytotoxicity in nucleotide excision repair-deficient cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbasi, Rashda; Efferth, Thomas; Kuhmann, Christine

    2012-03-15

    Targeting synthetic lethality in DNA repair pathways has become a promising anti-cancer strategy. However little is known about such interactions with regard to the nucleotide excision repair (NER) pathway. Therefore, cell lines with a defect in the NER genes ERCC6 or XPC and their normal counterparts were screened with 53 chemically defined phytochemicals isolated from plants used in traditional Chinese medicine for differential cytotoxic effects. The screening revealed 12 drugs that killed NER-deficient cells more efficiently than proficient cells. Five drugs were further analyzed for IC{sub 50} values, effects on cell cycle distribution, and induction of DNA damage. Ascaridol wasmore » the most effective compound with a difference of > 1000-fold in resistance between normal and NER-deficient cells (IC{sub 50} values for cells with deficiency in ERCC6: 0.15 μM, XPC: 0.18 μM, and normal cells: > 180 μM). NER-deficiency combined with ascaridol treatment led to G2/M-phase arrest, an increased percentage of subG1 cells, and a substantially higher DNA damage induction. These results were confirmed in a second set of NER-deficient and -proficient cell lines with isogenic background. Finally, ascaridol was characterized for its ability to generate oxidative DNA damage. The drug led to a dose-dependent increase in intracellular levels of reactive oxygen species at cytotoxic concentrations, but only NER-deficient cells showed a strongly induced amount of 8-oxodG sites. In summary, ascaridol is a cytotoxic and DNA-damaging compound which generates intracellular reactive oxidative intermediates and which selectively affects NER-deficient cells. This could provide a new therapeutic option to treat cancer cells with mutations in NER genes. -- Highlights: ► Thousand-fold higher Ascaridol activity in NER-deficient versus proficient cells. ► Impaired repair of Ascaridol-induced oxidative DNA damage in NER-deficient cells. ► Selective activity of Ascaridol opens new therapy options in NER-deficient tumors.« less

  11. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    PubMed Central

    Schreiner, Sabrina; Nassal, Michael

    2017-01-01

    Chronic hepatitis B virus (HBV) infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg) RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC) DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc) DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR), a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system. PMID:28531167

  12. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint

    PubMed Central

    Cescutti, Rachele; Negrini, Simona; Kohzaki, Masaoki; Halazonetis, Thanos D

    2010-01-01

    TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double-strand breaks (DSBs), but only in the G1-phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1–2 and 7–8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1–2 and 4–5. The BRCT domains 4–5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S-phase, we observed a checkpoint defect after siRNA-mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1. PMID:20871591

  13. TopBP1 functions with 53BP1 in the G1 DNA damage checkpoint.

    PubMed

    Cescutti, Rachele; Negrini, Simona; Kohzaki, Masaoki; Halazonetis, Thanos D

    2010-11-03

    TopBP1 is a checkpoint protein that colocalizes with ATR at sites of DNA replication stress. In this study, we show that TopBP1 also colocalizes with 53BP1 at sites of DNA double-strand breaks (DSBs), but only in the G1-phase of the cell cycle. Recruitment of TopBP1 to sites of DNA replication stress was dependent on BRCT domains 1-2 and 7-8, whereas recruitment to sites of DNA DSBs was dependent on BRCT domains 1-2 and 4-5. The BRCT domains 4-5 interacted with 53BP1 and recruitment of TopBP1 to sites of DNA DSBs in G1 was dependent on 53BP1. As TopBP1 contains a domain important for ATR activation, we examined whether it contributes to the G1 cell cycle checkpoint. By monitoring the entry of irradiated G1 cells into S-phase, we observed a checkpoint defect after siRNA-mediated depletion of TopBP1, 53BP1 or ATM. Thus, TopBP1 may mediate the checkpoint function of 53BP1 in G1.

  14. Ribonucleotide reductase activity is regulated by proliferating cell nuclear antigen (PCNA)

    PubMed Central

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne; Deegan, Tom; Havens, Courtney G.; MacNeill, Stuart A.; Walter, Johannes C.; Kearsey, Stephen E.

    2014-01-01

    Summary Synthesis of dNTPs is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimising the mutation rate [3-7], and this is achieved by tight regulation of ribonucleotide reductase [2, 8, 9]. In fission yeast, ribonucleotide reductase is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow up-regulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4Cdt2 ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 levels fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor PCNA, complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and ribonucleotide reductase regulation. PMID:22464192

  15. Role of Bacillus subtilis Error Prevention Oxidized Guanine System in Counteracting Hexavalent Chromium-Promoted Oxidative DNA Damage

    PubMed Central

    Santos-Escobar, Fernando; Gutiérrez-Corona, J. Félix

    2014-01-01

    Chromium pollution is potentially detrimental to bacterial soil communities, compromising carbon and nitrogen cycles that are essential for life on earth. It has been proposed that intracellular reduction of hexavalent chromium [Cr(VI)] to trivalent chromium [Cr(III)] may cause bacterial death by a mechanism that involves reactive oxygen species (ROS)-induced DNA damage; the molecular basis of the phenomenon was investigated in this work. Here, we report that Bacillus subtilis cells lacking a functional error prevention oxidized guanine (GO) system were significantly more sensitive to Cr(VI) treatment than cells of the wild-type (WT) strain, suggesting that oxidative damage to DNA is involved in the deleterious effects of the oxyanion. In agreement with this suggestion, Cr(VI) dramatically increased the ROS concentration and induced mutagenesis in a GO-deficient B. subtilis strain. Alkaline gel electrophoresis (AGE) analysis of chromosomal DNA of WT and ΔGO mutant strains subjected to Cr(VI) treatment revealed that the DNA of the ΔGO strain was more susceptible to DNA glycosylase Fpg attack, suggesting that chromium genotoxicity is associated with 7,8-dihydro-8-oxodeoxyguanosine (8-oxo-G) lesions. In support of this notion, specific monoclonal antibodies detected the accumulation of 8-oxo-G lesions in the chromosomes of B. subtilis cells subjected to Cr(VI) treatment. We conclude that Cr(VI) promotes mutagenesis and cell death in B. subtilis by a mechanism that involves radical oxygen attack of DNA, generating 8-oxo-G, and that such effects are counteracted by the prevention and repair GO system. PMID:24973075

  16. High-Content Analysis Provides Mechanistic Insights into the Testicular Toxicity of Bisphenol A and Selected Analogues in Mouse Spermatogonial Cells.

    PubMed

    Liang, Shenxuan; Yin, Lei; Shengyang Yu, Kevin; Hofmann, Marie-Claude; Yu, Xiaozhong

    2017-01-01

    Bisphenol A (BPA), an endocrine-disrupting compound, was found to be a testicular toxicant in animal models. Bisphenol S (BPS), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) were recently introduced to the market as alternatives to BPA. However, toxicological data of these compounds in the male reproductive system are still limited so far. This study developed and validated an automated multi-parametric high-content analysis (HCA) using the C18-4 spermatogonial cell line as a model. We applied these validated HCA, including nuclear morphology, DNA content, cell cycle progression, DNA synthesis, cytoskeleton integrity, and DNA damage responses, to characterize and compare the testicular toxicities of BPA and 3 selected commercial available BPA analogues, BPS, BPAF, and TBBPA. HCA revealed BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS, including dose- and time-dependent alterations in nuclear morphology, cell cycle, DNA damage responses, and perturbation of the cytoskeleton. Our results demonstrated that this specific culture model together with HCA can be utilized for quantitative screening and discriminating of chemical-specific testicular toxicity in spermatogonial cells. It also provides a fast and cost-effective approach for the identification of environmental chemicals that could have detrimental effects on reproduction. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Nuclear accumulation and activation of p53 in embryonic stem cells after DNA damage.

    PubMed

    Solozobova, Valeriya; Rolletschek, Alexandra; Blattner, Christine

    2009-06-17

    P53 is a key tumor suppressor protein. In response to DNA damage, p53 accumulates to high levels in differentiated cells and activates target genes that initiate cell cycle arrest and apoptosis. Since stem cells provide the proliferative cell pool within organisms, an efficient DNA damage response is crucial. In proliferating embryonic stem cells, p53 is localized predominantly in the cytoplasm. DNA damage-induced nuclear accumulation of p53 in embryonic stem cells activates transcription of the target genes mdm2, p21, puma and noxa. We observed bi-phasic kinetics for nuclear accumulation of p53 after ionizing radiation. During the first wave of nuclear accumulation, p53 levels were increased and the p53 target genes mdm2, p21 and puma were transcribed. Transcription of noxa correlated with the second wave of nuclear accumulation. Transcriptional activation of p53 target genes resulted in an increased amount of proteins with the exception of p21. While p21 transcripts were efficiently translated in 3T3 cells, we failed to see an increase in p21 protein levels after IR in embryonal stem cells. In embryonic stem cells where (anti-proliferative) p53 activity is not necessary, or even unfavorable, p53 is retained in the cytoplasm and prevented from activating its target genes. However, if its activity is beneficial or required, p53 is allowed to accumulate in the nucleus and activates its target genes, even in embryonic stem cells.

  18. A protein phosphatase feedback mechanism regulates the basal phosphorylation of Chk2 kinase in the absence of DNA damage.

    PubMed

    Carlessi, Luigi; Buscemi, Giacomo; Fontanella, Enrico; Delia, Domenico

    2010-10-01

    The checkpoint kinase Chk2 is an effector component of the ATM-dependent DNA damage response (DDR) pathway. The activation of Chk2 by genotoxic stress involves its phosphorylation on T68 by ATM and additional auto/transphosphorylations. Here we demonstrate that in unperturbed cells, chemical inhibition of Chk2 by VRX0466617 (VRX) enhances the phosphorylation of Chk2-T68 throughout the cell cycle phases. This event, dependent on the presence of ATM and catalytically functional Chk2, is not consequential to DNA damage, as neither gamma-H2AX nuclear foci nor increased ATM activation is detected in VRX-treated cells, suggesting the involvement of other regulatory proteins. As serine/threonine protein phosphatases (PPs) regulate the phosphorylation and deactivation of proteins of the DDR pathway, we analyzed their role in phospho-T68-Chk2 regulation. We found that intracellular inhibition of PP1 and PP2A-like activities by okadaic acid markedly raised the accumulation of Chk2-pT68 without DNA damage induction, and this phenomenon was also seen when PP1-C, PP2A-C, and Wip1/PPM1D were simultaneously knockdown by siRNA. Altogether, these data indicate a novel mechanism in undamaged cells where PPs function to maintain the balance between ATM and its direct substrate Chk2 through a regulatory circuit. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Oxidative Stress Mechanisms Do Not Discriminate between Genotoxic and Nongenotoxic Liver Carcinogens.

    PubMed

    Deferme, Lize; Wolters, Jarno; Claessen, Sandra; Briedé, Jacco; Kleinjans, Jos

    2015-08-17

    It is widely accepted that in chemical carcinogenesis different modes-of-action exist, e.g., genotoxic (GTX) versus nongenotoxic (NGTX) carcinogenesis. In this context, it has been suggested that oxidative stress response pathways are typical for NGTX carcinogenesis. To evaluate this, we examined oxidative stress-related changes in gene expression, cell cycle distribution, and (oxidative) DNA damage in human hepatoma cells (HepG2) exposed to GTX-, NGTX-, and noncarcinogens, at multiple time points (4-8-24-48-72 h). Two GTX (azathriopine (AZA) and furan) and two NGTX (tetradecanoyl-phorbol-acetate, (TPA) and tetrachloroethylene (TCE)) carcinogens as well as two noncarcinogens (diazinon (DZN, d-mannitol (Dman)) were selected, while per class one compound was deemed to induce oxidative stress and the other not. Oxidative stressors AZA, TPA, and DZN induced a 10-fold higher number of gene expression changes over time compared to those of furan, TCE, or Dman treatment. Genes commonly expressed among AZA, TPA, and DZN were specifically involved in oxidative stress, DNA damage, and immune responses. However, differences in gene expression between GTX and NGTX carcinogens did not correlate to oxidative stress or DNA damage but could instead be assigned to compound-specific characteristics. This conclusion was underlined by results from functional readouts on ROS formation and (oxidative) DNA damage. Therefore, oxidative stress may represent the underlying cause for increased risk of liver toxicity and even carcinogenesis; however, it does not discriminate between GTX and NGTX carcinogens.

  20. Curcumin-Mediated HDAC Inhibition Suppresses the DNA Damage Response and Contributes to Increased DNA Damage Sensitivity

    PubMed Central

    Wang, Shu-Huei; Lin, Pei-Ya; Chiu, Ya-Chen; Huang, Ju-Sui; Kuo, Yi-Tsen; Wu, Jen-Chine; Chen, Chin-Chuan

    2015-01-01

    Chemo- and radiotherapy cause multiple forms of DNA damage and lead to the death of cancer cells. Inhibitors of the DNA damage response are candidate drugs for use in combination therapies to increase the efficacy of such treatments. In this study, we show that curcumin, a plant polyphenol, sensitizes budding yeast to DNA damage by counteracting the DNA damage response. Following DNA damage, the Mec1-dependent DNA damage checkpoint is inactivated and Rad52 recombinase is degraded by curcumin, which results in deficiencies in double-stand break repair. Additive effects on damage-induced apoptosis and the inhibition of damage-induced autophagy by curcumin were observed. Moreover, rpd3 mutants were found to mimic the curcumin-induced suppression of the DNA damage response. In contrast, hat1 mutants were resistant to DNA damage, and Rad52 degradation was impaired following curcumin treatment. These results indicate that the histone deacetylase inhibitor activity of curcumin is critical to DSB repair and DNA damage sensitivity. PMID:26218133

  1. miR-30a can inhibit DNA replication by targeting RPA1 thus slowing cancer cell proliferation.

    PubMed

    Zou, Zhenyou; Ni, Mengjie; Zhang, Jing; Chen, Yongfeng; Ma, Hongyu; Qian, Shihan; Tang, Longhua; Tang, Jiamei; Yao, Hailun; Zhao, Chengbin; Lu, Xiongwen; Sun, Hongyang; Qian, Jue; Mao, Xiaoting; Lu, Xulin; Liu, Qun; Zen, Juping; Wu, Hanbing; Bao, Zhaosheng; Lin, Shudan; Sheng, Hongyu; Li, Yunlong; Liang, Yong; Chen, Zhiqiang; Zong, Dan

    2016-07-15

    Cell proliferation was inhibited following forced over-expression of miR-30a in the ovary cancer cell line A2780DX5 and the gastric cancer cell line SGC7901R. Interestingly, miR-30a targets the DNA replication protein RPA1, hinders the replication of DNA and induces DNA fragmentation. Furthermore, ataxia telangiectasia mutated (ATM) and checkpoint kinase 2 (CHK2) were phosphorylated after DNA damage, which induced p53 expression, thus triggering the S-phase checkpoint, arresting cell cycle progression and ultimately initiating cancer cell apoptosis. Therefore, forced miR-30a over-expression in cancer cells can be a potential way to inhibit tumour development. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. The contribution of mitochondrial thymidylate synthesis in preventing the nuclear genome stress.

    PubMed

    Lee, Ming-Hsiang; Wang, Liya; Chang, Zee-Fen

    2014-04-01

    In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.

  3. Mitochondria, cognitive impairment, and Alzheimer's disease.

    PubMed

    Mancuso, M; Calsolaro, V; Orsucci, D; Carlesi, C; Choub, A; Piazza, S; Siciliano, G

    2009-07-06

    To date, the beta amyloid (Abeta) cascade hypothesis remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is unclear. The "mitochondrial cascade hypothesis" could explain many of the biochemical, genetic, and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress, and accumulation of Abeta, which in a vicious cycle reinforce the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria, and especially of the mtDNA, in the cascade of events leading to neurodegeneration, dementia, and AD.

  4. Mitochondria, Cognitive Impairment, and Alzheimer's Disease

    PubMed Central

    Mancuso, M.; Calsolaro, V.; Orsucci, D.; Carlesi, C.; Choub, A.; Piazza, S.; Siciliano, G.

    2009-01-01

    To date, the beta amyloid (Aβ) cascade hypothesis remains the main pathogenetic model of Alzheimer's disease (AD), but its role in the majority of sporadic AD cases is unclear. The “mitochondrial cascade hypothesis” could explain many of the biochemical, genetic, and pathological features of sporadic AD. Somatic mutations in mitochondrial DNA (mtDNA) could cause energy failure, increased oxidative stress, and accumulation of Aβ, which in a vicious cycle reinforce the mtDNA damage and the oxidative stress. Despite the evidence of mitochondrial dysfunction in AD, no causative mutations in the mtDNA have been detected so far. Indeed, results of studies on the role of mtDNA haplogroups in AD are controversial. In this review we discuss the role of the mitochondria, and especially of the mtDNA, in the cascade of events leading to neurodegeneration, dementia, and AD. PMID:20798880

  5. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  6. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  7. Recruitment of TRF2 to laser-induced DNA damage sites.

    PubMed

    Huda, Nazmul; Abe, Satoshi; Gu, Ling; Mendonca, Marc S; Mohanty, Samarendra; Gilley, David

    2012-09-01

    Several lines of evidence suggest that the telomere-associated protein TRF2 plays critical roles in the DNA damage response. TRF2 is rapidly and transiently phosphorylated by an ATM-dependent pathway in response to DNA damage and this DNA damage-induced phosphoryation is essential for the DNA-PK-dependent pathway of DNA double-strand break repair (DSB). However, the type of DNA damage that induces TRF2 localization to the damage sites, the requirement for DNA damage-induced phosphorylation of TRF2 for its recruitment, as well as the detailed kinetics of TRF2 accumulation at DNA damage sites have not been fully investigated. In order to address these questions, we used an ultrafast femtosecond multiphoton laser and a continuous wave 405-nm single photon laser to induce DNA damage at defined nuclear locations. Our results showed that DNA damage produced by a femtosecond multiphoton laser was sufficient for localization of TRF2 to these DNA damage sites. We also demonstrate that ectopically expressed TRF2 was recruited to DNA lesions created by a 405-nm laser. Our data suggest that ATM and DNA-PKcs kinases are not required for TRF2 localization to DNA damage sites. Furthermore, we found that phosphorylation of TRF2 at residue T188 was not essential for its recruitment to laser-induced DNA damage sites. Thus, we provide further evidence that a protein known to function in telomere maintenance, TRF2, is recruited to sites of DNA damage and plays critical roles in the DNA damage response. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. RAP80, ubiquitin and SUMO in the DNA damage response.

    PubMed

    Lombardi, Patrick M; Matunis, Michael J; Wolberger, Cynthia

    2017-08-01

    A decade has passed since the first reported connection between RAP80 and BRCA1 in DNA double-strand break repair. Despite the initial identification of RAP80 as a factor localizing BRCA1 to DNA double-strand breaks and potentially promoting homologous recombination, there is increasing evidence that RAP80 instead suppresses homologous recombination to fine-tune the balance of competing DNA repair processes during the S/G 2 phase of the cell cycle. RAP80 opposes homologous recombination by inhibiting DNA end-resection and sequestering BRCA1 into the BRCA1-A complex. Ubiquitin and SUMO modifications of chromatin at DNA double-strand breaks recruit RAP80, which contains distinct sequence motifs that recognize ubiquitin and SUMO. Here, we review RAP80's role in repressing homologous recombination at DNA double-strand breaks and how this role is facilitated by its ability to bind ubiquitin and SUMO modifications.

  9. The Focinator v2-0 - Graphical Interface, Four Channels, Colocalization Analysis and Cell Phase Identification.

    PubMed

    Oeck, Sebastian; Malewicz, Nathalie M; Hurst, Sebastian; Al-Refae, Klaudia; Krysztofiak, Adam; Jendrossek, Verena

    2017-07-01

    The quantitative analysis of foci plays an important role in various cell biological methods. In the fields of radiation biology and experimental oncology, the effect of ionizing radiation, chemotherapy or molecularly targeted drugs on DNA damage induction and repair is frequently performed by the analysis of protein clusters or phosphorylated proteins recruited to so called repair foci at DNA damage sites, involving for example γ-H2A.X, 53BP1 or RAD51. We recently developed "The Focinator" as a reliable and fast tool for automated quantitative and qualitative analysis of nuclei and DNA damage foci. The refined software is now even more user-friendly due to a graphical interface and further features. Thus, we included an R-script-based mode for automated image opening, file naming, progress monitoring and an error report. Consequently, the evaluation no longer required the attendance of the operator after initial parameter definition. Moreover, the Focinator v2-0 is now able to perform multi-channel analysis of four channels and evaluation of protein-protein colocalization by comparison of up to three foci channels. This enables for example the quantification of foci in cells of a specific cell cycle phase.

  10. Heat shock factor-1 modulates p53 activity in the transcriptional response to DNA damage

    PubMed Central

    Logan, Ian R.; McNeill, Hesta V.; Cook, Susan; Lu, Xiaohong; Meek, David W.; Fuller-Pace, Frances V.; Lunec, John; Robson, Craig N.

    2009-01-01

    Here we define an important role for heat shock factor 1 (HSF1) in the cellular response to genotoxic agents. We demonstrate for the first time that HSF1 can complex with nuclear p53 and that both proteins are co-operatively recruited to p53-responsive genes such as p21. Analysis of natural and synthetic cis elements demonstrates that HSF1 can enhance p53-mediated transcription, whilst depletion of HSF1 reduces the expression of p53-responsive transcripts. We find that HSF1 is required for optimal p21 expression and p53-mediated cell-cycle arrest in response to genotoxins while loss of HSF1 attenuates apoptosis in response to these agents. To explain these novel properties of HSF1 we show that HSF1 can complex with DNA damage kinases ATR and Chk1 to effect p53 phosphorylation in response to DNA damage. Our data reveal HSF1 as a key transcriptional regulator in response to genotoxic compounds widely used in the clinical setting, and suggest that HSF1 will contribute to the efficacy of these agents. PMID:19295133

  11. Role of Mitochondrial Oxidative Stress in Spaceflight-Induced Tissue Degeneration

    NASA Technical Reports Server (NTRS)

    Torres, Samantha M.; Schreurs, Ann-Sofie; Truong, Tiffany A.; Tahimic, Candice; Globus, Ruth

    2017-01-01

    Microgravity and ionizing radiation in the spaceflight environment poses multiple challenges to homeostasis and may contribute to cellular stress. Effects may include increased generation of reactive oxygen species (ROS), DNA damage and repair error, cell cycle arrest, cell senescence or death. Our central hypothesis is that prolonged exposure to the spaceflight environment leads to the excess production of ROS and oxidative damage, culminating in accelerated tissue degeneration. The main goal of this project is to determine the importance of cellular redox defense for physiological adaptations and tissue degeneration in the space environment.

  12. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Awady, Raafat A., E-mail: relawady@sharjah.ac.ae; Department of Pharmacology and Pharmaceutics, College of Pharmacy, University of Sharjah, University City road, 27272 Sharjah; Saleh, Ekram M.

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide {+-} celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 followingmore » all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: > Celecoxib may enhance effects of anticancer drugs. > Its combination with four drugs was tested in five cancer cell lines. > It antagonized the effects of the four drugs in the breast cancer cell line MCF7. > Doxorubicin's cytotoxic effects were antagonized by celecoxib in four cell lines. > Cell cycle, apoptosis and DNA damage explain the different interactive effects.« less

  13. [Mechanism involving blm gene underlies repair of DNA damage of Jurkat cells induced by mitomycin C].

    PubMed

    Yi, Xue; Cheng, Hui; Zou, Ping; Liu, Ling-Bo; Zhang, Ting; Yu, Dan; Zhu, Xiao-Ming; Zou, Liang

    2010-10-01

    The defect or block of apoptosis is an important factor involved in the drug resistance of tumor cells. Blm gene plays a great role in DNA damage and repair. This study was aimed to explore the relationship of blm gene expression with cell cycle and apoptosis after Jurkat DNA damage. The apoptosis rate and change of cell cycle were detected by flow cytometry, the expression level of blm mRNA in Jurkat cells was determined by semi-quantitative RT-PCR. The results indicated that after induction with 0.4 g/L of mitomycin C (MMC) for 24 hours the apoptosis rate of Jurkat cells were (11.42±0.013)%, and (66.08±1.60)% Jurkat cells were arrested in G2/M phase. After induction for 48 hours, the apoptosis rate of Jurkat cells declined from (11.42±0.013)% to (8.08±0.27)%, and cell count of Jurkat cells arrested in G2/M phase decreased from (66.08±1.60)% to (33.96±1.05)%. When induced with 0.4 g/L of MMC for 24 hours, the apoptosis rate of fibroblasts and the percentage of fibroblasts in G2/M, G0-G1 and S phase all showed no significant change until 48 hours. The range of apoptosis rate and the change of cell percentage in three phases were significantly different between Jurkat cells and fibroblasts (p<0.01). Expression level of blm mRNA in Jurkat cells was remarkably higher than that in normal fibroblasts (p<0.01), at 48 hours expression level of blm mRNA was remarkably higher than that at 24 hours. The 2 groups showed clear difference of blm mRNA expression after treated by MMC (p<0.01). It is concluded that the blm gene may play a significant role in repair of DNA damage of Jurkat cells after MMC induction. Abnormal expression of blm is correlated to the drug resistance of leukemia cells.

  14. A p53-independent damage-sensing mechanism that functions as a checkpoint at the G1/S transition in Chinese hamster ovary cells

    PubMed Central

    Lee, Hoyun; Larner, James M.; Hamlin, Joyce L.

    1997-01-01

    In response to a moderate dose of radiation, asynchronous mammalian cell populations rapidly and transiently down-regulate the rate of DNA synthesis to ≈50% of preirradiation values. We show here that only half of the reduction in overall replication rate can be accounted for by direct inhibition of initiation at origins in S-phase cells. The other half results from the operation of a newly defined cell cycle checkpoint that functions at the G1/S transition. This checkpoint senses damage incurred at any time during the last 2 hr of G1 and effectively prevents entry into the S period. The G1/S and S-phase checkpoints are both p53-independent and, unlike the p53-mediated G1 checkpoint, respond rapidly to radiation, suggesting that they may represent major damage-sensing mechanisms connecting the replication machinery with DNA repair pathways. PMID:9012817

  15. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation.

    PubMed

    Fisher, Chris

    2015-01-01

    Most human papillomavirus (HPV) antiviral strategies have focused upon inhibiting viral DNA replication, but it is increasingly apparent that viral DNA levels can be chemically controlled by approaches that promote its instability. HPVs and other DNA viruses have a tenuous relationship with their hosts. They must replicate and hide from the DNA damage response (DDR) and innate immune systems, which serve to protect cells from foreign or "non-self" DNA, and yet they draft these same systems to support their life cycles. DNA binding antiviral agents promoting massive viral DNA instability and elimination are reviewed. Mechanistic studies of these agents have identified genetic antiviral enhancers and repressors, antiviral sensitizers, and host cell elements that protect and stabilize HPV genomes. Viral DNA degradation appears to be an important means of controlling HPV DNA levels in some cases, but the underlying mechanisms remain poorly understood. These findings may prove useful not only for understanding viral DNA persistence but also in devising future antiviral strategies.

  16. The 8-oxoguanine DNA glycosylase 1 (ogg1) decreases the vulnerability of the developing brain to DNA damage.

    PubMed

    Gu, Aihua; Ji, Guixiang; Yan, Lifeng; Zhou, Yong

    2013-12-01

    The developing brain is particularly vulnerable to oxidative DNA damage, which may be the cause of most major congenital mental anomalies. The repair enzyme ogg1 initiates the highly conserved base-excision repair pathway. However, its function in the embryonic brain is largely unknown. This study is the first to validate the function of ogg1 during brain development using zebrafish embryos. Ogg1 was found to be highly expressed in the brain throughout early embryonic development, with particularly enrichment observed in the midbrain. The lack of ogg1 causes severe brain defects including changes in brain volume and integrity, destruction of the midbrain-hindbrain boundary, and balance and motor impairment, while overexpression of ogg1 can partially rescue these defects. Multiple cellular and molecular events were involved in the manifestation of brain defects due primarily to the lack of ogg1. These included (1) increased apoptosis; (2) decreased proliferation; and (3) aberrant axon distribution and extension from the inner surface towards the outer layers. The results of a microarray analysis showed that the expression of genes involved in cell cycle checkpoint, apoptosis, and neurogenesis were significantly changed in response to ogg1 knockdown. Cmyb was the key downstream gene that responses to DNA damage caused by ogg1 deficiency. Notably, the recruitment of ogg1 mRNA can alleviate the effects on the brain due to neural DNA damage. In summary, we introduce here that ogg1 is fundamentally required for protecting the developing brain, which may be helpful in understanding the aetiology of congenital brain deficits. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. 2016 Arte Poster Competition First Place Winner: Circadian Rhythm and UV-Induced Skin Damage: An In Vivo Study.

    PubMed

    Guan, Linna; Suggs, Amanda; Ahsanuddin, Sayeeda; Tarrillion, Madeline; Selph, Jacqueline; Lam, Minh; Baron, Elma

    2016-09-01

    Exposure of the skin to ultraviolet (UV) irradiation causes many detrimental effects through mechanisms related to oxidative stress and DNA damage. Excessive oxidative stress can cause apoptosis and cellular dysfunction of epidermal cells leading to cellular senescence and connective tissue degradation. Direct and indirect damage to DNA predisposes the skin to cancer formation. Chronic UV exposure also leads to skin aging manifested as wrinkling, loss of skin tone, and decreased resilience. Fortunately, human skin has several natural mechanisms for combating UV-induced damage. The mechanisms operate on a diurnal rhythm, a cycle that repeats approximately every 24 hours. It is known that the circadian rhythm is involved in many skin physiologic processes, including water regulation and epidermal stem cell function. This study evaluated whether UV damage and the skin's natural mechanisms of inflammation and repair are also affected by circadian rhythm. We looked at UV-induced erythema on seven human subjects irradiated with simulated solar radiation in the morning (at 08:00 h) versus in the afternoon (at 16:00 h). Our data suggest that the same dose of UV radiation induces significantly more inflammation in the morning than in the afternoon. Changes in protein expression relevant to DNA damage, such as xeroderma pigmentosum, complementation group A (XPA), and cyclobutane pyrimidine dimers (CPD) from skin biopsies correlated with our clinical results. Both XPA and CPD levels were higher after the morning UV exposure compared with the afternoon exposure.

    J Drugs Dermatol. 2016;15(9):1124-1130.

  18. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    PubMed Central

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  19. Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress.

    PubMed

    Shi, Wei; Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K; Straube, Jasmin; Boyle, Glen M; Al-Ejeh, Fares; Nag, Purba; Jeffery, Jessie; Harris, Janelle L; Bain, Amanda L; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J; Finnie, John; Skaar, Jeffrey R; Walkley, Carl R; Pandita, Tej K; Rowicka, Maga; Ginalski, Krzysztof; Lane, Steven W; Khanna, Kum Kum

    2017-05-04

    Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2 Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R -loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. © 2017 by The American Society of Hematology.

  20. Ssb1 and Ssb2 cooperate to regulate mouse hematopoietic stem and progenitor cells by resolving replicative stress

    PubMed Central

    Vu, Therese; Boucher, Didier; Biernacka, Anna; Nde, Jules; Pandita, Raj K.; Straube, Jasmin; Boyle, Glen M.; Al-Ejeh, Fares; Jeffery, Jessie; Harris, Janelle L.; Bain, Amanda L.; Grzelak, Marta; Skrzypczak, Magdalena; Mitra, Abhishek; Dojer, Norbert; Crosetto, Nicola; Cloonan, Nicole; Becherel, Olivier J.; Finnie, John; Skaar, Jeffrey R.; Walkley, Carl R.; Pandita, Tej K.; Rowicka, Maga; Ginalski, Krzysztof

    2017-01-01

    Hematopoietic stem and progenitor cells (HSPCs) are vulnerable to endogenous damage and defects in DNA repair can limit their function. The 2 single-stranded DNA (ssDNA) binding proteins SSB1 and SSB2 are crucial regulators of the DNA damage response; however, their overlapping roles during normal physiology are incompletely understood. We generated mice in which both Ssb1 and Ssb2 were constitutively or conditionally deleted. Constitutive Ssb1/Ssb2 double knockout (DKO) caused early embryonic lethality, whereas conditional Ssb1/Ssb2 double knockout (cDKO) in adult mice resulted in acute lethality due to bone marrow failure and intestinal atrophy featuring stem and progenitor cell depletion, a phenotype unexpected from the previously reported single knockout models of Ssb1 or Ssb2. Mechanistically, cDKO HSPCs showed altered replication fork dynamics, massive accumulation of DNA damage, genome-wide double-strand breaks enriched at Ssb-binding regions and CpG islands, together with the accumulation of R-loops and cytosolic ssDNA. Transcriptional profiling of cDKO HSPCs revealed the activation of p53 and interferon (IFN) pathways, which enforced cell cycling in quiescent HSPCs, resulting in their apoptotic death. The rapid cell death phenotype was reproducible in in vitro cultured cDKO-hematopoietic stem cells, which were significantly rescued by nucleotide supplementation or after depletion of p53. Collectively, Ssb1 and Ssb2 control crucial aspects of HSPC function, including proliferation and survival in vivo by resolving replicative stress to maintain genomic stability. PMID:28270450

  1. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Induction of oxidative DNA damage by mesalamine in the presence of copper: a potential mechanism for mesalamine anticancer activity.

    PubMed

    Zimmerman, Ryan P; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P; Wang, Jianmin; Li, Yunbo

    2011-02-27

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Human cytomegalovirus UL76 induces chromosome aberrations

    PubMed Central

    2009-01-01

    Background Human cytomegalovirus (HCMV) is known to induce chromosome aberrations in infected cells, which can lead to congenital abnormalities in infected fetuses. HCMV UL76 belongs to a conserved protein family from herpesviruses. Some reported roles among UL76 family members include involvement in virulence determination, lytic replication, reactivation of latent virus, modulation of gene expression, induction of apoptosis, and perturbation of cell cycle progression, as well as potential nuclease activity. Previously, we have shown that stable expression of UL76 inhibits HCMV replication in glioblastoma cells. Methods To examine chromosomal integrity and the DNA damage signal γ-H2AX in cells constitutively expressing UL76, immunofluorescent cell staining and Western blotting were performed. The comet assay was employed to assess DNA breaks in cells transiently expressing UL76. Results We report that stably transfected cells expressing UL76 developed chromosome aberrations including micronuclei and misaligned chromosomes, lagging and bridging. In mitotic cells expressing UL76, aberrant spindles were increased compared to control cells. However, cells with supernumerary centrosomes were marginally increased in UL76-expressing cells relative to control cells. We further demonstrated that UL76-expressing cells activated the DNA damage signal γ-H2AX and caused foci formation in nuclei. In addition, the number of cells with DNA breaks increased in proportion to UL76 protein levels. Conclusion Our findings suggest that the virus-associated protein UL76 induces DNA damage and the accumulation of chromosome aberrations. PMID:19930723

  4. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation.

    PubMed

    Mondal, Jesmin; Panigrahi, Ashis Kumar; Khuda-Bukhsh, Anisur Rahman

    2014-08-01

    Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. Conium's effects on cell cycle, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential (MMP) and apoptosis, if any, were analyzed through flow cytometry. Whether Conium could damage DNA and induce morphological changes were also determined microscopically. Expression of different proteins related to cell death and survival was critically studied by western blotting and ELISA methods. If Conium could interact directly with DNA was also determined by circular dichroism (CD) spectroscopy. Conium treatment reduced cell viability and colony formation at 48 h and inhibited cell proliferation, arresting cell cycle at sub-G stage. Conium treatment lead to increased generation of reactive oxygen species (ROS) at 24 h, increase in MMP depolarization, morphological changes and DNA damage in HeLa cells along with externalization of phosphatidyl serine at 48 hours. While cytochrome c release and caspase-3 activation led HeLa cells toward apoptosis, down-regulation of Akt and NFkB inhibited cellular proliferation, indicating the signaling pathway to be mediated via the mitochondria-mediated caspase-3-dependent pathway. CD-spectroscopy revealed that Conium interacted with DNA molecule. Overall results validate anti-cancer potential of Conium and provide support for its use in traditional systems of medicine.

  5. Anticancer potential of Conium maculatum extract against cancer cells in vitro: Drug-DNA interaction and its ability to induce apoptosis through ROS generation

    PubMed Central

    Mondal, Jesmin; Panigrahi, Ashis Kumar; Khuda-Bukhsh, Anisur Rahman

    2014-01-01

    Objective: Conium maculatum extract is used as a traditional medicine for cervix carcinoma including homeopathy. However, no systematic work has so far been carried out to test its anti-cancer potential against cervix cancer cells in vitro. Thus, in this study, we investigated whether ethanolic extract of conium is capable of inducing cytotoxicity in different normal and cancer cell lines including an elaborate study in HeLa cells. Materials and Methods: Conium's effects on cell cycle, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential (MMP) and apoptosis, if any, were analyzed through flow cytometry. Whether Conium could damage DNA and induce morphological changes were also determined microscopically. Expression of different proteins related to cell death and survival was critically studied by western blotting and ELISA methods. If Conium could interact directly with DNA was also determined by circular dichroism (CD) spectroscopy. Results: Conium treatment reduced cell viability and colony formation at 48 h and inhibited cell proliferation, arresting cell cycle at sub-G stage. Conium treatment lead to increased generation of reactive oxygen species (ROS) at 24 h, increase in MMP depolarization, morphological changes and DNA damage in HeLa cells along with externalization of phosphatidyl serine at 48 hours. While cytochrome c release and caspase-3 activation led HeLa cells toward apoptosis, down-regulation of Akt and NFkB inhibited cellular proliferation, indicating the signaling pathway to be mediated via the mitochondria-mediated caspase-3-dependent pathway. CD-spectroscopy revealed that Conium interacted with DNA molecule. Conclusion: Overall results validate anti-cancer potential of Conium and provide support for its use in traditional systems of medicine. PMID:25298670

  6. Functional compartmentalization of Rad9 and Hus1 reveals diverse assembly of the 9‐1‐1 complex components during the DNA damage response in Leishmania

    PubMed Central

    Damasceno, Jeziel D.; Obonaga, Ricardo; Santos, Elaine V.; Scott, Alan; McCulloch, Richard

    2016-01-01

    Summary The Rad9‐Rad1‐Hus1 (9‐1‐1) complex is a key component in the coordination of DNA damage sensing, cell cycle progression and DNA repair pathways in eukaryotic cells. This PCNA‐related trimer is loaded onto RPA‐coated single stranded DNA and interacts with ATR kinase to mediate effective checkpoint signaling to halt the cell cycle and to promote DNA repair. Beyond these core activities, mounting evidence suggests that a broader range of functions can be provided by 9‐1‐1 structural diversification. The protozoan parasite Leishmania is an early‐branching eukaryote with a remarkably plastic genome, which hints at peculiar genome maintenance mechanisms. Here, we investigated the existence of homologs of the 9‐1‐1 complex subunits in L. major and found that LmRad9 and LmRad1 associate with chromatin in response to replication stress and form a complex in vivo with LmHus1. Similar to LmHus1, LmRad9 participates in telomere homeostasis and in the response to both replication stress and double strand breaks. However, LmRad9 and LmHus1‐deficient cells present markedly opposite phenotypes, which suggest their functional compartmentalization. We show that some of the cellular pool of LmRad9 forms an alternative complex and that some of LmHus1 exists as a monomer. We propose that the diverse assembly of the Leishmania 9‐1‐1 subunits mediates functional compartmentalization, which has a direct impact on the response to genotoxic stress. PMID:27301589

  7. Genome-wide characterization reveals complex interplay between TP53 and TP63 in response to genotoxic stress

    PubMed Central

    McDade, Simon S.; Patel, Daksha; Moran, Michael; Campbell, James; Fenwick, Kerry; Kozarewa, Iwanka; Orr, Nicholas J.; Lord, Christopher J.; Ashworth, Alan A.; McCance, Dennis J.

    2014-01-01

    In response to genotoxic stress the TP53 tumour suppressor activates target gene expression to induce cell cycle arrest or apoptosis depending on the extent of DNA damage. These canonical activities can be repressed by TP63 in normal stratifying epithelia to maintain proliferative capacity or drive proliferation of squamous cell carcinomas, where TP63 is frequently overexpressed/amplified. Here we use ChIP-sequencing, integrated with microarray analysis, to define the genome-wide interplay between TP53 and TP63 in response to genotoxic stress in normal cells. We reveal that TP53 and TP63 bind to overlapping, but distinct cistromes of sites through utilization of distinctive consensus motifs and that TP53 is constitutively bound to a number of sites. We demonstrate that cisplatin and adriamycin elicit distinct effects on TP53 and TP63 binding events, through which TP53 can induce or repress transcription of an extensive network of genes by direct binding and/or modulation of TP63 activity. Collectively, this results in a global TP53-dependent repression of cell cycle progression, mitosis and DNA damage repair concomitant with activation of anti-proliferative and pro-apoptotic canonical target genes. Further analyses reveal that in the absence of genotoxic stress TP63 plays an important role in maintaining expression of DNA repair genes, loss of which results in defective repair. PMID:24823795

  8. Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) Regulates γ-Histone 2AX (γ-H2AX) Levels upon Ionizing Radiation*

    PubMed Central

    Neumayer, Gernot; Helfricht, Angela; Shim, Su Yeon; Le, Hoa Thi; Lundin, Cecilia; Belzil, Camille; Chansard, Mathieu; Yu, Yaping; Lees-Miller, Susan P.; Gruss, Oliver J.; van Attikum, Haico; Helleday, Thomas; Nguyen, Minh Dang

    2012-01-01

    The microtubule-associated protein targeting protein for Xenopus kinesin-like protein 2 (TPX2) plays a key role in spindle assembly and is required for mitosis in human cells. In interphase, TPX2 is actively imported into the nucleus to prevent its premature activity in microtubule organization. To date, no function has been assigned to nuclear TPX2. We now report that TPX2 plays a role in the cellular response to DNA double strand breaks induced by ionizing radiation. Loss of TPX2 leads to inordinately strong and transient accumulation of ionizing radiation-dependent Ser-139-phosphorylated Histone 2AX (γ-H2AX) at G0 and G1 phases of the cell cycle. This is accompanied by the formation of increased numbers of high intensity γ-H2AX ionizing radiation-induced foci. Conversely, cells overexpressing TPX2 have reduced levels of γ-H2AX after ionizing radiation. Consistent with a role for TPX2 in the DNA damage response, we found that the protein accumulates at DNA double strand breaks and associates with the mediator of DNA damage checkpoint 1 (MDC1) and the ataxia telangiectasia mutated (ATM) kinase, both key regulators of γ-H2AX amplification. Pharmacologic inhibition or depletion of ATM or MDC1, but not of DNA-dependent protein kinase (DNA-PK), antagonizes the γ-H2AX phenotype caused by TPX2 depletion. Importantly, the regulation of γ-H2AX signals by TPX2 is not associated with apoptosis or the mitotic functions of TPX2. In sum, our study identifies a novel and the first nuclear function for TPX2 in the cellular responses to DNA damage. PMID:23045526

  9. Inhibiting DNA-PK{sub CS} radiosensitizes human osteosarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamo, Tewodros; Mladek, Ann C.; Shogren, Kris L.

    Osteosarcoma survival rate has not improved over the past three decades, and the debilitating side effects of the surgical treatment suggest the need for alternative local control approaches. Radiotherapy is largely ineffective in osteosarcoma, indicating a potential role for radiosensitizers. Blocking DNA repair, particularly by inhibiting the catalytic subunit of DNA-dependent protein kinase (DNA-PK{sub CS}), is an attractive option for the radiosensitization of osteosarcoma. In this study, the expression of DNA-PK{sub CS} in osteosarcoma tissue specimens and cell lines was examined. Moreover, the small molecule DNA-PK{sub CS} inhibitor, KU60648, was investigated as a radiosensitizing strategy for osteosarcoma cells in vitro. DNA-PK{submore » CS} was consistently expressed in the osteosarcoma tissue specimens and cell lines studied. Additionally, KU60648 effectively sensitized two of those osteosarcoma cell lines (143B cells by 1.5-fold and U2OS cells by 2.5-fold). KU60648 co-treatment also altered cell cycle distribution and enhanced DNA damage. Cell accumulation at the G2/M transition point increased by 55% and 45%, while the percentage of cells with >20 γH2AX foci were enhanced by 59% and 107% for 143B and U2OS cells, respectively. These results indicate that the DNA-PK{sub CS} inhibitor, KU60648, is a promising radiosensitizing agent for osteosarcoma. - Highlights: • DNA-PKcs is consistently expressed in human osteosarcoma tissue and cell lines. • The DNA-PKcs inhibitor, KU60648, effectively radiosensitizes osteosarcoma cells. • Combining KU60648 with radiation increases G2/M accumulation and DNA damage.« less

  10. Quantitation of Radiation Induced Deletion and Recombination Events Associated with Repeated DNA Sequences

    NASA Technical Reports Server (NTRS)

    Sinden, Richard R.

    1999-01-01

    Manned exploration of space exposes the explorers to a complex and novel radiation environment. The galactic cosmic ray and trapped belt radiation (predominantly proton) components of this environment are relatively constant, and the variations with the solar cycle are well understood and predictable. The level of radiation encountered in low earth orbits is determined by several factors, including altitude, inclination of orbit with respect to the equator, and spacecraft shielding. At higher altitudes, and on a Mars mission, the level of radiation exposure will increase significantly. A significant fraction of the dose may be delivered by solar particle events which vary dramatically in dose rate and incident particle spectrum. High-LET radiation is of particular concern. High-LET radiation, a component of galactic cosmic rays (GCR), is comprised of a variety of charged particles of various energies (10 MeV/n to 10 GeV/n), including about 87% photons, 12% helium ions, and heavy ions (including iron). These high energy particles can cause significant damage to target cells. The different particle types and energies result in different patterns of energy deposition at the molecular and cellular level in a primary target cell. They can also cause significant damage to other, nearby cells as a result of secondary particles. Protons, for instance produce secondaries that include photons, neutrons, pions, heavy particles, as well as gamma rays. Heavy ions deposit energy in a "track" in which the magnitude of the damage varies as the particle loses energy. Heavy ions produce secondary delta rays, or electrons. The distribution of damage through tissue is described by a Bragg curve which will be characteristic for different energies. Needless to say there are differences in the RBE of protons and a particles. High-LET heavy ions are particularly damaging to cells as they do continual damage throughout their track. Differences in these energy deposition patterns can significantly influence the nature of DNA damage and the ability of cellular systems to repair such damage. It has been suspected that these differences also affect the spatial distribution of damage within the DNA of the interphase cell nucleus and produce corresponding differences in endpoints related to health effects. The interaction of a single high-LET particle with chromatin has been suggested to cause multiple double strand breaks within a relatively short distance. In part this is due to the organization of DNA into chromatin fibers in which distant regions of the DNA helix can be physically juxtaposed by the various levels of coiling of the DNA. This prediction was confirmed by the detection of the generation of double strand DNA fragments of 100-2000 bp following exposure to high-LET ions (including iron).

  11. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  12. The effect of particle size on the genotoxicity of gold nanoparticles.

    PubMed

    Xia, Qiyue; Li, Hongxia; Liu, Ying; Zhang, Shuyang; Feng, Qiyi; Xiao, Kai

    2017-03-01

    Despite the increasing biomedical applications of gold nanoparticles (AuNPs), their toxicological effects need to be thoroughly understood. In the present study, the genotoxic potential of commercially available AuNPs with varying size (5, 20, and 50 nm) were assessed using a battery of in vitro and in vivo genotoxicity assays. In the comet assay, 20 and 50 nm AuNPs did not induce obvious DNA damage in HepG2 cells at the tested concentrations, whereas 5 nm NPs induced a dose-dependent increment in DNA damage after 24-h exposure. Furthermore, 5 nm AuNPs induced cell cycle arrest in G1 phase in response to DNA damage, and promoted the production of reactive oxygen species (ROS). In the chromosomal aberration test, AuNPs exposure did not increase in the frequency of chromosomal aberrations in Chinese hamster lung (CHL) cells. In the standard in vivo micronucleus test, no obvious increase in the frequency of micronucleus formation was found in mice after 4 day exposure of AuNPs. However, when the exposure period was extended to 14 days, 5 nm AuNPs presented significant clastogenic damage, with a dose-dependent increase of micronuclei frequencies. This finding suggests that particle size plays an important role in determining the genotoxicity of AuNPs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 710-719, 2017. © 2016 Wiley Periodicals, Inc.

  13. Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence.

    PubMed

    Olszewski, Maciej B; Chandris, Panagiotis; Park, Bum-Chan; Eisenberg, Evan; Greene, Lois E

    2014-01-01

    The Hsc70 cochaperone, G cyclin-associated kinase (GAK), has been shown to be essential for the chaperoning of clathrin by Hsc70 in the cell. In this study, we used conditional GAK knockout mouse embryonic fibroblasts (MEFs) to determine the effect of completely inhibiting clathrin-dependent trafficking on the cell cycle. After GAK was knocked out, the cells developed the unusual phenotype of having multiple centrosomes, but at the same time failed to divide and ultimately became senescent. To explain this phenotype, we examined the signaling profile and found that mitogenic stimulation of the GAK KO cells and the control cells were similar except for increased phosphorylation of Akt. In addition, the disruption of intracellular trafficking caused by knocking out GAK destabilized the lysosomal membranes, resulting in DNA damage due to iron leakage. Knocking down clathrin heavy chain or inhibiting dynamin largely reproduced the GAK KO phenotype, but inhibiting only clathrin-mediated endocytosis by knocking down adaptor protein (AP2) caused growth arrest and centrosome overduplication, but no DNA damage or senescence. We conclude that disruption of clathrin-dependent trafficking induces senescence accompanied by centrosome overduplication because of a combination of DNA damage and changes in mitogenic signaling that uncouples centrosomal duplication from DNA replication. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  14. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Sean R.; Prahalad, Agasanur K.; Yang Jieping

    2006-06-23

    Rothmund-Thomson syndrome (RTS) is a heterogeneous disease, associated with increased prevalence of osteosarcoma in very young patients with a mutated RECQL4 gene. In this study, we tested the ability of RECQL4 deficient fibroblasts, derived from a RTS patient to recover from hydrogen peroxide (H{sub 2}O{sub 2})-induced oxidative stress/damage. Immunoperoxidase staining for 8-oxo-deoxyguanosine (8-oxo-dG) formation in RTS and normal human fibroblasts were compared to assess DNA damage. We determined DNA synthesis, cell growth, cell cycle distribution, and viability in RTS and normal human fibroblasts before and after H{sub 2}O{sub 2} treatment. H{sub 2}O{sub 2} induces 8-oxo-dG formation in both RTS andmore » normal fibroblasts. In normal human fibroblasts, RECQL4 was predominantly localized to cytoplasm; nuclear translocation and foci formation occurred in response to oxidant stimulation. After recovery from oxidant exposure, viable RTS fibroblasts showed irreversible growth arrest compared to normal fibroblasts. DNA synthesis decreased significantly in treated RTS cells, with concomitant reduction of cells in the S-phase. These results suggest that enhanced oxidant sensitivity in RECQL4 deficient fibroblasts derived from RTS patients could be attributed to abnormal DNA metabolism and proliferation failure. The ramifications of these findings on osteosarcoma prevalence and heterogeneity in RTS are discussed.« less

  15. Quantitative and Dynamic Imaging of ATM Kinase Activity by Bioluminescence Imaging.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA damage response, including DNA double strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter-expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  16. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    PubMed

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  17. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE PAGES

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua; ...

    2015-06-01

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

  18. Overexpression of Nitrogen Permease Regulator Like-2 (NPRL2) Enhances Sensitivity to Irinotecan (CPT-11) in Colon Cancer Cells by Activating the DNA Damage Checkpoint Pathway.

    PubMed

    Liu, Shasha; Liu, Bingrong

    2018-03-09

    BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide, making it is a serious threat to human health. It is imperative to develop new therapeutics to improve the CRC treatment efficiency. The aim of this study was to investigate the role of NPRL2 in improving sensitivity to CPT-11 in colon cancer cells. MATERIAL AND METHODS NPRL2 overexpression was established by transfecting the recombinant lentivirus-encoding NPRL2 gene into HCT116 colon cancer cells. Cell proliferation was identified using Cell Counting Kit-8 (CCK8) assay. Cell cycle and apoptosis were examined by flow cytometry. An immunofluorescence staining assay was conducted to examine the expression of γ-H2AX. Wound-healing and Transwell assays were utilized to show cell migration and invasion capability. The expression of apoptosis-related proteins (cleaved caspase-3, caspase-9, cleaved PARP, BAX, and Bcl-2), invasion-related proteins (MMP2, MMP9, p-PI3K, and p-AKT), and DNA damage checkpoint pathway proteins (p-ATM, p-Chk2, Cdc25C, Cdc2, and Cyclin B1) were quantified by Western blotting. RESULTS A CCK8 assay revealed that the overexpression of NPRL2 improved the sensitivity of CPT-11 in HCT116 cells (P<0.05). Functionally, NPRL2 overexpression elevated the sensitivity of CPT-11 by preventing colon cancer cell proliferation, cell movement, and invasion, and promoting cell apoptosis and G2/M cell cycle arrest. Mechanistically, NPRL2 overexpression enhanced CPT-11 sensitivity by activating the DNA damage checkpoint pathway. CONCLUSIONS NPRL2 overexpression enhances sensitivity to CPT-11 treatment in colon cancer cells, and it may serve as a molecular therapeutic agent to treat patients with CRC.

  19. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage

    PubMed Central

    Manson, Margaret M.

    2013-01-01

    The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222

  20. PR-Set7 is degraded in a conditional Cul4A transgenic mouse model of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yang; Xu, Zhidong; Mao, Jian -Hua

    Background and objective. Maintenance of genomic integrity is essential to ensure normal organismal development and to prevent diseases such as cancer. PR-Set7 (also known as Set8) is a cell cycle regulated enzyme that catalyses monomethylation of histone 4 at Lys20 (H4K20me1) to promote chromosome condensation and prevent DNA damage. Recent studies show that CRL4CDT2-mediated ubiquitylation of PR-Set7 leads to its degradation during S phase and after DNA damage. This might occur to ensure appropriate changes in chromosome structure during the cell cycle or to preserve genome integrity after DNA damage. Methods. We developed a new model of lung tumor developmentmore » in mice harboring a conditionally expressed allele of Cul4A. We have therefore used a mouse model to demonstrate for the first time that Cul4A is oncogenic in vivo. With this model, staining of PR-Set7 in the preneoplastic and tumor lesions in AdenoCre-induced mouse lungs was performed. Meanwhile we identified higher protein level changes of γ-tubulin and pericentrin by IHC. Results. The level of PR-Set7 down-regulated in the preneoplastic and adenocarcinomous lesions following over-expression of Cul4A. We also identified higher levels of the proteins pericentrin and γ-tubulin in Cul4A mouse lungs induced by AdenoCre. Conclusion. PR-Set7 is a direct target of Cul4A for degradation and involved in the formation of lung tumors in the conditional Cul4A transgenic mouse model.« less

Top