Science.gov

Sample records for cycle fatigue behaviour

  1. High cycle fatigue behaviour of functional spinal units.

    PubMed

    Huber, Gerd; Skrzypiec, Daniel M; Klein, Anke; Püschel, Klaus; Morlock, Michael M

    2010-01-01

    Vibrations have been shown to be an important risk factor for spinal pathologies. The underlying mechanisms are poorly understood and in vivo data scarce and difficult to obtain. Consequently numerical models are used to estimate spinal loading; requiring fatigue strength information, which was obtained in this study for spinal specimens from young and old male donors of working age in vitro. Bone mineral density (BMD) and endplate area were determined using CT scans. Three groups were investigated: young specimens in neutral posture, young in flexed posture, and old in neutral posture. The loading consisted of 300,000 sinusoidal compression cycles of 2 kN, inducing a nucleus pressure peek of approximately 1.4 MPa. No failure of the young specimens in neutral posture was observed, but four specimens from older donors with low BMD failed. The product between endplate area and BMD was shown to be useful to predict fatigue strength for old donors and should therefore be considered with regard to whole body vibration injuries. In flexed posture, two specimens from young donors failed. One failure can be attributed to low BMD following the trend for the old specimens; the other failure could not be explained, leaving the influence of flexion yet unclear.

  2. The Influence of Load Cycle Reconstitution on Fatigue Behaviour.

    DTIC Science & Technology

    1986-08-01

    Industry Australian Airlines. Library Qantas Airways Limited Gas & Fuel Corporation of Vic., Manager Scientific Services SEC of Vic., Herman Research...results provide a basis for implementing the Aircrqft Fatigue Data Analysis System which utilizes strain range-pair counting.0 © COMMONWEALTH OF...practically equivalent (Ref.3)). Second, the Aircraft Fatigue Data Analysis System (AFDAS), conceived by ARL and developed by British Aerospace

  3. Effects of loading condition on very-high-cycle fatigue behaviour and dominant variable analysis

    NASA Astrophysics Data System (ADS)

    Lei, ZhengQiang; Xie, JiJia; Sun, ChengQi; Hong, YouShi

    2014-01-01

    The specimens of a high carbon chromium steel were quenched and tempered at 150°C, 180°C and 300°C. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fatigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sensitivity of inclusion size, stress, and Δ K FGA to the life of VHCF crack initiation.

  4. Fatigue behaviour of composites

    NASA Astrophysics Data System (ADS)

    Hartwig, G.; Hübner, R.; Knaak, S.; Pannkoke, C.

    An important design parameter for cyclically loaded structures (e.g. transport vessels) is the fatigue endurance limit. The cryogenic fatigue behaviour with different types of fibres and matrices has been investigated. The main emphasis it put on the behaviour of fibre dominated properties. It is surprising that the fatigue strength even of unidirectional fibre composites is strongly influenced by the matrix type. This will be discussed for carbon fibre composites with thermoplastic and duroplastic matrices under tensile and shear loading. For crossplies (with non-woven fabrics) the interaction between laminates controls the fatigue behaviour. The interaction depends on the matrix type and is different for tensile and shear loading.

  5. High cycle fatigue and fracture behaviour of a hot isostatically pressed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Qiu, Chunlei; Wu, Xinhua

    2014-01-01

    Powder of a nickel-based superalloy, RR1000, has been hot isostatically pressed (HIPped) at a supersolvus temperature and post-HIP heat treated to produce different microstructures. Microstructures were investigated using a scanning electron microscope together with an energy dispersive X-ray spectrometer and a wave-length dispersive X-ray spectrometer. High cycle four-point bending fatigue and tension-tension fatigue tests have been performed on the fabricated samples. It was found that HIPped and aged samples showed the best four-point bending fatigue limit while HIPped and solution-treated and aged samples had the lowest fatigue limit. The four-point bending fatigue crack initiations all occurred from the sample surfaces either at the sites of inclusion clusters or by cleavage through large grains on the surfaces. The tension-tension fatigue crack initiation occurred mainly due to large hafnia inclusion clusters, with lower fatigue lives for samples where inclusions were closer to the surface. Crack initiation at the compact Al2O3 inclusion cluster led to a much higher fatigue life than found when cracks were initiated by large hafnia inclusion clusters. The tension-tension fatigue limits were shown to decrease with increased testing temperature (from room temperature to 700 °C).

  6. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  7. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  8. Effect of retained austenite on high cycle fatigue behaviour of carburized 14NiCr11 steel

    NASA Astrophysics Data System (ADS)

    Jeddi, D.; Sidhom, H.; Lieurade, H.-P.

    2008-11-01

    Two vacuum carburizing treatments were applied to ductile steel 14NiCr11 to obtain equivalent hardened layers with retained austenite contents of 25% and 41%. The properties of the carburized surfaces were examined and characterized before fatigue tests and during cyclic loading. Transformation of retained austenite into martensite during loading, was evaluated by dispersive X-ray diffraction method. The effects of this transformation on the residual stresses have been measured by X ray diffraction in martensite and in retained austenite structures. It was shown that the cyclic retained austenite transformation caused a redistribution of the compressive residual stresses and an increased surface hardness that stabilized after a small number of cycles. The dependence of fatigue behaviour on surface properties was determined, and a relationship between the stabilized state and the fatigue limit is suggested. A phenomenological approach is proposed to correlate the influence of surface hardening and the stabilized residual stresses on fatigue limit of carburized specimens. The Crossland, Dang Van and Findley-Matake, multiaxial high cycle fatigue criteria were used in this approach and results have shown a good agreement with experimental data.

  9. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  10. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  11. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).

    PubMed

    Krewerth, D; Weidner, A; Biermann, H

    2013-12-01

    The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  13. Fatigue behaviour of young ostrich pericardium.

    PubMed

    Claramunt, Rafael; García Páez, José María; Alvarez, Lourdes; Ros, Antonio; Casado, María Concepción

    2012-08-01

    Young ostrich pericardia (biomaterial under study for manufacturing cardiac valve leaflets), has been subjected to biaxial tension fatigue until breakage. Supraphysiological values of pressure (1 to 6 atm) have been employed to accelerate damage and, therefore, to reduce testing time but at physiological frequency in order to avoid viscoelastic behaviour changes. The lifetime fatigue curves have been obtained and large scatter has been observed in the results but this can be strongly reduced with adequate material selection. The thickness-based selection of samples has proved to be ineffective both in reducing scatter or improving strength, but the energy-based selection aided with statistical decision techniques has been shown to be very successful. The energy loss (energy under the hysteresis loop of each load and unload cycle) appears to be a very accurate predictor of the expected fatigue lifetime of the tissue. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.

    PubMed

    Gardner, A Scott; Martin, David T; Jenkins, David G; Dyer, Iain; Van Eiden, Jan; Barras, Martin; Martin, James C

    2009-04-01

    Previous investigators have quantified fatigue during short maximal cycling trials ( approximately 30 s) by calculating a fatigue index. Other investigators have reported a curvilinear power-pedaling rate relationship during short fatigue-free maximal cycling trials (<6 s). During maximal trials, pedaling rates may change with fatigue. Quantification of fatigue using fatigue index is therefore complicated by the power-pedaling rate relationship. The purpose of this study was to quantify fatigue while accounting for the effects of pedaling rate on power. Power and pedaling rate were recorded during Union Cycliste Internationale sanctioned 200-m time trials by eight male (height = 181.5 +/- 4.3 cm, mass = 87.0 +/- 8.0 kg) world-class sprint cyclists with SRM power meters and fixed-gear track bicycles. Data from the initial portion of maximal acceleration were used to establish maximal power-pedaling rate relationships. Fatigue was quantified three ways: 1) traditional fatigue index, 2) fatigue index modified to account for the power-pedaling rate relationship (net fatigue index), and 3) work deficit, the difference between actual work done and work that might have been accomplished without fatigue. Fatigue index (55.4% +/- 6.4%) was significantly greater than net fatigue index (41.0% +/- 7.9%, P < 0.001), indicating that the power-pedaling rate relationship accounted for 14.3% +/- 7% of the traditional fatigue index value. Work deficit (23.3% +/- 6%) was significantly less than either measure of fatigue (P < 0.001). Net fatigue index and work deficit account for the power-pedaling rate relation and therefore more precisely quantify fatigue during variable velocity cycling. These measures can be used to compare fatigue during different fatigue protocols, including world-class sprint cycling competition. Precise quantification of fatigue during elite cycling competition may improve evaluation of training status, gear ratio selection, and fatigue resistance.

  15. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  16. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  17. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  18. A comparison of high cycle fatigue methodologies

    NASA Technical Reports Server (NTRS)

    Herda, D. A.

    1992-01-01

    To evaluate alternate turbopump development (ATD) high cycle fatigue (HCF) methodology, a comparison was made with the space shuttle main engine (SSME) methodology. This report documents the comparison and evaluates ATD's HCF system.

  19. Behaviour of several fatigue prone bridge details

    NASA Astrophysics Data System (ADS)

    Kubiš, Petr; Ryjáček, Pavel

    2017-09-01

    Three fatigue welded bridge joints analysed in this work are the alternative details of the bottom flange connection. This construction detail is mainly used for the erection connection for steel and composite bridges. If applied in the place, where live load is significant, the fatigue becomes the main design criterion. The detail category is thus very important factor. The aim of this paper is to analyse the possibilities of the improving the behaviour of this detail, by various methods. First solution is to modify the shape of the cope hole to the elliptic shape. Second option is to use the “Olemutz” fully welded detail. This detail is often used in bridge designing despite there is no exact information about the fatigue category, and doubts of the performance exists. “Olemutz” is a long web plate slit that is filled by the double bevel weld after the execution of the bottom flange weld. The last detail is the elliptic cope hole filled by the plate-cap welded into an empty hole. The geometry is the same, as in the first case. The conclusion of the numerical analysis and the pilot fatigue experiments is discussed with several practical recommendations for designing.

  20. Different aspects of low-cycle fatigue

    NASA Technical Reports Server (NTRS)

    Bathias, C.

    1978-01-01

    The experimental and theoretical knowledge in this field is presented. The different relations which correlate the number of cyles to rupture with strain or strain-energy are given. The application of low-cycle fatigue concepts to the crack initiation and crack propagation are briefly studied.

  1. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  2. "Abnormal" illness behaviour in chronic fatigue syndrome and multiple sclerosis.

    PubMed Central

    Trigwell, P.; Hatcher, S.; Johnson, M.; Stanley, P.; House, A.

    1995-01-01

    OBJECTIVE--To investigate the presence of abnormal illness behaviour in patients with a diagnosis of chronic fatigue syndrome. DESIGN--A cross sectional descriptive study using the illness behaviour questionnaire to compare illness behaviour scores and illness behaviour profiles of patients with chronic fatigue syndrome and patients with multiple sclerosis. SETTING--A multidisciplinary fatigue clinic and a teaching hospital neurology outpatient clinic. SUBJECTS--98 patients satisfying the Oxford criteria for chronic fatigue syndrome and 78 patients with a diagnosis of multiple sclerosis. MAIN OUTCOME MEASURE--Responses to the 62 item illness behaviour questionnaire. RESULTS--90 (92%) patients in the chronic fatigue syndrome group and 70 (90%) in the multiple sclerosis group completed the illness behaviour questionnaire. Both groups had significantly high scores on the general hypochondriasis and disease conviction subscales and significantly low scores on the psychological versus somatic concern subscale, as measured in relation to normative data. There were, however, no significant differences in the subscale scores between the two groups and the two groups had identical illness behaviour profiles. CONCLUSION--Scores on the illness behaviour questionnaire cannot be taken as evidence that chronic fatigue syndrome is a variety of abnormal illness behaviour, because the same profile occurs in multiple sclerosis. Neither can they be taken as evidence that chronic fatigue and multiple sclerosis share an aetiology. More needs to be known about the origins of illness beliefs in chronic fatigue syndrome, especially as they are important in determining outcome. PMID:7613314

  3. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    PubMed

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management.

  4. Fatigue Behaviour of Composite T-Joints in Wind Turbine Blade Applications

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Soutis, C.

    2016-10-01

    This paper presents a study of fatigue performance of composite T-joints used in wind-turbine blades. A T-joint with various fibre reinforcement architectures were selected to investigate its fatigue behaviour. The 3D angle interlock T-joint was found to have the best performance in both static and fatigue loading. Increasing the static properties increases fatigue performance while the increasing rate in life performance is changed with the number of fatigue cycles. A finite element (FE) model was developed that can determine the stress distribution and the initiation and propagation of a delamination crack. The location for through-thickness reinforcement is very important to improve fatigue performance of composite T-joints. Fatigue performance is significantly improved for the web with through-thickness reinforcement while fatigue performance is decreased if the through-thickness reinforcement is applied to the flange-skin regions. The interlaminar veil significantly increases the ultimate strength under static load but fatigue performance at high stress cycles is increased but not significantly.

  5. Fatigue Behaviour of Composite T-Joints in Wind Turbine Blade Applications

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Soutis, C.

    2017-04-01

    This paper presents a study of fatigue performance of composite T-joints used in wind-turbine blades. A T-joint with various fibre reinforcement architectures were selected to investigate its fatigue behaviour. The 3D angle interlock T-joint was found to have the best performance in both static and fatigue loading. Increasing the static properties increases fatigue performance while the increasing rate in life performance is changed with the number of fatigue cycles. A finite element (FE) model was developed that can determine the stress distribution and the initiation and propagation of a delamination crack. The location for through-thickness reinforcement is very important to improve fatigue performance of composite T-joints. Fatigue performance is significantly improved for the web with through-thickness reinforcement while fatigue performance is decreased if the through-thickness reinforcement is applied to the flange-skin regions. The interlaminar veil significantly increases the ultimate strength under static load but fatigue performance at high stress cycles is increased but not significantly.

  6. Oxidation and low cycle fatigue life prediction

    NASA Technical Reports Server (NTRS)

    Oshida, Y.; Liu, H. W.

    1984-01-01

    When a metallic material is exposed to a high temperature in an ambient atmosphere, oxidation takes place on the metallic surface. The formed oxides (both surface and grain boundary oxides) are mechanically brittle so that if the stress is high enough the oxides will be cracked. The grain boundary oxide formation in TAZ-8A nickel-base superalloy was studied. The effect of oxide crack nucleus on low cycle fatigue life will be analyzed. The TAZ-8A was subjected to high temperature oxidation tests in air under the stress-free condition. The oxidation temperatures were 600, 800, and 1000 C. The oxidation time varies from 10 to 1000 hours.

  7. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.

    PubMed

    Schönbauer, Bernd M; Stanzl-Tschegg, Stefanie E

    2013-12-01

    In the present work, the influence of different environments on the fatigue crack growth behaviour of 12% Cr steam turbine blade steel is investigated. Fatigue crack growth rates (FCGRs) in the near threshold regime are measured with ultrasonic fatigue testing technique. Fatigue tests are performed in vacuum, air and different aqueous environments with defined chloride and oxygen content. Furthermore, the influence of different stress ratios is investigated. It is found that crack propagation is not necessarily enhanced with increasing corrosiveness. In the aqueous environments, the FCGRs below 10⁻⁸ m/cycle are lower than in air. The threshold stress intensity factor ranges are higher or equal. Observation of the fracture surfaces shows oxide formation and partly intergranular fracture for specimens tested in aqueous environments. Crack closure effects seem to be responsible for this unexpected behaviour.

  8. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    NASA Astrophysics Data System (ADS)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  9. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  10. Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shioda, Ryutaro; Kariya, Yoshiharu; Mizumura, Noritsuka; Sasaki, Koji

    2017-02-01

    The low-cycle fatigue life and fatigue crack propagation behavior of sintered silver nanoparticles were investigated using miniature specimens sintered at two different temperatures. The fatigue crack initiation life and fatigue crack propagation rate of sintered Ag nanoparticles were extremely sensitive to changes in the range of inelastic energy density and the cyclic J integral, exhibiting brittle characteristics, in contrast to tin-based lead-free solder alloys. With increasing sintering temperature, the fatigue crack propagation rate decreased. On the other hand, the effect of sintering temperature on the fatigue crack initiation life differed depending on the use of either a smooth specimen (low-cycle fatigue test) or notched specimen (fatigue crack propagation test). For the notched specimens, the probability of grain boundaries around the notch decreased due to increased sintering temperature. Therefore, the fatigue crack initiation life was increased with an increase in sintering temperature in the fatigue crack propagation test. In the smooth specimen, however, the fatigue life decreased with an increase in sintering temperature, as the elastic modulus of the specimen increased with increasing sintering temperature. In the low-cycle fatigue test, the specimen sintered with high internal stress started to develop crack initiation early, causing a decrease in the crack initiation life.

  11. Modeling and experimental characterization on fatigue behaviour of 1-3 piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Jayendiran, R.; Arockiarajan, A.

    2015-04-01

    1-3 piezocomposites are very attractive materials in underwater and biomedical applications. These materials may be subjected to high electric field (2kV/mm) under continuous operation leading to deterioration in the output parameters such as remnant, saturation polarization and strain. Hence in this work, an experimental study is carried out to understand the fatigue behavior of 1-3 piezocomposites for various fiber volume fraction subjected to cyclic electric field (2kV/mm, 50Hz) up to 106 cycles. A uni-axial micro-mechanical model is developed to predict the fatigue behaviour of 1-3 piezocomposite. The novelty of this model is, the remnant polarization and strain are chosen as internal variables which is also dependent on the damage.The simulated results are compared with the experimental observations, it is observed that the proposed micro-mechanical model is able to predict the material degradation with increase in number of cycles of operation. A parametric study is also conducted for various fiber volume fraction of 1-3 piezocomposite as function of fatigue cycle it shows that the amplitude of dielectric hysteresis and butterfly loop decreases with increase in the number of cycles. The fatigue behavior has a substantial effect in the performance parameters such as coercive field, remnant polarization and the asymmetric strain behavior of 1-3 piezocomposite. This fatigue study explores the utilities of 1-3 piezocomposites in transducer applications by providing insight into the device design.

  12. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Giordana, M. F.; Alvarez-Armas, I.; Armas, A.

    2012-05-01

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 °C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 °C. The evolution of the flow stress during cycling was studied by analyzing the so-called "back" and "friction" stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  13. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  14. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  15. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  16. Low cycle fatigue behavior of Ti-Mn alloys: Fatigue life

    NASA Astrophysics Data System (ADS)

    Saleh, Y.; Margolin, H.

    1982-07-01

    The effect of morphology, particle size, β grain size and volume fraction of β, from 0.025 to 1.0, on the low cycle fatigue life of α -β Ti-Mn alloys, have been studied under total strain control. In general, Widmanstätten plus grain boundary (W+GB) α structures show shorter fatigue lives than equiaxed (E) α structures, and this has been ascribed to the formation of much larger surface cracks and ease of transfer of slip from α to β. For Eα structures, fatigue life increases with decreasing α particle size and when the alloy is single phase β fatigue life increases with decreasing grain size. At high total strains the nearly all α alloy had the longest fatigue life and at lower strains the β alloy, with the higher yield strength, had the longest fatigue life. Fatigue life was correlated with strain hardening. The nearly all α alloy which had the highest strain hardening, over the plastic strains encountered, had the highest fatigue life, while the β alloy, with the lowest strain hardening, had the lowest fatigue life. For a portion of the fatigue life curves, it was found that as the average Baushinger strain (ABS) increased, the Coffin-Manson exponent c decreased. The results are discussed.

  17. Electromyographic adjustments during continuous and intermittent incremental fatiguing cycling.

    PubMed

    Martinez-Valdes, E; Guzman-Venegas, R A; Silvestre, R A; Macdonald, J H; Falla, D; Araneda, O F; Haichelis, D

    2016-11-01

    We studied the sensitivity of electromyographic (EMG) variables to load and muscle fatigue during continuous and intermittent incremental cycling. Fifteen men attended three laboratory sessions. Visit 1: lactate threshold, peak power output, and VO2max . Visits 2 and 3: Continuous (more fatiguing) and intermittent (less fatiguing) incremental cycling protocols [20%, 40%, 60%, 80% and 100% of peak power output (PPO)]. During both protocols, multichannel EMG signals were recorded from vastus lateralis: muscle fiber conduction velocity (MFCV), instantaneous mean frequency (iMNF), and absolute and normalized root mean square (RMS) were analyzed. MFCV differed between protocols (P < 0.001), and only increased consistently with power output during intermittent cycling. RMS parameters were similar between protocols, and increased linearly with power output. However, only normalized RMS was higher during the more fatiguing 100% PPO stage of the continuous protocol [continuous-intermittent mean difference (95% CI): 45.1 (8.5% to 81.7%)]. On the contrary, iMNF was insensitive to load changes and muscle fatigue (P = 0.14). Despite similar power outputs, continuous and intermittent cycling influenced MFCV and normalized RMS differently. Only normalized RMS was sensitive to both increases in power output (in both protocols) and muscle fatigue, and thus is the most suitable EMG parameter to monitor changes in muscle activation during cycling.

  18. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  19. Fracture and Fatigue Behaviour of Aluminium Matrix Composite Automotive Pistons

    NASA Astrophysics Data System (ADS)

    García-Romero, Ane M.; Egizabal, Pedro; Irisarri, Angel M.

    2010-02-01

    The fracture and fatigue behaviour of prototype automotive pistons produced in an aluminium alloy matrix composite in industrial conditions has been studied. Fracture toughness increased when the testing temperature rose from 20° to 75°C and kept near constant up to 250°C, when a significantly lower value was recorded. A change in the failure operating mechanism, which can explain this trend, was observed by analysing the fracture surfaces in the scanning electron microscope. Room temperature fatigue tests performed with R = 0.1 stress ratio led to an average value of the Paris law exponent higher than those reported in aluminium alloys but low for an industrially produced brittle composite. A higher exponent and a much larger scattering were observed in those fatigue tests carried out under R = 0.5 stress ratio.

  20. On high-cycle fatigue of 316L stents.

    PubMed

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime.

  1. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  2. High cycle fatigue in the transmission electron microscope

    SciTech Connect

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

  3. High Cycle Fatigue in the Transmission Electron Microscope.

    PubMed

    Bufford, Daniel C; Stauffer, Douglas; Mook, William M; Syed Asif, S A; Boyce, Brad L; Hattar, Khalid

    2016-08-10

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

  4. High cycle fatigue in the transmission electron microscope

    SciTech Connect

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.

  5. Evaluation of Giga-cycle Fatigue Properties of Austenitic Stainless Steels Using Ultrasonic Fatigue Test

    NASA Astrophysics Data System (ADS)

    Takahashi, Kyouhei; Ogawa, Takeshi

    Ultrasonic fatigue tests have been performed in austenitic stainless steel, SUS316NG, in order to investigate giga-cycle fatigue strength of pre-strained materials, i.e. 5, 10 and 20% tensile pre-strains and -20% compressive pre-strain. The pre-strains were applied before specimen machining. The austenitic stainless steels are known to exhibit remarkable self-heating during the fatigue experiment. Therefore, heat radiation method was established by setting fatigue specimens in a low temperature chamber at about -100°C. The self-heating was controlled by intermittent loading condition, which enabled us to maintain the test section of the specimens at about room temperature. The results revealed that the fatigue strength increased with increasing pre-strain levels. Fish-eye fracture was observed for -20% pre-strained specimen fractured at 4.11×107 cycles, while the other specimens exhibited ordinary fatigue fracture surface originated from stage I facet on the specimen surface. The increase in fatigue limit was predicted by Vickers hardness, HV, which depended on the size of indented region. The prediction was successful using HV values obtained by the size of the indented region similar to those of the stage I facets.

  6. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  7. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12 m·cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  8. High Cycle Fatigue Behavior of Shot-Peened Steels

    NASA Astrophysics Data System (ADS)

    Mirzazadeh, M. M.; Plumtree, A.

    2012-08-01

    The uniaxial fully reversed (R = -1) long life fatigue behavior of four shot-peened engineering steels with approximately the same hardness was investigated. Shot-peening, air-cooled forged AISI 1141 and crackable AISI 1070 steels had little effect on their fatigue limits (+2.5 and -2.0 pct, respectively). In the case of a powder forged 0.5 pct C steel, an increase in the fatigue limit of 10.4 pct was observed, albeit with a large standard deviation. Shot-peening quench and tempered AISI 1151 steel decreased its fatigue limit 12.0 pct, as a result of cyclic softening. In general, the beneficial effects of shot-peening these smooth specimens were relatively small. Neither cyclic softening nor hardening occurred in the non-shot-peened steels cycled under the same conditions.

  9. Fatigue proofing: The role of protective behaviours in mediating fatigue-related risk in a defence aviation environment.

    PubMed

    Dawson, Drew; Cleggett, Courtney; Thompson, Kirrilly; Thomas, Matthew J W

    2017-02-01

    In the military or emergency services, operational requirements and/or community expectations often preclude formal prescriptive working time arrangements as a practical means of reducing fatigue-related risk. In these environments, workers sometimes employ adaptive or protective behaviours informally to reduce the risk (i.e. likelihood or consequence) associated with a fatigue-related error. These informal behaviours enable employees to reduce risk while continuing to work while fatigued. In this study, we documented the use of informal protective behaviours in a group of defence aviation personnel including flight crews. Semi-structured interviews were conducted to determine whether and which protective behaviours were used to mitigate fatigue-related error. The 18 participants were from aviation-specific trades and included aircrew (pilots and air-crewman) and aviation maintenance personnel (aeronautical engineers and maintenance personnel). Participants identified 147 ways in which they and/or others act to reduce the likelihood or consequence of a fatigue-related error. These formed seven categories of fatigue-reduction strategies. The two most novel categories are discussed in this paper: task-related and behaviour-based strategies. Broadly speaking, these results indicate that fatigued military flight and maintenance crews use protective 'fatigue-proofing' behaviours to reduce the likelihood and/or consequence of fatigue-related error and were aware of the potential benefits. It is also important to note that these behaviours are not typically part of the formal safety management system. Rather, they have evolved spontaneously as part of the culture around protecting team performance under adverse operating conditions. When compared with previous similar studies, aviation personnel were more readily able to understand the idea of fatigue proofing than those from a fire-fighting background. These differences were thought to reflect different cultural

  10. PO2 cycling reduces diaphragm fatigue by attenuating ROS formation.

    PubMed

    Zuo, Li; Diaz, Philip T; Chien, Michael T; Roberts, William J; Kishek, Juliana; Best, Thomas M; Wagner, Peter D

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses.

  11. Damage accumulation, fatigue and creep behaviour of vacuum mixed bone cement.

    PubMed

    Jeffers, Jonathan R T; Browne, Martin; Taylor, Mark

    2005-09-01

    The behaviour of bone cement under fatigue loading is of interest to assess the long-term in vivo performance. In this study, uniaxial tensile fatigue tests were performed on CMW-1 bone cement. Acoustic emission sensors and an extensometer were attached to monitor damage accumulation and creep deformation respectively. The S-N data exhibited the scatter synonymous with bone cement fatigue, with large pores generally responsible for premature failure; at 20 MPa specimens failed between 2 x 10(3) and 2 x 10(4) load cycles, while at 7 MPa specimens failed from 3 x 10(5) load cycles but others were still intact after 3 x 10(6) load cycles. Acoustic emission data revealed a non-linear accumulation of damage with respect to time, with increasing non-linearity at higher stress levels. The damage accumulation process was not continuous, but occurred in bursts separated by periods of inactivity. Damage in the specimen was located by acoustic emissions, and allowed the failure site to be predicted. Acoustic emission data were also used to predict when failure was not imminent. When this was the case at 3 million load cycles, the tests were terminated. Creep strain was plotted against the number of load cycles and a linear relationship was found when a double logarithmic scale was employed. This is the first time a brand of cement has been characterised in such detail, i.e. fatigue life, creep and damage accumulation. Results are presented in a manner that allows direct comparison with published data for other cements. The data can also be used to characterise CMW-1 in computational simulations of the damage accumulation process. Further evidence is provided for the condition-monitoring capabilities of the acoustic emission technique in orthopaedic applications.

  12. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  13. The process of cognitive behaviour therapy for chronic fatigue syndrome: which changes in perpetuating cognitions and behaviour are related to a reduction in fatigue?

    PubMed

    Heins, Marianne J; Knoop, Hans; Burk, William J; Bleijenberg, Gijs

    2013-09-01

    Cognitive behaviour therapy (CBT) can significantly reduce fatigue in chronic fatigue syndrome (CFS), but little is known about the process of change taking place during CBT. Based on a recent treatment model (Wiborg et al. J Psych Res 2012), we examined how (changes in) cognitions and behaviour are related to the decrease in fatigue. We included 183 patients meeting the US Centers for Disease Control criteria for CFS, aged 18 to 65 years, starting CBT. We measured fatigue and possible process variables before treatment; after 6, 12 and 18 weeks; and after treatment. Possible process variables were sense of control over fatigue, focusing on symptoms, self-reported physical functioning, perceived physical activity and objective (actigraphic) physical activity. We built multiple regression models, explaining levels of fatigue during therapy by (changes in) proposed process variables. We observed large individual variation in the patterns of change in fatigue and process variables during CBT for CFS. Increases in the sense of control over fatigue, perceived activity and self-reported physical functioning, and decreases in focusing on symptoms explained 20 to 46% of the variance in fatigue. An increase in objective activity was not a process variable. A change in cognitive factors seems to be related to the decrease in fatigue during CBT for CFS. The pattern of change varies considerably between patients, but changes in process variables and fatigue occur mostly in the same period. © 2013.

  14. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    Chen, Z. and Wang, Z. The effect of shot peening on rolling contact fatigue behaviour and its crack initiation and propagation in carburized steel ...in martensitic steel . The need to characterize extreme value correlations of microstructure attributes coupled to the local driving force (i.e...in the case of subsurface crack formation at primary inclusions in martensitic steel . The need to characterize extreme value correlations of

  15. Fatigue loads spectra derivation for the Space Shuttle: Second cycle

    NASA Technical Reports Server (NTRS)

    Ortasse, Raphael

    1994-01-01

    Some of the environments and loads experienced by the Space Shuttle or future reusable space vehicles are unique, while others are similar to those encountered by commercial and/or military aircraft. Prior to the Space Transportation System (STS) flights, fatigue loads spectra were generated for the Space Shuttle based on anticipated environments and assumptions that were shown not to be applicable to the actual flight environments the vehicle experienced. This resulted in the need to generate a new cycle of fatigue loads spectra, which was based on measured flight data as well as mission profiles, reflecting the various types of service and operations the vehicle and payloads experienced.

  16. Fatigue loads spectra derivation for the Space Shuttle: Second cycle

    NASA Astrophysics Data System (ADS)

    Ortasse, Raphael

    1994-09-01

    Some of the environments and loads experienced by the Space Shuttle or future reusable space vehicles are unique, while others are similar to those encountered by commercial and/or military aircraft. Prior to the Space Transportation System (STS) flights, fatigue loads spectra were generated for the Space Shuttle based on anticipated environments and assumptions that were shown not to be applicable to the actual flight environments the vehicle experienced. This resulted in the need to generate a new cycle of fatigue loads spectra, which was based on measured flight data as well as mission profiles, reflecting the various types of service and operations the vehicle and payloads experienced.

  17. Fatigue behaviour analysis for the durability prequalification of strengthening mortars

    NASA Astrophysics Data System (ADS)

    Bocca, P.; Grazzini, A.; Masera, D.

    2011-07-01

    An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).

  18. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  19. A comparison of patients with Q fever fatigue syndrome and patients with chronic fatigue syndrome with a focus on inflammatory markers and possible fatigue perpetuating cognitions and behaviour.

    PubMed

    Keijmel, Stephan P; Saxe, Johanna; van der Meer, Jos W M; Nikolaus, Stephanie; Netea, Mihai G; Bleijenberg, Gijs; Bleeker-Rovers, Chantal P; Knoop, Hans

    2015-10-01

    Comparison of Q fever fatigue syndrome (QFS) and chronic fatigue syndrome (CFS) patients, with a focus on markers of inflammation and fatigue-related cognitive-behavioural variables. Data from two independent prospective studies on QFS (n=117) and CFS (n=173), respectively, were pooled and analyzed. QFS patients were less often female, had a higher BMI, and had less often received treatment for depression before the onset of symptoms. After controlling for symptom duration and correcting for differences in diagnostic criteria for QFS and CFS with respect to the level of impairment and the presence of additional symptoms, differences in the proportion of females and BMI remained significant. After correction, QFS patients were also significantly older. In all analyses QFS patients were as fatigued and distressed as CFS patients, but reported less additional symptoms. QFS patients had stronger somatic attributions, and higher levels of physical activity. No differences were found with regard to inflammatory markers and in other fatigue-related cognitive-behavioural variables. The relationship between cognitive-behavioural variables and fatigue, previously established in CFS, could not be confirmed in QFS patients with the exception of the negative relationship between physical activity and fatigue. Differences and similarities between QFS and CFS patients were found. Although the relationship between perpetuating factors and fatigue previously established in CFS could not be confirmed in QFS patients, the considerable overlap in fatigue-related cognitive-behavioural variables and the relationship found between physical activity and fatigue may suggest that behavioural interventions could reduce fatigue severity in QFS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension tension cycling

    NASA Astrophysics Data System (ADS)

    Shindo, Yasuhide; Takano, Satoru; Horiguchi, Katsumi; Sato, Takashi

    2006-11-01

    This paper focuses on understanding the tension-tension fatigue behavior of woven glass fiber reinforced polymer laminates at cryogenic temperatures. Tension-tension fatigue tests at frequencies of 4 and 10 Hz with a stress ratio of 0.1 were conducted at room temperature, 77 and 4 K. The fatigue stress versus cycles to failure ( S- N) relationships and fatigue limits for 10 6 cycles were obtained. Fractured specimens tested under fatigue tests were also examined with optical microscope.

  1. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  2. Low cycle fatigue of a cast nickel alloy in hydrogen

    NASA Technical Reports Server (NTRS)

    Cowles, B. A.; Warren, J. R.

    1987-01-01

    This paper summarizes the experimental system used for obtaining low cycle fatigue data on structural alloys in a high pressure gaseous hydrogen environment at test temperatures from ambient to 870 C. In addition, LCF results for a cast nickel based alloy are presented illustrating the potentially severe effects of a hydrogen environment on the cyclic life of a material, and consequently, the importance of performing such tests.

  3. Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis.

    PubMed

    Kim, K; Forest, B; Geringer, J

    2011-12-01

    This paper describes a two-dimensional (2D) finite element simulation for fracture and fatigue behaviours of pure alumina microstructures such as those found at hip prostheses. Finite element models are developed using actual Al2O3 microstructures and a bilinear cohesive zone law. Simulation conditions are similar to those found at a slip zone in a dry contact between a femoral head and an acetabular cup of hip prosthesis. Contact stresses are imposed to generate cracks in the models. Magnitudes of imposed stresses are higher than those found at the microscopic scale. Effects of microstructures and contact stresses are investigated in terms of crack formation. In addition, fatigue behaviour of the microstructure is determined by performing simulations under cyclic loading conditions. It is shown that crack density observed in a microstructure increases with increasing magnitude of applied contact stress. Moreover, crack density increases linearly with respect to the number of fatigue cycles within a given contact stress range. Meanwhile, as applied contact stress increases, number of cycles to failure decreases gradually. Finally, this proposed finite element simulation offers an effective method for identifying fracture and fatigue behaviours of a microstructure provided that microstructure images are available.

  4. A history dependent damage model for low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Leis, B. N.

    1984-01-01

    This paper examines damage assessment and accumulation. A nonlinear damage postulate is advanced that embodies the dependence of the damage rate on cycle-dependent changes in the bulk microstructure and the surface topography. The postulate is analytically formulated in terms of the deformation history dependence of the bulk behavior. This formulation is used in conjunction with baseline data in accordance with the damage postulate to predict the low cycle fatigue resistance of OFE copper. Close comparison of the predictions with observed behavior suggests the postulate offers a viable basis for nonlinear damage analysis.

  5. A history dependent damage model for low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Leis, B. N.

    1984-01-01

    This paper examines damage assessment and accumulation. A nonlinear damage postulate is advanced that embodies the dependence of the damage rate on cycle-dependent changes in the bulk microstructure and the surface topography. The postulate is analytically formulated in terms of the deformation history dependence of the bulk behavior. This formulation is used in conjunction with baseline data in accordance with the damage postulate to predict the low cycle fatigue resistance of OFE copper. Close comparison of the predictions with observed behavior suggests the postulate offers a viable basis for nonlinear damage analysis.

  6. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  7. Low cycle fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Sudhakar Rao, G.; Chakravartty, J. K.; Nudurupati, Saibaba; Mahobia, G. S.; Chattopadhyay, Kausik; Santhi Srinivas, N. C.; Singh, Vakil

    2013-10-01

    Fuel cladding and pressure tubes of Zircaloy-2 in pressurized light and heavy water nuclear reactors experience plastic strain cycles due to power fluctuations in the reactor, such strain cycles cause low cycle fatigue (LCF) and could be life limiting factor for them. Factors like strain rate, strain amplitude and temperature are known to have marked influence on LCF behavior. The effect of strain rate from 10-2 to 10-4 s-1 on LCF behavior of Zircaloy-2 was studied, at different strain amplitudes between ±0.50% and ±1.25% at room temperature. Fatigue life was decreased with lowering of strain rate from 10-2 to 10-4 s-1 at all the strain amplitudes studied. While there was cyclic softening at lower strain amplitudes (Δεt/2 ⩽ ±0.60%) cyclic hardening was exhibited at higher strain amplitudes (Δεt/2 ⩾ ±1.00%) at all the strain rates. Further, there was secondary cyclic hardening during the later stage of cycling at all the strain amplitudes and the strain rates. Cyclic stress-strain hysteresis loops at the lowest strain rate of 10-4 s-1 were found to be heavily serrated, resulting from dynamic strain aging (DSA). There was significant effect of strain rate on dislocation substructure. The results are discussed in terms of high concentration of point defects generated during cyclic straining and their role in enhancing interaction between solutes and dislocations.

  8. High-Cycle Fatigue Behavior of a Nicalon(tm)/Si-N-C Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kalluri, Sreeramesh; Kantzos, Peter T.

    1999-01-01

    Elevated temperature, high-cycle fatigue behavior of a woven SiC/Si-N-C ceramic matrix composite system was investigated at 910 C. High frequency (100 Hz) fatigue tests were conducted in air on specimens machined from the composite system, A power-law type fatigue life relationship adequately characterized the high-cycle fatigue data generated in the study. Post failure fractographic and metallographic studies were performed to document the fatigue crack initiation regions and damage mechanisms in the composite system. Fatigue cracks initiated primarily from the corners of the specimens and propagated along the 90 degree fiber tows.

  9. The modelling cycle for collective animal behaviour.

    PubMed

    Sumpter, David J T; Mann, Richard P; Perna, Andrea

    2012-12-06

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches-theory-driven, data-driven and model selection-to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together.

  10. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  11. Determination of Fatigue Damage in Corrosion-Fatigued Al-2024-T4 and Cycled Ti-6Al-4V Alloys.

    DTIC Science & Technology

    1982-05-01

    specimen (_2 0). To assess the degree of microplasticity induced by corrosion fatigue, it is worth noting that when a monotonic stress of 350 MPa was applied...the morphology of crack forma- tion in corrosion fatigue. Because the maximum stress applied was 276 MPa at this frequency the strain rate of the...process. 49 I 4. In low cycle corrosion fatigue (LCCF), when the largest percentage of life was taken up with crack propagation, the maximum applied stress

  12. Low Cycle Fatigue Behavior and Life Prediction of a Cast Cobalt-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Yang, Ho-Young; Kim, Jae-Hoon; Yoo, Keun-Bong

    Co-base superalloys have been applied in the stationary components of gas turbine owing to their excellent high temperature properties. Low cycle fatigue data on ECY-768 reported in a companion paper were used to evaluate fatigue life prediction models. In this study, low cycle fatigue tests are performed as the variables of total strain range and temperatures. The relations between plastic and total strain energy densities and number of cycles to failure are examined in order to predict the low cycle fatigue life of Cobalt-based super alloy at different temperatures. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

  13. Low-cycle fatigue of steel under various constraints

    NASA Astrophysics Data System (ADS)

    Rosien, Fritz Joachim

    In order to trigger the root causes of the fracture behavior of welded Steel Moment Resisting Frames (SMRFs) subjected to earthquake loading, the general influence of constraint effects and microstructural changes have been investigated on a small scale in fully reversed low-cycle fatigue loading. Regions of constraint with local stress-raisers have been places of crack initiation in recent earthquakes (Northridge as well as Hyokogen-Nanbu). SEM fractographs of the fracture surfaces have been taken to support and explain the general test results. The most important and remarkable result is, that toughness in general has almost no influence on the cyclic performance of steel in constraint. This applies to low and high stress levels as well as low and high constraint, covering the whole range of possible scenarios of low-cycle and even towards high-cycle fatigue. Performance enhancing factors in---mostly crack initiation controlled---cyclic resistance, however, are high yield strength and high constraint. Both reduce the corresponding local strains at the notch tip, which finally cause crack initiation---unless high implied nominal stresses cause an early ductile crack initiation, resulting in poor cyclic resistance regardless of material properties and amount of constraint. While high toughness is still important to enhance the fracture strength in order to accommodate the maximum imposed stresses/strains in earthquake loading, high yield strength plays the key role in the general cyclic performance below this critical value. This in general applies to different structural steels as well as expectable microstructural changes in the parent metal due to welding procedures in SMRFs. The material properties necessary for sufficient fracture resistant design (fracture strength, toughness) and fatigue design (cyclic performance, yield strength) are very contrary in constraint for this specific type of connection and consequently raise doubt about the ability of welded

  14. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  15. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  16. Dental Implants Fatigue as a Possible Failure of Implantologic Treatment: The Importance of Randomness in Fatigue Behaviour

    PubMed Central

    Prados-Privado, María; Prados-Frutos, Juan Carlos; Manchón, Ángel; Rojo, Rosa; Felice, Pietro; Bea, José Antonio

    2015-01-01

    Objective. To show how random variables concern fatigue behaviour by a probabilistic finite element method. Methods. Uncertainties on material properties due to the existence of defects that cause material elastic constant are not the same in the whole dental implant the dimensions of the structural element and load history have a decisive influence on the fatigue process and therefore on the life of a dental implant. In order to measure these uncertainties, we used a method based on Markoff chains, Bogdanoff and Kozin cumulative damage model, and probabilistic finite elements method. Results. The results have been obtained by conventional and probabilistic methods. Mathematical models obtained the same result regarding fatigue life; however, the probabilistic model obtained a greater mean life but with more information because of the cumulative probability function. Conclusions. The present paper introduces an improved procedure to study fatigue behaviour in order to know statistics of the fatigue life (mean and variance) and its probability of failure (fatigue life versus probability of failure). PMID:26583137

  17. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt.% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF/HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damages at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, were observed especially for the combined LCF/HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  18. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1998-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal low cycle fatigue (LCF) and high cycle fatigue (HCF) during engine operation. In this paper, the mechanisms of fatigue crack initiation and propagation in a ZrO2-8wt% Y2O3 thermal barrier coating, under simulated engine thermal LCF and HCF conditions, are investigated using a high power CO2 laser. Experiments showed that the combined LCF-HCF tests induced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. Lateral crack branching and the ceramic/bond coat interface delaminations were also facilitated by HCF thermal loads, even in the absence of severe interfacial oxidation. Fatigue damage at crack wake surfaces, due to such phenomena as asperity/debris contact induced cracking and splat pull-out bending during cycling, was observed especially for the combined LCF-HCF tests. It is found that the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. The failure associated with HCF process, however, is mainly associated with a surface wedging mechanism. The interaction between the LCF, HCF and ceramic coating creep, and the relative importance of LCF and HCF in crack propagation are also discussed based on the experimental evidence.

  19. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  20. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  1. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    NASA Astrophysics Data System (ADS)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  2. Cognitive behaviour therapy for adults with chronic fatigue syndrome.

    PubMed

    Price, J R; Couper, J

    2000-01-01

    1. To systematically review all randomised controlled trials of cognitive-behaviour therapy (CBT) for adults with chronic fatigue syndrome (CFS); 2. To test the hypothesis that CBT is more effective than orthodox medical management or other interventions in adults with CFS. 1. Electronic searching of bibliographic databases, including Medline, PsycLIT, Biological Abstracts, Embase, SIGLE, Index to Theses, Index to Scientific and Technical Proceedings, and Science Citation Index, using multiple search terms in order to perform a highly sensitive search. 2. Electronic searching of the Trials Register of the Depression, Anxiety and Neurosis group. 3. Citation lists of relevant studies and reviews were perused for other relevant trials. 4. Contact with the principal authors of relevant studies, and with researchers in the field. All randomised controlled trials were included in which - adult patients with CFS; - received CBT or a control intervention, being either orthodox medical management or another intervention; - and whose outcomes were assessed in an appropriate way. CBT could be either type 'A' (encouraging return to 'normal' levels of rest and activity) or type 'B' (encouraging rest and activity which were within levels imposed by the disorder). The two reviewers worked independently throughout the selection of trials and data extraction, comparing findings only when there was disagreement. Relevant trials were allocated to one of three quality categories. Full data extraction, using a standardised data extraction sheet, was performed on studies which were of high or moderate quality. Trials of low quality were excluded from the review. The comparisons made to test the review hypothesis were of type 'A' CBT versus other intervention(s), and of type 'B' CBT versus other intervention(s). Functional outcome was used as the main outcome for comparison, but other appropriate outcomes were compared where possible. Results were synthesised using the Review Manager

  3. Experimental Study on Fatigue Behaviour of Shot-Peened Open-Hole Steel Plates

    PubMed Central

    Wang, Zhi-Yu; Wang, Qing-Yuan; Cao, Mengqin

    2017-01-01

    This paper presents an experimental study on the fatigue behaviour of shot-peened open-hole plates with Q345 steel. The beneficial effects induced by shot peening on the fatigue life improvement are highlighted. The characteristic fatigue crack initiation and propagation modes of open-hole details under fatigue loading are revealed. The surface hardening effect brought by the shot peening is analyzed from the aspects of in-depth micro-hardness and compressive residual stress. The fatigue life results are evaluated and related design suggestions are made as a comparison with codified detail categories. In particular, a fracture mechanics theory-based method is proposed and demonstrated its validity in predicting the fatigue life of studied shot-peened open-hole details. PMID:28841160

  4. [Life-cycles, psychopathology and suicidal behaviour].

    PubMed

    Osváth, Péter

    2012-12-01

    According to modern psychological theories the human life implies continuous development, the efficient solution of age-specific problems is necessary to the successful transition of age-periods. The phases of transition are very vulnerable against the accidental stressors and negative life-events. Thus the problem-solving capacity may run out, which impairs chance of the successful coping with stressful events. It may result in some negative consequences, such as different psychopathological symptoms (depression, anxiety, psychosis) or even suicidal behaviour. For that reason we have to pay special attention to the symptoms of psychological crisis and the presuicidal syndrome. In certain life-cycle transitions (such as adolescent, middle or elderly age) the personality has special vulnerability to the development of psychological and psychopathological problems. In this article the most important features of life-cycles and psychopathological symptoms are reviewed. The developmental and age-specific characteristics have special importance in understanding the background of the actual psychological crisis and improving the efficacy of the treatment. Using the complex bio-psycho-socio-spiritual approach not only the actual psychopatological problems, but the individual psychological features can be recognised. Thus the effective treatment relieves not only the actual symptoms, but will increase the chance for solving further crises.

  5. Very high cycle fatigue behavior of nickel-based superalloy Rene 88 DT

    NASA Astrophysics Data System (ADS)

    Miao, Jiashi

    The fatigue behavior of the polycrystalline nickel-based superalloy Rene 88 DT has been investigated at 593°C up to the very high cycle fatigue regime using ultrasonic fatigue techniques. Conventional damage tolerant methods failed to predict the fatigue life nor the large fatigue life viability of two orders of magnitude observed in the very high cycle regime. Fatigue crack initiation rather than fatigue crack growth is the life determining process in this alloy in the very high cycle regime. At 593°C, all fatigue failures have subsurface origins. Most fatigue crack initiation sites consist of a large crystallographic facet or a cluster of several large crystallographic facets. By combining electron backscatter diffraction, metallographic serial sectioning and SEM-stereo-image-based quantitative fractographic analysis, critical microstructure features associated with subsurface crystallographic fatigue crack initiation were identified. Subsurface fatigue cracks formed by the localization of cyclic plastic deformation on {111} slip planes in the region close to and parallel to twin boundaries in favorably oriented large grains. The facet plane in the crack initiation grain is parallel to the slip plane with the highest resolved shear stresses. Analytical calculations show that twin boundary elastic incompatibility stresses contribute to the onset of cyclic plastic strain localization in the fatigue crack initiation grains. Favorably oriented neighbor grains also can assist with fatigue crack initiation and especially early small crack propagation. Environment may play an important role in the shift of fatigue crack initiation sites from surface to subsurface at elevated temperature. The fatigue behavior of Rene 88 DT was also investigated under fully reversed loading at room temperature using ultrasonic fatigue techniques. Cyclic plastic strain localization and microcrack formation on specimen surfaces were quantitatively studied by EBSD. All microcracks examined

  6. Exposure time considerations in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, S.; Manson, S. S.; Halford, G. R.

    1988-01-01

    The Conventional Strainrange Partitioning (CSRP) method for High-Temperature, Low-Cycle Fatigue (HTLCF) life prediction has its origins in the modeling of first-order, creep-fatigue waveform effects while treating as second-order effects, the influence of metallurgical or environmental time dependencies. Procedures are proposed to include the latter explicitly in the inelastic strainrange-life relations. For brevity, only the CP life relation will be presented in detail. The exposure-time effect within the CP inelastic strainrange (tensile creep reversed by compressive plasticity) was determined by tensile stresshold-time experiments for 316 SS at 816 C. Reductions in CP cyclic life of a factor of about two were observed with an increase in exposure time or a corresponding decrease in creep rate by a factor of about 100. The CP life relation has been modified to be expressed in terms of either Steady State Creep Rate (SSCR) or Exposure Time (ET). The applicability and accuracy of the time-dependent CP life relations is demonstrated by conducting verification experiments involving complex hysteresis loops. Metallographic examination revealed time-dependent degradation attributable to oxide formation and precipitation of carbides along grain boundaries.

  7. Exposure time considerations in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, S.; Manson, S. S.; Halford, G. R.

    1987-01-01

    The Conventional Strainrange Partitioning (CSRP) method for High-Temperature, Low-Cycle Fatigue (HTLCF) life prediction has its origins in the modeling of first-order, creep-fatigue waveform effects while treating as second-order effects, the influence of metallurgical or environmental time dependencies. Procedures are proposed to include the latter explicitly in the inelastic strainrange--life relations. For brevity, only the CP life relation will be presented in detail. The exposure-time effect within the CP inelastic strainrange (tensile creep reversed by compressive plasticity) was determined by tensile stresshold-time experiments for 316 SS at 816 C. Reductions in CP cyclic life of a factor of about two were observed with an increase in exposure time or a corresponding decrease in creep rate by a factor of about 100. The CP life relation has been modified to be expressed in terms of either Steady State Creep Rate (SSCR) or Exposure Time (ET). The applicability and accuracy of the time-dependent CP life relations is demonstrated by conducting verification experiments involving complex hysteresis loops. Metallographic examination revealed time-dependent degradation attributable to oxide formation and precipitation of carbides along grain boundaries.

  8. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  9. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  10. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  11. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  12. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  13. Low-cycle corrosion fatigue of Zircaloy-2 in iodine atmospheres

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Motomiya, T.; Wakashima, Y.

    1986-09-01

    Low-cycle fatigue tests have been performed on Zircaloy-2 by a reversed-bending method in inert and iodine atmospheres at 623 K. Fatigue lives in both atmospheres followed the Coffin-Manson law. Cracks propagated by a transgranular shear mode, and the propagation was the process controlling fatigue life in an inert atmosphere. Fatigue life in a high concentration of iodine vapour was significantly shorter than in an inert atmosphere. The iodine vapour caused brittle fracture of a specimen mainly by the transgranular cleavage mode, and an accelerated crack propagation rate. The minimum vapour pressure of iodine to cause brittle fracture under fatigue conditions was about 27 Pa.

  14. Manual-based cognitive behaviour therapy for chronic fatigue syndrome: therapists' adherence and perceptions.

    PubMed

    Bazelmans, Ellen; Prins, Judith B; Hoogveld, Sigrid; Bleijenberg, Gijs

    2004-01-01

    Several randomized controlled trials have indicated that cognitive behaviour therapy is an effective treatment for chronic fatigue syndrome. In 1 of these studies 13 therapists applied cognitive behaviour therapy for chronic fatigue syndrome in 83 chronic fatigue syndrome patients. In the present study therapists' adherence and perceptions of the manual are studied. Following completion of the study the therapists were asked to complete a questionnaire. Audiotaped sessions were conducted to verify the therapists' adherence. Analyses of the audiotapes showed that in 87% of the sessions this appeared to be the case. The questionnaire revealed that the therapists found it more difficult to treat patients with chronic fatigue syndrome than to treat patients with psychological or other physical problems. Treatment aspects posing the most problems were integrating individual problems into the standardized treatment, dealing with the patients' lack of confidence in the treatment and handling insufficient motivation.

  15. The application of probabilistic design theory to high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1981-01-01

    Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.

  16. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.

  17. Interaction of High-cycle and Low-cycle Fatigue of Haynes 188 Alloy at 1400 F Deg

    NASA Technical Reports Server (NTRS)

    Bizon, P. T.; Thoma, D. J.; Halford, G. R.

    1985-01-01

    The interaction of low-cycle fatigue (LCF) and high-cycle fatigue (HCF) was evaluated at the NASA Lewis Research Center on Haynes 188 alloy at 1400 F. Completely reversed, axial-load, strain-controlled fatigue tests were performed to determine the baseline data for this study. Additional specimens for interaction tests were cycled first at a high strain range for various small portions of expected LCF life followed by a step change to a low strain range to failure in HCF. Failure was defined as complete specimen separation. The resultant lives varied between 10 and 5000 cycles for the low-cycle fatigue tests and between 4500 and 3 million for the high-cycle fatigue tests. For the interaction tests the low-cycle-life portion ranged from 30 and 1000 applied cycles while the high-frequency life ranged from 300 and 300,000 cycles to failure. The step change results showed a significant nonlinear interaction in expected life. Application of a small part of the LCF life drastically decreased the available HCF life as compared with what would have been expected by the classical linear damage rule (LDR).

  18. On the Use of Equivalent Linearization for High-Cycle Fatigue Analysis of Geometrically Nonlinear Structures

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2003-01-01

    The use of stress predictions from equivalent linearization analyses in the computation of high-cycle fatigue life is examined. Stresses so obtained differ in behavior from the fully nonlinear analysis in both spectral shape and amplitude. Consequently, fatigue life predictions made using this data will be affected. Comparisons of fatigue life predictions based upon the stress response obtained from equivalent linear and numerical simulation analyses are made to determine the range over which the equivalent linear analysis is applicable.

  19. Development of a low-cycle fatigue life curve for 80In15Pb5Ag

    NASA Astrophysics Data System (ADS)

    Edwards, L. K.; Nixon, W. A.; Lakes, R. S.

    2000-09-01

    The purpose of this study is to develop a methodology to predict the low-cycle (large strain—from 0.1 to 0.35 strain) fatigue life of solders subject to thermal cycling. Solders are commonly used in electronic assemblies. Using thermal fatigue data measured for 80In15Pb5Ag, a low-cycle fatigue curve for 80In15Pb5Ag solder subject to thermal cycling was developed. Specifically a Coffin-Manson relationship was derived for the solder, with a high degree of correlation (see Table I), for four different failure criteria, defined in the body of the paper. This relationship, together with calculated strains in the solder joint, allows the low-cycle fatigue life of the solder joint to be predicted.

  20. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-01-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant (β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  1. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-03-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant ( β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  2. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    NASA Astrophysics Data System (ADS)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  3. Advanced High Cycle Fatigue (HCF) Life Assurance Methodologies

    DTIC Science & Technology

    2004-07-01

    developed based on thermally activated slip in the crack-tip cyclic process zone that correlates fatigue crack growth morphologies to test parameters...K : 3.6 - 56 ksi / in Thermal Activation Model Fitted to PWA Data PWA Data Macroscopic (111) Mode I (TPNC) SwRI Data Figure 4.63. A fatigue ...somehow normalize the damage with regard to temperature, so that thermal fluctuations could be accommodated within the current fatigue event

  4. Effects of interface treatment on the fatigue behaviour of shape memory alloy reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Harish, K.; Vasireddi, Ramakrishna; Benal, M. M.; Mahapatra, D. R.

    2015-04-01

    Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMAepoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

  5. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  6. Shakedown based model for high-cycle fatigue of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki-Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  7. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    PubMed Central

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-01-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key points The behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  8. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling.

    PubMed

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-03-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key pointsThe behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  9. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  10. Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel

    NASA Astrophysics Data System (ADS)

    Han, B.; Ju, D. Y.; Jia, W. P.

    2007-10-01

    Water cavitation peening (WCP) with aeration is a recent potential method in the surface enhancement techniques. In this method, a ventilation nozzle is adopted to improve the process capability of WCP by increasing the impact pressure, which is induced by the bubble collapse on the surface of components in the similar way as conventional shot peening. In this paper, fatigue tests were conducted on the both-edge-notched flat tensile specimens to assess the influences of WCP on fatigue behaviour of SAE1045 steel. The notched specimens were treated by WCP, and the compressive residual stress distributions in the superficial layer were measured by X-ray diffraction method. The tension-tension ( R = Smin/ Smax = 0.1, f = 10 Hz) fatigue tests and the fracture surfaces observation by scan electron microscopy (SEM) were conducted. The experimental results show that WCP can improve the fatigue life by inducing the residual compressive stress in the superficial layer of mechanical components.

  11. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  12. Fatigue behaviour of mineral filled polyamide 6-6

    SciTech Connect

    Trotignon, J.P.; Demdoum, L.; Verdu, J.

    1993-12-31

    The flexural fatigue at 10Hz, 23 {+-} 2{degree}C and various deformation amplitudes ({var_epsilon} = 1.4, 2.2 and 3.1%) was studied for various PA 66 samples containing mineral fillers in low (<5%) weight fraction. The fillers were talc, mica and wollastonite having a very different granulometry and aspect ratio. A preliminary DSC investigation showed that all these minerals display a nucleation effect of PA 66 crystallization, their efficiency being in the order talc>mica>wollastonite. Stress recording during the fatigue testing allows to detect the rupture, which occurs generally in a brittle (sudden) mode. When fatigue testing is made in dry state, the sample compliance remains constant during the whole test duration, for low stress levels. For high stress levels, in the case of unfilled and mica filled samples, the stress decreases rapidly in the first 10% of the lifetime and reaches a plateau value corresponding to about 50% of the initial stress amplitude. In situ measurements of the surface temperature show that the initial stress decrease is due to self heating above the glass transition temperature (60{degree}C) of the polymer. In all the cases, the presence of a filler-despite its very low concentration-reduces significantly the lifetime. Similar tests were made in wet state (2,5 % absorbed water). In this case, the behavior observed only for high stress levels in mica and unfilled samples in dry state appears in all the cases here, which is obviously linked to the lower Tg value due to plasticization of PA 66 by water. The role of fillers in fatigue damage and rupture will be discussed on the basis of the above results and complementary SEM observations.

  13. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    SciTech Connect

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  14. Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.

    PubMed

    Islam, Anowarul; Chapin, Katherine; Moore, Emily; Ford, Joel; Rimnac, Clare; Akkus, Ozan

    2016-03-01

    Sterilization by gamma radiation impairs the mechanical properties of bone allografts. Previous work related to radiation-induced embrittlement of bone tissue has been limited mostly to monotonic testing which does not necessarily predict the high-cycle fatigue life of allografts in vivo. We designed a custom rotating-bending fatigue device to answer the following questions: (1) Does gamma radiation sterilization affect the high-cycle fatigue behavior of cortical bone; and (2) how does the fatigue life change with cyclic stress level? The high-cycle fatigue behavior of human cortical bone specimens was examined at stress levels related to physiologic levels using a custom-designed rotating-bending fatigue device. Test specimens were distributed among two treatment groups (n = 6/group); control and irradiated. Samples were tested until failure at stress levels of 25, 35, and 45 MPa. At 25 MPa, 83% of control samples survived 30 million cycles (run-out) whereas 83% of irradiated samples survived only 0.5 million cycles. At 35 MPa, irradiated samples showed an approximately 19-fold reduction in fatigue life compared with control samples (12.2 × 10(6) ± 12.3 × 10(6) versus 6.38 × 10(5) ± 6.81 × 10(5); p = 0.046), and in the case of 45 MPa, this reduction was approximately 17.5-fold (7.31 × 10(5) ± 6.39 × 10(5) versus 4.17 × 10(4) ± 1.91 × 10(4); p = 0.025). Equations to estimate high-cycle fatigue life of irradiated and control cortical bone allograft at a certain stress level were derived. Gamma radiation sterilization severely impairs the high cycle fatigue life of structural allograft bone tissues, more so than the decline that has been reported for monotonic mechanical properties. Therefore, clinicians need to be conservative in the expectation of the fatigue life of structural allograft bone tissues. Methods to preserve the fatigue strength of nonirradiated allograft bone tissue are needed. As opposed to what monotonic tests might suggest, the cyclic

  15. High cycle fatigue of weld repaired cast Ti-6AI-4V

    NASA Astrophysics Data System (ADS)

    Hunter, G. B.; Hodi, F. S.; Eagar, T. W.

    1982-09-01

    In order to determine the effects of weld repair on fatigue life of titanium-6Al-4V castings, a series of specimens was exposed to variations in heat treatment, weld procedure, HIP cycle, cooling rate, and surface finish. The results indicate that weld repair is not detrimental to HCF properties as fatigue cracks were located primarily in the base metal. Fine surface finish and large colony size are the primary variables improving the fatigue life. The fusion zone resisted fatigue crack initiation due to a basketweave morphology and thin grain boundary alpha. Multipass welds were shown not to affect fatigue life when compared with single pass welds. A secondary HIP treatment was not detrimental to fatigue properties, but was found to be unnecessary.

  16. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  17. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  18. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  19. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  20. Variations of Fatigue Damage Growth in Cross-Ply and Quasi-Isotropic laminates Under High-Cycle Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Hosoi, Atsushi; Shi, Jiadi; Sato, Narumichi; Kawada, Hiroyuki

    The behavior of transverse crack growth and delamination growth under high-cycle fatigue loadings was investigated with cross-ply CFRP laminates, [0/902]s and [0/906]s, and quasi-isotropic CFRP laminates, [45/0/-45/90]s. As a result, it was observed that the behavior of damage growth was different depending on the applied stress level. The growth of local or edge delamination was exacerbated under the test conditions of a low applied stress level and high-cycle loadings, because the areas of stress concentration were applied with high-cyclic loadings. On the other hand, when the fatigue tests were conducted under the applied stress level of 40% of the transverse crack initiation, the growth of transverse cracks was hardly observed until 108 cycles with [0/902]s, [0/906]s and [45/0/-45/90]s laminates.

  1. Improved High-Cycle Fatigue (HCF) Life Prediction

    DTIC Science & Technology

    2001-01-01

    fretting damage, foreign object damage (FOD), intrinsic material capability ( stress threshold), crack nucleation, and propagation behavior. 16. SECURITY...3-11 3.2.2.1 Closure-Based Sinh Crack Growth Rate Model ... 3-11 3.2.2.2 Walker Model for Stress Ratio Effects...Fatigue- Crack -Nucleation Modeling in Ti-6Al-4V for Smooth and Notched Specimens Under Complex Stress States ............... 3I-0 3J Notch Fatigue

  2. Low cycle fatigue properties of a low activation ferritic steel (JLF-1) at room temperature

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Nagasaka, T.; Inoue, N.; Muroga, T.; Namba, C.

    2000-12-01

    To investigate fatigue properties of a low activation ferritic steel (9Cr-2W steel, JLF-1), low cycle fatigue tests were performed in air at room temperature under axial strain control for a complete push-pull condition. The strain rate was 0.4% s-1. Cyclic strain-hardening was observed within the initial 20 cycles, and then cyclic strain-softening occurred gradually until the final failure, though the plastic strain range did not change significantly. Tensile peak stresses in hysteresis curves measured at around half the number of cycles to failure depended on the total strain range. The drop in the peak stress by the cyclic strain-softening increased with decreasing total strain range. The regression curve of the total strain range against the fatigue life was formulated using the Manson-Coffin equation and the fatigue life of JLF-1 steel was compared with that of 8Cr-2W steel.

  3. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the

  4. Effect of residual stress and surface roughness on the fatigue behaviour of aluminium matrix composites

    NASA Astrophysics Data System (ADS)

    Smaga, M.; Eifler, D.

    2010-07-01

    In this investigation the fatigue properties of specimens manufactured with different turning parameters were investigated in stress-controlled constant amplitude tests at ambient temperature. The change of feed rate and depth of cut lead to a change in the near surface microstructure. Hence the fatigue properties were influenced significantly due to different surface roughness and surface residual stress resulting from the unequal turning processes. The cyclic deformation behaviour of AMC225xe is characterised by pronounced initial cyclic hardening. Continuous load increase tests allow a reliable estimation of the endurance limit of AMC225xe with one single specimen on the basis of cyclic deformation, temperature and electrical resistance data.

  5. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  6. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Jordon, J. Brian; Horstemeyer, Mark F.; Jones, J. Wayne

    2012-07-01

    The influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91 and AM60 has been investigated. Fatigue lifetimes were determined from the total strain-controlled fatigue tests for strain amplitudes of 0.2 pct, 0.4 pct, 0.6 pct, 0.8 pct, and 1.0 pct under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using an incremental step test (IST) and compared with the more traditional constant amplitude test. Two locations in a prototype casting were investigated to examine the role of microstructure and porosity on fatigue behavior. At all total strain amplitudes microstructure refinement had a negligible impact on fatigue life because of significant levels of porosity. AM60 showed an improvement in fatigue life at higher strain amplitudes when compared with AZ91 because of higher ductility. T6 heat treatment had no impact on fatigue life. Cyclic stress-strain behavior obtained via the incremental step test varied from constant amplitude test results due to load history effects. The constant amplitude test is believed to be the more accurate test method. In general, larger initiation pores led to shorter fatigue life. The fatigue life of AZ91 was more sensitive to initiation pore size and pore location than AM60 at the lowest tested strain amplitude of 0.2 pct. Fatigue crack paths did not favor any specific phase, interdentritic structure or eutectic structure. A multistage fatigue (MSF) model showed good correlation to the experimental strain-life results. The MSF model reinforced the dominant role of inclusion (pore) size on the scatter in fatigue life.

  7. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.

    PubMed

    McNeil, Chris J; Giesebrecht, Sabine; Gandevia, Simon C; Taylor, Janet L

    2011-07-15

    During fatigue caused by a sustained maximal voluntary contraction (MVC), motoneurones become markedly less responsive when tested during the silent period following transcranial magnetic stimulation (TMS). To determine whether this reduction depends on the repetitive activation of the motoneurones, responses to TMS (motor evoked potentials, MEPs) and to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were tested during a sustained submaximal contraction at a constant level of electromyographic activity (EMG). In such a contraction, some motoneurones are repetitively activated whereas others are not active. On four visits, eight subjects performed a 10 min maintained-EMG elbow flexor contraction of 25% maximum. Test stimuli were delivered with and without conditioning by TMS given 100 ms prior. Test responses were MEPs or CMEPs (two visits each, small responses evoked by weak stimuli on one visit and large responses on the other). During the sustained contraction, unconditioned CMEPs decreased ∼20% whereas conditioned CMEPs decreased ∼75 and 30% with weak and strong stimuli, respectively. Conditioned MEPs were reduced to the same extent as CMEPs of the same size. The data reveal a novel decrease in motoneurone excitability during a submaximal contraction if EMG is maintained. Further, the much greater reduction of conditioned than unconditioned CMEPs shows the critical influence of voluntary drive on motoneurone responsiveness. Strong test stimuli attenuate the reduction of conditioned CMEPs which indicates that low-threshold motoneurones active in the contraction are most affected. The equivalent reduction of conditioned MEPs and CMEPs suggests that, similar to findings with a sustained MVC, impaired motoneurone responsiveness rather than intracortical inhibition is responsible for the fatigue-related impairment of the MEP during a sustained submaximal contraction.

  8. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  9. High Cycle Fatigue Properties Of Electron Beam Melted TI-6AL-4V Samples Without And With Integrated Defects ("Effects Of Defects")

    NASA Astrophysics Data System (ADS)

    Brandl, Erhard; Greitemeier, Daniel; Maier, Hans Jurgen; Syassen, Freerk

    2012-07-01

    The understanding of additive manufactured material properties is still at an early stage and mostly not profound. Nowadays, there is only little experience in predicting the effect of defects (e.g. porosity, unmelted spots, insufficient bonding between the layers) on the fatigue behaviour. In this paper, some of these questions are adressed. An electron beam melting process is used to manufacture Ti-6Al-4V high cycle fatigue samples without and with intentionally integrated defects inside of the samples. The samples were annealed or hot isostatically pressed. The defects were analysed by non- destructive methods before and by light/electron microscopy after the tests. In order to predict the high cycle fatigue properties, the crack propagation properties of the material (da/dN - ΔK curve) were tested and AFGROW simulation was used.

  10. A Real-Time Fatigue Monitoring and Analysis System for Lower Extremity Muscles with Cycling Movement

    PubMed Central

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chan, Hsiao-Lung; Chang, Ya-Ju; Ku, Chia-Hao

    2014-01-01

    A real-time muscle fatigue monitoring system was developed to quantitatively detect the muscle fatigue of subjects during cycling movement, where a fatigue progression measure (FPM) was built-in. During the cycling movement, the electromyogram (EMG) signals of the vastus lateralis and gastrocnemius muscles in one leg as well as cycling speed are synchronously measured in a real-time fashion. In addition, the heart rate (HR) and the Borg rating of perceived exertion scale value are recorded per minute. Using the EMG signals, the electrical activity and median frequency (MF) are calculated per cycle. Moreover, the updated FPM, based on the percentage of reduced MF counts during cycling movement, is calculated to measure the onset time and the progressive process of muscle fatigue. To demonstrate the performance of our system, five young healthy subjects were recruited. Each subject was asked to maintain a fixed speed of 60 RPM, as best he/she could, under a constant load during the pedaling. When the speed reached 20 RPM or the HR reached the maximal training HR, the experiment was then terminated immediately. The experimental results show that the proposed system may provide an on-line fatigue monitoring and analysis for the lower extremity muscles during cycling movement. PMID:25014101

  11. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  12. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  13. Low-cycle fatigue of thermal-barrier coatings at 982 deg C

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Liebert, C. H.; Nachtigall, A. J.

    1978-01-01

    The low-cycle fatigue lives of ZrO2-NiCrAlY and Al2O3-ZrO2-NiCrAlY thermal-barrier coatings in air at 982 C were determined from cyclic flexural tests of coated TAZ-8A strips. Strains were computed as a function of specimen displacements from a nonlinear, three-dimensional stress analysis program. Fatigue resistances of thermal-barrier coatings applied to the strips were compared with those of uncoated and NiCrAlY-coated strips. The results indicate that ZrO2 is about four times greater in fatigue life than TAZ-8A at 982 C, that ZrO2 would probably retain that fatigue strength up to 1316 C, and that adding an outer coat of Al2O3 to ZrO2 is neither beneficial nor detrimental to fatigue resistance.

  14. Low-Cycle Fatigue Properties of P92 Ferritic-Martensitic Steel at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Hu, ZhengFei; Schmauder, Siegfried; Mlikota, Marijo; Fan, KangLe

    2016-04-01

    The low-cycle fatigue behavior of P92 ferritic-martensitic steel and the corresponding microstructure evolution at 873 K has been extensively studied. The test results of fatigue lifetime are consistent with the Coffin-Manson relationship over a range of controlled total strain amplitudes from 0.15 to 0.6%. The influence of strain amplitude on the fatigue crack initiation and growth has been observed using optical microscopy and scanning electron microscopy. The formation mechanism of secondary cracks is established according to the observation of fracture after fatigue process and there is an intrinsic relationship between striation spacing, current crack length, and strain amplitude. Transmission electron microscopy has been employed to investigate the microstructure evolution after fatigue process. It indicates the interaction between carbides and dislocations together with the formation of cell structure inhibits the cyclic softening. The low-angle sub-boundary elimination in the martensite is mainly caused by the cyclic stress.

  15. Accommodating and cracking mechanisms in low-cycle fatigue

    NASA Technical Reports Server (NTRS)

    Pineau, A.

    1978-01-01

    The three main stages of fatigue life (accommodation, crack initiation and crack growth) are briefly reviewed. The cyclic behavior of annealed or predeformed face-centered cubic metals is described. Moreover, two types of alloys (Al-4-Cu and WASPALOY) are examined regarding the influence of the interactions between the precipitates and the dislocations on the cyclic behavior. Data on the percent of life to crack initiation (for a microcrack smaller than about 100 microns) are also given. Finally, experimental and theoretical results on crack growth rates in lowcycle fatigue are described.

  16. Tensile and low-cycle fatigue measurements on cross-rolled tungsten

    SciTech Connect

    Schmunk, R.E.; Korth, G.E.

    1981-08-01

    Low-cycle fatigue and tensile tests were performed on specimens fabricated from 14-mm (0.55-in.) cross-rolled tungsten plate which was prepared by a powder metallurgy process. Tests included measurements on both as-received and recrystallized specimens. Data have been obtained at 1088 K (1500/sup 0/F) in vacuum, and at room temperature. Low-cycle fatigue data at both 1088 K and room temperature are in fair agreement with predictions based on the universal slopes equation for the as-received material condition. In contrast, fatigue data for recrystallized specimens at 1088 K fall considerably below prediction, except in the high cycles-to-fail (10/sup 5/ cycles) regime. Details of the test procedure as well as modification of the specimen configuration which was required for room temperature testing are reported.

  17. Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Boisseau, A.; Davies, P.; Thiebaud, F.

    2013-04-01

    The development of ocean energy conversion systems places more severe requirements on materials than similar land-based structures such as wind turbines. Intervention and maintenance at sea are very costly, so for ocean energy supply to become economically viable long term durability must be guaranteed. Cyclic loading is a common feature of most energy conversion devices and composites are widely used, but few data are available concerning the fatigue behaviour in sea water of composite materials. This paper presents the results from an experimental study to fill this gap. The fatigue behavior of composite materials reinforced with different types of glass fibre is characterized in air and in sea water; the influence of testing in sea water rather than air is shown to be small. However, sea water ageing is shown to reduce the fatigue lifetime significantly and strongly depends on matrix formulation.

  18. Very high cycle fatigue behavior of SAE52100 bearing steel by ultrasonic nanocrystalline surface modification.

    PubMed

    Cho, In Shik; He, Yinsheng; Li, Kejian; Oh, Joo Yeon; Shin, Keesam; Lee, Chang Soon; Park, In Gyu

    2014-11-01

    In this paper, the SAE52100 bearing steel contained large quantities of cementite dispersed in ferrite matrix was subjected to the ultrasonic nanocrystalline surface modification (UNSM) treatment that aims for the extension of fatigue life. The microstructure and fatigue life of the untreated and treated specimens were studied by using electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM), and a developed ultra-high cycle fatigue test (UFT). After UNSM treatment, the coarse ferrite grains (- 10 μm) were refined to nanosize (- 200 nm), therefore, nanostructured surface layers were fabricated. Meanwhile, in the deformed layer, the number density and area fraction of cementite were increased up to - 400% and - 550%, respectively, which increased with the decrease in depth from the topmost treated surface. The improvement of hardness (from 200 Hv to 280 Hv) and high cycles fatigue strength by - 10% were considered the contribution of the developed nanostructure in the UNSM treated specimen.

  19. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGES

    Wang, Hong; Lee, Sung Min; Wang, James L.; ...

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  20. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  1. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  2. Modeling of fatigue life of materials and structures under low-cycle loading

    NASA Astrophysics Data System (ADS)

    Volkov, I. A.; Korotkikh, Yu. G.

    2014-05-01

    A damaged medium model (DMM) consisting of three interconnected components (relations determining the cyclic elastoplastic behavior of the material, kinetic damage accumulation equations, and the strength criterion for the damaged material) was developed to estimate the stress strain state and the fatigue life of important engineering objects. The fatigue life of a strip with a cut under cyclic loading was estimated to obtain qualitative and quantitative estimates of the DMM constitutive relations under low-cycle loading. It was shown that the considered version of the constitutive relations reliably describes the main effects of elastoplastic deformation and the fatigue life processes of materials and structures.

  3. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  4. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  5. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  6. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-01

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A "mountain shape" correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The "mountain shape" correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  7. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    NASA Technical Reports Server (NTRS)

    Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.

    1994-01-01

    The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.

  8. Course of fatigue between two cycles of adjuvant chemotherapy in breast cancer patients.

    PubMed

    de Jong, Nynke; Kester, Arnold D M; Schouten, Harry C; Abu-Saad, Huda Huijer; Courtens, Annemie M

    2006-01-01

    The purpose of this study was to determine the course of fatigue in patients with breast cancer between 2 cycles of adjuvant chemotherapy, from the day of administration until the day of the next infusion. In a prospective cohort study, a sample of 151 patients with breast cancer receiving adjuvant chemotherapy was recruited from 6 hospitals in mainly the south of the Netherlands. Patients reported their experience of fatigue in a diary, the Shortened Fatigue Questionnaire, on a daily basis between the third and fourth treatment with adjuvant chemotherapy. Patients were treated with either a doxorubicin containing schedule or with cyclophosphamide, methotrexate, and 5-fluorouracil (CMF, 28 days). In the 28-day regimens, infusions were given on day 1 and day 8. The days after completion of the third and the start of the fourth treatment with chemotherapy were statistically analyzed. We tested the hypothesis that the maximum fatigue score occurs in the first 4 days after treatment. The mean age of the sample was 47.2 years (SD = 8.8). Most women (84%) were married or lived together with a partner. The majority (80%) of all patients had been diagnosed with stage II breast cancer. The division between mastectomies (47%) and lumpectomies (52%) was approximately equal. Sixty percent of the patients received radiotherapy before the third treatment with chemotherapy and/or in the period they kept the diary. A chaotic pattern of fatigue between the 2 cycles of chemotherapy emerged. Smooth (splines) curves showed an average highest level of fatigue on day 3 from the start. For the 28-day regimens, another distinct peak was seen around day 11. A relatively larger number of patients experienced peak fatigue levels before day 5. The course of fatigue in the CMF group was significantly different compared with the doxorubicin regimens. The fatigue peak in the CMF group was lower. Women taking cyclophosphamide orally experienced the peak level of fatigue significantly later

  9. Low-cycle fatigue-cracking mechanisms in fcc crystalline materials

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Qu, S.; Duan, Q. Q.; Wu, S. D.; Li, S. X.; Wang, Z. G.; Zhang, Z. F.

    2011-01-01

    The low-cycle fatigue (LCF) cracking behavior in various face-centered-cubic (fcc) crystalline materials, including Cu single crystals, bicrystals and polycrystals, Cu-Al and Cu-Zn alloys, ultrafine-grained (UFG) Al-Cu and Cu-Zn alloys, was systematically investigated and reviewed. In Cu single crystals, fatigue cracking always nucleates along slip bands and deformation bands. The large-angle grain boundary (GB) becomes the preferential site in bicrystals and polycrystals. In addition, fatigue cracking can also nucleate along slip bands and twin boundaries (TBs) in polycrystalline materials. However, shear bands and coarse deformation bands are observed to the preferential sites for fatigue cracking in UFG materials with a large number of GBs. Based on numerous observations on fatigue-cracking behavior, the fatigue-cracking mechanisms along slip bands, GBs, TBs, shear bands and deformation bands were systematically compared and classified into two types, i.e. shear crack and impingement crack. Finally, these fatigue-cracking behaviors are discussed in depth for a better understanding of their physical nature and the transition from intergranular to transgranular cracking in various fcc crystalline materials. These comprehensive results for fatigue damage mechanisms should significantly aid in obtaining the optimum design to further strengthen and toughen metallic materials in practice.

  10. Gigacycle fatigue behaviour of austenitic stainless steels used for mercury target vessels

    NASA Astrophysics Data System (ADS)

    Naoe, Takashi; Xiong, Zhihong; Futakawa, Masatoshi

    2016-01-01

    A mercury enclosure vessel for the pulsed spallation neutron source manufactured from a type 316L austenitic stainless steel, a so-called target vessel, suffers the cyclic loading caused by the proton beam induced pressure waves. A design criteria of the JSNS target vessel which is defined based on the irradiation damage is 2500 h at 1 MW with a repetition rate of 25 Hz, that is, the target vessel suffers approximately 109 cyclic loading while in operation. Furthermore, strain rate of the beam window of the target vessel reaches 50 s-1 at the maximum, which is much higher than that of the conventional fatigue. Gigacycle fatigue strength up to 109 cycles for solution annealed 316L (SA) and cold-worked 316L (CW) were investigated through the ultrasonic fatigue tests. Fatigue tests were performed under room temperature and 250 °C which is the maximum temperature evaluated at the beam window in order to investigate the effect of temperature on fatigue strength of SA and CW 316L. The results showed that the fatigue strength at 250 °C is clearly reduced in comparison with room temperature, regardless of cold work level. In addition, residual strength and microhardness of the fatigue tested specimen were measured to investigate the change in mechanical properties by cyclic loading. Cyclic hardening was observed in both the SA and CW 316L, and cyclic softening was observed in the initial stage of cyclic loading in CW 316L. Furthermore, abrupt temperature rising just before fatigue failure was observed regardless of testing conditions.

  11. Life Prediction and Stress Evolvement for Low Cycle Fatigue in PWR Primary Pipe Material

    NASA Astrophysics Data System (ADS)

    Fei, Xue; Wei-wei, Yu; Zhao-xi, Wang; Wen-xin, Ti; Lei, Lin; Xin-ming, Men

    2010-05-01

    The low cycle fatigue (LCF) behavior of primary pipe material Z3CN20.09M cast stainless stell (CASS) was studied at room temperature (RT) and elevated temperature of 350° C by conducting total axial stain controlled tests in air with strain amplitude in the range ±0.175% to ±0.8%. Based on the test results, the cyclic stress response of material was analyzed, and a dynamic strain aging (DSA) phenomena was discovered at 350° C. Besides, the evaluation of elastic modulus during cyclic tests was studied, and the effect of elastic modulus on parameters of low cycle fatigue was investigated based on the Manson-Coffin model. It is shown that elastic modulus for Z3CN20.09M decreases constantly during the whole fatigue life, but fluctuates more frequently at elevated temperature. Both the static and dynamic elastic modulus result in a same life trend in low cycle fatigue, but the elastic modulus affects the precision of fatigue life prediction to some extent when the fatigue life exceeded 105.

  12. Observation of fatigue in sandstone samples exposed to repeated freeze-thaw cycles

    NASA Astrophysics Data System (ADS)

    Hailiang, Jia; Wei, Xiang; Krautblatter, Michael

    2014-05-01

    The effect of rock fatigue is one of the key elements in the analysis and evaluation of rockfall preparation. We performed a series of laboratory freezing-thawing cycles experiments on an array of identical sandstone samples (cylinder samples with diameter of 5cm and length of 10cm). During each cycle we measured surface deformations and effective porosity for three samples, and after each thawing phase we removed two samples for destructive testing (uniaxial compressive and tensile strength). Our results indicate that: (1) frost action causes primarily reversible strain in samples with maximum magnitudes of ~1*10-4, we suggest low-cycle fatigue causes minor plastic deformation (2) with the increase of cycles, we observed a marked increase of effective porosity and a sharp decrease of uniaxial tensile strength. The decrease in uniaxial compressive strength was not as significant as that of the tensile strength in response to this frost action; (3) Curves describing effective porosity increases demonstrate a rapid increase during the first 3 - 4 freeze-thaw cycles, followed by a more linear increase, with steps in the porosity profile indicating discrete cycles with increased fatigue damage. Here we show how 17 freeze-thaw cycles cause progressive fatigue in sandstone samples and how this affects effective porosity and uniaxial compressive strength.

  13. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application

    NASA Astrophysics Data System (ADS)

    Kang, J.; Rao, H.; Zhang, R.; Avery, K.; Su, X.

    2016-07-01

    In this study, the tensile and fatigue behaviour of self-piercing rivets (SPRs) in carbon fibre reinforced plastic (CFRP) to aluminium 6111 T82 alloys were evaluated. An average maximum lap-shear tensile load capacity of 3858 N was achieved, which is comparable to metal-to-metal SPR lap-shear joints. The CFRP-Al SPRs failed in lap-shear tension due to pull-out of the rivet head from the CFRP upper sheet. The CFRP-Al SPR lap- shear specimens exhibited superior fatigue life compared to previously studied aluminium-to- aluminium SPR lap-shear joints. The SPR lap-shear joints under fatigue loads failed predominantly due to kinked crack growth along the width of the bottom aluminium sheet. The fatigue cracks initiated in the plastically deformed region of the aluminium sheet close to the rivet shank in the rivet-sheet interlock region. Scatter in fatigue life and failure modes was observed in SPR lap-shear specimens tested close to maximum tensile load.

  14. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  15. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  16. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  17. Study on the High Cycle Fatigue Property of Ti-600 Alloy at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Zeng, Liying; Yang, Guanjun; Hong, Quan; Zhao, Yongqing

    2011-06-01

    High cycle fatigue (HCF) property of one kind of near alpha titanium alloy named after Ti-600 was investigated at a frequency of 120~130Hz and with a load ratio R of 0.1. The HCF strength for the alloy at ambient temperature was found to be 475MPa. The observed high HCF strength was attributed to its overlapping plate like α+β phase microstructure. At the same stress of 600MPa, the distance between two fatigue stripes for the sample fractured at 8.61×105 cycles was wider than that of the sample failured at 1.78×106 cycles, which indicated that their propagation resistance for fatigue cracks was smaller.

  18. Elastic?plastic FEM analysis on low cycle fatigue behavior for alumina dispersion-strengthened copper/stainless steel joint

    NASA Astrophysics Data System (ADS)

    Nishi, H.

    2004-08-01

    Since the first wall and divertor components of fusion power plants are subjected to severe stresses caused by thermal expansion and electromagnetic forces, it is important to evaluate the fatigue strength of joints. In this study, elastic-plastic finite element analysis was performed for low cycle fatigue behavior of stainless steel/alumina dispersion-strengthened copper (DS Cu) joint in order to investigate the fatigue life and the fracture behavior of the joint. The results showed that a strain concentration occurred at the interface during low cycle fatigue, but as the strain range increased the strain concentration shifted away from the interface and into the DS Cu. The fatigue life and fracture location were evaluated taking into account of the strain concentration. Predictions of the fatigue life and fracture location were consistent with those measured by the low cycle fatigue test.

  19. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  20. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  1. Low-cycle fatigue of dispersion-strengthened copper

    SciTech Connect

    Robles, J. ); Anderson, K.R.; Groza, J.R.; Gibeling, J.C. )

    1994-10-01

    The cyclic deformation behavior of a dispersion-strengthened copper alloy, GlidCop Al-15, has been studied at plastic strain amplitudes in the range 0.1 pct [<=] [Delta][var epsilon][sub p]/2 [<=] 0.8 pct. Compared to pure polycrystalline copper, the dispersion-strengthened material exhibits a relatively stable cyclic response as a consequence of the dislocation substructures inherited from prior processing and stabilized by the Al[sub 2]O[sub 3] particles. These dislocation structures remain largely unaltered during the course of deformation; hence, they do not reveal any of the features classically associated with copper tested in fatigue. At low amplitudes, the fatigue lifetimes of the dispersion-strengthened copper and the base alloy are similar; however, the former is more susceptible to cracking at stress concentrations because of its substantially greater strength. This similarity in fatigue life-times is a consequence of the dispersal of both deformation and damage accumulation by the fine grain size and dislocation/particle interactions in the GlidCop alloy. The operation of these mechanisms is reflected in the fine surface slip markings and rough fracture surface features for this material.

  2. A ubiquitous wearable unit for controlling muscular fatigue during cycling exercise sessions.

    PubMed

    Kiryu, Tohru; Yamashita, Kazuki

    2007-01-01

    For health promotion and motor rehabilitation, controlling muscular fatigue on-site is important during exercise sessions. We have developed a ubiquitous wearable unit with a Linux board and tried to apply it to the control of a torque-assisted bicycle with a biosignal-based fuzzy system designed for a cycle ergometer. The results showed that an appropriate design for the cycle ergometor (indoor exercise) would be sufficiently applicable for the torque-assisted bicycle (outdoor exercise) in terms of heart rate, but was not sufficient in terms of muscular fatigue. It needs more detailed control for muscular activity.

  3. The relationship between parental fatigue, parenting self-efficacy and behaviour: implications for supporting parents in the early parenting period.

    PubMed

    Chau, V; Giallo, R

    2015-07-01

    Emerging evidence indicates that parental fatigue is associated with low warmth and increased hostility in parent-child interactions. One possible pathway by which fatigue may impact on parenting behaviour is via parental self-efficacy (PSE), whereby high fatigue may undermine PSE, which is often associated with suboptimal parenting behaviour. The current study sought to explore a model of the relationships between parental fatigue, parenting warmth and hostility, where PSE mediates these relationships and whether the nature of these relationships differ by social or family context. The current sample was drawn from a larger Australian community sample survey on parent well-being and parenting. It consisted of 1143 parents (mothers, n = 1003; fathers, n = 140) of children aged 0-4 years. Path analysis revealed that the relationship between fatigue and parenting warmth and hostility was fully mediated by PSE. These results indicate that fatigue has the potential to negatively influence parenting behaviours that are important for their children's well-being and development, and that fatigue plays a mediating role in this relationship. Implications of the study for psycho-education and interventions targeting the management of parental fatigue are discussed. © 2014 John Wiley & Sons Ltd.

  4. Role of microcracks in high cycle fatigue damage of an Al-SiC composite

    SciTech Connect

    Chen, E.Y.; Meshii, M.; Lawson, L.

    1997-12-31

    Advanced Al-SiC composites are considered potential candidates for replacing monolithic metals in high cycle fatigue (HCF) applications such as aircraft wing skins and automotive engine connecting rods. To assess their aptitude in such instances, this study examines the role of microcracks in the HCF damage and critical crack formation process of a X2080 Al-15 vol.% SiC{sub p} composite. Microcracks are important in fatigue since their growth (or lack of growth) greatly determines fatigue strength. In the low cycle fatigue (LCF) of this Al-SiC composite, the microcrack regime can dominate for over 60% of the fatigue life. In HCF, while this is still often the case and microcracks can initiate within the first 10% of the life, most arrest immediately and microcrack development can exceed 70% of the life. These and other characteristics of microcrack growth in HCF such as the growth rates, coalescence, critical crack formation, and instability will be discussed in comparison to similar examinations made under LCF conditions. These results will emphasize the significance of microcracks when designing for fatigue strength and reliability inspectability in HCF.

  5. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  6. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  7. Low cycle fatigue behavior of conventionally cast MAR-M 200 AT 1000 deg C

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Bill, R. C.

    1984-01-01

    The low cycle fatigue behavior of the nickel-based superalloy MAR-M 200 in conventionally cast form was studied at 1000 C. Continuous cycling tests, without hold times, were conducted with inelastic strain ranges of from 0.04 to 0.33 percent. Tests were also conducted which included a hold time at peak strain in either tension or compression. For the conditions studied, it was determined that imposition of hold times did not significantly affect the fatigue life. Also, for continuous cycling tests, increasing or decreasing the cycle frequency did not affect life. Metallographic analysis revealed that the most significant damage mechanism involved environmentally assisted intergranular crack initiation and propagation, regardless of the cycle type. Changes in the gamma morphology (rafting and rod formation) were observed, but did not significantly affect the failure.

  8. Competences required for the delivery of high and low-intensity cognitive behavioural interventions for chronic fatigue, chronic fatigue syndrome/ME and irritable bowel syndrome.

    PubMed

    Rimes, Katharine A; Wingrove, Janet; Moss-Morris, Rona; Chalder, Trudie

    2014-11-01

    Cognitive behavioural interventions are effective in the treatment of chronic fatigue, chronic fatigue syndrome (sometimes known as ME or CFS/ME) and irritable bowel syndrome (IBS). Such interventions are increasingly being provided not only in specialist settings but in primary care settings such as Improving Access to Psychological Therapies (IAPT) services. There are no existing competences for the delivery of "low-intensity" or "high-intensity" cognitive behavioural interventions for these conditions. To develop "high-intensity" and "low-intensity" competences for cognitive behavioural interventions for chronic fatigue, CFS/ME and IBS. The initial draft drew on a variety of sources including treatment manuals and other information from randomized controlled trials. Therapists with experience in providing cognitive behavioural interventions for CF, CFS/ME and IBS in research and clinical settings were consulted on the initial draft competences and their suggestions for minor amendments were incorporated into the final versions. Feedback from experienced therapists was positive. Therapists providing low intensity interventions reported that the competences were also helpful in highlighting training needs. These sets of competences should facilitate the training and supervision of therapists providing cognitive behavioural interventions for chronic fatigue, CFS/ME and IBS. The competences are available online (see table of contents for this issue: http://journals.cambridge.org/jid_BCP) or on request from the first author.

  9. Chronic fatigue in general practice: economic evaluation of counselling versus cognitive behaviour therapy.

    PubMed Central

    Chisholm, D; Godfrey, E; Ridsdale, L; Chalder, T; King, M; Seed, P; Wallace, P; Wessely, S

    2001-01-01

    BACKGROUND: There is a paucity of evidence relating to the cost-effectiveness of alternative treatment responses to chronic fatigue. AIM: To compare the relative costs and outcomes of counselling versus cognitive behaviour therapy (CBT) provided in primary care settings for the treatment of fatigue. DESIGN OF STUDY: A randomised controlled trial incorporating a cost-consequences analysis. SETTING: One hundred and twenty-nine patients from 10 general practices across London and the South Thames region who had experienced symptoms of fatigue for at least three months. METHOD: An economic analysis was performed to measure costs of therapy, other use of health services, informal care-giving, and lost employment. The principal outcome measure was the Fatigue Questionnaire; secondary measures were the Hospital Anxiety and Depression Scale and a social adjustment scale. RESULTS: Although the mean cost of treatment was higher for the CBT group (164 Pounds, standard deviation = 67) than the counselling group (109 Pounds, SD = 49; 95% confidence interval = 35 to 76, P < 0.001), a comparison of change scores between baseline and six-month assessment revealed no statistically significant differences between the two groups in terms of aggregate health care costs, patient and family costs or incremental cost-effectiveness (cost per unit of improvement on the fatigue score). CONCLUSIONS: Counselling and CBT both led to improvements in fatigue and related symptoms, while slightly reducing informal care and lost productivity costs. Counselling represents a less costly (and more widely available) intervention but no overall cost-effectiveness advantage was found for either form of therapy. PMID:11271867

  10. Changes in muscle strength, relaxation rate and fatiguability during the human menstrual cycle.

    PubMed Central

    Sarwar, R; Niclos, B B; Rutherford, O M

    1996-01-01

    1. The effect of the different phases of the menstrual cycle on skeletal muscle strength, contractile properties and fatiguability was investigated in ten young, healthy females. Results were compared with a similar group on the combined (non-phasic) oral contraceptive pill (OC). Cycle phases were divided into the early and mid-follicular, mid-cycle (ovulatory) and mid- and late luteal. Cycle phases were estimated from the first day of the menstrual bleed. 2. Subjects were studied weekly through two complete cycles. Measurements included quadriceps and handgrip maximum voluntary isometric force and the relaxation times, force-frequency relationship and fatigue index of the quadriceps during percutaneous stimulation at a range of frequencies from 1 to 100 Hz. 3. In the women not taking the OC there was a significant increase of about 11% in quadriceps and handgrip strength at mid-cycle compared with both the follicular and luteal phases. Accompanying the increases in strength there was a significant slowing of relaxation and increase in fatiguability at mid-cycle. No changes in any parameter were found in the women taking the OC. 4. The changes in muscle function at mid-cycle may be due to the increase in oestrogen that occurs prior to ovulation. PMID:8735711

  11. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  12. Analysis of fatigue crack propagation behaviour in SiC particulate Al2O3 whisker reinforced hybrid MMC

    NASA Astrophysics Data System (ADS)

    Iqbal, AKM Asif; Arai, Yoshio

    2016-02-01

    The fatigue crack propagation behaviour of a cast hybrid metal matrix composite (MMC) was investigated and compared with the crack propagation behaviour of MMC with Al2O3 and Al alloy in this article. Three dimensional (3D) surface analysis is carried out to analyze the crack propagation mechanism. All three materials clearly show near threshold and stable crack growth regions, but the rapid crack growth region is not clearly understood. The crack propagation resistance is found higher in hybrid MMC than that of MMC with Al2O3 whisker and the Al alloy in the low ΔK region. The crack propagation in the hybrid MMC in the near-threshold region is directed by the debonding of reinforcement-matrix followed by void nucleation in the Al alloy matrix. Besides, the crack propagation in the stable- or midcrack-growth region is controlled by the debonding of particle-matrix and whisker-matrix interface caused by the cycle-by-cycle crack growth along the interface. The transgranular fracture of the reinforcement and void formation are also observed. Due to presence of large volume of inclusions and the microstructural inhomogeneity, the area of striation formation is reduced in the hybrid MMC, caused the unstable fracture.

  13. Ratcheting Assessment of GFRP Composites in Low-Cycle Fatigue Domain

    NASA Astrophysics Data System (ADS)

    Ahmadzadeh, G. R.; Varvani-Farahani, A.

    2014-06-01

    The present study intends to examine ratcheting response of Glass Fiber Reinforced Polymer (GFRP) composites over fatigue cycles by means of parametric variables. Stages of ratcheting deformation were related to stress cycles, lifespan, mechanical properties and cyclic stress levels by means of linear and non-linear functions. The coefficients B and C in the proposed ratcheting formulation calibrated ratcheting equation by means of material properties over ratcheting stages. Coefficients A and C calibrated the stages I and II of ratcheting strain curve over stress cycles. The ratcheting curve over initial and final stages was affected as composite modulus of elasticity ( E c ) increased. An increase in E c -dependent coefficients A and B increased the magnitude of ratcheting strains over stress cycles. Ratcheting data for continuous and short fiber GFRP composites with various volume fractions were employed to evaluate the proposed ratcheting formulation. Interaction of ratcheting and fatigue phenomena was further assumed when the proposed parametric ratcheting equation was coupled with a fatigue damage model developed earlier by present authors. Overall damage is achieved from accumulation of ratcheting and fatigue over stress cycles.

  14. Low cycle notched fatigue behavior and life predictions of A723 high strength steels

    SciTech Connect

    Troiano, E.; Underwood, J.H.; Crayon, D.

    1995-12-31

    Two types of ASTM A723 steels have been investigated for their low cycle fatigue behavior. Specimens were tested in four-point bending, both with and without notches, and the measured fatigue lives were compared with those predicted by Neubers notch analysis, and standard fracture mechanics life prediction techniques. Comparison of measured and predicted lives indicate that the elastic/plastic Neuber analysis under predicts the measured fatigue life by as much as 67% at large strains, and becomes a better predictor of life as the applied strains decrease. The elastic Neubers analysis also under predicts the measured fatigue lives by 45% at large applied strains, but seems to accurately predict lives at reversals to failure greater than 100. The fracture mechanics approach assumes elastic stresses at the crack tip, and predicts lives within 30% over the full range of strains investigated. The results show that the Neuber notch analysis is not as good an indicator of the low cycle fatigue behavior of A723 steels as is the fracture mechanics life prediction techniques. As the life cycles to failure decreases, the Neubers analysis predicts lives that are two to three times more conservative than those experimentally measured.

  15. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint)

    DTIC Science & Technology

    2009-03-01

    AFRL-RX-WP-TP-2009-4123 MICROSTRUCTURE-SENSITIVE EXTREME VALUE PROBABILITIES FOR HIGH CYCLE FATIGUE OF Ni- BASE SUPERALLOY IN100 (PREPRINT...PROBABILITIES FOR HIGH CYCLE FATIGUE OF Ni-BASE SUPERALLOY IN100 (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...statistical framework to investigate the microstructure-sensitive fatigue response of the PM Ni-base superalloy IN100. To accomplish this task, we

  16. Effects of residual stress and texture on the high-cycle fatigue properties of light metals

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuping

    2007-12-01

    High cycle fatigue tests were conducted on a commercially pure Ti, a forged Ti-6Al-4V alloy, and newly developed high strength AA2026 and AA2099 Al alloys in four-point bend. The effects of surface compressive residual stress and texture on the fatigue properties of these alloys were systematically investigated. The resistance to fatigue crack growth in an alloy was estimated using a simple model that took into account texture and grain structure. The resistance calculations were able to explain the observed behaviors of fatigue crack growth in planar slip materials. Due to strengthening in the surface by enhancement treatment, fatigue cracks were found to be initiated in the subsurface region in the short peened Ti-6Al-4V alloy and sandblasted CP Ti, in contrast to crack initiation on the surface of the untreated samples. When the shot peened Ti-6A1-4V alloy was tested between 25°C and 200°C, the surface compressive residual stress could only be slightly relaxed due to thermal exposure, which did not deteriorate the fatigue strength of the alloy. Similarly, no obvious redistribution of the residual stress was observed when the sandblasted Ti was annealed below 200°C. With increase in the annealing temperature (300°C˜700°C), the compressive residual stresses were significantly relaxed, leading to relatively a lower fatigue strength. In AA2026 & AA2099 Al alloys, crack growth was found to be in a predominantly crystallographic mode in unrecrystallized regions, and a non-crystallographic mode in recrystallized regions. Fatigue cracks were deflected at grain boundaries usually with small twist angles in the unrecrystallized regions, but with large twist angles in the recrystallized regions. The theoretical analysis verified that a large percentage of recrystallized grains could provide strong resistance to fatigue crack growth by producing larger twist angles of crack deflection at their grain boundaries than those of most of the gains in unrecrystallized

  17. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.

    PubMed

    Leinenbach, Christian; Eifler, Dietmar

    2006-03-01

    In this investigation, the cyclic deformation behaviour of the binary titanium alloys Ti-6Al-4V and Ti-6Al-7Nb was characterized in axial stress-controlled constant amplitude and load increase tests as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, corundum grit blasting, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during testing in simulated physiological media indicated surface damages such as slip bands, intrusions and extrusions or finally microcracks. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy (SEM).

  18. A UK survey of driving behaviour, fatigue, risk taking and road traffic accidents

    PubMed Central

    Smith, Andrew P

    2016-01-01

    Objective The aim of the present research was to examine associations between poor driving behaviour (DB), driving when fatigued (DF), risk taking (RT) and road traffic accidents (RTAs). Design The study involved a cross-sectional online survey of clients of an insurance company. The survey measured DB (speeding, distraction, lapses of attention and aggression), RT and frequency of driving when fatigued (DF, driving late at night, prolonged driving, driving after a demanding working day and driving with a cold). Demographic, lifestyle, job characteristics and psychosocial factors were also measured and used as covariates. Setting Cardiff, UK. Sample 3000 clients of an insurance company agreed to participate in the study, and 2856 completed the survey (68% woman, 32% man; mean age: 34 years, range 18–74 years). Main outcome measures The outcomes were RTAs (requiring medical attention; not requiring medical attention), where the person was the driver. Results Factor analyses showed that DB, RT and fatigue loaded on independent factors. Logistic regressions showed that poor DB, frequently DF and taking risks predicted medical and non-medical RTAs. These effects were additive and those who reported poor DB, driving when fatigue and taking risks were twice as likely to have an RTA. These effects remained significant when demographic, lifestyle, medical, driving, work and psychosocial factors were covaried. Conclusions Poor DB, DF and RT predict RTAs. There are now short measuring instruments that can assess these, and driver education programmes must increase awareness of these risk factors. PMID:27540100

  19. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  20. Effects of temperature and hold times on low cycle fatigue of Astroloy

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Stoloff, N. S.; Duquette, D. J.

    1986-01-01

    Low cycle fatigue (LCF) and creep-fatigue-environment interactions of HIP Astroloy were studied at 650 C and 725 C. The results showed that the model proposed by Kaisand and Mowbray (1979) was successful in predicting the magnitude and trend of the fatigue crack growth rate from LCF data. Raising the temperature from 650 C to 725 C did not change the fracture mode, while employing tensile hold caused a change in fracture mode and was more damaging than raising the temperature by 75 C. All samples displayed multiple fracture origins, which is initiated transgranularly in continuous cycling tests and intergranularly in hold time tests. An examination of the secondary crack showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold time.

  1. Development of high-cycle fatigue design curves for a cast aluminum alloy

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1979-01-01

    Life prediction curves for rocket engine pump parts were developed from the results of high-cycle fatigue tests run on cast-aluminum specimens. Notched and smooth specimens were cyclically tested at different mean stress levels at -320 F (78 K). The notch size and mean stress enveloped the design operating conditions. Local stress computed in the groove of the notched specimen was used to represent its fatigue strength. The von Mises criterion was used to determine effective cyclic stresses. The Goodman rule was applied to determine equivalent reversed alternating stresses. The procedure permitted the notched and smooth data sets to each be described by a single curve. High-cycle fatigue life curves were provided for the stress state, mean stress, and stress concentration spanned by the data.

  2. Effects of temperature and hold times on low cycle fatigue of Astroloy

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Stoloff, N. S.; Duquette, D. J.

    1986-01-01

    Low cycle fatigue (LCF) and creep-fatigue-environment interactions of HIP Astroloy were studied at 650 C and 725 C. The results showed that the model proposed by Kaisand and Mowbray (1979) was successful in predicting the magnitude and trend of the fatigue crack growth rate from LCF data. Raising the temperature from 650 C to 725 C did not change the fracture mode, while employing tensile hold caused a change in fracture mode and was more damaging than raising the temperature by 75 C. All samples displayed multiple fracture origins, which is initiated transgranularly in continuous cycling tests and intergranularly in hold time tests. An examination of the secondary crack showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold time.

  3. Probabilistic high cycle fatigue failure analysis with application to liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Sutharshana, S.; Newlin, L.; Ebbeler, D.; Moore, N.; O'Hara, K.

    1990-01-01

    A probabilistic high cycle fatigue (HCF) failure analysis of a welded duct in a rocket engine of the Space Shuttle main engine class is described. A state-of-the-art HCF failure prediction method was used in a Monte Carlo simulation to generate a distribution of failure lives. A stochastic stress/life model is used for material characterization, and a composite stress history is generated for accurately deriving the stress cycles for the fatigue-damage calculations. The HCF failure model expresses fatigue life as a function of stochastic parameters including environment, loads, material properties, geometry, and model specification errors. A series of HCF failure life analyses were performed to study the impact of a fixed parameter and to assess the importance of each stochastic input parameter through marginal analyses.

  4. Development of high-cycle fatigue design curves for a cast aluminum alloy

    NASA Technical Reports Server (NTRS)

    Cooper, R. A.

    1979-01-01

    Life prediction curves for rocket engine pump parts were developed from the results of high-cycle fatigue tests run on cast-aluminum specimens. Notched and smooth specimens were cyclically tested at different mean stress levels at -320 F (78 K). The notch size and mean stress enveloped the design operating conditions. Local stress computed in the groove of the notched specimen was used to represent its fatigue strength. The von Mises criterion was used to determine effective cyclic stresses. The Goodman rule was applied to determine equivalent reversed alternating stresses. The procedure permitted the notched and smooth data sets to each be described by a single curve. High-cycle fatigue life curves were provided for the stress state, mean stress, and stress concentration spanned by the data.

  5. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.

    PubMed

    Kosmopoulos, Victor; Schizas, Constantin; Keller, Tony S

    2008-01-01

    Relatively small amounts of microdamage have been suggested to have a major effect on the mechanical properties of bone. A significant reduction in mechanical properties (e.g. modulus) can occur even before the appearance of microcracks. This study uses a novel non-linear microdamaging finite-element (FE) algorithm to simulate the low-cycle fatigue behavior of high-density trabecular bone. We aimed to investigate if diffuse microdamage accumulation and concomitant modulus reduction, without the need for complete trabecular strut fracture, may be an underlining mechanism for low-cycle fatigue failure (defined as a 30% reduction in apparent modulus). A microCT constructed FE model was subjected to a single cycle monotonic compression test, and constant and variable amplitude loading scenarios to study the initiation and accumulation of low-cycle fatigue microdamage. Microcrack initiation was simulated using four damage criteria: 30%, 40%, 50% and 60% reduction in bone element modulus (el-MR). Evaluation of structural (apparent) damage using the four different tissue level damage criteria resulted in specimen fatigue failure at 72, 316, 969 and 1518 cycles for the 30%, 40%, 50% and 60% el-MR models, respectively. Simulations based on the 50% el-MR model were consistent with previously published experimental findings. A strong, significant non-linear, power law relationship was found between cycles to failure (N) and effective strain (Deltasigma/E(0)): N=1.394x10(-25)(Deltasigma/E(0))(-12.17), r(2)=0.97, p<0.0001. The results suggest that microdamage and microcrack propagation, without the need for complete trabecular strut fracture, are mechanisms for high-density trabecular bone failure. Furthermore, the model is consistent with previous numerical fatigue simulations indicating that microdamage to a small number of trabeculae results in relatively large specimen modulus reductions and rapid failure.

  6. The circadian cycle: daily rhythms from behaviour to genes

    PubMed Central

    Merrow, Martha; Spoelstra, Kamiel; Roenneberg, Till

    2005-01-01

    The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle during the day varies widely for individuals, resulting in extremes colloquially called 'larks' and 'owls'. These behavioural oscillations are mirrored in the levels of physiology and gene expression. Deciphering the underlying mechanisms will provide important insights into how the circadian clock affects health and disease. PMID:16222241

  7. Use of strainrange partitioning to predict high temperature low-cycle fatigue life. [of metallic materials

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Halford, G. R.

    1976-01-01

    The fundamental concepts of the strainrange partitioning approach to high temperature, low low-cycle fatigue are reviewed. Procedures are presented by which the partitioned strainrange versus life relationships for any material can be generated. Laboratory tests are suggested for further verifying the ability of the method of strainrange partitioning to predict life.

  8. Evaluation of thermal cycling creep-fatigue damage for a molten salt receiver

    NASA Astrophysics Data System (ADS)

    Grossman, James W.; Jones, Wendell B.; Veers, Paul S.

    1990-01-01

    A molten salt cavity receiver was solar tested at Sandia National Laboratories during a year-long test program. Upon completion of testing, an analysis was performed to determine the effect of thermal cycling on the receiver. The results indicate a substantial fatigue damage accumulation for the receiver when the relatively short test time is considered. This paper describes the methodology used to analyze the cycling, the results as they pertain to this receiver, and how they affect future receiver design.

  9. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  10. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  11. Microstructural fracture mechanics in high-cycle fatigue

    SciTech Connect

    Rios, E.R. de los; Navarro, A.

    1997-12-31

    Microstructural Fracture Mechanics principles are used to develop a model of crack growth in long life fatigue. In its simplest form microstructural modelling considers the material as a polycrystal of uniform grain size D, with a crack system divided into three zones: the crack, the plastic zone and the microstructural barrier zone. The solution of the equilibrium equation allows for the calculation of the stresses sustained by the crack wake, plastic zone, barrier zone and elastic enclave, and the crack tip plastic displacement {phi}. Crack growth rate is calculated through a Paris type relationship in terms of {phi}, i.e., da/dN = C{phi}{sup n}. Conditions for crack arrest and instability are established.

  12. High and low-cycle fatigue behavior of prestressed concrete in offshore structures

    SciTech Connect

    Gerwick, B.C.; Venuti, W.J.

    1980-03-01

    Although concrete does suffer progressive loss of strength with increasing number of cycles, a comparison of the Woehler curves with the probable distribution of compressive stresses during a service life in an environment such as the North Sea shows extremely low cumulative usage at the high-cycle end of the spectrum. However, significant damage can occur at the low-cycle, high-amplitude end. Repeated excursions of submerged concrete into the crack opening range leads to pumping of water in and out of the crack and hydraulic wedging, leading to splitting of the concrete. Cracking subcects the reinforcing and prestressing steel to cyclic tension. Loss of bond ensues and may lead to eventual fatigue failure. Adequate endurance can be ensured by prestressing, so as to avoid a large number of cycles extending into the crack opening range, and by the provision of adequate percentages of steel across the section plus transverse and confining steel. For the typical concrete sea structure, high-cycle, low-amplitude, cumulative fatigue is not a significant problem. However low-cycle, high-amplitude fatigue requires consideration.

  13. Monitoring neuromuscular fatigue in team-sport athletes using a cycle-ergometer test.

    PubMed

    Wehbe, George; Gabett, Tim J; Dwyer, Dan; McLellan, Christopher; Coad, Sam

    2015-04-01

    To compare a novel sprint test on a cycle ergometer with a countermovement-jump (CMJ) test for monitoring neuromuscular fatigue after Australian rules football match play. Twelve elite under-18 Australian rules football players (mean ± SD age 17.5 ± 0.6 y, stature 184.7 ± 8.8 cm, body mass 75.3 ± 7.8 kg) from an Australian Football League club's Academy program performed a short sprint test on a cycle ergometer along with a single CMJ test 1 h prematch and 1, 24, and 48 h postmatch. The cycle-ergometer sprint test involved a standardized warm-up, a maximal 6-s sprint, a 1-min active recovery, and a 2nd maximal 6-s sprint, with the highest power output of the 2 sprints recorded as peak power (PP). There were small to moderate differences between postmatch changes in cycle-ergometer PP and CMJ PP at 1 (ES = 0.49), 24 (ES = -0.85), and 48 h postmatch (ES = 0.44). There was a substantial reduction in cycle-ergometer PP at 24 h postmatch (ES = -0.40) compared with 1 h prematch. The cycle-ergometer sprint test described in this study offers a novel method of neuromuscular-fatigue monitoring in team-sport athletes and specifically quantifies the concentric component of the fatigue-induced decrement of force production in muscle, which may be overlooked by a CMJ test.

  14. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid.

    PubMed

    Liu, Yong-jie; Cui, Shi-ming; He, Chao; Li, Jiu-kai; Wang, Qing-yuan

    2014-01-01

    Ti-6Al-4V implants that function as artificial joints are usually subjected to long-term cyclic loading. To study long-term fatigue behaviors of implant Ti-6Al-4V in vitro and in vivo conditions exceeding 107 cycles, constant stress amplitude fatigue experiments were carried out at ultrasonic frequency (20 kHz) with two different surface conditions (ground and polished) in ambient air and in a simulated body fluid. The initiation mechanisms of fatigue cracks were investigated with scanning electron microscopy. Improvement of fatigue strength is pronounced for polished specimens below 106 cycles in ambient air since fatigue cracks are initiated from surfaces of specimens. While the cycles exceed 106, surface conditions have no effect on fatigue behaviors because the defects located within the specimens become favorable sites for crack initiation. The endurance limit at 108 cycles of polished Ti-6Al-4V specimens decreases by 7% if it is cycled in simulated body fluid instead of ambient air. Fracture surfaces show that fatigue failure is initiated from surfaces in simulated body fluid. Surface improvement has a beneficial effect on fatigue behaviors of Ti-6Al-4V at high stress amplitudes. The fatigue properties of Ti-6Al-4V deteriorate and the mean endurance limits decrease significantly in simulated body fluid.

  15. Low and high cycle fatigue -- A continuum supported by AFM observations

    SciTech Connect

    Gerberich, W.W.; Harvey, S.E.; Kramer, D.E.; Hoehn, J.W.

    1998-09-01

    It is proposed that fatigue damage evolution is controlled by surface displacements and these can be accurately measured by atomic force microscopy (AFM). As these displacements can be followed throughout the history of a fatigued component, the fatigue process in general represents a continuum of behavior. In 10 and 200 {micro}m grain size titanium, AFM measurements demonstrate that the fraction of plasticity contributing to surface damage can be expressed as a single function over nearly five decades of cycles. Regarding this function, the effect of grain size appears to be small. In terms of damage accumulation rates, cyclic hardening parameters, and the threshold stress intensity, the proposed model represents a microstructurally-sensitive Manson-Coffin law for fatigue initiation. Coupling this with a more standard fracture mechanics approach for the latter stage of life allows a simple expression for life prediction. Over the range of 10{sup 3}--10{sup 6} cycles, this expression predicts fatigue life of titanium exposed to air and saline environments to first order.

  16. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    SciTech Connect

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  17. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of

  18. Estimation of the mesoscopic thermoplastic dissipation in High-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Charkaluk, Eric; Constantinescu, Andrei

    2006-06-01

    A series of High-Cycle Fatigue (HCF) criteria for polycrystalline materials is based on a multiscale interpretation, proposed initially by Dang Van, in which the principal concepts are a two scales model and a shakedown condition. The purpose of this Note is to extend the study of the different dissipative regimes during cyclic loading within this framework by using a self consistent homogenization scheme in coupled thermoplasticity. It is shown that the Sachs and Lin-Taylor schemes are not able to represent the thermal evolutions observed during fatigue tests. To cite this article: E. Charkaluk, A. Constantinescu, C. R. Mecanique 334 (2006).

  19. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature

    NASA Astrophysics Data System (ADS)

    Li, Dong-Feng; Barrett, Richard A.; O'Donoghue, Padraic E.; O'Dowd, Noel P.; Leen, Sean B.

    In this paper, a multi-scale crystal plasticity model is presented for cyclic plasticity and low-cycle fatigue in a tempered martensite ferritic steel at elevated temperature. The model explicitly represents the geometry of grains, sub-grains and precipitates in the material, with strain gradient effects and kinematic hardening included in the crystal plasticity formulation. With the multiscale model, the cyclic behaviour at the sub-grain level is predicted with the effect of lath and precipitate sizes examined. A crystallographic, accumulated slip (strain) parameter, modulated by triaxiality, is implemented at the micro-scale, to predict crack initiation in precipitate-strengthened laths. The predicted numbers of cycles to crack initiation agree well with experimental data. A strong dependence on the precipitate size is demonstrated, indicating a detrimental effect of coarsening of precipitates on fatigue at elevated temperature.

  20. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  1. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  2. Cyclic deformation fatigue behaviour of Ti6Al4V thermochemically nitrided for articular prostheses.

    PubMed

    Gil, F J; Manero, J M; Rodriguez, D; Planell, J A

    2003-01-01

    Titanium and its alloys have many attractive properties including high specific strength, low density, and excellent corrosion resistance. Titanium and the Ti6Al4V alloy have long been recognized as materials with high biocompatibility. These properties have led to the use of these materials in biomedical applications. Despite these advantages, the lack of good wear resistance makes the use of titanium and Ti6Al4V difficult in some biomedical applications, for example, articulating components of prostheses. To overcome this limitation, nitriding has been investigated as a surface-hardening method for titanium. Although nitriding greatly improves the wear resistance, this method reduces the fatigue strength. Low cycle fatigue performance in air of nitrided Ti6Al4V at different deformation amplitudes has been studied. Results show a reduction of low cycle fatigue life of up to 10% compared to the non-treated material. Studies suggest it is not related to the titanium nitride surface layer, but to microstructural changes caused by the high temperature treatment. (Journal of Applied Biomaterial & Biomechanics 2003; 1: 43-7).

  3. High temperature fatigue behaviour of TZM molybdenum alloy under mechanical and thermomechanical cyclic loads

    NASA Astrophysics Data System (ADS)

    Shi, H. J.; Niu, L. S.; Korn, C.; Pluvinage, G.

    2000-02-01

    High temperature isothermal mechanical fatigue and in-phase thermomechanical fatigue (TMF) tests in load control were carried out on a molybdenum-based alloy, one of the best known of the refractory alloys, TZM. The stress-strain response and the cyclic life of the material were measured during the tests. The fatigue lives obtained in the in-phase TMF tests are lower than those obtained in the isothermal mechanical tests at the same load amplitude. It appears that an additional damage is produced by the reaction of mechanical stress cycles and temperature cycles in TMF situation. Ratcheting phenomenon occurred during the tests with an increasing creep rate and it was dependent on temperature and load amplitude. A model of lifetime prediction, based on the Woehler-Miner law, was discussed. Damage coefficients that are functions of the maximum temperature and the variation of temperature are introduced in the model so as to evaluate TMF lives in load control. With this method the lifetime prediction gives results corresponding well to experimental data.

  4. A multi-temporal scale approach to high cycle fatigue simulation

    NASA Astrophysics Data System (ADS)

    Bhamare, Sagar; Eason, Thomas; Spottswood, Stephen; Mannava, Seetha R.; Vasudevan, Vijay K.; Qian, Dong

    2014-02-01

    High cycle fatigue (HCF) is a failure mechanism that dominates the life of many engineering components and structures. Time scale associated with HCF loading is a main challenge for developing a simulation based life prediction framework using conventional FEM approach. Motivated by these challenges, the extended space-time method (XTFEM) based on the time discontinuous Galerkin formulation is proposed. For HCF life prediction, XTFEM is coupled with a two-scale continuum damage mechanics model for evaluating the fatigue damage accumulation. Direct numerical simulations of HCF are performed using the proposed methodology on a notched specimen of AISI 304L steel. It is shown the total fatigue life can be accurately predicted using the proposed simulation approach based on XTFEM. The presented computational framework can be extended for predicting the service and the residual life of structural components.

  5. High-cycle fatigue crack initiation and propagation in laser melting deposited TC18 titanium alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhang, Shu-quan; Tian, Xiang-jun; Wang, Hua-ming

    2013-07-01

    This article examines fatigue crack nucleation and propagation in laser deposited TC18 titanium alloy. The Widmanstätten structure was obtained by double-annealing treatment. High-cycle fatigue (HCF) tests were conducted at room temperature with the stress ratio of 0.1 and the notch concentration factor K t = 1. Fatigue cracks initiated preferentially at micropores, which had great effect on the HCF properties. The effect decreased with the decrease of pore size and the increase of distance from the pore location to the specimen surface. The crack initiation region was characterized by the cleavage facets of α lamella and the tearing of β matrix. The soft α precipitated-free zone formed along grain boundaries accelerated the crack propagation. Subsurface observation indicated that the crack preferred to propagate along the grain boundary α or border of α lamella or vertical to α lamella.

  6. Mindfulness-based cognitive therapy for people with chronic fatigue syndrome still experiencing excessive fatigue after cognitive behaviour therapy: a pilot randomized study.

    PubMed

    Rimes, Katharine A; Wingrove, Janet

    2013-01-01

    Cognitive behaviour therapy (CBT) is an effective treatment for chronic fatigue syndrome (CFS; sometimes known as myalgic encephalomyelitis). However, only a minority of patients fully recover after CBT; thus, methods for improving treatment outcomes are required. This pilot study concerned a mindfulness-based cognitive therapy (MBCT) intervention adapted for people with CFS who were still experiencing excessive fatigue after CBT. The study aimed to investigate the acceptability of this new intervention and the feasibility of conducting a larger-scale randomized trial in the future. Preliminary efficacy analyses were also undertaken. Participants were randomly allocated to MBCT or waiting list. Sixteen MBCT participants and 19 waiting-list participants completed the study, with the intervention being delivered in two separate groups. Acceptability, engagement and participant-rated helpfulness of the intervention were high. Analysis of covariance controlling for pre-treatment scores indicated that, at post-treatment, MBCT participants reported lower levels of fatigue (the primary clinical outcome) than the waiting-list group. Similarly, there were significant group differences in fatigue at 2-month follow-up, and when the MBCT group was followed up to 6 months post-treatment, these improvements were maintained. The MBCT group also had superior outcomes on measures of impairment, depressed mood, catastrophic thinking about fatigue, all-or-nothing behavioural responses, unhelpful beliefs about emotions, mindfulness and self-compassion. In conclusion, MBCT is a promising and acceptable additional intervention for people still experiencing excessive fatigue after CBT for CFS, which should be investigated in a larger randomized controlled trial. Only about 30% of people with chronic fatigue syndrome (CFS) recover after cognitive behaviour therapy (CBT); thus, methods for improving treatment outcomes are needed. This is the first pilot randomized study to demonstrate that

  7. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid

    PubMed Central

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-01-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area. PMID:27877571

  8. Fretting fatigue behaviour of Ni-free high-nitrogen stainless steel in a simulated body fluid.

    PubMed

    Maruyama, Norio; Hiromoto, Sachiko; Akiyama, Eiji; Nakamura, Morihiko

    2013-04-01

    Fretting fatigue behaviour of Ni-free high-nitrogen steel (HNS) with a yield strength of about 800 MPa, which was prepared by nitrogen gas pressurized electroslag remelting, was studied in air and in phosphate-buffered saline (PBS(-)). For comparison, fretting fatigue behaviour of cold-rolled SUS316L steel (SUS316L(CR)) with similar yield strength was examined. The plain fatigue limit of HNS was slightly lower than that of SUS316L(CR) although the former had a higher tensile strength than the latter. The fretting fatigue limit of HNS was higher than that of SUS316L(CR) both in air and in PBS(-). A decrease in fatigue limit of HNS by fretting was significantly smaller than that of SUS316L(CR) in both environments, indicating that HNS has better fretting fatigue resistance than SUS316L(CR). The decrease in fatigue limit by fretting is discussed taking into account the effect of friction stress due to fretting and the additional influences of wear, tribocorrosion and plastic deformation in the fretted area.

  9. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.; Fountzoulas, C.

    2011-08-01

    A review of the literature revealed that high-cycle fatigue data associated with friction stir-welded (FSW) joints of AA5083-H321 (a solid-solution-strengthened and strain-hardened/stabilized Al-Mg-Mn alloy) are characterized by a relatively large statistical scatter. This scatter is closely related to the intrinsic variability of the FSW process and to the stochastic nature of the workpiece material microstructure/properties as well as to the surface condition of the weld. Consequently, the use of statistical methods and tools in the analysis of FSW joints is highly critical. A three-step FSW-joint fatigue-strength/life statistical-analysis procedure is proposed in this study. Within the first step, the type of the most appropriate probability distribution function is identified. The parameters of the selected probability distribution function, along with their confidence limits, are computed in the second step. In the third step, a procedure is developed for assessment of the statistical significance of the effect of the FSW process parameters and fatigue specimen surface conditions. The procedure is then applied to a set of stress-amplitude versus number of cycles to failure experimental data in which the tool translational speed was varied over four levels, while the fatigue specimen surface condition was varied over two levels. The results obtained showed that a two-parameter weibull distribution function with its scale factor being dependent on the stress amplitude is the most appropriate choice for the probability distribution function. In addition, it is found that, while the tool translational speed has a first-order effect on the AA5083-H321 FSW-joint fatigue strength/life, the effect of the fatigue specimen surface condition is less pronounced.

  10. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  11. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  12. High cycle fatigue behavior of gas-carburized medium carbon Cr-Mo steel

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Jun; Kweon, Young-Gak

    1996-09-01

    High cycle fatigue properties of gas-carburized 4140 steel were assessed to compare with those of 8620 steel which is widely used as a carburizing steel. Fatigue limit was evaluated associated with microstructure, case depth, and distribution of retained austenite and compressive residual stress near the surface. Test results indicated that the reheat quenching method of 4140 and 8620 steels produced a reduction in grain size, retained austenite level, and compressive residual stress at the surface and an increase in fatigue limit. The fatigue limit of direct-quenched 4140 steel shows substantially lower value than that of direct-quenched 8620 steel due to larger grain size of direct-quenched 4140 steel. However, the fatigue limit of reheat-quenched 4140 steel is greatly improved and is comparable to the reheat-quenched 8620 steel. This is attributed to the larger reduction ratio in grain size and deeper case depth of reheat-quenched 4140 steel as compared to direct-quenched and reheat-quenched 8620 steels.

  13. High cycle fatigue behavior of gas-carburized medium carbon Cr-Mo steel

    SciTech Connect

    Kim, H.J.; Kweon, Y.G.

    1996-09-01

    High cycle fatigue properties of gas-carburized 4140 steel were assessed to compare with those of 8620 steel which is widely used as a carburizing steel. Fatigue limit was evaluated associated with microstructure, case depth, and distribution of retained austenite and compressive residual stress near the surface. Test results indicated that the reheat quenching method of 4140 and 8620 steels produced a reduction in grain size, retained austenite level, and compressive residual stress at the surface and an increase in fatigue limit. The fatigue limit of direct-quenched 4140 steel shows substantially lower value than that of direct-quenched 8620 steel due to larger grain size of direct-quenched 4140 steel. However, the fatigue limit of reheat-quenches 4140 steel is greatly improved and is comparable to the reheat-quenched 8620 steel. This is attributed to the larger reduction ratio in grain size and deeper case depth of reheat-quenched 4140 steel as compared to direct-quenched and reheat-quenched 8620 steels.

  14. Carbohydrate beverage ingestion and neutrophil degranulation responses following cycling to fatigue at 75% VO2 max.

    PubMed

    Bishop, N C; Blannin, A K; Walsh, N P; Gleeson, M

    2001-04-01

    Carbohydrate (CHO) beverage ingestion appears to influence neutrophil functional responses to prolonged exercise of a fixed duration. The aim of this randomised study was to examine the effect of CHO (5% w/v) beverage ingestion on lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses in nine recreationally active males who cycled at 75% VO2 max until fatigue. On two separate occasions, subjects ingested either placebo (PLA) or CHO beverages before and at 15 min intervals during the exercise. Subjects exercised for 31% longer on the CHO trial compared with the PLA trial (P < 0.05). At fatigue plasma glucose concentration was significantly lower on the PLA trial compared with the CHO trial (P < 0.05). Plasma cortisol concentrations had increased similarly on both trials at this time. A marked neutrophilia was evident at fatigue and throughout the 4 h recovery period, the magnitude of which was similar on both trials. At fatigue LPS-stimulated elastase release per neutrophil had fallen similarly on both trials compared with pre-exercise values (47% and 50% on the PLA and CHO trials, respectively). In conclusion, our results suggest that CHO beverage ingestion has negligible influence on the hormonal, circulating neutrophil and LPS-stimulated neutrophil degranulation responses when exercise is performed to fatigue.

  15. High-cycle fatigue properties of the ODS-alloy MA 6000 at 850 C

    SciTech Connect

    Hoffelner, W.; Singer, R.F.

    1985-03-01

    The high cycle fatigue (HCF) and cyclic crack growth rate (CCGR) properties of the dispersion strengthened ODS-alloy MA 6000 were investigated with smooth bars and with fracture mechanics samples at 850 C. The material was very coarse-grained with the grains elongated in the rolling direction. The fatigue limit of samples cut parallel to the grain elongation direction (p-samples) was almost a factor of 2 higher than the one of samples cut transverse to the elongation direction (t-samples). Inclusions were found to be responsible for crack initiation. For p-samples a reasonable agreement between particle size, fatigue limit, and crack growth behavior was found. For t-type samples such an agreement also exists, provided differences in the crack growth behavior of short cracks and long cracks are taken into consideration. The low fatigue strength of t-samples could be linked with low Young's modulus in this direction. The crack propagation rate of long cracks is lower in t-samples than in p-samples due to crack branching along the grain boundaries. HCF-strength of MA 6000 is high compared to conventional cast alloys mainly because of reduced size of crack nucleation sites and higher fatigue threshold stress intensity range, as a result of higher Young's modulus. 15 references.

  16. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  17. Effect of Shot Peening on the High-Cycle Fatigue Behavior of High-Strength Cast Iron with Nodular Graphite

    NASA Astrophysics Data System (ADS)

    Benam, Amir Sadighzadeh

    2017-01-01

    The effect of shot peening treatment on high-cycle fatigue of high-strength cast iron with globular graphite is studied. The fatigue curves are plotted, the microhardness and the surface roughness are measured. An analysis of fracture surfaces is performed, and the thickness of the hardened layer is determined. The shot peening is shown to affect favorably the fatigue resistance of the iron but to worsen the condition of the surface.

  18. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  19. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  20. Low-cycle fatigue properties of a SiC whisker-reinforced 2124 aluminum alloy

    SciTech Connect

    Sasaki, M. ); Lawson, L.; Meshii, M. . Dept. of Materials Science and Engineering)

    1994-10-01

    Low-cycle fatigue microcracking leading to failure of smooth specimens of a powder metallurgy (PM) 2124 aluminum alloy reinforced with 20 vol pct SiC whiskers was studied. The crack size near the onset of unstable growth was inferred to be 50 to 70 [mu]m in the stress amplitude range of the present study (400 to 600 MPa, R = [minus]1) from observations of the fracture surfaces of the specimens. This corresponds to stress intensities between 1/3 to 1/2 typical values of K[sub 1c] or 1/4 to 1/9 the critical length predicted from K[sub 1c] values of 12 to 14 MPa[radical]m. The microcrack size distributions and growth data were obtained from the low-cycle fatigue specimens at various stages of fatigue, using a surface replica technique. During continued cycling, microcracks formed and were lost through linkage with other cracks. At the same time, the fraction of small cracks (< 5 [mu]m) decreased, while that of larger cracks (> 5 [mu]m) increased. The total number of cracks increased with increasing numbers of cycles.

  1. Low-Cycle fatigue properties of a SiC Whisker-reinforced 2124 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Lawson, L.; Meshii, M.

    1994-10-01

    Low-cycle fatigue microcracking leading to failure of smooth specimens of a powder metallurgy (PM) 2124 aluminum alloy reinforced with 20 vol pct SiC whiskers was studied. The crack size near the onset of unstable growth was inferred to be 50 to 70 µm in the stress amplitude range of the present study (400 to 600 MPa, R = -1) from observations of the fracture surfaces of the specimens. This corresponds to stress intensities between 1/3 to 1/2 typical values of K 1c or 1/4 to 1/9 the critical length predicted from K 1c values of 12 to 14 MPa√m. The microcrack size distributions and growth data were obtained from the low-cycle fatigue specimens at various stages of fatigue, using a surface replica technique. During continued cycling, microcracks formed and were lost through linkage with other cracks. At the same time, the fraction of small cracks (<5 µm) decreased, while that of larger cracks (>5 µm) increased. The total number of cracks increased with increasing numbers of cycles. Typical microcrack growth rates were determined to be db/dn = (3.57 to 6.11) × 10-10 (Δ/ K)2.2to2.48 in the lateral direction of the crack, and da/dn = (5.83 to 13.0) × 10-11 (Δ K)1.54 to 1.60 in the depth direction of the crack.

  2. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  3. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  4. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  5. Damage Assessment of CFRP [90/±45/0] Composite Laminates over Fatigue Cycles

    NASA Astrophysics Data System (ADS)

    Ahmadzadeh, G. R.; Shirazi, A.; Varvani-Farahani, A.

    2011-12-01

    The present paper develops a stiffness-based model to characterize the progressive fatigue damage in quasi-isotropic carbon fiber reinforced polymer (CFRP) [90/±45/0] composite laminates with various stacking sequences. The damage model is constructed based on (i) cracking mechanism and damage progress in matrix (Region I), matrix-fiber interface (Region II) and fiber (Region III) and (ii) corresponding stiffness reduction of unidirectional plies of 90°, 0° and angle-ply laminates of ±45° as the number of cycles progresses. The proposed model accumulates damages of constituent plies constructing [90/±45/0] laminates by means of weighting factor η 90, η 0 and η 45. These weighting factors were defined based on the damage progress over fatigue cycles within the plies 90°, 0° and ±45° of the composite laminates. Damage model has been verified using CFRP [90/±45/0] laminates samples made of graphite/epoxy 3501-6/AS4. Experimental fatigue damage data of [90/±45/0] composite laminates have fell between the predicted damage curves of 0°, 90° plies and ±45°, 0/±45° laminates over life cycles at various stress levels. Predicted damage results for CFRP [90/±45/0] laminates showed good agreement with experimental data. Effect of stacking sequence on the model of stiffness reduction has been assessed and it showed that proposed fatigue damage model successfully recognizes the changes in mechanism of fatigue damage development in quasi-isotropic composite laminates.

  6. Influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate, and low-cycle fatigue of solder joints

    NASA Astrophysics Data System (ADS)

    Conrad, H.; Guo, Z.; Fahmy, Y.; Yang, Di

    1999-09-01

    The influence of microstructure size on the plastic deformation kinetics, fatigue crack growth rate and low-cycle fatigue of eutectic Sn-Pb solder joints is reviewed. The principal microstructure feature considered is the average eutectic phase size d=(dPb+dSn)/2. The effect of an increase in reflow cooling rate (which gave a decrease in d) on the flow stress and on fatigue life was irregular at 300K, depending on the stress or strain level and cooling rate. In contrast, a consistent increase in fatigue life with decrease in d occurred for thermomechanical cycling between -30° and 130°C. Constitutive equations for plastic deformation and fatigue crack growth rate are presented which include the microstructure size. It appears that the rate-controlling deformation mechanism is the intersection of forest dislocations in the Sn phase. The mechanism for both static and dynamic phase coarsening appears to be grain boundary diffusion with a t1/4 time law. Some success has been achieved in predicting the cyclic stress-strain hysteresis loops and fatigue life, including the influence of the as-reflowed microstructure size and its coarsening. Additional definitive studies are however needed before we can accurately predict the fatigue life of solder joints over the wide temperature range and conditions experienced by electronic packages.

  7. Porosity and Crack Initiation During Low Cycle Fatigue

    DTIC Science & Technology

    1989-07-01

    in the pore-induced local plastic zones extend at least one pore radius into the material. Given a typical pore diameter of 30 . m , tnis implies a strip...of the number of cycles to initiate a 15 . m crack in the presence of porosity during LCF. REFERENCES 1. H. A. Kuhn and C. L. Downey, Int. J. of...39 (1974). 3. H. E. Exner and D. Pohl, Powder Metal. Int., 10(4), 193-196 (1979). 4. R. Haynes, Powder Metal., 1, pp. 17-20 (1977). 5. M . Eudier

  8. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  9. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  10. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    PubMed

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.

  11. Integrating Water Flow, Locomotor Performance and Respiration of Chinese Sturgeon during Multiple Fatigue-Recovery Cycles

    PubMed Central

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  12. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE PAGES

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  13. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  14. The Influence of Dwell Time on Low Cycle Fatigue Behavior of Ni-base Superalloy IC10

    NASA Astrophysics Data System (ADS)

    Wang, Anqiang; Liu, Lu; Wen, Zhixun; Li, Zhenwei; Yue, Zhufeng

    2017-09-01

    Low cycle fatigue and creep-fatigue experiments of IC10 Ni-base superalloy plate specimens with multiple holes were performed below 1,000 °C. The average fatigue life is 105.4 cycles, while the creep-fatigue life is 103.4 cycles, which shows that the life of creep-fatigue is reduced 1-2 times compared with low cycle fatigue life. After tests, the detailed fracture and microscopic structure evolution were observed by scanning electron microscopy (SEM); meanwhile, the constitutive model based on crystal plasticity theory was established and the fracture mechanism was analyzed. Three conclusions have been obtained: First, the load during dwell time leads to the damage accumulation caused by deformation and the interaction of fatigue and creep shortens the service life of materials seriously. Second, in order to maintain the macroscopic deformation, a new slip plane starts to makes the dislocation slide in reverse direction, which leads to fatigue damage and initial cracks. Third, the inner free surface creates opportunities for escape of the dislocation line, which is caused by the cavity. What's more, the cure dislocation generated by cyclic loading contributes to the formation and growth of cavities.

  15. MECHANICAL STRAIN AND PIEZOELECTRIC PROPERTIES OF PZT STACKS RELATED TO SEMI-BIPOLAR ELECTRIC CYCLING FATIGUE

    SciTech Connect

    Wang, Hong; Lin, Hua-Tay; Wereszczak, Andrew A; Cooper, Thomas A

    2009-01-01

    PZT stacks that had an inter-digital internal electrode configuration and consisted of a specific number of multilayer actuators were tested to more than 108 cycles by using a 100-Hz semi-bipolar sine wave with a field range of +4.5/-0.9 kV/mm and a 20-MPa mechanical preload. Significant reductions in mechanical strain and piezoelectric coefficients were observed during the fatigue cycling, depending on the measuring condition. Extensive surface discharges and arcs were also observed. These surface events as well as related dielectric breakdown resulted in the erosion of external electrode and outcrop of internal electrode, and that partially accounts for the reduction observed above. The data obtained in this study demonstrated the feasibility of using a semi-bipolar mode to drive a PZT stack with a designed mechanical preload applied and illustrated the potential fatigue of stack~{!/~}s performance during its service.

  16. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  17. On the bilinearity of the Coffin-Manson low-cycle fatigue relationship

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V. M.

    1992-09-01

    The cause of the bilinear Coffin-Manson low-cycle fatigue relationship found in Al-Li alloys and dual-phase steels was investigated using Manson and Hirschberg (1964) and Manson (1966) data on 52100 steel, 4340 steel, 4130 steel, Inconel X, Ti-6Al-4V, 2014 T6 aluminum alloy, 4340 annealed steel, and 1100 aluminum. It was found that such a bilinear behavior depends on the relationship between the elastic and inelastic strain ranges. It is predicted that bilinear Coffin-Manson low-cycle fatigue behavior can be expected for materials in which the elastic strain range is more dominant than the inelastic strain range in the life span.

  18. Fatigue damage accumulation in steel 45 under loading regimes involving low-cycle overloads

    NASA Astrophysics Data System (ADS)

    Shlyushenkov, A. P.; Tatarintsev, V. A.

    1994-05-01

    The paper presents the results of experimental investigations into the regularities of fatigue damage accumulation in steel 45 under block loading involving elastoplastic (low-cycle) overloads. The experiments were carried out using the methods of the factorial design theory. Mathematical models are developed for damage accumulation depending on the variation of the parameters (factors) investigated: the level of the main (elastic) strain, the relative level of overloads, and their relative number.

  19. Thermal High- and Low-Cycle Fatigue Behavior of Thick Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have received increasing attention for advanced gas turbine and diesel engine applications because of their ability to provide thermal insulation to engine components. However, the durability of these coatings under the severe thermal cycling conditions encountered in a diesel engine (ref. 1) still remains a major issue. In this research at the NASA Lewis Research Center, a high-power laser was used to investigate the thermal fatigue behavior of a yttria-stabilized zirconia coating system under simulated diesel engine conditions. The mechanisms of fatigue crack initiation and propagation, and of coating failure under complex thermal low-cycle fatigue (LCF, representing stop/start cycles) and thermal high-cycle fatigue (HCF, representing operation at 1300 rpm) are described. Continuous wave and pulse laser modes were used to simulate pure LCF and combined LCF/HCF, respectively (ref. 2). The LCF mechanism was found to be closely related to the coating sintering and creep at high temperatures. These creep strains in the ceramic coating led to a tensile stress state during cooling, thus providing the major driving force for crack growth under LCF conditions. The combined LCF/HCF tests induced more severe coating surface cracking, microspallation, and accelerated crack growth than did the pure LCF test. HCF thermal loads also facilitated lateral crack branching and ceramic/bond coat interface delaminations. HCF is associated with the cyclic stresses originating from the high-frequency temperature fluctuation at the ceramic coating surface. The HCF thermal loads act on the crack by a wedging mechanism (ref. 1), resulting in continuous crack growth at temperature. The HCF stress intensity factor amplitude increases with the interaction depth and temperature swing, and decreases with the crack depth. HCF damage also increases with the thermal expansion coefficient and the Young's modulus of the ceramic coating (refs. 1 and 3).

  20. Increased Fatigue Response to Augmented Deceptive Feedback during Cycling Time Trial.

    PubMed

    Ducrocq, Guillaume P; Hureau, Thomas J; Meste, Olivier; Blain, Grégory M

    2017-08-01

    This study aimed to investigate the effect of different magnitudes of deception on performance and exercise-induced fatigue during cycling time trial. After three familiarization visits, three women and eight men performed three 5-km cycling time trials while following a simulated dynamic avatar reproducing either 100% (5K100%), 102% (5K102%), or 105% (5K105%) of the subject's previous fastest trial. Quadriceps muscle activation was quantified with surface electromyography. Fatigue was quantified by preexercise to postexercise (10 s through 15 min recovery) changes in quadriceps maximal voluntary contraction (MVC) force, potentiated twitch force evoked by electrical femoral nerve stimulation (QTSingle) and voluntary activation (VA, twitch interpolation technique). Greater quadriceps muscle activation in 5K102% versus 5K100% (12% ± 11%) was found in parallel with a 5% ± 2% and 2% ± 1% improvement in power output and completion time, respectively (P < 0.01). Exercise-induced reduction in MVC force and VA were 14% ± 19% and 28% ± 31% greater at exercise termination (at 10 s), whereas QTSingle recovery (from 10 s to 15 min) was 5% ± 5% less in 5K102% versus 5K100% (P < 0.01). No difference in performance or fatigue indices measured at exercise termination was found between 5K100% and 5K105%. Muscle activation and performance improvements during a deceptive cycling time trial were achieved only with a 2% magnitude of deception and were associated with a further impairment in MVC force, QTSingle recovery and VA compared to control. Performance improvement during cycling time trial with augmented deceptive feedback therefore resulted in exacerbated exercise-induced peripheral and central fatigue.

  1. Low-cycle-fatigue behavior of copper materials and their use in synchrotron beamline components

    SciTech Connect

    Wang, Z.; Nian, T.; Ryding, D.; Kuzay, T.M.

    1993-09-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source Project (APS) generate x-ray beams with very high heat loads and heat flux levels. The front-end and beamline components are required to sustain total heat loads of 5 to 15 kW and heat flux levels exceeding 400 W/mm{sup 2}. Grazing geometry and enhanced heat transfer techniques are used in the design of such components to reduce heat flux levels below the 30 W/mm{sup 2} level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures can be sustained, the structural stresses and the fatigue issues remain viable concerns for the copper, particularly under brazing or bonding of the parts. Brazing and bonding are almost always utilized in the design of the components, and the drastically lowered yield stress of the annealed copper subjected to bonding temperatures above 400{degree}C is a real concern. Such materials with reduced post-bonding stress levels easily reach yield point under thermal stresses during ordinary use on the beamline. The resulting plastic deformation in each load cycle may cause low-cycle-fatigue problems. The two common copper materials are OFHC and Glidcop. This paper critically reviews the available literature for low-cycle-fatigue properties, of OFHC at the elevated temperatures typically found in synchrotron operations.

  2. Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Begum, S.; Chen, D. L.; Xu, S.; Luo, Alan A.

    2008-12-01

    To reduce fuel consumption and greenhouse gas emissions, magnesium alloys are being considered for automotive and aerospace applications due to their low density, high specific strength and stiffness, and other attractive traits. Structural applications of magnesium components require low-cycle fatigue (LCF) behavior, since cyclic loading or thermal stresses are often encountered. The aim of this article was to study the cyclic deformation characteristics and evaluate LCF behavior of a recently developed AM30 extruded magnesium alloy. This alloy exhibited a strong cyclic hardening characteristic, with a cyclic strain-hardening exponent of 0.33 compared to the monotonic strain-hardening exponent of 0.15. With increasing total strain amplitude, both plastic strain amplitude and mean stress increased and fatigue life decreased. A significant difference between the tensile and compressive yield stresses occurred, leading to asymmetric hysteresis loops at high strain amplitudes due to twinning in compression and subsequent detwinning in tension. A noticeable change in the modulus was observed due to the pseudoelastic behavior of this alloy. The Coffin-Manson law and Basquin equation could be used to describe the fatigue life. At low strain ratios the alloy showed strong cyclic hardening, which became less significant as the strain ratio increased. The lower the strain ratio, the lower the stress amplitude and mean stress but the higher the plastic strain amplitude, corresponding to a longer fatigue life. Fatigue life also increased with increasing strain rate. Fatigue crack initiation occurred from the specimen surface and crack propagation was mainly characterized by striation-like features. Multiple initiation sites at the specimen surface were observed at higher strain amplitudes.

  3. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  4. Dynamic recrystallization during high temperature low cycle fatigue of nickel: Progress report, June 1, 1985-May 31, 1988

    SciTech Connect

    Gottstein, G.

    1987-11-01

    The mechanical behavior and the microstructural development associated with high-temperature low-cycle fatigue of nickel and static recrystallization of Ni/sub 3/Al were investigated. The occurrence of dynamic recrystallization during high-temperature low-cycle fatigue was substantiated. However, for the investigated range of strain amplitudes (..delta..epsilon less than or equal to 1.5%) dynamic recrystallization occurs only in polycrystals, but not in single crystals. Aluminum polycrystals were found not to undergo dynamic recrystallization during low cycle fatigue, in line with its behavior in monotonic deformation. Dynamic recrystallization during high temperature low cycle fatigue is associated with extensive prior grain boundary migration. It invariably leads to grain refinement and work softening. An experimental setup and computer code was developed to utilize synchrotron radiation for fully automatic orientation mapping.

  5. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  6. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    NASA Astrophysics Data System (ADS)

    Spodniak, Miroslav; Klimko, Marek; Hocko, Marián; Žitek, Pavel

    This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  7. Impact of offering cycle training in schools upon cycling behaviour: a natural experimental study.

    PubMed

    Goodman, Anna; van Sluijs, Esther M F; Ogilvie, David

    2016-03-08

    England's national cycle training scheme, 'Bikeability', aims to give children in England the confidence to cycle more. There is, however, little evidence on the effectiveness of cycle training in achieving this. We therefore examined whether delivering Bikeability was associated with cycling frequency or with independent cycling. We conducted a natural experimental study using information on children aged 10-11 years participating in the nationally-representative Millennium Cohort Study. We identified Cohort participants whose schools had offered Bikeability in 2011-2012 using operational Bikeability delivery data (children in London excluded, as delivery data not available). Our natural experimental design capitalised on the fact that Cohort participants were surveyed at different times during 2012 and were also offered Bikeability at different times during 2012. This allowed us to compare cycling levels between children whose schools delivered Bikeability before their survey interview ('intervention group', N = 2563) and an otherwise comparable group of children whose schools delivered Bikeability later in the year ('control group', N = 773). Parents reported whether their child had completed formal cycle training; their child's cycling frequency; whether their child ever made local cycling trips without an adult; and other child and family factors. We used Poisson regression with robust standard errors to examine whether cycling behaviour differed between the intervention and control groups. Children whose school had offered Bikeability were much more likely to have completed cycle training than the control group (68% vs. 28%, p < 0.001). There was, however, no evidence that delivering Bikeability in school was associated with cycling more often (49.0% cycling at least once per week in the intervention group vs. 49.6% in the control group; adjusted risk ratio 0.99, 95% CI 0.89, 1.10). There was likewise no evidence of an association with cycling

  8. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  9. A nonlinear history-dependent damage model for low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Leis, B. N.

    1988-01-01

    A nonlinear damage postulate that embodies the dependence of the damage rate on cycle-dependent changes in the bulk microstructure and the surface topography is examined. The postulate is analytically formulated in terms of the deformation history dependence of the bulk behavior. This formulation is used in conjunction with baseline data in accordance with the damage postulate to predict the low cycle fatigue resistance of OFE copper. Close comparison of the predictions with experimentally observed behavior suggests that the postulate offers a viable basis for nonlinear damage analysis.

  10. A nonlinear history-dependent damage model for low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Leis, B. N.

    1988-01-01

    A nonlinear damage postulate that embodies the dependence of the damage rate on cycle-dependent changes in the bulk microstructure and the surface topography is examined. The postulate is analytically formulated in terms of the deformation history dependence of the bulk behavior. This formulation is used in conjunction with baseline data in accordance with the damage postulate to predict the low cycle fatigue resistance of OFE copper. Close comparison of the predictions with experimentally observed behavior suggests that the postulate offers a viable basis for nonlinear damage analysis.

  11. High Cycle Fatigue Properties of Haynes 230 (registered trademark) Before and After Exposure to Elevated Temperatures (Preprint)

    DTIC Science & Technology

    2011-10-01

    the high cycle fatigue properties of a nickel based superalloy, Haynes 230, targeted for use in thermal protection system (TPS) applications. This...Metallic Thermal Protection System Hypervelocity Impact Resistance Through Numerical Simulations Journal of Spacecraft and Rockets, Vol. 41, No. 2 2004...AFRL-RX-WP-TP-2011-4376 HIGH CYCLE FATIGUE PROPERTIES OF HAYNES 230 BEFORE AND AFTER EXPOSURE TO ELEVATED TEMPERATURES (PREPRINT) R.J

  12. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle

    PubMed Central

    Wiltschko, Roswitha; Gehring, Dennis; Denzau, Susanne; Nießner, Christine; Wiltschko, Wolfgang

    2014-01-01

    Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under ‘white’ light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted. PMID:25472973

  13. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.

    PubMed

    Wiltschko, Roswitha; Gehring, Dennis; Denzau, Susanne; Nießner, Christine; Wiltschko, Wolfgang

    2014-12-01

    Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under 'white' light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted.

  14. An Empirical Approach to Correlating Thermo-Mechanical Fatigue Behaviour of a Polycrystalline Ni-Base Superalloy.

    PubMed

    Whittaker, Mark; Lancaster, Robert; Harrison, William; Pretty, Christopher; Williams, Stephen

    2013-11-15

    Assessment of thermo-mechanical fatigue behaviour of the polycrystalline nickel alloy RR1000 reveals a significant effect of phase angle on fatigue life. The current paper explores two scenarios: the first where the mechanical strain range is held constant and comparisons of the fatigue life are made for different phase angle tests; and secondly, the difference between the behaviour of In-phase (IP) and -180° Out-Of-Phase (OOP) tests over a variety of applied strain ranges. It is shown that different lifing approaches are currently required for the two scenarios, with a mean stress based approach being more applicable in the first case, whereas a Basquin-type model proves more applicable in the second. However, it is also demonstrated that the crack propagation phase should also be considered in these types of tests for high strain ranges and projects that future modelling approaches should attempt to unify mean stress, stress range and a crack propagation phase.

  15. High cycle fatigue life improvement of polycrystalline alpha-iron modified by silver, chromium, aluminium, and yttrium ion implantation

    SciTech Connect

    Wang, H.W.; Yang, D.Z.; Shi, W.D.; Patu, S.

    1995-06-15

    Body-centered cubic (bcc) metals are at least of parallel significance to fcc ones. Work on bcc metal`s fatigue modification by ion implantation is rare. The asymmetry deformation and high SFE characteristics in the microplasticity of bcc metals make the fatigue process more complex. The authors have chosen polycrystalline alpha-iron as the target metal to be implanted with silver, chromium, aluminium, and yttrium ions, which are mutually immiscible, limited soluble without precipitation, and soluble with precipitation in iron, respectively. This work aims at providing a systematic investigation on different mechanisms dominant in fatigue. This brief report is on the high cycle fatigue (HCF) property improvement by these metallic ion implantations, which is part of a series of reports both on HCF and low cycle fatigue (LCF) modifications by each individual ion implantation.

  16. Did the Sun Change Its Behaviour During the Decline of Cycle 23 and Into Cycle 24?

    NASA Astrophysics Data System (ADS)

    Tapping, K. F.; Valdés, J. J.

    2011-09-01

    The activity minimum between the end of cycle 23 and the beginning of cycle 24 was the longest and deepest since at least the beginning of the 20th century. This has led to speculation that the Sun is changing its behaviour. The sunspot number and 10.7-cm solar radio flux indices have traditionally been highly correlated, so a change in the relationship between them might flag at such a change. An examination of this relationship suggests a significant change in the relationship between activity in the photosphere and in the chromosphere/corona happened soon after the maximum of cycle 23 and has continued into cycle 24. However, there are indications of change as early as 1980.

  17. Effect of environment on low-cycle fatigue of a nickel-titanium instrument.

    PubMed

    Cheung, Gary S P; Shen, Ya; Darvell, Brian W

    2007-12-01

    This study examined the low-cycle fatigue (LCF) behavior of a nickel-titanium (NiTi) engine-file under various environmental conditions. One brand of NiTi instrument was subjected to rotational-bending fatigue in air, deionized water, sodium hypochlorite, or silicone oil. The curvature of each instrument, diameter of the fracture cross-section, and the number of rotations to failure were determined. The strain-life relationship in the LCF region was examined by using one-way analysis of variance, and the number of crack origins with chi2, for differences between groups. The results showed a linear relationship, on logarithmic scales, between the LCF life and the surface strain amplitude; regression line slopes were significantly different between noncorrosive (air, silicone oil) and corrosive (water, hypochlorite) environments (P < .05), as well as number of crack origins (P < .05). Hypochlorite was more detrimental to fatigue life than water. In conclusion, environmental conditions significantly affect the LCF behavior of NiTi rotary instruments. Fatigue testing of NiTi engine-files should be in a service-like environment.

  18. The high-cycle fatigue and fracture behavior of a copper-niobium microcomposite

    SciTech Connect

    Srivatsan, T.S.; Singh, K.P.D.; Troxell, J.D.

    1997-12-31

    Niobium particle-reinforced dispersion strengthened copper composite has shown the promise of being the candidate material for applications requiring high strength, high thermal and electrical conductivities and resistance to softening at elevated temperatures. In this paper, the results of a study on the high-cycle fatigue and final fracture behavior of a microcomposite based on an oxide dispersion strengthened copper matrix is presented and discussed. Specimens of both the composite and the unreinforced counterpart were cyclically deformed, over a range of stress amplitudes, at both ambient and elevated temperatures. Increase in test temperature was found to have a detrimental influence on the cyclic fatigue life of the copper-niobium microcomposite. Temperature was found to have little influence on the cyclic fatigue life of the unreinforced dispersion strengthened microstructure. For both the unreinforced and reinforced materials macroscopic fracture was reminiscent of brittle fracture over the entire range of stress amplitudes. However, on a microscopic scale cyclic fracture revealed features reminiscent of locally brittle and ductile mechanisms. The cyclic fatigue and final fracture behavior of the composite are discussed in light of the mutually interactive influences of intrinsic composite microstructural effects, stress amplitude and test temperature.

  19. Crack Nucleation in β Titanium Alloys under High Cycle Fatigue Conditions - A Review

    NASA Astrophysics Data System (ADS)

    Benjamin, Rohit; Nageswara Rao, M.

    2017-05-01

    Beta titanium (β-Ti) alloys have emerged over the last 3 to 4 decades as an important class of titanium alloys. Many of the applications that they found, particularly in aerospace sector, are such that their high cycle fatigue (HCF) behavior becomes critical. In HCF regime, crack nucleation accounts for major part of the life. Consequently it becomes important to understand the mechanisms underlying the nucleation of cracks under HCF type loading conditions. The purpose of this review is to document the best understanding we have on date on crack nucleation in β-Ti alloys under HCF conditions. Role of various microstructural features encountered in β-Ti alloys in influencing the crack nucleation under HCF conditions has been reviewed. It has been brought out that changes in processing can result in changes in microstructure which in turn influence the time for crack nucleation/fatigue life and fatigue limit. While majority of fatigue failures originate at the surface, subsurface cracking is not uncommon with β-Ti alloys and the factors leading to subsurface cracking have been discussed in this review.

  20. Effect of microstructure on low cycle fatigue properties of ODS steels

    NASA Astrophysics Data System (ADS)

    Kubena, Ivo; Fournier, Benjamin; Kruml, Tomas

    2012-05-01

    Low cycle fatigue properties at room temperature, 650 °C and 750 °C of three high chromium steels (9%Cr ferritic-martensitic and two 14%Cr ferritic steels) strengthened by oxide dispersion were studied and compared. Cyclic softening/hardening curves, cyclic deformation curves, S-N curves and Coffin-Manson curves are presented together with microstructural observations. Differences in cyclic response, stress level and fatigue life are attributed to differences in the matrix microstructure. The oxide particles stabilize the cyclic response, even if cyclic softening is detected for some experimental conditions. The strength of these steels is discussed in terms of strengthening mechanisms such as grain size effect, particle-dislocations interaction and dislocation density. Comparing three different ODS steels offers an opportunity to tests the contribution of individual mechanisms to the cyclic strength. The reduction of fatigue life in one of the ferritic steels is explained by the presence of large grains, facilitating the fatigue crack nucleation and the early growth.

  1. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.

    PubMed

    Nicol, Caroline; Avela, Janne; Komi, Paavo V

    2006-01-01

    Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are examples of the SSC for leg extensor muscles; similar phases can also be found for the upper-body activities. Consequently, it is normal and expected that the fatigue phenomena should be explored during SSC activities. The fatigue responses of repeated SSC actions are very versatile and complex because the fatigue does not depend only on the metabolic loading, which is reportedly different among muscle actions. The complexity of SSC fatigue is well reflected by the recovery patterns of many neuromechanical parameters. The basic pattern of SSC fatigue response (e.g. when using the complete exhaustion model of hopping or jumping) is the bimodality showing an immediate reduction in performance during exercise, quick recovery within 1-2 hours, followed by a secondary reduction, which may often show the lowest values on the second day post-exercise when the symptoms of muscle soreness/damage are also greatest. The full recovery may take 4-8 days depending on the parameter and on the severity of exercise. Each subject may have their own time-dependent bimodality curve. Based on the reviewed literature, it is recommended that the fatigue protocol is 'completely' exhaustive to reduce the important influence of inter-subject variability in the fatigue responses. The bimodality concept is

  2. Cyclic fatigue behaviour of fibre reinforced rubber-toughened nylon composite materials

    NASA Astrophysics Data System (ADS)

    Pinot, L.; Gomina, M.; Jernot, J.-P.; Moreau, R.; Nakache, E.

    2005-03-01

    The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of glass fibre/rubber-toughened nylon ternary blends are checked. First, monotonic tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Cyclic fatigue tests were implemented on tensile specimens and the results were analysed in terms of the reduction of the Young's modulus, the increase of the hysteresis energy rate in the stress-strain diagram and the temperature rise. These findings were correlated to fractographic observations to assess the role of the different constituents.

  3. Temporal effect of in vivo tendon fatigue loading on the apoptotic response explained in the context of number of fatigue loading cycles and initial damage parameters.

    PubMed

    Andarawis-Puri, Nelly; Philip, Anaya; Laudier, Damien; Schaffler, Mitchell B; Flatow, Evan L

    2014-09-01

    Accumulation of damage is a leading factor in the development of tendinopathy. Apoptosis has been implicated in tendinopathy, but the biological mechanisms responsible for initiation and progression of these injuries are poorly understood. We assessed the relationship between initial induced damage and apoptotic activity 3 and 7 days after fatigue loading. We hypothesized that greater apoptotic activity (i) will be associated with greater induced damage and higher number of fatigue loading cycles, and (ii) will be higher at 7 than at 3 days after loading. Left patellar tendons were fatigue loaded for either 100 or 7,200 cycles. Diagnostic tests were applied before and after fatigue loading to determine the effect of fatigue loading on hysteresis, elongation, and loading and unloading stiffness (damage parameters). Cleaved Caspase-3 staining was used to identify and calculate the percent apoptosis in the patellar tendon. While no difference in apoptotic activity occurred between the 100 and 7,200 cycle groups, greater apoptotic activity was associated with greater induced damage. Apoptotic activity was higher at 7 than 3 days after loading. We expect that the decreasing number of healthy cells that can repair the induced damage in the tendon predispose it to further injury.

  4. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects. Final technical report, June 1992-January 1995

    SciTech Connect

    Bast, C.C.; Boyce, L.

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model`s empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect.

  5. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  6. Experimental Observation on Low Cycle Fatigue Behavior of Symmetric Angle-Ply CFRP Laminate

    NASA Astrophysics Data System (ADS)

    Sakai, Masahiro; Uda, Nobuhide; Kunoo, Kazuo

    Cyclic zero-tension tests for symmetric angle-ply CFRP laminated specimens were carried out to investigate the low cycle fatigue behavior of graphite/epoxy and graphite/PEEK composites. Two types of stacking sequences were tested: [+θ/-θ]4s (Distributed ply) and [+θ4/-θ4]s (Blocked ply), where θ was 30º or 45º. Stress-strain curves of specimens under cyclic loadings were obtained by means of an extensometer. A mechanical ratcheting, which means progressive increase in plastic strain at each cycle, was observed on the cyclic stress-strain curves. Comparing the stress-strain curve of static tensile test with one of the cyclic zero-tension test, we made the assumption that the fatigue failure occurred when the ratcheting strain by cyclic loadings reached the static failure strain. Results of an ultrasonic scanning test revealed that the distributed ply specimens differed from the blocked ply specimens in an internal fatigue damage progress.

  7. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  8. Effect of W-addition on low cycle fatigue behavior of high Cr ferritic steels

    NASA Astrophysics Data System (ADS)

    Park, Joon Sik; Lee, Kee Ahn; Lee, Chong Soo

    1999-12-01

    A study was done to investigate the effect of tungsten (W) addition on the microstructure, tensile properties and low cycle fatigue (LCF) properties of 9Cr-lMo steels at 298K and 873K. Four steels containing different amounts of W (0W, 1.2W, 1.8W and 2.7W) were normalized at 1323K for 1 hour and tempered at 1023K for 1 hour. Microstructural analysis revealed that no significant differences wete observed in their tempered martensitic microstructure of 0W, 1.2W and 1.8W alloys, but d-ferrite was observed to form at the prior austenite grain boundaries of the 2.7W alloy. With the increase in W content, yield and tensile strength increased at both temperatures. Low cycle fatigue life also increased with the W content up to 1.8%, but decreased in the 2.7W alloy, which was primarily due to the presence of soft d-ferrite acting as the crack initiation site. The fatigue life at 873K was reduced compared to that at 298K, due not only to the decrease in strength at high temperature but also to the formation of oxide layers along the slip bands, which increases slip irre-versibility during cyclic deformation.

  9. A Demonstration using Low-kt Fatigue Specimens of a Method for Predicting the Fatigue Behaviour of Corroded Aircraft Components

    DTIC Science & Technology

    2013-03-01

    DSTO-RR-0390 ABSTRACT Corrosion is well known to reduce the structural integrity of aluminium alloy aircraft components. In addition , it can... structural integrity of aluminium alloy aircraft components. In addition , it can cause early fatigue failures in components in which fatigue is not... structural failure. Specifically, the lug that failed had been designed to have an effectively infinite life. There was therefore no expectation

  10. Effect of Fatigue Behavior on Microstructural Features in a Cast Al-12Si-CuNiMg Alloy Under High Cycle Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiang; Zhang, Qing; Zuo, Zhengxing; Xiong, Yi

    2013-12-01

    High cycle fatigue tests of a cast Al-12Si-CuNiMg alloy are carried out under different stress amplitudes at room temperature. The scanning and transmission electron microscopy observations are used to examine the fracture surfaces and dislocation structures of the tested material, respectively. The results show that the fatigue damage originates from the microstructural defects, and the fracture surface morphology is typical quasi-cleavage fracture. With the increasing strain amplitude, the material fatigue life obviously decreases; however, the dislocation density increases significantly, which leads to the formation of the dislocation walls and cells. Under the cycle loading, the eutectic Si phase and the secondary particles undergo fracture. The pinning effect of the precipitates on the dislocations becomes obvious, indicating that the Al-12Si-CuNiMg alloy has the cyclic hardening characteristic.

  11. Microstructure and Low-Cycle Fatigue of a Friction-Stir-Welded 6061 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Feng, A. H.; Chen, D. L.; Ma, Z. Y.

    2010-10-01

    Strain-controlled low-cycle fatigue (LCF) tests and microstructural evaluation were performed on a friction-stir-welded 6061Al-T651 alloy with varying welding parameters. Friction stir welding (FSW) resulted in fine recrystallized grains with uniformly distributed dispersoids and dissolution of primary strengthening precipitates β″ in the nugget zone (NZ). Two low-hardness zones (LHZs) appeared in the heat-affected zone (HAZ) adjacent to the border between the thermomechanically-affected zone (TMAZ) and HAZ, with the width decreasing with increasing welding speed. No obvious effect of the rotational rate on the LHZs was observed. Cyclic hardening of the friction-stir-welded joints was appreciably stronger than that of base metal (BM), and it also exhibited a two-stage character where cyclic hardening of the friction-stir-welded 6061Al-T651 alloy at higher strain amplitudes was initially stronger followed by an almost linear increase of cyclic stress amplitudes on the semilog scale. Fatigue life, cyclic yield strength, cyclic strain hardening exponent, and cyclic strength coefficient all increased with increasing welding speed, but were nearly independent of the rotational rate. Most friction-stir-welded joints failed along the LHZs and exhibited a shear fracture mode. Fatigue crack initiation was observed to occur from the specimen surface, and crack propagation was mainly characterized by the characteristic fatigue striations. Some distinctive tiremark patterns arising from the interaction between the hard dispersoids/inclusions and the relatively soft matrix in the LHZ under cyclic loading were observed to be present in-between the fatigue striations.

  12. Probabilistic low cycle fatigue failure analysis with application to liquid propellant rocket engines

    NASA Technical Reports Server (NTRS)

    Newlin, L.; Sutharshana, S.; Ebbeler, D.; Moore, N.; Fox, E.

    1990-01-01

    A probabilistic Low Cycle Fatigue (LCF) failure analysis of a candidate turbine disk for use in a turbopump of a rocket engine of the Space Shuttle Main Engine class is described. A state-of-the-art LCF failure prediction method was used in a Monte Carlo simulation to generate a distribution of failure lives. A stochastic Stress/Life (S/N) model was used for materials characterization. The LCF failure model expresses fatigue life as a function of stochastic parameters including environmental parameters, loads, material properties, structural parameters, and model specification errors. The rationale for the particular characterization of each stochastic input parameter is described. The results and interpretation of the failure analysis are given.

  13. The influence of load misalignment during uniaxial low-cycle fatigue testing. I - Modeling. II - Applications

    NASA Astrophysics Data System (ADS)

    Kandil, F. A.; Dyson, B. F.

    1993-05-01

    A quantitative model for predicting the extent of lifetime scatter in low-cycle fatigue due to the bending effect caused by load misalignment is proposed. The model is based on the bending mechanism and the type of extensometer used to control strain and the fatigue characteristics of the material. A consequence of a lateral offset in the center-lines of the load-train with respect to either a machine's frame or ram is found to be the most damaging bending mechanism. Two types of scatter under consideration include repeatability scatter due to testing practice within a single laboratory and reproducibility scatter among laboratories. The model is applied to four alloys, including AISI 316L, Nimonic 101, 9 Cr-1 Mo, and IN 718. Results show that in all four materials a major fraction of the data scatter could be attributed to bending. At the lowest strain range the predicted bending component represents the highest proportion of the experimental interlaboratory scatter.

  14. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  15. Distress signals: Does cognitive behavioural therapy reduce or increase distress in chronic fatigue syndrome/myalgic encephalomyelitis?

    PubMed

    Laws, Keith R

    2017-08-01

    Reducing the psychological distress associated with chronic fatigue syndrome/myalgic encephalomyelitis is seen as a key aim of cognitive behavioural therapy. Although cognitive behavioural therapy is promoted precisely in this manner by the National Institute of Clinical Excellence, the evidence base on distress reduction from randomised controlled trials is limited, equivocal and poor quality. Crucially, data derived from multiple patient surveys point to worsening and increase distress; however, despite being invited, such data have been dismissed as second class by National Institute of Clinical Excellence. Crucially, the claim by National Institute of Clinical Excellence that cognitive behavioural therapy reduces distress in chronic fatigue syndrome/myalgic encephalomyelitis is not only at odds with what patients repeatedly report in surveys, but with their own gold-standard randomised controlled trial and meta-analytic data.

  16. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness

    NASA Astrophysics Data System (ADS)

    Alsem, D. H.; Timmerman, R.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up to 1012cycles), there is still an on-going debate on the precise mechanisms involved. We show here that for devices fabricated in the multiuser microelectromechanical system process (MUMPs) foundry and Sandia Ultra-planar, Multi-level MEMS Technology (SUMMiT V™) process and tested under equi-tension/compression loading at ˜40kHz in different environments, stress-lifetime data exhibit similar trends in fatigue behavior in ambient room air, shorter lifetimes in higher relative humidity environments, and no fatigue failure at all in high vacuum. The transmission electron microscopy of the surface oxides in the test samples shows a four- to sixfold thickening of the surface oxide at stress concentrations after fatigue failure, but no thickening after overload fracture in air or after fatigue cycling in vacuo. We find that such oxide thickening and premature fatigue failure (in air) occur in devices with initial oxide thicknesses of ˜4nm (SUMMiT V™) as well as in devices with much thicker initial oxides ˜20nm (MUMPs). Such results are interpreted and explained by a reaction-layer fatigue mechanism. Specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure of the entire device. The entirety of the evidence presented here strongly indicates that the reaction-layer fatigue mechanism is the governing mechanism for fatigue failure in micron-scale polycrystalline silicon thin films.

  17. Investigation of Effect of Pre-Strain on Very High-Cycle Fatigue Strength of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Ogawa, Takeshi; Nakane, Motoki; Masaki, Kiyotaka; Hashimoto, Shota; Ochi, Yasuo; Asano, Kyoichi

    This paper describes the effect of large pre-strain on very high cycle fatigue strength of austenitic stainless steels that are widely used in nuclear power plants. Fatigue tests were carried out on strain-hardened specimens. The material served in this study was type SUS316NG. Up to ±20% pre-strain was introduced to the materials, and the materials were mechanically machined into hourglass shaped smooth specimens. Some specimens were pre-strained after machining. Experiments were conducted in ultrasonic and rotating-bending fatigue testing machines. The S-N curves obtained in this study show that an increase in the magnitude of the pre-strain increases the fatigue strength of the material and this relationship is independent of the type of the pre-strain of tension or compression. Although all specimens fractured by the surface initiated fatigue cracks, one specimen fractured by an internal origin. However, this internal fracture did not cause a sudden drop in fatigue strength of type SUS316NG. Vickers hardness tests were carried out to ascertain the relationship between fatigue strength and hardness of the pre-strained materials. It was found that the increase in the fatigue limit of the pre-strained materials strongly depended on the hardness derived from an indentation size equal to the scale of stage I fatigue cracks.

  18. A transient plasticity study and low cycle fatigue analysis of the Space Station Freedom photovoltaic solar array blanket

    NASA Technical Reports Server (NTRS)

    Armand, Sasan C.; Liao, Mei-Hwa; Morris, Ronald W.

    1990-01-01

    The Space Station Freedom photovoltaic solar array blanket assembly is comprised of several layers of materials having dissimilar elastic, thermal, and mechanical properties. The operating temperature of the solar array, which ranges from -75 to +60 C, along with the material incompatibility of the blanket assembly components combine to cause an elastic-plastic stress in the weld points of the assembly. The weld points are secondary structures in nature, merely serving as electrical junctions for gathering the current. The thermal mechanical loading of the blanket assembly operating in low earth orbit continually changes throughout each 90 min orbit, which raises the possibility of fatigue induced failure. A series of structural analyses were performed in an attempt to predict the fatigue life of the solar cell in the Space Station Freedom photovoltaic array blanket. A nonlinear elastic-plastic MSC/NASTRAN analysis followed by a fatigue calculation indicated a fatigue life of 92,000 to 160,000 cycles for the solar cell weld tabs. Additional analyses predict a permanent buckling phenomenon in the copper interconnect after the first loading cycle. This should reduce or eliminate the pulling of the copper interconnect on the joint where it is welded to the silicon solar cell. It is concluded that the actual fatigue life of the solar array blanket assembly should be significantly higher than the calculated 92,000 cycles, and thus the program requirement of 87,500 cycles (orbits) will be met. Another important conclusion that can be drawn from the overall analysis is that, the strain results obtained from the MSC/NASTRAN nonlinear module are accurate to use for low-cycle fatigue analysis, since both thermal cycle testing of solar cells and analysis have shown higher fatigue life than the minimum program requirement of 87,500 cycles.

  19. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    NASA Astrophysics Data System (ADS)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  20. Fatigue responses of PZT stacks under semi-bipolar electric cycling with mechanical preload

    SciTech Connect

    Wang, Hong; Cooper, Thomas A; Lin, Hua-Tay; Wereszczak, Andrew A

    2010-01-01

    PZT stacks that had an inter-digital internal electrode configuration were tested to more than 10^8 cycles. A 100-Hz semi-bipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive surface discharges were also observed. These surface events resulted in the erosion of external electrode and the outcrop of internal electrode. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated to the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semi-bipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  1. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    NASA Astrophysics Data System (ADS)

    Gagnon, M.; Tahan, S. A.; Bocher, P.; Thibault, D.

    2012-11-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  2. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  3. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    DTIC Science & Technology

    2011-01-01

    durable structures are: (a) FSW is 111being used in a serial production of aluminum alloy-based 112ferryboat deck structures in Finland; (b) Al-Mg-Si-based...material is circa 160 MPa (i.e., around 40% lower 218than that in the base metal). 219The FSW tool used was made of tool steel , had a 25 mm- 220diameter...the literature revealed that high-cycle fatigue data associated with friction stir-welded ( FSW ) joints of AA5083-H321 (a solid-solution-strengthened

  4. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  5. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  6. Microstructural Influences on Very High Cycle Fatigue Crack Initiation in Ti-6246 (PREPRINT)

    DTIC Science & Technology

    2008-04-01

    surface (in degrees). Facet # 1 2 3 4 5a 5b 6 7 8 9 Angle 46 45 39 19 26 35 33 31 32 21 Table II. Orientation of facets (in degrees). Facet # 1* 2 3 4 ...TYPE 3. DATES COVERED (From - To) April 2008 Journal Article Preprint 4 . TITLE AND SUBTITLE MICROSTRUCTURAL INFLUENCES ON VERY HIGH CYCLE...FATIGUE CRACK INITIATION IN Ti-6246 (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62102F 6 . AUTHOR(S

  7. On bilinearity of Manson-Coffin low-cycle-fatigue relationship

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.

    1992-01-01

    Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.

  8. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  9. On bilinearity of Manson-Coffin low-cycle-fatigue relationship

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V. M.

    1992-10-01

    Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.

  10. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-06-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  11. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  12. The Influence of Zirconium on the Low-Cycle Fatigue Response of Ultrafine-Grained Copper

    NASA Astrophysics Data System (ADS)

    Gabor, P.; Canadinc, D.; Maier, H. J.; Hellmig, R. J.; Zuberova, Z.; Estrin, J.

    2007-09-01

    This article reports on the influence of zirconium (Zr) addition (0.17 wt pct) on the cyclic stability of ultrafine-grained (UFG) oxygen-free high-conductivity (OFHC) copper (Cu) of originally high (99.995 wt pct) purity processed via equal-channel angular extrusion (ECAE). Systematic low-cycle fatigue (LCF) tests accompanied by microstructural investigation revealed that a Zr addition substantially affects the cyclic stability of UFG Cu, such that longer fatigue lives, notable cyclic hardening, and higher stress ranges were attained in the LCF regime. This significant improvement of the fatigue properties of OFHC Cu by the addition of Zr is attributed to the Cu-Zr precipitates and impurities, effectively limiting the mobility of the grain boundaries and additional work hardening imposed by the precipitates. In addition, the strain-amplitude and strain-rate dependencies of the cyclic stability of Zr-added UFG Cu were investigated in detail, where the UFG Cu-Zr alloy exhibits an expressively lesser dependency as compared with the pure UFG Cu. The current results offer new insight into the improvement of the cyclic stability of UFG Cu and other UFG materials, and provides a venue for their utility in a broader range of applications demanding enhanced cyclic deformation response and stability.

  13. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  14. Hydrogen induced surface cracking in an 8090 Al-Li alloy during high cycle fatigue

    SciTech Connect

    Laffin, C.; Raghunath, C.R.; Lopez, H.F. . Materials Dept.)

    1993-10-01

    In recent years, there has been an increasing interest in understanding the effects of aggressive or moist environments on the properties of Al-Li alloys. However, most of the existing work has been focused on their stress corrosion cracking resistance. Consequently, only a few reports are available on the environmental fatigue strength of these alloys. Upon exposure to aggressive environments, the fatigue crack propagation resistance can be detrimentally affected. R. Piascik and R. Gangloff found enhanced cyclic crack growth rates in an Al-Li-Cu alloy when a critical water vapor pressure was exceeded. Thermodynamically, at atmospheric pressures, strong interactions between hydrogen and lithium are expected to give rise to stable lithium hydrides. Evidence for the development of hydride phases in Al-Li alloys exposed to hydrogen environments has been reported by various workers. Thus, it is likely that HE via hydride formation can be the relevant mechanisms in Al-Li alloys that have been in contact with hydrogen. Since lithium hydrides are stable up to temperatures of 773 K, previous hydrogen exposure can lead to an irreversible mode of embrittlement. Thus, it was the objective of the present work to investigate the effects of hydrogen during aging on the ensuing high cycle fatigue (HCF) performance of an 8090 Al-Li alloy.

  15. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  16. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Jang, Ho; Oh, Yong-Jun

    2009-09-01

    This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin-Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

  17. A New Ductility Exhaustion Model for High Temperature Low Cycle Fatigue Life Prediction of Turbine Disk Alloys

    NASA Astrophysics Data System (ADS)

    Zhu, Shun-Peng; Huang, Hong-Zhong; Li, Haiqing; Sun, Rui; Zuo, Ming J.

    2011-06-01

    Based on ductility exhaustion theory and the generalized energy-based damage parameter, a new viscosity-based life prediction model is introduced to account for the mean strain/stress effects in the low cycle fatigue regime. The loading waveform parameters and cyclic hardening effects are also incorporated within this model. It is assumed that damage accrues by means of viscous flow and ductility consumption is only related to plastic strain and creep strain under high temperature low cycle fatigue conditions. In the developed model, dynamic viscosity is used to describe the flow behavior. This model provides a better prediction of Superalloy GH4133's fatigue behavior when compared to Goswami's ductility model and the generalized damage parameter. Under non-zero mean strain conditions, moreover, the proposed model provides more accurate predictions of Superalloy GH4133's fatigue behavior than that with zero mean strains.

  18. Hydrogen effects on low-cycle fatigue of the single-crystal nickel-base superalloy CMSX-2

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.; Kromp, W.; Domnanovitch, A.; Pinczolits, H.

    1991-01-01

    The effects of hydrogen on the low-cycle fatigue behavior of CMSX-2 (001)-oriented single crystals were examined. Fatigue tests were conducted under constant plastic strain amplitude control. Cyclic stress-strain curves and fatigue life data at different plastic strain amplitudes were determined for hydrogen-free and hydrogen-charged specimens. Two charging procedures, leading to different hydrogen concentrations, were applied. Hydrogen was found to decrease significantly the number of cycles to failure under the various experimental conditions. The increasing hydrogen concentration and ratio of the hydrogen to nonhydrogen-containing volume were found to shorten fatigue life in hydrogen-charged specimens. Based on the analysis of cyclic stress-strain curves and optical and transmission electron microscopy, it was established that hydrogen enhanced strain localization and promoted crystallographic stage I cracking, leading to embrittlement.

  19. Augmented supraspinal fatigue following constant-load cycling in the heat.

    PubMed

    Goodall, S; Charlton, K; Hignett, C; Prichard, J; Barwood, M; Howatson, G; Thomas, K

    2015-06-01

    The development of central fatigue is prominent following exercise-induced hyperthermia, but the contribution of supraspinal fatigue is not well understood. Seven endurance-trained cyclists (mean ± SD peak O2 uptake, 62.0 ± 5.6 mL/kg/min) completed two high-intensity constant-load cycling trials (296 ± 34 W) to the limit of tolerance in a hot (34 °C, 20% relative humidity) and, on a separate occasion, for the same duration, a control condition (18 °C, 20% relative humidity). Core body temperature (Tc ) was measured throughout. Before and immediately after each trial, twitch responses to supramaximal femoral nerve and transcranial magnetic stimulation were obtained from the knee extensors to assess neuromuscular and corticospinal function, respectively. Exercise time was 11.4 ± 2.6 min. Peak Tc was higher in the hot compared with control (38.36 ± 0.43 °C vs 37.86 ± 0.36 °C; P = 0.035). Post-exercise reductions in maximal voluntary contraction force (13 ± 9% vs 9 ± 5%), potentiated twitch force (16 ± 12% vs 21 ± 13%) and voluntary activation (9 ± 7% vs 7 ± 7%) were similar in hot and control trials, respectively. However, cortical voluntary activation declined more in the hot compared with the control (8 ± 3% vs 3 ± 2%; P = 0.001). Exercise-induced hyperthermia elicits significant central fatigue of which a large portion can be attributed to supraspinal fatigue. These data indicate that performance decrements in the heat might initially originate in the brain.

  20. Effect of electron beam treatment on structural change in titanium alloy VT-0 at high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Komissarova, I. A.; Kosinov, D. A.; Ivanov, Yu F.; Ivanova, O. V.; Gromov, V. E.

    2016-09-01

    Changes in the surface of the fractured structure of commercially pure titanium VT1-0 under treatment by low-energy high-current electron beams and the subsequent cycle fatigue to the failure were analyzed by transmission scanning and transmission electron diffraction microscopy. The increase in the fatigue life of samples in 2.2 times after treatment by electron beams was established. An assumption was made that the increase in the fatigue life of titanium, grade VT1-0, was due to the formation of a lamellar substructure conditioned by high-velocity crystallization of the titanium surface layer.

  1. Influence of HVOF sprayed WC/Co coatings on the high-cycle fatigue strength of mild steel

    SciTech Connect

    Steffens, H.D.; Wilden, J.; Nassenstein, K.; Moebus, S.

    1995-12-31

    HVOF thermally sprayed WC/Co coatings are applied onto components which are exposed to wear caused by abrasion, erosion, fretting and sliding. Beside wear attacks and static stresses in lots of cases alternating mechanical stresses caused by dynamic loads occur additionally. Therefore, the fatigue resistance of WC/Co 88/12 and WC/Co 83/17 coated specimens was investigated by high-cycle fatigue tests (HCF). The results of the fatigue tests were documented in statistically ascertained Woehler-diagrams (S-N-curves). Furthermore, the mechanisms of failure are discussed.

  2. High-Cycle Fatigue Properties of Notched Specimens for Ti-6Al-4V ELI Alloy at Cryogenic Temperatures

    SciTech Connect

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-03-31

    The notch effects on the high-cycle fatigue properties of Ti-6Al-4V ELI alloy have been investigated at cryogenic temperatures. Smooth and notched specimens with the Kt=1.5, Kt=2 and Kt=3 were prepared. High-cycle fatigue tests were carried out at 4, 77 and 293 K. One million cycles fatigue strength (FS) of smooth specimen was increased with a decrease of the test temperature. Although the FS of each notched specimen at 4 K were lower than those of 77 K. Fatigue crack initiation sites of the smooth, the Kt=1.5 and the Kt=2 notched specimens at 4 K were facets in the specimen interior (internal type fracture) and those of the Kt=3 notched specimens were at the notch root (surface type fracture). The size of individual facets comprising the internal fatigue crack initiation sites correspond to almost the {alpha}-grain size. Therefore, improvement of the fatigue strength of the notched specimens for Ti-6Al-4V ELI alloy which show internal type fracture at cryogenic temperatures requires attaining a smaller area size by grain refining.

  3. High-Cycle Fatigue Properties of Notched Specimens for Ti-6Al-4V ELI Alloy at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-03-01

    The notch effects on the high-cycle fatigue properties of Ti-6Al-4V ELI alloy have been investigated at cryogenic temperatures. Smooth and notched specimens with the Kt=1.5, Kt=2 and Kt=3 were prepared. High-cycle fatigue tests were carried out at 4, 77 and 293 K. One million cycles fatigue strength (FS) of smooth specimen was increased with a decrease of the test temperature. Although the FS of each notched specimen at 4 K were lower than those of 77 K. Fatigue crack initiation sites of the smooth, the Kt=1.5 and the Kt=2 notched specimens at 4 K were facets in the specimen interior (internal type fracture) and those of the Kt=3 notched specimens were at the notch root (surface type fracture). The size of individual facets comprising the internal fatigue crack initiation sites correspond to almost the α-grain size. Therefore, improvement of the fatigue strength of the notched specimens for Ti-6Al-4V ELI alloy which show internal type fracture at cryogenic temperatures requires attaining a smaller area size by grain refining.

  4. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Hüther, Jonas; Brøndsted, Povl

    2016-07-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes directions so is not significantly influenced of these stresses. This is related to the observations that the damage mechanisms in the off axes directions are mainly related to shear failure in the matrix and in the interface between fiber and matrix and different from the damage mechanisms in the fiber direction, where the damage initiates in the transverse backing fibers and is directly related to fiber fractures in the load-carrying axial fiber bundles.

  5. The roles of rare earth dispersoids and process route on the low cycle fatigue behavior of a rapidly solidified powder metallurgy titanium alloy

    SciTech Connect

    Gigliotti, M.F.X. ); Woodfield, A.P. )

    1993-08-01

    Low cycle fatigue tests were conducted at 482C (900F) on forgings and extrusions of a rapidly solidified powder metallurgy titanium base alloy with and without rare earth additions. The variables studied were process temperature and heat treatment. Rare earth dispersions reduced fatigue life, and fracture surfaces indicated internal fatigue crack initiation at rare earth particles.

  6. The Toll-Like Receptor Radical Cycle Pathway: A New Drug Target in Immune-Related Chronic Fatigue.

    PubMed

    Lucas, Kurt; Morris, Gerwyn; Anderson, George; Maes, Michael

    2015-01-01

    In this review we discuss that peripheral and central activation of the Toll-like receptor 2/4 (TLR2/4) Radical Cycle may underpin the pathophysiology of immune-related chronic fatigue secondary to other medical diseases and conditions. The TLR Radical Cycle plays a role in illnesses and conditions that are disproportionately commonly comorbid with secondary chronic fatigue, including a) neuroinflammatory disorders, e.g. Parkinson's disease, stroke, depression, psychological stressors, and b) systemic disorders, e.g. (auto)immune disorders, chronic obstructive pulmonary disease, ankylosing spondylitis, chronic kidney disease, inflammatory bowel disease, cardiovascular disease, incl. myocardial infarction, cancer and its treatments. Increased TLR signaling is driven by activated immuneinflammatory and oxidative and nitrosative stress pathways, pathogen derived molecular patterns, including lipopolysaccharides, and damage associated molecular patterns (DAMPs). Newly formed redox-derived DAMPs, secondary to oxidative processes, may further activate the TLR complex leading to an auto-amplifying TLR Radical feedback loop. Increased gut permeability with translocation of gram negative bacteria and LPS, which activates the TLR Radical Cycle, is another pathway that may play a role in most of the abovementioned diseases and the secondary fatigue accompanying them. It is concluded that secondary fatigue may be associated with activation of the TLR Radical Cycle pathway due to activated immune-inflammatory pathways, classical and redox-derived DAMPs and PAMPs plays a role in its pathophysiology. Such an activation of the TLR Radical Cycle pathway may also explain why the abovementioned conditions are primed for an increased expression of secondary chronic fatigue. Targeting the TLR Radical Cycle pathway may be an effective method to treat TLR-Radical Cycle-related diseases such as secondary chronic fatigue.

  7. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  8. Microalloying Improves the Low-Cycle Fatigue Behavior of Powder-Extruded NiAl

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is considerable interest in developing new structural materials in which high use temperatures and strength, coupled with low density, are the minimum requirements. The goal for these new materials is to provide operation well beyond the working range of conventional superalloys. Of the many intermetallics under consideration, NiAl is one of the few systems that has emerged as a promising candidate for further development. This is because of a number of property advantages--including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance. However, binary NiAl lacks strength and creep resistance at elevated temperatures. Also, its poor high-temperature strength results in worse-than-predicted low-cycle fatigue (LCF) lives at low strain ranges at 727 C (1341 F) because of accelerated creep damage mechanisms that result in significant intergranular cracking. One approach for improving these properties involves microalloying NiAl with either Zr or N. As an integral part of this alloy-development program at the NASA Lewis Research Center, the low-cycle fatigue behavior of Zr- and N-doped nickel aluminides produced by extrusion of prealloyed powders was investigated and compared with similarly processed binary NiAl.

  9. Low-cycle and high-cycle fatigue failure process characterization of CFRP cross-ply laminates

    SciTech Connect

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    1994-12-31

    Damage progress in toughened-type CFRP cross-ply laminates under tensile fatigue loading was measured by the replica technique. The damage parameters, the transverse crack density and the delamination ratio, were presented. Based on above data, simple shear-lag analysis combined with the modified Paris law model was conducted to model the damage progress. In addition, a novel power-law model was proposed, which related the cyclic strain range and the number of cycles. The loading-unloading tests were also performed to obtain the Young`s modulus reduction and the permanent strain as functions of the damage state. The shear-lag predictions of the Young`s modulus reduction and the permanent strain showed good agreement with the experimental data, when the interaction between transverse cracking and delamination were taken into account.

  10. Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E; Salam, Tahrina; Rose, Geoffrey E; Ezra, Daniel G

    2015-02-01

    Ptosis describes a low position of the upper eyelid. When this condition is due to poor function of the levator palpebrae superioris muscle, responsible for raising the lid, "brow-suspension" ptosis correction is usually performed, which involves internally attaching the malpositioned eyelid to the forehead musculature using brow-suspension materials. In service, such materials are exposed to both rapid tensile loading and unloading sequences during blinking, and a more sustained tensile strain during extended periods of closure. In this study, various mechanical tests were conducted to characterise and compare some of commonly-used synthetic brow-suspension materials (Prolene(®), Supramid Extra(®) II, Silicone rods (Visitec(®) Seiff frontalis suspension set) and Mersilene(®) mesh) for their time-dependent response. At a given constant tensile strain or load, all of the brow-suspension materials exhibited stress-relaxation or creep, with Prolene(®) having a statistically different relaxation or creep ratio as compared with those of others. Uniaxial tensile cyclic tests through preconditioning and fatigue tests demonstrated drastically different time-dependent response amongst the various materials. Although the tests generated hysteresis force-strain loops for all materials, the mechanical properties such as the number of cycles required to reach the steady-state, the reduction in the peak force, and the cyclic energy dissipation varied considerably. To reach the steady-state, Prolene(®) and the silicone rod required the greatest and the least number of cycles, respectively. Furthermore, the fatigue tests at physiologically relevant conditions (15% strain controlled at 6.5 Hz) demonstrated that the reduction in the peak force during 100,000 cycles ranged from 15% to 58%, with Prolene(®) and the silicone rod exhibiting the greatest and the least value, respectively. Many factors need to be considered to select the most suitable brow-suspension material for

  11. Effect of test frequency on fatigue strength of AZ31 alloy

    NASA Astrophysics Data System (ADS)

    Lu, G. J.; Koyanagi, Y.; Tsushida, M.; Kitahara, H.; Ando, S.

    2017-05-01

    Investigation of fatigue strength of extruded AZ31 magnesium alloy was performed by ultrasonic fatigue tests (test frequency about 19500Hz) and taken to compare with conventional tension-compression fatigue tests (20Hz). The fatigue life under ultrasonic loading exhibits longer than the conventional one. Effects of ultrasonic frequency on the S-N curve, crack initiation and growth behaviour of AZ31 alloy is discussed. This work would be useful for improving the ultrasonic fatigue test method to observe the fatigue behaviour in very high cycle regime.

  12. Fatigue is Specific to Working Muscles: No Cross-over with Single-leg Cycling in Trained Cyclists

    PubMed Central

    Elmer, Steven J.; Amann, Markus; McDaniel, John; Martin, David T.; Martin, James C.

    2014-01-01

    Fatigue induced via a maximal isometric contraction of a single-limb muscle group can evoke a “cross-over” of fatigue that reduces voluntary muscle activation and maximum isometric force in the rested contralateral homologous muscle group. We asked whether a cross-over of fatigue also occurs when fatigue is induced via high-intensity endurance exercise involving a substantial muscle mass. Specifically, we used high-intensity single-leg cycling to induce fatigue and evaluated associated effects on maximum cycling power (Pmax) in the fatigued ipsilateral leg (FATleg) as well as the rested contralateral leg (RESTleg). On separate days, 12 trained cyclists performed right leg Pmax trials before and again 30s, 3, 5, and 10min after a cycling time trial (TT, 10min) performed either with their right or left leg. Fatigue was estimated by comparing exercise-induced changes in Pmax and maximum handgrip isometric force (Fmax). Mean power produced during the right and left leg TT’s did not differ (203±8 vs. 199±8W). Compared to pre-TT, FATleg Pmax was reduced by 22±3% at 30s post-TT and remained reduced by 9±2% at 5min post-TT (both P<0.05). Despite considerable power loss in the FATleg, post-TT RESTleg Pmax (596–603W) did not differ from pre-TT values (596±35W). There were no alterations in handgrip Fmax (529–547N). Our data suggest that any potential cross-over of fatigue, if present at all, was not sufficient to measurably compromise RESTleg Pmax in trained cyclists. These results along with the lack of changes in handgrip Fmax indicate that impairments in maximal voluntary neuromuscular function were specific to working muscles. PMID:22806085

  13. Molecular response of the patellar tendon to fatigue loading explained in the context of the initial induced damage and number of fatigue loading cycles.

    PubMed

    Andarawis-Puri, Nelly; Sereysky, Jedd B; Sun, Hui B; Jepsen, Karl J; Flatow, Evan L

    2012-08-01

    Accumulation of sub-rupture fatigue damage has been implicated in the development of tendinopathy. We previously developed an in vivo model of damage accumulation using the rat patellar tendon. Our model allows us to control the input loading parameters to induce fatigue damage in the tendon. Despite this precise control, the resulting induced damage could vary among animals because of differences in size or strength among their patellar tendons. In this study, we used number of applied cycles and initial (day-0) parameters that are indicative of induced damage to assess the molecular response 7 days after fatigue loading. We hypothesized that day-0 hysteresis, elongation, and stiffness of the loading and unloading load-displacement curves would be predictive of the 7-day molecular response. Results showed correlations between the 7-day molecular response and both day-0 elongation and unloading stiffness. Additionally, loading resulted in upregulation of several extracellular matrix genes that suggest adaptation; however, several of these genes (Col-I, -XII, MMP 2, and TIMP 3) shut down after a high level of damage was induced. We showed that evaluating the 7-day molecular profile in light of day-0 elongation provides important insight that is lost from comparing number of fatigue loading cycles only. Our data showed that loading generally results in an adaptive response. However, the tendon's ability to effectively respond deteriorates as greater damage is induced.

  14. Low cycle fatigue and strengthening mechanism of cold extruded large diameter internal thread of Q460 steel

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Mei, Qing; Yuan, Jingyun; Zheng, Zaixiang; Jin, Yifu; Zuo, Dunwen

    2016-05-01

    large diameter internal thread of high-strength steel(LDITHSS) manufactured by traditional methods always has the problems of low accuracy and short life. Compared with traditional methods, the cold extrusion process is an effective means to realize higher accuracy and longer life. The low-cycle fatigue properties of LDITHSS are obtained by experiments, and the initiation and propagation of fatigue cracks are observed by scanning electron microscope(SEM). Based on the mechanical properties, surface microstructure and residual stress, the strengthening mechanism of cold extruded large diameter internal thread(LDIT) is discussed. The results show that new grains or sub-grains can be formed on the surface of LDIT due to grain segmentation and grain refinement during cold extrusion. The fibrous structures appear as elongated and streamlined along the normal direction of the tooth surface which leads to residual compressive stress on the extruded surface. The maximum tension stress of LDIT after cold extrusion is found to be 192.55 kN. Under low stress cycling, the yield stress on thread increases, the propagation rate of crack reduces, the fatigue life is thus improved significantly with decreasing surface grain diameter and the average fatigue life increases to 45.539×103 cycle when the maximum applied load decreases to 120 kN. The low cycle fatigue and strengthening mechanism of cold extruded LDIT revealed by this research has significant importance to promote application of internal thread by cold extrusion processing.

  15. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  16. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    SciTech Connect

    Zeng, Fan W; Wang, Hong; Lin, Hua-Tay

    2013-01-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 10^5 to 7 10^5 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 10^8 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. A scanning acoustic microscope also was employed as a nondestructive tool to detect the presence of defects. Failed plates were subsequently sectioned, and the extensive cracks and porous regions were observed to be across the PZT layers. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to monitor the behavior of PZT stacks.

  17. Protocol for a randomised controlled trial for Reducing Arthritis Fatigue by clinical Teams (RAFT) using cognitive–behavioural approaches

    PubMed Central

    Hewlett, S; Ambler, N; Almeida, C; Blair, P S; Choy, E; Dures, E; Hammond, A; Hollingworth, W; Kirwan, J; Plummer, Z; Rooke, C; Thorn, J; Tomkinson, K; Pollock, J

    2015-01-01

    Introduction Rheumatoid arthritis (RA) fatigue is distressing, leading to unmanageable physical and cognitive exhaustion impacting on health, leisure and work. Group cognitive–behavioural (CB) therapy delivered by a clinical psychologist demonstrated large improvements in fatigue impact. However, few rheumatology teams include a clinical psychologist, therefore, this study aims to examine whether conventional rheumatology teams can reproduce similar results, potentially widening intervention availability. Methods and analysis This is a multicentre, randomised, controlled trial of a group CB intervention for RA fatigue self-management, delivered by local rheumatology clinical teams. 7 centres will each recruit 4 consecutive cohorts of 10–16 patients with RA (fatigue severity ≥6/10). After consenting, patients will have baseline assessments, then usual care (fatigue self-management booklet, discussed for 5–6 min), then be randomised into control (no action) or intervention arms. The intervention, Reducing Arthritis Fatigue by clinical Teams (RAFT) will be cofacilitated by two local rheumatology clinicians (eg, nurse/occupational therapist), who will have had brief training in CB approaches, a RAFT manual and materials, and delivered an observed practice course. Groups of 5–8 patients will attend 6×2 h sessions (weeks 1–6) and a 1 hr consolidation session (week 14) addressing different self-management topics and behaviours. The primary outcome is fatigue impact (26 weeks); secondary outcomes are fatigue severity, coping and multidimensional impact, quality of life, clinical and mood status (to week 104). Statistical and health economic analyses will follow a predetermined plan to establish whether the intervention is clinically and cost-effective. Effects of teaching CB skills to clinicians will be evaluated qualitatively. Ethics and dissemination Approval was given by an NHS Research Ethics Committee, and participants will provide written

  18. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    PubMed Central

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-01-01

    Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to

  19. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    PubMed Central

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0–100, 100–200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance. PMID:26029114

  20. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training.

    PubMed

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance.

  1. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  2. High temperature high cycle fatigue behavior of new aluminum alloy strengthened by (Co, Ni)3Al4 particles

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Jung, Chang-Yeol; Lee, Kee-Ahn

    2014-03-01

    High cycle fatigue (HCF) behavior of a new heat-resistant aluminum alloy at elevated temperature was investigated. This alloy consists of an α-Al matrix, a small amount of precipitated Mg2Si, and distributed (Co, Ni)3Al4 strengthening particles. HCF tests were conducted with a stress ratio of (R)=0 and a frequency of (F)=30 Hz at 130 °C. The fatigue limit (maximum stress) of this alloy was 120 MPa at 107 cycles. This is a value superior to that of conventional heat-resistant aluminum alloys such as the A319 alloy. Furthermore, regardless of the stress conditions, the new heat-resistant Al alloy has an outstanding fatigue life at high temperatures. The results of fractography observation showed that second phases, especially (Co, Ni)3Al4 particles, were effective to the resistance of fatigue crack initiation and propagation. On the other hand, Mg2Si particles were more easily fractured by the fatigue crack. This study also clarifies the micromechanism of fatigue deformation behavior at elevated temperature related to its microstructure.

  3. Crystallographic Analysis of Fatigue Crack Initiation Behavior in Coarse-Grained Magnesium Alloy Under Tension-Tension Loading Cycles

    NASA Astrophysics Data System (ADS)

    Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko

    2017-07-01

    Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.

  4. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-03-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  5. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    NASA Astrophysics Data System (ADS)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  6. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  7. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  8. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  9. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.

    PubMed

    Falgairette, G; Billaut, F; Giacomoni, M; Ramdani, S; Boyadjian, A

    2004-04-01

    The effect of recovery duration on performance and fatigue pattern during short exercises was studied including and excluding the flywheel inertia. Subjects (11 males and 11 females) performed a force-velocity test to determine their optimal force (f (opt)). On the following day, subjects performed randomly 4 series of two 8-s sprints against f (opt), with 15 s (R (15)), 30 s (R (30)), 60 s (R (60)), and 120 s (R (120)) recovery between sprints. The cycle (Monark 824 E, Stockholm, Sweden) was equipped with an optical sensor to calculate the revolution velocity of the pedal. For each sprint, peak power (P (peak)), mechanical work (W) and time to reach P (peak) (t (Ppeak)) were calculated including (I) and excluding (NI) the acceleration of the flywheel. For a given sprint, P (peak) and W were greater and t (Ppeak) was lower in I compared to NI condition (p < 0.05). Differences averaged 13 % for P (peak), 20 % for W, 34 % for t (Ppeak), and remained constant between sprints 1 and 2. In sprint 2, P (peak) and W were significantly reduced compared to sprint 1 only after R (15) and R (30) in I and NI (p < 0.05), and no gender differences occurred. In each sprint, P (peak) and W were higher (p < 0.001) and t (Ppeak) was shorter (p < 0.05) in males than in females, and gender differences were the same including or excluding the flywheel inertia. In conclusion, values excluding inertia underestimated mechanical performance and consequently the total energy supply. However, the pattern of fatigue and gender differences in performance and fatigue remained unchanged whatever the condition (I or NI). This result may have practical implications when the flywheel inertia can not be taken into account in the calculation of mechanical work and power output.

  10. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles.

    PubMed

    Yamano, Emi; Sugimoto, Masahiro; Hirayama, Akiyoshi; Kume, Satoshi; Yamato, Masanori; Jin, Guanghua; Tajima, Seiki; Goda, Nobuhito; Iwai, Kazuhiro; Fukuda, Sanae; Yamaguti, Kouzi; Kuratsune, Hirohiko; Soga, Tomoyoshi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2016-10-11

    Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711-0.890, P < 0.0001) and 0.750 (95% CI: 0.584-0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma.

  11. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine

    NASA Astrophysics Data System (ADS)

    Shanyavskiy, A. A.

    2014-01-01

    In-service Very-High-Cycle-Fatigue (VHCF) regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17 and superalloy GS6K, respectively, was considered. Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades. Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface. This material behavior reflected lifetime limit that was reached by the criterion VHCF. In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet. This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology. In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream. Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations. Recommendations to continue aircrafts airworthiness were made for in-service blades.

  12. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles

    PubMed Central

    Yamano, Emi; Sugimoto, Masahiro; Hirayama, Akiyoshi; Kume, Satoshi; Yamato, Masanori; Jin, Guanghua; Tajima, Seiki; Goda, Nobuhito; Iwai, Kazuhiro; Fukuda, Sanae; Yamaguti, Kouzi; Kuratsune, Hirohiko; Soga, Tomoyoshi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2016-01-01

    Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711–0.890, P < 0.0001) and 0.750 (95% CI: 0.584–0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma. PMID:27725700

  13. Multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: a randomized controlled trial.

    PubMed

    Vos-Vromans, D C W M; Smeets, R J E M; Huijnen, I P J; Köke, A J A; Hitters, W M G C; Rijnders, L J M; Pont, M; Winkens, B; Knottnerus, J A

    2016-03-01

    The aim of this trial was to evaluate the difference in treatment effect, at 26 and 52 weeks after the start of treatment, between cognitive behavioural therapy (CBT) and multidisciplinary rehabilitation treatment (MRT) for patients with chronic fatigue syndrome (CFS). Multicentre, randomized controlled trial of patients with CFS. Participants were randomly assigned to MRT or CBT. Four rehabilitation centres in the Netherlands. A total of 122 patients participated in the trial. Primary outcomes were fatigue measured by the fatigue subscale of the Checklist Individual Strength and health-related quality of life measured by the Short-Form 36. Outcomes were assessed prior to treatment and at 26 and 52 weeks after treatment initiation. A total of 114 participants completed the assessment at 26 weeks, and 112 completed the assessment at 52 weeks. MRT was significantly more effective than CBT in reducing fatigue at 52 weeks. The estimated difference in fatigue between the two treatments was -3.02 [95% confidence interval (CI) -8.07 to 2.03; P = 0.24] at 26 weeks and -5.69 (95% CI -10.62 to -0.76; P = 0.02) at 52 weeks. Patients showed an improvement in quality of life over time, but between-group differences were not significant. This study provides evidence that MRT is more effective in reducing long-term fatigue severity than CBT in patients with CFS. Although implementation in comparable populations can be recommended based on clinical effectiveness, it is advisable to analyse the cost-effectiveness and replicate these findings in another multicentre trial. © 2015 The Association for the Publication of the Journal of Internal Medicine.

  14. Effects of cycling exercise on vigor, fatigue, and electroencephalographic activity among young adults who report persistent fatigue.

    PubMed

    Dishman, Rod K; Thom, Nathaniel J; Puetz, Timothy W; O'Connor, Patrick J; Clementz, Brett A

    2010-11-01

    We previously reported that 6 weeks of exercise training had positive effects on feelings of vigor and fatigue among college students who reported persistent fatigue. Here we examined whether transient mood changes after single sessions of exercise would mimic those chronic effects and whether they would be related to changes in brain activity measured by electroencephalography (EEG). Feelings of vigor were higher after both low- and moderate-intensity exercise during Weeks 1, 3, and 6 compared to a control condition. Feelings of fatigue were lower after low-intensity exercise during Weeks 3 and 6. Posterior theta activity accounted for about half the changes in vigor. Studies that manipulate mood, EEG activity, or both during exercise are needed to determine whether EEG changes after exercise are causally linked with mood.

  15. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    NASA Technical Reports Server (NTRS)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  16. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  17. Effect of stress relieving treatment on low cycle fatigue behavior of USSP treated 7075 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Vaibhav; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2017-05-01

    The effect of ultrasonic shot peening (USSP) on low cycle fatigue (LCF) behavior of the 7075 aluminium alloy was studied at room temperature. There was grain refinement approximately to 20 nm size, appreciable increase in micro hardness, and inducement of residual compressive stress in the surface region, due to the USSP treatment. The modified microstructure in surface region of the specimens subjected to USSP was characterized by X-ray diffraction and transmission electron microscopy. There was marked increase in LCF life of the specimens due to USSP, however, LCF life of the USSP specimens was reduced due to subsequent treatment of stress relieving. The results are discussed in terms of the process of crack initiation and propagation in the different conditions.

  18. Mean stress effects on high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G E

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649{degree}C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs.

  19. The low cycle fatigue deformation response of a single-crystal superalloy at 650 C

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Miner, R. V.; Gayda, J.; Welsch, G.

    1989-01-01

    The cyclic stress-strain response and the associated deformation structure of the single crystal nickel-base superalloy PWA 1480 were investigated. Specimens of various crystallographic orientations were tested in low-cycle fatigue (LCF) at 650 C, resulting in a significant tension-compression anisotropy in initial yield strength associated with the shearing of gamma-prime precipitates by dislocation pairs, and a LCF cyclic hardening of the crystals associated with dislocation interactions occurring in the gamma phase. In specimens deforming by slip on a single slip system, dislocations of the primary slip system accumulated in the gamma matrix and formed seesile entanglements. In specimens deforming by slip on several slip systems, the dislocations of the different operative slip systems intersected in the gamma matrix and formed sessile arrangements.

  20. Low Cycle and Thermo-Mechanical Fatigue of Friction Welded Dissimilar Superalloys Joint

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Motoki; Sano, Atsushi; Tran, Tra Hung; Okazaki, Masakazu; Sekihara, Masaru

    The high temperature strengths of the dissimilar friction welded superalloys joint between the cast polycrystalline Mar-M247 and the forged IN718 alloys have been investigated under low cycle and thermo-mechanical fatigue loadings, in comparison with those of the base metals. The experiments showed that the lives of the dissimilar joints were significantly influenced by the test conditions and loading modes. Not only the lives themselves but also the failure positions and mechanisms were sensitive to the loading mode. The fracture behaviors depending on the loading modes and test conditions were discussed, based on the macroscopic elastic follow-up mechanism and the microstructural inhomogeneity in the friction weld joint.

  1. Crystal plasticity finite element modelling of low cycle fatigue in fcc metals

    NASA Astrophysics Data System (ADS)

    Grilli, Nicolò; Janssens, Koenraad G. F.; Van Swygenhoven, Helena

    2015-11-01

    A new dislocation-based model for low cycle fatigue in fcc metals at a length scale smaller than the feature size of the dislocation structures is presented. It uses the crystal plasticity finite element method and dislocation densities as internal variables. Equations for the dipole distance distribution, for the double cross slip mechanism and a new dislocation multiplication law are introduced, which can predict the emergence of vein and channel structures starting from a randomly perturbed dislocation distribution. The characteristics of these structures in copper and aluminium, as well as the mechanical properties, are compared with experiments. Compared with existing density-based theories, the capability to reproduce dislocation patterning is a significant step forward.

  2. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    NASA Technical Reports Server (NTRS)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  3. The low cycle fatigue deformation response of a single-crystal superalloy at 650 C

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Miner, R. V.; Gayda, J.; Welsch, G.

    1989-01-01

    The cyclic stress-strain response and the associated deformation structure of the single crystal nickel-base superalloy PWA 1480 were investigated. Specimens of various crystallographic orientations were tested in low-cycle fatigue (LCF) at 650 C, resulting in a significant tension-compression anisotropy in initial yield strength associated with the shearing of gamma-prime precipitates by dislocation pairs, and a LCF cyclic hardening of the crystals associated with dislocation interactions occurring in the gamma phase. In specimens deforming by slip on a single slip system, dislocations of the primary slip system accumulated in the gamma matrix and formed seesile entanglements. In specimens deforming by slip on several slip systems, the dislocations of the different operative slip systems intersected in the gamma matrix and formed sessile arrangements.

  4. Low cycle fatigue of MAR-M 200 single crystals at 760 and 870 deg C

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.; Bill, R. C.

    1984-01-01

    Fully reversed low cycle fatigue tests were conducted on single crystals of the nickel-base superalloys Mar-M 200 at 760 C and 870 C. At 760 C, planar slip (octahedral) lead to orientation-dependent strain hardening and cyclic lives. Multiple slip crystals strain hardened the most, resulting in relatively high stress ranges and low lives. Single slip crystals strain hardened the least, resulting in relatively low stress ranges and higher lives. A preferential crack initiation site which was related to slip plane geometry was observed in single slip orientated crystals. At 870 C, the trends were quite different, and the slip character was much more homogeneous. As the tensile axis orientation deviated from 001 , the stress ranges increased and the cyclic lives decreased. Two possible mechanisms were proposed to explain the behavior: one is based on Takeuchi and Kuramoto's cube cross-slip model, and the other is based on orientation-dependent creep rates.

  5. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    NASA Astrophysics Data System (ADS)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  6. An Empirical Approach to Correlating Thermo-Mechanical Fatigue Behaviour of a Polycrystalline Ni-Base Superalloy

    PubMed Central

    Whittaker, Mark; Lancaster, Robert; Harrison, William; Pretty, Christopher; Williams, Stephen

    2013-01-01

    Assessment of thermo-mechanical fatigue behaviour of the polycrystalline nickel alloy RR1000 reveals a significant effect of phase angle on fatigue life. The current paper explores two scenarios: the first where the mechanical strain range is held constant and comparisons of the fatigue life are made for different phase angle tests; and secondly, the difference between the behaviour of In-phase (IP) and −180° Out-Of-Phase (OOP) tests over a variety of applied strain ranges. It is shown that different lifing approaches are currently required for the two scenarios, with a mean stress based approach being more applicable in the first case, whereas a Basquin-type model proves more applicable in the second. However, it is also demonstrated that the crack propagation phase should also be considered in these types of tests for high strain ranges and projects that future modelling approaches should attempt to unify mean stress, stress range and a crack propagation phase. PMID:28788389

  7. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  8. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia.

    PubMed

    Smirmaul, Bruno P C; de Moraes, Antonio Carlos; Angius, Luca; Marcora, Samuele M

    2017-01-01

    To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg(-1)) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue.

  9. Economic evaluation of multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: A randomized controlled trial

    PubMed Central

    Köke, Albère; Hitters, Minou; Rijnders, Nieke; Pont, Menno

    2017-01-01

    Background A multi-centre RCT has shown that multidisciplinary rehabilitation treatment (MRT) is more effective in reducing fatigue over the long-term in comparison with cognitive behavioural therapy (CBT) for patients with chronic fatigue syndrome (CFS), but evidence on its cost-effectiveness is lacking. Aim To compare the cost-effectiveness of MRT versus CBT for patients with CFS from a societal perspective. Methods A multi-centre randomized controlled trial comparing MRT with CBT was conducted among 122 patients with CFS diagnosed using the 1994 criteria of the Centers for Disease Control and Prevention and aged between 18 and 60 years. The societal costs (healthcare costs, patient and family costs, and costs for loss of productivity), fatigue severity, quality of life, quality-adjusted life-year (QALY), and cost-effectiveness ratios (ICERs) were measured over a follow-up period of one year. The main outcome of the cost-effectiveness analysis was fatigue measured by the Checklist Individual Strength (CIS). The main outcome of the cost-utility analysis was the QALY based on the EuroQol-5D-3L utilities. Sensitivity analyses were performed, and uncertainty was calculated using the cost-effectiveness acceptability curves and cost-effectiveness planes. Results The data of 109 patients (57 MRT and 52 CBT) were analyzed. MRT was significantly more effective in reducing fatigue at 52 weeks. The mean difference in QALY between the treatments was not significant (0.09, 95% CI: -0.02 to 0.19). The total societal costs were significantly higher for patients allocated to MRT (a difference of €5,389, 95% CI: 2,488 to 8,091). MRT has a high probability of being the most cost effective, using fatigue as the primary outcome. The ICER is €856 per unit of the CIS fatigue subscale. The results of the cost-utility analysis, using the QALY, indicate that the CBT had a higher likelihood of being more cost-effective. Conclusions The probability of being more cost-effective is

  10. Economic evaluation of multidisciplinary rehabilitation treatment versus cognitive behavioural therapy for patients with chronic fatigue syndrome: A randomized controlled trial.

    PubMed

    Vos-Vromans, Desirée; Evers, Silvia; Huijnen, Ivan; Köke, Albère; Hitters, Minou; Rijnders, Nieke; Pont, Menno; Knottnerus, André; Smeets, Rob

    2017-01-01

    A multi-centre RCT has shown that multidisciplinary rehabilitation treatment (MRT) is more effective in reducing fatigue over the long-term in comparison with cognitive behavioural therapy (CBT) for patients with chronic fatigue syndrome (CFS), but evidence on its cost-effectiveness is lacking. To compare the cost-effectiveness of MRT versus CBT for patients with CFS from a societal perspective. A multi-centre randomized controlled trial comparing MRT with CBT was conducted among 122 patients with CFS diagnosed using the 1994 criteria of the Centers for Disease Control and Prevention and aged between 18 and 60 years. The societal costs (healthcare costs, patient and family costs, and costs for loss of productivity), fatigue severity, quality of life, quality-adjusted life-year (QALY), and cost-effectiveness ratios (ICERs) were measured over a follow-up period of one year. The main outcome of the cost-effectiveness analysis was fatigue measured by the Checklist Individual Strength (CIS). The main outcome of the cost-utility analysis was the QALY based on the EuroQol-5D-3L utilities. Sensitivity analyses were performed, and uncertainty was calculated using the cost-effectiveness acceptability curves and cost-effectiveness planes. The data of 109 patients (57 MRT and 52 CBT) were analyzed. MRT was significantly more effective in reducing fatigue at 52 weeks. The mean difference in QALY between the treatments was not significant (0.09, 95% CI: -0.02 to 0.19). The total societal costs were significantly higher for patients allocated to MRT (a difference of €5,389, 95% CI: 2,488 to 8,091). MRT has a high probability of being the most cost effective, using fatigue as the primary outcome. The ICER is €856 per unit of the CIS fatigue subscale. The results of the cost-utility analysis, using the QALY, indicate that the CBT had a higher likelihood of being more cost-effective. The probability of being more cost-effective is higher for MRT when using fatigue as primary

  11. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults.

    PubMed

    Pallavi, L C; D Souza, Urban John; Shivaprakash, G

    2017-02-01

    Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso's ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. The amount of work done and handgrip strength was significantly higher in phase 2 (p<0.001) and relatively reduced in phase 1 and 3 (p<0.001) of menstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (p<0.001) as compared to phase 1 and 3 of menstrual cycle. We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these parameters in the premenopausal age group.

  12. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults

    PubMed Central

    D Souza, Urban John; Shivaprakash, G

    2017-01-01

    Introduction Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. Aim To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. Materials and Methods This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso’s ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. Results The amount of work done and handgrip strength was significantly higher in phase 2 (p<0.001) and relatively reduced in phase 1 and 3 (p<0.001) of menstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (p<0.001) as compared to phase 1 and 3 of menstrual cycle. Conclusion We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these

  13. Eccentric Fatigue Modulates Stretch-shortening Cycle Effectiveness--A Possible Role in Lower Limb Overuse Injuries.

    PubMed

    Debenham, J; Travers, M; Gibson, W; Campbell, A; Allison, G

    2016-01-01

    The role of fatigue in injury development is an important consideration for clinicians. In particular, the role of eccentric fatigue in stretch-shortening cycle (SSC) activities may be linked to lower limb overuse conditions. The purpose of this study was to explore the influence of ankle plantarflexor eccentric fatigue on SSC effectiveness during a hopping task in healthy volunteers. 11 healthy volunteers (23.2±6.7 years) performed a sub-maximal hopping task on a custom-built sledge system. 3D motion capture and surface EMG were utilised to measure lower limb stiffness, temporal kinematic measures and muscle timing measures at baseline and immediately following an eccentric fatigue protocol. A linear mixed model was used to test whether measures differed between conditions. Compared to baseline, eccentric fatigue induced increased stiffness during the hopping task (+ 15.3%; P<0.001). Furthermore, ankle stretch amplitude decreased (- 9.1%; P<0.001), whilst all other ankle kinematic measures remained unchanged. These changes were accompanied by a temporal shift in onset of activity in soleus and tibialis anterior muscles (- 4.6 to - 8.5%; p<0.001). These findings indicate that eccentric fatigue alters SSC effectiveness in healthy volunteers. These findings may be applied to inform pathogenetic models of overuse injury development. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  15. Microstructural effects on high-cycle fatigue-crack initiation in A356.2 casting alloy

    SciTech Connect

    Zhang, B.; Poirier, D.R.; Chen, W.

    1999-10-01

    The effects of various microconstituents on crack initiation and propagation in high-cycle fatigue (HCF) were investigated in an aluminum casting alloy (A356.2). Fatigue cracking was induced in both axial and bending loading conditions at strain/stress ratios of {minus}1, 0.1, and 0.2. The secondary dendrite arm spacing (SDAS) and porosity (maximum size and density distribution) were quantified in the directionally solidified casting alloy. Using scanning electron microscopy, the authors observed that cracks initiate at near-surface porosity, at oxides, and within the eutectic microconstituents, depending on the SDAS. When the SDAS is greater than {approximately}25 to 28{micro}m, the fatigue cracks initiate from surface and subsurface porosity. When the SDAS is less than {approximately}25 to 28{micro}m, the fatigue cracks initiate from the interdendritic eutectic constituents, where the silicon particles are segregated. Fatigue cracks initiated at oxide inclusions whenever they were near the surface, regardless of the SDAS. The fatigue life of a specimen whose crack initiated at a large eutectic constituent was about equal to that when the crack initiated at a pore or oxide of comparable size.

  16. Low cycle fatigue strength of diffusion bonded joints of alumina dispersion-strengthened copper to stainless steel

    NASA Astrophysics Data System (ADS)

    Nishi, H.; Araki, T.

    2000-12-01

    It is proposed that the first wall and divertor components of ITER employ alumina dispersion-strengthened copper (DS Cu) joined to austenitic stainless steel. In this work, low cycle fatigue tests were performed on a direct diffusion bonded joint, a diffusion bonded joint with a Au interlayer, stainless steel and DS Cu in order to investigate their fatigue strength and fracture behavior. For the direct diffusion bonded joint, the fatigue strength in the small strain range was considerably lower than that of the DS Cu, while in the large strain range the fatigue strength was similar to that of the DS Cu. The low cycle fatigue strength of the Au interlayer joint increased compared with the direct diffusion bonded joint, and was the same as that of the DS Cu. The strain distribution in joint specimens was not uniform, because the deformation stress was different between the 316 stainless steel and the DS Cu. The fracture locations for the joint specimens varied depending on their strain distribution.

  17. High-temperature low-cycle fatigue and lifetime prediction of Ti-24Al-11Nb alloy

    SciTech Connect

    Malakondaiah, G.; Nicholas, T.

    1995-05-01

    The influence of hold time on low-cycle fatigue (LCF) of Ti-24Al-11Nb was studied at 650 C. At 0.167 Hz, the alloy exhibits cyclic hardening at all strain levels studied and obeys the well known Manson-Coffin behavior. A 100-second hold at peak tensile or compressive strain at {+-}0.6 pct strain has no observable effect on cycles to failure. For hold times at {+-}0.5 pct strain, however, the fatigue lives are nearly halved and specimens show secondary cracking normal to the stress axis. The increase in inelastic strain as a result of hold time appears to be primarily responsible for the observed loss in fatigue life. A linear life fraction model, which considers both fatigue and creep damage, is found to provide good correlation of measured lives with predictions. For the range of test conditions employed, the total and the tensile hysteretic energy per unit volume, absorbed until fracture, remain nearly constant. The tensile hysteretic energy appears to be a more useful measure of fatigue damage for life prediction.

  18. High-temperature low-cycle fatigue and lifetime prediction of Ti-24Al-11Nb alloy

    NASA Astrophysics Data System (ADS)

    Malakondaiah, G.; Nicholas, T.

    1995-05-01

    The influence of hold time on low-cycle fatigue (LCF) of Ti-24Al-11Nb was studied at 650 °C. At 0.167 Hz, the alloy exhibits cyclic hardening at all strain levels studied and obeys the well-known Manson-Coffin behavior. A 100-second hold at peak tensile or compressive strain at ±0.6 pct strain has no observable effect on cycles to failure. For hold times at ±0.5 pct strain, however, the fatigue lives are nearly halved and specimens show secondary cracking normal to the stress axis. The increase in inelastic strain as a result of hold time appears to be primarily responsible for the observed loss in fatigue life. A linear life fraction model, which considers both fatigue and creep damage, is found to provide good correlation of measured lives with predictions. For the range of test conditions employed, the total and the tensile hysteretic energy per unit volume, absorbed until fracture, remain nearly constant. The tensile hysteretic energy appears to be a more useful measure of fatigue damage for life prediction.

  19. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Rao, K. Bhanu Sankara; Valsan, M.; Sandhya, R.; Mannan, S. L.; Rodriguez, P.

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of ±0.25 to ± 1.25 pct. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30 pct PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10 pct PCW displayed the lowest life. An improvement in life occurred for prior deformations exceeding 10 pct at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. The constants and exponents in these equations were found to depend on the test temperature and prior metallurgical state of the material. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  20. An assessment of cold work effects on strain-controlled low-cycle fatigue behavior of type 304 stainless steel

    SciTech Connect

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P. )

    1993-04-01

    The influence of prior cold work (PCW) on low-cycle fatigue (LCF) behavior of type 304 stainless steel has been studied at 300, 823, 923, and 1,023 K by conducting total axial strain-controlled tests in solution annealed (SA, 0 pct PCW) condition and on specimens having three levels of PCW, namely, 10, 20, and 30 pct. A triangular waveform with a constant frequency of 0.1 Hz was employed for all of the tests performed over strain amplitudes in the range of [plus minus]0.25 to [plus minus]1.25%. These studies have revealed that fatigue life is strongly dependent on PCW, temperature, and strain amplitude employed in testing. The SA material generally displayed better endurance in terms of total and plastic strain amplitudes than the material in 10, 20, and 30% PCW conditions at all of the temperatures. However, at 300 K at very low strain amplitudes, PCW material exhibited better total strain fatigue resistance. At 823 K, LCF life decreased with increasing PCW, whereas at 923 K, 10% PCW displayed the lowest life. An improvement in life occurred for prior deformation exceeding 10% at all strain amplitudes at 923 K. Fatigue life showed a noticeable decrease with increasing temperature up to 1,023 K in PCW state. On the other hand, SA material displayed a minimum in fatigue life at 923 K. The fatigue life results of SA as well as all of the PCW conditions obeyed the Basquin and Coffin-Manson relationships at 300, 823, and 923 K. A study is made of cyclic stress-strain behavior in SA and PCW states and the relationship between the cyclic strain-hardening exponent and fatigue behavior at different temperatures has been explored. The influence of environment on fatigue crack initiation and propagation behavior has been examined.

  1. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  2. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  3. Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue.

    PubMed

    Young, Jeremy M; Van Vliet, Krystyn J

    2005-01-15

    Due to the large reversible strains achievable through the stress-induced austenite-martensite phase transformation in NiTi alloys, NiTi has replaced stainless steel in the majority of large-strain biomedical applications such as root canal enlargement. However, the pseudoelasticity of NiTi is currently overshadowed by the short fatigue life of NiTi wires used in this low cycle (200-2000 rpm), high amplitude (epsilon(a) > 2.5%) application, resulting in in vivo fracture or premature retirement of otherwise reusable NiTi-based wire devices. In this study, the failure of pseudoelastic 55.8 wt % Ni-Ti wire is investigated experimentally, as a function of experimental parameters that include the clinically relevant regime. The effects of radius of curvature, angle of curvature, wire diameter, strain amplitude, cyclic frequency, volume under strain, and specific heat of the surrounding environmental fluid are considered systematically. These data indicate that the lifetime or cycles to failure N(f) of a rotating NiTi wire can be predicted via a modified Coffin-Manson relation that is a strong function of both strain amplitude and volume under strain, and a weaker function of frequency and fluid specific heat. The resulting quantitative relation can be used to predict useful device lifetime under clinically relevant conditions and thereby reduce incidences of in vivo failure.

  4. A modified intramedullary nail interlocking design yields improved stability for fatigue cycling in a canine femur fracture model.

    PubMed

    Garlock, Adam N; Donovan, Jim; LeCronier, David J; Houghtaling, John; Burton, Stephen; Atkinson, Patrick J

    2012-06-01

    Intramedullary nailing has evolved to become the standard of care for most diaphyseal femoral and tibial fractures, as well as an expanding number of metaphyseal fractures. Owing to the unstable nature of some fractures, the intramedullary device may be subjected to significant stresses owing to a lack of solid cortical contact after nailing. In such cases, excessive interfragmentary motion (due to construct toggle) has been shown to occur. Such motion increases the likelihood of a non- or delayed-union. In the current study, two versions of a modified, angle stable interlocking design were subjected to fatigue testing in a segmental defect fracture model representing a canine femur. As a control, a third group of constructs were stabilized with a traditional nail that allowed a small amount of toggle. All constructs were subjected to 50,000 fatigue cycles representing 12 weeks of cage activity at physiologic levels of combined axial-torsional loading. Torsional testing pre- and post-fatigue revealed 4.6 +/- 1.3 degrees of toggle in the traditional nail and no toggle with the angle stable nail designs. The stable nails were also significantly stiffer in axial compression and torsion before and after cycling. These data indicate that the enhanced stability of the modified interlocking designs can be maintained throughout fatigue cycling in a challenging fracture model.

  5. Notch effects on high-cycle fatigue properties of Ti 6Al 4V ELI alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-01-01

    Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.

  6. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.

    PubMed

    Tenan, Matthew S; McMurray, Robert G; Blackburn, B Troy; McGrath, Melanie; Leppert, Kyle

    2011-02-01

    Local muscle fatigue may be related to potassium efflux from the muscle cell and/or lactate accumulation within the muscle. Local fatigue causes a decrease in median frequency (MPF) of the electromyogram's power spectrum during isometric contractions but its relationship to changes in potassium and lactate during dynamic exercise is equivocal. Thus, this investigation evaluated relationships between changes in the MPF from the vastus lateralis and blood levels of lactate and potassium during an incremental cycling test and recovery. Trained cyclists (n=8) completed a discontinuous, graded cycle test to exhaustion under normal and glycogen-reduced conditions. The glycogen reduced condition promoted an environment of lower lactate production while permitting a consistent potassium response. Blood samples and maximal isometric EMG data were collected at the end of each stage and during recovery. Maximal lactate levels were ∼ 60% lower in the glycogen reduced condition; potassium was similar between trials. MPF did not change significantly at volitional fatigue. Further, MPF was not significantly related to lactate (p>0.27) or potassium (p>0.16) in either condition. Though both lactate and potassium have been implicated as factors relating to local muscle fatigue, neither is significantly related to changes in MPF during or after progressive exercise on a cycle ergometer.

  7. [Finite Element Analysis of Effect of Key Dimension of Nitinol Stent on Its Fatigue Behaviour].

    PubMed

    Li, Jianjun; Wang, Shengzhang

    2015-04-01

    To evaluate the fatigue behavior of nitinol stents, we used the finite element method to simulate the manufacture processes of nitinol stents, including expanding, annealing, crimping, and releasing procedure in applications of the clinical treatments. Meanwhile, we also studied the effect of the crown area dimension of stent on strain distribution. We then applied a fatigue diagram to investigate the fatigue characteristics of nitinol stents. The results showed that the maximum strain of all three stent structures, which had different crown area dimensions under vessel loads, located at the transition area between the crown and the strut, but comparable deformation appeared at the inner side of the crown area center. The cause, of these results was that the difference of the area moment of inertia determined by the crown dimension induced the difference of strain distribution in stent structure. Moreover, it can be drawn from the fatigue diagrams that the fatigue performance got the best result when the crown area dimension equaled to the intermediate value. The above results proved that the fatigue property of nitinol stent had a close relationship with the dimension of stent crown area, but there was no positive correlation.

  8. Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

    PubMed

    Kurti, Stephanie P; Smith, Joshua R; Emerson, Sam R; Castinado, Kenneth M; Harms, Craig A

    2015-11-01

    Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15-20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3-6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

  9. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material.

    PubMed

    Sweeney, C A; O'Brien, B; Dunne, F P E; McHugh, P E; Leen, S B

    2015-06-01

    This paper presents a framework of experimental testing and crystal plasticity micromechanics for high cycle fatigue (HCF) of micro-scale L605 CoCr stent material. Micro-scale specimens, representative of stent struts, are manufactured via laser micro-machining and electro-polishing from biomedical grade CoCr alloy foil. Crystal plasticity models of the micro-specimens are developed using a length scale-dependent, strain-gradient constitutive model and a phenomenological (power-law) constitutive model, calibrated from monotonic and cyclic plasticity test data. Experimental microstructural characterisation of the grain morphology and precipitate distributions is used as input for the polycrystalline finite element (FE) morphologies. Two microstructure-sensitive fatigue indicator parameters are applied, using local and non-local (grain-averaged) implementations, for the phenomenological and length scale-dependent models, respectively, to predict fatigue crack initiation (FCI) in the HCF experiments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effect of Cold Rolling on the Coffin Manson Relationship in Low-Cycle Fatigue of Superalloy IN718

    NASA Astrophysics Data System (ADS)

    Praveen, K. V. U.; Singh, Vakil

    2008-01-01

    The age-hardenable Ni-Fe based superalloy IN718 exhibits a dual-slope Coffin Manson (C-M) relationship during low-cycle fatigue (LCF). Effort was made to eliminate the dual-slope C-M relationship by introducing prior deformation. Peak-aged (PA) material was subjected to different degrees of cold reduction, and its LCF behavior was examined. Cold rolling is found to be highly effective in eliminating the dual slope and enhancing the fatigue life at low strain amplitudes. Cold rolling coupled with stress relieving (SR) treatment is found to further improve the fatigue life. The role of texture on the observed LCF behavior is analyzed and found to have no significant effect.

  11. Influence of temperature, environment, and thermal aging on the continuous cycle fatigue behavior of Hastelloy X and Inconel 617

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Booker, M.K.; Rittenhouse, P.L.

    1982-04-01

    Results are presented for strain-controlled fatigue and tensile tests for two nickel-base, solution-hardened reference structural alloys for use in several High-Temperature Gas-Cooled Reactor (HTGR) concepts. These alloys, Hastelloy X and Inconel 617, were tested from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in both the solution-annealed and the preaged conditios, in which aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are given between the strain-controlled fatigue lives of these and several other commonly used alloys, all tested at 538/sup 0/C. An analysis is also presented of the continuous cycle fatigue data obtained from room temperature to 427/sup 0/C for Hastelloy G, Hastelloy X, Hastelloy C-276, and Hastelloy C-4, an effort undertaken in support of ASME code development.

  12. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-09-28

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  13. Group III/IV locomotor muscle afferents alter motor cortical and corticospinal excitability and promote central fatigue during cycling exercise

    PubMed Central

    Sidhu, Simranjit K.; Weavil, Joshua C.; Mangum, Tyler S.; Jessop, Jacob E.; Richardson, Russell S.; Morgan, David E.; Amann, Markus

    2017-01-01

    Objective To investigate the influence of group III/IV muscle afferents on the development of central fatigue and corticospinal excitability during exercise. Methods Fourteen males performed cycling-exercise both under control-conditions (CTRL) and with lumbar intrathecal fentanyl (FENT) impairing feedback from leg muscle afferents. Transcranial magnetic- and cervicomedullary stimulation was used to monitor cortical versus spinal excitability. Results While fentanyl-blockade during non-fatiguing cycling had no effect on motor-evoked potentials (MEPs), cervicomedullary-evoked motor potentials (CMEPs) were 13 ± 3% higher (P < 0.05), resulting in a decrease in MEP/CMEP (P < 0.05). Although the pre- to post-exercise reduction in resting twitch was greater in FENT vs. CTRL (−53 ± 3% vs. −39 ± 3%; P < 0.01), the reduction in voluntary muscle activation was smaller (−2 ± 2% vs. −10 ± 2%; P < 0.05). Compared to the start of fatiguing exercise, MEPs and CMEPs were unchanged at exhaustion in CTRL. In contrast, MEPs and MEP/CMEP increased 13 ± 3% and 25 ± 6% in FENT (P < 0.05). Conclusion During non-fatiguing exercise, group III/IV muscle afferents disfacilitate, or inhibit, spinal motoneurons and facilitate motor cortical cells. In contrast, during exhaustive exercise, group III/IV muscle afferents disfacilitate/inhibit the motor cortex and promote central fatigue. Significance Group III/IV muscle afferents influence corticospinal excitability and central fatigue during whole-body exercise in humans. PMID:27866119

  14. Low cycle fatigue behavior of a SiCp reinforced aluminum matrix composite at ambient and elevated temperature

    SciTech Connect

    Han, N.L.; Wang, Z.G.; Sun, L.Z.

    1995-06-01

    Based on an investigation of low cycle fatigue life and cyclic stress response characteristics of SiC particulates reinforced pure aluminum and unreinforced matrix aluminum at 298 K and 441 K, the following observations were made. (1) Cyclic stress response of the unreinforced matrix aluminum, in the as-extruded condition, revealed initial cyclic hardening, cyclic stability and second hardening at ambient temperature. With a contrast, the unreinforced aluminum at elevated temperature showed progressively cyclic softening behavior without initial hardening. (2) The cyclic stress response characteristics of the composite were different from that of its unreinforced matrix at room temperature. In spite of the initial hardening, the composite showed progressive softening in most of the fatigue life. At elevated temperature the composite also displayed continuous cyclic softening behavior. The reason for the softening behavior probably was that the dislocation tangles in the composite specimen with a likely work-hardened status was not stable and could be changed under a cyclic loading. (3) The SiCp/Al composite and the unreinforced matrix followed the Coffin-Manson law. The low cycle fatigue resistance of the composite at room temperature was lower than that of the unreinforced matrix. A decrease in the fatigue endurance due to a rise in test temperature was observed for the composite and the unreinforced matrix especially at low cyclic plastic strain ranges. The induction of fatigue life of the unreinforced aluminum was faster than that of the composite, so the fatigue resistance of the composite was stronger than that of the unreinforced aluminum under lower cyclic strain ranges at elevated temperature.

  15. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  16. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics.

    PubMed

    Girard, Olivier; Racinais, Sébastien

    2014-01-01

    This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. Time to exhaustion was reduced (P < 0.05) in hot (-35 ± 15 %) or hypoxia (-36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (-51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (-9 ± 1, -4 ± 1 and -6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.

  17. Reproducibility and Repeatability of Tensile and Low-Cycle Fatigue Properties in Propulsion Grade Hydrogen

    NASA Technical Reports Server (NTRS)

    Vesely, E. J.; Bhat, B. N.; McPherson, W. B.; Grethlein, C. E.; Jones, Clyde S. (Technical Monitor)

    2002-01-01

    Hydrogen has the potential of increased use in the future as an environmentally friendly fuel. It has, however, shown a tendency to embrittle some materials. To be used in a safe manner and to exploit its full potential, it will be necessary to develop a database of material properties in hydrogen environment. The tests needed to produce this data are costly to perform (tensile test cost 25 times more and low cycle fatigue test are 55 times as expensive). Moreover, there is presently a lack of universal test methods to ensure standardized data within the hydrogen community. Each of the industries that work with hydrogen (aerospace, petroleum, fuel cells, etc.) performs tests by their own laboratory-developed methods, thus rendering cross- comparisons of material property data highly questionable. It is extremely important that data generated in a hydrogen environment be done to a standard that reduces variance to a minimum and allows direct comparison of test results from different laboratories. Doing so will assure that all data generated can be used to further our understanding of the hydrogen effects and to make sure components/products designed for hydrogen are the safest and most reliable possible. This paper reviews the results of two 'round-robin' programs conducted by NASA-MSFC. These two programs examined the reproducibility and repeatability of tensile and low-cycle fatigue test results in high-pressure hydrogen environments. The studies indicated that even with the tightest controls available from current commercial standards, the reproducibility (between different laboratories) and repeatability (within a laboratory) results of the tensile tests exhibited five times the variance as in standard ambient air tests. The variance with the LCF tests were on the same order as with air tests, but that was due to the large variation present in the last Interlaboratory air program. The paper concludes with a recommendation for a program that would allow the

  18. Reproducibility and Repeatability of Tensile and Low-Cycle Fatigue Properties in Propulsion Grade Hydrogen

    NASA Technical Reports Server (NTRS)

    Vesely, E. J.; Bhat, B. N.; McPherson, W. B.; Grethlein, C. E.; Jones, Clyde S. (Technical Monitor)

    2002-01-01

    Hydrogen has the potential of increased use in the future as an environmentally friendly fuel. It has, however, shown a tendency to embrittle some materials. To be used in a safe manner and to exploit its full potential, it will be necessary to develop a database of material properties in hydrogen environment. The tests needed to produce this data are costly to perform (tensile test cost 25 times more and low cycle fatigue test are 55 times as expensive). Moreover, there is presently a lack of universal test methods to ensure standardized data within the hydrogen community. Each of the industries that work with hydrogen (aerospace, petroleum, fuel cells, etc.) performs tests by their own laboratory-developed methods, thus rendering cross- comparisons of material property data highly questionable. It is extremely important that data generated in a hydrogen environment be done to a standard that reduces variance to a minimum and allows direct comparison of test results from different laboratories. Doing so will assure that all data generated can be used to further our understanding of the hydrogen effects and to make sure components/products designed for hydrogen are the safest and most reliable possible. This paper reviews the results of two 'round-robin' programs conducted by NASA-MSFC. These two programs examined the reproducibility and repeatability of tensile and low-cycle fatigue test results in high-pressure hydrogen environments. The studies indicated that even with the tightest controls available from current commercial standards, the reproducibility (between different laboratories) and repeatability (within a laboratory) results of the tensile tests exhibited five times the variance as in standard ambient air tests. The variance with the LCF tests were on the same order as with air tests, but that was due to the large variation present in the last Interlaboratory air program. The paper concludes with a recommendation for a program that would allow the

  19. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  20. Strain-Controlled Low-Cycle Fatigue Behavior of Friction Stir-Welded AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Yang, J.; Ni, D. R.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2014-04-01

    Strain-controlled low-cycle fatigue (LCF) behavior of friction stir-welded (FSW) AZ31 joints, produced at rotation rates of 800 and 3500 rpm, was studied. The joints exhibited symmetric hysteresis loops, whereas asymmetric loops were observed for the parent material (PM). The fatigue resistance of the FSW joints was slightly improved as the rotation rate increased, and both the FSW joints possessed a fatigue life similar to that of the PM at the low strain amplitude of 0.1 pct. The obtained fatigue data for the PM and FSW joints can be well described using the Coffin-Manson and Basquin's relationships. For the FSW joints, during LCF deformation, the twinning originated from the nugget zone (NZ)/thermomechanically affected zone (TMAZ) boundary and then propagated to the NZ interior. This was attributed to different textures in these regions: the center of the NZ exhibited a hard orientation, whereas a soft orientation was observed in the region around the NZ/TMAZ boundary. The fatigue cracks initiated at the bottom of the joints and propagated along the NZ/TMAZ boundary or the NZ adjacent to the NZ/TMAZ boundary.

  1. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour

    NASA Astrophysics Data System (ADS)

    Gorash, Yevgen; MacKenzie, Donald

    2017-06-01

    This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.

  2. The effect of hydrogen on the low cycle fatigue behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Dreshfield, R. L.

    1990-01-01

    The present study compares the room temperature fatigue properties of PWA 1480 single crystals containing either normal or elevated hydrogen levels, giving attention to the effects of various levels of HIPing process-controlled porosity on hydrogen-trapping and fatigue life. Hydrogen charging is found to degrade the fatigue lives of alloy samples by an order of magnitude; the magnitude of this degradation is comparable at both high and low porosity. HIPing accomplished a small beneficial effect on the fatigue life of both the hydrogen-charged and uncharged PWA 1480 samples. Fatigue cracks are noted to have consistently initiated at large, near-surface pores. By reducing the size and frquency of the larger pores, HIPing apparently retarded fatigue-crack initiation.

  3. Grain boundary oxidation and low-cycle fatigue at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.; Oshida, Y.

    1988-01-01

    Fatigue life consists of fatigue crack nucleation and propagation periods. In order to predict fatigue life accurately, a methodology for the quantitative assessment of these two fatigue damage processes had to be devised. Grain boundary oxidation penetrates faster than does oxidation within a grain. This faster oxidation penetration causes intergranular fatigue failures at elevated temperatures. Grain boundary oxidation accelerates both crack nucleation and propagation. Grain boundary oxidation kinetics and the statistical distribution of grain boundary oxide penetration depth were measured. Quantitative applications of the grain boundary oxidation kinetics to fatigue crack nucleation and propagation were analyzed. A method, based on the Weibull distribution, of extrapolating the laboratory oxidation data measured with small samples to large engineering structures is presented.

  4. Analysis of the binder yield energy test as an indicator of fatigue behaviour of asphalt mixes

    NASA Astrophysics Data System (ADS)

    O’Connell, Johan; Mturi, Georges A. J.; Komba, Julius; Du Plessis, Louw

    2017-09-01

    Empirical binder testing has increasingly failed to predict pavement performance in South Africa, with fatigue cracking being one of the major forms of premature pavement distress. In response, it has become a national aspiration to incorporate a performance related fatigue test into the binder specifications for South Africa. The Binder Yield Energy Test (BYET) was the first in a series of tests analysed for its potential to predict the fatigue performance of the binder. The test is performed with the dynamic shear rheometer, giving two key parameters, namely, yield energy and shear strain at maximum shear stress (γτmax). The objective of the investigation was to perform a rudimentary evaluation of the BYET; followed by a more in-depth investigation should the initial BYET results prove promising. The paper discusses the results generated from the BYET under eight different conditions, using six different binders. The results are then correlated with four point bending beam fatigue test results obtained from asphalt mix samples that were manufactured from the same binders. Final results indicate that the BYET is not ideal as an indicator of fatigue performance.

  5. Solving Fatigue Problems for Reversed and Repeated Biaxial Combined Stress Cycles

    NASA Astrophysics Data System (ADS)

    Pogrebnyak, A. D.

    2016-05-01

    An approach to the analysis of the limit state and the fatigue life of simplest structural members subject to a combination of inphase cyclic tension/compression and cyclic torsion or a combination of cyclic bending and cyclic torsion is proposed. The solution is constructed using a limit-state model that relates the fatigue strengths in terms of a power transcendental function. The calculated results are validated experimentally for solid prismatic rods and thin-walled tubes subject to fatigue failure

  6. Fatigue Behavior of Materials under Strain Cycling in Low and Intermediate Life Range

    DTIC Science & Technology

    1963-04-01

    analysis of fatigue results in terms of /efastic, plas- tic, and total strains. Materials tested were AISIAl3O- (soft and hard), ,AISI-43•o (annealed and...design with respect to the plastic fatigue characteris- tics of the material (ref. 4). In this analysis use was made of total (elastic plus plastic...elastic-plastic stress analysis of fatigue problems there is a definite need for knowledge of the relation between stress range (or amplitude) and

  7. Adaptive pacing, cognitive behaviour therapy, graded exercise, and specialist medical care for chronic fatigue syndrome: a cost-effectiveness analysis.

    PubMed

    McCrone, Paul; Sharpe, Michael; Chalder, Trudie; Knapp, Martin; Johnson, Anthony L; Goldsmith, Kimberley A; White, Peter D

    2012-01-01

    The PACE trial compared the effectiveness of adding adaptive pacing therapy (APT), cognitive behaviour therapy (CBT), or graded exercise therapy (GET), to specialist medical care (SMC) for patients with chronic fatigue syndrome. This paper reports the relative cost-effectiveness of these treatments in terms of quality adjusted life years (QALYs) and improvements in fatigue and physical function. Resource use was measured and costs calculated. Healthcare and societal costs (healthcare plus lost production and unpaid informal care) were combined with QALYs gained, and changes in fatigue and disability; incremental cost-effectiveness ratios (ICERs) were computed. SMC patients had significantly lower healthcare costs than those receiving APT, CBT and GET. If society is willing to value a QALY at £30,000 there is a 62.7% likelihood that CBT is the most cost-effective therapy, a 26.8% likelihood that GET is most cost effective, 2.6% that APT is most cost-effective and 7.9% that SMC alone is most cost-effective. Compared to SMC alone, the incremental healthcare cost per QALY was £18,374 for CBT, £23,615 for GET and £55,235 for APT. From a societal perspective CBT has a 59.5% likelihood of being the most cost-effective, GET 34.8%, APT 0.2% and SMC alone 5.5%. CBT and GET dominated SMC, while APT had a cost per QALY of £127,047. ICERs using reductions in fatigue and disability as outcomes largely mirrored these findings. Comparing the four treatments using a health care perspective, CBT had the greatest probability of being the most cost-effective followed by GET. APT had a lower probability of being the most cost-effective option than SMC alone. The relative cost-effectiveness was even greater from a societal perspective as additional cost savings due to reduced need for informal care were likely.

  8. Low cycle fatigue behavior of polycrystalline Ni3Al alloys at ambient and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Webb, Graham; Antolovich, Stephen D.

    1994-11-01

    The low cycle fatigue (LCF) resistance of polycrystalline Ni3Al has been evaluated at ambient, intermediate (300 °C), and elevated (600 °C) temperatures using strain rates of 10-2/s and 10-4/s. Testing was conducted on a binary and a Cr-containing alloy of similar stoichiometry and B content (hypostoichiometric, 200 wppm B). Test results were combined with electron microscope investigations in order to evaluate microstructural changes during LCF. At ambient and intermediate temperatures, the cyclic constitutive response of both alloys was similar, and the LCF behavior was virtually rate independent. Under these conditions, the alloys rapidly hardened and then gradually softened for the remainder of the life. Initial hardening resulted from the accumulation of dislocation debris within the deformed microstructure, whereas softening was related to localized disordering. For these experimental conditions, crack initiation resulted within persistent slip bands (PSBs). At the elevated temperature, diffusion-assisted deformation resulted in a rate-dependent constitutive response and crack-initiation characteristics. At the high strain rate (10-2/s), continuous cyclic hardening resulted from the accumulation of dislocation debris. At the low strain rate (10-4/s), the diffusion of dislocation debris to grain boundaries resulted in cyclic softening. The elevated temperature LCF resistance was determined by the effect of the constitutive response on the driving force for environmental embrittlement. Chromium additions were observed to enhance LCF performance only under conditions where crack initiation was environmentally driven.

  9. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  10. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  11. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    PubMed Central

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2=0.77 to R2=0.98 (for blood lactate) and from R2=0.81 to R2=0.97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  12. Damage tolerance based life prediction in gas turbine engine blades under vibratory high cycle fatigue

    SciTech Connect

    Walls, D.P.; deLaneuville, R.E.; Cunningham, S.E.

    1997-01-01

    A novel fracture mechanics approach has been used to predict crack propagation lives in gas turbine engine blades subjected to vibratory high cycle fatigue (HCF). The vibratory loading included both a resonant mode and a nonresonant mode, with one blade subjected to only the nonresonant mode and another blade to both modes. A life prediction algorithm was utilized to predict HCF propagation lives for each case. The life prediction system incorporates a boundary integral element (BIE) derived hybrid stress intensity solution, which accounts for the transition from a surface crack to corner crack to edge crack. It also includes a derivation of threshold crack length from threshold stress intensity factors to give crack size limits for no propagation. The stress intensity solution was calibrated for crack aspect ratios measured directly from the fracture surfaces. The model demonstrates the ability to correlate predicted missions to failure with values deduced from fractographic analysis. This analysis helps to validate the use of fracture mechanics approaches for assessing damage tolerance in gas turbine engine components subjected to combined steady and vibratory stresses.

  13. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  14. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  15. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  16. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  17. Fatigue Behaviour and Life Assessment of Jute-epoxy Composites under Tension-Tension Loading

    NASA Astrophysics Data System (ADS)

    Padmaraj, N. H.; Chethan, K. N.; Pavan; Onkar, Anand

    2017-08-01

    The present study involves fabrication and fatigue life assessment of multi-layered, woven jute fibres with epoxy matrix composites. Jute fabric were treated with 1N sodium hydroxidesolution for a duration of 6 hours. Alkali treatment was done to modify internal structure as well as surface properties of fibre. Laminates were fabricated by laying up multi layered woven jute fabric at varying angle [0-900/ (±450)2/0-900]. Vacuum bagging method was used to reduce the void content and thus increase the quality of composites. Tension-Tension fatigue tests were performed with a constant fatigue stress ratio (R=0.1) and results obtained from the tests were used to plot S-N Curve. A model based on power law equation was used for curve fitting.

  18. Dynamic recrystallization during high temperature low cycle fatigue of nickel. Progress report, June 1, 1985-May 31, 1986

    SciTech Connect

    Gottstein, G.

    1986-01-01

    The occurrence of dynamic recrystallization in single and polycrystals under nonmonotonic loading conditions was investigated. Intermediate annealing, load inversion or changing the strain path facilitates dynamic recrystallization. Low cycle fatigue in the elastic regime has about the same effect as static recovery for the same time period. Invariably, the initiation of dynamic recrystallization is controlled by dynamic recovery, as indicated by a constant ratio sigma/sub R//sigma/sub S/. During low-cycle fatigue at 0.5 Tm with 1% plastic strain amplitude, dynamic recrystallization can be initiated at much lower stresses than in monotonic tests, but recrystallization progresses much more slowly. The static recrystallization behavior of rolled Ni/sub 3/Al was investigated to establish the conditions for the occurrence of dynamic recrystallization in this material.

  19. The effect of Zr on the low-cycle fatigue behavior of NiAl at 1000 K

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.; Rao, K. B. S.

    1998-04-01

    The effect of a 0.1 at. % alloying addition of Zr on the low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K and compared to that of binary NiAl. Samples of binary NiAl and the Zr-doped alloy were processed by either HIP consolidation or extrusion of prealloyed intermetallic powders. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were all significantly influenced by the microalloying addition of Zr, regardless of the processing technique. A detailed examination of the post-tested low-cycle fatigue (LCF) samples was conducted by optical and electron microscopy to determine variations in fracture and deformation modes and to characterize any microstructural changes that occurred during LCF testing. Differences in LCF behavior due to the Zr addition are attributed to the strong effect that Zr has on modifying the deformation behavior of the intermetallic.

  20. Fatigue Behaviour of Magnesium to Steel Dissimilar Friction Stir Lap Joints

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri

    2012-02-01

    A short study has been conducted to assess the performance of friction stir welded Mg/steel joints under dynamic loads. The major mode of failure was found to be top Mg sheet fracture. Crack initiation is noted to have taken place at the Mg/steel interface. The fatigue life of the joints is found to be significantly different than the fatigue data of the Mg alloy obtained from the literature. The reasons behind such a difference have been examined in this work.

  1. Moon cycles and violent behaviours: myth or fact?

    PubMed

    Núñez, S; Pérez Méndez, L; Aguirre-Jaime, A

    2002-06-01

    We formulated the hypothesis that lunar phases, identified by the fraction of the illuminated visible surface of the moon, have a relationship with the frequency of victims of aggression seen in an emergency department. If such a relationship exists, an increase in the frequency of incidents with the phases of full moon or new moon would be expected. In order to test this hypothesis, the daily frequency of victims of violent behaviour seen in the emergency department was used to create a temporal series of data. This was then correlated with a temporal series of lunar luminosity data from the same time period. Crossed correlations in the delay range -7 to +7 days showed coefficient values ranging between -0.102 and +0.034, demonstrating weak correlations without statistical significance. Despite the attractiveness of the popular belief that the moon influences human behaviour, the analysis of our data does not support an association between lunar phases and frequency of violent behaviour. That is, we cannot predict the frequency of cases from a knowledge of lunar luminosity, at least in the period over which our study was performed.

  2. Effects of Shot-Peening on High Cycle Fretting Fatigue Behavior of Ti-6Al-4V

    DTIC Science & Technology

    2007-11-02

    fatigue technique, Coffin [18] and Manson [19] showed the relation of the strain and number of cycles to failure as follows 10 (∆ε / 2 )p...Criteria, 1995, Wear, Vol. 185, 35-46. 18. L. Coffin , Jr., A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal, Trans...ASME, 1954, Vol. 76, 931-950. 19. S. Manson , Behavior of Materials Under Conditions of Thermal Stress, NACA Technical Report TN 2933, 1953

  3. Do changes in illness perceptions, physical activity, and behavioural regulation influence fatigue severity and health-related outcomes in CFS patients?

    PubMed

    De Gucht, V; Garcia, F K; den Engelsman, M; Maes, S

    2017-04-01

    Examine to what extent changes in cognitions and changes in physical activity and behavioural regulation patterns influence fatigue severity, physical symptoms, and physical and psychological functioning of patients suffering from Chronic Fatigue Syndrome (CFS) at follow-up. The present study is an observational longitudinal study with a 12-month follow-up. A total of 144 CFS patients participated both at baseline and at follow-up. Four separate hierarchical regression analyses were conducted with fatigue, physical symptoms, physical functioning and psychological functioning at follow-up as the dependent variables, and (changes in) illness perceptions and behavioural regulation patterns (all-or-nothing and limiting behaviour) as the independent variables. Data were collected making use of self-report questionnaires. Increased Consequence and Identity beliefs over time, as well as increases in all-or-nothing behaviour predicted higher fatigue severity at follow-up. Both number and severity of physical symptoms and psychological functioning at follow-up were only determined by changes in illness perceptions, with increased Consequence beliefs influencing both outcomes, and increased Timeline beliefs only determining physical symptoms. Physical functioning at follow-up was predicted by changes in illness perceptions as well as increased levels of both all-or-nothing and limiting behaviour. The findings point at a differential pattern of associations between changes in illness perceptions and behaviour regulation patterns on the one hand, and patient outcomes on the other hand. Whereas illness perceptions significantly contribute to each of the outcomes, behaviour regulation patterns contribute only to fatigue severity and physical functioning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains

    PubMed Central

    Black, Matthew I.; Jones, Andrew M.; Blackwell, Jamie R.; Bailey, Stephen J.; Wylie, Lee J.; McDonagh, Sinead T. J.; Thompson, Christopher; Kelly, James; Sumners, Paul; Mileva, Katya N.; Bowtell, Joanna L.

    2017-01-01

    Lactate or gas exchange threshold (GET) and critical power (CP) are closely associated with human exercise performance. We tested the hypothesis that the limit of tolerance (Tlim) during cycle exercise performed within the exercise intensity domains demarcated by GET and CP is linked to discrete muscle metabolic and neuromuscular responses. Eleven men performed a ramp incremental exercise test, 4–5 severe-intensity (SEV; >CP) constant-work-rate (CWR) tests until Tlim, a heavy-intensity (HVY; GET) CWR test until Tlim, and a moderate-intensity (MOD; 0.05) muscle metabolic milieu (i.e., low pH and [PCr] and high [lactate]) was attained at Tlim (approximately 2–14 min) for all SEV exercise bouts. The muscle metabolic perturbation was greater at Tlim following SEV compared with HVY, and also following SEV and HVY compared with MOD (all P < 0.05). The normalized M-wave amplitude for the vastus lateralis (VL) muscle decreased to a similar extent following SEV (−38 ± 15%), HVY (−68 ± 24%), and MOD (−53 ± 29%), (P > 0.05). Neural drive to the VL increased during SEV (4 ± 4%; P < 0.05) but did not change during HVY or MOD (P > 0.05). During SEV and HVY, but not MOD, the rates of change in M-wave amplitude and neural drive were correlated with changes in muscle metabolic ([PCr], [lactate]) and blood ionic/acid-base status ([lactate], [K+]) (P < 0.05). The results of this study indicate that the metabolic and neuromuscular determinants of fatigue development differ according to the intensity domain in which the exercise is performed. NEW & NOTEWORTHY The gas exchange threshold and the critical power demarcate discrete exercise intensity domains. For the first time, we show that the limit of tolerance during whole-body exercise within these domains is characterized by distinct metabolic and neuromuscular responses. Fatigue development during exercise greater than critical power is

  5. The experience of pain severity and pain interference in vulvodynia patients: The role of cognitive-behavioural factors, psychological distress and fatigue.

    PubMed

    Chisari, Claudia; Chilcot, Joseph

    2017-02-01

    Vulvodynia is a chronic pain condition characterised by severe pain affecting the vulva. Biopsychosocial models have revealed the importance of illness perceptions, cognitive-behavioural variables and psychological distress in explaining the experience of pain and disability across several conditions. These factors have never been collectively examined in vulvodynia. We predicted that distress, fatigue, illness perceptions, and cognitive-behavioural factors would be associated with pain severity and interference among women with vulvodynia. This online cross-sectional study recruited 335 vulvodynia patients from an Italian charity association (Vulvodiniapuntoinfo.com), who completed pain severity and interference measures in addition to the Hospital Anxiety and Depression scale, Revised Illness Perception Questionnaire, Chalder Fatigue Questionnaire, Cognitive-Behavioural Symptom Questionnaire and a demographic questionnaire. Hierarchical regression models controlling for demographic and illness characteristics, revealed that lower treatment control beliefs, greater illness identity, catastrophizing and psychological distress, were significant predictors of pain severity, explaining 35% of the variance. A second adjusted hierarchical regression model revealed that low treatment-control, higher fatigue, distress, and avoidance/resting behaviours were significant predictors of pain interference, explaining 48% of the variance. Distress, illness perceptions, fatigue, and cognitive-behavioural factors are associated with pain severity and interference in patients with vulvodynia, highlighting the importance of adopting a biopsychosocial approach in this setting. Future research should examine these factors over time to inform the development of future tailored interventions to help support women better manage vulvodynia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Finite Element Prediction of Creep-Plastic Ratchetting and Low Cycle Creep-Fatigue for a Large SPF Tool

    NASA Astrophysics Data System (ADS)

    Deshpande, A. A.; Leen, S. B.; Hyde, T. H.

    2010-06-01

    Industrial experience shows that large superplastic forming (SPF) tools suffer from distortion due to thermal cycling, which apparently causes high temperature creep and plasticity. In addition to distortion, thermomechanical fatigue and fatigue-creep interaction can lead to cracking. The aim of this study is to predict the life-limiting thermomechanical behavior of a large SPF tool under realistic forming conditions using elastic-plastic-creep FE analyses. Nonlinear time-dependent, sequentially coupled FE analyses are performed using temperature-dependent monotonic and cyclic material data for a high-nickel, high-chromium tool material, XN40F (40% Ni and 20% Cr). The effect of monotonic and cyclic material data is compared vis-à-vis the anisothermal, elastic-plastic-stress response of the SPF tool. An uncoupled cyclic plasticity-creep material model is employed. Progressive deformation (ratchetting) is predicted locally, transverse to the predominant direction of the creep-fatigue cycling, but at the same spatial location, due to creep and cyclic plasticity, during the so-called minor cycles, which correspond to comparatively small-amplitude temperature changes associated with opening of the press doors during part loading and unloading operations.

  7. The Effect of Tungsten Trioxide Thin Films at Ferroelectric-Electrode Boundaries on Fatigue Behaviour

    NASA Astrophysics Data System (ADS)

    Baxter, Paul; Bowman, Robert M.; Gregg, J. Marty

    2008-05-01

    A conventional thin film capacitor heterostructure, consisting of sol-gel deposited lead zirconium titanate (PZT) layers with sputtered platinum top and bottom electrodes, was subjected to fatiguing pulses at a variety of frequencies. The fatigue characteristics were compared to those of a similarly processed capacitor in which a ˜20 nm tungsten trioxide layer had been deposited, using pulsed laser deposition, between the ferroelectric and upper electrode. The expectation was that, because of its ability to accommodate considerable oxygen non-stoichiometry, tungsten trioxide (WO3) might act as an efficient sink for any oxygen vacancies flushed to the electrode-ferroelectric boundary layer during repetitive switching, and hence would improve the fatigue characteristics of the thin film capacitor. However, it was found that, in general, the addition of tungsten trioxide actually increases the rate of fatigue. It appears that any potential benefit from the WO3, in terms of absorbing oxygen vacancies, is far outweighed by it causing dramatically increased charge injection in the system.

  8. The behaviour of fatigue-induced microdamage in compact bone samples from control and ovariectomised sheep.

    PubMed

    Kennedy, Oran D; Brennan, Orlaith; Mauer, Peter; O'Brien, Fergal J; Rackard, Susan M; Taylor, David; Lee, T Clive

    2008-01-01

    This study investigates the effect of microdamage on bone quality in osteoporosis using an ovariectomised (OVX) sheep model of osteoporosis. Thirty-four sheep were divided into an OVX group (n=16) and a control group (n=18). Fluorochromes were administered intravenously at 3 monthly intervals after surgery to label bone turnover. After sacrifice, beams were removed from the metatarsal and tested in three-point bending. Following failure, microcracks were identified and quantified in terms of region, location and interaction with osteons. Number of cycles to failure (Nf) was lower in the OVX group relative to controls by approximately 7%. Crack density (CrDn) was higher in the OVX group compared to controls. CrDn was 2.5 and 3.5 times greater in the compressive region compared to tensile in control and OVX bone respectively. Combined results from both groups showed that 91% of cracks remained in interstitial bone, approximately 8% of cracks penetrated unlabelled osteons and less than 1% penetrated into labelled osteons. All cases of labelled osteon penetration occurred in controls. Crack surface density (CrSDn), was 25% higher in the control group compared to OVX. It is known that crack behaviour on meeting microstructural features such as osteons will depend on crack length. We have shown that osteon age also affects crack propagation. Long cracks penetrated unlabelled osteons but not labelled ones. Some cracks in the control group did penetrate labelled osteons. This may be due the fact that control bone is more highly mineralized. CrSDn was increased by 25% in the control group compared to OVX. Further study of these fracture mechanisms will help determine the effect of microdamage on bone quality and how this contributes to bone fragility.

  9. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  10. Structural Changes in Steel 10Kh10K3V2MFBR Under Low-Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Mishnev, R. V.; Dudova, N. R.; Kaibyshev, R. O.

    2017-05-01

    The characteristics of low-cycle fatigue of high-chromium martensitic steel 10Kh10K3V2MFBR are determined at room temperature and specified deformation amplitude varied within 0.25 - 1.0%. It is shown that the steel is susceptible to softening under low-cycle loads. The endurance of the steel is determined by the Baskvin - Manson - Coffin relation. Permanent softening of the steel until failure is caused by lowering of the dislocation density and coarsening of subgrains.

  11. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

  12. Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data

    PubMed Central

    Sun, Yeran; Du, Yunyan; Wang, Yu; Zhuang, Liyuan

    2017-01-01

    Policymakers pay much attention to effectively increasing frequency of people’s cycling in the context of developing sustainable and green cities. Investigating associations of environmental characteristics and cycling behaviour could offer implications for changing urban infrastructure aiming at encouraging active travel. However, earlier examinations of associations between environmental characteristics and active travel behaviour are limited by low spatial granularity and coverage of traditional data. Crowdsourced geographic information offers an opportunity to determine the fine-grained travel patterns of people. Particularly, Strava Metro data offer a good opportunity for studies of recreational cycling behaviour as they can offer hourly, daily or annual cycling volumes with different purposes (commuting or recreational) in each street across a city. Therefore, in this study, we utilised Strava Metro data for investigating associations between environmental characteristics and recreational cycling behaviour at a large spatial scale (street level). In this study, we took account of population density, employment density, road length, road connectivity, proximity to public transit services, land use mix, proximity to green space, volume of motor vehicles and traffic accidents in an empirical investigation over Glasgow. Empirical results reveal that Strava cyclists are more likely to cycle for recreation on streets with short length, large connectivity or low volume of motor vehicles or on streets surrounded by residential land. PMID:28617345

  13. Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data.

    PubMed

    Sun, Yeran; Du, Yunyan; Wang, Yu; Zhuang, Liyuan

    2017-06-15

    Policymakers pay much attention to effectively increasing frequency of people's cycling in the context of developing sustainable and green cities. Investigating associations of environmental characteristics and cycling behaviour could offer implications for changing urban infrastructure aiming at encouraging active travel. However, earlier examinations of associations between environmental characteristics and active travel behaviour are limited by low spatial granularity and coverage of traditional data. Crowdsourced geographic information offers an opportunity to determine the fine-grained travel patterns of people. Particularly, Strava Metro data offer a good opportunity for studies of recreational cycling behaviour as they can offer hourly, daily or annual cycling volumes with different purposes (commuting or recreational) in each street across a city. Therefore, in this study, we utilised Strava Metro data for investigating associations between environmental characteristics and recreational cycling behaviour at a large spatial scale (street level). In this study, we took account of population density, employment density, road length, road connectivity, proximity to public transit services, land use mix, proximity to green space, volume of motor vehicles and traffic accidents in an empirical investigation over Glasgow. Empirical results reveal that Strava cyclists are more likely to cycle for recreation on streets with short length, large connectivity or low volume of motor vehicles or on streets surrounded by residential land.

  14. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  15. Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Carter, A. L.; Totton, W. W.; Ficke, J. M.

    1989-01-01

    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels.

  16. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis.

    PubMed

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases.

  17. Strain Ratio Effects on Low-Cycle Fatigue Behavior of Gravity Cast Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; Liu, X. S.; He, G. Q.; Cheng, H.; Lv, S. Q.

    2015-10-01

    The strain-controlled low-cycle fatigue properties of gravity cast Al-Si-Cu alloys for engine cylinder heads were investigated. At strain ratios of R ɛ = -2, 0, and 0.1, the cyclic stress amplitude progressively increased from initiation to the 450th cycle, and then proceeded into a steady stage until failure. At a strain ratio of R ɛ = -∞, the material exhibited a continuous cyclic hardening. The hysteresis loops in this alloy for the 2nd and half-life cycle were tension/compression asymmetry, which also corresponded well to the evolution of peak/valley stress. Transmission electron microscopy analysis suggested that cyclic hardening was caused by the dislocations multiplication/tangles at strain ratios of R ɛ = -∞ and 0. Besides, the presence of dislocation cross slip contributed to cyclic stabilization observed at later stage of deformation at a strain ratio of R ɛ = 0. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain ratios. It showed that the fatigue cracks initiated basically at the internal defects in the samples. Meanwhile, at strain ratios of R = -∞ and 0, the fracture surface was rough with a large number of small unequiaxed dimples and some tear ridges. Moreover, the localized pores offered a preferential crack path in the samples, where they were surrounded by silicon particles. At a strain ratio of R ɛ = -∞, the fatigue cracks preferentially initiated at pores rather than α-Fe phases. At a strain ratio of R ɛ = 0, where fatigue crack initiation was observed at the interface between plate-like branch of α-Fe phase and aluminum matrix.

  18. High-temperature low-cycle fatigue of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr

    SciTech Connect

    Malakondaiah, G.; Nicholas, T.

    1996-08-01

    The low-cycle fatigue (LCF) behavior of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr in fully lamellar (FL) and nearly lamellar (NL) microstructural conditions is studied at 650 C and 800 C, with and without hold times. At 650 C and 800 C, the alloy in either condition exhibits cyclic stability at all strain levels studied, excepting the NL structure which shows slight cyclic hardening at higher strain levels at 650 C. Fracture in the FL condition occurs by a mixed mode comprising delamination, translamellar fracture, and stepwise fracture. On the other hand, fracture occurs mostly by translamellar mode in the NL condition. At both test temperatures, the alloy in the FL condition obeys the well-known Manson-Coffin behavior. The fatigue resistance of the alloy at 650 C in the FL condition is very much comparable to, while in the NL condition it is superior to, that of Ti-24Al-11Nb alloy. At 650 C, a 100-second peak tensile strain hold doubles the fatigue life of the alloy in the FL condition, while a 100-second hold at compressive peak strain or at both tensile and compressive peak strain degrades fatigue life. The observed hold time effects can primarily be attributed to mean stress. Irrespective of the nature of the test, the hysteretic energy (total as well as tensile) per cycle remains nearly constant during the majority of its life. The total and tensile hysteretic energy to fracture, at both test temperatures, increase with cycles to failure, and the variation follows a power-law relationship.

  19. High-temperature low-cycle fatigue of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr

    NASA Astrophysics Data System (ADS)

    Malakondaiah, G.; Nicholas, T.

    1996-08-01

    The low-cycle fatigue (LCF) behavior of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr in fully lamellar (FL) and nearly lamellar (NL) microstructural conditions is studied at 650 °C and 800 °C, with and without hold times. At 650 °C and 800 °C, the alloy in either condition exhibits cyclic stability at all strain levels studied, excepting the NL structure which shows slight cyclic hardening at higher strain levels at 650 °C. Fracture in the FL condition occurs by a mixed mode comprising delamination, translamellar fracture, and stepwise fracture. On the other hand, fracture occurs mostly by translamellar mode in the NL condition. At both test temperatures, the alloy in the FL condition obeys the well-known Manson-Coffin behavior. The fatigue resistance of the alloy at 650 °C in the FL condition is very much comparable to, while in the NL condition it is superior to, that of Ti-24Al-llNb alloy. At 650 °C, a 100-second peak tensile strain hold doubles the fatigue life of the alloy in the FL condition, while a 100-second hold at compressive peak strain or at both tensile and compressive peak strain degrades fatigue life. The observed hold time effects can primarily be attributed to mean stress. Irrespective of the nature of the test, the hysteretic energy (total as well as tensile) per cycle remains nearly constant during the majority of its life. The total and tensile hysteretic energy to fracture, at both test temperatures, increase with cycles to failure, and the variation follows a power-law relationship.

  20. Low-Cycle Fatigue Behavior and Fracture Mechanism of HS80H Steel at Different Strain Amplitudes and Mean Strains

    NASA Astrophysics Data System (ADS)

    Wei, Wenlan; Han, Lihong; Wang, Hang; Wang, Jianjun; Zhang, Jianxun; Feng, Yaorong; Tian, Tao

    2017-02-01

    This work studied the low-cycle fatigue (LCF) behavior of HS80H steel at room temperature. LCF tests at strain amplitudes of 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, and 2.0% were conducted under constant mean strain. In addition, tests at mean strains of -0.8, -0.3, 0, 0.5, and 1.2% were conducted under constant strain amplitude. The microstructure and fracture surface of the material after the tests were characterized using scanning electron microscopy and transmission electron microscopy, respectively. Results of LCF test demonstrate the hardening-softening transition of HS80H steel. And it is associated with strain amplitude and mean strain. In addition, LCF life is affected by strain amplitude and mean strain. In asymmetric fatigue, the maximum absolute value of strain and fatigue life displays a linear relationship in double logarithmic coordinates. Microscopic observation showed that fatigue crack propagates through transgranular propagation resulting from the interaction between dislocation pileup and precipitates.

  1. Low-Cycle Fatigue Behavior of 95.8Sn-3.5Ag-0.7Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Li, G. Y.; Shi, X. Q.

    2013-01-01

    Low-cycle fatigue (LCF) behavior of 95.8Sn-3.5Ag-0.7Cu solder joints was investigated over a range of test temperatures (25°C, 75°C, and 125°C), frequencies (0.001 Hz, 0.01 Hz, and 0.1 Hz), and strain ranges (0.78%, 1.6%, and 3.1%). Effects of temperature and frequency on the LCF life were studied. Results show that the LCF lifetime decreases with an increase in test temperature or a decrease of test frequency, which is attributed to the longer exposure time to creep and the stress relaxation mechanism during fatigue testing. A modified Coffin-Manson model considering effects of temperature and frequency on the LCF life is proposed. The fatigue exponent and ductility coefficient were found to be influenced by both the temperature and frequency. By fitting the experimental data, the mathematical relations between the fatigue exponent and temperature, and ductility coefficient and temperature, were analyzed. Scanning electron microscopy (SEM) of the cross-sections and fracture surfaces of failed specimens at different temperature and frequency was applied to verify the failure mechanisms.

  2. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeremy L.; Piehler, Henry R.

    1993-03-01

    Subsurface fatigue damage, in the form of cracking of the α phase, was observed in Ti-6A1-4V during high cycle fatigue of total hip prostheses tested in a simulated physiological test geometry and environment. The subsurface cracking was found only in the region of highest fatigue stresses and was present in a zone between 50 and 700 μm beneath the surface. The density of these cracks appeared to depend on the fabrication process used to form the part, where the direction of forging deformation strongly influenced the texture and grain morphology of the near-α bimodal microstructure. A novel scanning electron microscopy (SEM) technique, using selected area channeling patterns (SACPs) and electron channeling contrast imaging (ECCI), is described and was used to determine the crystallographic orientation of the fracture plane in the a phase. The texture resulting from the forming operation appeared to be such that the basal pole of the hcp lattice became oriented in the direction of flow. Also, the deformation substructure (in the form of dislocation subcells) influenced the formation of the subsurface cracks. Observations based on four independent fractured grains, using the channeling analysis techniques, indicated that the fracture plane for these subsurface fatigue cracks is the pyramidal plane of the hcp lattice.

  3. Study on Dynamic Strain Aging and Low-Cycle Fatigue of Stainless Steel in Ultra-Supercritical Unit

    NASA Astrophysics Data System (ADS)

    Hongwei, Zhou; Yizhu, He; Jizu, Lv; Sixian, Rao

    Dynamic strain aging (DSA) and low-cycle fatigue (LCF) behavior of TP347H stainless steel in ultra-supercritical unit were investigated at 550-650 °C. All the LCF tests were carried out under a fully-reversed, total axial strain control mode at the total strain amplitude from ±0.2% to ±1.0%. The effects of DSA in cyclic stress response, microstructure evolution and fatigue fracture surfaces and fatigue life were investigated in detail. The results show that DSA occurs during tensile, which is manifested as serrated flow in tensile stress-strain curves. The apparent activation energy for appearing of serrations in tensile stress-strain curves was 270 kJ/mol. Pipe diffusion of substitutional solutes such as Cr and Nb along the dislocation core, and strong interactions between segregated solutes and dislocations are considered as the mechanism of DSA. DSA partly restricts dislocation cross-slip, and dislocation cross-slip and planar-slip happen simultaneously during LCF. A lot of planar structures form, which is due to dislocation gliding on the special plane. This localized deformation structures result in many crack initiation sites. Meanwhile, DSA hardening increases cyclic stress response, accelerating crack propagation, which reduces high temperature strain fatigue life of steel.

  4. Load-cycling technique for R-curve behaviour: Application to a low cement refractory

    NASA Astrophysics Data System (ADS)

    Palmer, G. B.; Baker, G.

    1993-08-01

    The data presented below for a low cement refractory shows that the material has strong R-curve behaviour for certain specimen sizes. The superposition method proposed by Sakai and Bradt was coupled with the effective crack model developed by Karihaloo and Nallathambi and used to investigate this R-curve behaviour. The technique that was developed involves load cycling on one specimen to evaluate K(sub IC) values with crack extension, and was shown to give favorable results for this material.

  5. The Simulation of Local Stress-Strain Behaviour with Application to Fatigue Analysis.

    DTIC Science & Technology

    1979-07-01

    Equation (6) is commonly referred to as the Manson - Coffin Rule and it represents the linear relationship observed between the logarithms of the variables... Manson - Coffin damage, a package is obtained which can be used for the fatigue analysis of any service load sequence. It should be noted that though the...allows it to be run in parallel with the simulation program. (Tie simulation model actually incorporates range-mean-pair detection logic within its own

  6. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle

    PubMed Central

    James, Michael C; Myers, Ransom A; Ottensmeyer, C. Andrea

    2005-01-01

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution. PMID:16048769

  7. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle.

    PubMed

    James, Michael C; Myers, Ransom A; Ottensmeyer, C Andrea

    2005-08-07

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution.

  8. Prediction of low-cycle fatigue-life by acoustic emission—1: 2024-T3 aluminum alloy, and —2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    1: In this paper, low-cycle fatigue tests were conducted by tension-tension until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peak amplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life. 2: In this paper, low cycle high stress fatigue tests were conducted by tension-tension on an Alclad 7075-T6 aluminum sheet alloy, until rupture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Acoustic emission was continuously monitored during the tests. Extremal peak-amplitudes, equivalent to extremal crack-propagation rates, are shown to be extremally Weibull distributed. The prediction of the number of cycles left until failure is made possible, using an ordered statistics treatment and an experimental equipment parameter obtained in previous experiments (Part 1). The predicted life-times are in good agreement with the actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress has been proven to be a feasible nondestructive method of predicting fatigue life.

  9. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii.

    PubMed

    Ovciarikova, Jana; Lemgruber, Leandro; Stilger, Krista L; Sullivan, William J; Sheiner, Lilach

    2017-02-16

    Mitochondria distribution in cells controls cellular physiology in health and disease. Here we describe the mitochondrial morphology and positioning found in the different stages of the lytic cycle of the eukaryotic single-cell parasite Toxoplasma gondii. The lytic cycle, driven by the tachyzoite life stage, is responsible for acute toxoplasmosis. It is known that whilst inside a host cell the tachyzoite maintains its single mitochondrion at its periphery. We found that upon parasite transition from the host cell to the extracellular matrix, mitochondrion morphology radically changes, resulting in a reduction in peripheral proximity. This change is reversible upon return to the host, indicating that an active mechanism maintains the peripheral positioning found in the intracellular stages. Comparison between the two states by electron microscopy identified regions of coupling between the mitochondrion outer membrane and the parasite pellicle, whose features suggest the presence of membrane contact sites, and whose abundance changes during the transition between intra- and extra-cellular states. These novel observations pave the way for future research to identify molecular mechanisms involved in mitochondrial distribution in Toxoplasma and the consequences of these mitochondrion changes on parasite physiology.

  10. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii

    PubMed Central

    Ovciarikova, Jana; Lemgruber, Leandro; Stilger, Krista L.; Sullivan, William J.; Sheiner, Lilach

    2017-01-01

    Mitochondria distribution in cells controls cellular physiology in health and disease. Here we describe the mitochondrial morphology and positioning found in the different stages of the lytic cycle of the eukaryotic single-cell parasite Toxoplasma gondii. The lytic cycle, driven by the tachyzoite life stage, is responsible for acute toxoplasmosis. It is known that whilst inside a host cell the tachyzoite maintains its single mitochondrion at its periphery. We found that upon parasite transition from the host cell to the extracellular matrix, mitochondrion morphology radically changes, resulting in a reduction in peripheral proximity. This change is reversible upon return to the host, indicating that an active mechanism maintains the peripheral positioning found in the intracellular stages. Comparison between the two states by electron microscopy identified regions of coupling between the mitochondrion outer membrane and the parasite pellicle, whose features suggest the presence of membrane contact sites, and whose abundance changes during the transition between intra- and extra-cellular states. These novel observations pave the way for future research to identify molecular mechanisms involved in mitochondrial distribution in Toxoplasma and the consequences of these mitochondrion changes on parasite physiology. PMID:28202940

  11. High-temperature low-cycle fatigue behavior of a NIMONIC PE-16 superalloy—Correlation with deformation and fracture

    NASA Astrophysics Data System (ADS)

    Valsan, M.; Parameswaran, P.; Bhanu Sankara Rao, K.; Vijayalakshmi, M.; Mannan, S. L.; Shastry, D. H.

    1992-06-01

    Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ' and carbides), alloy B with double aging treatment (spherical γ' of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ' of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitude vs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ' was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ' precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ' and consequent softening. Coarser γ' precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

  12. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  13. Cognitive behavioural therapy versus multidisciplinary rehabilitation treatment for patients with chronic fatigue syndrome: study protocol for a randomised controlled trial (FatiGo)

    PubMed Central

    2012-01-01

    Background Patients with chronic fatigue syndrome experience extreme fatigue, which often leads to substantial limitations of occupational, educational, social and personal activities. Currently, there is no consensus regarding the treatment. Patients try many different therapies to overcome their fatigue. Although there is no consensus, cognitive behavioural therapy is seen as one of the most effective treatments. Little is known about multidisciplinary rehabilitation treatment, a combination of cognitive behavioural therapy with principles of mindfulness, gradual increase of activities, body awareness therapy and pacing. The difference in effectiveness and cost-effectiveness between multidisciplinary rehabilitation treatment and cognitive behavioural therapy is as yet unknown. The FatiGo (Fatigue-Go) trial aims to compare the effects of both treatment approaches in outpatient rehabilitation on fatigue severity and quality of life in patients with chronic fatigue syndrome. Methods One hundred twenty patients who meet the criteria of chronic fatigue syndrome, fulfil the inclusion criteria and sign the informed consent form will be recruited. Both treatments take 6 months to complete. The outcome will be assessed at 6 and 12 months after the start of treatment. Two weeks after the start of treatment, expectancy and credibility will be measured, and patients will be asked to write down their personal goals and score their current performance on these goals on a visual analogue scale. At 6 and 14 weeks after the start of treatment, the primary outcome and three potential mediators—self-efficacy, causal attributions and present-centred attention-awareness—will be measured. Primary outcomes are fatigue severity and quality of life. Secondary outcomes are physical activity, psychological symptoms, self-efficacy, causal attributions, impact of disease on emotional and physical functioning, present-centred attention-awareness, life satisfaction, patient personal goals

  14. Adaptive Pacing, Cognitive Behaviour Therapy, Graded Exercise, and Specialist Medical Care for Chronic Fatigue Syndrome: A Cost-Effectiveness Analysis

    PubMed Central

    McCrone, Paul; Sharpe, Michael; Chalder, Trudie; Knapp, Martin; Johnson, Anthony L.; Goldsmith, Kimberley A.; White, Peter D.

    2012-01-01

    Background The PACE trial compared the effectiveness of adding adaptive pacing therapy (APT), cognitive behaviour therapy (CBT), or graded exercise therapy (GET), to specialist medical care (SMC) for patients with chronic fatigue syndrome. This paper reports the relative cost-effectiveness of these treatments in terms of quality adjusted life years (QALYs) and improvements in fatigue and physical function. Methods Resource use was measured and costs calculated. Healthcare and societal costs (healthcare plus lost production and unpaid informal care) were combined with QALYs gained, and changes in fatigue and disability; incremental cost-effectiveness ratios (ICERs) were computed. Results SMC patients had significantly lower healthcare costs than those receiving APT, CBT and GET. If society is willing to value a QALY at £30,000 there is a 62.7% likelihood that CBT is the most cost-effective therapy, a 26.8% likelihood that GET is most cost effective, 2.6% that APT is most cost-effective and 7.9% that SMC alone is most cost-effective. Compared to SMC alone, the incremental healthcare cost per QALY was £18,374 for CBT, £23,615 for GET and £55,235 for APT. From a societal perspective CBT has a 59.5% likelihood of being the most cost-effective, GET 34.8%, APT 0.2% and SMC alone 5.5%. CBT and GET dominated SMC, while APT had a cost per QALY of £127,047. ICERs using reductions in fatigue and disability as outcomes largely mirrored these findings. Conclusions Comparing the four treatments using a health care perspective, CBT had the greatest probability of being the most cost-effective followed by GET. APT had a lower probability of being the most cost-effective option than SMC alone. The relative cost-effectiveness was even greater from a societal perspective as additional cost savings due to reduced need for informal care were likely. PMID:22870204

  15. Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sandhya, R.; Ganesan, V.; Valsan, M.; Bhanu Sankara Rao, K.

    2009-02-01

    Modified 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of liquid metal cooled fast breeder reactors (LMFBRs). The steam generator has been designed to operate for 30-40 years. It is important to accurately determine the life of the components in the actual environment in order to consider the extension of life beyond the design life. With this objective in view, a programme has been initiated at our laboratory to evaluate the effects of flowing sodium on the LCF behaviour of modified 9Cr-1Mo steel. LCF tests conducted in flowing sodium environment at 823 K and 873 K exhibited cyclic softening behaviour both in air and sodium environments. The fatigue lives are significantly improved in sodium environment when compared to the data obtained in air environment under identical testing conditions. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison of experimental lifetimes with RCC-MR design code predictions indicated that the design curve based on air tests is too conservative.

  16. Effect of aerobic exercise training and cognitive behavioural therapy on reduction of chronic fatigue in patients with facioscapulohumeral dystrophy: protocol of the FACTS-2-FSHD trial.

    PubMed

    Voet, Nicoline B M; Bleijenberg, Gijs; Padberg, George W; van Engelen, Baziel G M; Geurts, Alexander C H

    2010-06-30

    In facioscapulohumeral dystrophy (FSHD) muscle function is impaired and declines over time. Currently there is no effective treatment available to slow down this decline. We have previously reported that loss of muscle strength contributes to chronic fatigue through a decreased level of physical activity, while fatigue and physical inactivity both determine loss of societal participation. To decrease chronic fatigue, two distinctly different therapeutic approaches can be proposed: aerobic exercise training (AET) to improve physical capacity and cognitive behavioural therapy (CBT) to stimulate an active life-style yet avoiding excessive physical strain. The primary aim of the FACTS-2-FSHD (acronym for Fitness And Cognitive behavioural TherapieS/for Fatigue and ACTivitieS in FSHD) trial is to study the effect of AET and CBT on the reduction of chronic fatigue as assessed with the Checklist Individual Strength subscale fatigue (CIS-fatigue) in patients with FSHD. Additionally, possible working mechanisms and the effects on various secondary outcome measures at all levels of the International Classification of Functioning, Disability and Health (ICF) are evaluated. A multi-centre, assessor-blinded, randomized controlled trial is conducted. A sample of 75 FSHD patients with severe chronic fatigue (CIS-fatigue > or = 35) will be recruited and randomized to one of three groups: (1) AET + usual care, (2) CBT + usual care or (3) usual care alone, which consists of no therapy at all or occasional (conventional) physical therapy. After an intervention period of 16 weeks and a follow-up of 3 months, the third (control) group will as yet be randomized to either AET or CBT (approximately 7 months after inclusion). Outcomes will be assessed at baseline, immediately post intervention and at 3 and 6 months follow up. The FACTS-2-FSHD study is the first theory-based randomized clinical trial which evaluates the effect and the maintenance of effects of AET and CBT on the reduction of

  17. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  18. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  19. Effect of Cathodic Protection on Low-Cycle Corrosion Fatigue of HY-80 Steel at Slow Cycle Rates

    DTIC Science & Technology

    1962-04-01

    diagram -of Fig. 2. Iron in salt water at or near the neutral point is situated in the “corrosion triangle”. To achieve immunity, the potential of the...p REFERENCES 1. U. R. Evans and M. T. Simnad , Proc Roy Soc, 188, 1947. ____ 2. M. Pourbaix , “Thermodynamics of...Effect of impressed currents of various magnitudes on the corrosion fatigue of steel (Reference 1). Fig. 2 - Partial potential-pH diagram for iron (after

  20. Low-cycle fatigue deformation characteristics of Haynes {reg{underscore}sign} HR-120{reg{underscore}sign} alloy

    SciTech Connect

    Liaw, P.K.; He, Y.H.; Miller, L.; Huang, M.; Brooks, C.R.; Seeley, R.R.; Klarstrom, D.L.

    1999-07-01

    Low-cycle fatigue deformation characteristics of HAYNES HR-120 alloy at room and high temperatures were studied under axial strain control. Test results show that there is a significant effect of test temperature on the low-cycle fatigue behavior of HAYNES HR-120 alloy. It was found that the alloy could cyclically harden at moderately high temperatures (649 C and 871 C), but generally cyclically soften at room temperature (24 C) and high temperature (982 C). However, the variation of the stress amplitude with cycles at the temperatures of 24 C and 982 C depended on the total strain range. The significant cyclic hardening of the alloy occurred at the high total strain ranges of 1.5% and 2.0% during the beginning state of the test at both 24C and 982 C. Microstructural analyses indicated that the cyclic hardening behavior of the alloy at the test temperature of 649 C could be related to the formation of a number of deformation bands. Nevertheless, increasing the test temperature to 871 C, cyclic hardening was attributed to the precipitation of secondary-phase particles. Furthermore, it was also found that the coarsening of secondary-phase particles brought about cyclic softening of the alloy at the high temperature of 982 C. Coffin-Manson equations and Holloman equations were given for HAYNES HR-120 alloy at different temperatures.

  1. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods.

    PubMed

    Hilfer, Paul B; Bergeron, Brian E; Mayerchak, Michael J; Roberts, Howard W; Jeansonne, Billie G

    2011-01-01

    Novel nickel-titanium rotary files with proprietary manufacturing techniques have recently been marketed. The purpose of this study was to assess multiple autoclave cycle effects on cyclic fatigue of GT Series X files (Dentsply Tulsa Dental Specialties, Tulsa, OK) and Twisted Files (SybronEndo, Orange, CA) METHODS: A jig using a 5-mm radius curve with 90° of maximum file flexure was used to induce cyclic fatigue failure. Files (n = 10) representing each experimental group (GT Series X 20/.04 and 20/.06; Twisted Files 25/.04 and 25/.06) were first tested to establish baseline mean cycles to failure (MCF). Experimental groups (n = 20) were then cycled to 25% of the established baseline MCF and then autoclaved. Additional autoclaving was accomplished at 50% and 75% of MCF followed by continual testing until failure. Control groups (n = 20) underwent the same procedures except autoclaving was not accomplished. The GT Series X (20/.04 and 20/.06) files showed no significant difference (p = 0.918/p = 0.096) in MCF for experimental versus control files. Twisted Files (25/.04) showed no significant difference (p = 0.432) in MCF between experimental and control groups. However, the Twisted Files (25/.06) experimental group showed a significantly lower (p = 0.0175) MCF compared with the controls. Under the conditions of this evaluation, autoclave sterilization significantly decreased cyclic fatigue resistance of one of the four file groups tested. Repeated autoclaving significantly reduced the MCF of 25/.06 Twisted Files; however, 25/.04 Twisted Files and both GT Series X files tested were not significantly affected by the same conditions. Published by Elsevier Inc.

  2. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  3. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  4. Monotonic and Low-Cycle Fatigue Response of a Maraging Steel and Metastable beta Titanium Alloy under Torsional Loading

    DTIC Science & Technology

    1977-02-01

    Development and Readines Feb 1977 Command, Alexandria, Virgiria 22333 N.. UMBER OF PAGES I4. MONITORING AGENCy NAME A ADDRESS(At U 1n. g ,. C..UJI0,e Oftf...0E 9 RSE A I (SEE REVERSE SIDE) 1~~~~ ~- EIn OP IOVA ’N Otelo " tTe-- ...- S𔃻 CURITY CL.ASSIFICATU ON OF THIS P&GsED mo Block No. 20 ABSTRACT This...failure, Figure 6. Low-cycle fatigue curves for I8N% 17-. maragi• g steel. - - - - -- K -3X ii .K q27 4 S~N .A : 3X a. Regular heat treatment b. Reverted

  5. On the dual slope Coffin-Manson relationship during low cycle fatigue of Ni-base alloy IN 718

    SciTech Connect

    Bhattacharyya, A.; Sastry, G.V.S.; Kutumbarao, V.V.

    1997-02-15

    the low cycle fatigue (LCF) behavior of a material is commonly characterized by the Coffin-Manson (C-M) relationship. Sanders et al. have observed bilinear C-M behavior of alloy Inconel 718, in the temperature range 477 to 700K, but have not identified any clear mechanism that leads to this behavior. No detailed report on the room temperature (RT) C-M behavior of this material is available. In the present investigation the room temperature LCF behavior of alloy 718 is evaluated to determine the dual slope C-M relationship.

  6. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  7. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  8. Effect of Rolling on High-Cycle Fatigue and Fracture of an Al - Mg - Sc Alloy

    NASA Astrophysics Data System (ADS)

    Zhemchuzhnikova, D. A.; Petrov, A. P.; Eremeev, N. V.; Eremeev, V. V.; Kaibyshev, R. O.

    2016-07-01

    The tensile strength and fatigue properties of alloy 1575 of the Al - Mg - Sc system are studied after hot deformation (at 360°C) and subsequent cold rolling with different reduction ratios. The effect of the deformed structure on the properties and mechanisms of fracture of the alloy under cyclic tests is determined.

  9. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    SciTech Connect

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  10. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  11. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  12. Low cycle fatigue behavior of Ti6Al4V thermochemically nitrided for its use in hip prostheses.

    PubMed

    Rodríguez, D; Manero, J M; Gil, F J; Planell, J A

    2001-01-01

    Titanium and its alloys have many attractive properties including high specific strength, low density, and excellent corrosion resistance. Besides, titanium and the Ti6Al4V alloy have long been recognized as materials with high biocompatibility. These properties have led to the use of these materials in biomedical applications. Despite these advantages, the lack of good wear resistance makes difficult the use of titanium and Ti6Al4V in some biomedical applications, like articulating components of prostheses. Some surface treatments are available in order to correct these problems, like thermal surface treatment by means of nitrogen gaseous diffusion at high temperature. Nitrogen enters into the material by diffusion, creating a surface layer of increased hardness. Low cycle fatigue behavior in air of Ti6Al4V alloy has been studied. Results show a reduction of low cycle fatigue life up to 10% compared to the not-treated material. Studies suggest it is not related to the titanium nitride surface layer, but to microstructural changes caused by the high temperature treatment.

  13. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  14. A New Analysis Method of the Dry Sliding Wear Process Based on the Low Cycle Fatigue Theory and the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Abdi, Mohammad; Taheri, Ali Karimi; Bakhtiarydavijani, Amirhamed

    2014-03-01

    In the present work, a combination of a dynamic explicit finite element model and the low cycle fatigue theory is used to simulate the steady-state abrasive wear occurring between an as-cast eutectoid steel and a carbide-tungsten disk. While the low cycle fatigue theory has been used to model wear in softer non-ferrous alloys, this work shows its applicability and accuracy for use in harder alloys, such as the eutectoid steel used in this research which is strengthened with added chromium. The novelty of this work lies in calculating the Manson-Coffin relation constants from a coupled finite element model with experimental tests instead of the previously used Slip line method. The D Manson-Coffin constant, obtained around 2, is in agreement with previous works given in the literature showing that the low cycle fatigue is a general wear mechanism in the steady-state wear of the alloy tested in this work.

  15. Characterization of microstructural damage due to low-cycle fatigue by EBSD observation

    SciTech Connect

    Kamaya, Masayuki

    2009-12-15

    Electron backscatter diffraction (EBSD) in conjunction with scanning electron microscopy was used to assess the damage due to cyclic or uniform strain. Samples of Type 316 stainless steel after fatigue and tensile tests were prepared for EBSD observation and the misorientation angle between neighboring points (local misorientation) was evaluated. It was shown that the local misorientation developed due to the cyclic and uniform strain and that its spatial distribution was not uniform. In fatigue samples, the area of large local misorientation tended to form clusters, whereas it localized to the grain boundaries in the tensile samples, and the magnitude of local misorientation and the degree of the localization increased with the strain amplitude. The degree of localization was quantified via statistical processing of the measured data. It was also shown that the source of damage (cyclic or uniform strain) and the loading direction could be deduced from the EBSD observations of the damaged sample.

  16. Mobile phone use while cycling: incidence and effects on behaviour and safety.

    PubMed

    de Waard, Dick; Schepers, Paul; Ormel, Wieke; Brookhuis, Karel

    2010-01-01

    The effects of mobile phone use on cycling behaviour were studied. In study 1, the prevalence of mobile phone use while cycling was assessed. In Groningen 2.2% of cyclists were observed talking on their phone and 0.6% were text messaging or entering a phone number. In study 2, accident-involved cyclists responded to a questionnaire. Only 0.5% stated that they were using their phone at the time of the accident. In study 3, participants used a phone while cycling. The content of the conversation was manipulated and participants also had to enter a text message. Data were compared with just cycling and cycling while listening to music. Telephoning coincided with reduced speed, reduced peripheral vision performance and increased risk and mental effort ratings. Text messaging had the largest negative impact on cycling performance. Higher mental workload and lower speed may account for the relatively low number of people calling involved in accidents. STATEMENT OF RELEVANCE: Although perhaps mainly restricted to flat countries with a large proportion of cyclists, mobile phone use while cycling has increased and may be a threat to traffic safety, similar to phone use while driving a car. In this study, the extent of the problem was assessed by observing the proportion of cyclists using mobile phones, sending questionnaires to accident-involved cyclists and an experimental study was conducted on the effects of mobile phone use while cycling.

  17. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  18. A pilot randomised controlled trial of an Internet-based cognitive behavioural therapy self-management programme (MS Invigor8) for multiple sclerosis fatigue.

    PubMed

    Moss-Morris, Rona; McCrone, Paul; Yardley, Lucy; van Kessel, Kirsten; Wills, Gary; Dennison, Laura

    2012-06-01

    The majority of people affected by Multiple Sclerosis (paMS) experience severe and disabling fatigue. A recent randomised controlled trial (RCT) showed that cognitive behaviour therapy with a clinical psychologist was an effective treatment for MS fatigue. An Internet-based version of this intervention, MS Invigor8, was developed for the current study using agile design and input from paMS. MS Invigor8 includes eight tailored, interactive sessions. The aim was to test the feasibility and potential efficacy and cost-effectiveness of the programme in a pilot RCT. 40 patients were randomised to MS Invigor8 (n=23) or standard care (n=17). The MS Invigor8 group accessed sessions over 8-10 weeks and received up to three 30-60min telephone support sessions. Participants completed online standardised questionnaires assessing fatigue, mood, quality of life and service use at baseline and 10 weeks follow-up. Large between group treatment effects were found for the primary outcomes of fatigue severity (d=1.19) and impact (d=1.02). The MS Invigor8 group also reported significantly greater improvements in anxiety, depression and quality-adjusted life years. These data suggest that Internet-based CBT may be a clinically and cost-effective treatment for MS fatigue. A larger RCT with longer term follow-up is warranted.

  19. Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures

    NASA Astrophysics Data System (ADS)

    Nalla, R. K.; Ritchie, R. O.; Boyce, B. L.; Campbell, J. P.; Peters, J. O.

    2002-03-01

    The high-cycle fatigue (HCF) of titanium alloy turbine engine components remains a principal cause of failures in military aircraft engines. A recent initiative sponsored by the United States Air Force has focused on the major drivers for such failures in Ti-6Al-4V, a commonly used turbine blade alloy, specifically for fan and compressor blades. However, as most of this research has been directed toward a single processing/heat-treated condition, the bimodal (solution-treated and overaged (STOA)) microstructure, there have been few studies to examine the role of microstructure. Accordingly, the present work examines how the overall resistance to high-cycle fatigue in Ti-6Al-4V compares between the bimodal microstructure and a coarser lamellar ( β-annealed) microstructure. Several aspects of the HCF problem are examined. These include the question of fatigue thresholds for through-thickness large and short cracks; microstructurally small, semi-elliptical surface cracks; and cracks subjected to pure tensile (mode I) and mixed-mode (mode I+II) loading over a range of load ratios (ratio of minimum to maximum load) from 0.1 to 0.98, together with the role of prior damage due to sub-ballistic impacts (foreign-object damage (FOD)). Although differences are not large, it appears that the coarse lamellar microstructure has improved smooth-bar stress-life (S-N) properties in the HCF regime and superior resistance to fatigue-crack propagation (in pure mode I loading) in the presence of cracks that are large compared to the scale of the microstructure; however, this increased resistance to crack growth compared to the bimodal structure is eliminated at extremely high load ratios. Similarly, under mixed-mode loading, the lamellar microstructure is generally superior. In contrast, in the presence of microstructurally small cracks, there is little difference in the HCF properties of the two microstructures. Similarly, resistance to HCF failure following FOD is comparable in the

  20. Influences of the manufacturing process chain design on the near surface condition and the resulting fatigue behaviour of quenched and tempered SAE 4140

    NASA Astrophysics Data System (ADS)

    Klein, M.; Eifler, D.

    2010-07-01

    To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.

  1. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.

    PubMed

    Brown, Euan R; Piscopo, Stefania; De Stefano, Rosanna; Giuditta, Antonio

    2006-09-25

    Octopus vulgaris maintained under a 12/12h light/dark cycle exhibit a pronounced nocturnal activity pattern. Animals deprived of rest during the light period show a marked 'rebound' in activity in the following 24h. 'Active' octopuses attack faster than 'quiet' animals and brain activity recorded electrically intensifies during 'quiet' behaviour. Thus, in Octopus as in vertebrates, brain areas involved in memory or 'higher' processes exhibit 'off-line' activity during rest periods.

  2. Importance of crack-propagation-induced ε-martensite in strain-controlled low-cycle fatigue of high-Mn austenitic steel

    NASA Astrophysics Data System (ADS)

    Li, Huichao; Koyama, Motomichi; Sawaguchi, Takahiro; Tsuzaki, Kaneaki; Noguchi, Hiroshi

    2015-06-01

    We investigated the roles of deformation-induced ε-martensitic transformation on strain-controlled low-cycle fatigue (LCF) through crack-propagation analysis involving a notching technique that used a focused ion beam (FIB) setup on Fe-30Mn-4Si-2Al austenitic steel. Using the FIB notch, we separated the microstructure evolution into macroscopic cyclic deformation-induced and crack-propagation-induced microstructures. Following this, we clarified the fatigue crack-propagation-induced ε-martensitic transformation to decelerate crack propagation at a total strain range of 2%, obtaining an extraordinary LCF life of 1.1 × 104 cycles.

  3. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a

  4. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    PubMed

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  5. High-cycle fatigue of 10M Ni-Mn-Ga magnetic shape memory alloy in reversed mechanical loading

    NASA Astrophysics Data System (ADS)

    Aaltio, I.; Soroka, A.; Ge, Y.; Söderberg, O.; Hannula, S.-P.

    2010-07-01

    Application of Ni-Mn-Ga magnetic shape memory alloys in magnetic-field-induced actuation relies on their performance in long-term high-cycle fatigue. In this paper the performance and changes in the microstructure of a Ni-Mn-Ga 10M martensite single crystal material are reported in a long-term mechanically induced shape change cycling. The longest test was run for 2 × 109 cycles at a frequency of 250 Hz and a strain amplitude of ± 1%. After the test a clear increase of the dynamic stiffness of the material was detected. Three specimens out of ten were cycled until fracture occurred and their fracture mechanism was studied. It was observed that the macroscopic crack growth took place roughly at a 45° angle with respect to the loading direction that was along the lang100rang crystallographic direction of the sample. The macroscopic fracture plane seemed to correspond roughly to the {111} crystal planes. On a microscopic scale the fracture propagated in a step-like manner at least partly along crystallographic planes. The steps at the fracture plane correspond to the {101} twin planes, with the height of steps along the lang101rang direction. The final fracture of the samples occurred in a brittle manner after the critical stress was exceeded.

  6. Fear of movement and avoidance behaviour toward physical activity in chronic-fatigue syndrome and fibromyalgia: state of the art and implications for clinical practice.

    PubMed

    Nijs, Jo; Roussel, Nathalie; Van Oosterwijck, Jessica; De Kooning, Margot; Ickmans, Kelly; Struyf, Filip; Meeus, Mira; Lundberg, Mari

    2013-08-01

    Severe exacerbation of symptoms following physical activity is characteristic for chronic-fatigue syndrome (CFS) and fibromyalgia (FM). These exacerbations make it understandable for people with CFS and FM to develop fear of performing body movement or physical activity and consequently avoidance behaviour toward physical activity. The aims of this article were to review what measures are available for measuring fear of movement and avoidance behaviour, the prevalence fear of movement and avoidance behaviour toward physical activity and the therapeutic options with fear of movement and avoidance behaviour toward physical activity in patients with CFS and FM. The review revealed that fear of movement and avoidance behaviour toward physical activity is highly prevalent in both the CFS and FM population, and it is related to various clinical characteristics of CFS and FM, including symptom severity and self-reported quality of life and disability. It appears to be crucial for treatment (success) to identify CFS and FM patients displaying fear of movement and avoidance behaviour toward physical activity. Individually tailored cognitive behavioural therapy plus exercise training, depending on the patient's classification as avoiding or persisting, appears to be the most promising strategy for treating fear of movement and avoidance behaviour toward physical activity in patients with CFS and FM.

  7. High cycles fatigue damage of CFRP plates clamped by bolts for axial coupling joint with off-set angle during rotation

    NASA Astrophysics Data System (ADS)

    Ooka, Kazuaki; Okubo, Kazuya; Fujii, Toru; Umeda, Shinichi; Fujii, Masayuki; Sugiyama, Tetsuya

    2014-03-01

    This study discussed the change of residual fracture torque and the fatigue damage process of thin CFRP plates clamped by bolts for axial coupling joint, in which flexible deformation was allowed in the direction of off-set angle by the deflection of the CFRP plates while effective stiffness was obtained in rotational direction. Mechanically laminated 4 layers of the CFRP plates were repeatedly deflected during the rotation of axial coupling, when two axes were jointed with 3 degree of off-set angle, in which number of revolution was 1,800 rpm (30Hz of loading frequency). At first, the fracture morphology of specimen and the residual fracture torque was investigated after 1.0×107 cycles of repeated revolutions. The reduction ratio of spring constant was also determined by simple bending test after the fatigue. The residual fracture torque of the joint was determined on the rotational test machine after 1.0×107 cycles of fatigue. After rotations of cyclic fatigue, fiber breaking and wear of matrix were observed around the fixed parts compressed by washers for setting bolts. The reduction of spring constant of the CFRP plates was caused by the initiation of cyclic fatigue damages around the fixed parts, when the axial coupling joint was rotated with off-set angle. It was found that residual fracture torque of the joint was related with the specific fatigue damage of the CFRP observed in this study.

  8. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  9. A randomised controlled trial testing the feasibility and efficacy of a physical activity behavioural change intervention in managing fatigue with gynaecological cancer survivors.

    PubMed

    Donnelly, C M; Blaney, J M; Lowe-Strong, A; Rankin, J P; Campbell, A; McCrum-Gardner, E; Gracey, J H

    2011-09-01

    To determine the feasibility and efficacy of a physical activity behavioural change intervention in managing cancer-related fatigue among gynaecological cancer survivors during and post anti-cancer treatments. A two arm, single blind, randomised controlled trial was conducted within the Northern Ireland regional Cancer Centre. Thirty three sedentary gynaecological cancer survivors (stage I-III; ≤3 years post diagnosis), experiencing cancer-related fatigue (mild-severe) took part. Participants were randomly assigned to a behavioural change, moderate intensity physical activity intervention (n=16) or a Contact Control group (n=17). The primary outcome was fatigue (Multidimensional Fatigue Symptom Inventory-Short Form and Functional Assessment in Chronic Illness Therapy-Fatigue subscale). Secondary outcomes included quality of life, physical functioning, positive and negative affect, depression, body composition, sleep dysfunction and self-reported physical activity. Feasibility was assessed based on the recruitment rate, programme and physical activity adherence and participants' programme evaluation, including optional focus groups (n=16). Twenty five percent of eligible women took part (33/134). Participants were 8.7 (SD=9.1) months post diagnosis, with a mean age of 53 (SD=10.3) years. The majority of the sample had a diagnosis of ovarian (n=12) or endometrial cancer (n=11). Significant differences favouring the intervention group were observed for fatigue at 12 weeks and 6 months follow-up (12 week: mean difference=-11.06; 95% confidence interval (CI)=-21.89 to -0.23; effect size (d)=0.13; p=0.046; 6 month: mean difference=-19.48; 95% CI=-19.67 to -19.15; effect size (d)=0.20; p=0.01). A mean of 10 calls (SD=1.2 calls) were delivered to the Physical Activity Group, and 10 (SD=1.6 calls) to the CC group. The intervention was positively perceived based on exit questionnaire and focus group findings. A physical activity behavioural change intervention for

  10. Fatigue testing of reinforced-concrete steel bars

    NASA Astrophysics Data System (ADS)

    Maropoulos, S.; Fasnakis, D.; Voulgaraki, Ch; Papanikolaou, S.; Maropoulos, A.; Antonatos, A.

    2016-11-01

    A number of low-cycle fatigue tests were conducted on reinforced-concrete steel bars of various diameters to study their behaviour under axial loading according to EN 10080 and EN 1421-3. Scanning electron microscopy was used to study the specimen fracture surfaces. The problems faced during testing are presented and a specimen preparation method is described that will aid researchers on fatigue testing to obtain accurate test results and save on material and time.

  11. Fracture morphologies of carbon-black-loaded SBR (styrene-butadiene rubber) subjected to low-cycle, high-stress fatigue. [Styrene-butadiene rubber

    SciTech Connect

    Goldberg, A.; Lesuer, D.R.; Patt, J.

    1988-02-01

    Experimental results, together with an analytical model, related to the loss in tensile strength of styrene-butadiene rubber (SBR) loaded with carbon black (CB) that had been subjected to low-cycle, high-stress fatigue tests were presented in a prior paper. The drop in tensile strength relative to that of a virgin sample was considered to be a measure of damage induced during the fatigue test. The present paper is a continuation of this study dealing with the morphological interpretations of the fractured surfaces, whereby the cyclic-tearing behavior, resulting in the damage, is related to the test and material parameters. It was found that failure is almost always initiated in the bulk of a sample at a material flaw. The size and definition of a flaw increase with an increase in carbon-black loading. Initiation flaw sites are enveloped by fan-shaped or penny-shaped regions which develop during cycling. The size and morphology of a fatigue-tear region appears to be independent of the fatigue load or the extent of the damage (strength loss). By contrast, either an increase in cycling load or an increase in damage at constant load increases the definition of the fatigue-region morphology for all formulations of carbon-black. On the finest scale, the morphology can be described in terms of tearing of individual groups of rubber strands, collapsing to form a cell-like structure. 18 refs., 13 figs.

  12. Low Cycle Fatigue Behavior of Conventionally Cast MAR-M 200 at 1000 C.

    DTIC Science & Technology

    1984-09-01

    propagation, as illustrated in figures 5 and 6. Gell and Leverant (ref. 1), McMahon and Coffin (ref. 7), Coffin (ref. 8), and Antolovich , Liu and Baur (ref...propagation in Rene’ 80 was primarily transgranular, independent of cyclic loading frequency. Antolovich et. al. reported crack initiation in Rene’ 80 at...on the Cyclic Strain and Fatigue Behavior of Cast Rene’ at 16000 F. Metall. Trans., vol. 5, 1974, no. 5, May pp 1053-1060. 9. Antolovich , Stephen 0

  13. Testing rig for low cycle fatigue tests in combined bending and torsion

    NASA Astrophysics Data System (ADS)

    Caligiana, Gianni; Curioni, Sergio

    1992-07-01

    In order to simulate, on samples, the fatigue behavior of notched or grooved shafts used in industrial plants, a biaxal testing equipment, to transform the alternate motion of a conventional testing machine into combined torsion and bending cyclic loadings, was devised and realized. Several different amplitude ratios between torsion and bending can be obtained beyond pure torsion and pure bending. Design choices, modeling, numerical simulations and experimental verifications performed for the testing apparatus are reported. Influence of misalignment and manufacturing imperfections on the behavior of the equipment are considered.

  14. Characterization of High Cycle Fatigue Behavior of a New Generation Aluminum Lithium Alloy (Preprint)

    DTIC Science & Technology

    2011-07-01

    any section (ab = cd) and ‘ h ’ the thickness (ad = bc) which is uniform throughout the beam. The first order stress distribution for such conditions...propagation [20]. This retardation in crack growth rate results in improved fatigue endurance which is given as [26], ( ) g m c frth d K 2 * π σσ += (4...where *frσ is the friction stress for dislocation movement, m cK is the microscopic stress intensity factor and dg is the grain size. Thus, for

  15. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  16. Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAlY-Coated Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  17. Bithermal low-cycle fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  18. Microstructure-sensitive weighted probability approach for modeling surface to bulk transition of high cycle fatigue failures dominated by primary inclusions

    NASA Astrophysics Data System (ADS)

    Salajegheh, Nima

    The mechanical alloying and casting processes used to make polycrystalline metallic materials often introduce undesirable non-metallic inclusions and pores. These are often the dominant sites of fatigue failure origination at the low stress amplitudes that correspond to the high cycle fatigue (HCF) and very high cycle fatigue (VHCF) regimes, in which the number of cycles to crack initiation is more than 106. HCF and VHCF experiments on some advanced metallic alloys, such as powder metallurgy Ni-base superalloys, titanium alloys, and high-strength steels have shown that the critical inclusions and pores can appear on the surface as well as in the bulk of the specimen. Fatigue lives have been much higher for specimens that fail from a bulk site. The relative number of bulk initiations increases as the stress amplitude decreases such that just below the traditional HCF limit, fatigue life data appears to be evenly scattered between two datasets corresponding to surface and bulk initiations. This is often referred to as surface to bulk transition in the VHCF regime. Below this transition stress, the likelihood of surface versus bulk initiation significantly impacts the low failure probability estimate of fatigue life. Under these circumstances, a large number of very costly experiments need to be conducted to obtain a statistically representative distribution of fatigue life and to predict the surface versus bulk initiation probability. In this thesis, we pursue a simulation-based approach whereby microstructure-sensitive finite element simulations are performed within a statistical construct to examine the VHCF life variability and assess the surface initiation probability. The methodology introduced in this thesis lends itself as a cost-effective platform for development of microstructure-property relations to support design of new or modified alloys, or to more efficiently predict the properties of existing alloys.

  19. Estimation of high temperature low cycle fatigue on the basis of inelastic strain and strainrate

    NASA Technical Reports Server (NTRS)

    Berkovits, A.

    1986-01-01

    Fatigue life at elevated temperature can be predicted by introducing parametric values obtained from monotonic constitutive behavior into the Universal-Slopes Equation. For directionally solidified MAR-M200+HF at 975 C, these parameters are the maximum stress achievable under entirely plastic (time-independent) and purely creep (time-dependent) conditions and the corresponding inelastic strains, as well as the elastic modulus. For materials which exhibit plasticity/creep interaction, two more pairs of monotonic parameters must be evaluated for fatigue life prediction. This life-prediction method based on the Universal-Slopes Equation, resulted from a constitutive model characterizing monotonic and cyclic data as inelastic strainrate as a function of inelastic strain. Characterizing monotonic data is this way, permitted distinction between different material responses such as strain-hardening, strain-softening, and dynamic recovery effects. Understanding and defining the region of influence of each of these effects facilitated formulation of the constitutive model in relation to the mechanical and microstructural processes occurring in the material under cyclic loading.

  20. An individualized exercise programme with and without behavioural change enhancement strategies for managing fatigue among frail older people: a quasi-experimental pilot study.

    PubMed

    Liu, Justina Y-W; Lai, Claudia Ky; Siu, Parco M; Kwong, Enid; Tse, Mimi My

    2017-04-01

    To evaluate the feasibility and preliminary effects of an individualized exercise programme with and without behavioural change enhancement strategies for frail older people with fatigue. A three-arm, single-blinded, quasi-experimental pilot study. Community health centres. A total of 79 frail older people with fatigue, mean age 79.32 years (±7.72). The combined group received a 16-week combined intervention consisting of exercise training and a behavioural change enhancement programme. The exercise group received exercise training and health talks, whereas the control group received only health talks. Feasibility was assessed through the participants' recruitment, retention, attendance and adherence, feedback, and reports of adverse events. The preliminary effects were assessed by the participants' level of fatigue, physical endurance, self-efficacy, and self-perceived compliance with exercise. Feasibility was achievable with high recruitment (87.2%) and low overall attrition (7.1%) rates. A similar reduction in fatigue was identified in all groups, but a trend of greater improvement in physical endurance was observed in the combined group than in the other two groups. The combined group also had a significantly better attendance rate [F(2,76) = 5.64, p < 0.01)] and higher self-perceived exercise compliance than the exercise group. The combined intervention has the potential to enhance the participants' adherence to exercise regimens by improving their attendance in training sessions and their self-perceived exercise compliance. They are important to maintaining an appropriate level of engagement in daily exercises, especially at the beginning stages of behavioural change, when the participants are establishing the habit of exercising daily.

  1. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  2. Effects of geometry and materials on low cycle fatigue life of turbine blades in LOX/hydrogen rocket engines

    NASA Technical Reports Server (NTRS)

    Ryan, R. M.; Gross, L. A.

    1986-01-01

    This paper presents the results of an advanced turbine blade test program aimed at improving turbine blade low cycle fatigue (LCF) life. A total of 21 blades were tested in a blade thermal tester. The blades were made of MAR-M-246(Hf)DS and PWA-1480SC in six different geometries. The test results show that the PWA-1480SC material improved life by a factor of 1.7 to 3.0 over the current MAR-M-246(Hf)DS. The geometry changes yielded life improvements as high as 20 times the baseline blade made of PWA-1480SC and 34 times the baseline MAR-M-246DS blade.

  3. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  4. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    NASA Technical Reports Server (NTRS)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  5. Effect of beta flecks on low-cycle fatigue properties of Ti-10V-2Fe-3Al

    SciTech Connect

    Weldong, Z.; Yigang, Z.; Hanquing, Y.

    2000-04-01

    The effect of beta flecks on low-cycle fatigue (LCF) properties was investigated at room temperature for a high-temperature ({alpha} + {beta})-processed and also a {beta}-processed Ti-10V-2Fe-3Al alloy. For both the ({alpha} + {beta})-processed and the {beta}-processed material, beta flecks had a significant influence on LCF and tensile properties. The materials with beta flecks showed a loss in LCF life and ductility. Larger beta flecks resulted in lower LCF life and ductility. It seemed that {beta}-forged material contained much smaller beta flecks but had a similar detrimental effect on LCF properties as the ({alpha} + {beta})-processed one. Based on the diffusion calculation, it could be concluded that chemical composition inhomogeneities could not be reduced by using beta forging in the 820 C {beta} region. Extensive light microscopy and scanning electron microscopy (SEM) observations showed that beta flecks were susceptible to crack nucleation and propagation.

  6. Quantitative enhancement of fatigue crack monitoring by imaging surface acoustic wave reflection in a space-cycle-load domain

    SciTech Connect

    Connolly, G. D.; Rokhlin, S. I.

    2011-06-23

    The surface wave acoustic method is applied to the in-situ monitoring of fatigue crack initiation and evolution on tension specimens. A small low-frequency periodic loading is also applied, resulting in a nonlinear modulation of reflected pulses. The acoustic wave reflections are collected for: each experimental cycle; a range of applied tension and modulation load levels; and a range of spatial propagation positions, and are presented in image form to aid pattern identification. Salient features of the image are then extracted and processed to evaluate the initiation time of the crack and its subsequent size evolution until sample failure. Additionally, a method for enhancing signal to noise ratio in Ti-6242 alloy samples is demonstrated.

  7. Acute effects of an arginine-based supplement on neuromuscular, ventilatory, and metabolic fatigue thresholds during cycle ergometry.

    PubMed

    Zak, Roksana B; Camic, Clayton L; Hill, Ethan C; Monaghan, Molly M; Kovacs, Attila J; Wright, Glenn A

    2015-04-01

    The purpose of the present study was to examine the effects of an acute dose of an arginine-based supplement on the physical working capacity at the fatigue threshold (PWCFT), lactate threshold (LT), ventilatory threshold (VT), and peak oxygen uptake during incremental cycle ergometry. This study used a double-blinded, placebo-controlled, within-subjects crossover design. Nineteen untrained men (mean age ± SD = 22.0 ± 1.7 years) were randomly assigned to ingest either the supplement (3.0 g of arginine, 300 mg of grape seed extract, and 300 mg of polyethylene glycol) or placebo (microcrystalline cellulose) and performed an incremental test on a cycle ergometer for determination of PWCFT, LT, VT, and peak oxygen uptake. Following a 1-week period, the subjects returned to the laboratory and ingested the opposite substance (either supplement or placebo) prior to completing another incremental test to be reassessed for PWCFT, LT, VT, and peak oxygen uptake. The paired-samples t tests indicated there were significant (P < 0.05) mean differences between the arginine and placebo conditions for the PWCFT (192 ± 42 vs. 168 ± 53 W, respectively) and VT (2546 ± 313 vs. 2452 ± 342 mL·min(-1)), but not the LT (135 ± 26 vs. 138 ± 22 W), absolute peak oxygen uptake (3663 ± 445 vs. 3645 ± 438 mL·min(-1)), or relative peak oxygen uptake (46.5 ± 6.0 vs. 46.2 ± 5.0 mL·kg(-1)·min(-1)). These findings suggested that the arginine-based supplement may be used on an acute basis for delaying the onset of neuromuscular fatigue (i.e., PWCFT) and improving the VT in untrained individuals.

  8. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    PubMed

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  9. The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme.

    PubMed

    Beckerman, Heleen; Blikman, Lyan Jm; Heine, Martin; Malekzadeh, Arjan; Teunissen, Charlotte E; Bussmann, Johannes Bj; Kwakkel, Gert; van Meeteren, Jetty; de Groot, Vincent

    2013-08-12

    TREFAMS is an acronym for TReating FAtigue in Multiple Sclerosis, while ACE refers to the rehabilitation treatment methods under study, that is, Aerobic training, Cognitive behavioural therapy, and Energy conservation management. The TREFAMS-ACE research programme consists of four studies and has two main objectives: (1) to assess the effectiveness of three different rehabilitation treatment strategies in reducing fatigue and improving societal participation in patients with MS; and (2) to study the neurobiological mechanisms of action that underlie treatment effects and MS-related fatigue in general. Ambulatory patients (n = 270) suffering from MS-related fatigue will be recruited to three single-blinded randomised clinical trials (RCTs). In each RCT, 90 patients will be randomly allocated to the trial-specific intervention or to a low-intensity intervention that is the same for all RCTs. This low-intensity intervention consists of three individual consultations with a specialised MS-nurse. The trial-specific interventions are Aerobic Training, Cognitive Behavioural Therapy, and Energy Conservation Management. These interventions consist of 12 individual therapist-supervised sessions with additional intervention-specific home exercises. The therapy period lasts 16 weeks. All RCTs have the same design and the same primary outcome measures: fatigue - measured with the Checklist Individual Strength, and participation - measured with the Impact on Participation and Autonomy questionnaire. Outcomes will be assessed 1 week prior to, and at 0, 8, 16, 26 and 52 weeks after randomisation. The assessors will be blinded to allocation. Pro- and anti-inflammatory cytokines in serum, salivary cortisol, physical fitness, physical activity, coping, self-efficacy, illness cognitions and other determinants will be longitudinally measured in order to study the neurobiological mechanisms of action. The TREFAMS-ACE programme is unique in its aim to assess the effectiveness of three

  10. The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme

    PubMed Central

    2013-01-01

    Background TREFAMS is an acronym for TReating FAtigue in Multiple Sclerosis, while ACE refers to the rehabilitation treatment methods under study, that is, Aerobic training, Cognitive behavioural therapy, and Energy conservation management. The TREFAMS-ACE research programme consists of four studies and has two main objectives: (1) to assess the effectiveness of three different rehabilitation treatment strategies in reducing fatigue and improving societal participation in patients with MS; and (2) to study the neurobiological mechanisms of action that underlie treatment effects and MS-related fatigue in general. Methods/Design Ambulatory patients (n = 270) suffering from MS-related fatigue will be recruited to three single-blinded randomised clinical trials (RCTs). In each RCT, 90 patients will be randomly allocated to the trial-specific intervention or to a low-intensity intervention that is the same for all RCTs. This low-intensity intervention consists of three individual consultations with a specialised MS-nurse. The trial-specific interventions are Aerobic Training, Cognitive Behavioural Therapy, and Energy Conservation Management. These interventions consist of 12 individual therapist-supervised sessions with additional intervention-specific home exercises. The therapy period lasts 16 weeks. All RCTs have the same design and the same primary outcome measures: fatigue - measured with the Checklist Individual Strength, and participation - measured with the Impact on Participation and Autonomy questionnaire. Outcomes will be assessed 1 week prior to, and at 0, 8, 16, 26 and 52 weeks after randomisation. The assessors will be blinded to allocation. Pro- and anti-inflammatory cytokines in serum, salivary cortisol, physical fitness, physical activity, coping, self-efficacy, illness cognitions and other determinants will be longitudinally measured in order to study the neurobiological mechanisms of action. Discussion The TREFAMS-ACE programme is unique in its aim to

  11. High-Temperature, Low-Cycle Fatigue of Copper-Base Alloys for Rocket Nozzles. Part 1: Data Summary for Materials Tested in Prior Programs

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1975-01-01

    A more detailed analysis of the results obtained in 188 previously reported low-cycle fatigue tests of various candidate materials for regeneratively-cooled, reusable rocket nozzle liners was reported. Plots of load range versus cycles were reported for each test along with a stress-strain hysteresis loop near half-life. In addition, a summary table was provided to compare N5 (cycles to a five percent load range drop) and Nf (cycles to complete specimen separation) values for each test.

  12. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity.

    PubMed

    Charlat, Sylvain; Reuter, Max; Dyson, Emily A; Hornett, Emily A; Duplouy, Anne; Davies, Neil; Roderick, George K; Wedell, Nina; Hurst, Gregory D D

    2007-02-06

    Sex-ratio distorters are found in numerous species and can reach high frequencies within populations. Here, we address the compelling, but poorly tested, hypothesis that the sex ratio bias caused by such elements profoundly alters their host's mating system. We compare aspects of female and male reproductive biology between island populations of the butterfly Hypolimnas bolina that show varying degrees of female bias, because of a male-killing Wolbachia infection. Contrary to expectation, female bias leads to an increase in female mating frequency, up to a point where male mating capacity becomes limiting. We show that increased female mating frequency can be explained as a facultative response to the depleted male mating resources in female biased populations. In other words, this system is one where male-killing bacteria trigger a vicious circle of increasing male fatigue and female promiscuity.

  13. Low-cycle fatigue behavior of NIMONIC PE16 at room temperature

    NASA Astrophysics Data System (ADS)

    Singh, V.; Sundararaman, M.; Chen, W.; Wahi, R. P.

    1991-02-01

    The fatigue behavior of NIMONIC PE16 has been investigated at room temperature as a function of γ' particle size (from 10 to 30 nm) and total strain amplitude (0.44 to 2.60 pct). All specimens initially harden and then soften on further deformation. The degrees of hardening and softening show a marked variation with γ' particle size and strain amplitude. Cyclic stress-strain and Coffin-Manson plots show a bilinear behavior with a change of slope at Δɛp/2, the plastic strain amplitude, of about 0.3 pct. These results are interpreted in terms of microstructural observations, namely, the number of slip systems activated and mutual interaction of dislocations on these systems, as well as their interaction with γ' particles.

  14. Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5-HT3 receptor antagonist-mediated improvement in fatigue-like behaviour in cholestatic rats.

    PubMed

    Nguyen, H; Wang, H; le, T; Ho, W; Sharkey, K A; Swain, M G

    2008-03-01

    The serotonin neurotransmitter system, including the 5-HT(3) receptor, has been implicated in the genesis of fatigue in patients with liver disease. Therefore, we examined the possible role of 5-HT(3) receptors in cholestasis-associated fatigue. Rats were either bile duct resected (BDR) or sham resected and studied 10 days postsurgery. A significant decrease in hypothalamic 5-HT(3) receptor expression was detected by immunohistochemistry and Western blot in BDR vs sham rats, coupled with increased hypothalamic serotonin turnover identified by an elevated 5-hydroxyindoleacetic acid (5-HIAA) to 5-HT ratio in BDR vs sham rats. To examine fatigue-like behaviour, an activity meter was used. BDR rats exhibited significantly lower locomotor activity than did sham animals. Subcutaneous injection of the 5-HT(3) receptor antagonist tropisetron (0.1 mg kg(-1)) resulted in significantly increased locomotor activity in BDR rats compared to the activity in saline-treated controls, but was without effect in sham rats. However, a 10-fold higher dose of tropisetron significantly increased locomotor activity in both BDR and sham rats compared to saline-injected controls. These findings indicate that cholestasis in the rat is associated with increased hypothalamic serotonin turnover, decreased hypothalamic 5-HT(3) receptor expression, and enhanced sensitivity to locomotor activation induced by 5-HT(3) receptor antagonism, thereby implicating the 5-HT(3) receptor system in cholestasis associated fatigue.

  15. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn- xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-12-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  16. Assessment of low-cycle fatigue life of Sn-3.5mass%Ag-X (X=Bi or Cu) alloy by strain range partitioning approach

    NASA Astrophysics Data System (ADS)

    Kariya, Yoshiharu; Morihata, Tomoo; Hazawa, Eisaku; Otsuka, Masahisa

    2001-09-01

    The fatigue lives and damage mechanisms of Sn-Ag-X (X=Bi and Cu) solder alloys under creep-fatigue interaction mode have been investigated, and the adaptability of the strain partitioning approach to the creep-fatigue of these alloys was examined. Symmetrical and asymmetrical saw-tooth strain profiles components ( i.e., fast-fast, fast-slow, slow-fast and slow-slow) were employed. Application of the slow slow,strain mode did not have an effect on fatigue lives of the alloys under investigation. Transgranular fracture observed on the fracture surfaces suggests that creep damage might be cancelled under slowslow mode. The fatigue lives of all alloys were dramatically reduced under slowfast mode, which is attributed to intergranular cavitation and fracture during tensile creep flow. On the other hand, the compression creep component generated by fast-slow mode also significantly reduced the life of Sn-3.5Ag and Sn-3.5Ag-1Cu, while the component did not affect the life of Sn-3.5Ag-xBi (x=2 and 5). The four partitioned strain ranges (i.e.,p, pp, cp, and cc) versus life relationships were established in all alloys tested. Thus, it is confirmed that the creep-fatigue life of these alloys can be quantitatively predicted by the strain partitioning approach for any type of inelastic strain cycling.

  17. Analysis of electric and thermal behaviour of lithium-ion cells in realistic driving cycles

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-12-01

    A substantial part of electric vehicles (EVs) powertrain is the battery cell. The cells are usually connected in series, and failure of a single cell can deactivate an entire module in the batte