Science.gov

Sample records for cycle fatigue behaviour

  1. Elevation of Continuous Low-Cycle Fatigue Behaviour of High Temperature P122 Boiler Material

    SciTech Connect

    Pumwa, John; Soo Woo Nam

    2002-07-01

    The complex thermal-mechanical loading of power-generating plant components usually comprises of creep, high-cycle and low-cycle fatigue which are thermally induced by start-ups, load changes and shut-downs, producing in-stationary temperature gradients and hence creating strain as well as stress fields. In order to select the correct materials for these hostile environmental conditions, it is vitally important to understand the behaviour of mechanical properties of these materials. This paper reports the results of Low-cycle fatigue tests of P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material, which is one of the latest developed materials for high temperature environments. The tests were conducted at temperatures ranging from 550 deg. C to 700 deg. C at 50 deg. C intervals with strain ranges of {+-}1.5 to {+-}3.0% at 0.5% intervals using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. Moreover, the fracture mode assessments strongly revealed a ductile transgranular fracture mode. (authors)

  2. Low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Solomon, H. D. (Editor); Kaisand, L. R. (Editor); Halford, G. R. (Editor); Leis, B. N. (Editor)

    1988-01-01

    The papers contained in this volume focus on various aspects of low cycle fatigue, including cyclic deformation, crack propagation, high-temperature low cycle fatigue, microstructural defects, multiaxial and variable amplitude loading, and life prediction. Papers are presented on the low cycle fatigue of some aluminum alloys, prediction of crack growth under creep-fatigue loading conditions, high-temperature low cycle fatigue behavior and lifetime prediction of a nickel-base ODS alloy, and an integrated approach to creep-fatigue life prediction. Other topics discussed include thermal fatigue testing of coated monocrystalline superalloys, low cycle fatigue of Al-Mg-Si alloys, and the effect of superimposed stresses at high frequency on low cycle fatigue.

  3. Low cycle fatigue behaviour of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  4. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  5. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    NASA Astrophysics Data System (ADS)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  6. Low cycle fatigue in turbines

    NASA Technical Reports Server (NTRS)

    Brun, M.

    1978-01-01

    Behavior of certain components at low-cycle fatigue is a parameter related to the conditions of use of turbines, to the technology of engine production and to the precision of its regulation. The laboratory takes this into account using data from sophisticated tests and rigorous analyses. The production plan includes careful examination of possible causes of premature rupture. This parameter has motivated the metallurgy industry to develop new materials and new technology.

  7. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  8. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  9. Multiaxial fatigue low cycle fatigue testing

    NASA Technical Reports Server (NTRS)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  10. "Abnormal" illness behaviour in chronic fatigue syndrome and multiple sclerosis.

    PubMed Central

    Trigwell, P.; Hatcher, S.; Johnson, M.; Stanley, P.; House, A.

    1995-01-01

    OBJECTIVE--To investigate the presence of abnormal illness behaviour in patients with a diagnosis of chronic fatigue syndrome. DESIGN--A cross sectional descriptive study using the illness behaviour questionnaire to compare illness behaviour scores and illness behaviour profiles of patients with chronic fatigue syndrome and patients with multiple sclerosis. SETTING--A multidisciplinary fatigue clinic and a teaching hospital neurology outpatient clinic. SUBJECTS--98 patients satisfying the Oxford criteria for chronic fatigue syndrome and 78 patients with a diagnosis of multiple sclerosis. MAIN OUTCOME MEASURE--Responses to the 62 item illness behaviour questionnaire. RESULTS--90 (92%) patients in the chronic fatigue syndrome group and 70 (90%) in the multiple sclerosis group completed the illness behaviour questionnaire. Both groups had significantly high scores on the general hypochondriasis and disease conviction subscales and significantly low scores on the psychological versus somatic concern subscale, as measured in relation to normative data. There were, however, no significant differences in the subscale scores between the two groups and the two groups had identical illness behaviour profiles. CONCLUSION--Scores on the illness behaviour questionnaire cannot be taken as evidence that chronic fatigue syndrome is a variety of abnormal illness behaviour, because the same profile occurs in multiple sclerosis. Neither can they be taken as evidence that chronic fatigue and multiple sclerosis share an aetiology. More needs to be known about the origins of illness beliefs in chronic fatigue syndrome, especially as they are important in determining outcome. PMID:7613314

  11. Different aspects of low-cycle fatigue

    NASA Technical Reports Server (NTRS)

    Bathias, C.

    1978-01-01

    The experimental and theoretical knowledge in this field is presented. The different relations which correlate the number of cyles to rupture with strain or strain-energy are given. The application of low-cycle fatigue concepts to the crack initiation and crack propagation are briefly studied.

  12. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  13. Measuring risky adolescent cycling behaviour.

    PubMed

    Feenstra, Hans; Ruiter, Robert A C; Schepers, Jan; Peters, Gjalt-Jorn; Kok, Gerjo

    2011-09-01

    Adolescents are at a greater risk of being involved in traffic accidents than most other age groups, even before they start driving cars. This article aims to determine the factor structure of a self-report questionnaire measuring adolescent risky cycling behaviour, the ACBQ (Adolescent Cycling Behaviour Questionnaire). The questionnaire's structure was based on the widely used Driver Behaviour Questionnaire (DBQ). A sample of secondary school students (N = 1749; age range: 13-18 years) filled out the questionnaire. Factor analysis revealed a three-factor structure underlying the questionnaire, which was confirmed on two equally large portions of the entire sample. These three underlying factors were identified as errors, common violations and exceptional violations. The ACBQ is a useful instrument for measuring adolescents' risky cycling behaviour.

  14. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life

    SciTech Connect

    Tobushi, Hisaaki; Nakahara, Takafumi; Shimeno, Yoshirou; Hashimoto, Takahiro

    2000-04-01

    The low-cycle fatigue of a TiNi shape memory alloy was investigated by the rotating-bending fatigue tests in air, in water and in silicone oil. (1) The influence of corrosion fatigue in water does not appear in the region of low-cycle fatigue. (2) The temperature rise measured through an infrared thermograph during the fatigue test in air is four times as large as that measured through a thermocouple. (3) The fatigue life at an elevated temperature in air coincides with the fatigue life at the same elevated temperature in water. (4) The shape memory processing temperature does not affect the fatigue life. (5) The fatigue equation is proposed to describe the fatigue life depending on strain amplitude, temperature and frequency. The fatigue life is estimated well by the proposed equation.

  15. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    PubMed

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management.

  16. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.

    PubMed

    Schönbauer, Bernd M; Stanzl-Tschegg, Stefanie E

    2013-12-01

    In the present work, the influence of different environments on the fatigue crack growth behaviour of 12% Cr steam turbine blade steel is investigated. Fatigue crack growth rates (FCGRs) in the near threshold regime are measured with ultrasonic fatigue testing technique. Fatigue tests are performed in vacuum, air and different aqueous environments with defined chloride and oxygen content. Furthermore, the influence of different stress ratios is investigated. It is found that crack propagation is not necessarily enhanced with increasing corrosiveness. In the aqueous environments, the FCGRs below 10⁻⁸ m/cycle are lower than in air. The threshold stress intensity factor ranges are higher or equal. Observation of the fracture surfaces shows oxide formation and partly intergranular fracture for specimens tested in aqueous environments. Crack closure effects seem to be responsible for this unexpected behaviour. PMID:23490013

  17. Experimental and numerical evaluation of the fatigue behaviour in a welded joint

    NASA Astrophysics Data System (ADS)

    Almaguer, P.; Estrada, R.

    2014-07-01

    Welded joints are an important part in structures. For this reason, it is always necessary to know the behaviour of them under cyclic loads. In this paper a S - N curve of a butt welded joint of the AISI 1015 steel and Cuban manufacturing E6013 electrode is showed. Fatigue tests were made in an universal testing machine MTS810. The stress ratio used in the test was 0,1. Flaws in the fatigue specimens were characterized by means of optical and scanning electron microscopy. SolidWorks 2013 software was used to modeling the specimens geometry, while to simulate the fatigue behaviour Simulation was used. The joint fatigue limit is 178 MPa, and a cut point at 2 039 093 cycles. Some points of the simulations are inside of the 95% confidence band.

  18. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.

    PubMed

    Schönbauer, Bernd M; Stanzl-Tschegg, Stefanie E

    2013-12-01

    In the present work, the influence of different environments on the fatigue crack growth behaviour of 12% Cr steam turbine blade steel is investigated. Fatigue crack growth rates (FCGRs) in the near threshold regime are measured with ultrasonic fatigue testing technique. Fatigue tests are performed in vacuum, air and different aqueous environments with defined chloride and oxygen content. Furthermore, the influence of different stress ratios is investigated. It is found that crack propagation is not necessarily enhanced with increasing corrosiveness. In the aqueous environments, the FCGRs below 10⁻⁸ m/cycle are lower than in air. The threshold stress intensity factor ranges are higher or equal. Observation of the fracture surfaces shows oxide formation and partly intergranular fracture for specimens tested in aqueous environments. Crack closure effects seem to be responsible for this unexpected behaviour.

  19. High temperature multiaxial low cycle fatigue of cruciform specimen

    SciTech Connect

    Itoh, Takamoto . Dept. of Mechanical Engineering); Sakane, Masao; Ohnami, Masateru . Dept. of Mechanical Engineering)

    1994-01-01

    This paper describes high temperature multiaxial low cycle fatigue lives of type SUS304 stainless steel and 1Cr-1Mo-1/4V steel cruciform specimens at 923 K and 823 K in air. Strain controlled multiaxial low cycle fatigue tests were carried out using cruciform specimens at the principal strain ratios between [minus]1 and 1. The principal strain ratio had a significant effect on low cycle fatigue lives. Fatigue lives drastically decreased as the principal strain ratio increased. Multiaxial low cycle fatigue strain parameters were applied to the experimental data and the applicability of the parameter was discussed. The equivalent strain based on crack opening displacement (COD strain) developed in the paper and [Gamma][sup *] -- plane parameter successfully predicted multiaxial low cycle fatigue lives. The crack morphology was also extensively discussed from not only the surface crack direction but also the crack inclination into the specimen.

  20. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  1. The role of creep in high temperature low cycle fatigue.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  2. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  3. Low cycle fatigue behavior of aluminum/stainless steel composites

    NASA Technical Reports Server (NTRS)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  4. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  5. In vitro fatigue behaviour of vacuum plasma and detonation gun sprayed hydroxyapatite coatings.

    PubMed

    Gledhill, H C; Turner, I G; Doyle, C

    2001-06-01

    The fatigue behaviour of vacuum plasma sprayed (VPS) and detonation gun sprayed (DGUN) hydroxyapatite coatings on titanium substrates has been compared in air and in buffered Ringer's solution. There was an increase in the surface microcracking and bulk porosity of both types of coating tested in air. After 1 million cycles in Ringer's solution the VPS coatings had completely delaminated from their substrates. In contrast the DGUN coatings retained their integrity when tested up to 10 million cycles but were beginning to show signs of delamination at the interface.

  6. High Cycle Fatigue in the Transmission Electron Microscope.

    PubMed

    Bufford, Daniel C; Stauffer, Douglas; Mook, William M; Syed Asif, S A; Boyce, Brad L; Hattar, Khalid

    2016-08-10

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this study, the tension-tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were applied at frequencies from one to several hundred hertz, enabling accumulations of 10(6) cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ∼10(-12) m·cycle(-1). This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. These observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu. PMID:27351706

  7. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  8. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; Syed Asif, S. A.; Boyce, Brad L.; Hattar, Khalid

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 106 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10–12 m·cycle–1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  9. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    NASA Astrophysics Data System (ADS)

    Pejkowski, Łukasz; Skibicki, Dariusz

    2016-08-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The criterion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S-N curves: tension-compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promising. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  10. Low- cycle fatigue behavior of polycrystalline nial at 1000 k

    NASA Astrophysics Data System (ADS)

    Lerch, B. A.; Noebe, R. D.

    1994-02-01

    The low-cycle fatigue behavior of polycrystalline NiAl was determined at 1000 K, a temperature above the monotonic brittle-to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on B2 intermetallic samples prepared by two fab-rication techniques: hot isostatic pressing (HIP) of prealloyed powders and extrusion of vacuum induction-melted [cast plus extruded (C+E)] castings. At 1000 K, in an air environment both the hot-isostatically pressed (“hipped”) and C + E samples cyclically softened throughout most of their fatigue lives, though the absolute change in stress was no greater than about 35 MPa. At this temperature, samples were insensitive to processing defects, which were a source of failure initiation in room-temperature tests. The processing method had a small effect on fatigue life; the lives of the hipped samples were about a factor of 3 shorter than the fatigue lives of the C+E NiAl. The C+E material also underwent dynamic grain growth during testing, while the hipped NiAl maintained a constant grain size. Stable fatigue-crack growth in both materials was intergranular in nature, while final fracture by tensile overload occurred by transgranular cleavage. However, at plastic strain ranges below 0.3 pct, the fatigue lives of the hipped NiAl were controlled by intergranular cavitation and creep processes such that the fatigue lives were shorter than anticipated. Finally, hipped samples tested in vacuum had a factor of 3 longer life than specimens tested in air. A comparison of NiAl to typical superalloys (which it may replace) showed that NiAl exhibited a superior fatigue life on a plastic strain basis but was inferior to most superalloys on a stress basis.

  11. PO2 Cycling Reduces Diaphragm Fatigue by Attenuating ROS Formation

    PubMed Central

    Zuo, Li; Diaz, Philip T.; Chien, Michael T.; Roberts, William J.; Kishek, Juliana; Best, Thomas M.; Wagner, Peter D.

    2014-01-01

    Prolonged muscle exposure to low PO2 conditions may cause oxidative stress resulting in severe muscular injuries. We hypothesize that PO2 cycling preconditioning, which involves brief cycles of diaphragmatic muscle exposure to a low oxygen level (40 Torr) followed by a high oxygen level (550 Torr), can reduce intracellular reactive oxygen species (ROS) as well as attenuate muscle fatigue in mouse diaphragm under low PO2. Accordingly, dihydrofluorescein (a fluorescent probe) was used to monitor muscular ROS production in real time with confocal microscopy during a lower PO2 condition. In the control group with no PO2 cycling, intracellular ROS formation did not appear during the first 15 min of the low PO2 period. However, after 20 min of low PO2, ROS levels increased significantly by ∼30% compared to baseline, and this increase continued until the end of the 30 min low PO2 condition. Conversely, muscles treated with PO2 cycling showed a complete absence of enhanced fluorescence emission throughout the entire low PO2 period. Furthermore, PO2 cycling-treated diaphragm exhibited increased fatigue resistance during prolonged low PO2 period compared to control. Thus, our data suggest that PO2 cycling mitigates diaphragm fatigue during prolonged low PO2. Although the exact mechanism for this protection remains to be elucidated, it is likely that through limiting excessive ROS levels, PO2 cycling initiates ROS-related antioxidant defenses. PMID:25299212

  12. Cyclic fatigue analysis of rocket thrust chambers. Volume 1: OFHC copper chamber low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elasto-plastic strain analysis was performed for the throat section of a regeneratively cooled rocket combustion chamber. The analysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the chamber operating cycle. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen combustion chamber which was fatigue tested to failure. The computed strain range at typical chamber operating conditions was used in conjunction with oxygen-free, high-conductivity (OHFC) copper isothermal fatigue test data to predict chamber low-cycle fatigue life.

  13. Thermal Cycling on Fatigue Failure of the Plutonium Vitrification Melter

    SciTech Connect

    Jordan, Jeffrey; Gorczyca, Jennifer

    2009-02-11

    One method for disposition of excess plutonium is vitrification into cylindrical wasteforms. Due to the hazards of working with plutonium, the vitrification process must be carried out remotely in a shielded environment. Thus, the equipment must be easily maintained. With their simple design, induction melters satisfy this criterion, making them ideal candidates for plutonium vitrification. However, due to repeated heating and cooling cycles and differences in coefficients of thermal expansion of contacting materials fatigue failure of the induction melter is of concern. Due to the cost of the melter, the number of cycles to failure is critical. This paper presents a method for determining the cycles to failure for an induction melter by using the results from thermal and structural analyses as input to a fatigue failure model.

  14. Epidemic cycles driven by host behaviour.

    PubMed

    Althouse, Benjamin M; Hébert-Dufresne, Laurent

    2014-10-01

    Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies. PMID:25100316

  15. Epidemic cycles driven by host behaviour

    PubMed Central

    Althouse, Benjamin M.; Hébert-Dufresne, Laurent

    2014-01-01

    Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies. PMID:25100316

  16. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  17. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  18. High-Cycle Fatigue Behavior of a Nicalon(tm)/Si-N-C Composite

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kalluri, Sreeramesh; Kantzos, Peter T.

    1999-01-01

    Elevated temperature, high-cycle fatigue behavior of a woven SiC/Si-N-C ceramic matrix composite system was investigated at 910 C. High frequency (100 Hz) fatigue tests were conducted in air on specimens machined from the composite system, A power-law type fatigue life relationship adequately characterized the high-cycle fatigue data generated in the study. Post failure fractographic and metallographic studies were performed to document the fatigue crack initiation regions and damage mechanisms in the composite system. Fatigue cracks initiated primarily from the corners of the specimens and propagated along the 90 degree fiber tows.

  19. Low cycle fatigue properties of reduced activation ferritic/martensitic steels after high-dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Petersen, C.; Aktaa, J.; Povstyanko, A.; Prokhorov, V.; Diegele, E.; Lässer, R.

    2011-08-01

    This paper focuses on the low cycle fatigue (LCF) behaviour of reduced activation ferritic/martensitic steels irradiated to a displacement damage dose of up to 70 dpa at 330-337 °C in the BOR 60 reactor within the ARBOR 2 irradiation programme. The influence of neutron irradiation on the fatigue behaviour was determined for the as-received EUROFER97, pre-irradiation heat-treated EUROFER97 HT and F82H-mod steels. Strain-controlled push-pull loading was performed using miniaturized cylindrical specimens at a constant temperature of 330 °C with total strain ranges between 0.8% and 1.1%. Comparison of the LCF behaviour of irradiated and reference unirradiated specimens was performed for both the adequate total and inelastic strains. Neutron irradiation-induced hardening may have various effects on the fatigue behaviour of the steels. The reduction of inelastic strain in the irradiated state compared with the reference unirradiated state at common total strain amplitudes may increase fatigue lifetime. The increase in the stress at the adequate inelastic strain, by contrast, may accelerate fatigue damage accumulation. Depending on which of the two effects mentioned dominates, neutron irradiation may either extend or reduce the fatigue lifetime compared with the reference unirradiated state. The results obtained for EUROFER97 and EUROFER97 HT confirm these considerations. Most of the irradiated specimens show fatigue lifetimes comparable to those of the reference unirradiated state at adequate inelastic strains. Some irradiated specimens, however, show lifetime reduction or increase in comparison with the reference state at adequate inelastic strains.

  20. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  1. Describing the Flexural Behaviour of Cross-ply Laminates Under Cyclic Fatigue

    NASA Astrophysics Data System (ADS)

    El Mahi, Abderrahim; Bezazi, Abderrezak

    2009-02-01

    The objective of this work is to derive modelling of the fatigue behaviour of cross-ply laminates from the experimental results obtained in the case of three-point bending tests. Modelling the fatigue behaviour is based on the stiffness reduction of test specimens. Firstly, experimental results are described using interpolation functions. Then, the characteristic coefficients of these functions are studied as function of the laminate properties and loading conditions. This approach allows to predict the fatigue life of composite laminates while avoiding a large number of fatigue tests. Wöhler curves are used to compare the experimental and analytical results, and a good agreement is found between the results. Next, a simple approach is considered to define a damage parameter. It is based on the analogy between the mechanical behaviour and the fatigue damage evolution of composite laminates during fatigue tests. The developed models are applied to analyse the influence of constituents on the fatigue behaviour and damage development of composite materials under fatigue loading.

  2. Dental Implants Fatigue as a Possible Failure of Implantologic Treatment: The Importance of Randomness in Fatigue Behaviour

    PubMed Central

    Prados-Privado, María; Prados-Frutos, Juan Carlos; Manchón, Ángel; Rojo, Rosa; Felice, Pietro; Bea, José Antonio

    2015-01-01

    Objective. To show how random variables concern fatigue behaviour by a probabilistic finite element method. Methods. Uncertainties on material properties due to the existence of defects that cause material elastic constant are not the same in the whole dental implant the dimensions of the structural element and load history have a decisive influence on the fatigue process and therefore on the life of a dental implant. In order to measure these uncertainties, we used a method based on Markoff chains, Bogdanoff and Kozin cumulative damage model, and probabilistic finite elements method. Results. The results have been obtained by conventional and probabilistic methods. Mathematical models obtained the same result regarding fatigue life; however, the probabilistic model obtained a greater mean life but with more information because of the cumulative probability function. Conclusions. The present paper introduces an improved procedure to study fatigue behaviour in order to know statistics of the fatigue life (mean and variance) and its probability of failure (fatigue life versus probability of failure). PMID:26583137

  3. The modelling cycle for collective animal behaviour

    PubMed Central

    Sumpter, David J. T.; Mann, Richard P.; Perna, Andrea

    2012-01-01

    Collective animal behaviour is the study of how interactions between individuals produce group level patterns, and why these interactions have evolved. This study has proved itself uniquely interdisciplinary, involving physicists, mathematicians, engineers as well as biologists. Almost all experimental work in this area is related directly or indirectly to mathematical models, with regular movement back and forth between models, experimental data and statistical fitting. In this paper, we describe how the modelling cycle works in the study of collective animal behaviour. We classify studies as addressing questions at different levels or linking different levels, i.e. as local, local to global, global to local or global. We also describe three distinct approaches—theory-driven, data-driven and model selection—to these questions. We show, with reference to our own research on species across different taxa, how we move between these different levels of description and how these various approaches can be applied to link levels together. PMID:23173077

  4. Parameterized CAD techniques implementation for the fatigue behaviour optimization of a service chamber

    NASA Astrophysics Data System (ADS)

    Sánchez, H. T.; Estrems, M.; Franco, P.; Faura, F.

    2009-11-01

    In recent years, the market of heat exchangers is increasingly demanding new products in short cycle time, which means that both the design and manufacturing stages must be extremely reduced. The design stage can be reduced by means of CAD-based parametric design techniques. The methodology presented in this proceeding is based on the optimized control of geometric parameters of a service chamber of a heat exchanger by means of the Application Programming Interface (API) provided by the Solidworks CAD package. Using this implementation, a set of different design configurations of the service chamber made of stainless steel AISI 316 are studied by means of the FE method. As a result of this study, a set of knowledge rules based on the fatigue behaviour are constructed and integrated into the design optimization process.

  5. Cyclic fatigue analysis of rocket thrust chambers. Volume 2: Attitude control thruster high cycle fatigue

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A finite element stress analysis was performed for the film cooled throat section of an attitude control thruster. The anlaysis employed the RETSCP finite element computer program. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the thruster operating cycle. The configuration and operating conditions considered, correspond to a flightweight integrated thruster assembly which was thrust pulse tested. The computed strain range was used in conjuction with Haynes 188 Universal Slopes minimum life data to predict throat section fatigue life. The computed number of cycles to failure was greater than the number of pulses to which the thruster was experimentally subjected without failure.

  6. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    NASA Astrophysics Data System (ADS)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  7. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    NASA Astrophysics Data System (ADS)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  8. Time-dependent damage in predictions of fatigue behaviour of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail M.; Bailey, Soraya J.; Schwab, Timothy D.

    2015-08-01

    Ligaments are dense fibrous tissues that connect bones across a joint and are exposed daily to creep and fatigue loading. Ligaments are tensile load-bearing tissues; therefore, fatigue loading will have a component of time-dependent damage from the non-zero mean stress and cycle-dependent damage from the oscillating stress. If time-dependent damage is not sufficient to completely predict the fatigue response, then cycle-dependent damage could be an important contributor. Using data from normal ligaments (current study and Thornton et al., Clin. Biomech. 22:932-940, 2007a) and healing ligaments (Thornton and Bailey, J. Biomech. Eng. 135:091004-1-091004-6, 2013), creep data was used to predict the fatigue response considering time-dependent damage. Relationships between creep lifetime and test stress or initial strain were modelled using exponential or power-law regression. In order to predict fatigue lifetimes, constant rates of damage were assumed and time-varying stresses were introduced into the expressions for time-dependent damage from creep. Then, the predictions of fatigue lifetime were compared with curvefits to the fatigue data where exponential or power-law regressions were used to determine the relationship between fatigue lifetime and test stress or initial strain. The fatigue prediction based on time-dependent damage alone greatly overestimated fatigue lifetime suggesting that time-dependent damage alone cannot account for all of the damage accumulated during fatigue and that cycle-dependent damage has an important role. At lower stress and strain, time-dependent damage was a greater relative contributor for normal ligaments than healing ligaments; however, cycle-dependent damage was a greater relative contributor with incremental increases in stress or strain for normal ligaments than healing ligaments.

  9. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  10. Very high cycle fatigue behavior of nickel-based superalloy Rene 88 DT

    NASA Astrophysics Data System (ADS)

    Miao, Jiashi

    The fatigue behavior of the polycrystalline nickel-based superalloy Rene 88 DT has been investigated at 593°C up to the very high cycle fatigue regime using ultrasonic fatigue techniques. Conventional damage tolerant methods failed to predict the fatigue life nor the large fatigue life viability of two orders of magnitude observed in the very high cycle regime. Fatigue crack initiation rather than fatigue crack growth is the life determining process in this alloy in the very high cycle regime. At 593°C, all fatigue failures have subsurface origins. Most fatigue crack initiation sites consist of a large crystallographic facet or a cluster of several large crystallographic facets. By combining electron backscatter diffraction, metallographic serial sectioning and SEM-stereo-image-based quantitative fractographic analysis, critical microstructure features associated with subsurface crystallographic fatigue crack initiation were identified. Subsurface fatigue cracks formed by the localization of cyclic plastic deformation on {111} slip planes in the region close to and parallel to twin boundaries in favorably oriented large grains. The facet plane in the crack initiation grain is parallel to the slip plane with the highest resolved shear stresses. Analytical calculations show that twin boundary elastic incompatibility stresses contribute to the onset of cyclic plastic strain localization in the fatigue crack initiation grains. Favorably oriented neighbor grains also can assist with fatigue crack initiation and especially early small crack propagation. Environment may play an important role in the shift of fatigue crack initiation sites from surface to subsurface at elevated temperature. The fatigue behavior of Rene 88 DT was also investigated under fully reversed loading at room temperature using ultrasonic fatigue techniques. Cyclic plastic strain localization and microcrack formation on specimen surfaces were quantitatively studied by EBSD. All microcracks examined

  11. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    NASA Astrophysics Data System (ADS)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  12. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  13. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  14. Cognitive behavioural treatment for chronic fatigue syndrome in a rehabilitation setting: effectiveness and predictors of outcome.

    PubMed

    Schreurs, K M G; Veehof, M M; Passade, L; Vollenbroek-Hutten, M M R

    2011-12-01

    Cognitive behavioural therapy (CBT) was combined with graded exercise therapy (GET) for patients with chronic fatigue syndrome (CFS) in an uncontrolled implementation study of an inpatient multidisciplinary group therapy. During the intake procedure, 160 CFS patients completed a questionnaire on fatigue related measurements, physical impairment, depression, somatic and psychological attributions, somatic focus, and sense of control over symptoms. Pre-treatment physical activity level was measured with an actometer. At baseline, post-treatment and 6-month follow-up individual strength, subjective fatigue and physical impairment, were reassessed. Large effect sizes were found on subjective fatigue (1.2 post-treatment; 1.2 follow-up) and physical impairment (-.9 post-treatment; -.9 follow-up), Clinically significant improvement was found in 33.8% of the participants at post-treatment and 30.6% at follow-up. Individual strength at post-treatment was predicted by level of physical activity before treatment, and by sense of control over symptoms and physical activity at follow-up. Clinically significant improvement in subjective fatigue was predicted by not receiving a disablement insurance benefit, shorter duration of fatigue, higher sense of control over symptoms and, at follow-up by more pre-treatment physical activity. In conclusion, the intervention was effective for CFS patients. Cognitive behavioural factors that perpetuate fatigue symptoms are also predictors of treatment outcome.

  15. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  16. The application of probabilistic design theory to high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1981-01-01

    Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.

  17. Age-dependent fatigue behaviour of human cortical bone.

    PubMed

    Diab, T; Sit, S; Kim, D; Rho, J; Vashishth, D

    2005-01-01

    Despite a general understanding that bone quality contributes to skeletal fragility, very little information exits on the age-dependent fatigue behavior of human bone. In this study four-point bending fatigue tests were conducted on aging bone in conjunction with the analysis of stiffness loss and preliminary investigation of nanoindentation based measurements of local tissue stiffness and histological evaluation of resultant tensile and compressive damage to identify the damage mechanism responsible for the increase in age-related bone fragility. The results obtained show that there is an exponential decrease in fatigue life with age, and old bone exhibits different modulus degradation profiles than young bone. In addition, this study provides preliminary evidence indicating that during fatigue loading, younger bone formed diffuse damage, lost local tissue stiffness on the tensile side. Older bone, in contrast, formed linear microcracks lost local tissue stiffness on the compressive side. Thus, the propensity of aging human bone to form more linear microcracks than diffuse damage may be a significant contributor to bone quality, and age related fragility in bone.

  18. Investigation of Thermal High Cycle and Low Cycle Fatigue Mechanisms of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have attracted increased attention for diesel engine applications. The advantages of using the ceramic coatings include a potential increase in efficiency and power density and a decrease in maintenance cost. Zirconia-based ceramics are the most important coating materials for such applications because of their low thermal conductivity, relatively high thermal expansivity and excellent mechanical properties. However, durability of thick thermal barrier coatings (TBCS) under severe temperature cycling encountered in engine conditions, remains a major question. The thermal transients associated with the start/stop and no-load/full-load engine cycle, and with the in-cylinder combustion process, generate thermal low cycle fatigue (LCF) and thermal high cycle fatigue (HCF) in the coating system. Therefore, the failure mechanisms of thick TBCs are expected to be quite different from those of thin TBCs under these temperature transients. The coating failure is related not only to thermal expansion mismatch and oxidation of the bond coats and substrates, but also to the steep thermal stress gradients induced in the coating systems. Although it has been reported that stresses generated by thermal transients can initiate surface and interface cracks in a coating system, the mechanisms of the crack propagation and of coating failure under the complex LCF and HCF conditions are still not understood. In this paper, the thermal fatigue behavior of an yttria partially stabilized zirconia coating system under simulated LCF and HCF engine conditions is investigated. The effects of LCF and HCF on surface crack initiation and propagation are also discussed.

  19. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  20. Effects of interface treatment on the fatigue behaviour of shape memory alloy reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Harish, K.; Vasireddi, Ramakrishna; Benal, M. M.; Mahapatra, D. R.

    2015-04-01

    Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMAepoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

  1. Influence of water cavitation peening with aeration on fatigue behaviour of SAE1045 steel

    NASA Astrophysics Data System (ADS)

    Han, B.; Ju, D. Y.; Jia, W. P.

    2007-10-01

    Water cavitation peening (WCP) with aeration is a recent potential method in the surface enhancement techniques. In this method, a ventilation nozzle is adopted to improve the process capability of WCP by increasing the impact pressure, which is induced by the bubble collapse on the surface of components in the similar way as conventional shot peening. In this paper, fatigue tests were conducted on the both-edge-notched flat tensile specimens to assess the influences of WCP on fatigue behaviour of SAE1045 steel. The notched specimens were treated by WCP, and the compressive residual stress distributions in the superficial layer were measured by X-ray diffraction method. The tension-tension ( R = Smin/ Smax = 0.1, f = 10 Hz) fatigue tests and the fracture surfaces observation by scan electron microscopy (SEM) were conducted. The experimental results show that WCP can improve the fatigue life by inducing the residual compressive stress in the superficial layer of mechanical components.

  2. Fatigue behaviour of mineral filled polyamide 6-6

    SciTech Connect

    Trotignon, J.P.; Demdoum, L.; Verdu, J.

    1993-12-31

    The flexural fatigue at 10Hz, 23 {+-} 2{degree}C and various deformation amplitudes ({var_epsilon} = 1.4, 2.2 and 3.1%) was studied for various PA 66 samples containing mineral fillers in low (<5%) weight fraction. The fillers were talc, mica and wollastonite having a very different granulometry and aspect ratio. A preliminary DSC investigation showed that all these minerals display a nucleation effect of PA 66 crystallization, their efficiency being in the order talc>mica>wollastonite. Stress recording during the fatigue testing allows to detect the rupture, which occurs generally in a brittle (sudden) mode. When fatigue testing is made in dry state, the sample compliance remains constant during the whole test duration, for low stress levels. For high stress levels, in the case of unfilled and mica filled samples, the stress decreases rapidly in the first 10% of the lifetime and reaches a plateau value corresponding to about 50% of the initial stress amplitude. In situ measurements of the surface temperature show that the initial stress decrease is due to self heating above the glass transition temperature (60{degree}C) of the polymer. In all the cases, the presence of a filler-despite its very low concentration-reduces significantly the lifetime. Similar tests were made in wet state (2,5 % absorbed water). In this case, the behavior observed only for high stress levels in mica and unfilled samples in dry state appears in all the cases here, which is obviously linked to the lower Tg value due to plasticization of PA 66 by water. The role of fillers in fatigue damage and rupture will be discussed on the basis of the above results and complementary SEM observations.

  3. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical

  4. Topology optimization in damage governed low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Desmorat, Boris; Desmorat, Rodrigue

    2008-05-01

    Topology optimization is applied here to discuss an optimization problem of fatigue resistance. Fatigue lifetime is maximized by optimizing the shape of a structure in cyclic plasticity combined with Lemaitre damage law. The topology optimization algorithm is detailed. A 3D numerical example is given. To cite this article: B. Desmorat, R. Desmorat, C. R. Mecanique 336 (2008).

  5. Shakedown based model for high-cycle fatigue of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki–Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  6. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    PubMed Central

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-01-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key points The behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  7. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling.

    PubMed

    Latasa, Iban; Cordova, Alfredo; Malanda, Armando; Navallas, Javier; Lavilla-Oiz, Ana; Rodriguez-Falces, Javier

    2016-03-01

    Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG) frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively) of the sEMG power spectrum were calculated. The main findings were: (1) Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing) exercise periods. (2) Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3) Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test. Key pointsThe behaviour of spectral EMG indicators during the incremental test exhibited a high heterogeneity among individuals, with approximately half of the participants showing a positive

  8. Fatigue crack growth behaviour of Al-Li alloys

    NASA Astrophysics Data System (ADS)

    Saravanakumar, R.; Ramakrishna, K. S.; Kanna, B. Avinash

    2013-06-01

    Al-Li alloys are being used in aircraft structures due to its low density and inherent mechanical properties. Fatigue Crack Growth (FCG) resistance is usually high compared to conventional Al-alloys attributed to increased modulus and crack closure. Extensive investigations concern about the FCG resistance and crack closure in Al-Li alloys. The present work reviews the FCG resistance in Al-Li alloys and the mechanisms associated with it. The alloy 8090 is taken for the consideration and sometimes compared with 2024.

  9. Real-time monitoring of acoustic linear and nonlinear behavior of titanium alloys during low-cycle fatigue and high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Frouin, Jerome; Sathish, Shamachary; Na, Jeong K.

    2000-05-01

    An in-situ technique to measure sound velocity, ultrasonic attenuation and acoustic nonlinear property has been developed for characterization and early detection of fatigue damage in aerospace materials. For this purpose we have developed a computer software and measurement technique including hardware for the automation of the measurement. New transducer holder and special grips are designed. The automation has allowed us to test the long-term stability of the electronics over a period of time and so proof of the linearity of the system. Real-time monitoring of the material nonlinearity has been performed on dog-bone specimens from zero fatigue all the way to the final fracture under low-cycle fatigue test condition (LCF) and high-cycle test condition (HCF). Real-time health monitoring of the material can greatly contribute to the understanding of material behavior under cyclic loading. Interpretation of the results show that correlation exist between the slope of the curve described by the material nonlinearity and the life of the component. This new methodology was developed with an objective to predict the initiation of fatigue microcracks, and to detect, in-situ fatigue crack initiation as well as to quantify early stages of fatigue damage.

  10. Influence of dissolved hydrogen on the fatigue crack growth behaviour of AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Ramasagara Nagarajan, Varun

    Many metallic structural components come into contact with hydrogen during manufacturing processes or forming operations such as hot stamping of auto body frames and while in service. This interaction of metallic parts with hydrogen can occur due to various reasons such as water molecule dissociation during plating operations, interaction with atmospheric hydrogen due to the moisture present in air during stamping operations or due to prevailing conditions in service (e.g.: acidic or marine environments). Hydrogen, being much smaller in size compared to other metallic elements such as Iron in steels, can enter the material and become dissolved in the matrix. It can lodge itself in interstitials locations of the metal atoms, at vacancies or dislocations in the metallic matrix or at grain boundaries or inclusions (impurities) in the alloy. This dissolved hydrogen can affect the functional life of these structural components leading to catastrophic failures in mission critical applications resulting in loss of lives and structural component. Therefore, it is very important to understand the influence of the dissolved hydrogen on the failure of these structural materials due to cyclic loading (fatigue). For the next generation of hydrogen based fuel cell vehicles and energy systems, it is very crucial to develop structural materials for hydrogen storage and containment which are highly resistant to hydrogen embrittlement. These materials should also be able to provide good long term life in cyclic loading, without undergoing degradation, even when exposed to hydrogen rich environments for extended periods of time. The primary focus of this investigation was to examine the influence of dissolved hydrogen on the fatigue crack growth behaviour of a commercially available high strength medium carbon low alloy (AISI 4140) steel. The secondary objective was to examine the influence of microstructure on the fatigue crack growth behaviour of this material and to determine the

  11. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    SciTech Connect

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  12. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  13. Acoustic emission characteristics of copper alloys under low-cycle fatigue conditions

    NASA Technical Reports Server (NTRS)

    Krampfner, Y.; Kawamoto, A.; Ono, K.; Green, A.

    1975-01-01

    The acoustic emission (AE) characteristics of pure copper, zirconium-copper, and several copper alloys were determined to develop nondestructive evaluation schemes of thrust chambers through AE techniques. The AE counts rms voltages, frequency spectrum, and amplitude distribution analysis evaluated AE behavior under fatigue loading conditions. The results were interpreted with the evaluation of wave forms, crack propagation characteristics, as well as scanning electron fractographs of fatigue-tested samples. AE signals at the beginning of a fatigue test were produced by a sample of annealed alloys. A sample of zirconium-containing alloys annealed repeatedly after each fatigue loading cycle showed numerous surface cracks during the subsequent fatigue cycle, emitting strong-burst AE signals. Amplitude distribution analysis exhibits responses that are characteristic of certain types of AE signals.

  14. Ultrahigh vacuum, high temperature, low cycle fatigue of coated and uncoated Rene 80

    NASA Technical Reports Server (NTRS)

    Kortovich, C. S.

    1976-01-01

    A study was conducted on the ultrahigh vacuum strain controlled by low cycle fatigue behavior of uncoated and CODEP B-1 aluminide coated Rene' 80 nickel-base superalloy at 1000 C (1832 F) and 871 C (1600 F). The results indicated little effect of coating or temperature on the fatigue properties. There was, however, a significant effect on fatigue life when creep was introduced into the strain cycles. The effect of this creep component was analyzed in terms of the method of strainrange partitioning.

  15. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  16. Effect of microstructure on high-cycle fatigue properties of Alloy718 plates

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Nagashima, N.; Ogata, T.; Nagao, N.

    2015-12-01

    Effect of microstructure on high-cycle fatigue properties of Alloy718 were investigated at 77 K by using samples with three different microstructures; fine-grained (FG), coarse-grained (CG) and bimodal-grained (BG) ones. The BG sample consisted of FG and CG microstructural regions and grain sizes of those regions were close to those of the FG and the CG samples, respectively. High-cycle fatigue strength of the FG sample was higher than that of the CG sample. High-cycle fatigue strength of the BG sample was clearly lower than that of the FG sample and almost the same as that of the CG one. Flat area (facet) was found at fatigue crack initiation site in all specimens. Facet size was similar to the grain size and found to be almost same in the CG and the BG samples. Observations of the microstructure beneath the fatigue crack initiation site of the BG sample revealed that the facet corresponds to transgranular cracking in the course grain, meaning that fatigue crack initiated at the coarse grain in the BG sample. It is deduced that the high-cycle fatigue strength of Alloy 718 with the BG microstructure is strongly affected by that of the CG region in that material.

  17. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.

    PubMed

    McNeil, Chris J; Giesebrecht, Sabine; Gandevia, Simon C; Taylor, Janet L

    2011-07-15

    During fatigue caused by a sustained maximal voluntary contraction (MVC), motoneurones become markedly less responsive when tested during the silent period following transcranial magnetic stimulation (TMS). To determine whether this reduction depends on the repetitive activation of the motoneurones, responses to TMS (motor evoked potentials, MEPs) and to cervicomedullary stimulation (cervicomedullary motor evoked potentials, CMEPs) were tested during a sustained submaximal contraction at a constant level of electromyographic activity (EMG). In such a contraction, some motoneurones are repetitively activated whereas others are not active. On four visits, eight subjects performed a 10 min maintained-EMG elbow flexor contraction of 25% maximum. Test stimuli were delivered with and without conditioning by TMS given 100 ms prior. Test responses were MEPs or CMEPs (two visits each, small responses evoked by weak stimuli on one visit and large responses on the other). During the sustained contraction, unconditioned CMEPs decreased ∼20% whereas conditioned CMEPs decreased ∼75 and 30% with weak and strong stimuli, respectively. Conditioned MEPs were reduced to the same extent as CMEPs of the same size. The data reveal a novel decrease in motoneurone excitability during a submaximal contraction if EMG is maintained. Further, the much greater reduction of conditioned than unconditioned CMEPs shows the critical influence of voluntary drive on motoneurone responsiveness. Strong test stimuli attenuate the reduction of conditioned CMEPs which indicates that low-threshold motoneurones active in the contraction are most affected. The equivalent reduction of conditioned MEPs and CMEPs suggests that, similar to findings with a sustained MVC, impaired motoneurone responsiveness rather than intracortical inhibition is responsible for the fatigue-related impairment of the MEP during a sustained submaximal contraction. PMID:21606110

  18. Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Boisseau, A.; Davies, P.; Thiebaud, F.

    2013-04-01

    The development of ocean energy conversion systems places more severe requirements on materials than similar land-based structures such as wind turbines. Intervention and maintenance at sea are very costly, so for ocean energy supply to become economically viable long term durability must be guaranteed. Cyclic loading is a common feature of most energy conversion devices and composites are widely used, but few data are available concerning the fatigue behaviour in sea water of composite materials. This paper presents the results from an experimental study to fill this gap. The fatigue behavior of composite materials reinforced with different types of glass fibre is characterized in air and in sea water; the influence of testing in sea water rather than air is shown to be small. However, sea water ageing is shown to reduce the fatigue lifetime significantly and strongly depends on matrix formulation.

  19. High-temperature low cycle fatigue behavior of a gray cast iron

    SciTech Connect

    Fan, K.L. He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  20. Probabilistic Simulation for Combined Cycle Fatigue in Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A methodology to compute probabilistic fatigue life of polymer matrix laminated composites has been developed and demonstrated. Matrix degradation effects caused by long term environmental exposure and mechanical/thermal cyclic loads are accounted for in the simulation process. A unified time-temperature-stress dependent multifactor interaction relationship developed at NASA Glenn Research Center has been used to model the degradation/aging of material properties due to cyclic loads. The fast probability integration method is used to compute probabilistic distribution of response. Sensitivities of fatigue life reliability to uncertainties in the primitive random variables (e.g., constituent properties, fiber volume ratio, void volume ratio, ply thickness, etc.) computed and their significance in the reliability-based design for maximum life is discussed. The effect of variation in the thermal cyclic loads on the fatigue reliability for a (0/+/- 45/90)s graphite/epoxy laminate with a ply thickness of 0.127 mm, with respect to impending failure modes has been studied. The results show that, at low mechanical cyclic loads and low thermal cyclic amplitudes, fatigue life for 0.999 reliability is most sensitive to matrix compressive strength, matrix modulus, thermal expansion coefficient, and ply thickness. Whereas at high mechanical cyclic loads and high thermal cyclic amplitudes, fatigue life at 0.999 reliability is more sensitive to the shear strength of matrix, longitudinal fiber modulus, matrix modulus, and ply thickness.

  1. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.

    PubMed

    Dordoni, Elena; Meoli, Alessio; Wu, Wei; Dubini, Gabriele; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2014-07-01

    Fatigue resistance of Nitinol stents implanted into femoro-popliteal arteries is a critical issue for the particular biomechanical environment of this district. Hip and knee joint movements due to the cyclic daily activity expose the superficial femoral artery (SFA), and therefore the implanted stents, to quite large and cyclic deformations influencing stent fatigue resistance. Objective of this work is to provide a tool based on finite element analysis able to evaluate the biomechanical effect of SFA on stent fatigue resistance. Computer simulations of the treatment of stenotic vessel by angioplasty and stenting and of the subsequent in vivo loading conditions (axial compression and bending) were carried out. Three different stenotic vessel models were defined, by keeping a constant stenosis rate and changing the plaque sharpness and number of stenoses. The fatigue behaviour was analysed comparing the amplitude and mean value distribution of the first principal strain in the whole stent for the different simulated conditions. Results showed that the maximum mean strain is similar in all the models, while the alternating strain is related to both plaque shape and loading conditions. In conclusion, this study confirms the requisite of replicating in vivo loading conditions. It also reveals the importance of taking into account the thickness variation of the vessel in the stenotic zone in the assessment of the stent fatigue resistance.

  2. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application

    NASA Astrophysics Data System (ADS)

    Kang, J.; Rao, H.; Zhang, R.; Avery, K.; Su, X.

    2016-07-01

    In this study, the tensile and fatigue behaviour of self-piercing rivets (SPRs) in carbon fibre reinforced plastic (CFRP) to aluminium 6111 T82 alloys were evaluated. An average maximum lap-shear tensile load capacity of 3858 N was achieved, which is comparable to metal-to-metal SPR lap-shear joints. The CFRP-Al SPRs failed in lap-shear tension due to pull-out of the rivet head from the CFRP upper sheet. The CFRP-Al SPR lap- shear specimens exhibited superior fatigue life compared to previously studied aluminium-to- aluminium SPR lap-shear joints. The SPR lap-shear joints under fatigue loads failed predominantly due to kinked crack growth along the width of the bottom aluminium sheet. The fatigue cracks initiated in the plastically deformed region of the aluminium sheet close to the rivet shank in the rivet-sheet interlock region. Scatter in fatigue life and failure modes was observed in SPR lap-shear specimens tested close to maximum tensile load.

  3. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  4. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    SciTech Connect

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Ogata, T.; Matsuoka, S.

    2006-03-31

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma ({gamma}) grain size of 25 {mu}m. In the present material, plate-like delta phase precipitated at {gamma} grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  5. High-Cycle Fatigue Properties at Cryogenic Temperatures in INCONEL 718

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Takeuchi, E.; Matsuoka, S.; Ogata, T.

    2006-03-01

    High-cycle fatigue properties at 4 K, 20 K, 77 K and 293 K were investigated in forged-INCONEL 718 nickel-based superalloy with a mean gamma (γ) grain size of 25 μm. In the present material, plate-like delta phase precipitated at γ grain boundaries and niobium (Nb)-enriched MC type carbides precipitated coarsely throughout the specimens. The 0.2% proof stress and the tensile strength of this alloy increased with decreasing temperature, without decreasing elongation or reduction of area. High-cycle fatigue strengths also increased with decreasing temperature although the fatigue limit at each temperature didn't appear even around 107 cycles. Fatigue cracks initiated near the specimen surface and formed faceted structures around crack initiation sites. Fatigue cracks predominantly initiated from coarse Nb-enriched carbides and faceted structures mainly corresponded to these carbides. In lower stress amplitude tests, however, facets were formed through transgranular crack initiation and growth. These kinds of distinctive crack initiation behavior seem to lower the high-cycle fatigue strength below room temperature in the present material.

  6. A real-time fatigue monitoring and analysis system for lower extremity muscles with cycling movement.

    PubMed

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chan, Hsiao-Lung; Chang, Ya-Ju; Ku, Chia-Hao

    2014-01-01

    A real-time muscle fatigue monitoring system was developed to quantitatively detect the muscle fatigue of subjects during cycling movement, where a fatigue progression measure (FPM) was built-in. During the cycling movement, the electromyogram (EMG) signals of the vastus lateralis and gastrocnemius muscles in one leg as well as cycling speed are synchronously measured in a real-time fashion. In addition, the heart rate (HR) and the Borg rating of perceived exertion scale value are recorded per minute. Using the EMG signals, the electrical activity and median frequency (MF) are calculated per cycle. Moreover, the updated FPM, based on the percentage of reduced MF counts during cycling movement, is calculated to measure the onset time and the progressive process of muscle fatigue. To demonstrate the performance of our system, five young healthy subjects were recruited. Each subject was asked to maintain a fixed speed of 60 RPM, as best he/she could, under a constant load during the pedaling. When the speed reached 20 RPM or the HR reached the maximal training HR, the experiment was then terminated immediately. The experimental results show that the proposed system may provide an on-line fatigue monitoring and analysis for the lower extremity muscles during cycling movement. PMID:25014101

  7. Low-cycle fatigue of thermal-barrier coatings at 982 deg C

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Liebert, C. H.; Nachtigall, A. J.

    1978-01-01

    The low-cycle fatigue lives of ZrO2-NiCrAlY and Al2O3-ZrO2-NiCrAlY thermal-barrier coatings in air at 982 C were determined from cyclic flexural tests of coated TAZ-8A strips. Strains were computed as a function of specimen displacements from a nonlinear, three-dimensional stress analysis program. Fatigue resistances of thermal-barrier coatings applied to the strips were compared with those of uncoated and NiCrAlY-coated strips. The results indicate that ZrO2 is about four times greater in fatigue life than TAZ-8A at 982 C, that ZrO2 would probably retain that fatigue strength up to 1316 C, and that adding an outer coat of Al2O3 to ZrO2 is neither beneficial nor detrimental to fatigue resistance.

  8. Asymptotic behaviour of fundamental cycle of periodic box ball systems

    NASA Astrophysics Data System (ADS)

    Mada, Jun; Tokihiro, Tetsuji

    2003-07-01

    We investigate asymptotic behaviour of fundamental cycle of periodic box-ball systems (PBBSs) when the system size N goes to infinity. According to integrable nature of the PBBS, the trajectory is confined to qualitatively smaller number of states than that of the total states. We prove that, although the maximum fundamental cycle is of order of exp[surdN], almost all fundamental cycle is less than exp[(logN)2].

  9. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.

    PubMed

    Nalla, R K; Kruzic, J J; Kinney, J H; Ritchie, R O

    2005-05-01

    Although fatigue damage in bone induced by cyclic loading has been recognized as a problem of clinical significance, few fracture mechanics based studies have investigated how incipient cracks grow by fatigue in this material. In the present study, in vitro cyclic fatigue experiments were performed in order to quantify fatigue-crack growth behavior in human cortical bone. Crack-growth rates spanning five orders of magnitude were obtained for the extension of macroscopic cracks in the proximal-distal direction; growth-rate data could be well characterized by the linear-elastic stress-intensity range, using a simple (Paris) power law with exponents ranging from 4.4 to 9.5. Mechanistically, to discern whether such behavior results from "true" cyclic fatigue damage or is simply associated with a succession of quasi-static fracture events, cyclic crack-growth rates were compared to those measured under sustained (non-cyclic) loading. Measured fatigue-crack growth rates were found to exceed those "predicted" from the sustained load data at low growth rates ( approximately 3 x 10(-10) to 5 x 10(-7) m/cycle), suggesting that a "true" cyclic fatigue mechanism, such as alternating blunting and re-sharpening of the crack tip, is active in bone. Conversely, at higher growth rates ( approximately 5 x 10(-7) to 3 x 10(-5) m/cycle), the crack-growth data under sustained loads integrated over the loading cycle reasonably predicts the cyclic fatigue data, indicating that quasi-static fracture mechanisms predominate. The results are discussed in light of the occurrence of fatigue-related stress fractures in cortical bone.

  10. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.

  11. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    DOE PAGES

    Wang, Hong; Lee, Sung Min; Wang, James L.; Lin, Hua-Tay

    2014-12-19

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10^8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and themore » fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications such as piezoelectric fuel injectors in heavy-duty diesel engines.« less

  12. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    SciTech Connect

    Wang, Hong Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  13. High-cycle fatigue characterization of titanium 5Al-2.5Sn alloy

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Xin, Yu T.; Jeelani, S.

    1993-01-01

    High-cycle fatigue behavior of titanium 5Al 2.5Sn alloy at room temperature has been studied. S-N curve characterization is performed at different stress ratios ranging from 0 to 0.9 on a subsized fatigue specimen. Both two-stress and three-stress level tests are conducted at different stress ratios to study the cumulative fatigue damage. Life prediction techniques of linear damage rule, double linear damage rule and damage curve approaches are applied, and results are compared with the experimental data. The agreement between prediction and experiment is found to be excellent.

  14. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  15. Low-cycle fatigue behavior of HT-9 alloy in a flowing-lithium environment

    SciTech Connect

    Chopra, O.K.; Smith, D.L.

    1983-06-01

    Low-cycle fatigue data have been obtained on normalized/tempered or lithium-preexposed HT-9 alloy at 755 K in flowing lithium of controlled purity. The results show that the fatigue life of this material decreases with an increase in nitrogen content in lithium. A reduction in strain rate also decreases the fatigue life in high-nitrogen lithium. However, in the range from approx. 4 x 10/sup -4/ to 4 x 10/sup -2/ s/sup -1/, the strain rate has no effect on fatigue life in lithium containing <200 wppM nitrogen. The fatigue life of the HT-9 alloy in low-nitrogen lithium is significantly greater than the fatigue life of Fe-9Cr-1Mo steel or Type 403 martensitic steel in air. Furthermore, a 4.0-Ms preexposure to low-nitrogen lithium has no influence on fatigue life. The reduction in fatigue life in high-nitrogen lithium is attributed to internal corrosive attack of the material. The specimens tested in high-nitrogen lithium show internal corrosion along grain and martensitic lathe boundaries and intergranular fracture. This behavior is not observed in specimens tested in low-nitrogen lithium. Results for a constant-load corrosion test in flowing lithium are also presented.

  16. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    NASA Technical Reports Server (NTRS)

    Sankararao, K. Bhanu; Schuster, H.; Halford, G. R.

    1994-01-01

    The effect of strain rate on massive precipitation and the mechanism for the occurrence of massive precipitation of M23C6 in alloy 800H is investigated during elevated temperature low cycle fatigue testing. It was observed that large M23C6 platelets were in the vicinity of grain and incoherent twin boundaries. The strain controlled fatigue testing at higher strain rates that promoted cyclic hardening enabled massive precipitation to occur more easily.

  17. The influence of hold times on LCF and FCG behavior in a P/M Ni-base superalloy. [Low Cycle Fatigue/Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Choe, S. J.; Golwalker, S. V.; Duquette, D. J.; Stoloff, N. S.

    1984-01-01

    The relative importance of creep and environmental interactions in high temperature fatigue behavior has been investigated for as-HIP Rene 95. Strain-controlled low cycle fatigue and load-controlled fatigue crack growth tests were performed at elevated temperatures in argon, followed by fractographic analyses of the fracture surfaces by scanning electron microscopy. Fatigue lives were drastically reduced and crack growth rates increased one hundred fold as a result of superposition of hold times on continuous cycling. A change in fracture mode with hold time also was noted. Chromium oxide was detected on the fracture surface by Auger electron spectroscopy. The drastic changes in fatigue resistance due to hold times were attributed primarily to environmental interactions with fatigue processes.

  18. Observation of fatigue in sandstone samples exposed to repeated freeze-thaw cycles

    NASA Astrophysics Data System (ADS)

    Hailiang, Jia; Wei, Xiang; Krautblatter, Michael

    2014-05-01

    The effect of rock fatigue is one of the key elements in the analysis and evaluation of rockfall preparation. We performed a series of laboratory freezing-thawing cycles experiments on an array of identical sandstone samples (cylinder samples with diameter of 5cm and length of 10cm). During each cycle we measured surface deformations and effective porosity for three samples, and after each thawing phase we removed two samples for destructive testing (uniaxial compressive and tensile strength). Our results indicate that: (1) frost action causes primarily reversible strain in samples with maximum magnitudes of ~1*10-4, we suggest low-cycle fatigue causes minor plastic deformation (2) with the increase of cycles, we observed a marked increase of effective porosity and a sharp decrease of uniaxial tensile strength. The decrease in uniaxial compressive strength was not as significant as that of the tensile strength in response to this frost action; (3) Curves describing effective porosity increases demonstrate a rapid increase during the first 3 - 4 freeze-thaw cycles, followed by a more linear increase, with steps in the porosity profile indicating discrete cycles with increased fatigue damage. Here we show how 17 freeze-thaw cycles cause progressive fatigue in sandstone samples and how this affects effective porosity and uniaxial compressive strength.

  19. Chronic fatigue in general practice: economic evaluation of counselling versus cognitive behaviour therapy.

    PubMed Central

    Chisholm, D; Godfrey, E; Ridsdale, L; Chalder, T; King, M; Seed, P; Wallace, P; Wessely, S

    2001-01-01

    BACKGROUND: There is a paucity of evidence relating to the cost-effectiveness of alternative treatment responses to chronic fatigue. AIM: To compare the relative costs and outcomes of counselling versus cognitive behaviour therapy (CBT) provided in primary care settings for the treatment of fatigue. DESIGN OF STUDY: A randomised controlled trial incorporating a cost-consequences analysis. SETTING: One hundred and twenty-nine patients from 10 general practices across London and the South Thames region who had experienced symptoms of fatigue for at least three months. METHOD: An economic analysis was performed to measure costs of therapy, other use of health services, informal care-giving, and lost employment. The principal outcome measure was the Fatigue Questionnaire; secondary measures were the Hospital Anxiety and Depression Scale and a social adjustment scale. RESULTS: Although the mean cost of treatment was higher for the CBT group (164 Pounds, standard deviation = 67) than the counselling group (109 Pounds, SD = 49; 95% confidence interval = 35 to 76, P < 0.001), a comparison of change scores between baseline and six-month assessment revealed no statistically significant differences between the two groups in terms of aggregate health care costs, patient and family costs or incremental cost-effectiveness (cost per unit of improvement on the fatigue score). CONCLUSIONS: Counselling and CBT both led to improvements in fatigue and related symptoms, while slightly reducing informal care and lost productivity costs. Counselling represents a less costly (and more widely available) intervention but no overall cost-effectiveness advantage was found for either form of therapy. PMID:11271867

  20. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    PubMed

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P < 0.05]. Following intolerance, Piso recovered rapidly (F = 44.1; P < 0.05; η(2) = 0.79): power was reduced (P < 0.05) vs. baseline only at 0-min (CIDifference 80, 201 W) and 1-min recovery (CIDifference 13, 80 W). Activation fatigue and muscle fatigue (one leg) were 97 ± 55 and 60 ± 50 W, respectively. Mean bias ± limits of agreement for reproducibility were as follows: baseline Piso 1 ± 30 W; Piso at 0-min recovery 3 ± 35 W; and EMG at Piso 3 ± 14%. EMG power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling.

  1. A UK survey of driving behaviour, fatigue, risk taking and road traffic accidents

    PubMed Central

    Smith, Andrew P

    2016-01-01

    Objective The aim of the present research was to examine associations between poor driving behaviour (DB), driving when fatigued (DF), risk taking (RT) and road traffic accidents (RTAs). Design The study involved a cross-sectional online survey of clients of an insurance company. The survey measured DB (speeding, distraction, lapses of attention and aggression), RT and frequency of driving when fatigued (DF, driving late at night, prolonged driving, driving after a demanding working day and driving with a cold). Demographic, lifestyle, job characteristics and psychosocial factors were also measured and used as covariates. Setting Cardiff, UK. Sample 3000 clients of an insurance company agreed to participate in the study, and 2856 completed the survey (68% woman, 32% man; mean age: 34 years, range 18–74 years). Main outcome measures The outcomes were RTAs (requiring medical attention; not requiring medical attention), where the person was the driver. Results Factor analyses showed that DB, RT and fatigue loaded on independent factors. Logistic regressions showed that poor DB, frequently DF and taking risks predicted medical and non-medical RTAs. These effects were additive and those who reported poor DB, driving when fatigue and taking risks were twice as likely to have an RTA. These effects remained significant when demographic, lifestyle, medical, driving, work and psychosocial factors were covaried. Conclusions Poor DB, DF and RT predict RTAs. There are now short measuring instruments that can assess these, and driver education programmes must increase awareness of these risk factors. PMID:27540100

  2. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.

    PubMed

    Leinenbach, Christian; Eifler, Dietmar

    2006-03-01

    In this investigation, the cyclic deformation behaviour of the binary titanium alloys Ti-6Al-4V and Ti-6Al-7Nb was characterized in axial stress-controlled constant amplitude and load increase tests as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, corundum grit blasting, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during testing in simulated physiological media indicated surface damages such as slip bands, intrusions and extrusions or finally microcracks. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy (SEM). PMID:16140373

  3. Fatigue and muscle-tendon stiffness after stretch-shortening cycle and isometric exercise.

    PubMed

    Toumi, Hechmi; Poumarat, Georges; Best, Thomas M; Martin, Alain; Fairclough, John; Benjamin, Mike

    2006-10-01

    The purpose of the present study was to compare vertical jump performance after 2 different fatigue protocols. In the first protocol, subjects performed consecutive sets of 10 repetitions of stretch-shortening cycle (SSC) contractions. In the second protocol, successive sets of 10 repetitions of isometric contractions were performed for 10 s with the knee at 90 degrees of flexion. The exercises were stopped when the subjects failed to reach 50% of their maximum voluntary isometric contractions. Maximal isometric force and maximal concentric power were assessed by performing supine leg presses, squat jumps, and drop jumps. Surface EMG was used to determine changes in muscle activation before and after fatigue. In both groups, the fatigue exercises reduced voluntary isometric force, maximal concentric power, and drop jump performance. Kinematic data showed a decrease in knee muscle-tendon stiffness accompanied by a lengthened ground contact time. EMG analysis showed that the squat and drop jumps were performed similarly before and after the fatigue exercise for both groups. Although it was expected that the stiffness would decrease more after SSC than after isometric fatigue (as a result of a greater alteration of the reflex sensitivity SSC), our results showed that both protocols had a similar effect on knee muscle stiffness during jumping exercises. Both fatigue protocols induced muscle fatigue, and the decrease in jump performance was linked to a decrease in the strength and stiffness of the knee extensor muscles. PMID:17111011

  4. Low-cycle fatigue of two austenitic alloys in hydrogen gas and air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.

    1976-01-01

    The low-cycle fatigue resistance of type 347 stainless steel and Hastelloy Alloy X was evaluated in constant-amplitude, strain-controlled fatigue tests conducted under continuous negative strain cycling at a constant strain rate of 0.001 per sec and at total axial strain ranges of 1.5, 3.0, and 5.0 percent in both hydrogen gas and laboratory air environments in the temperature range 538-871 C. Elevated-temperature, compressive-strain hold-time experiments were also conducted. In hydrogen, the cyclic stress-strain behavior of both materials at 538 C was characterized by appreciable cyclic hardening at all strain ranges. At 871 C neither material hardened significantly; in fact, at 5% strain range 347 steel showed continuous cyclic softening until failure. The fatigue resistance of 347 steel was slightly higher than that of Alloy X at all temperatures and strain ranges. Ten-minute compressive hold time experiments at 760 and 871 C resulted in increased fatigue lives for 347 steel and decreased fatigue lives for Alloy X. Both alloys showed slightly lower fatigue resistance in air than in hydrogen. Some fractographic and metallographic results are also given.

  5. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  6. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    NASA Astrophysics Data System (ADS)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  7. Effect of welding structure on high-cycle and low-cycle fatigue properties for MIG welded A5083 aluminum alloys at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki

    2001-07-01

    High-cycle and low-cycle fatigue properties of aluminum alloy A5083 base and A5183 weld metals and the effect of welding structure on their fatigue properties have been investigated at cryogenic temperatures in order to evaluate the long-life reliability and safety of the structural materials used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. In the high-cycle fatigue tests, the S-N curves of A5083 base and A5183 weld metals shifted to higher stress levels, i.e., the longer life side at lower test temperatures. The ratios of 10 6-cycles fatigue strength (FS) to tensile strength (TS) for A5183 weld metals were slightly lower than those of A5083 base metals at each test temperature. Although the ratios of FS to TS for austenitic stainless steels weld metals at 4 K decreased substantially to about 0.4, that of A5183 weld metal was 0.65 even at 4 K and it indicated an excellent high-cycle fatigue property. Fatigue crack initiation sites in A5183 weld metals were occurred from the blowholes if the blowholes were located in the vicinity of the specimen surfaces. However, effects of the blowholes on high-cycle fatigue properties are not clear or significant. In the low-cycle fatigue tests, the fatigue lives of A5183 weld metals were slightly shorter than those of A5083 base metals at cryogenic temperatures. However, the fatigue lives of A5183 weld metals at 4 K were superior to that of conventional A5083 weld metals. The deterioration of low-cycle fatigue properties of A5183 weld metals at cryogenic temperatures were due to the intergranular fracture surface observed in fatigue crack propagation regions.

  8. High-Cycle Fatigue Properties and Fatigue Crack Initiation Behavior of Ti-5%Al-2.5%Sn Eli Alloy at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Demura, M.; Yuri, T.; Ogata, T.; Matsuoka, S.; Hori, S.

    2008-03-01

    Tensile tests and uni-axial loading fatigue tests were performed at 4 K, 77 K and 293 K for Ti-5%Al-2.5%Sn extra low interstitial (ELI) forged alloy. The 0.2% proof stress and the tensile strength of this alloy increased with a decrease of temperature. However, high-cycle fatigue strength at cryogenic temperatures was relatively low compared to that at 293 K. In the specimens fatigue-tested at cryogenic temperatures, facets formed at the crack initiation site. On the other hand, there was not a distinct facet at the crack initiation site in the specimens tested at 293 K. The crystallographic orientation of the facet was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to clarify the fatigue crack initiation mechanism at cryogenic temperatures. The SEM-EBSD analyses revealed that the facet plane was {112¯1} twin plane and the {112¯1} twins developed during high-cycle fatigue tests at cryogenic temperatures, leading to the fatigue crack initiation at {112¯1} twin/matrix interface. Based on these results, the fatigue crack initiation related with twin deformation is supposed to degrade high-cycle fatigue strength at cryogenic temperatures.

  9. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    SciTech Connect

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on the fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650

  10. Self-management of fatigue in rheumatoid arthritis: a randomised controlled trial of group cognitive-behavioural therapy

    PubMed Central

    Hewlett, Sarah; Ambler, Nick; Almeida, Celia; Cliss, Alena; Hammond, Alison; Kitchen, Karen; Knops, Bev; Pope, Denise; Spears, Melissa; Swinkels, Annette; Pollock, Jon

    2011-01-01

    Objectives To investigate the effect of group cognitive behavioural therapy (CBT) for fatigue self-management, compared with groups receiving fatigue information alone, on fatigue impact among people with rheumatoid arthritis (RA). Methods Two-arm, parallel randomised controlled trial in adults with RA, fatigue ≥6/10 (Visual Analogue Scale (VAS) 0–10, high bad) and no recent change in RA medication. Group CBT for fatigue self-management comprised six (weekly) 2 h sessions, and consolidation session (week 14). Control participants received fatigue self-management information in a 1 h didactic group session. Primary outcome at 18 weeks was the impact of fatigue measured using two methods (Multi-dimensional Assessment of Fatigue (MAF) 0–50; VAS 0–10), analysed using intention-to-treat analysis of covariance with multivariable regression models. Results Of 168 participants randomised, 41 withdrew before entry and 127 participated. There were no major baseline differences between the 65 CBT and 62 control participants. At 18 weeks CBT participants reported better scores than control participants for fatigue impact: MAF 28.99 versus 23.99 (adjusted difference −5.48, 95% CI −9.50 to −1.46, p=0.008); VAS 5.99 versus 4.26 (adjusted difference −1.95, 95% CI −2.99 to −0.90, p<0.001). Standardised effect sizes for fatigue impact were MAF 0.59 (95% CI 0.15 to 1.03) and VAS 0.77 (95% CI 0.33 to 1.21), both in favour of CBT. Secondary outcomes of perceived fatigue severity, coping, disability, depression, helplessness, self-efficacy and sleep were also better in CBT participants. Conclusions Group CBT for fatigue self-management in RA improves fatigue impact, coping and perceived severity, and well-being. Trial registration: ISRCTN 32195100 PMID:21540202

  11. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  12. Fatigue

    MedlinePlus

    Bennett RM. Fibromyalgia, chronic fatigue syndrome, and myofascial pain. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 274. Thames TA, Karrh ...

  13. Ratcheting fatigue behaviour of Al-7075 T6 alloy: Influence of stress parameters

    NASA Astrophysics Data System (ADS)

    Amarnath, Lala; Bhattacharjee, Antara; Dutta, K.

    2016-02-01

    The use of aluminium and aluminium based alloys are increasing rapidly on account of its high formability, good thermal and electrical conductivity, high strength and lightness. Aluminium alloys are extensively used in aerospace, automobile, marine and space research industries and are also put into structural applications where chances of fatigue damage cannot be ruled out. In the current work, it is intended to study the ratcheting fatigue behavior of 7075-T6 aluminium alloy at room temperature. This Al alloy is potentially used in aviation, marine and automotive components as well as in bicycle parts, rock mounting equipment and parts of ammunition where there is every chance of failure of the parts due to deformation caused by ratcheting. Ratcheting is the process of accruement of plastic stain produced when a component is subjected to asymmetric cyclic loading under the influence of low cycle fatigue. To accomplish the requirements of the projected research, stress-controlled cyclic loading experiments were done using a ±250 kN servo-hydraulic universal testing machine (Instron: 8800R). The effect of stress parameters such as mean stress and stress amplitude were investigated on the ratcheting behavior of the selected aluminium alloy. It was observed that, ratcheting strain increased with increase in the value of stress amplitude at any constant mean stress while a saturation in strain accumulation attained in the investigated material after around 10-20 cycles, under all test conditions. The analyses of hysteresis loop generated during cyclic loading indicate that the material exhibits cyclic hardening in the initial fifty cycles which gets softened in further loading up to about 70-80 cycles and finally attains a steady state. The increase in the ratcheting strain value with stress parameters happens owing to increased deformation domain during cycling. The cyclic hardening accompanied by softening is correlated with characteristic precipitation features of

  14. Mechanical and low-cycle fatigue behavior of stainless reinforcing steel for earthquake engineering applications

    NASA Astrophysics Data System (ADS)

    Zhou, Yihui; Ou, Yu-Chen; Lee, George C.; O'Connor, Jerome S.

    2010-09-01

    Use of stainless reinforcing steel (SRS) in reinforced concrete (RC) structures is a promising solution to corrosion issues. However, for SRS to be used in seismic applications, several mechanical properties need to be investigated. These include specified and actual yield strengths, tensile strengths, uniform elongations and low-cycle fatigue behavior. Three types of SRSs (Talley S24100, Talley 316LN and Talley 2205) were tested and the results are reported in this paper. They were compared with the properties of A706 carbon reinforcing steel (RS), which is typical for seismic applications, and MMFX II, which is a high strength, corrosion resistant RS. Low-cycle fatigue tests of the RS coupons were conducted under strain control with constant amplitude to obtain strain life models of the steels. Test results show that the SRSs have slightly lower moduli of elasticity, higher uniform elongations before necking, and better low-cycle fatigue performance than A706 and MMFX II. All five types of RSs tested satisfy the requirements of the ACI 318 code on the lower limit of the tensile to yield strength ratio. Except Talley 2205, the other four types of RSs investigated meet the ACI 318 requirement that the actual yield strength does not exceed the specified yield strength by more than 18 ksi (124 MPa). Among the three types of SRSs tested, Talley S24100 possesses the highest uniform elongation before necking, and the best low-cycle fatigue performance.

  15. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  16. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    SciTech Connect

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  17. Neuromuscular fatigue recovery following rapid and slow stretch-shortening cycle movements.

    PubMed

    Wadden, Katie P; Button, Duane C; Kibele, Armin; Behm, David G

    2012-06-01

    The purpose of this study was to investigate underlying mechanisms and neuromuscular recovery patterns following rapid and slow stretch-shortening cycle (SSC) movements performed to fatigue. Fourteen (10 moderately trained (MT) and four highly trained (HT)) subjects completed rapid and slow SSC movements to fatigue. The rapid SSC movement consisted of continuous drop jumps from a 30 cm platform until a predetermined jump height was no longer maintained, and the slow SSC movement consisted of continuous squats to 90° of knee flexion at a load of 65% of subject's one-repetition maximum until no further repetitions could be completed. Although blood lactate measures were significantly (p < 0.002) higher after the rapid SSC condition versus after the slow SSC condition, the recovery of neuromuscular properties (maximum voluntary contractions, twitch force, muscle compound action potential) following the two conditions to fatigue did not differ. The duration of the rapid SSC movement was dependent on the training status of the subject; HT subjects performed the rapid SSC longer (68.2%) than the MT subjects until fatigued. Thus, the neuromuscular fatigue recovery patterns were independent of the type of SSC movement, condition duration, and subject training status. Because rapid and slow SSC exercises induce similar fatigue patterns, training programs incorporating rapid SSC exercises can be developed similar to that prescribed in traditional slow SSC resistance training programs.

  18. Fatigue behaviour of boron free and boron containing heat treated Ti-13Zr-13Nb alloy for biomedical applications

    SciTech Connect

    Majumdar, P. Singh, S.B.; Chakraborty, M.

    2010-12-15

    Fatigue behaviour of heat treated Ti-13Zr-13Nb (TZN) and Ti-13Zr-13Nb-0.5B (TZNB) alloys for biomedical implants has been investigated by rotating bending test. It was found that fatigue strength of TZN and TZNB alloys is comparable with that of conventionally used biomedical titanium alloys. Addition of boron to TZN alloy deteriorates fatigue strength. - Research Highlights: {yields}The microstructure of the aged TZN consists of {alpha} phase in {beta} matrix. {yields}Addition of boron to TZN leads to the formation of dispersed acicular TiB. {yields}Presence of TiB deteriorates the fatigue strength of TZN alloy. {yields}Fatigue strength of aged TZN/TZNB alloys is comparable with biomedical Ti-alloys.

  19. Microstructural fracture mechanics in high-cycle fatigue

    SciTech Connect

    Rios, E.R. de los; Navarro, A.

    1997-12-31

    Microstructural Fracture Mechanics principles are used to develop a model of crack growth in long life fatigue. In its simplest form microstructural modelling considers the material as a polycrystal of uniform grain size D, with a crack system divided into three zones: the crack, the plastic zone and the microstructural barrier zone. The solution of the equilibrium equation allows for the calculation of the stresses sustained by the crack wake, plastic zone, barrier zone and elastic enclave, and the crack tip plastic displacement {phi}. Crack growth rate is calculated through a Paris type relationship in terms of {phi}, i.e., da/dN = C{phi}{sup n}. Conditions for crack arrest and instability are established.

  20. Chronic fatigue in general practice: is counselling as good as cognitive behaviour therapy? A UK randomised trial.

    PubMed Central

    Ridsdale, L; Godfrey, E; Chalder, T; Seed, P; King, M; Wallace, P; Wessely, S

    2001-01-01

    BACKGROUND: Fatigue is a common symptom for which patients consult their doctors in primary care. With usual medical management the majority of patients report that their symptoms persist and become chronic. There is little evidence for the effectiveness of any fatigue management in primary care. AIM: To compare the effectiveness of cognitive behaviour therapy (CBT) with counselling for patients with chronic fatigue and to describe satisfaction with care. DESIGN OF STUDY: Randomised trial with parallel group design. SETTING: Ten general practices located in London and the South Thames region of the United Kingdom recruited patients to the trial between 1996 and 1998. Patients came from a wide range of socioeconomic backgrounds and lived in urban, suburban, and rural areas. METHOD: Data were collected before randomisation, after treatment, and six months later. Patients were offered six sessions of up to one hour each of either CBT or counselling. Outcomes include: self-report of fatigue symptoms six months later, anxiety and depression, symptom attributions, social adjustment and patients' satisfaction with care. RESULTS: One hundred and sixty patients with chronic fatigue entered the trial, 45 (28%) met research criteria for chronic fatigue syndrome; 129 completed follow-up. All patients met Chalder et al's standard criteria for fatigue. Mean fatigue scores were 23 on entry (at baseline) and 15 at six months' follow-up. Sixty-one (47%) patients no longer met standard criteria for fatigue after six months. There was no significant difference in effect between the two therapies on fatigue (1.04 [95% CI = -1.7 to 3.7]), anxiety and depression or social adjustment outcomes for all patients and for the subgroup with chronic fatigue syndrome. Use of antidepressants and consultations with the doctor decreased after therapy but there were no differences between groups. CONCLUSION: Counselling and CBT were equivalent in effect for patients with chronic fatigue in primary

  1. Stretch-shortening cycle: a powerful model to study normal and fatigued muscle.

    PubMed

    Komi, P V

    2000-10-01

    Stretch-shortening cycle (SSC) in human skeletal muscle gives unique possibilities to study normal and fatigued muscle function. The in vivo force measurement systems, buckle transducer technique and optic fiber technique, have revealed that, as compared to a pure concentric action, a non-fatiguing SSC exercise demonstrates considerable performance enhancement with increased force at a given shortening velocity. Characteristic to this phenomenon is very low EMG-activity in the concentric phase of the cycle, but a very pronounced contribution of the short-latency stretch-reflex component. This reflex contributes significantly to force generation during the transition (stretch-shortening) phase in SSC action such as hopping and running. The amplitude of the stretch reflex component - and the subsequent force enhancement - may vary according to the increased stretch-load but also to the level of fatigue. While moderate SSC fatigue may result in slight potentiation, the exhaustive SSC fatigue can dramatically reduce the same reflex contribution. SSC fatigue is a useful model to study the processes of reversible muscle damage and how they interact with muscle mechanics, joint and muscle stiffness. All these parameters and their reduction during SSC fatigue changes stiffness regulation through direct influences on muscle spindle (disfacilitation), and by activating III and IV afferent nerve endings (proprioseptic inhibition). The resulting reduced stretch reflex sensitivity and muscle stiffness deteriorate the force potentiation mechanisms. Recovery of these processes is long lasting and follows the bimodal trend of recovery. Direct mechanical disturbances in the sarcomere structural proteins, such as titin, may also occur as a result of an exhaustive SSC exercise bout.

  2. The circadian cycle: daily rhythms from behaviour to genes

    PubMed Central

    Merrow, Martha; Spoelstra, Kamiel; Roenneberg, Till

    2005-01-01

    The daily recurrence of activity and rest are so common as to seem trivial. However, they reflect a ubiquitous temporal programme called the circadian clock. In the absence of either anatomical clock structures or clock genes, the timing of sleep and wakefulness is disrupted. The complex nature of circadian behaviour is evident in the fact that phasing of the cycle during the day varies widely for individuals, resulting in extremes colloquially called 'larks' and 'owls'. These behavioural oscillations are mirrored in the levels of physiology and gene expression. Deciphering the underlying mechanisms will provide important insights into how the circadian clock affects health and disease. PMID:16222241

  3. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  4. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  5. Single-cycle and fatigue strengths of adhesively bonded lap joints

    SciTech Connect

    Metzinger, K.E.; Guess, T.R.

    1998-12-31

    This study considers a composite-to-steel tubular lap joint in which failure typically occurs when the adhesive debonds from the steel adherend. The same basic joint was subjected to compressive and tensile axial loads (single-cycle) as well as bending loads (fatigue). The purpose of these tests was to determine whether failure is more dependent on the plastic strain or the peel stress that develops in the adhesive. For the same joint, compressive and tensile loads of the same magnitude will produce similar plastic strains but peel stresses of opposite signs in the adhesive. In the axial tests, the tensile strengths were much greater than the compressive strengths - indicating that the peel stress is key to predicting the single-cycle strengths. To determine the key parameter(s) for predicting high-cycle fatigue strengths, a test technique capable of subjecting a specimen to several million cycles per day was developed. In these bending tests, the initial adhesive debonding always occurred on the compressive side. This result is consistent with the single-cycle tests, although not as conclusive due to the limited number of tests. Nevertheless, a fatigue test method has been established and future tests are planned.

  6. Central and peripheral fatigue kinetics during exhaustive constant-load cycling.

    PubMed

    Decorte, N; Lafaix, P A; Millet, G Y; Wuyam, B; Verges, S

    2012-06-01

    The kinetics of central and peripheral fatigue development during an intensive constant-load cycling exercise was evaluated to better understand the mechanisms of task failure. Thirteen males cycled to exhaustion at 80% of maximal power output in intermittent bouts of 6 min of exercise with 4-min break between bouts to assess quadriceps fatigue with maximal voluntary contractions and single (1 Hz), paired (10 and 100 Hz) potentiated and interpolated magnetic stimulations of the femoral nerve (TwQ). Surface electromyographic signals (EMG) of the quadriceps muscles were recorded during stimulations and cycling. Total cycling duration (TCD) was 27 min 38 s±7 min 48 s. The mechanical response evoked by magnetic stimulation decreased mostly during the first half of TCD (TwQ1 Hz reduction: -34.4±12.2% at 40% TCD and -44.8±9.2% at exhaustion; P<0.001), while a reduction in maximum voluntary activation was present toward the end of exercise only (-5.4±4.8% and -6.4±5.6% at 80% TCD and exhaustion, respectively; P<0.01). The increase in quadriceps EMG during cycling was significantly correlated to the TwQ reduction for the rectus femoris (r(2) =0.20 at 1 Hz, r(2) =0.47 at 100 Hz, all P≤0.001). We conclude that peripheral fatigue develops early during constant-load intense cycling and is compensated by additional motor drive, while central fatigue appears to be associated with task failure. PMID:20807390

  7. Low cycle fatigue behavior of polycrystalline NiAl at 300 and 1000 K

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Noebe, Ronald D.

    1993-01-01

    The low cycle fatigue behavior of polycrystalline NiAl was determined at 300 and 1000 K - temperatures below and above the brittle- to-ductile transition temperature (BDTT). Fully reversed, plastic strain-controlled fatigue tests were conducted on two differently fabricated alloy samples: hot isostatically pressed (HIP'ed) prealloyed powder and hot extruded castings. HIP'ed powder (HP) samples were tested only at 1000 K, whereas the more ductile cast-and-extruded (C+E) NiAl samples were tested at both 1000 and 300 K. Plastic strain ranges of 0.06 to 0.2 percent were used. The C+E NiAl cyclically hardened until fracture, reaching stress levels approximately 60 percent greater than the ultimate tensile strength of the alloy. Compared on a strain basis, NiAl had a much longer fatigue life than other B2 ordered compounds in which fracture initiated at processing-related defects. These defects controlled fatigue life at 300 K, with fracture occurring rapidly once a critical stress level was reached. At 1000 K, above the BDTT, both the C+E and HP samples cyclically softened during most of the fatigue tests in air and were insensitive to processing defects. The processing method did not have a major effect on fatigue life; the lives of the HP samples were about a factor of three shorter than the C+E NiAl, but this was attributed to the lower stress response of the C+E material. The C+E NiAl underwent dynamic grain growth, whereas the HP material maintained a constant grain size during testing. In both materials, fatigue life was controlled by intergranular cavitation and creep processes, which led to fatigue crack growth that was primarily intergranular in nature. Final fracture by overload was transgranular in nature. Also, HP samples tested in vacuum had a life three times longer than their counterparts tested in air and, in contrast to those tested in air, hardened continuously over half of the sample life, thereby indicating an environmentally assisted fatigue damage

  8. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  9. Effect of fatigue loading on structure and functional behaviour of fascicles from energy-storing tendons.

    PubMed

    Thorpe, Chavaunne T; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2014-07-01

    Tendons can broadly be categorized according to their function: those that act purely to position the limb and those that have an additional function as energy stores. Energy-storing tendons undergo many cycles of large deformations during locomotion, and so must be able to extend and recoil efficiently, rapidly and repeatedly. Our previous work has shown rotation in response to applied strain in fascicles from energy-storing tendons, indicating the presence of helical substructures which may provide greater elasticity and recovery. In the current study, we assessed how preconditioning and fatigue loading affect the ability of fascicles from the energy-storing equine superficial digital flexor tendon to extend and recoil. We hypothesized that preconditioned samples would exhibit changes in microstructural strain response, but would retain their ability to recover. We further hypothesized that fatigue loading would result in sample damage, causing further alterations in extension mechanisms and a significant reduction in sample recovery. The results broadly support these hypotheses: preconditioned samples showed some alterations in microstructural strain response, but were able to recover following the removal of load. However, fatigue loaded samples showed visual evidence of damage and exhibited further alterations in extension mechanisms, characterized by decreased rotation in response to applied strain. This was accompanied by increased hysteresis and decreased recovery. These results suggest that fatigue loading results in a compromised helix substructure, reducing the ability of energy-storing tendons to recoil. A decreased ability to recoil may lead to an impaired response to further loading, potentially increasing the likelihood of injury.

  10. Prediction of low-cycle fatigue-life by acoustic emission—2: 7075-T6 aluminum alloy

    SciTech Connect

    Baram, J.; Rosen, M.

    1981-01-01

    Low-cycle fatigue tests were conducted by tension-compression until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peakamplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a-posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. The amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life.

  11. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    SciTech Connect

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impacts on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.

  12. Understanding Low-cycle Fatigue Life Improvement Mechanisms in a Pre-twinned Magnesium Alloy

    DOE PAGES

    Wu, Wei; An, Ke

    2015-10-03

    The mechanisms of fatigue life improvement by pre-twinning process in a commercial rolled magnesium (Mg) alloy have been investigated using real-time in situ neutron diffraction under a continuous-loading condition. It is found that by introducing the excess twinned grains through pre-compression along the rolling direction the fatigue life was enhanced approximately 50%, mainly resulting from the prolonged detwinning process and inhibited dislocation slip during reverse tension. Moreover, after pre-twinning process, the removal of the rapid strain hardening during reverse tension leads to a compressive mean stress value and more symmetric shape of stress-strain hysteresis loop. The pre-twinning has significant impactsmore » on the twinning-detwinning characteristics and deformation modes during cyclic loading and greatly facilitates the twinning-detwinning activities in plastic deformation. The cyclic straining leads to the increase of contribution of tensile twinning deformation in overall plastic deformation in both the as-received and pre-deformed sample. The mechanisms of load partitioning in different groups of grains are closely related to the deformation modes in each deformation stage, while the fatigue cycling has little influence on the load sharing. The pre-twinning process provides an easy and cost-effective route to improve the low-cycle fatigue life through manufacturing and processing, which would advance the wide application of light-weight wrought Mg alloys as structural materials.« less

  13. Integrating Water Flow, Locomotor Performance and Respiration of Chinese Sturgeon during Multiple Fatigue-Recovery Cycles

    PubMed Central

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  14. Carbohydrate ingestion during exercise does not delay the onset of fatigue during submaximal cycle exercise.

    PubMed

    Lacerda, Ana Cristina R; Alecrim, Polyana; Damasceno, Willian C; Gripp, Fernando; Pinto, Kelerson Mc; Silami-Garcia, Emerson

    2009-07-01

    The objective of this study was to evaluate the effect of the ingestion of carbohydrate (CHO, in the form of maltodextrin) or placebo (PLAC, in the form of gelatin) on the physical performance of cyclists during submaximal exercise until fatigue on an ergometric cycle. Nine volunteers exercised on 2 separate occasions at least 2 days apart. On each occasion, after 48 hours of a balanced diet, they pedaled at approximately 66% Vo2peak until fatigue. Every 15 minutes, 150 mL of water and 18 capsules, containing either 0.5 g of CHO or PLAC (approximately 0.13 g x kg(-1) of body weight), were ingested in accordance with a double-blind, randomized protocol. The results show that after 40% of total exercise time, blood glucose levels in the CHO test returned to baseline levels. However, in the PLAC trial these levels failed to return to baseline levels, remaining lower than levels recorded in the CHO test after 60% of total exercise time. Despite these results, CHO ingestion failed to delay the onset of fatigue (CHO: 91.8 +/- 10.1 minutes vs. PLAC: 93.3 +/- 16.1 minutes; p = 0.87). In practical terms, coaches and trainers should consider that CHO ingestion in previously fed users does not delay the onset of fatigue during submaximal cycle exercise.

  15. The Rehbinder effect in iron during giga-cycle fatigue loading

    SciTech Connect

    Bannikov, M. V. Naimark, O. B.

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  16. Fatigue Response of a PZT Multilayer Actuator under High-Field Electric Cycling with Mechanical Preload

    SciTech Connect

    Wang, Hong; Wereszczak, Andrew A; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system has been developed for piezoelectric actuator with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator (MLA) with a plate-through electrode configuration have been studied under an electric field (1.7 times that of a coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 1.0x10^9 cycles were carried out. Variations in charge density and mechanical strain under a high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized by using FFT (Fast Fourier Transformation). It has been observed that both the dielectric and the piezoelectric coefficients underwent a monotonic decrease prior to 2.86x10^8 cycles under the relevant preload, and then fluctuated to a certain extent. Both the dielectric loss tangent and the piezoelectric loss tangent also exhibited the fluctuations after a certain amount of drop but at different levels relative to the pre-fatigue. And finally, the results were discussed with respect to domain wall mobility, microcracking, and other pre-existing anomalies.

  17. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  18. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  19. On the bilinearity of the Coffin-Manson low-cycle fatigue relationship

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, V. M.

    1992-09-01

    The cause of the bilinear Coffin-Manson low-cycle fatigue relationship found in Al-Li alloys and dual-phase steels was investigated using Manson and Hirschberg (1964) and Manson (1966) data on 52100 steel, 4340 steel, 4130 steel, Inconel X, Ti-6Al-4V, 2014 T6 aluminum alloy, 4340 annealed steel, and 1100 aluminum. It was found that such a bilinear behavior depends on the relationship between the elastic and inelastic strain ranges. It is predicted that bilinear Coffin-Manson low-cycle fatigue behavior can be expected for materials in which the elastic strain range is more dominant than the inelastic strain range in the life span.

  20. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    NASA Technical Reports Server (NTRS)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  1. Influence parameters of martensitic transformation during low cycle fatigue for steel AISI 321

    NASA Astrophysics Data System (ADS)

    Grosse, M.; Kalkhof, D.; Keller, L.; Schell, N.

    2004-07-01

    The volume fraction of martensite continuously increases with the fatigue cycle number. Consequently, the martensite amount can be used for indication of the low cycle fatigue state. Following an exponential decay function, the martensite volume fraction decreases with increasing temperature. No influence of the load frequency was found. The initial material state plays an important role for the martensite formation rate. The amount of martensite formed is much higher after cold-rolling than after solution annealing as final manufacturing process. The martensite shows a fibre texture in the annealed material. The (1 1 0) planes are preferentially oriented parallel and perpendicular to the loading direction. In the cold-rolled material no significant preferred orientation of this phase was found. The martensite is concentrated in the centre of the specimens. The shape of the distribution seems to be independent on the martensite amount.

  2. Thermal High- and Low-Cycle Fatigue Behavior of Thick Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.

    1998-01-01

    Ceramic thermal barrier coatings have received increasing attention for advanced gas turbine and diesel engine applications because of their ability to provide thermal insulation to engine components. However, the durability of these coatings under the severe thermal cycling conditions encountered in a diesel engine (ref. 1) still remains a major issue. In this research at the NASA Lewis Research Center, a high-power laser was used to investigate the thermal fatigue behavior of a yttria-stabilized zirconia coating system under simulated diesel engine conditions. The mechanisms of fatigue crack initiation and propagation, and of coating failure under complex thermal low-cycle fatigue (LCF, representing stop/start cycles) and thermal high-cycle fatigue (HCF, representing operation at 1300 rpm) are described. Continuous wave and pulse laser modes were used to simulate pure LCF and combined LCF/HCF, respectively (ref. 2). The LCF mechanism was found to be closely related to the coating sintering and creep at high temperatures. These creep strains in the ceramic coating led to a tensile stress state during cooling, thus providing the major driving force for crack growth under LCF conditions. The combined LCF/HCF tests induced more severe coating surface cracking, microspallation, and accelerated crack growth than did the pure LCF test. HCF thermal loads also facilitated lateral crack branching and ceramic/bond coat interface delaminations. HCF is associated with the cyclic stresses originating from the high-frequency temperature fluctuation at the ceramic coating surface. The HCF thermal loads act on the crack by a wedging mechanism (ref. 1), resulting in continuous crack growth at temperature. The HCF stress intensity factor amplitude increases with the interaction depth and temperature swing, and decreases with the crack depth. HCF damage also increases with the thermal expansion coefficient and the Young's modulus of the ceramic coating (refs. 1 and 3).

  3. Cyclic fatigue behaviour of fibre reinforced rubber-toughened nylon composite materials

    NASA Astrophysics Data System (ADS)

    Pinot, L.; Gomina, M.; Jernot, J.-P.; Moreau, R.; Nakache, E.

    2005-03-01

    The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of glass fibre/rubber-toughened nylon ternary blends are checked. First, monotonic tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Cyclic fatigue tests were implemented on tensile specimens and the results were analysed in terms of the reduction of the Young's modulus, the increase of the hysteresis energy rate in the stress-strain diagram and the temperature rise. These findings were correlated to fractographic observations to assess the role of the different constituents.

  4. Low-cycle-fatigue behavior of copper materials and their use in synchrotron beamline components

    SciTech Connect

    Wang, Z.; Nian, T.; Ryding, D.; Kuzay, T.M.

    1993-09-01

    The third generation synchrotron facilities such as the 7-GeV Advanced Photon Source Project (APS) generate x-ray beams with very high heat loads and heat flux levels. The front-end and beamline components are required to sustain total heat loads of 5 to 15 kW and heat flux levels exceeding 400 W/mm{sup 2}. Grazing geometry and enhanced heat transfer techniques are used in the design of such components to reduce heat flux levels below the 30 W/mm{sup 2} level, which is sustainable by the special copper materials routinely used in the component design. Although the resulting maximum surface temperatures can be sustained, the structural stresses and the fatigue issues remain viable concerns for the copper, particularly under brazing or bonding of the parts. Brazing and bonding are almost always utilized in the design of the components, and the drastically lowered yield stress of the annealed copper subjected to bonding temperatures above 400{degree}C is a real concern. Such materials with reduced post-bonding stress levels easily reach yield point under thermal stresses during ordinary use on the beamline. The resulting plastic deformation in each load cycle may cause low-cycle-fatigue problems. The two common copper materials are OFHC and Glidcop. This paper critically reviews the available literature for low-cycle-fatigue properties, of OFHC at the elevated temperatures typically found in synchrotron operations.

  5. Effect of mission cycling on the fatigue performance of SiC-coated carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, H.; Das, P. S.; Jeelani, S.; Baker, D. M.; Johnson, S. A.

    1993-01-01

    The effects of thermal and pressure cycling on the fatigue performance of carbon-carbon composites, and the influence of mission cycling on these effects, were investigated by subjecting both virgin and mission-cycled two-dimensional specimens of SiC-coated carbon-carbon composites to fatigue tests, conducted at room temperature in three-point bending, with a stress ratio of 0.2 and a frequency of 1 Hz. It was found that the fatigue strength of C-C composites is high (about 90 percent of the ultimate flexural strength), but decreased with the mission cycling. The lowering of the fatigue strength with mission cycling is attributed to the increase in interfacial bond strength due to thermal and pressure cycling of the material. The already high sensitivity of C-C composites to stress during cyclic loading increases further with the amount of mission cycling. Results of NDE suggest that the damage growth in virgin C-C, in the high-cycle range, is slow at the initial stage of the cyclic life, but propagates rapidly after certain threshold cycles of the fatigue life.

  6. The effect of a carbohydrate mouth-rinse on neuromuscular fatigue following cycling exercise.

    PubMed

    Jeffers, Robert; Shave, Robert; Ross, Emma; Stevenson, Emma J; Goodall, Stuart

    2015-06-01

    Carbohydrate (CHO) mouth-rinsing, rather than ingestion, is known to improve performance of high-intensity (>75% maximal oxygen uptake) short-duration (≤1 h) cycling exercise. Mechanisms responsible for this improvement, however, are unclear. The present study aimed to investigate the effect of a CHO mouth-rinse on cycling time-trial (TT) performance and mechanisms of fatigue. On 2 separate occasions, 9 male cyclists (mean ± SD; maximal oxygen uptake, 61 ± 5 mL·kg(-1)·min(-1)) completed 45 min at 70% maximum power output (preload) followed by a 15-min TT. At 7.5-min intervals during the preload and TT, participants were given either a tasteless 6.4% maltodextrin mouth-rinse (CHO) or water (placebo (PLA)) in a double-blind, counterbalanced fashion. Isometric knee-extension force and electromyographic responses to percutaneous electrical stimulation and transcranial magnetic stimulation were measured before, after the preload, and after the TT. There were greater decreases in maximal voluntary contraction after the TT in PLA (20% ± 10%) compared with the CHO (12% ± 8%; P = 0.019). Voluntary activation was reduced following exercise in both trials, but did not differ between conditions (PLA -10% ± 8% vs. CHO -5% ± 4%; P = 0.150). The attenuation in the manifestation of global fatigue did not translate into a TT improvement (248 ± 23 vs. 248 ± 39 W for CHO and PLA, respectively). Furthermore, no differences in heart rate or ratings of perceived exertion were found between the 2 conditions. These data suggest that CHO mouth-rinsing attenuates neuromuscular fatigue following endurance cycling. Although these changes did not translate into a performance improvement, further investigation is required into the role of CHO mouth-rinse in alleviating neuromuscular fatigue.

  7. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  8. Temporal Effect of In Vivo Tendon Fatigue Loading on the Apoptotic Response Explained in the Context of Number of Fatigue Loading Cycles and Initial Damage Parameters

    PubMed Central

    Andarawis-Puri, Nelly; Philip, Anaya; Laudier, Damien; Schaffler, Mitchell B.; Flatow, Evan L.

    2014-01-01

    Accumulation of damage is a leading factor in the development of tendinopathy. Apoptosis has been implicated in tendinopathy, but the biological mechanisms responsible for initiation and progression of these injuries are poorly understood. We assessed the relationship between initial induced damage and apoptotic activity 3 and 7 days after fatigue loading. We hypothesized that greater apoptotic activity (i) will be associated with greater induced damage and higher number of fatigue loading cycles, and (ii) will be higher at 7 than at 3 days after loading. Left patellar tendons were fatigue loaded for either 100 or 7,200 cycles. Diagnostic tests were applied before and after fatigue loading to determine the effect of fatigue loading on hysteresis, elongation, and loading and unloading stiffness (damage parameters). Cleaved Caspase-3 staining was used to identify and calculate the percent apoptosis in the patellar tendon. While no difference in apoptotic activity occurred between the 100 and 7,200 cycle groups, greater apoptotic activity was associated with greater induced damage. Apoptotic activity was higher at 7 than 3 days after loading. We expect that the decreasing number of healthy cells that can repair the induced damage in the tendon predispose it to further injury. PMID:24838769

  9. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects. Final technical report, June 1992-January 1995

    SciTech Connect

    Bast, C.C.; Boyce, L.

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model`s empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect.

  10. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  11. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Johnson, Glen O; Hendrix, C Russell; Zuniga, Jorge M; Mielke, Michelle; Schmidt, Richard J

    2010-01-01

    The purposes of this investigation were twofold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWC(FT)) from electromyographic (EMG) amplitude data could be applied to the frequency domain of the signal to derive a new fatigue threshold for cycle ergometry called the mean power frequency fatigue threshold (MPF(FT)), and (2) to compare the power outputs associated with the PWC(FT), MPF(FT), ventilatory threshold (VT), and respiratory compensation point (RCP). Sixteen men [mean (SD) age = 23.4 (3.2) years] performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences for PWC(FT) [mean (SD) = 168 (36) W] versus MPF(FT) [208 (37) W] and VT [152 (33) W] versus RCP [205 (84) W], but no mean differences for PWC(FT) versus VT or MPF(FT) versus RCP. The mean difference between PWC(FT) and MPF(FT) may be due to the effects of specific metabolites that independently influence the time and frequency domains of the EMG signal. These findings indicated that the PWC(FT) model could be applied to the frequency domain of the EMG signal to estimate MPF(FT). Furthermore, the current findings suggested that the PWC(FT) may demarcate the moderate from heavy exercise domains, while the MPF(FT) demarcates heavy from severe exercise intensities.

  12. Effects of fatigue on inter-cycle variability in cross-country skiing.

    PubMed

    Cignetti, F; Schena, F; Rouard, A

    2009-07-22

    The aim of the study was to examine the inter-cycle variability in cross-country skiing gait and its evolution with fatigue. Both issues were investigated to understand the flexibility capabilities of the neuromuscular system. Four women and four men skied on a treadmill, up to exhaustion. The angular displacements of the arms and legs movements were obtained for 40s period at the beginning and end of the skiing test. Mean inter-cycle standard deviation (SD(c)), largest Lyapunov exponent (lambda(1)) and correlation dimension (D(c)) were computed for each time series and surrogate counterpart to evaluate the magnitude and nature of the variability. For any experimental time series, lambda(1) was positive, D(c) greater than 1 and both were found to be different from their surrogate counterparts, confirming that the temporal variations of the data had a deterministic origin. More, larger SD(c), D(c) and lambda(1) values were observed at the end of the test, indicating more variability, noise and local dynamic instability in the data with fatigue. Hence, the fluctuations of limb angular displacements displayed a chaotic behavior, which reflected flexibility of the neuromuscular system to adapt to possible perturbations during skiing. However, such chaotic behavior degraded with fatigue, making the neuromuscular system less adaptable and more unstable.

  13. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.

    PubMed

    Wiltschko, Roswitha; Gehring, Dennis; Denzau, Susanne; Nießner, Christine; Wiltschko, Wolfgang

    2014-12-01

    Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under 'white' light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted.

  14. Magnetoreception in birds: II. Behavioural experiments concerning the cryptochrome cycle.

    PubMed

    Wiltschko, Roswitha; Gehring, Dennis; Denzau, Susanne; Nießner, Christine; Wiltschko, Wolfgang

    2014-12-01

    Behavioural tests of the magnetic compass of birds and corresponding immunohistological studies on the activation of retinal cryptochrome 1a, the putative receptor molecule, showed oriented behaviour and activated Cry1a under 373 nm UV, 424 nm blue, 502 nm turquoise and 565 nm green light, although the last wavelength does not allow the first step of photoreduction of cryptochrome to the semiquinone form. The tested birds had been kept under 'white' light before, hence we suggested that there was a supply of semiquinone present at the beginning of the exposure to green light that could be further reduced and then re-oxidized. To test the hypothesis in behavioural experiments, we tested robins, Erithacus rubecula, under various wavelengths (1) after 1 h pre-exposure to total darkness and (2) after 1 h pre-exposure to the same light as used in the test. The birds were oriented under blue and turquoise light, where the full cryptochrome cycle can run, but not under green light. This finding is in agreement with the hypothesis. Orientation under green light appears to be a transient phenomenon until the supply of semiquinone is depleted. PMID:25472973

  15. Low cycle fatigue behavior of new heat-resistant steel HCM2S at high temperature

    SciTech Connect

    Zhu Lihui; Zhao Qinxin; Gu Haicheng; Lu Yansun

    1999-07-01

    Low cycle fatigue behavior of new low alloy, heat-resistant steel HCM2S (2.25Cr-1.6W-V-Nb-B-N) at high temperature has been investigated. The cyclic stress response curve of HCM2S exhibits rapid initial cyclic softening followed by gradual softening until macroscopic crack growth occurs. The initial softening of HCM2S steel is due to the recovery of martensite laths in carbon-rich austenitic islands, the formation of stable dislocation cells and M{sub 6}C particles. Fatigue life equation of HCM2S as a function of strain range at 580 C is also given in this paper.

  16. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  17. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    NASA Astrophysics Data System (ADS)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  18. Comparison of the very high cycle fatigue behaviors of INCONEL 718 with different loading frequencies

    NASA Astrophysics Data System (ADS)

    Zhang, YangYang; Duan, Zheng; Shi, HuiJi

    2013-03-01

    In order to clarify the differences of very high cycle fatigue (VHCF) behavior of nickel based superalloy IN718 with different loading frequencies, stress-controlled fatigue tests were carried out by using ultrasonic testing method (20 KHz) and rotary bending testing method (52.5 Hz), both at room temperatures, to establish stress versus cycles to failure (S-N) relationships. Results disclosed that cycles to failure at a given stress level increased with an increase of the applied frequency, i.e., the higher frequency produced an upper shift of the S-N curves. Fractographic analysis suggested that crack initiation and propagation behaviors had large differences: cracks in low-frequency tests preferentially initiated from multiple sources on the specimen surface, while in high-frequency tests, cracks mostly originated from a unique source of subsurface inclusions. Subsequently, frequency-involved modeling was proposed, based on the damage accumulation theory, which could well illustrate qualitatively those comparisons due to different loading frequencies.

  19. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  20. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  1. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  2. On bilinearity of Manson-Coffin low-cycle-fatigue relationship

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, V. M.

    1992-01-01

    Some alloy systems, such as aluminum-lithium alloys and dual-phase steels, have been found to show a bilinear Manson-Coffin low-cycle-fatigue relationship. This paper shows that such bilinear behavior is related to the cyclic stress-strain curve. A bilinear cyclic stress-strain curve is a likely indication of a bilinear Manson-Coffin relationship. It is shown that materials other than aluminum-lithium alloys and dual-phase steels also may exhibit bilinear Manson-Coffin behavior. Implications for design are discussed.

  3. High-Temperature Low-Cycle Fatigue Property of Heat-Resistant Ductile-Cast Irons

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Jun; Jang, Ho; Oh, Yong-Jun

    2009-09-01

    This study examined the high-temperature degradation behavior of two types of heat-resistant Si-Mo ductile cast iron (Fe-3.4C-3.7Si-0.4Mo and Fe-3.1C-4.5Si-1.0Mo) with particular attention paid to the mechanical properties and overall oxidation resistance. Tension and low-cycle fatigue properties were examined at 600 °C and 800 °C. The mechanical tests and metallographic and fractographic analyses showed that cast iron containing higher Si and Mo contents had a higher tensile strength and longer fatigue life at both temperatures than cast iron with lower levels due to the phase transformations of pearlite and carbide. The Coffin-Manson type equation was used to assess the fatigue mechanism suggesting that the higher Si-Mo alloy was stronger but less ductile than the lower Si-Mo alloy at 600 °C. However, similar properties for both alloys were observed at 800 °C because of softening and oxidation effects. Analysis of the isothermal oxidation behavior at those temperatures showed that mixed Fe2SiO4 layers were formed and the resulting scaling kinetics was much faster for low Si-Mo containing iron. With increasing temperature, subsurface degradation such as decarburization, voids, and cracks played a significant role in the overall oxidation resistance.

  4. Hydrogen induced surface cracking in an 8090 Al-Li alloy during high cycle fatigue

    SciTech Connect

    Laffin, C.; Raghunath, C.R.; Lopez, H.F. . Materials Dept.)

    1993-10-01

    In recent years, there has been an increasing interest in understanding the effects of aggressive or moist environments on the properties of Al-Li alloys. However, most of the existing work has been focused on their stress corrosion cracking resistance. Consequently, only a few reports are available on the environmental fatigue strength of these alloys. Upon exposure to aggressive environments, the fatigue crack propagation resistance can be detrimentally affected. R. Piascik and R. Gangloff found enhanced cyclic crack growth rates in an Al-Li-Cu alloy when a critical water vapor pressure was exceeded. Thermodynamically, at atmospheric pressures, strong interactions between hydrogen and lithium are expected to give rise to stable lithium hydrides. Evidence for the development of hydride phases in Al-Li alloys exposed to hydrogen environments has been reported by various workers. Thus, it is likely that HE via hydride formation can be the relevant mechanisms in Al-Li alloys that have been in contact with hydrogen. Since lithium hydrides are stable up to temperatures of 773 K, previous hydrogen exposure can lead to an irreversible mode of embrittlement. Thus, it was the objective of the present work to investigate the effects of hydrogen during aging on the ensuing high cycle fatigue (HCF) performance of an 8090 Al-Li alloy.

  5. The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy; Gayda, John; Sweeney, Joseph

    2000-01-01

    The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.

  6. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  7. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress.

    PubMed

    Marcora, Samuele M; Bosio, Andrea; de Morree, Helma M

    2008-03-01

    Locomotor muscle fatigue, defined as an exercise-induced reduction in maximal voluntary force, occurs during prolonged exercise, but its effects on cardiorespiratory responses and exercise performance are unknown. In this investigation, a significant reduction in locomotor muscle force (-18%, P < 0.05) was isolated from the metabolic stress usually associated with fatiguing exercise using a 100-drop-jumps protocol consisting of one jump every 20 s from a 40-cm-high platform. The effect of this treatment on time to exhaustion during high-intensity constant-power cycling was measured in study 1 (n = 10). In study 2 (n = 14), test duration (871 +/- 280 s) was matched between fatigue and control condition (rest). In study 1, locomotor muscle fatigue caused a significant curtailment in time to exhaustion (636 +/- 278 s) compared with control (750 +/- 281 s) (P = 0.003) and increased cardiac output. Breathing frequency was significantly higher in the fatigue condition in both studies despite similar oxygen consumption and blood lactate accumulation. In study 2, high-intensity cycling did not induce further fatigue to eccentrically-fatigued locomotor muscles. In both studies, there was a significant increase in heart rate in the fatigue condition, and perceived exertion was significantly increased in study 2 compared with control. These results suggest that locomotor muscle fatigue has a significant influence on cardiorespiratory responses and exercise performance during high-intensity cycling independently from metabolic stress. These effects seem to be mediated by the increased central motor command and perception of effort required to exercise with weaker locomotor muscles. PMID:18184760

  8. Hydrogen effects on low-cycle fatigue of the single-crystal nickel-base superalloy CMSX-2

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.; Kromp, W.; Domnanovitch, A.; Pinczolits, H.

    1991-01-01

    The effects of hydrogen on the low-cycle fatigue behavior of CMSX-2 (001)-oriented single crystals were examined. Fatigue tests were conducted under constant plastic strain amplitude control. Cyclic stress-strain curves and fatigue life data at different plastic strain amplitudes were determined for hydrogen-free and hydrogen-charged specimens. Two charging procedures, leading to different hydrogen concentrations, were applied. Hydrogen was found to decrease significantly the number of cycles to failure under the various experimental conditions. The increasing hydrogen concentration and ratio of the hydrogen to nonhydrogen-containing volume were found to shorten fatigue life in hydrogen-charged specimens. Based on the analysis of cyclic stress-strain curves and optical and transmission electron microscopy, it was established that hydrogen enhanced strain localization and promoted crystallographic stage I cracking, leading to embrittlement.

  9. Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E; Salam, Tahrina; Rose, Geoffrey E; Ezra, Daniel G

    2015-02-01

    Ptosis describes a low position of the upper eyelid. When this condition is due to poor function of the levator palpebrae superioris muscle, responsible for raising the lid, "brow-suspension" ptosis correction is usually performed, which involves internally attaching the malpositioned eyelid to the forehead musculature using brow-suspension materials. In service, such materials are exposed to both rapid tensile loading and unloading sequences during blinking, and a more sustained tensile strain during extended periods of closure. In this study, various mechanical tests were conducted to characterise and compare some of commonly-used synthetic brow-suspension materials (Prolene(®), Supramid Extra(®) II, Silicone rods (Visitec(®) Seiff frontalis suspension set) and Mersilene(®) mesh) for their time-dependent response. At a given constant tensile strain or load, all of the brow-suspension materials exhibited stress-relaxation or creep, with Prolene(®) having a statistically different relaxation or creep ratio as compared with those of others. Uniaxial tensile cyclic tests through preconditioning and fatigue tests demonstrated drastically different time-dependent response amongst the various materials. Although the tests generated hysteresis force-strain loops for all materials, the mechanical properties such as the number of cycles required to reach the steady-state, the reduction in the peak force, and the cyclic energy dissipation varied considerably. To reach the steady-state, Prolene(®) and the silicone rod required the greatest and the least number of cycles, respectively. Furthermore, the fatigue tests at physiologically relevant conditions (15% strain controlled at 6.5 Hz) demonstrated that the reduction in the peak force during 100,000 cycles ranged from 15% to 58%, with Prolene(®) and the silicone rod exhibiting the greatest and the least value, respectively. Many factors need to be considered to select the most suitable brow-suspension material for

  10. Effect of electron beam treatment on structural change in titanium alloy VT-0 at high-cycle fatigue

    NASA Astrophysics Data System (ADS)

    Konovalov, S. V.; Komissarova, I. A.; Kosinov, D. A.; Ivanov, Yu F.; Ivanova, O. V.; Gromov, V. E.

    2016-09-01

    Changes in the surface of the fractured structure of commercially pure titanium VT1-0 under treatment by low-energy high-current electron beams and the subsequent cycle fatigue to the failure were analyzed by transmission scanning and transmission electron diffraction microscopy. The increase in the fatigue life of samples in 2.2 times after treatment by electron beams was established. An assumption was made that the increase in the fatigue life of titanium, grade VT1-0, was due to the formation of a lamellar substructure conditioned by high-velocity crystallization of the titanium surface layer.

  11. Augmented supraspinal fatigue following constant-load cycling in the heat.

    PubMed

    Goodall, S; Charlton, K; Hignett, C; Prichard, J; Barwood, M; Howatson, G; Thomas, K

    2015-06-01

    The development of central fatigue is prominent following exercise-induced hyperthermia, but the contribution of supraspinal fatigue is not well understood. Seven endurance-trained cyclists (mean ± SD peak O2 uptake, 62.0 ± 5.6 mL/kg/min) completed two high-intensity constant-load cycling trials (296 ± 34 W) to the limit of tolerance in a hot (34 °C, 20% relative humidity) and, on a separate occasion, for the same duration, a control condition (18 °C, 20% relative humidity). Core body temperature (Tc ) was measured throughout. Before and immediately after each trial, twitch responses to supramaximal femoral nerve and transcranial magnetic stimulation were obtained from the knee extensors to assess neuromuscular and corticospinal function, respectively. Exercise time was 11.4 ± 2.6 min. Peak Tc was higher in the hot compared with control (38.36 ± 0.43 °C vs 37.86 ± 0.36 °C; P = 0.035). Post-exercise reductions in maximal voluntary contraction force (13 ± 9% vs 9 ± 5%), potentiated twitch force (16 ± 12% vs 21 ± 13%) and voluntary activation (9 ± 7% vs 7 ± 7%) were similar in hot and control trials, respectively. However, cortical voluntary activation declined more in the hot compared with the control (8 ± 3% vs 3 ± 2%; P = 0.001). Exercise-induced hyperthermia elicits significant central fatigue of which a large portion can be attributed to supraspinal fatigue. These data indicate that performance decrements in the heat might initially originate in the brain. PMID:25943667

  12. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  13. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Hüther, Jonas; Brøndsted, Povl

    2016-07-01

    During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading to different levels of internal stresses. The mechanical properties, static strength and fatigue life time, are measured in three different directions of the material, i.e. the fiber direction, 0°, the 30° off axis direction, and the 90° direction transverse to the fiber direction. It is experimentally demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes directions so is not significantly influenced of these stresses. This is related to the observations that the damage mechanisms in the off axes directions are mainly related to shear failure in the matrix and in the interface between fiber and matrix and different from the damage mechanisms in the fiber direction, where the damage initiates in the transverse backing fibers and is directly related to fiber fractures in the load-carrying axial fiber bundles.

  14. The Toll-Like Receptor Radical Cycle Pathway: A New Drug Target in Immune-Related Chronic Fatigue.

    PubMed

    Lucas, Kurt; Morris, Gerwyn; Anderson, George; Maes, Michael

    2015-01-01

    In this review we discuss that peripheral and central activation of the Toll-like receptor 2/4 (TLR2/4) Radical Cycle may underpin the pathophysiology of immune-related chronic fatigue secondary to other medical diseases and conditions. The TLR Radical Cycle plays a role in illnesses and conditions that are disproportionately commonly comorbid with secondary chronic fatigue, including a) neuroinflammatory disorders, e.g. Parkinson's disease, stroke, depression, psychological stressors, and b) systemic disorders, e.g. (auto)immune disorders, chronic obstructive pulmonary disease, ankylosing spondylitis, chronic kidney disease, inflammatory bowel disease, cardiovascular disease, incl. myocardial infarction, cancer and its treatments. Increased TLR signaling is driven by activated immuneinflammatory and oxidative and nitrosative stress pathways, pathogen derived molecular patterns, including lipopolysaccharides, and damage associated molecular patterns (DAMPs). Newly formed redox-derived DAMPs, secondary to oxidative processes, may further activate the TLR complex leading to an auto-amplifying TLR Radical feedback loop. Increased gut permeability with translocation of gram negative bacteria and LPS, which activates the TLR Radical Cycle, is another pathway that may play a role in most of the abovementioned diseases and the secondary fatigue accompanying them. It is concluded that secondary fatigue may be associated with activation of the TLR Radical Cycle pathway due to activated immune-inflammatory pathways, classical and redox-derived DAMPs and PAMPs plays a role in its pathophysiology. Such an activation of the TLR Radical Cycle pathway may also explain why the abovementioned conditions are primed for an increased expression of secondary chronic fatigue. Targeting the TLR Radical Cycle pathway may be an effective method to treat TLR-Radical Cycle-related diseases such as secondary chronic fatigue.

  15. Microalloying Improves the Low-Cycle Fatigue Behavior of Powder-Extruded NiAl

    NASA Technical Reports Server (NTRS)

    1996-01-01

    There is considerable interest in developing new structural materials in which high use temperatures and strength, coupled with low density, are the minimum requirements. The goal for these new materials is to provide operation well beyond the working range of conventional superalloys. Of the many intermetallics under consideration, NiAl is one of the few systems that has emerged as a promising candidate for further development. This is because of a number of property advantages--including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance. However, binary NiAl lacks strength and creep resistance at elevated temperatures. Also, its poor high-temperature strength results in worse-than-predicted low-cycle fatigue (LCF) lives at low strain ranges at 727 C (1341 F) because of accelerated creep damage mechanisms that result in significant intergranular cracking. One approach for improving these properties involves microalloying NiAl with either Zr or N. As an integral part of this alloy-development program at the NASA Lewis Research Center, the low-cycle fatigue behavior of Zr- and N-doped nickel aluminides produced by extrusion of prealloyed powders was investigated and compared with similarly processed binary NiAl.

  16. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  17. Low-cycle and high-cycle fatigue failure process characterization of CFRP cross-ply laminates

    SciTech Connect

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    1994-12-31

    Damage progress in toughened-type CFRP cross-ply laminates under tensile fatigue loading was measured by the replica technique. The damage parameters, the transverse crack density and the delamination ratio, were presented. Based on above data, simple shear-lag analysis combined with the modified Paris law model was conducted to model the damage progress. In addition, a novel power-law model was proposed, which related the cyclic strain range and the number of cycles. The loading-unloading tests were also performed to obtain the Young`s modulus reduction and the permanent strain as functions of the damage state. The shear-lag predictions of the Young`s modulus reduction and the permanent strain showed good agreement with the experimental data, when the interaction between transverse cracking and delamination were taken into account.

  18. Effects of processing and microstructure on the fatigue behaviour of the nickel-base superalloy Rene95

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.

    1984-01-01

    Forms of the nickel-base superalloy Rene95 produced by three processing methods were evaluated in tensile, low cycle fatigue and fatigue crack propagation tests at 540 and 650 C. Two powder-metallurgy (PM) forms, hot-isostatically-pressed and extruded-and-forged, and a conventionally cast-and-wrought form were all given the same heat treatment. The extruded-and-forged form showed superior fatigue life in low strain range tests though the two PM forms exhibited nearly identical mechanical behavior in all other respects. Further, this life difference could not be explained by significant differences in the types, sizes or shapes of the defects initiating failure. The cast-and-wrought Rene95, however, had lower strength, ductility and fatigue life, but higher fatigue crack propagation resistance because of a larger grain size. It did not exhibit the environmentally-assisted intergranular mode of propagation which occurs in PM Rene95 and other fine-grained superalloys at these test temperatures and frequencies.

  19. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  20. Effects of Laser Peening Treatment on High Cycle Fatigue and Crack Propagation Behaviors in Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Masaki, Kiyotaka; Ochi, Yasuo; Matsumura, Takashi; Ikarashi, Takaaki; Sano, Yuji

    Laser peening without protective coating (LPwC) treatment is one of surface enhancement techniques using an impact wave of high pressure plasma induced by laser pulse irradiation. High compressive residual stress was induced by the LPwC treatment on the surface of low-carbon type austenitic stainless steel SUS316L. The affected depth reached about 1mm from the surface. High cycle fatigue tests with four-points rotating bending loading were carried out to confirm the effects of the LPwC treatment on fatigue strength and surface fatigue crack propagation behaviors. The fatigue strength was remarkably improved by the LPwC treatment over the whole regime of fatigue life up to 108 cycles. Specimens with a pre-crack from a small artificial hole due to fatigue loading were used for the quantitative study on the effect of the LPwC treatment. The fracture mechanics investigation on the pre-cracked specimens showed that the LPwC treatment restrained the further propagation of the pre-crack if the stress intensity factor range ΔK on the crack tip was less than 7.6 MPa√m. Surface cracks preferentially propagated into the depth direction as predicted through ΔK analysis on the crack by taking account of the compressive residual stresses due to the LPwC treatment.

  1. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    PubMed Central

    Haapala, Stephenie A; Faghri, Pouran D; Adams, Douglas J

    2008-01-01

    Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete) between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a) ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b) cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c) knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus raises speculation as to

  2. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training.

    PubMed

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance. PMID:26029114

  3. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  4. High cycle fatigue behavior of Incoloy 800H in a simulated high-temperature gas-cooled reactor helium environment

    SciTech Connect

    Soo, P.; Sabatini, R.L.; Epel, L.G.; Hare, J.R. Sr.

    1980-01-01

    The current study was an attempt to evaluate the high cycle fatigue strength of Incoloy 800H in a High-Temperature Gas-Cooled Reactor helium environment containing significant quantities of moisture. As-heat-treated and thermally-aged materials were tested to determine the effects of long term corrosion in the helium test gas. Results from in-helium tests were compared to those from a standard air environment. It was found that the mechanisms of fatigue failure were very complex and involved recovery/recrystallization of the surface ground layer on the specimens, sensitization, hardness changes, oxide scale integrity, and oxidation at the tips of propagation cracks. For certain situations a corrosion-fatigue process seems to be controlling. However, for the helium environment studied, there was usually no aging or test condition for which air gave a higher fatigue strength.

  5. Effects of Hot Rolling on Low-Cycle Fatigue Properties of Zn-22 wt.% Al Alloy at Room Temperature

    NASA Astrophysics Data System (ADS)

    Dong, X. H.; Cao, Q. D.; Ma, S. J.; Han, S. H.; Tang, W.; Zhang, X. P.

    2016-09-01

    The effects of the reduction ratio (RR) on the low-cycle fatigue (LCF) properties of the Zn-22 wt.% Al (Zn-22Al) alloy were investigated. Various grain sizes from 0.68 to 1.13 μm were obtained by controlled RRs. Tensile and LCF tests were carried out at room temperature. Superplasticity and cyclic softening were observed. Strength and ductility of the rolled Zn-22Al alloy increased with the RR, owing to the decrease in its grain size. The RR did not affect the cyclic softening behavior of the alloy. The fatigue life of the alloy decreased with increasing strain amplitude, while the fatigue life first decreased and then increased with increasing RR. The longest fatigue life was observed for the alloy rolled at a RR of 60%. A bilinear Coffin-Manson relationship was observed to hold true for this alloy.

  6. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  7. Effect of inertia on performance and fatigue pattern during repeated cycle sprints in males and females.

    PubMed

    Falgairette, G; Billaut, F; Giacomoni, M; Ramdani, S; Boyadjian, A

    2004-04-01

    The effect of recovery duration on performance and fatigue pattern during short exercises was studied including and excluding the flywheel inertia. Subjects (11 males and 11 females) performed a force-velocity test to determine their optimal force (f (opt)). On the following day, subjects performed randomly 4 series of two 8-s sprints against f (opt), with 15 s (R (15)), 30 s (R (30)), 60 s (R (60)), and 120 s (R (120)) recovery between sprints. The cycle (Monark 824 E, Stockholm, Sweden) was equipped with an optical sensor to calculate the revolution velocity of the pedal. For each sprint, peak power (P (peak)), mechanical work (W) and time to reach P (peak) (t (Ppeak)) were calculated including (I) and excluding (NI) the acceleration of the flywheel. For a given sprint, P (peak) and W were greater and t (Ppeak) was lower in I compared to NI condition (p < 0.05). Differences averaged 13 % for P (peak), 20 % for W, 34 % for t (Ppeak), and remained constant between sprints 1 and 2. In sprint 2, P (peak) and W were significantly reduced compared to sprint 1 only after R (15) and R (30) in I and NI (p < 0.05), and no gender differences occurred. In each sprint, P (peak) and W were higher (p < 0.001) and t (Ppeak) was shorter (p < 0.05) in males than in females, and gender differences were the same including or excluding the flywheel inertia. In conclusion, values excluding inertia underestimated mechanical performance and consequently the total energy supply. However, the pattern of fatigue and gender differences in performance and fatigue remained unchanged whatever the condition (I or NI). This result may have practical implications when the flywheel inertia can not be taken into account in the calculation of mechanical work and power output. PMID:15088250

  8. The fatigue behaviour of orthotropic laminates under tension-compression loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.

    1991-01-01

    The fatigue behavior of orthotropic laminates (0, +/-45, 0 deg)2s and (90, +/-45, 90 deg)2s, has been evaluated under alternating tension-compression loading. Even though the first laminate is much stronger than the second, both started to fail by delamination. Visual damage started to show only at the very end of the fatigue life but measurement of the stiffness showed that degradation starts at about 80 percent of the fatigue life. The first laminate failed in compression after delamination between the 0 and the 45 deg laminae, while the second failed in tension after delamination between the +45 and -45 deg laminae. It is shown that the interlaminar fatigue strength of both laminate structures can be correlated to the applied fatigue load.

  9. Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles

    PubMed Central

    Yamano, Emi; Sugimoto, Masahiro; Hirayama, Akiyoshi; Kume, Satoshi; Yamato, Masanori; Jin, Guanghua; Tajima, Seiki; Goda, Nobuhito; Iwai, Kazuhiro; Fukuda, Sanae; Yamaguti, Kouzi; Kuratsune, Hirohiko; Soga, Tomoyoshi; Watanabe, Yasuyoshi; Kataoka, Yosky

    2016-01-01

    Chronic fatigue syndrome (CFS) is a persistent and unexplained pathological state characterized by exertional and severely debilitating fatigue, with/without infectious or neuropsychiatric symptoms, lasting at least 6 consecutive months. Its pathogenesis remains incompletely understood. Here, we performed comprehensive metabolomic analyses of 133 plasma samples obtained from CFS patients and healthy controls to establish an objective diagnosis of CFS. CFS patients exhibited significant differences in intermediate metabolite concentrations in the tricarboxylic acid (TCA) and urea cycles. The combination of ornithine/citrulline and pyruvate/isocitrate ratios discriminated CFS patients from healthy controls, yielding area under the receiver operating characteristic curve values of 0.801 (95% confidential interval [CI]: 0.711–0.890, P < 0.0001) and 0.750 (95% CI: 0.584–0.916, P = 0.0069) for training (n = 93) and validation (n = 40) datasets, respectively. These findings provide compelling evidence that a clinical diagnostic tool could be developed for CFS based on the ratios of metabolites in plasma. PMID:27725700

  10. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    NASA Astrophysics Data System (ADS)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  11. Temperature and Strain-Rate Effects on Low-Cycle Fatigue Behavior of Alloy 800H

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Schiffers, H.; Schuster, H.; Halford, G. R.

    1996-01-01

    The effects of strain rate (4 x 10(exp -6) to 4 x 10(exp -3)/s) and temperature on the Low-Cycle Fatigue (LCF) behavior of alloy 800H have been evaluated in the range 750 C to 950 C. Total axial strain controlled LCF tests were conducted in air at a strain amplitude of +/- 0.30 pct. LCF life decreased with decreasing strain rate and increasing temperature. The cyclic stress response behavior showed a marked variation with temperature and strain rate. The time- and temperature- dependent processes which influence the cyclic stress response and life have been identified and their relative importance assessed. Dynamic strain aging, time-dependent deformation, precipitation of parallel platelets of M(23)C6 on grain boundaries and incoherent ledges of twins, and oxidation were found to operate depending on the test conditions. The largest effect on life was shown by oxidation processes.

  12. Mean stress effects on high-cycle fatigue of Alloy 718

    SciTech Connect

    Korth, G E

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649{degree}C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs.

  13. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling.

  14. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Poarch, Hunter J; Dolbow, David D; Castillo, Teodoro; Gater, David R

    2014-01-01

    The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively]) on oxygen uptake (VO2), cycling performance, and energy expenditure (EE) percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI). A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES) cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative VO2 or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 compared with P200 (p = 0.07), whereas recovery VO2 was 23% greater in P350 compared with P200 (p = 0.03). There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001) and 48 to 72 h after (p < 0.001) FES leg cycling. Lengthening pulse duration did not affect submaximal or relative VO2 or EE, total EE, and time to fatigue. Greater recovery VO2 and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling. PMID:25803753

  15. Application of fracture mechanics and half-cycle theory to the prediction of fatigue life of aerospace structural components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1989-01-01

    The service life of aircraft structural components undergoing random stress cycling was analyzed by the application of fracture mechanics. The initial crack sizes at the critical stress points for the fatigue crack growth analysis were established through proof load tests. The fatigue crack growth rates for random stress cycles were calculated using the half-cycle method. A new equation was developed for calculating the number of remaining flights for the structural components. The number of remaining flights predicted by the new equation is much lower than that predicted by the conventional equation. This report describes the application of fracture mechanics and the half-cycle method to calculate the number of remaining flights for aircraft structural components.

  16. Effect of grain size on high-cycle fatigue properties in alpha-type titanium alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Yuri, T.; Sumiyoshi, H.; Matsuoka, S.; Ogata, T.

    2003-08-01

    High-cycle fatigue properties were investigated at 4, 77 and 293 K in Ti-5%Al-2.5%Sn ELI alloy which was used for liquid hydrogen turbo-pumps of Japanese-built launch vehicles. Mean grain size of specimens was controlled to be about 30 or 80 μm. In the specimens with a grain size of 30 μm, fatigue strengths at 10 6 cycles at 4 and 77 K are 1.6 and 1.5 times higher than that at 293 K, respectively. On the other hand, in the specimen with a grain size of 80 μm, fatigue strengths at 10 6 cycles at 4 and 77 K get lower to the same level as that at 293 K. Thus, it is concluded that refinement of α grains is one of important factors to obtain the good high-cycle fatigue properties for Ti-5%Al-2.5%Sn ELI alloy at cryogenic temperature.

  17. Influence of the Peak Tensile Overload Cycles on the Fatigue Crack Growth of Aluminum Alloy Under Spectrum Loading

    NASA Astrophysics Data System (ADS)

    Iranpour, Mohammad; Taheri, Farid

    2013-11-01

    Many structures such as aircrafts, risers, and offshore pipelines that are in contact with fluids, become subjected to complex variable amplitude loading (VAL) stress-time histories during their service lives. As a result, the structural life assessment and damage-tolerant analyses of such structures are considered as two important design criteria. In this paper, a VAL stress-time history is used to study the fatigue life of 6061-T651 aluminum alloy, with focus on the retardation effect resulting from the applied peak tensile overload cycles (TOLCs). Various so-called "clipping" levels are tested, and the results are compared with those obtained through an analytical method, using the Willenborg retardation approach, in conjunction with the Walker fatigue crack growth model. The results would demonstrate the significant influence of the TOLC present within VAL scenarios on retarding the fatigue crack growth rate of the material. The study also investigates the influence of various clipping levels on the fatigue response of the material, also highlighting the limitations of the analytical approach in estimating the resulting crack growth rate. It is observed that the analytical method predicts a higher fatigue life for the material subjected to VAL, which is non-conservative for design purposes. Some suggestions are provided for fatigue life estimation of the material when subjected to VAL scenarios.

  18. Eccentric Fatigue Modulates Stretch-shortening Cycle Effectiveness--A Possible Role in Lower Limb Overuse Injuries.

    PubMed

    Debenham, J; Travers, M; Gibson, W; Campbell, A; Allison, G

    2016-01-01

    The role of fatigue in injury development is an important consideration for clinicians. In particular, the role of eccentric fatigue in stretch-shortening cycle (SSC) activities may be linked to lower limb overuse conditions. The purpose of this study was to explore the influence of ankle plantarflexor eccentric fatigue on SSC effectiveness during a hopping task in healthy volunteers. 11 healthy volunteers (23.2±6.7 years) performed a sub-maximal hopping task on a custom-built sledge system. 3D motion capture and surface EMG were utilised to measure lower limb stiffness, temporal kinematic measures and muscle timing measures at baseline and immediately following an eccentric fatigue protocol. A linear mixed model was used to test whether measures differed between conditions. Compared to baseline, eccentric fatigue induced increased stiffness during the hopping task (+ 15.3%; P<0.001). Furthermore, ankle stretch amplitude decreased (- 9.1%; P<0.001), whilst all other ankle kinematic measures remained unchanged. These changes were accompanied by a temporal shift in onset of activity in soleus and tibialis anterior muscles (- 4.6 to - 8.5%; p<0.001). These findings indicate that eccentric fatigue alters SSC effectiveness in healthy volunteers. These findings may be applied to inform pathogenetic models of overuse injury development.

  19. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  20. Effects of Stretch Shortening Cycle Exercise Fatigue on Stress Fracture Injury Risk during Landing

    ERIC Educational Resources Information Center

    James, C. Roger; Dufek, Janet S.; Bates, Barry T.

    2006-01-01

    The purpose of this study was to examine changes in landing performance during fatigue that could result in increased stress fracture injury risk. Five participants performed nonfatigued and fatigued drop landings (0.60 m), while ground reaction force (GRF), electromyographic (EMG) activity, and kinematics were recorded. Fatigue was defined as a…

  1. Notch effects on high-cycle fatigue properties of Ti 6Al 4V ELI alloy at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-01-01

    Notch effects on the high-cycle fatigue properties of the forged Ti-6Al-4V ELI alloy at cryogenic temperatures were investigated. Also, the high-cycle fatigue data were compared with the rolled Ti-5Al-2.5Sn ELI alloy. The one million cycles fatigue strength (FS) of the smooth specimen for the forged Ti-6Al-4V ELI alloy increased with a decrease of test temperature. However, the FS of each notched specimen at 4 K were lower than those at 77 K. On the other hand, the FS of the smooth and the notched specimens for the forged Ti-6Al-4V ELI alloy at 4 K were lower than those for the rolled Ti-5Al-2.5Sn ELI alloy. This is considered to be the early initiation of the fatigue crack in the forged Ti-6Al-4V ELI alloy compares with the forged Ti-5Al-2.5Sn ELI.

  2. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    SciTech Connect

    Wang, J.Q.; Li, J.; Wang, Z.F.; Zhu, Z.Y.; Ke, W. . Corrosion Science Lab.); Zang, Q.S.; Wang, Z.G. . State Key Lab. for Fatigue and Fracture of Materials)

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, it is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.

  3. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  4. Fatigue is specific to working muscles: no cross-over with single-leg cycling in trained cyclists.

    PubMed

    Elmer, Steven J; Amann, Markus; McDaniel, John; Martin, David T; Martin, James C

    2013-02-01

    Fatigue induced via a maximal isometric contraction of a single limb muscle group can evoke a "cross-over" of fatigue that reduces voluntary muscle activation and maximum isometric force in the rested contralateral homologous muscle group. We asked whether a cross-over of fatigue also occurs when fatigue is induced via high-intensity endurance exercise involving a substantial muscle mass. Specifically, we used high-intensity single-leg cycling to induce fatigue and evaluated associated effects on maximum cycling power (P (max)) in the fatigued ipsilateral leg (FAT(leg)) as well as the rested contralateral leg (REST(leg)). On separate days, 12 trained cyclists performed right leg P (max) trials before and again 30 s, 3, 5, and 10 min after a cycling time trial (TT, 10 min) performed either with their right or left leg. Fatigue was estimated by comparing exercise-induced changes in P (max) and maximum handgrip isometric force (F (max)). Mean power produced during the right and left leg TTs did not differ (203 ± 8 vs. 199 ± 8 W). Compared to pre-TT, FAT(leg) P (max) was reduced by 22 ± 3 % at 30 s post-TT and remained reduced by 9 ± 2 % at 5 min post-TT (both P < 0.05). Despite considerable power loss in the FAT(leg), post-TT REST(leg) P (max) (596-603 W) did not differ from pre-TT values (596 ± 35 W). There were no alterations in handgrip F (max) (529-547 N). Our data suggest that any potential cross-over of fatigue, if present at all, was not sufficient to measurably compromise REST(leg) P (max) in trained cyclists. These results along with the lack of changes in handgrip F (max) indicate that impairments in maximal voluntary neuromuscular function were specific to working muscles.

  5. Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

    PubMed

    Kurti, Stephanie P; Smith, Joshua R; Emerson, Sam R; Castinado, Kenneth M; Harms, Craig A

    2015-11-01

    Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15-20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3-6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

  6. Low cycle fatigue behavior of a SiCp reinforced aluminum matrix composite at ambient and elevated temperature

    SciTech Connect

    Han, N.L.; Wang, Z.G.; Sun, L.Z.

    1995-06-01

    Based on an investigation of low cycle fatigue life and cyclic stress response characteristics of SiC particulates reinforced pure aluminum and unreinforced matrix aluminum at 298 K and 441 K, the following observations were made. (1) Cyclic stress response of the unreinforced matrix aluminum, in the as-extruded condition, revealed initial cyclic hardening, cyclic stability and second hardening at ambient temperature. With a contrast, the unreinforced aluminum at elevated temperature showed progressively cyclic softening behavior without initial hardening. (2) The cyclic stress response characteristics of the composite were different from that of its unreinforced matrix at room temperature. In spite of the initial hardening, the composite showed progressive softening in most of the fatigue life. At elevated temperature the composite also displayed continuous cyclic softening behavior. The reason for the softening behavior probably was that the dislocation tangles in the composite specimen with a likely work-hardened status was not stable and could be changed under a cyclic loading. (3) The SiCp/Al composite and the unreinforced matrix followed the Coffin-Manson law. The low cycle fatigue resistance of the composite at room temperature was lower than that of the unreinforced matrix. A decrease in the fatigue endurance due to a rise in test temperature was observed for the composite and the unreinforced matrix especially at low cyclic plastic strain ranges. The induction of fatigue life of the unreinforced aluminum was faster than that of the composite, so the fatigue resistance of the composite was stronger than that of the unreinforced aluminum under lower cyclic strain ranges at elevated temperature.

  7. Fatigue Behaviour of Magnesium to Steel Dissimilar Friction Stir Lap Joints

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri

    2012-02-01

    A short study has been conducted to assess the performance of friction stir welded Mg/steel joints under dynamic loads. The major mode of failure was found to be top Mg sheet fracture. Crack initiation is noted to have taken place at the Mg/steel interface. The fatigue life of the joints is found to be significantly different than the fatigue data of the Mg alloy obtained from the literature. The reasons behind such a difference have been examined in this work.

  8. The Effect of Ballistic Impacts on the High Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr (at.%)

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Lerch, B. A.; Pereira, J. M.; Nathal, M. V.; Austin, C. M.; Erdman, O.

    2000-01-01

    The ability of gamma - TiAl to withstand potential foreign and/or domestic object damage is a technical risk to the implementation of gamma - TiAl in low pressure turbine (LPT) blade applications. The overall purpose of the present study was to determine the influence of ballistic impact damage on the high cycle fatigue strength of gamma - TiAl simulated LPT blades. Impact and specimen variables included ballistic impact energy, projectile hardness, impact temperature, impact location, and leading edge thickness. The level of damage induced by the ballistic impacting was studied and quantified on both the impact (front) and backside of the specimens. Multiple linear regression was used to model the cracking and fatigue response as a function of the impact variables. Of the impact variables studied, impact energy had the largest influence on the response of gamma - TiAl to ballistic impacting. Backside crack length was the best predictor of remnant fatigue strength for low energy impacts (<0.74J) whereas Hertzian crack length (impact side damage) was the best predictor for higher energy impacts. The impacted gamma - TiAl samples displayed a classical mean stress dependence on the fatigue strength. For the fatigue design stresses of a 6th stage LPT blade in a GE90 engine, a Ti-48Al-2Nb-2Cr LPT blade would survive an impact of normal service conditions.

  9. The effect of hydrogen on the low cycle fatigue behavior of a single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Dreshfield, R. L.

    1990-01-01

    The present study compares the room temperature fatigue properties of PWA 1480 single crystals containing either normal or elevated hydrogen levels, giving attention to the effects of various levels of HIPing process-controlled porosity on hydrogen-trapping and fatigue life. Hydrogen charging is found to degrade the fatigue lives of alloy samples by an order of magnitude; the magnitude of this degradation is comparable at both high and low porosity. HIPing accomplished a small beneficial effect on the fatigue life of both the hydrogen-charged and uncharged PWA 1480 samples. Fatigue cracks are noted to have consistently initiated at large, near-surface pores. By reducing the size and frquency of the larger pores, HIPing apparently retarded fatigue-crack initiation.

  10. Fatigue of insect cuticle.

    PubMed

    Dirks, Jan-Henning; Parle, Eoin; Taylor, David

    2013-05-15

    Many parts of the insect exoskeleton experience repeated cyclic loading. Although the cuticle of insects and other arthropods is the second most common natural composite material in the world, so far nothing is known about its fatigue properties, despite the fact that fatigue undoubtedly limits the durability of body parts in vivo. For the first time, we here present experimental fatigue data of insect cuticle. Using force-controlled cyclic loading, we determined the number of cycles to failure for hind legs (tibiae) and hind wings of the locust Schistocerca gregaria, as a function of the applied cyclic stress. Our results show that, although both are made from cuticle, these two body parts behave very differently. Wing samples showed a large fatigue range, failing after 100,000 cycles when we applied 46% of the stress needed for instantaneous failure [the ultimate tensile strength (UTS)]. Legs, in contrast, were able to sustain a stress of 76% of the UTS for the same number of cycles to failure. This can be explained by the difference in the composition and structure of the material, two factors that, amongst others, also affect the well-known behaviour of engineering composites. Final failure of the tibiae occurred via one of two different failure modes--propagation in tension or buckling in compression--indicating that the tibia is 'optimized' by evolution to resist both failure modes equally. These results are further discussed in relation to the evolution and normal use of these two body parts.

  11. Effect of Processing Route on Strain Controlled Low Cycle Fatigue Behavior of Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Rao, K. Bhanu Sankara; Lerch, B. A.; Noebe, R. D.

    1995-01-01

    The present investigation examines the effects of manufacturing process on the total axial strain controlled low cycle fatigue behavior of polycrystalline NiAl at 1000 K, a temperature above the monotonic Brittle-to-Ductile Transition Temperature (BDTT). The nickel aluminide samples were produced by three different processing routes: hot isostatic pressing of pre- alloyed powders, extrusion of prealloyed powders, and extrusion of vacuum induction melted ingots. The LCF behavior of the cast plus extruded material was also determined at room temperature (below the BD77) for comparison to the high temperature data. The cyclic stress response, cyclic stress-strain behavior, and strain-life relationships were influenced by the alloy preparation technique and the testing temperature. Detailed characterization of the LCF tested samples was conducted by optical and electron microscopy to determine the variations in fracture and deformation modes and to determine any microstructural changes that occurred during LCF testing. The dependence of LCF properties on processing route was rationalized on the basis of starting microstructure, brittle-to-ductile transition temperature, deformation induced changes in the basic microstructure, deformation substructure, and synergistic interaction between the damage modes.

  12. The J-2X Fuel Turbopump - Turbine Nozzle Low Cycle Fatigue Acceptance Rationale

    NASA Technical Reports Server (NTRS)

    Hawkins, Lakiesha V.; Duke, Gregory C.; Newman, Wesley R.; Reynolds, David C.

    2011-01-01

    The J-2X Fuel Turbopump (FTP) turbine, which drives the pump that feeds hydrogen to the J-2X engine for main combustion, is based on the J-2S design developed in the early 1970 s. Updated materials and manufacturing processes have been incorporated to meet current requirements. This paper addresses an analytical concern that the J-2X Fuel Turbine Nozzle Low Cycle Fatigue (LCF) analysis did not meet safety factor requirements per program structural assessment criteria. High strains in the nozzle airfoil during engine transients were predicted to be caused by thermally induced stresses between the vane hub, vane shroud, and airfoil. The heritage J-2 nozzle was of a similar design and experienced cracks in the same area where analysis predicted cracks in the J-2X design. Redesign options that did not significantly impact the overall turbine configuration were unsuccessful. An approach using component tests and displacement controlled fracture mechanics analysis to evaluate LCF crack initiation and growth rate was developed. The results of this testing and analysis were used to define the level of inspection on development engine test units. The programmatic impact of developing crack initiation/growth rate/arrest data was significant for the J-2X program. Final Design Certification Review acceptance logic will ultimately be developed utilizing this test and analytical data.

  13. Accelerated multiscale space-time finite element simulation and application to high cycle fatigue life prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Wen, Lihua; Naboulsi, Sam; Eason, Thomas; Vasudevan, Vijay K.; Qian, Dong

    2016-08-01

    A multiscale space-time finite element method based on time-discontinuous Galerkin and enrichment approach is presented in this work with a focus on improving the computational efficiencies for high cycle fatigue simulations. While the robustness of the TDG-based space-time method has been extensively demonstrated, a critical barrier for the extensive application is the large computational cost due to the additional temporal dimension and enrichment that are introduced. The present implementation focuses on two aspects: firstly, a preconditioned iterative solver is developed along with techniques for optimizing the matrix storage and operations. Secondly, parallel algorithms based on multi-core graphics processing unit are established to accelerate the progressive damage model implementation. It is shown that the computing time and memory from the accelerated space-time implementation scale with the number of degree of freedom N through ˜ O(N^{1.6}) and ˜ O(N), respectively. Finally, we demonstrate the accelerated space-time FEM simulation through benchmark problems.

  14. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.

    PubMed

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R(2) = 0:77 to R(2) = 0:98 (for blood lactate) and from R(2) = 0:81 to R(2) = 0:97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  15. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    PubMed Central

    Ražanskas, Petras; Verikas, Antanas; Olsson, Charlotte; Viberg, Per-Arne

    2015-01-01

    This article presents a study of the relationship between electromyographic (EMG) signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest) models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2=0.77 to R2=0.98 (for blood lactate) and from R2=0.81 to R2=0.97 (for oxygen uptake) were obtained when using random forest regressors. PMID:26295396

  16. Effect of stress ratio on high-cycle fatigue properties of Ti-6Al-4V ELI alloy forging at low temperature

    NASA Astrophysics Data System (ADS)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Matsuoka, Saburo; Sunakawa, Hideo

    2014-01-01

    The effect of the stress ratio R (the ratio of minimum stress to maximum stress) on the high-cycle fatigue properties of Ti-6Al-4V extra-low interstitial (ELI) alloy forging was investigated at 293 and 77 K. At 293 K, the fatigue strength at 107 cycles exhibited deviations below the modified Goodman line in the R=0.01 and 0.5 tests. Moreover, at 77 K, larger deviations of the fatigue strength at 107 cycles below the modified Goodman line were confirmed in the same stress ratio conditions. The high-cycle fatigue strength of the present alloy forging exhibit an anomalous mean stress dependency at both temperatures and this dependency becomes remarkable at low temperature.

  17. Application of fracture mechanics and half-cycle method to the prediction of fatigue life of B-52 aircraft pylon components

    NASA Technical Reports Server (NTRS)

    Ko, W. L.; Carter, A. L.; Totton, W. W.; Ficke, J. M.

    1989-01-01

    Stress intensity levels at various parts of the NASA B-52 carrier aircraft pylon were examined for the case when the pylon store was the space shuttle solid rocket booster drop test vehicle. Eight critical stress points were selected for the pylon fatigue analysis. Using fracture mechanics and the half-cycle theory (directly or indirectly) for the calculations of fatigue-crack growth ,the remaining fatigue life (number of flights left) was estimated for each critical part. It was found that the two rear hooks had relatively short fatigue life and that the front hook had the shortest fatigue life of all the parts analyzed. The rest of the pylon parts were found to be noncritical because of their extremely long fatigue life associated with the low operational stress levels.

  18. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  19. Moon cycles and violent behaviours: myth or fact?

    PubMed

    Núñez, S; Pérez Méndez, L; Aguirre-Jaime, A

    2002-06-01

    We formulated the hypothesis that lunar phases, identified by the fraction of the illuminated visible surface of the moon, have a relationship with the frequency of victims of aggression seen in an emergency department. If such a relationship exists, an increase in the frequency of incidents with the phases of full moon or new moon would be expected. In order to test this hypothesis, the daily frequency of victims of violent behaviour seen in the emergency department was used to create a temporal series of data. This was then correlated with a temporal series of lunar luminosity data from the same time period. Crossed correlations in the delay range -7 to +7 days showed coefficient values ranging between -0.102 and +0.034, demonstrating weak correlations without statistical significance. Despite the attractiveness of the popular belief that the moon influences human behaviour, the analysis of our data does not support an association between lunar phases and frequency of violent behaviour. That is, we cannot predict the frequency of cases from a knowledge of lunar luminosity, at least in the period over which our study was performed.

  20. Moon cycles and violent behaviours: myth or fact?

    PubMed

    Núñez, S; Pérez Méndez, L; Aguirre-Jaime, A

    2002-06-01

    We formulated the hypothesis that lunar phases, identified by the fraction of the illuminated visible surface of the moon, have a relationship with the frequency of victims of aggression seen in an emergency department. If such a relationship exists, an increase in the frequency of incidents with the phases of full moon or new moon would be expected. In order to test this hypothesis, the daily frequency of victims of violent behaviour seen in the emergency department was used to create a temporal series of data. This was then correlated with a temporal series of lunar luminosity data from the same time period. Crossed correlations in the delay range -7 to +7 days showed coefficient values ranging between -0.102 and +0.034, demonstrating weak correlations without statistical significance. Despite the attractiveness of the popular belief that the moon influences human behaviour, the analysis of our data does not support an association between lunar phases and frequency of violent behaviour. That is, we cannot predict the frequency of cases from a knowledge of lunar luminosity, at least in the period over which our study was performed. PMID:12131634

  1. On the nature and crystallographic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Gilbert, Jeremy L.; Piehler, Henry R.

    1993-03-01

    Subsurface fatigue damage, in the form of cracking of the α phase, was observed in Ti-6A1-4V during high cycle fatigue of total hip prostheses tested in a simulated physiological test geometry and environment. The subsurface cracking was found only in the region of highest fatigue stresses and was present in a zone between 50 and 700 μm beneath the surface. The density of these cracks appeared to depend on the fabrication process used to form the part, where the direction of forging deformation strongly influenced the texture and grain morphology of the near-α bimodal microstructure. A novel scanning electron microscopy (SEM) technique, using selected area channeling patterns (SACPs) and electron channeling contrast imaging (ECCI), is described and was used to determine the crystallographic orientation of the fracture plane in the a phase. The texture resulting from the forming operation appeared to be such that the basal pole of the hcp lattice became oriented in the direction of flow. Also, the deformation substructure (in the form of dislocation subcells) influenced the formation of the subsurface cracks. Observations based on four independent fractured grains, using the channeling analysis techniques, indicated that the fracture plane for these subsurface fatigue cracks is the pyramidal plane of the hcp lattice.

  2. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis

    PubMed Central

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases. PMID:26115515

  3. Effects of creatine loading on electromyographic fatigue threshold in cycle ergometry in college-age men.

    PubMed

    Walter, Ashley A; Smith, Abbie E; Herda, Trent J; Ryan, Eric D; Moon, Jordan R; Cramer, Joel T; Stout, Jeffrey R

    2008-04-01

    The purpose of this study was to examine the effects of 5 d of creatine (Cr) loading on the electromyographic fatigue threshold (EMG FT) in college-age men. Sixteen men (age 22.4 +/- 2.6 yr, height 177.4 +/- 6.8 cm, weight 79.5 +/- 10.6 kg; M +/- SD) participated in this double-blind study and were randomly placed into either placebo (Pl; 10 g of flavored fructose powder per packet; n = 8) or Cr (5 g dicreatine citrate plus 10 g of flavored fructose powder per packet; n = 8) loading groups. Each participant ingested 1 packet 4 times/d, totaling 20 g/d for 5 days (loading). Before and after loading, each participant performed a discontinuous cycle-ergometer test to determine his EMG FT, using bipolar surface electrodes placed on the vastus lateralis of the right thigh. Four 60-s work bouts (ranging from 200 to 400 W) were completed. Adequate rest was given between bouts to allow for the participants' heart rate (HR) to drop within 10 beats of their resting HR. The EMG amplitude was averaged over 5-s intervals for each 60-s work bout. Resulting slopes from each successive work bout were used to calculate EMG FT. A 2-way ANOVA, Group (Cr vs. Pl) x Time (pre vs. post), resulted in a nonsignificant (p > .05) interaction for supplement and time. In addition, a significant increase (p = .009) in weight was observed in the Cr group. These data suggest that there was a minimal influence of Cr loading on EMG FT for the participants in this study.

  4. Effect of aerobic exercise training and cognitive behavioural therapy on reduction of chronic fatigue in patients with facioscapulohumeral dystrophy: protocol of the FACTS-2-FSHD trial

    PubMed Central

    2010-01-01

    Background In facioscapulohumeral dystrophy (FSHD) muscle function is impaired and declines over time. Currently there is no effective treatment available to slow down this decline. We have previously reported that loss of muscle strength contributes to chronic fatigue through a decreased level of physical activity, while fatigue and physical inactivity both determine loss of societal participation. To decrease chronic fatigue, two distinctly different therapeutic approaches can be proposed: aerobic exercise training (AET) to improve physical capacity and cognitive behavioural therapy (CBT) to stimulate an active life-style yet avoiding excessive physical strain. The primary aim of the FACTS-2-FSHD (acronym for Fitness And Cognitive behavioural TherapieS/for Fatigue and ACTivitieS in FSHD) trial is to study the effect of AET and CBT on the reduction of chronic fatigue as assessed with the Checklist Individual Strength subscale fatigue (CIS-fatigue) in patients with FSHD. Additionally, possible working mechanisms and the effects on various secondary outcome measures at all levels of the International Classification of Functioning, Disability and Health (ICF) are evaluated. Methods/Design A multi-centre, assessor-blinded, randomized controlled trial is conducted. A sample of 75 FSHD patients with severe chronic fatigue (CIS-fatigue ≥ 35) will be recruited and randomized to one of three groups: (1) AET + usual care, (2) CBT + usual care or (3) usual care alone, which consists of no therapy at all or occasional (conventional) physical therapy. After an intervention period of 16 weeks and a follow-up of 3 months, the third (control) group will as yet be randomized to either AET or CBT (approximately 7 months after inclusion). Outcomes will be assessed at baseline, immediately post intervention and at 3 and 6 months follow up. Discussion The FACTS-2-FSHD study is the first theory-based randomized clinical trial which evaluates the effect and the maintenance of effects

  5. Strength and fatigue behaviour of 2D-carbon/carbon composites under shear conditions

    SciTech Connect

    Fend, T.; Goering, J.

    1994-12-31

    In this study flexural tests under cyclic shear loads (R>O) were performed with different two dimensional reinforced carbon/carbon materials, produced under different processing conditions. During fatigue testing a continuous increase of damage density (characterized via stiffness degradation) was observed, caused by the {open_quotes}wear out{close_quotes} of graphite matrix carbon (characterized via energy absorption in load-deflection hysteresis loops) which eventually leads to a time-dependent failure. This study includes SEM fractography and a microstructural accessment by TEM.

  6. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue. PMID:21572355

  7. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.

  8. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  9. In situ neutron diffraction study of the low cycle fatigue of the α-γ duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Jenčuš, Peter; Polák, Jaroslav; Lukáš, Petr; Muránsky, Ondrej

    2006-11-01

    In duplex stainless steels, significant thermal stresses are generated during the cooling from the homogenization temperature due to different thermal expansion coefficients of the austenitic and ferritic phases. The results of the in situ neutron diffraction examination of the evolution of the internal stresses during the low cycle fatigue in the SAF 2507 duplex stainless steel are reported. Stress response of both constituent components resulting from the load sharing between austenitic and ferritic grains was measured. It was found that the initial thermal residual stresses were relaxed rapidly at the beginning of the cyclic loading. Whereas initial hardening was identified in both phases, the subsequent fatigue softening was fully attributed to the austenitic phase.

  10. Effect of sodium environment on the low cycle fatigue properties of modified 9Cr-1Mo ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Kannan, R.; Sandhya, R.; Ganesan, V.; Valsan, M.; Bhanu Sankara Rao, K.

    2009-02-01

    Modified 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of liquid metal cooled fast breeder reactors (LMFBRs). The steam generator has been designed to operate for 30-40 years. It is important to accurately determine the life of the components in the actual environment in order to consider the extension of life beyond the design life. With this objective in view, a programme has been initiated at our laboratory to evaluate the effects of flowing sodium on the LCF behaviour of modified 9Cr-1Mo steel. LCF tests conducted in flowing sodium environment at 823 K and 873 K exhibited cyclic softening behaviour both in air and sodium environments. The fatigue lives are significantly improved in sodium environment when compared to the data obtained in air environment under identical testing conditions. The lack of oxidation in sodium environment is considered to be responsible for the delayed crack initiation and consequent increase in fatigue life. Comparison of experimental lifetimes with RCC-MR design code predictions indicated that the design curve based on air tests is too conservative.

  11. Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle

    PubMed Central

    James, Michael C; Myers, Ransom A; Ottensmeyer, C. Andrea

    2005-01-01

    Leatherback sea turtles, Dermochelys coriacea, undertake broad oceanic movements. While satellite telemetry has been used to investigate the post-nesting behaviour of female turtles tagged on tropical nesting beaches, long-term behavioural patterns of turtles of different sexes and sizes have not been described. Here we investigate behaviour for 25 subadult and adult male and female turtles satellite-tagged in temperate waters off Nova Scotia, Canada. Although sex and reproductive condition contributed to variation in migratory patterns, the migratory cycle of all turtles included movement between temperate and tropical waters. Marked changes in rates of travel, and diving and surfacing behaviour, accompanied southward movement away from northern foraging areas. As turtles approached higher latitudes the following spring and summer, they assumed behaviours consistent with regular foraging activity and eventually settled in coastal areas off Canada and the northeastern USA. Behavioural patterns corresponding to various phases of the migratory cycle were consistent across multiple animals and were repeated within individuals that completed return movements to northern waters. We consider the potential biological significance of these patterns, including how turtle behaviour relates to predator avoidance, thermoregulation and prey distribution. PMID:16048769

  12. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  13. The low cycle fatigue behavior of a plasma-sprayed coating material

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  14. Low-cycle fatigue behavior of oxygen-free high-conductivity copper at 300/sup 0/C in high vacuum

    SciTech Connect

    Liu, K.C.; Loring, C.M. Jr.

    1983-01-01

    In-vacuum fatigue tests were performed on commercially-pure OFHC copper and 35% Au-65% Cu brazing filler metal at 300/sup 0/C. Excessive recrystallization due to exposure in the 1025/sup 0/C brazing temperature cycle was detrimental to the fatigue life of the base metal; cold work was beneficial to the fatigue resistance. Triple-point cracking and grain boundary sliding were the prevailing modes of fatigue failure observed in the full-size specimens. However, a mixed morphology of ductile and cleavage-like fracture was observed on the fracture surface of the subsize specimen in which the grain structure appeared to have undergone a change because of the presence of surface cold work. The braze has superior fatigue resistance, but to exploit the maximum strength, the brazed joint must be devoid of defects such as cavities and cracks.

  15. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  16. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  17. (abstract) A Brief, Selective Review of Thermal Cycling Fatigue in Eutectic Tin-Lead Solder

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    This paper reviews selected parts of the current literature relevant to thermo-mechanical fatigue mechanisms in eutectic tin-lead solder, and suggests a general outline to account for some observed failures. The field is found to be complex. One recent experimental study finds some failure modes to be sensitive to joint geometry. Attempts to extrapolate from test environments to service environments have had only limited success. Much work remains to be done before fatigue failures in this material can be considered as under practical control.

  18. Acute and delayed neuromuscular adjustments of the triceps surae muscle group to exhaustive stretch-shortening cycle fatigue.

    PubMed

    Regueme, Sophie C; Nicol, Caroline; Barthèlemy, Joëlle; Grélot, Laurent

    2005-01-01

    Stretch-shortening cycle (SSC)-type fatigue is associated with acute and delayed functional defects, and appears to be a useful model to reveal the flexibility of both central and reflex adjustments to the contractile failure. SSC fatigue was induced in an experimental (EXP) group (n=6) on a sledge ergometer with an exhaustive rebound exercise with submaximal effort. The acute (POST) and 2-day delayed (2D) neuromuscular changes with fatigue were examined in a short submaximal rebound task (REBOUND) and in a maximal isometric plantarflexion test (ISOM). The EXP group results were compared to those of a control group (n=6) who did not perform the exhaustive SSC exercise and did not present any change in the tests. In the EXP group, the ISOM test revealed mostly a large decrease in maximal plantarflexion force at 2D that was correlated with the reduced mean soleus muscle (SOL) activation. Indicating "task-dependent" fatigue effects on the neural changes, the REBOUND test revealed both acute and delayed increases in SOL activation. Supporting central neural changes, SOL preactivation increased in POST and 2D. The neural flexibility along time and across muscles was demonstrated by the shifted increase in SOL activation from the braking phase in POST to the push-off phase in 2D, and associated increased gastrocnemius medialis preactivation in 2D. In contrast, activation during the stretch-reflex period was constant in POST, and decreased in 2D. These results would support the influence of musculotendinous afferents on the flexible neural adjustments to the SSC-induced contractile failure.

  19. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    SciTech Connect

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  20. A pilot randomised controlled trial of an Internet-based cognitive behavioural therapy self-management programme (MS Invigor8) for multiple sclerosis fatigue.

    PubMed

    Moss-Morris, Rona; McCrone, Paul; Yardley, Lucy; van Kessel, Kirsten; Wills, Gary; Dennison, Laura

    2012-06-01

    The majority of people affected by Multiple Sclerosis (paMS) experience severe and disabling fatigue. A recent randomised controlled trial (RCT) showed that cognitive behaviour therapy with a clinical psychologist was an effective treatment for MS fatigue. An Internet-based version of this intervention, MS Invigor8, was developed for the current study using agile design and input from paMS. MS Invigor8 includes eight tailored, interactive sessions. The aim was to test the feasibility and potential efficacy and cost-effectiveness of the programme in a pilot RCT. 40 patients were randomised to MS Invigor8 (n=23) or standard care (n=17). The MS Invigor8 group accessed sessions over 8-10 weeks and received up to three 30-60min telephone support sessions. Participants completed online standardised questionnaires assessing fatigue, mood, quality of life and service use at baseline and 10 weeks follow-up. Large between group treatment effects were found for the primary outcomes of fatigue severity (d=1.19) and impact (d=1.02). The MS Invigor8 group also reported significantly greater improvements in anxiety, depression and quality-adjusted life years. These data suggest that Internet-based CBT may be a clinically and cost-effective treatment for MS fatigue. A larger RCT with longer term follow-up is warranted.

  1. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue for SLM-IN718

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.

    2016-01-01

    A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the selective laser melt (SLM) process. This factor is the reduction at a common fatigue life from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition. Various vendors provided specimens. To reduce the number of degrees-of-freedom, only one heat treat condition was evaluated. Testing temperatures included room temperature, 800F, 1000F, and 1200F. The two surface conditions were compared at constant lives, where data was available. The recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness <= 4 micro-inches/inch) is approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce the same life in the as built surface condition. As an alternative method, the surface finish was incorporated into a new parameter with the maximum stress. The new parameter was formulated to be similar to the fracture mechanics stress intensity factor, and it was named the pseudo stress intensity factor, Kp. Using Kp, the variance seemed acceptable across all sources, and the knockdown factor was estimated over the range of data identified by Kp where data occurred. A plot of the results suggests that the knockdown factor is a function of temperature, and that for low lives the knockdown is greater than the knockdown observed above about one million cycles, where it stabilizes. One data point at room temperature was clearly different, and the sparsity of data in the higher life region reduces the value of these results. The method does appear to provide useful results, and further characterization of the method is suggested.

  2. Thermal-Fatigue Crack-Growth Characteristics and Mechanical Strain Cycling Behavior of A-286 Discaloy, and 16-25-6 Austenitic Steels

    NASA Technical Reports Server (NTRS)

    Smith, Robert W.; Smith, Gordon T.

    1960-01-01

    Thermal-fatigue crack-growth characteristics of notched- and unnotched-disk specimens of A-286, Discaloy, hot-cold worked 16-25-6, and overaged 16-25-6 were experimentally studied. Separately controlled variables were total strain range (0.0043 to 0.0079 in./in.), maximum cycle temperature (1300 and 1100 F), and hold time at maximum temperature (O and 5 min). A limited number of mechanical, push-pull, constant-strain cycle tests at room temperature were made using notched and un-notched bars of the same materials. In these tests the number of cycles to failure as well as the variation of load change with accumulated cycles was measured, and the effects of mean stress were observed. Constant-strain-range mechanical-fatigue tests at room temperature revealed notched-bar fatigue life to be strongly influenced by mean stress. For a specific strain range, the longest fatigue life was always found to be associated with the least-tensile (or most compressive) mean stress. By defining thermal-fatigue life as the number of cycles required to produce a crack area of 6000 square mils, the relative thermal-fatigue resistances of the test materials were established. Notched-disk specimens of A-286 and Discaloy steels exhibited longer fatigue lives than either hot-cold worked or overaged 16-25-6. On the other hand, unnotched-disk specimens of Discaloy and hot-cold worked 16-25-6 had longer lives than A-286 and overaged 16-25-6. Separation of the crack-growth data into microstage and macrostage periods revealed that the macrostage period accounted for the greatest part of the difference among materials when tested in the notched configuration, while the microstage was largely responsible for the differences encountered in unnotched disks.

  3. A study of the nycthemeral cycle of behavioural temperature regulation in man.

    PubMed Central

    Cabanac, M; Hildebrandt, G; Massonnet, B; Strempel, H

    1976-01-01

    1. Four human subjects were rendered hyperthermic and hypothermic by immersion in warm and cool water, at 02.00, 08.00, 14.00 and 20.00 hr. Bath and oesophageal temperatures and pulse rate were recorded. Temperature preference was determined by operant behaviour and vote. The core temperature set-point for behavioural thermoregulation was estimated from the behavioural results. 2. The results are in accord with those of previous studies of the nyethemeral cycling of autonomic responsiveness to heat and cold with a heating up phase before noon and a cooling down phase during the early night. 3. Subjective sensations and behavioural responses were also found to follow a nycthemeral cycle with a minimum before noon and a maximum at 20.00 hr. 4. The core temperature set point was 0-7 degrees C higher after noon than before noon with a small phase advance from resting core temperature. This result suggests that the nycthemeral cyclic change in body temperature is due to a nycthemeral cyclic change in the set-point near to which body temperature is kept by both autonomic and behavioural thermoregulatory responses. PMID:985881

  4. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 2: Zirconium-copper at 482, 538 and 593 C

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Zirconium-copper (1/2 hard) was tested in argon over the temperature range from 482 to 593 C in an evaluation of short-term tensile and low-cycle fatigue behavior. The effect of strain rate on the tensile properties was evaluated at 538 C and in general it was found that the yield and ultimate strengths increased as the strain rate was increased from 0.0004 to 0.01/sec. Ductility was essentially insensitive to strain rate in the case of the zirconium-copper alloy. Strain-rate and hold-time effects on the low cycle fatigue behavior of zirconium-copper were evaluated in argon at 538 C. These effects were as expected in that decreased fatigue life was noted as the strain rate decreased and when hold times were introduced into the tension portion of the strain-cycle. Hold times in compression were much less detrimental than hold times in tension.

  5. Influence of the female sexual cycle on BALB/c mouse calling behaviour during mating

    NASA Astrophysics Data System (ADS)

    Barthelemy, Mathieu; Gourbal, Benjamin E. F.; Gabrion, Claude; Petit, Gilles

    Real-time recording technology was used in this study to analyse calling activity during heterosexual encounters in BALB/c mice. The spectrographic analyses revealed distinct types of calls that could be linked to a precise pre-ejaculatory behavioural sequence. In addition, the oestrous cycle of the female was observed to influence the vocalization emission pattern. The recording technology used in this study provides numerous improvements in the characterization description of mice calling behaviour during mating and is expected to be useful in studies of vocal communication in many rodent species.

  6. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  7. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. P.

    2016-06-01

    The objective of this paper was theoretical analysis of speckle dynamics in the image plane of a thin transparent object. It was suggested that speckle dynamics develops in simultaneous periodic motion of the sample, micro- and macro-variations of its refraction index and its translational motion. The results of the theory were contrasted with the data obtained in the fatigue tests with transparent object.

  8. Effect of Interfacial Roughness of Bond Coat on the Residual Adhesion Strength of a Plasma Sprayed TBC System after Thermal Cycle Fatigue

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yasuhiro; Fukanuma, Hirotaka; Ohno, Naoyuki

    The effect of the bond coat on residual adhesion strength after thermal cycle fatigue was investigated in plasma-sprayed thermal barrier coatings (TBC). This study used CoNiCrAlY powder with two different particle sizes for spraying bond coat material to examine the effect of interface roughness between the bond coat and top coat. In addition, the bond coat was sprayed on either by a high velocity oxy-fuel (HVOF) or a low pressure plasma spray (LPPS). The residual adhesion strength of the TBC top coat was evaluated as a function of the number of thermal cycles by the modified 4-point bending test. In addition, SEM observations of thermal fatigue cracking morphologies and measurements of the residual stress in the ceramic top coat were carried out. The experimental results indicated that, after thermal cycle fatigue, microcracks were generated in the ceramic top coat; however, they were moderated in a rough interface TBC compared to a smooth interface TBC. In addition, the bond coat sprayed by the HVOF method showed a higher resistance to microcracking than the coat sprayed using the LPPS. Residual stress in the ceramic top coat is almost zero at 0 thermal cycles. After thermal cycle fatigue, it becomes compressional stress; however, it is independent of the bond coat. There was little difference in the adhesion strength by bond coat in as-sprayed conditions. On the other hand, the specimen with a rough interface exhibited higher residual adhesion strength after thermal cycle fatigue compared with the specimens with a relatively smooth interface. In addition, if the bond coat is sprayed by HVOF, the residual adhesion strength increases. It was revealed that the difference in residual adhesion strength by bond coat is related to the distribution morphology of thermal fatigue microcracks.

  9. Effect of machining damage on low cycle fatigue crack initiation life in drilled holes in UdimetRTM 720

    NASA Astrophysics Data System (ADS)

    Magadanz, Christine M.

    White layer is a generic term for a light etching surface layer on metal alloys that can result under extreme deformation conditions in wear, sliding or machining. While there has been some characterization of white layer due to abusive machining, the specific effect on fatigue crack initiation life has not been well documented. This study aimed to establish a relationship between the presence of white layer due to abusive machining and fatigue crack initiation life in a wrought nickel based superalloy (Udimet ® 720). Low cycle fatigue testing was conducted on large specimens containing through holes drilled with parameters aimed at creating holes with and without white layer. Initially, Acoustic Emission monitoring technologies were used to monitor for acoustic events associated with crack initiation, however, this technology was deemed unreliable for this testing. Instead, cycles to crack initiation was determined using striation density measurements on each fracture surface to estimate the number of cycles of crack propagation, which was subtracted from the total number of cycles for the specimen. A total of sixteen specimens were tested in this manner. The results suggested that the crack initiation lives of holes machined with good machining parameters were statistically longer than crack initiation lives of holes machined with poor machining parameters. The mean initiation life of the poorly machined specimens was a factor of approximately 2 times shorter than the mean initiation life of the well machined specimens. The holes machined with good machining parameters exhibited subsurface initiations which suggested that no anomalies affected crack initiation for these specimens. It was also shown that some of the poorly machined holes exhibited subsurface initiations rather than initiations at white layer damage. These holes had better surface finish than the poorly machined specimens that did fail at white layer. The mean initiation life of the poorly

  10. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a

  11. Effect of Al-Si Pack Cementation Diffusion Coating on High-Temperature Low-Cycle Fatigue Behavior of Inconel 713LC

    NASA Astrophysics Data System (ADS)

    Mansuri, Mohammadreza; Hadavi, Seyed Mohammad Mehdi; Zare, Esmail

    2016-01-01

    In this research, an Al-Si protective coating was applied on the surface of an IN713LC specimen using pack cementation method. Surface-treated and untreated specimens were exposed to low-cycle fatigue by tension-tension loading under total strain control at 1173 K (900 °C) in air. Based on the obtained results, the hardening/softening, cyclic stress-strain, and fatigue life curves were plotted and analyzed. The results showed that both the single-stage and two-stage coatings improved the fatigue life of the substrate. However, owing to more silicon content of single-stage coating compared to that of two-stage coating, the effect of single-stage coating was superior. The stress response of the treated material was lower compared with the untreated one. Observations of the specimen section and fracture surface examinations were used to analyze fatigue behavior of both coated and uncoated materials.

  12. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  13. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  14. The effectiveness of aerobic training, cognitive behavioural therapy, and energy conservation management in treating MS-related fatigue: the design of the TREFAMS-ACE programme

    PubMed Central

    2013-01-01

    Background TREFAMS is an acronym for TReating FAtigue in Multiple Sclerosis, while ACE refers to the rehabilitation treatment methods under study, that is, Aerobic training, Cognitive behavioural therapy, and Energy conservation management. The TREFAMS-ACE research programme consists of four studies and has two main objectives: (1) to assess the effectiveness of three different rehabilitation treatment strategies in reducing fatigue and improving societal participation in patients with MS; and (2) to study the neurobiological mechanisms of action that underlie treatment effects and MS-related fatigue in general. Methods/Design Ambulatory patients (n = 270) suffering from MS-related fatigue will be recruited to three single-blinded randomised clinical trials (RCTs). In each RCT, 90 patients will be randomly allocated to the trial-specific intervention or to a low-intensity intervention that is the same for all RCTs. This low-intensity intervention consists of three individual consultations with a specialised MS-nurse. The trial-specific interventions are Aerobic Training, Cognitive Behavioural Therapy, and Energy Conservation Management. These interventions consist of 12 individual therapist-supervised sessions with additional intervention-specific home exercises. The therapy period lasts 16 weeks. All RCTs have the same design and the same primary outcome measures: fatigue - measured with the Checklist Individual Strength, and participation - measured with the Impact on Participation and Autonomy questionnaire. Outcomes will be assessed 1 week prior to, and at 0, 8, 16, 26 and 52 weeks after randomisation. The assessors will be blinded to allocation. Pro- and anti-inflammatory cytokines in serum, salivary cortisol, physical fitness, physical activity, coping, self-efficacy, illness cognitions and other determinants will be longitudinally measured in order to study the neurobiological mechanisms of action. Discussion The TREFAMS-ACE programme is unique in its aim to

  15. Brain and behavioural evidence for rest-activity cycles in Octopus vulgaris.

    PubMed

    Brown, Euan R; Piscopo, Stefania; De Stefano, Rosanna; Giuditta, Antonio

    2006-09-25

    Octopus vulgaris maintained under a 12/12h light/dark cycle exhibit a pronounced nocturnal activity pattern. Animals deprived of rest during the light period show a marked 'rebound' in activity in the following 24h. 'Active' octopuses attack faster than 'quiet' animals and brain activity recorded electrically intensifies during 'quiet' behaviour. Thus, in Octopus as in vertebrates, brain areas involved in memory or 'higher' processes exhibit 'off-line' activity during rest periods.

  16. Bithermal low-cycle fatigue behavior of a NiCoCrAlY-coated single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  17. Bithermal Low-Cycle Fatigue Behavior of a NiCoCrAlY-Coated Single Crystal Superalloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.; Halford, G. R.

    1987-01-01

    Specimens of a single crystal superalloy, PWA 1480, both bare and coated with a NiCoCrAlY alloy, PWA 276, were tested in low-cycle fatigue at 650 and 1050 C, and in bithermal thermomechanical fatigue tests. In the two bithermal test types, tensile strain was imposed at one of the two temperatures and reversed in compression at the other. In the high-strain regime, lives for both bithermal test types approached that for the 650 C isothermal test on an inelastic strain basis, all being controlled by the low ductility of the superalloy at 650 C. In the low-strain regime, coating cracking reduced life in the 650 C isothermal test. The bithermal test imposing tension at 650 C, termed out-of-phase, also produced rapid surface cracking, but in both coated and bare specimens. Increased crack growth rates also occurred for the out-of-phase test. Increased lives in vacuum suggested that there is a large environmental contribution to damage in the out-of-phase test due to the 1050 C exposure followed by tensile straining at the low temperature.

  18. Isothermal fatigue behaviour of a (90 deg)8 SiC/Ti-15-3 composite at 426 C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.

    1992-01-01

    The transverse fatigue behavior of a unidirectional SiC/Ti-15-3 composite is characterized at 426 C. The fatigue behavior of this composite along the (0 deg)8 fiber direction and that of unreinforced Ti-15-3 alloy is compared. It is found that the (90 deg)8 composite fatigue life is much shorter than that of the (0 deg)8 composite. The (90 deg)8 fatigue life is much lower than that of the unreinforced Ti-15-3 alloy. Results from 1D model and fractographic evidence for the (90 deg)8 fatigue behavior indicate that the short life of the composite in this orientation is caused by weak fiber-matrix bond strength.

  19. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 1: Narloy Z

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for Narloy Z, a centrifugally cast, copper-base alloy. Tensile tests were performed at room temperature in air and in argon at 482, 538 and 593 C using an axial strain rate of .002/sec to the -1 power. In addition tensile tests were performed at 538 C in an evaluation of tensile properties at strain rates of .004 and .01/sec to the -1 power. Ultimate and yield strength values of about 315 and 200 MN/sq m respectively were recorded at room temperature and these decreased to about 120 and 105 respectively as the temperature was increased to 593 C. Reduction in area values were recorded in the range from 40 to 50% with some indication of a minimum ductility point at 538 C.

  20. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  1. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    NASA Technical Reports Server (NTRS)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  2. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Wang, Yandong; Clausen, Bjorn; Li, Li; Liaw, Peter K; Ice, Gene E; Yang, Dr Ren; Choo, Hahn; Pike, Lee M; Klarstrom, Dwaine L

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  3. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    PubMed

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P < 0.001), rHRIsig (2.25 ± 1.0 to 1.14 ± 0.7 beats · min(-1) · s(-1), P < 0.001) and rHRIexp (3.79 ± 2.07 to 1.98 ± 1.05 beats · min(-1) · s(-1), P = 0.001), and increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P < 0.001). Pre-post run difference in time-trial performance was related to difference in rHRIsig (r = 0.58, P = 0.04 and r = 0.75, P = 0.003) but not rHRIexp (r = -0.04, P = 0.9 and r = 0.27, P = 0.4) when controlling for differences in pre-exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  4. Acute effects of an arginine-based supplement on neuromuscular, ventilatory, and metabolic fatigue thresholds during cycle ergometry.

    PubMed

    Zak, Roksana B; Camic, Clayton L; Hill, Ethan C; Monaghan, Molly M; Kovacs, Attila J; Wright, Glenn A

    2015-04-01

    The purpose of the present study was to examine the effects of an acute dose of an arginine-based supplement on the physical working capacity at the fatigue threshold (PWCFT), lactate threshold (LT), ventilatory threshold (VT), and peak oxygen uptake during incremental cycle ergometry. This study used a double-blinded, placebo-controlled, within-subjects crossover design. Nineteen untrained men (mean age ± SD = 22.0 ± 1.7 years) were randomly assigned to ingest either the supplement (3.0 g of arginine, 300 mg of grape seed extract, and 300 mg of polyethylene glycol) or placebo (microcrystalline cellulose) and performed an incremental test on a cycle ergometer for determination of PWCFT, LT, VT, and peak oxygen uptake. Following a 1-week period, the subjects returned to the laboratory and ingested the opposite substance (either supplement or placebo) prior to completing another incremental test to be reassessed for PWCFT, LT, VT, and peak oxygen uptake. The paired-samples t tests indicated there were significant (P < 0.05) mean differences between the arginine and placebo conditions for the PWCFT (192 ± 42 vs. 168 ± 53 W, respectively) and VT (2546 ± 313 vs. 2452 ± 342 mL·min(-1)), but not the LT (135 ± 26 vs. 138 ± 22 W), absolute peak oxygen uptake (3663 ± 445 vs. 3645 ± 438 mL·min(-1)), or relative peak oxygen uptake (46.5 ± 6.0 vs. 46.2 ± 5.0 mL·kg(-1)·min(-1)). These findings suggested that the arginine-based supplement may be used on an acute basis for delaying the onset of neuromuscular fatigue (i.e., PWCFT) and improving the VT in untrained individuals.

  5. Less is more: standard warm-up causes fatigue and less warm-up permits greater cycling power output.

    PubMed

    Tomaras, Elias K; MacIntosh, Brian R

    2011-07-01

    The traditional warm-up (WU) used by athletes to prepare for a sprint track cycling event involves a general WU followed by a series of brief sprints lasting ≥ 50 min in total. A WU of this duration and intensity could cause significant fatigue and impair subsequent performance. The purpose of this research was to compare a traditional WU with an experimental WU and examine the consequences of traditional and experimental WU on the 30-s Wingate test and electrically elicited twitch contractions. The traditional WU began with 20 min of cycling with a gradual intensity increase from 60% to 95% of maximal heart rate; then four sprints were performed at 8-min intervals. The experimental WU was shorter with less high-intensity exercise: intensity increased from 60% to 70% of maximal heart rate over 15 min; then just one sprint was performed. The Wingate test was conducted with a 1-min lead-in at 80% of optimal cadence followed by a Wingate test at optimal cadence. Peak active twitch torque was significantly lower after the traditional than experimental WU (86.5 ± 3.3% vs. 94.6 ± 2.4%, P < 0.05) when expressed as percentage of pre-WU amplitude. Wingate test performance was significantly better (P < 0.01) after experimental WU (peak power output = 1,390 ± 80 W, work = 29.1 ± 1.2 kJ) than traditional WU (peak power output = 1,303 ± 89 W, work = 27.7 ± 1.2 kJ). The traditional track cyclist's WU results in significant fatigue, which corresponds with impaired peak power output. A shorter and lower-intensity WU permits a better performance. PMID:21551012

  6. Influence of different stimulation frequencies on power output and fatigue during FES-cycling in recently injured SCI people.

    PubMed

    Eser, Prisca C; Donaldson, Nick de N; Knecht, Hans; Stüssi, Edgar

    2003-09-01

    This study investigated whether power output during 30 min sessions of functional electrical stimulation (FES)-cycling can be increased by using stimulation frequencies higher than 30 Hz. The stimulation frequencies of FES-cycling training sessions of 19 recently injured para- and tetraplegics were randomly set at 30, 50, or 60 Hz and power output (PO) was measured continually. The mean PO of the 30 min, the PO of the last minute of each session, and the minimum PO were significantly greater at 60 and 50 Hz than at 30 Hz (ANOVA without cross-product). A 19% and 25% higher mean PO was reached at 50 and 60 Hz, respectively, compared to 30 Hz. The PO of the last minute of each session was almost always higher than the mean PO of the whole session and also higher at higher frequencies, which indicates that no muscle fatigue could be detected in 30 min FES-cycling at any of the tested frequencies.

  7. Mass community cycling events: Who participates and is their behaviour influenced by participation?

    PubMed Central

    Bowles, Heather R; Rissel, Chris; Bauman, Adrian

    2006-01-01

    Background Participation in mass physical activity events may be a novel approach for encouraging inactive or low active adults to trial an active behaviour. The public health applicability of this strategy has not been investigated thoroughly. The purpose of this study to was describe participants in a mass cycling event and examine the subsequent effect on cycling behaviour. Methods A sample of men and women aged 16 years and older (n = 918) who registered online for a mass cycling event reported cycling ability and number of times they rode a bicycle during the month before the event. One month after the event participants completed an online follow-up questionnaire and reported cycling ability, lifestyle physical activity, and number of times they rode a bicycle during the month after the event. McNemar's test was used to examine changes in self-rated cycling ability, and repeated measures mixed linear modeling was used to determine whether average number of monthly bicycle rides changed between pre-event and post-event assessment. Results Participants in the cycling event were predominantly male (72%), 83% rated themselves as competent or regular cyclists, and 68% rated themselves as more active than others of the same sex and age. Half of the survey respondents that rated their cycling ability as low before the event subsequently rated themselves as high one month after the event. Respondents with low pre-event self-rated cycling ability reported an average 4 sessions of bicycle riding the month before the event and an average 6.8 sessions of bicycle riding a month after the event. This increase in average sessions of bicycle riding was significant (p < .0001). Similarly, first-time participants in this particular cycling event significantly increased average sessions of cycling from 7.2 pre-event to 8.9 sessions one month after the event. Conclusion Participants who were novice riders or first time participants significantly increased their number of bicycle

  8. Effect of Solder-Joint Geometry on the Low-Cycle Fatigue Behavior of Sn-xAg-0.7Cu

    NASA Astrophysics Data System (ADS)

    Lee, Hwa-Teng; Huang, Kuo-Chen

    2016-07-01

    Low-cycle fatigue tests of Sn-Ag-Cu (SAC) Pb-free solder joints under fixed displacement were performed to evaluate the influence of Ag content (0-3 wt.%) and solder-joint geometry (barrel and hourglass types) on solder-joint fatigue behavior and reliability. The solder joints were composed of fine particles of Ag3Sn and Cu6Sn5, which aggregated as an eutectic constituent at grain boundaries of the primary β-Sn phase and formed a dense network structure. A decrease in the Ag content resulted in coarsening of the β-Sn and eutectic phases, which, in turn, decreased the strength of the joint and caused earlier failure. Solder joints in the hourglass form exhibited better fatigue performance with longer life than barrel-type joints. The sharp contact angle formed between the solder and the Cu substrate by the barrel-type joints concentrated stress, which compromised fatigue reliability. The addition of Ag to the solder, however, enhanced fatigue performance because of strengthening caused by Ag3Sn formation. The cracks of the barrel-type SAC solder joints originated mostly at the contact corner and propagated along the interfacial layer between the interfacial intermetallic compound (IMC) and solder matrix. Hourglass-type solder joints, however, demonstrated both crack initiation and propagation in the solder matrix (solder mode). The addition of 1.5-2.0 wt.% Ag to SAC solder appears to enhance the fatigue performance of solder joints while maintaining sufficient strength.

  9. Effects of test sample shape and surface production method on the fatigue behaviour of PMMA bone cement.

    PubMed

    Sheafi, E M; Tanner, K E

    2014-01-01

    There is no consensus over the optimal criterion to define the fatigue life of bone cement in vitro. Fatigue testing samples have been made into various shapes using different surface preparation techniques with little attention being paid to the importance of these variations on the fatigue results. The present study focuses on the effect of test sample shape and surface production method on the fatigue results. The samples were manufactured with two cross sectional shapes: rectangular according to ISO 527 and circular according to ASTM F2118. Each shape was produced using two methods: direct moulding of the cement dough and machining from oversized rods. Testing was performed using two different bone cements: SmartSet GHV and DePuy CMW1. At least 10 samples of each category were tested, under fully reversed tension-compression fatigue stress at ±20MPa, to allow for Weibull analysis to compare results. The growth of fatigue cracks was observed by means of the changes in the absorbed energy and apparent modulus. It was found that fatigue crack growth can be altered by the sample shape and production method; however it is also dependent on the chemical composition of the cement. The results revealed that moulded samples, particularly those based on the ASTM F2118 standard, can lead to up to 5.5 times greater fatigue lives compared to the machined samples of the same cement. It is thus essential, when comparing the fatigue results of bone cement, to consider the effect of production method along with the shape of the test sample. PMID:24070780

  10. Thermal fatigue: The impact of the length of time step on the amount of stress cycles

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2013-10-01

    One of the degradation processes in stones and other building materials is caused by cyclic thermal stress. For the determination of the amount and amplitude of the thermal stress cycles may be used numerical simulation. The length of time step during simulation of thermal cycles significantly affected the magnitude and the amount of cycles because the intensity of global solar radiation may vary during the time. The dependence of temperature and stress response of the damaged stone block on the length of time step is described in this paper.

  11. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.

    PubMed

    Islam, Md Nurul; Arai, Yoshio; Araki, Wakako

    2015-02-01

    The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy. The present study also proposes a modified constant cumulative plastic strain method and a PSB damage evolution model to predict the onset of crack growth under block loads.

  12. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    SciTech Connect

    Kibitkin, Vladimir V. Solodushkin, Andrey I. Pleshanov, Vasily S.

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  13. Morphology and behaviour of dinoflagellate chromosomes during the cell cycle and mitosis.

    PubMed

    Bhaud, Y; Guillebault, D; Lennon, J; Defacque, H; Soyer-Gobillard, M O; Moreau, H

    2000-04-01

    The morphology and behaviour of the chromosomes of dinoflagellates during the cell cycle appear to be unique among eukaryotes. We used synchronized and aphidicolin-blocked cultures of the dinoflagellate Crypthecodinium cohnii to describe the successive morphological changes that chromosomes undergo during the cell cycle. The chromosomes in early G(1) phase appeared to be loosely condensed with numerous structures protruding toward the nucleoplasm. They condensed in late G(1), before unwinding in S phase. The chromosomes in cells in G(2) phase were tightly condensed and had a double number of arches, as visualised by electron microscopy. During prophase, chromosomes elongated and split longitudinally, into characteristic V or Y shapes. We also used confocal microscopy to show a metaphase-like alignment of the chromosomes, which has never been described in dinoflagellates. The metaphase-like nucleus appeared flattened and enlarged, and continued to do so into anaphase. Chromosome segregation occurred via binding to the nuclear envelope surrounding the cytoplasmic channels and microtubule bundles. Our findings are summarized in a model of chromosome behaviour during the cell cycle.

  14. High-temperature, low-cycle fatigue of advanced copper-base alloys for rocket nozzles. Part 2: NASA 1.1, Glidcop, and sputtered copper alloys

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1974-01-01

    Short-term tensile and low-cycle fatigue data are reported for five advance copper-base alloys: Sputtered Zr-Cu as received, sputtered Zr-Cu heat-treated, Glidcop AL-10, and NASA alloys 1-1A and 1-1B. Tensile tests were performed in argon at 538 C using an axial strain rate of 0.002/sec. Yield strength and ultimate tensile strength data are reported along with reduction in area values. Axial strain controlled low-cycle fatigue tests were performed in argon at 538C using an axial strain rate of 0.002/sec to define the fatigue life over the range from 100 to 3000 cycles for the five materials studied. It was found that the fatigue characteristics of the NASA 1-1A and NASA 1-1B compositions are identical and represent fatique life values which are much greater than those for the other materials tested. The effect of temperature on NASA 1-1B alloy at a strain rate of 0.002/sec was evaluated along with the effect of strain rates of 0.0004 and 0.01/sec at 538 C. Hold-time data are reported for the NASA 1-1B alloy at 538 C using 5 minute hold periods in tension only and compression only at two different strain range values. Hold periods in tension were much more detrimental than hold periods in compression.

  15. Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Rice, R. C.; Buchheit, R. D.; Roach, D. B.; Porfilio, T. L.

    1976-01-01

    An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study.

  16. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  17. Time-frequency and principal-component methods for the analysis of EMGs recorded during a mildly fatiguing exercise on a cycle ergometer.

    PubMed

    von Tscharner, Vinzenz

    2002-12-01

    Electromyographic signals contain the information on muscle activity and have to be frequently averaged, compared, classified or details need to be extracted. A time-frequency analysis, based on wavelets, was previously presented. The analysis transformed an EMG signal into an EMG-intensity-pattern showing the intensities at any point in time for the frequencies filtered out by the wavelets. The purpose of the present study was:to define and apply a new EMG-pattern-space for the analysis of EMG-intensity-patterns; and to determine the variation of EMG-intensity-patterns while getting mildly fatigued by cycling on a cycle-ergometer. The coordinates spanning the pattern space were principal components of the measured EMG-intensity-patterns. A point in pattern-space thus represented an EMG-intensity-pattern. Fatigue resulted in points moving along a line in pattern space. The line was characterized by an intercept at time 0 and a slope. Thus mild fatigue caused a shift from an initial intensity-pattern representing the intercept to a final intensity-pattern adding gradually larger amounts of the pattern representing the slope. The intensity-pattern of the slope revealed the physiologically important individual strategies for coping with mild fatigue. Changes were observed at different times and at different frequencies during the cycling movement.

  18. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  19. The influence of the muscle fiber pennation angle and innervation zone on the identification of neuromuscular fatigue during cycle ergometry.

    PubMed

    Camic, Clayton L; Housh, Terry J; Hendrix, C Russell; Zuniga, Jorge M; Bergstrom, Haley C; Schmidt, Richard J; Johnson, Glen O

    2011-02-01

    The purpose of the present investigation was to compare the electromyographic (EMG) responses and the estimated physical working capacity at the fatigue threshold (PWC(FT)) values recorded from electrode arrangements placed: (1) parallel to the muscle fiber pennation angle (MFPA), (2) parallel to the long axis of the femur, and (3) over the innervation zone (IZ) during incremental cycle ergometry. Thirteen college-aged males and females (mean age ± SD=22.4 ± 3.4 years) performed an incremental test to exhaustion on a cycle ergometer. A linear electrode array was utilized to determine the MFPA and location of the IZ of the vastus lateralis (VL). For determination of the PWC(FT) values, EMG signals were recorded from three bipolar electrode arrangements at different locations over the VL. The results of a one-way repeated measures ANOVA indicated there were no significant (p<0.05) mean differences in PWC(FT) values among the electrode arrangements (parallel to the MFPA=190 ± 36 W; parallel to the long axis of the femur=194 ± 40 W; and over the IZ=199 ± 51 W) or the EMG amplitude and MPF values at the common power outputs. There were also significant correlations (r=0.75-0.91) among the three electrode arrangements for PWC(FT) values. These findings suggested that the PWC(FT), like absolute EMG amplitude and MPF, is robust to the influence of electrode placement over the IZ as well as the orientation with respect to the MFPA during cycle ergometry.

  20. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganehgheshlaghi, Mohannad

    2014-01-01

    The research results described in this paper presents a new understanding of the behavior of fatigue crack growth in the threshold region. It is believed by some crack growth experts that the ASTM load shedding test method does not produce true or valid threshold properties. The concern involves the observed fanning of threshold region da/dN data plots for some materials in which the low R-ratio data fans out or away from the high R-ratio data. This data fanning or elevation of threshold values is obviously caused by an increase in crack closure in the low R-ratio tested specimens. This increase in crack closure is assumed by some investigators to be caused by a plastic wake on the crack surfaces that was created during the load shedding test phase. This study shows that the increase in crack closure is the result of an extensive occurrence of crack bifurcation behavior in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the particular fanning behavior in aluminum alloys is a function of intrinsic dislocation property of the materials and that the fanned data represents valid material properties. However, for corrosion sensitive steel alloys used in this study the fanning was caused by a build-up of iron oxide at the crack tip from fretting corrosion.

  1. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may also initiate under pure compressive fluctuating loads such as the failures observed in aircraft landing gear frames. However, the mechanism of such failures is rarely investigated. Furthermore, knowledge on cyclic deformation response under pure compressive fatigue condition is also very limited or non-existent. Our recent work already verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack under pure compression fatigue remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed under the same testing conditions. Moreover, unlike conventional tension-compression fatigue, only moderate slip activity was detectable on the surface instead of typical PSB features detected from TEM observations. The surface observations has revealed that surface slip bands did not increase in number nor did they become more pronounced in height with increasing number of cycles. In addition, surface roughening by grain boundary extrusion was detected to become more severe as the cycling progressed. Therefore

  2. Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue

    SciTech Connect

    Konovalov, Sergey Alsaraeva, Krestina Gromov, Victor Semina, Olga; Ivanov, Yurii

    2015-10-27

    By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.

  3. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  4. Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle

    PubMed Central

    López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente

    2013-01-01

    Background Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple Brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a Brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. Methodology/Principal Findings We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a Brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Conclusions/Significance Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of

  5. Daily Social Enjoyment Interrupts the Cycle of Same-day and Next-day Fatigue in Women with Fibromyalgia

    PubMed Central

    Yeung, Ellen W.; Davis, Mary C.; Aiken, Leona S.; Tennen, Howard A.

    2014-01-01

    Background Fatigue is a debilitating symptom of fibromyalgia (FM) that has limited treatment options. Some evidence, however, has linked positive social engagement with reduced within-day fatigue. Purpose This study elaborated longitudinal within-day and across-day relations between FM fatigue and social enjoyment. Methods 176 women with FM completed 21-day automated diaries assessing morning and end-of-day fatigue, and both afternoon social enjoyment and stress within two social domains: non-spousal and spousal. Results In the non-spousal domain, analysis supported a mediational path from lower morning fatigue to higher afternoon social enjoyment, which predicted lower end-of-day fatigue, and subsequently, lower next-morning fatigue. Enjoyment exerted a greater impact on within-day fatigue than did stress. Patterns in the spousal domain were similar, but the mediated path was nonsignificant. Conclusions Positive social engagement offers relief from FM fatigue that carries over across days and may provide an additional target to enhance the effectiveness of current interventions. PMID:25380634

  6. High temperature, low-cycle fatigue of copper-base alloys in argon. Part 1: Preliminary results for 12 alloys at 1000 F (538 C)

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    Short-term tensile evaluations at room temperature and 538 C and low-cycle fatigue evaluations at 538 C are presented for the following materials: Zirconium copper-annealed, Zirconium copper-1/4 hard, Zirconium copper-1/2 hard, Tellurium copper-1/2 hard, Chromium copper-SA and aged, OFHC copper-hard, OFHC copper-1/4 hard, OFHC copper-annealed, Silver-as drawn, Zr-Cr-Mg copper-SA, CW and aged, Electroformed copper-30-35 ksi, and Co-Be-Zr- copper-SA, aged. A total of 50 tensile tests and 76 low-cycle fatigue tests were performed using a strain rate of 0.2 percent per second.

  7. The Effects of Exercise Education Intervention on the Exercise Behaviour, Depression, and Fatigue Status of Chronic Kidney Disease Patients

    ERIC Educational Resources Information Center

    Kao, Yu-Hsiu; Huang, Yi-Ching; Chen, Pei-Ying; Wang, Kuo-Ming

    2012-01-01

    Purpose: The purpose of this paper is to investigate the effects of an exercise education intervention on exercise behavior, depression and fatigue status of chronic kidney disease (CKD) patients. Design/methodology/approach: This was a pilot study using an exercise education program as an intervention for CKD patients. The authors used the…

  8. Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomised trial

    PubMed Central

    White, PD; Goldsmith, KA; Johnson, AL; Potts, L; Walwyn, R; DeCesare, JC; Baber, HL; Burgess, M; Clark, LV; Cox, DL; Bavinton, J; Angus, BJ; Murphy, G; Murphy, M; O'Dowd, H; Wilks, D; McCrone, P; Chalder, T; Sharpe, M

    2011-01-01

    Summary Background Trial findings show cognitive behaviour therapy (CBT) and graded exercise therapy (GET) can be effective treatments for chronic fatigue syndrome, but patients' organisations have reported that these treatments can be harmful and favour pacing and specialist health care. We aimed to assess effectiveness and safety of all four treatments. Methods In our parallel-group randomised trial, patients meeting Oxford criteria for chronic fatigue syndrome were recruited from six secondary-care clinics in the UK and randomly allocated by computer-generated sequence to receive specialist medical care (SMC) alone or with adaptive pacing therapy (APT), CBT, or GET. Primary outcomes were fatigue (measured by Chalder fatigue questionnaire score) and physical function (measured by short form-36 subscale score) up to 52 weeks after randomisation, and safety was assessed primarily by recording all serious adverse events, including serious adverse reactions to trial treatments. Primary outcomes were rated by participants, who were necessarily unmasked to treatment assignment; the statistician was masked to treatment assignment for the analysis of primary outcomes. We used longitudinal regression models to compare SMC alone with other treatments, APT with CBT, and APT with GET. The final analysis included all participants for whom we had data for primary outcomes. This trial is registered at http://isrctn.org, number ISRCTN54285094. Findings We recruited 641 eligible patients, of whom 160 were assigned to the APT group, 161 to the CBT group, 160 to the GET group, and 160 to the SMC-alone group. Compared with SMC alone, mean fatigue scores at 52 weeks were 3·4 (95% CI 1·8 to 5·0) points lower for CBT (p=0·0001) and 3·2 (1·7 to 4·8) points lower for GET (p=0·0003), but did not differ for APT (0·7 [−0·9 to 2·3] points lower; p=0·38). Compared with SMC alone, mean physical function scores were 7·1 (2·0 to 12·1) points higher for CBT (p=0·0068) and 9·4

  9. Management of chronic (post-viral) fatigue syndrome.

    PubMed Central

    Wessely, S; David, A; Butler, S; Chalder, T

    1989-01-01

    Simple rehabilitative strategies are proposed to help patients with the chronic fatigue syndrome. A model is outlined of an acute illness giving way to a chronic fatigue state in which symptoms are perpetuated by a cycle of inactivity, deterioration in exercise tolerance and further symptoms. This is compounded by the depressive illness that is often part of the syndrome. The result is a self-perpetuating cycle of exercise avoidance. Effective treatment depends upon an understanding of the interaction between physical and psychological factors. Cognitive behavioural therapy is suggested. Cognitive therapy helps the patient understand how genuine symptoms arise from the frequent combination of physical inactivity and depression, rather than continuing infection, while a behavioural approach enables the treatment of avoidance behaviour and a gradual return to normal physical activity. PMID:2553945

  10. Effects of hot/wet environments on the fatigue behaviour of composite-to-metal mechanically fastened joints

    SciTech Connect

    Galea, S.C.; Saunders, D.S.

    1993-12-31

    Because of their high strength-to-weight and stiffness-to-weight ratios, carbon fiber reinforced plastic (CFRP) composite laminates are seeing increasing use, especially in the aerospace industry. In composite-to-metal structures the load transfer between various components is undertaken by the use of mechanically fastened or bonded joints. For example, on the F/A-18 aircraft, numerous composite-to-metal mechanically fastened joints are used to transfer loads from the thick composite wing skin to the metal wing ribs and spars. Previous work, undertaken at ARL, has investigated the fatigue of such joints under ambient conditions. It is widely known that the mechanical properties of CFRP laminates generally degrade considerably under hot/wet environments. A similar degradation is expected for mechanically fastened laminates. The aim of this study was to investigate the effects of hot/wet environments on the fatigue behavior of specific mechanically fastened joints. Results showed a marked decrease in the fatigue life of the composite-to-metal mechanically fastened joints under hot/wet environments when compared to lives attained at ambient and under similar load conditions. The major joint failure mode was failure of the fasteners. Other failure modes were compression failure of the 0{degree} ply layers and delamination growth.

  11. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise.

    PubMed

    Sundberg, Christopher W; Bundle, Matthew W

    2015-07-01

    We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9-11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle.

  12. Influence of duty cycle on the time course of muscle fatigue and the onset of neuromuscular compensation during exhaustive dynamic isolated limb exercise

    PubMed Central

    Sundberg, Christopher W.

    2015-01-01

    We investigated the influence of altered muscle duty cycle on the performance decrements and neuromuscular responses occurring during constant-load, fatiguing bouts of knee extension exercise. We experimentally altered the durations of the muscularly inactive portion of the limb movement cycle and hypothesized that greater relative durations of inactivity within the same movement task would 1) reduce the rates and extent of muscle performance loss and 2) increase the forces necessary to trigger muscle fatigue. In each condition (duty cycle = 0.6 and 0.3), male subjects [age = 25.9 ± 2.0 yr (SE); mass = 85.4 ± 2.6 kg], completed 9–11 exhaustive bouts of two-legged knee extension exercise, at force outputs that elicited failure between 4 and 290 s. The novel duty cycle manipulation produced two primary results; first, we observed twofold differences in both the extent of muscle performance lost (DC0.6 = 761 ± 35 N vs. DC0.3 = 366 ± 49 N) and the time course of performance loss. For example, exhaustive trials at the midpoint of these force ranges differed in duration by more than 30 s (t0.6 = 36 ± 2.6 vs. t0.3 = 67 ± 4.3 s). Second, both the minimum forces necessary to exceed the peak aerobic capacity and initiate a reliance on anaerobic metabolism, and the forces necessary to elicit compensatory increases in electromyogram activity were 300% greater in the lower vs. higher duty cycle condition. These results indicate that the fatigue-induced compensatory behavior to recruit additional motor units is triggered by a reliance on anaerobic metabolism for ATP resynthesis and is independent of the absolute level or fraction of the maximum force produced by the muscle. PMID:25876654

  13. Light/dark cycle manipulation influences mice behaviour in the elevated plus maze.

    PubMed

    Clénet, Florence; Bouyon, Eric; Hascoët, Martine; Bourin, Michel

    2006-01-01

    The sensitization of animal models of anxiety is of great importance to detect potential anxiolytic drugs. Our goal was to evaluate the influence of manipulations of the light/dark cycle on the basal anxious behaviour of mice and the efficacy of two anxiolytic treatments in the mouse elevated plus maze (EPM). Male Swiss mice were exposed to different conditions of illumination for one week prior to testing. In the first experiment of the study, we evaluated the anxiolytic effects of diazepam, at the dose of 1 mg/kg, intraperitoneally (i.p.) administered 30 min before the test. In the second experiment, we examined the effects of WAY 100635, a 5-HT(1A) receptor antagonist, at the doses of 0.03 and 2 mg/kg, i.p. administered 30 min before the test. The locomotor activity of control mice and the anxiolytic efficacy of diazepam in the EPM were not affected by manipulation of the light/dark cycle. Conversely, the effects of WAY 100635, which were qualitatively different from those of diazepam, seemed to be influenced by the illumination conditions imposed before the test. We can conclude that diazepam's effect, which is characterized by a strong "disinhibition", was more robust than the 5-HT(1A) antagonist's effect, which was more anxioselective. Moreover, the light conditions imposed on mice before the test may be an important factor in the variability of the response to serotonergic but not to benzodiazepine treatments.

  14. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  15. Frequency-Dependent Low Cycle Fatigue of Sn1Ag0.1Cu(In/Ni) Solder Joints Subjected to High-Frequency Loading

    NASA Astrophysics Data System (ADS)

    Wong, E. H.; Seah, S. K. W.; Shim, V. P. W.

    2014-02-01

    The low-cycle-fatigue characteristics of solder joints, formed by reflowing Sn98.8/Ag1.0/Cu0.1/In0.05/Ni0.02 solder over electroless nickel immersion gold-plated copper pads, were investigated by dynamic cyclic bending of printed circuit boards (PCBs). The PCB strain amplitudes were varied from 1.2 × 10-3 to 2.4 × 10-3 and the flexural frequencies ranged from 30 Hz to 150 Hz, to simulate drop impact-induced PCB resonant frequencies. A trend of drastically decreasing fatigue life with cyclic frequency was observed, in contrast with previous reports indicating the reverse; this is attributed to the different failure mechanisms activated. A systematic procedure involving optimization followed by transformation was used to condense the strain-frequency-life data into a master curve expressed in strain-life space.

  16. Coupled modeling of a directly heated tubular solar receiver for supercritical carbon dioxide Brayton cycle: Structural and creep-fatigue evaluation

    DOE PAGES

    Ortega, Jesus; Khivsara, Sagar; Christian, Joshua; Ho, Clifford; Dutta, Pradip

    2016-06-06

    A supercritical carbon dioxide (sCO2) Brayton cycle is an emerging high energy-density cycle undergoing extensive research due to the appealing thermo-physical properties of sCO2 and single phase operation. Development of a solar receiver capable of delivering sCO2 at 20 MPa and 700 °C is required for implementation of the high efficiency (~50%) solar powered sCO2 Brayton cycle. In this work, extensive candidate materials are review along with tube size optimization using the ASME Boiler and Pressure Vessel Code. Moreover, temperature and pressure distribution obtained from the thermal-fluid modeling (presented in a complementary publication) are used to evaluate the thermal andmore » mechanical stresses along with detailed creep-fatigue analysis of the tubes. For resulting body stresses were used to approximate the lifetime performance of the receiver tubes. A cyclic loading analysis is performed by coupling the Strain-Life approach and the Larson-Miller creep model. The structural integrity of the receiver was examined and it was found that the stresses can be withstood by specific tubes, determined by a parametric geometric analysis. The creep-fatigue analysis display the damage accumulation due to cycling and the permanent deformation on the tubes showed that the tubes can operate for the full lifetime of the receiver.« less

  17. Bithermal fatigue - A link between isothermal and thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Mcgaw, Michael A.; Bill, Robert C.; Fanti, Paolo D.

    1988-01-01

    A technique for bithermal fatigue testing is presented in which the tensile and compressive halves of the cycle are conducted isothermally at two significantly different temperatures. With reference to experimental results obtained for a nickel-base superalloy, B1900 + Hf, it is shown that bithermal fatigue testing is a simple alternative to thermomechanical fatigue and can provide a conservative determination of thermomechanical fatigue life for creep damage dominated failure modes. Bithermal fatigue results can be directly related to thermomechanical fatigue results through the use of an appropriate damage rule.

  18. The cyclic deformation and fatigue behaviour of the low carbon steel SAE 1045 in the temperature regime of dynamic strain aging

    SciTech Connect

    Weisse, M.; Wamukwamba, C.K.; Christ, H.J.; Mughrabi, H. . Inst. fuer Werkstoffwissenschaften)

    1993-07-01

    The cyclic deformation behaviour of normalized SAE 1045 steel (german steel grade Ck 45) had been investigated over a range of temperatures between 20 and 375C. Special attention has been paid to the effects of dynamic strain aging, which are most pronounced around 300C. Different types of deformation tests (tension tests, incremental step tests, and constant amplitude cyclic deformation tests under stress control with a stress amplitude of 400 MPa as well as under plastic strain control with a plastic strain amplitude of 0.5%) were carried out to observe the influence of temperature on the macroscopic mechanical behaviour. These tests were followed by TEM studies on microstructural features. In the temperature range of maximum dynamic strain aging, the material was found to show maximum strength in unidirectional as well as in cyclic deformation tests. While the fatigue life is maximum at the temperature of maximum dynamic strain aging in stress-controlled tests, it is minimum in plastic strain controlled tests. At the temperature of maximum dynamic strain aging around 300C, the dislocations are arranged in dense dislocation tangles and parallel dislocation walls, whereas at room and at higher temperatures (375C) mainly dislocation cell structures are observed.

  19. Family-focused cognitive behaviour therapy versus psycho-education for adolescents with chronic fatigue syndrome: long-term follow-up of an RCT.

    PubMed

    Lloyd, Samantha; Chalder, Trudie; Rimes, Katharine A

    2012-11-01

    The aim of this study was to investigate the long term efficacy of family-focused cognitive behaviour therapy (CBT) compared with psycho-education in improving school attendance and other secondary outcomes in adolescents with chronic fatigue syndrome (CFS). A 24 month follow-up of a randomised controlled trial was carried out. Participants received either 13 one-hour sessions of family-focused CBT or four one-hour sessions of psycho-education. Forty-four participants took part in the follow-up study. The proportion of participants reporting at least 70% school attendance (the primary outcome) at 24 months was 90% in CBT group and 84% in psycho-education group; the difference between the groups was not statistically significant (OR = 1.29, p = 0.80). The proportion of adolescents who had recovered in the family-focused CBT group was 79% compared with 64% in the psycho-education, according to a definition including fatigue and school attendance. This difference was not statistically significant (Fisher's exact test, p = 0.34). Family-focused CBT was associated with significantly better emotional and behavioural adjustment at 24 month follow-up compared to psycho-education, as reported by both adolescents (F = 6.49, p = 0.02) and parents (F = 4.52, P = 0.04). Impairment significantly decreased in both groups between six and 24 month follow-ups, with no significant group difference in improvement over this period. Gains previously observed for other secondary outcomes at six month follow-up were maintained at 24 month follow-up with no further significant improvement or group differences in improvement. In conclusion, gains achieved by adolescents with CFS who had undertaken family-focused CBT and psycho-education generally continued or were maintained at two-year follow-up. The exception was that family-focused CBT was associated with maintained improvements in emotional and behavioural difficulties whereas psycho-education was associated with

  20. Low-cycle fatigue behavior of a nickel-based alloy under combined bending/tension loading

    SciTech Connect

    Julien, D.; Bui-Quoc, T.; Bernard, M.; Saad, N.R.; Nguyen, H.L.

    1999-02-01

    In this paper, the effect of a combined bending/tension loading on the fatigue resistance and on the fatigue crack growth characteristics of a nickel-based alloy at room temperature is studied. For this purpose, a device was specifically designed so that it can be mounted onto a servohydraulic push-pull testing machine. With the device, a simultaneous displacement and rotation of the specimen extremities generate a combined bending/axial stress; the ratio between the bending stress and the axial stress may be specified by adjusting the eccentricity between the specimen axis and the load axis. Stress-controlled fatigue tests were carried out on plate specimens under bending/tension loading with a surface stress ratio of {minus}0.52 (ratio between the maximum cyclic stress on the back face and that on the front face of the specimen). During each test, the fatigue crack length was monitored using two traveling video cameras. The experimental results obtained under bending/tension loading have been analyzed in connection with the data obtained under pure tension loading. In particular, the fatigue crack propagation rate expressed in terms of the stress intensity factor of a crack under combined loading was examined.

  1. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    SciTech Connect

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  2. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  3. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue

    PubMed Central

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522

  4. Movement-Related Cortical Potential Amplitude Reduction after Cycling Exercise Relates to the Extent of Neuromuscular Fatigue.

    PubMed

    Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme

    2016-01-01

    Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10 ± 8%) and the time trial (-21 ± 9%). The voluntary activation level (VAL; -6 ± 8 and -12 ± 10%), peak twitch (Pt; -21 ± 16 and -32 ± 17%), and paired stimuli (P100 Hz; -7 ± 11 and -12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  5. Investigation of Cyclic Deformation and Fatigue of Polycrystalline Cu under Pure Compression Cyclic Loading Conditions

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Yin Jean

    It is commonly accepted that fatigue crack is initiated under tensile fatigue stresses. However, practical examples demonstrate that cracks may initiate under pure compressive fluctuating loads, e.g. the failures observed in aircraft landing gear frames. As the mechanism of such failures is rarely investigated, there is very limited or non-existent knowledge pool on cyclic deformation response under pure compressive fatigue condition. Our recent work verified that fatigue cracks may nucleate from stress concentration sites under pure compression fatigue, but whether or not a form of stress concentration is always needed to initiate a crack remains uncertain. In this study, compression fatigue tests under different peak stresses were carried out on smooth bars of fully annealed OFHC Copper. The purpose of these tests is to investigate not only the cyclic deformation response but also the possibility of crack nucleation without the stress concentrator. Results showed that overall the cyclic stress-strain response and microstructural evolution of OFHC Copper under pure compression fatigue exhibits rather dissimilar behaviour compared to those under symmetrical fatigue. The specimens hardened rapidly within 10 cycles under pure compression fatigue unlike the gradual cyclic hardening behaviour in symmetrical fatigue with the same peak stress amplitude. Compressive cyclic creep behaviour was also observed. Moreover, TEM observation showed that only moderate slip activity was detectable on the surface instead of typical PSB features. The surface observations revealed that surface slip bands did not increase in number nor height as cycling progressed. In addition, surface roughening by grain boundary extrusion was detected to become more severe with further cycling. Therefore, the plastic strain accommodated within the samples was not mainly related to dislocation activities. Instead, the mechanism of cyclic creep response for pure compression fatigue was correlated and

  6. Probabilistic Failure Assessment For Fatigue

    NASA Technical Reports Server (NTRS)

    Moore, Nicholas; Ebbeler, Donald; Newlin, Laura; Sutharshana, Sravan; Creager, Matthew

    1995-01-01

    Probabilistic Failure Assessment for Fatigue (PFAFAT) package of software utilizing probabilistic failure-assessment (PFA) methodology to model high- and low-cycle-fatigue modes of failure of structural components. Consists of nine programs. Three programs perform probabilistic fatigue analysis by means of Monte Carlo simulation. Other six used for generating random processes, characterizing fatigue-life data pertaining to materials, and processing outputs of computational simulations. Written in FORTRAN 77.

  7. An analysis of the deformation approach to calculation of the life of hydrogen impregnated 1Kh16N4B steel in low-cycle fatigue

    SciTech Connect

    Litvin, V.V.; Anan'evskii, V.A.; Mints, A.I.

    1986-01-01

    This paper presents the results of experimental investigations and an analysis of the applicability of the deformation approach for calculation of the life of 1Kh16N4B steel in low-cycle fatigue. Hydrogen impregnation was done with use of cathodic polarization in a special cell with a polarization current density of 35 mA/cm/sup 2/ for 60 min. The test results are presented, and it can be seen that the influence of hydrogen absorption significantly changes the life of 1Kh16N4B steel, but the Coffin-Kavomoto criterion does not give satisfactory results.

  8. Behaviour of polycyclic aromatic hydrocarbons (PAH) in soils under freeze-thaw cycles

    NASA Astrophysics Data System (ADS)

    Zschocke, Anne; Schönborn, Maike; Eschenbach, Annette

    2010-05-01

    The arctic region will be one of the most affected regions by climate change due to the predicted temperature rise. As a result of anthropogenic actions as mining, exploration and refining as well as atmospheric transport pollutions can be found in arctic soils. Therefore questions on the behaviour of organic contaminants in permafrost influenced soils are of high relevance. First investigations showed that permafrost can act as a semi-permeable layer for PAH (Curtosi et al., 2007). Therefore it can be assumed that global warming could result in a mobilization of PAH in these permafrost influenced soils. On the other hand a low but detectable mineralization of organic hydrocarbons by microorganisms under repeated freeze-thaw cycles was analysed (Börresen et al. 2007, Eschenbach et al. 2000). In this study the behaviour and distribution of PAH under freezing and periodically freezing and thawing were investigated in laboratory column experiments with spiked soil materials. Two soil materials which are typical for artic regions, a organic matter containing melt water sand and a well decomposed peat, were homogeneously spiked with a composite of a crude oil and the PAH anthracene and benzo(a)pyrene. After 14days preincubation time the soil material was filled in the laboratory columns (40cm high and 10 cm in diameter). Based on studies by Chuvilin et al. (2001) the impact of freezing of the upper third of the column from the surface downwards was examined. The impact of freezing was tested in two different approaches the first one with a single freezing step and the second one with a fourfold repeated cycle of freezing and thawing which takes about 6 or 7 days each. The experimental design and very first results will be shown and discussed. In some experiments with the peat a higher concentration of anthracene and benzo(a)pyrene could be detected below the freezing front in the unfrozen part of the column. Whereas the concentration of PAH had slightly decreased in

  9. A randomised trial of adaptive pacing therapy, cognitive behaviour therapy, graded exercise, and specialist medical care for chronic fatigue syndrome (PACE): statistical analysis plan

    PubMed Central

    2013-01-01

    Background The publication of protocols by medical journals is increasingly becoming an accepted means for promoting good quality research and maximising transparency. Recently, Finfer and Bellomo have suggested the publication of statistical analysis plans (SAPs).The aim of this paper is to make public and to report in detail the planned analyses that were approved by the Trial Steering Committee in May 2010 for the principal papers of the PACE (Pacing, graded Activity, and Cognitive behaviour therapy: a randomised Evaluation) trial, a treatment trial for chronic fatigue syndrome. It illustrates planned analyses of a complex intervention trial that allows for the impact of clustering by care providers, where multiple care-providers are present for each patient in some but not all arms of the trial. Results The trial design, objectives and data collection are reported. Considerations relating to blinding, samples, adherence to the protocol, stratification, centre and other clustering effects, missing data, multiplicity and compliance are described. Descriptive, interim and final analyses of the primary and secondary outcomes are then outlined. Conclusions This SAP maximises transparency, providing a record of all planned analyses, and it may be a resource for those who are developing SAPs, acting as an illustrative example for teaching and methodological research. It is not the sum of the statistical analysis sections of the principal papers, being completed well before individual papers were drafted. Trial registration ISRCTN54285094 assigned 22 May 2003; First participant was randomised on 18 March 2005. PMID:24225069

  10. Thermal Cycling Fatigue in DIPs Mounted with Eutectic Tin-Lead Solder Joints in Stub and Gullwing Geometries

    NASA Technical Reports Server (NTRS)

    Winslow, J. W.; Silveira, C. de

    1993-01-01

    It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.

  11. A limit-cycle model of leg movements in cross-country skiing and its adjustments with fatigue.

    PubMed

    Cignetti, F; Schena, F; Mottet, D; Rouard, A

    2010-08-01

    Using dynamical modeling tools, the aim of the study was to establish a minimal model reproducing leg movements in cross-country skiing, and to evaluate the eventual adjustments of this model with fatigue. The participants (N=8) skied on a treadmill at 90% of their maximal oxygen consumption, up to exhaustion, using the diagonal stride technique. Qualitative analysis of leg kinematics portrayed in phase planes, Hooke planes, and velocity profiles suggested the inclusion in the model of a linear stiffness and an asymmetric van der Pol-type nonlinear damping. Quantitative analysis revealed that this model reproduced the observed kinematics patterns of the leg with adequacy, accounting for 87% of the variance. A rising influence of the stiffness term and a dropping influence of the damping terms were also evidenced with fatigue. The meaning of these changes was discussed in the framework of motor control.

  12. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  13. The analysis of fatigue crack growth mechanism and oxidation and fatigue life at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1988-01-01

    Two quantitative models based on experimentally observed fatigue damage processes have been made: (1) a model of low cycle fatigue life based on fatigue crack growth under general-yielding cyclic loading; and (2) a model of accelerated fatigue crack growth at elevated temperatures based on grain boundary oxidation. These two quantitative models agree very well with the experimental observations.

  14. Fatigue and thermal fatigue of Pb-Sn solder joints

    SciTech Connect

    Frear, D.; Grivas, D.; McCormack, M.; Tribula, D.; Morris, J.W. Jr.

    1987-01-01

    This paper presents a fundamental investigation of the fatigue and thermal fatigue characteristics, with an emphasis on the microstructural development during fatigue, of Sn-Pb solder joints. Fatigue tests were performed in simple shear on both 60Sn-40Pb and 5Sn-95Pb solder joints. Isothermal fatigue tests show increasing fatigue life of 60Sn-40Pb solder joints with decreasing strain and temperature. In contrast, such behavior was not observed in the isothermal fatigue of 5Sn-95Pb solder joints. Thermal fatigue results on 60Sn-40Pb solder cycled between -55/sup 0/C and 125/sup 0/C show that a coarsened region develops in the center of the joint. Both Pb-rich and Sn-rich phases coarsen, and cracks form within these coarsened regions. The failure mode 60Sn-40Pb solder joints in thermal and isothermal fatigue is similar: cracks form intergranularly through the Sn-rich phase or along Sn/Pb interphase boundaries. Extensive cracking is found throughout the 5Sn-95Pb joint for both thermal and isothermal fatigue. In thermal fatigue the 5Sn-95Pb solder joints failed after fewer cycles than 60Sn-40Pb.

  15. Bithermal fatigue: A simplified alternative to thermomechanical fatigue

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.

    1988-01-01

    A bithermal fatigue test technique was proposed as a simplified alternative to the thermomechanical fatigue test. Both the thermomechanical cycle and the bithermal technique can be used to study nonisothermal fatigue behavior. The difference between the two cycles is that in a conventional thermomechanical fatigue cycle the temperature is continuously varied concurrently with the applied mechanical strains, but in the bithermal fatigue cycle the specimen is held at zero load during the temperature excursions and all the loads are applied at the two extreme temperatures of the cycle. Experimentally, the bithermal fatigue test technique offers advantages such as ease in synchronizing the temperature and mechanical strain waveforms, in minimizing temperature gradients in the specimen gauge length, and in reducing and interpreting thermal fatigue such as the influence of alternate high and low temperatures on the cyclic stress-strain response characteristics, the effects of thermal state, and the possibility of introducing high- and low-temperature deformation mechanisms within the same cycle. The bithermal technique was used to study nonisothermal fatigue behavior of alloys such as single-crystal PWA 1480, single-crystal Rene N4, cast B1900+Hf, and wrought Haynes 188.

  16. Low-cycle Fatigue and Dynamic Fracture in Gold Thin Films on SiN Supported Membranes

    NASA Technical Reports Server (NTRS)

    Hays, C. C.; Newell, J. M.; MacNeal, P. D.; Ruiz, R. P.; Holmes, W. A.; Yun, M.; Mulder, J. L.; Koch, T. C.; Bock, J. J.; Lange, A. E.

    2005-01-01

    This slide presentation focuses on the dynamic mechanical response and fatigue behavior in sub-micron thick Au-films deposited onto amorphous Si(sub X)N(sub y) substrates, with spider-web geometry, that were subjected to forced vibration (3-axis random vibration with 2 kHz roll-off frequency). The work is to advance cyrogenic detectors that can operate at 100mK, that is required to create cryogenic detectors that are to search for present day signatures of the big bang.

  17. Effect of boron on the low-cycle fatigue behavior and deformation structure of INCONEL 718 at 650 °C

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Chaturvedi, M. C.; Chen, D. L.

    2004-11-01

    Symmetrical push-pull low-cycle fatigue (LCF) tests were performed on INCONEL 718 (IN718) containing 12, 29, 60, and 100 ppm B at 650 °C. The results showed that all the alloys experienced a relatively short period of initial cyclic hardening at low strain amplitudes, followed by a regime of saturation or slightly continuous cyclic softening. The initial cyclic hardening phase decreased with increasing strain amplitudes, and disappeared at the high strain amplitudes. A serrated flow was observed in the plastic regions of cyclic stress-strain hysteresis loops. The saturated cyclic stress amplitude at a given strain amplitude was highest for the alloy with 60 ppm B, and lowest for the alloy with 12 ppm B. The LCF lifetime increased with increasing B concentration up to 60 ppm, and then decreased as the B content increased from 60 to 100 ppm. Fractographic analysis suggested that the fracture mode changed from intergranular to transgranular cracking as the B concentration increased. The characteristic deformation microstructures produced by LCF tests at 650 °C, examined via transmission electron microscopy, were regularly spaced arrays of planar deformation bands on {111} slip planes in all four alloys. A ladderlike structure was observed in some local regions in the alloy with 12 ppm B. Heavily deformed planar deformation bands were observed in the fatigued specimens with 100 ppm B. The mechanism of improvement in the LCF life of IN718 due to B addition is discussed.

  18. Effec of high-temperature decomposition of the solid solution on the low-cycle fatigue resistance of semifinished products made of aluminum alloy 1163

    SciTech Connect

    Teleshov, V.V.; Kuzginov, V.I.; Golovleva, A.P.

    1995-11-01

    The surface of anodized parts made of 1163T aluminum alloy that are produced by mechanical treatment of large pressed or rolled semifinished products exhibits dark regions. These regions have a higher electrical conductivity {gamma} than the rest of the anodized surface, colored light-yellow. Some authors explain the appearance of the dark stains by high-temperature decomposition of the solid solution, which is initiated by secondary heating of these surface regions due to the heat of surrounding volumes in random interruptions of the cooling process. The aim of the present work is to refine the dependence of {gamma}on the endurance in tests for low-cycle fatigue of specimens from semifinished products made of 1163 alloy in order to establish the intensity of the decrease of the endurance and the admissible increase of {gamma} in the region of dark stains.

  19. NEUTRON-DIFFRACTION STUDY ON PLASTIC BEHAVIOR OF A NICKEL-BASED ALLOY UNDER THE MONOTONIC-TENSION AND THE LOW-CYCLE-FATIGUE EXPERIMENTS

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Wang, Yandong; Yang, Dr Ren; Li, Li; Choo, Hahn; Liaw, Peter K

    2007-01-01

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  20. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  1. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis. PMID:26306846

  2. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    PubMed

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.

  3. Effect of L-ornithine hydrochloride ingestion on intermittent maximal anaerobic cycle ergometer performance and fatigue recovery after exercise.

    PubMed

    Demura, Shinichi; Morishita, Koji; Yamada, Takayoshi; Yamaji, Shunsuke; Komatsu, Miho

    2011-11-01

    L-Ornithine plays an important role in ammonia metabolism via the urea cycle. This study aimed to examine the effect of L-ornithine hydrochloride ingestion on ammonia metabolism and performance after intermittent maximal anaerobic cycle ergometer exercise. Ten healthy young adults (age, 23.8 ± 3.9 year; height, 172.3 ± 5.5 cm; body mass, 67.7 ± 6.1 kg) with regular training experience ingested L-ornithine hydrochloride (0.1 g/kg, body mass) or placebo after 30 s of maximal cycling exercise. Five sets of the same maximal cycling exercise were conducted 60 min after ingestion, and maximal cycling exercise was conducted after a 15 min rest. The intensity of cycling exercise was based on each subject's body mass (0.74 N kg(-1)). Work volume (watt), peak rpm (rpm) before and after intermittent maximal ergometer exercise and the following serum parameters were measured before ingestion, immediately after exercise and 15 min after exercise: ornithine, ammonia, urea, lactic acid and glutamate. Peak rpm was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion. Serum ornithine level was significantly greater with L-ornithine hydrochloride ingestion than with placebo ingestion immediately and 15 min after intermittent maximal cycle ergometer exercise. In conclusion, although maximal anaerobic performance may be improved by L-ornithine hydrochloride ingestion before intermittent maximal anaerobic cycle ergometer exercise, the above may not depend on increase of ammonia metabolism with L-ornithine hydrochloride.

  4. Probabilistic Fatigue Damage Program (FATIG)

    NASA Technical Reports Server (NTRS)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  5. Temperature dependence of liquid metal embrittlement susceptibility of a modified 9Cr-1Mo steel under low cycle fatigue in lead-bismuth eutectic at 160-450 °C

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Marmy, Pierre; Qin, Ling; Verlinden, Bert; Wevers, Martine; Seefeldt, Marc

    2016-01-01

    Low cycle fatigue properties of a 9Cr-1Mo ferritic-martensitic steel (T91) have been tested in a low oxygen concentration (LOC) lead-bismuth eutectic (LBE) environment and in vacuum at 160-450 °C. The results show a clear fatigue endurance "trough" in LOC LBE, while no such a strong temperature dependence of the fatigue endurance is observed when the steel is tested in vacuum. The fractographic observations by means of scanning electron microscopy (SEM) show that ductile microdimples are prevalent on the fracture surfaces of the specimens tested in vacuum, whereas the fracture surfaces produced in LOC LBE at all the temperatures are characterized by quasi-cleavage. Interestingly, using electron backscatter diffraction (EBSD), martensitic laths close to the fatigue crack walls or to the fracture surfaces of the specimens tested in vacuum are found to have transformed into very fine equiaxed subgrains. Nevertheless, such microstructural modifications do not happen to the specimens tested in LOC LBE at 160-450 °C. These interesting microstructural distinctions indicate that liquid metal embrittlement (LME) is able to occur throughout the fatigue crack propagation phase in the full range of the temperatures investigated, i.e. LME is not very sensitive to temperature during the fatigue crack propagation.

  6. A microstructural study of creep and thermal fatigue deformation in 60Sn-40Pb solder joints

    SciTech Connect

    Tribula, D.

    1990-06-02

    Thermal fatigue failures of solder joints in electronic devices often arise from cyclic shear strains imposed by the mismatched thermal expansion coefficients of the materials that bind the joint as temperature changes are encountered. Increased solder joint reliability demands a fundamental understanding of the metallurigical mechanisms that control the fatigue to design accurate accelerated probative tests and new, more fatigue resistant solder alloys. The high temperatures and slow strain rates that pertain to thermal fatigue imply that creep is an important deformation mode in the thermal fatigue cycle. In this work, the creep behaviour of a solder joint is studied to determine the solder's microstructural response to this type of deformation and to relate this to the more complex problem of thermal fatigue. It is shown that creep failures arise from the inherent inhomogeneity and instability of the solder microstructure and suggest that small compositional changes of the binary near-eutectic Pn-Sn alloy may defeat the observed failure mechanisms. This work presents creep and thermal fatigue data for several near-eutectic Pb-Sn solder compositions and concludes that a 58Sn-40Pb-2In and a 58Sn-40Pb-2Cd alloy show significantly enhanced fatigue resistance over that of the simple binary material. 80 refs., 33 figs., 1 tab.

  7. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  8. High temperature low cycle fatigue mechanisms for nickel base and a copper base alloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Shih, C. I.

    1982-01-01

    Damage mechanisms were studied in Rene' 95 and NARloy Z, using optical, scanning and transmission in microscopy. In necklace Rene' 95, crack initiation was mainly associated with cracking of surface MC carbides, except for hold time tests at higher strain ranges where initiation was associated more with a grain boundary mechanism. A mixed mode of propagation with a faceted fracture morphology was typical for all cycle characters. The dependence of life on maximum tensile stress can be demonstrated by the data falling onto three lines corresponding to the three tensile hold times, in the life against maximum tensile stress plot. In NARloy Z, crack initiation was always at the grain boundaries. The mode of crack propagation depended on the cycle character. The life decreased with decreasing strain rate and with tensile holds. In terms of damage mode, different life prediction laws may be applicable to different cycle characters.

  9. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    SciTech Connect

    Miura, N.; Fujioka, T.; Kashima, K.

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  10. Microstructural effects on the room and elevated temperature low cycle fatigue behavior of Waspaloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.

    1982-01-01

    Longitudinal specimens of Waspaloy containing either coarse grains with small gamma or fine grains with large gamma were tested in air at a frequency of 0.33 Hz or 0.50 Hz. The coarse grained structures exhibited planar slip on (III) planes and precipitate shearing at all temperatures. Cracks initiated by a Stage 1 mechanism and propagated by a striation forming mechanism. At 700 C and 800 C, cleavage and intergranular cracking were observed. Testing at 500 C, 700 C, and 800 C caused precipitation of grain boundary carbides. At 700 C, carbides precipitated on slip bands. The fine grained structures exhibited planar slip on (111) planes. Dislocations looped the large gamma precipitates. This structure led to stress saturation and propagation was observed. Increasing temperatures resulted in increased specimen oxidation for both heat treatments. Slip band and grain boundary oxidation were observed. At 800 C, oxidized grain boundaries were cracked by intersecting slip bands which resulted in intergranular failure. The fine specimens had crack initiation later in the fatigue life, but with more rapid propagation crack propagation.

  11. Thermal shock cycling effect on the compressive behaviour of human teeth.

    PubMed

    Papanicolaou, G C; Kouveliotis, G; Nikolopoulou, F; Papaefthymiou, K P; Bairami, V; Portan, D V

    2015-02-26

    All ceramic veneers are a common choice that both dentists and patients make for anterior restorations. In the framework of the present study the residual compressive behavior of the above mentioned complex structures after being thermally shock cycled was investigated. An exponential decrease in both compressive stiffness and strength with the thermal shock cycle number was observed. Experimental findings were in good agreement with predicted values. Photomicrographs obtained revealed a different failure mechanism for the pristine and cycled teeth, which is indicative of the susceptible nature of restored teeth to thermal shock. A two-dimensional finite element model designed gave a better insight upon the stress fields in response of thermal or mechanical loadings developed in the oral cavity.

  12. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  13. Fatigue of fiberglass beam substructures

    SciTech Connect

    Mandell, J.F.; Combs, D.W.; Samborsky, D.D.

    1995-09-01

    Composite material beams representative of wind turbine blade substructure have been designed, fabricated, and tested under constant amplitude flexural fatigue loading. Beam stiffness, strength, and fatigue life are predicted based on detailed finite element analysis and the materials fatigue database developed using standard test coupons and special high frequency minicoupons.Beam results are in good agreement with predictions when premature adhesive and delamination failures are avoided in the load transfer areas. The results show that fiberglass substructures can be designed and fabricated to withstand maximum strain levels on the order of 8,000 microstrain for about 10{sup 6} cycles with proper structural detail design and the use of fatigue resistant laminate constructions. The study also demonstrates that the materials fatigue database and accurate analysis can be used to predict the fatigue life of composite substructures typical of blades.

  14. Studies of Microtexture and Its Effect on Tensile and High-Cycle Fatigue Properties of Laser-Powder-Deposited INCONEL 718

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Azer, Magdi; Deal, Andrew

    2012-11-01

    The current work studies the microstructure, texture, and mechanical properties of INCONEL 718 alloy (IN718) produced by laser direct metal deposition. The grain microstructure exhibits an alternative distribution of banded fine and coarse grain zones as a result of the rastering scanning pattern. The effects of the anisotropic crystallographic texture on the tensile and high-cycle fatigue (HCF) properties at room temperature are investigated. Tensile test results showed that the tensile strength of laser-deposited IN718 after direct aging or solution heat treatment is equivalent to the minimum-forged IN718 properties. The transverse direction (relative to the laser scanning direction) produces >10 pct stiffer modulus of elasticity but 3 to 6 pct less tensile strength compared to the longitudinal direction due to the preferential alignment of grains having <111> and <100> directions parallel to the tensile loading direction. Laser-deposited IN718 with good metallurgical integrity showed equivalent HCF properties compared to the direct-aged wrought IN718, which can be attributed to the banded grain size variation and cyclic change of inclining grain orientations resulted from alternating rastering deposition path.

  15. Resonant-like behaviour during edge-localised mode cycles in the Joint European Torus

    SciTech Connect

    Webster, A. J.; Morris, J.; Todd, T. N.; Coad, P.; Brezinsek, S.; Likonen, J.; Rubel, M.; Collaboration: JET-EFDA Contributors

    2015-08-15

    A unique sequence of 120 almost identical plasmas in the Joint European Torus (JET) recently provided two orders of magnitude more statistically equivalent data than ever previously available. The purpose was to study movement of eroded plasma-facing material from JET's new Beryllium wall, but it has allowed the statistical detection of otherwise unobservable phenomenon. This includes a sequence of resonant-like waiting times between edge-localised plasma instabilities (ELMs), instabilities that must be mitigated or avoided in large magnetically confined plasmas such as those planned for ITER. Here, we investigate the cause of this phenomenon, using the unprecedented quantity of data to produce a detailed picture of the plasma's behaviour. After combining the data, oscillations are clearly observable in the plasma's vertical position, in edge losses of ions, and in Beryllium II (527 nm) light emissions. The oscillations are unexpected, are not obvious in data from a single pulse alone, and are all clearly correlated with each other. They are likely to be caused by a small vertical oscillation that the plasma control system is not reacting to prevent, but a more complex explanation is possible. The clearly observable but unexpected link between small changes in the plasma's position and changes to edge-plasma transport and stability suggest that these characteristics cannot always be studied in isolation. It also suggests new opportunities for ELM mitigation and control that may exist.

  16. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

    NASA Astrophysics Data System (ADS)

    Shaha, S. K.; Czerwinski, F.; Kasprzak, W.; Friedman, J.; Chen, D. L.

    2015-07-01

    High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

  17. High Speed Research Program Sonic Fatigue

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul

    2005-01-01

    The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.

  18. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  19. Effects of two neuromuscular fatigue protocols on landing performance.

    PubMed

    James, C Roger; Scheuermann, Barry W; Smith, Michael P

    2010-08-01

    The purpose of the study was to investigate the effects of two fatigue protocols on landing performance. A repeated measures design was used to examine the effects of fatigue and fatigue protocol on neuromuscular and biomechanical performance variables. Ten volunteers performed non-fatigued and fatigued landings on two days using different fatigue protocols. Repeated maximum isometric squats were used to induce fatigue on day one. Sub-maximum cycling was used to induce fatigue on day two. Isometric squat maximum voluntary contraction (MVC) was measured before and after fatigued landings on each day. During the landings, ground reaction force (GRF), knee kinematics, and electromyographic (EMG) data were recorded. Isometric MVC, GRF peaks, loading rates, impulse, knee flexion at contact, range of motion, max angular velocity, and EMG root mean square (RMS) values were compared pre- and post-fatiguing exercise and between fatigue protocols using repeated ANOVA. Fatigue decreased MVC strength (p0.05), GRF second peak, and initial impulse (p0.01), but increased quadriceps medium latency stretch reflex EMG activity (p0.012). Knee flexion at contact was 5.2 degrees greater (p0.05) during fatigued landings following the squat exercise compared to cycling. Several variables exhibited non-significant but large effect sizes when comparing the effects of fatigue and fatigue protocol. In conclusion, fatigue alters landing performance and different fatigue protocols result in different performance changes.

  20. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  1. A crystal plasticity-based study of the relationship between microstructure and ultra-high-cycle fatigue life in nickel titanium alloys

    DOE PAGES

    Moore, John A.; Frankel, Dana; Prasannavenkatesan, Rajesh; Domel, August G.; Olson, Gregory B.; Liu, Wing Kam

    2016-06-06

    Nickel Titanium (NiTi) alloys are often used in biomedical devices where failure due to mechanical fatigue is common. For other alloy systems, computational models have proven an effective means of determining the relationship between microstructural features and fatigue life. This work will extend the subset of those models which were based on crystal plasticity to examine the relationship between microstructure and fatigue life in NiTi alloys. It will explore the interaction between a spherical inclusion and the material’s free surface along with several NiTi microstructures reconstructed from 3D imaging. This work will determine the distance at which the free surfacemore » interacts with an inclusion and the effect of applied strain of surface-inclusion interaction. The effects of inclusion-inclusion interaction, matrix voiding, and matrix strengthening are explored and ranked with regards to their influence on fatigue life.« less

  2. Failure Mechanisms During Isothermal Fatigue of SiC/Ti-24Al-11Nb Composites

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Bartolotta, P. A.

    1995-01-01

    Failure mechanisms during isothermal fatigue of unidirectional SiC/Ti-24Al-11Nb (at.%) composites have been determined by microstructural analysis of samples from tests interrupted prior to the end of life and from tests conducted to failure. Specimens from three regions of life were examined based on the maximum strain from a fatigue life diagram: Region 1 (high strain), Region 2 (mid-strain) and Region 3 (low strain). Crack lengths were also measured from interrupted samples and compared based on temperature (23-815 C), region of life and numbers of cycles. Region 1 was controlled by fiber-dominated failure. A transition zone was observed between Regions 1 and 2 due to competition between failure mechanisms. Failure in Region 2 was generally described as surface-initiated cracking with varying amounts of fiber bridging. However, the specific descriptions of crack propagation through the fibers and matrix varied with strain and temperature over this broad region. Region 3 exhibited endurance behaviour at 23 C with no cracking after lO(exp 6) cycles. However at 425 C, surface-initiated cracking was observed after 10(exp 6) cycles with fractured fibers in the crack wake. If endurance behaviour exists for conditions of isothermal fatigue in air at temperatures of greater than or equal to 425 C, it may only be found at very low strains and at greater than 10(exp 6) cycles.

  3. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  4. Multiscale Fatigue Life Prediction for Composite Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Arnold, Steven M.

    2012-01-01

    Fatigue life prediction capabilities have been incorporated into the HyperSizer Composite Analysis and Structural Sizing Software. The fatigue damage model is introduced at the fiber/matrix constituent scale through HyperSizer s coupling with NASA s MAC/GMC micromechanics software. This enables prediction of the micro scale damage progression throughout stiffened and sandwich panels as a function of cycles leading ultimately to simulated panel failure. The fatigue model implementation uses a cycle jumping technique such that, rather than applying a specified number of additional cycles, a specified local damage increment is specified and the number of additional cycles to reach this damage increment is calculated. In this way, the effect of stress redistribution due to damage-induced stiffness change is captured, but the fatigue simulations remain computationally efficient. The model is compared to experimental fatigue life data for two composite facesheet/foam core sandwich panels, demonstrating very good agreement.

  5. Cumulative creep fatigue damage in 316 stainless steel

    NASA Technical Reports Server (NTRS)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  6. Understanding the nano- and macromechanical behaviour, the failure and fatigue mechanisms of advanced and natural polymer fibres by Raman/IR microspectrometry

    NASA Astrophysics Data System (ADS)

    Colomban, Philippe

    2013-03-01

    The coupled mechanical and Raman/infrared (IR) analysis of the (nano)structure and texture of synthetic and natural polymer fibres (polyamides (PA66), polyethylene terephthalate (PET), polypropylene (PP), poly(paraphenylene benzobisoxazole) (PBO), keratin/hair, Bombyx mori, Gonometa rufobrunea/postica Antheraea/Tussah silkworms and Nephila Madagascarensis spider silks) is applied so as to differentiate between crystalline and amorphous macromolecules. Bonding is very similar in the two cases but a broader distribution of conformations is observed for the amorphous macromolecules. These conclusions are then used to discuss the modifications induced by the application of a tensile or compressive stress, including the effects of fatigue. Detailed attention is paid to water and the inter-chain coupling for which the importance of hydrogen bonding is reconsidered. The significant role of the ‘amorphous’ bonds/domains in the process of fracture/fatigue is shown. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2012, 30 October-2 November 2012, Ha Long, Vietnam.

  7. Variation in numbers and behaviour of waders during the tidal cycle: implications for the use of estuarine sediment flats

    NASA Astrophysics Data System (ADS)

    Granadeiro, José P.; Dias, Maria P.; Martins, Ricardo C.; Palmeirim, Jorge M.

    2006-05-01

    Estuarine sediment flats are essential feeding areas for waders, but their exploitation is constrained by the movements of tides. In this cyclic environment the exposure period of sediment flats decreases several fold from upper to lower flats, and the moving tidal waterline briefly creates particular conditions for waders and their prey. This study attempts to determine how the exposure period and the movement of the tide line influence the use of space and food resources by waders across the sediment flats. Wader counts and observations of feeding behaviour were carried out in all phases of the tidal cycle, in plots forming a transect from upper to lower flats, thus representing a gradient of exposure periods. Pecking, prey intake, and success rates varied little along the gradient. Some species actively followed the tide line while foraging, whereas others are evenly spread over the exposed flats. Black-tailed Godwit, Dunlin and Avocet were 'tide followers', whereas Grey Plover, Redshank and Bar-tailed Godwit were 'non-followers'. Densities of 'followers' near the tide line were up to five times higher than elsewhere. Species differed markedly in the way they used space on the flats, but in general the rate of biomass acquisition (in grams of ash-free dry weight per time exposed) was much higher in lower flats. However, this preference was insufficient to counter the much longer exposure of the upper flats, so the total amount of biomass consumed on the latter was greater. Therefore, it was in these upper flats that waders fulfilled most of their energetic needs. Consequently, upper flats are of particular importance for the conservation of wader assemblages, but because they are usually closer to shore they tend to suffer the highest pressure from disturbance and land reclamation.

  8. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  9. Mental fatigue: costs and benefits.

    PubMed

    Boksem, Maarten A S; Tops, Mattie

    2008-11-01

    A framework for mental fatigue is proposed, that involves an integrated evaluation of both expected rewards and energetical costs associated with continued performance. Adequate evaluation of predicted rewards and potential risks of actions is essential for successful adaptive behaviour. However, while both rewards and punishments can motivate to engage in activities, both types of motivated behaviour are associated with energetical costs. We will review findings that suggest that the nucleus accumbens, orbitofrontal cortex, amygdala, insula and anterior cingulate cortex are involved evaluating both the potential rewards associated with performing a task, as well as assessing the energetical demands involved in task performance. Behaviour will only proceed if this evaluation turns out favourably towards spending (additional) energy. We propose that this evaluation of predicted rewards and energetical costs is central to the phenomenon of mental fatigue: people will no longer be motivated to engage in task performance when energetical costs are perceived to outweigh predicted rewards.

  10. Fatigue Fractures

    PubMed Central

    Morris, James M.

    1968-01-01

    Fatigue (or stress) fracture of bone in military recruits has been recognized for many years. Most often it is a metatarsal bone that is involved but the tarsal bones, calcaneus, tibia, fibula, femur, and pelvis are occasionally affected. Reports of such fractures in the ribs, ulna and vertebral bodies may be found in the literature. In recent years, there has been increasing awareness of the occurrence of fatigue fractures in the civilian population. Weekend sportsmen, athletes in an early phase of training, and persons engaged in unaccustomed, repetitive, vigorous activity are potential victims of such a fracture. The signs and symptoms, roentgenographic findings, treatment and etiology of fatigue fractures are dealt with in this presentation. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6. PMID:5652745

  11. Managing fatigue: It really is about sleep.

    PubMed

    Darwent, David; Dawson, Drew; Paterson, Jessica L; Roach, Gregory D; Ferguson, Sally A

    2015-09-01

    Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a roster before operations commence. These estimates do not account for the diversity of sleep behaviours exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial railway operations in Australia. They provided detailed information about their sleep behaviours using sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (±1.7)h in the 24h before work and 15.1 (±2.5)h in the 48h before work. The amount of sleep obtained by drivers before shifts differed only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated with significant reductions in the amount of sleep obtained before shifts, but there was substantial within-category variation. The study findings demonstrate that biomathematical models of fatigue have utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average employee. Robust variability in the amount of sleep obtained by drivers indicate that models are relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate the importance of developing approaches for managing the sleep behaviour of individual employees. PMID:26026969

  12. Managing fatigue: It really is about sleep.

    PubMed

    Darwent, David; Dawson, Drew; Paterson, Jessica L; Roach, Gregory D; Ferguson, Sally A

    2015-09-01

    Biomathematical models of fatigue can assist organisations to estimate the fatigue consequences of a roster before operations commence. These estimates do not account for the diversity of sleep behaviours exhibited by employees. The purpose of this study was to develop sleep transfer functions describing the likely distributions of sleep around fatigue level estimates produced by a commercial biomathematical model of fatigue. Participants included 347 (18 females, 329 males) train drivers working commercial railway operations in Australia. They provided detailed information about their sleep behaviours using sleep diaries and wrist activity monitors. On average, drivers slept for 7.7 (±1.7)h in the 24h before work and 15.1 (±2.5)h in the 48h before work. The amount of sleep obtained by drivers before shifts differed only marginally across morning, afternoon and night shifts. Shifts were also classified into one of seven ranked categories using estimated fatigue level scores. Higher fatigue score categories were associated with significant reductions in the amount of sleep obtained before shifts, but there was substantial within-category variation. The study findings demonstrate that biomathematical models of fatigue have utility for designing round-the-clock rosters that provide sufficient sleep opportunities for the average employee. Robust variability in the amount of sleep obtained by drivers indicate that models are relatively poor tools for ensuring that all employees obtain sufficient sleep. These findings demonstrate the importance of developing approaches for managing the sleep behaviour of individual employees.

  13. Microstructural aspects of fatigue in Ni-base superalloys.

    PubMed

    Antolovich, Stephen D

    2015-03-28

    Nickel-base superalloys are primarily used as components in jet engines and land-based turbines. While compositionally complex, they are microstructurally simple, consisting of small (50-1000 nm diameter), ordered, coherent Ni(3)(Al,Ti)-type L1(2) or Ni(3)Nb-type DO(22) precipitates (called γ(') and γ(''), respectively) embedded in an FCC substitutional solid solution consisting primarily of Ni and other elements which confer desired properties depending upon the application. The grain size may vary from as small as 2 μm for powder metallurgy alloys used in discs to single crystals the actual size of the component for turbine blades. The fatigue behaviour depends upon the microstructure, deformation mode, environment and cycle time. In many cases, it can be controlled or modified through small changes in composition which may dramatically change the mechanism of damage accumulation and the fatigue life. In this paper, the fundamental microstructural, compositional, environmental and deformation mode factors which affect fatigue behaviour are critically reviewed. Connections are made across a range of studies to provide more insight. Modern approaches are pointed out in which the wealth of available microstructural, deformation and damage information is used for computerized life prediction. The paper ends with a discussion of the very important and highly practical subject of thermo-mechanical fatigue (TMF). It is shown that physics-based modelling leads to significantly improved life prediction. Suggestions are made for moving forward on the critical subject of TMF life prediction in notched components. PMID:25713453

  14. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  15. Theorising and testing environmental pathways to behaviour change: natural experimental study of the perception and use of new infrastructure to promote walking and cycling in local communities

    PubMed Central

    Panter, Jenna; Ogilvie, David

    2015-01-01

    Objective Some studies have assessed the effectiveness of environmental interventions to promote physical activity, but few have examined how such interventions work. We investigated the environmental mechanisms linking an infrastructural intervention with behaviour change. Design Natural experimental study. Setting Three UK municipalities (Southampton, Cardiff and Kenilworth). Participants Adults living within 5 km of new walking and cycling infrastructure. Intervention Construction or improvement of walking and cycling routes. Exposure to the intervention was defined in terms of residential proximity. Outcome measures Questionnaires at baseline and 2-year follow-up assessed perceptions of the supportiveness of the environment, use of the new infrastructure, and walking and cycling behaviours. Analysis proceeded via factor analysis of perceptions of the physical environment (step 1) and regression analysis to identify plausible pathways involving physical and social environmental mediators and refine the intervention theory (step 2) to a final path analysis to test the model (step 3). Results Participants who lived near and used the new routes reported improvements in their perceptions of provision and safety. However, path analysis (step 3, n=967) showed that the effects of the intervention on changes in time spent walking and cycling were largely (90%) explained by a simple causal pathway involving use of the new routes, and other pathways involving changes in environmental cognitions explained only a small proportion of the effect. Conclusions Physical improvement of the environment itself was the key to the effectiveness of the intervention, and seeking to change people's perceptions may be of limited value. Studies of how interventions lead to population behaviour change should complement those concerned with estimating their effects in supporting valid causal inference. PMID:26338837

  16. Practical Guideline for Fatigue Management in Inflammatory Bowel Disease.

    PubMed

    Kreijne, J E; Lie, M R K L; Vogelaar, L; van der Woude, C J

    2016-01-01

    During active inflammatory bowel disease (IBD) fatigue is a common symptom, which seems related to active gut inflammation. However, even in remission many patients suffer from fatigue that negatively affects quality of life and work productivity. Currently, robust knowledge on the pathogenesis and treatment of IBD-related fatigue is lacking. In order to alleviate the burden of IBD-related fatigue, a systematic approach is mandatory. We propose a fatigue attention cycle to enhance identification, evaluation and management of fatigued IBD patients. The benefits of the cycle are twofold. Firstly, it allows the systematic and uniform identification of patients with severe fatigue, in turn allowing tailored non-pharmacological and pharmacological interventions. Secondly, uniform identification of such patients creates a well-defined patient base to investigate the underlying pathogenesis of fatigue, resulting in a greater understanding of this debilitating phenomenon and possibly resulting in the discovery of predictive factors and new treatment interventions.

  17. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  18. High-temperature low-cycle fatigue and tensile properties of Hastelloy X and alloy 617 in air and HTGR-helium

    SciTech Connect

    Strizak, J.P.; Brinkman, C.R.; Rittenhouse, P.L.

    1981-01-01

    Results of strain controlled fatigue and tensile tests are presented for two nickel base solution hardened alloys which are reference structural alloys for use in several high temperature gas cooled reactor concepts. These alloys, Hastelloy X Inconel 617, were tested at temperatures ranging from room temperature to 871/sup 0/C in air and impure helium. Materials were tested in the solution annealed as well as in the pre-aged condition where aging consisted of isothermal exposure at one of several temperatures for periods of up to 20,000 h. Comparisons are also given between the strain controlled fatigue lives of these alloys and several other commonly used alloys all tested at 538/sup 0/C.

  19. Tendon fatigue in response to mechanical loading

    PubMed Central

    Andarawis-Puri, N.; Flatow, E. L.

    2015-01-01

    Tendinopathies are commonly attributable to accumulation of sub-rupture fatigue damage from repetitive use. Data is limited to late stage disease from patients undergoing surgery, motivating development of animal models, such as ones utilizing treadmill running or repetitive reaching, to investigate the progression of tendinopathies. We developed an in vivo model using the rat patellar tendon that allows control of the loading directly applied to the tendon. This manuscript discusses the response of tendons to fatigue loading and applications of our model. Briefly, the fatigue life of the tendon was used to define low, moderate and high levels of fatigue loading. Morphological assessment showed a progression from mild kinks to fiber disruption, for low to high level fatigue loading. Collagen expression, 1 and 3 days post loading, showed more modest changes for low and moderate than high level fatigue loading. Protein and mRNA expression of Ineterleukin-1β and MMP-13 were upregulated for moderate but not low level fatigue loading. Moderate level (7200 cycles) and 100 cycles of fatigue loading resulted in a catabolic and anabolic molecular profile respectively, at both 1 and 7 days post loading. Results suggest unique mechanisms for different levels of fatigue loading that are distinct from laceration. PMID:21625047

  20. Fatigue properties of acrylic denture base resins.

    PubMed

    Fujii, K

    1989-12-01

    Observations were made of fractured surfaces caused by flexural and tensile fatigue tests made in polymethyl methacrylate denture base resins (PMMA). In addition, the changes in dynamic viscoelastic and tensile properties of the materials along with fatigue propagation were investigated. In the tensile and flexural fatigue tests, both the fractured surfaces, which had striations on their surfaces and cracks near the fractured section, closely resembled each other in appearance. On the other hand, all of the tensile properties, such as elastic modulus, toughness and tensile strength, decreased with the increase of the number of stress cycles in the fatigue test. The storage modulus (E') of the material decreased gradually along with fatigue propagation over the whole range of temperatures tested. The loss modulus (E") and mechanical loss tangent (tan delta) increased slightly. The fatigue limit of four commercial denture base resins varied widely from one product to another.

  1. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  2. Disruption of glutamate-glutamine-GABA cycle significantly impacts on suicidal behaviour: survey of the literature and own findings on glutamine synthetase.

    PubMed

    Bernstein, Hans-Gert; Tausch, Anne; Wagner, Rebecca; Steiner, Johann; Seeleke, Patrick; Walter, Martin; Dobrowolny, Henrik; Bogerts, Bernhard

    2013-11-01

    The aetiology of suicide is complex and still not completely understood. The present communication, which consists of two parts, aims to shed some light on the role of amino acidergic neurotransmission in suicide. In the first part we provide an overview of the literature showing that with the exception of certain gamma-aminobutyric acid transporters, virtually all components of the glutamate-glutamine- gamma-aminobutyric acid cycle are, in some way or other, abnormal in suicide victims, which indicates a prominent involvement of the glutamatergic and gammaaminobutyric acidergic neurotransmitter systems in suicidal behaviour. In the second part we present own immunohistochemical findings showing that densities of glutamine synthetase expressing glial cells in the mediodorsal thalamus as well as in the dorsolateral prefrontal and orbitofrontal cortex of schizophrenic suicide completers are significantly elevated compared with controls and non-suicide individuals with schizophrenia, thus calling into question the belief that cerebral glutamine synthetase deficit is indicative of suicidal behaviour.

  3. Ovarian activity in Arabian leopards (Panthera pardus nimr): sexual behaviour and faecal steroid monitoring during the follicular cycle, mating and pregnancy.

    PubMed

    de Haas van Dorsser, Florine J; Green, Daphne I; Holt, William V; Pickard, Amanda R

    2007-01-01

    The Arabian leopard is a critically endangered subspecies endemic to the Arabian Peninsula. A fundamental understanding of the ovarian activity of the leopard is important to enhance the success with which it breeds in captivity. The objective of the present study was to characterise the endocrinology of the follicular cycle, ovulation and pregnancy in captive females using faecal steroid hormone analyses and observations of sexual behaviour. The follicular cycle of the leopard was shown to last 18-23 days based on the interval between consecutive peaks of faecal oestrogen conjugates, and the occurrence of silent heats was high. Puberty had commenced at 2 years of age, but faecal steroid profiles did not match those of the adult female until 3 years of age. No seasonal change in ovarian steroid excretion was observed, although behavioural oestrus was suppressed in summer. Significant rises in faecal progestagen concentrations were only recorded in mated leopards, indicating that these females were strictly induced ovulators. However, only 60% of these mating periods were ovulatory. Progestagen concentrations during pregnancy were significantly higher than those of the non-pregnant luteal phase. The average duration of the non-pregnant and pregnant luteal phases was 39 and 97 days, respectively. The basic features of the reproductive cycle of the Arabian leopard described here form an important foundation for further study into its reproduction.

  4. Ultrasonic Fatigue Behavior of a Fe-BASED Warm-Compacted Powder Metallurgy Material

    NASA Astrophysics Data System (ADS)

    Lu, Yu-Heng; Ye, Xuan; Hu, Lei; Luo, Fei; Xiao, Zhi-Yu

    2013-07-01

    Fe-2Cu-2Ni-1Mo-1C powder metallurgy material was fabricated by die-wall lubricated warm compaction and ultrasonic fatigue test was carried out for as-sintered and heat treatment samples. Material fatigue strength reaches 249 MPa under axial fatigue testing. The sintered material consists of acicular martensite, pearlite, bainite and retained austenite. Tempered martensite is the major phases after heat-treatment. Cleavage plane and dimples is mixed fracture for sample after axial fatigue test. Mechanical properties of after heat treatment materials are improved and fatigue strength reaches 382 MPa under 107 cycles in bending ultrasonic fatigue test. The fatigue strength increases significantly in high cycles range.

  5. Correlates of walking and cycling for transport and recreation: factor structure, reliability and behavioural associations of the perceptions of the environment in the neighbourhood scale (PENS)

    PubMed Central

    2013-01-01

    Background Emerging evidence suggests that walking and cycling for different purposes such as transport or recreation may be associated with different attributes of the physical environment. Few studies to date have examined these behaviour-specific associations, particularly in the UK. This paper reports on the development, factor structure and test-retest reliability of a new scale assessing perceptions of the environment in the neighbourhood (PENS) and the associations between perceptions of the environment and walking and cycling for transport and recreation. Methods A new 13-item scale was developed for assessing adults’ perceptions of the environment in the neighbourhood (PENS). Three sets of analyses were conducted using data from two sources. Exploratory and confirmatory factor analyses were used to identify a set of summary environmental variables using data from the iConnect baseline survey (n = 3494); test-retest reliability of the individual and summary environmental items was established using data collected in a separate reliability study (n = 166); and multivariable logistic regression was used to determine the associations of the environmental variables with walking for transport, walking for recreation, cycling for transport and cycling for recreation, using iConnect baseline survey data (n = 2937). Results Four summary environmental variables (traffic safety, supportive infrastructure, availability of local amenities and social order), one individual environmental item (street connectivity) and a variable encapsulating general environment quality were identified for use in further analyses. Intraclass correlations of these environmental variables ranged from 0.44 to 0.77 and were comparable to those seen in other similar scales. After adjustment for demographic and other environmental factors, walking for transport was associated with supportive infrastructure, availability of local amenities and general environment quality; walking

  6. Combined high vacuum/high frequency fatigue tester

    NASA Technical Reports Server (NTRS)

    Honeycutt, C. R.; Martin, T. F.

    1971-01-01

    Apparatus permits application of significantly greater number of cycles or equivalent number of cycles in shorter time than conventional fatigue test machines. Environment eliminates problems associated with high temperature oxidation and with sensitivity of refractory alloy behavior to atmospheric contamination.

  7. Fatigue Properties of Cast Magnesium Wheels

    NASA Astrophysics Data System (ADS)

    Li, Zhenming; Luo, Alan A.; Wang, Qigui; Peng, Liming; Zhang, Peng

    2016-08-01

    This paper investigates the fatigue properties and deformation behavior of a newly developed Mg-2.96Nd-0.21Zn-0.39Zr magnesium alloy wheel in both as-cast and T6 conditions. Compared with the as-cast alloy, the T6-treated alloy shows a significant increase in fatigue strength and cyclic stress amplitude. This is believed to be attributed to the change of defect type from porosity to oxides and the increased matrix strength in the T6 (peak-aged) condition. For the as-cast alloy wheel, fatigue failure mainly originated from the cast defects including porosity, oxide film, and inclusion at or near the sample surface. In the T6-treated alloy, however, oxides and inclusions or slip bands initiate the fatigue cracks. Solution treatment appears to reduce or eliminate the shrinkage porosity because of grain growth and dissolution of as-cast eutectic phases in the grain boundaries. The cyclic stress amplitude of the as-cast alloy increases with increasing the number of cycles, while the T6-treated alloy shows cyclic softening after the stress reaches a maximum value. The Coffin-Manson law and Basquin equation can be used to evaluate the life of low cycle fatigue. The developed long crack model and multi-scale fatigue (MSF) models can be used to predict high-cycle fatigue life of the Mg-2.96Nd-0.21Zn-0.39Zr alloys with or without casting defects.

  8. Re-analysis of the long-term changes of the NIMBUS-7 radiometer and behaviour of total solar irradiance during solar cycle 21

    NASA Astrophysics Data System (ADS)

    Frohlich, C.

    2004-12-01

    Only one radiometer - called Hickey-Frieden (HF) - is within the ERB package on NIMBUS-7 for the measurement of total solar irradiance (TSI) and thus changes due to exposure to solar radiation cannot be directly determined by comparison with a less exposed radiometer on the same spacecraft. The geometry and optical property of the cavity of HF is, however, very similar to the PMO6-type radiometers, it is essentially a copy of it with increased size. For the PMO6V on VIRGO/SOHO two main effects have been identified, a rapid early increase and a slow decrease, normally termed degradation, which can be modelled with a hyperbolic function taking the actual dose into account (Fröhlich, 2003). The corrections used by Fröhlich and Lean (1998) for the composite were based on early results from VIRGO and used simple exponential functions. With the recent results from VIRGO a re-analysis of the long-term behaviour of HF is necessary. The results are not only important for solar radiometry from space, but also to improve the reliability of TSI before the start of ACRIM-I in early 1980. The latter will allow to better quantify the behaviour of solar cycle 21 and to compare it with the two recent ones which differ in several aspects. C. Fröhlich. Long-term behaviour of space radiometers. Metrologia, 40:60--65, 2003. C. Fröhlich and J. Lean. The sun's total irradiance: Cycles and trends in the past two decades and associated climate change uncertainties. Geophys. Res. Lett., 25:4377--4380, 1998.

  9. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  10. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-09-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  11. Corrosion fatigue of high strength fastener materials in seawater

    NASA Astrophysics Data System (ADS)

    Tipton, D. G.

    1983-12-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  12. Assessment of fatigue life of remanufactured impeller based on FEA

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Cao, Huajun; Liu, Hailong; Zhang, Yubo

    2016-07-01

    Predicting the fatigue life of remanufactured centrifugal compressor impellers is a critical problem. In this paper, the S-N curve data were obtained by combining experimentation and theory deduction. The load spectrum was compiled by the rain-flow counting method based on the comprehensive consideration of the centrifugal force, residual stress, and aerodynamic loads in the repair region. A fatigue life simulation model was built, and fatigue life was analyzed based on the fatigue cumulative damage rule. Although incapable of providing a high-precision prediction, the simulation results were useful for the analysis of fatigue life impact factors and fatigue fracture areas. Results showed that the load amplitude greatly affected fatigue life, the impeller was protected from running at over-speed, and the predicted fatigue life was satisfied within the next service cycle safely at the rated speed.

  13. Principles of fatigue in residency education: a qualitative study

    PubMed Central

    Taylor, Taryn S.; Watling, Christopher J.; Teunissen, Pim W.; Dornan, Tim; Lingard, Lorelei

    2016-01-01

    Background: Proposals to implement fatigue-management strategies in residency education assume that medicine shares the view of other risk-adverse industries that fatigue is hazardous. This view is an essential underpinning of fatigue-management strategies that other industries have embedded as part of their workplace occupational health and safety programs. We sought to explore how residents understand fatigue in the context of their training environment. Methods: We interviewed 21 residents in 7 surgical and nonsurgical programs at Western University in 2014. All participants met the inclusion criteria of routinely working 24-hour call shifts while enrolled in their training program. Data collection and analysis occurred iteratively in keeping with constructivist grounded theory methodology and informed theoretical sampling to sufficiency. Results: Four predominant principles of fatigue captured how the social learning environment shaped residents' perceptions of fatigue. These included the conceptualization of fatigue as (a) inescapable and therefore accepted, (b) manageable through experience, (c) necessary for future practice and (d) surmountable when required. Interpretation: This study elaborates our understanding of how principles of fatigue are constructed and reinforced by the training environment. Whereas fatigue is seen as a collective hazard in other industries, our data showed that, in residency training, fatigue may be seen as a personal challenge. Consequently, fatigue-management strategies that conceptualize fatigue as an occupational threat may have a limited impact on resident behaviour and patient safety. PMID:27398364

  14. Fatigue of bovine trabecular bone.

    PubMed

    Moore, Tara L; Gibson, Lorna J

    2003-12-01

    Fatigue loading of bone, from the activities of daily living in the elderly, or from prolonged exercise in the young, can lead to increased risk of fracture. Elderly patients with osteoporosis are particularly prone to fragility fractures of the vertebrae, where load is carried primarily by trabecular bone. In this study, specimens of bovine trabecular bone were loaded in compressive fatigue at four different normalized stresses to one of six maximum strains. The resulting change in modulus and residual strain accumulation were measured over the life of the fatigue test. The number of cycles to reach a given maximum compressive strain increased with decreasing normalized stress. Modulus reduction and specimen residual strain increased with increasing maximum compressive strain, but few differences were observed between specimens loaded to the same maximum strain at different normalized stresses.

  15. Chronic fatigue syndrome

    PubMed Central

    2008-01-01

    Introduction Chronic fatigue syndrome (CFS) affects between 0.006% and 3% of the population depending on the criteria of definition used, with women being at higher risk than men. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical question: What are the effects of treatments for chronic fatigue syndrome? We searched: Medline, Embase, The Cochrane Library, and other important databases up to September 2007 (BMJ Clinical evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 45 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: antidepressants, cognitive behavioural therapy (CBT), corticosteroids, dietary supplements, evening primrose oil, galantamine, graded exercise therapy, homeopathy, immunotherapy, intramuscular magnesium, oral nicotinamide adenine dinucleotide, and prolonged rest. PMID:19445810

  16. A comparative study of ship hull structures fatigue assessment methods

    NASA Astrophysics Data System (ADS)

    Petinov, Sergei V.; Polezhayeva, Helena A.; Yermolayeva, Natalya S.

    1992-07-01

    Several methods of fatigue assessment in ship hull structures are compared. The analysis is focused on fatigue problems of hull structures concerning: evaluation, the design state of fatigue damage of a structure formulation, and the adequacy of methods and data bases for the purpose of the analyses. To illustrate the discussion, examples of allowable nominal stress at a given fatigue life calculation are presented for bottom frame web slot and for a bottom longitudinal transverse bulkhead bracket connection in the case of a container ship. The low cycle (local strain) method is regarded as the most advantageous at present almost in all practical problems connected to fatigue.

  17. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  18. Long-Term Fatigue and Its Probability of Failure Applied to Dental Implants.

    PubMed

    Prados-Privado, María; Prados-Frutos, Juan Carlos; Gehrke, Sérgio Alexandre; Sánchez Siles, Mariano; Calvo Guirado, José Luis; Bea, José Antonio

    2016-01-01

    It is well known that dental implants have a high success rate but even so, there are a lot of factors that can cause dental implants failure. Fatigue is very sensitive to many variables involved in this phenomenon. This paper takes a close look at fatigue analysis and explains a new method to study fatigue from a probabilistic point of view, based on a cumulative damage model and probabilistic finite elements, with the goal of obtaining the expected life and the probability of failure. Two different dental implants were analysed. The model simulated a load of 178 N applied with an angle of 0°, 15°, and 20° and a force of 489 N with the same angles. Von Mises stress distribution was evaluated and once the methodology proposed here was used, the statistic of the fatigue life and the probability cumulative function were obtained. This function allows us to relate each cycle life with its probability of failure. Cylindrical implant has a worst behaviour under the same loading force compared to the conical implant analysed here. Methodology employed in the present study provides very accuracy results because all possible uncertainties have been taken in mind from the beginning. PMID:27517052

  19. Long-Term Fatigue and Its Probability of Failure Applied to Dental Implants

    PubMed Central

    Prados-Frutos, Juan Carlos; Gehrke, Sérgio Alexandre; Calvo Guirado, José Luis; Bea, José Antonio

    2016-01-01

    It is well known that dental implants have a high success rate but even so, there are a lot of factors that can cause dental implants failure. Fatigue is very sensitive to many variables involved in this phenomenon. This paper takes a close look at fatigue analysis and explains a new method to study fatigue from a probabilistic point of view, based on a cumulative damage model and probabilistic finite elements, with the goal of obtaining the expected life and the probability of failure. Two different dental implants were analysed. The model simulated a load of 178 N applied with an angle of 0°, 15°, and 20° and a force of 489 N with the same angles. Von Mises stress distribution was evaluated and once the methodology proposed here was used, the statistic of the fatigue life and the probability cumulative function were obtained. This function allows us to relate each cycle life with its probability of failure. Cylindrical implant has a worst behaviour under the same loading force compared to the conical implant analysed here. Methodology employed in the present study provides very accuracy results because all possible uncertainties have been taken in mind from the beginning. PMID:27517052

  20. Effect Of Solidification Speed On Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.; Schmidt, D. D.; Hamilton, W. D.; Alter, W. S.; Parr, R. A.

    1989-01-01

    Fast solidification increases fatigue life, but failure distribution becomes less predictable. Report describes effects of rate of solidification on nickel-based super-alloy MAR-M246(Hf) used in turbine blades. Based on experiments in which specimens directionally solidified at 5 cm/h and 30 cm/h, then tested for high cycle fatigue. Specimens also inspected by energy-dispersive x-ray (EDX) analysis and optical and electron microscopy.

  1. Corrosion fatigue behavior and life prediction method under changing temperature condition

    SciTech Connect

    Kanasaki, Hiroshi; Hirano, Akihiko; Iida, Kunihiro; Asada, Yasuhide

    1997-12-01

    Axially strain controlled low cycle fatigue tests of a carbon steel in oxygenated high temperature water were carried out under changing temperature conditions. Two patterns of triangular wave were selected for temperature cycling. One was in-phase pattern synchronizing with strain cycling and the other was an out-of-phase pattern in which temperature was changed in anti-phase to the strain cycling. The fatigue life under changing temperature condition was in the range of the fatigue life under various constant temperature within the range of the changing temperature. The fatigue life of in-phase pattern was equivalent to that of out-of-phase pattern. The corrosion fatigue life prediction method was proposed for changing temperature condition, and was based on the assumption that the fatigue damage increased in linear proportion to increment of strain during cycling. The fatigue life predicted by this method was in good agreement with the test results.

  2. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  3. Statistical simulation of small fatigue crack nucleation and coalescence in a lamellar TiAl alloy

    NASA Astrophysics Data System (ADS)

    Chan, Kwais; Wittkowsky, Bettina; Pfuff, Michael

    1999-05-01

    This article examines the possibility of fatigue failure as the result of fatigue crack nucleation and coalescence at stress ranges below the fatigue limit and the large crack threshold where fatigue cracks are expected not to grow. By representing the material as a two-dimensional array of beam elements, the nucleation of nonpropagating small cracks at various material locations is modeled via a statistical approach that considers fatigue crack nucleation by accumulation of damage at randomly distributed weak regions. Once nucleated, the fatigue cracks do not propagate but extend only by linking with fatigue cracks subsequently formed in the contiguous elements. Result of the computer simulation suggests that fatigue failure by crack nucleation and coalescence is feasible, but the cycles-to-coalescence is much longer than the cycles-to-initiation for the first crack. Implications of the results in fatigue life assessment based on the Kitagawa diagram are discussed for TiAl alloys.

  4. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue.

    PubMed

    Tse, Calvin T F; McDonald, Alison C; Keir, Peter J

    2016-08-01

    Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width.

  5. Rheological signatures in limit cycle behaviour of dilute, active, polar liquid crystalline polymers in steady shear

    PubMed Central

    Forest, M. Gregory; Phuworawong, Panon; Wang, Qi; Zhou, Ruhai

    2014-01-01

    We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207–5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest et al. mentioned above compel two studies in the dilute regime that complement recent work of Saintillan & Shelley (Saintillan & Shelley 2013 C. R. Physique 14, 497–517 (doi:10.1016/j.crhy.2013.04.001)): linearized stability analysis of the isotropic state for nanorod pushers and pullers; and an analytical–numerical study of weakly and strongly sheared active polar nanorod suspensions to capture how particle-scale activation affects shear rheology. We find that weakly sheared dilute puller versus pusher suspensions exhibit steady versus unsteady responses, shear thickening versus thinning and positive versus negative first normal stress differences. These results further establish how sheared dilute nanorod pusher suspensions exhibit many of the characteristic features of sheared semi-dilute passive nanorod suspensions. PMID:25332387

  6. In situ SEM thermal fatigue of Al/graphite metal matrix composites

    NASA Technical Reports Server (NTRS)

    Zong, G. S.; Rabenberg, L.; Marcus, H. L.

    1990-01-01

    Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.

  7. Fatigue properties of unidirectional carbon fibre composites at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Pannkoke, K.; Wagner, H.-J.

    Design engineers working with composite materials are still confronted with uncertainties as to their fatigue behaviour, especially for cryogenic applications. In the course of cooling, different thermal contraction of the fibre and matrix gives rise to thermal stresses and strains which influence most of the mechanical properties. In this paper, the fatigue behaviour of unidirectional (UD) composites with different fibres and matrices will be described. A first step in understanding the failure mechanism under cyclic loading will be presented. In earlier tests excellent fatigue properties were found for carbon fibre UD composites made of T300 carbon fibres and an epoxy matrix 1,2. However, the applied epoxy resin was brittle, especially at low temperatures. Therefore the brittle resin was substituted by polycarbonate (PC), a tough thermoplastic polymer 3,4. Nevertheless, for a composite with that matrix the fatigue endurance limit, normalized to the static strength, was found to be much lower (43%). SEM studies illustrated a poor fibre - matrix bond. To determine the bond's influence on fatigue properties, another tough matrix system was tested. The polymer PEEK is known to build a strong bond to carbon fibres, initiated by crystal growth onto the fibre surface 4,5. However, investigations on the fatigue behaviour of this composite at 77 K yielded the same low fatigue endurance limit as was found for the carbon fibre - PC system 4. At this point it can be concluded that the poor fatigue behaviour is not necessarily due to a strong or poor fibre - matrix bond. It is the purpose of this work to examine whether this different fatigue behaviour is due to matrix failure.

  8. Fatigue performance and cyclic softening of F82H, a ferritic martensic steel

    SciTech Connect

    Stubbins, J.F.; Gelles, D.S.

    1996-04-01

    The room temperature fatigue performance of F82H has been examined. The fatigue life was determined in a series of strain-controlled tests where the stress level was monitored as a function of the number of accrued cycles. Fatigue lives in the range of 10{sup 3} to 10{sup 6} cycles to failure were examined. The fatigue performance was found to be controlled primarily by the elastic strain range over most of the range of fatigue lives examined. Only at low fatigue lives did the plastic strain range contribute to the response. However, when the significant plastic strain did contribute, the material showed a tendency to cyclically soften. That is the load carrying capability of the material degrades with accumulated fatigue cycles. The overall fatigue performance of the F82H alloy was found to be similiar to other advanced martensitic steels, but lower than more common low alloy steels which possess lower yield strengths.

  9. Fractographic analysis of fatigue damage in 7000 aluminium alloys.

    PubMed

    Cvijović, Z; Vratnica, M; Gerić, K

    2008-12-01

    In this paper, an attempt is made to correlate the fatigue damage in 7000 aluminium alloys with different impurity contents to the microstructural features and to explain their interdependence through fractographic observations. The Paris constants of these alloys in the form of hot-forged plates subjected to the overaged T73 temper are evaluated and differences in the fatigue crack growth rate described by striation spacing measurements. Scanning electron microscopy analysis of fatigue fracture surfaces revealed that the type and morphological parameters of coarse intermetallic particles play a critical role in fatigue crack growth behaviour. The elemental distribution determined by means of energy-dispersive spectroscopy analysis showed that the fractured particles accelerating the crack advances are larger particles of Fe-rich phases. The fatigue crack growth rate increases considerably with increasing amounts of these particles. The smaller eta, S and Mg(2)Si particles contribute beneficially to fatigue life.

  10. Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry.

    PubMed

    Hollender, Juliane; Bourgin, Marc; Fenner, Kathrin B; Longrée, Philipp; Mcardell, Christa S; Moschet, Christoph; Ruff, Matthias; Schymanski, Emma L; Singer, Heinz P

    2014-11-01

    To characterize a broad range of organic contaminants and their transformation products (TPs) as well as their loads, input pathways and fate in the water cycle, the Department of Environmental Chemistry (Uchem) at Eawag applies and develops high-performance liquid chromatography (LC) methods combined with high-resolution tandem mass spectrometry (HRMS/MS). In this article, the background and state-of-the-art of LC-HRMS/MS for detection of i) known targets, ii) suspected compounds like TPs, and iii) unknown emerging compounds are introduced briefly. Examples for each approach are taken from recent research projects conducted within the department. These include the detection of trace organic contaminants and their TPs in wastewater, pesticides and their TPs in surface water, identification of new TPs in laboratory degradation studies and ozonation experiments and finally the screening for unknown compounds in the catchment of the river Rhine.

  11. Life in the puddle: behavioural and life-cycle adaptations in the Diptera of tropical rain pools.

    PubMed

    McLachlan, A; Ladle, R

    2001-08-01

    Puddles of rain water on the surfaces of rock exposures are a little known but very common habitat for freshwater-dwelling animals. In Africa, these are inhabited by the larvae of two taxa of fly unique to these pools. One of these includes species able to survive dry periods in situ; the other includes species that must reach adulthood and migrate to survive periods when the pool is dry. Hence, the opportunity exists for a comparative study of adaptation among these species. Since puddles are small, our principal method in the study of adaptation has been the experimental manipulation of puddles and their faunas in the wild. Using this method we were able to identify the spatial consistency of pools and their unpredictable duration during the rainy season as the main selective pressure shaping adaptation. Adaptations include diapause and adaptive adjustment of the life cycle. It is the second of these that provides the focus of our interest here.

  12. Ice stream behaviour in the western sector of the North Sea during the end of the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Roberts, David; Evans, David; Clark, Chris; Bateman, Mark; Livingstone, Stephen; Medialdea, Alicia; Cofaigh, Colm O.; Grimoldi, Elena; Callard, Louise; Dove, Dayton; Stewart, Heather; Davies, Bethan; Chiverell, Richard

    2016-04-01

    During the last glacial cycle the East coast of the UK was overrun by the British-Irish Ice Sheet (BIIS) flowing eastwards and southwards. In recent years it has become evident that several ice streams including the Tweed, Tyne, and Stainmore Gap ice streams, as well as the late stage North Sea Lobe (NSL), all played a role in shaping the glacial landscape during this period, but understanding the flow phasing of these ice streams during advance and collapse has proved challenging. Here we present new data from the seafloor collected during recent work undertaken by the Britice Chrono and Glanam project teams during cruise JC123 in the North Sea. Sub-bottom seafloor data together with new swath data clearly show that the final phases of the collapse of the NSL were controlled by ice sourced from the Firth of Forth ice stream which deglaciated in a NNW trajectory. Other ice streams being fed from the west (e.g. Stainmore, Tyne, Tweed) were not influential in final phase ice retreat from the southern North Sea. The Forth ice imprint is characterised by several grounding zone/till wedges marking dynamic, oscillatory retreat of the ice as it retreated along an offshore corridor between North Yorkshire and Northumberland. Repeated packages of tills, ice marginal and glaciomarine sediments, which drape glacially scoured bedrock terrain and drumlins along this corridor, point to marine inundation accompanying ice retreat. New TCN ages suggest decoupling of the Tyne Gap ice stream and NSL between 17.8 and 16.5 ka and this coincides with rapid, regional collapse of the NSL between 17.2 and 16.0 ka along the Yorkshire and Durham coasts (new OSL ages; Britice Chrono). Hence, both the central and northern sectors of the BIIS were being strongly influenced by marine margin instability during the latter phases of the last glacial cycle.

  13. Recurrent 3-day cycles of water deprivation for over a month depress mating behaviour but not semen characteristics of adult rams.

    PubMed

    Khnissi, S; Lassoued, N; Rekik, M; Ben Salem, H

    2016-02-01

    This study aimed to investigate the effect of water deprivation (WD) on reproductive traits of rams. Ten mature rams were used and allocated to two groups balanced for body weight. Control (C) rams had free access to drinking water, while water-restricted rams (WD) were deprived from water for 3 consecutive days and early on the morning of day 4, they had ad libitum access to water for 24 h, similar to C animals. The experiment lasted 32 days, that is eight 4-day cycles of water deprivation and subsequent watering. Feed and water intake were significantly affected by water deprivation; in comparison with C rams, WD rams reduced their feed intake by 18%. During the watering day of the deprivation cycle, WD rams consumed more water than C rams on the same day (11.8 (SD = 3.37) and 8.4 (SD = 1.92) l respectively; p < 0.05). Glucose, total protein and creatinine were increased as a result of water deprivation. However, testosterone levels were lowered as a result of water deprivation and average values were 10.9 and 6.2 (SEM 1.23) ng/ml for C and WD rams respectively (p < 0.05). Semen traits were less affected by treatment; WD rams consistently had superior sperm concentrations than C animals; and statistical significances were reached in cycles 5 and 8 of water deprivation. Several mating behaviour traits were modified as a result of water deprivation. When compared to controls, WD rams had a more prolonged time to first mount attempt (p < 0.001), their frequency of mount attempts decreased [6.8 vs. 5.2 (SEM 0.1); p < 0.001] and their flehmen reaction intensity was negatively affected (p < 0.05). Water deprivation may have practical implications reducing the libido and therefore the serving capacity of rams under field conditions. PMID:25916259

  14. Recurrent 3-day cycles of water deprivation for over a month depress mating behaviour but not semen characteristics of adult rams.

    PubMed

    Khnissi, S; Lassoued, N; Rekik, M; Ben Salem, H

    2016-02-01

    This study aimed to investigate the effect of water deprivation (WD) on reproductive traits of rams. Ten mature rams were used and allocated to two groups balanced for body weight. Control (C) rams had free access to drinking water, while water-restricted rams (WD) were deprived from water for 3 consecutive days and early on the morning of day 4, they had ad libitum access to water for 24 h, similar to C animals. The experiment lasted 32 days, that is eight 4-day cycles of water deprivation and subsequent watering. Feed and water intake were significantly affected by water deprivation; in comparison with C rams, WD rams reduced their feed intake by 18%. During the watering day of the deprivation cycle, WD rams consumed more water than C rams on the same day (11.8 (SD = 3.37) and 8.4 (SD = 1.92) l respectively; p < 0.05). Glucose, total protein and creatinine were increased as a result of water deprivation. However, testosterone levels were lowered as a result of water deprivation and average values were 10.9 and 6.2 (SEM 1.23) ng/ml for C and WD rams respectively (p < 0.05). Semen traits were less affected by treatment; WD rams consistently had superior sperm concentrations than C animals; and statistical significances were reached in cycles 5 and 8 of water deprivation. Several mating behaviour traits were modified as a result of water deprivation. When compared to controls, WD rams had a more prolonged time to first mount attempt (p < 0.001), their frequency of mount attempts decreased [6.8 vs. 5.2 (SEM 0.1); p < 0.001] and their flehmen reaction intensity was negatively affected (p < 0.05). Water deprivation may have practical implications reducing the libido and therefore the serving capacity of rams under field conditions.

  15. Influence of localized plasticity on oxidation behaviour of austenitic stainless steels under primary water reactor

    NASA Astrophysics Data System (ADS)

    Cissé, Sarata; Laffont, Lydia; Lafont, Marie-Christine; Tanguy, Benoit; Andrieu, Eric

    2013-02-01

    The sensitivity of precipitation-strengthened A286 austenitic stainless steel to stress corrosion cracking was studied by means of slow-strain-rate tests. First, alloy cold working by low cycle fatigue (LCF) was investigated. Fatigue tests under plastic strain control were performed at different strain levels (Δɛp/2 = 0.2%, 0.5%, 0.8% and 2%) to establish correlations between stress softening and the deformation microstructure resulting from the LCF tests. Deformed microstructures were identified through TEM investigations. The interaction between oxidation and localized deformation bands was also studied and it resulted that localized deformation bands are not preferential oxide growth channels. The pre-cycling of the alloy did not modify its oxidation behaviour. However, intergranular oxidation in the subsurface under the oxide layer formed after exposure to PWR primary water was shown.

  16. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  17. Fatigue behavior and recommended design rules for an automotive composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

    1998-11-01

    Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

  18. Statistical optimisation techniques in fatigue signal editing problem

    SciTech Connect

    Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  19. Effect of multiple strain-anneal cycles on the 1000 C creep behaviour of gamma/gamma prime-alpha

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Buzek, B. C.; Wirth, G.

    1986-01-01

    Various multiple strain-anneal cycles (1000 C) were imposed on specimens of the directionally solidified eutectic (DSE) alloy gamma/gamma prime-alpha to identify thermomechanical processing methods (TMP) which would improve the creep behavior. Specimens of the Ni-32.3Mo-6.3Al wt pct alloy were grown with a modified Bridgeman technique. Some of the cylindrical specimens were alternately heat-treated at 900 C, then strained, or heat-treated only, while other specimens were annealed at 900 C after swaging and then worked at ambient temperature. The specimens were all examined microstructurally using transmission electron microscopy, some before and after being exposed to constant-load compression tests at 1000 C. The creep strain increased for all TMP specimens for strain rates of at least 2 millionths per sec. Strain rates of about 2 ten millionths per sec were only improved with strain annealing with 13 percent work at ambient temperature. A slight improvement, compared to as-grown materials, was observed in the 1000 C creep behavior of materials annealed at 900 C. Strain-annealing was found to introduce three-dimensional dislocation networks into the gamma-prime matrix.

  20. Fatigue during intermittent-sprint exercise.

    PubMed

    Bishop, David J

    2012-09-01

    1. There is a reversible decline in force production by muscles when they are contracting at or near their maximum capacity. The task-dependent nature of fatigue means that the mechanisms of fatigue may differ between different types of contractions. This paper examines how fatigue manifests during whole-body, intermittent-sprint exercise and discusses the potential muscular and neural mechanisms that underpin this fatigue. 2. Fatigue is defined as a reversible, exercise-induced reduction in maximal power output (e.g. during cycling exercise) or speed (e.g. during running exercise), even though the task can be continued. 3. The small changes in surface electromyogram (EMG), along with a lack of change in voluntary muscle activation (estimated from both percutaneous motor nerve stimulations and trans-cranial magnetic stimulation), indicate that there is little change in neural drive to the muscles following intermittent-sprint exercise. This, along with the observation that the decrease in EMG is much less than that which would be predicted from the decrease in power output, suggests that peripheral mechanisms are the predominant cause of fatigue during intermittent-sprint exercise. 4. At the muscle level, limitations in energy supply, including phosphocreatine hydrolysis and the degree of reliance on anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue.

  1. Mental fatigue impairs physical performance in humans.

    PubMed

    Marcora, Samuele M; Staiano, Walter; Manning, Victoria

    2009-03-01

    Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. Although the impact of mental fatigue on cognitive and skilled performance is well known, its effect on physical performance has not been thoroughly investigated. In this randomized crossover study, 16 subjects cycled to exhaustion at 80% of their peak power output after 90 min of a demanding cognitive task (mental fatigue) or 90 min of watching emotionally neutral documentaries (control). After experimental treatment, a mood questionnaire revealed a state of mental fatigue (P = 0.005) that significantly reduced time to exhaustion (640 +/- 316 s) compared with the control condition (754 +/- 339 s) (P = 0.003). This negative effect was not mediated by cardiorespiratory and musculoenergetic factors as physiological responses to intense exercise remained largely unaffected. Self-reported success and intrinsic motivation related to the physical task were also unaffected by prior cognitive activity. However, mentally fatigued subjects rated perception of effort during exercise to be significantly higher compared with the control condition (P = 0.007). As ratings of perceived exertion increased similarly over time in both conditions (P < 0.001), mentally fatigued subjects reached their maximal level of perceived exertion and disengaged from the physical task earlier than in the control condition. In conclusion, our study provides experimental evidence that mental fatigue limits exercise tolerance in humans through higher perception of effort rather than cardiorespiratory and musculoenergetic mechanisms. Future research in this area should investigate the common neurocognitive resources shared by physical and mental activity. PMID:19131473

  2. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  3. Fatigue life prediction under service load considering strengthening effect of loads below fatigue limit

    NASA Astrophysics Data System (ADS)

    Zhao, Lihui; Zheng, Songlin; Feng, Jinzhi

    2014-11-01

    Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are -3.78% and -1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.

  4. Fatigue-proofing: a new approach to reducing fatigue-related risk using the principles of error management.

    PubMed

    Dawson, Drew; Chapman, Janine; Thomas, Matthew J W

    2012-04-01

    In this review we introduce the idea of a novel group of strategies for further reducing fatigue-related risk in the workplace. In contrast to the risk-reduction achieved by reducing the likelihood an individual will be working while fatigued (e.g., by restricting hours of work), fatigue-proofing strategies are adaptive and protective risk-reduction behaviours that improve the resilience of a system of work. That is, they increase the likelihood that a fatigue-related error will be detected and not translate into accident or injury, thus reducing vulnerability to fatigue-related error. The first part of the review outlines the theoretical underpinnings of this approach and gives a series of ethnographically derived examples of informal fatigue-proofing strategies used in a variety of industries. A preliminary conceptual and methodological framework for the systematic identification, development and evaluation of fatigue-proofing strategies is then presented for integration into the wider organisational safety system. The review clearly identifies fatigue-proofing as a potentially valuable strategy to significantly lower fatigue-related risk independent of changes to working hours. This is of particular relevance to organisations where fatigue is difficult to manage using reductions in working hours due to operational circumstances, or the paradoxical consequences for overall safety associated with reduced working hours.

  5. Fatigue and creep-fatigue deformation of several nickel-base superalloys at 650 C

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Maier, R. D.

    1982-01-01

    Transmission electron microscopy has been used to study the bulk deformation characteristics of seven nickel-base superalloys tested in fatigue and creep-fatigue at 650 C. The alloys were Waspalloy, HIP Astroloy, H plus F Astroloy, H plus F Rene 95, IN 100, MERL 76, and NASA IIB-7. The amount of bulk deformation observed in all the alloys was low. In tests with inelastic strain amplitudes less than about 0.003, only some grains exhibited yielding and the majority of those had the 110 line near the tensile axis. Deformation occurred on octahedral systems for all of the alloys except MERL 76 which also showed abundant primary cube slip. Creep-fatigue cycling occasionally produced extended faults between partial dislocations, but otherwise deformation was much the same as for fatigue cycling.

  6. [Prolonged or chronic fatigue of unknown origin].

    PubMed

    Favrat, Bernard; Guessous, Idris; Gonthier, Ariane; Cornuz, Jacques

    2015-04-22

    Although prolonged or chronic fatigue is a very common complaint in primary care medicine, a biomedical obvious cause is often not found. In such a case, for women between 18 and 50 years with a ferritin level of less than 50 µg/l in the absence of anaemia, an iron supplementation may be associated with an improvement in fatigue. Appropriate treatment is also important for depression, anxiety or insomnia. In other cases, the approach is essentially non-pharmacological in the form of lifestyle advice, empathy and cognitive behavioural therapy as well as progressive and adapted physical exercises. PMID:26072601

  7. Mental fatigue impairs soccer-specific decision-making skill.

    PubMed

    Smith, Mitchell R; Zeuwts, Linus; Lenoir, Matthieu; Hens, Nathalie; De Jong, Laura M S; Coutts, Aaron J

    2016-07-01

    This study aimed to investigate the impact of mental fatigue on soccer-specific decision-making. Twelve well-trained male soccer players performed a soccer-specific decision-making task on two occasions, separated by at least 72 h. The decision-making task was preceded in a randomised order by 30 min of the Stroop task (mental fatigue) or 30 min of reading from magazines (control). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort (referring to treatment) and motivation (referring to the decision-making task) were measured after treatment. Performance on the soccer-specific decision-making task was assessed using response accuracy and time. Visual search behaviour was also assessed throughout the decision-making task. Subjective ratings of mental fatigue and effort were almost certainly higher following the Stroop task compared to the magazines. Motivation for the upcoming decision-making task was possibly higher following the Stroop task. Decision-making accuracy was very likely lower and response time likely higher in the mental fatigue condition. Mental fatigue had unclear effects on most visual search behaviour variables. The results suggest that mental fatigue impairs accuracy and speed of soccer-specific decision-making. These impairments are not likely related to changes in visual search behaviour.

  8. Fatigue of die cast zinc alloys

    SciTech Connect

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appeared to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.

  9. [Fatigue and depression].

    PubMed

    Hell, Daniel

    2015-04-22

    Fatigue is characterised in an overview of the literature as a specific phenomenon of depression. Its differential diagnosis is discussed. Distinctions and correspondences to burnout are elaborated. Fatigue is not an obligatory symptom of depressive episodes, although it can contribute to depressive developments. The importance of fatigue in depressive episodes and its therapy is shown with the help of a circular model of depression.

  10. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  11. Dwell fatigue in two Ti alloys: An integrated crystal plasticity and discrete dislocation study

    NASA Astrophysics Data System (ADS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2016-11-01

    It is a well known and important problem in the aircraft engine industry that alloy Ti-6242 shows a significant reduction in fatigue life, termed dwell debit, if a stress dwell is included in the fatigue cycle, whereas Ti-6246 does not; the mechanistic explanation for the differing dwell debit of these alloys has remained elusive for decades. In this work, crystal plasticity modelling has been utilised to extract the thermal activation energies for pinned dislocation escape for both Ti alloys based on independent experimental data. This then allows the markedly different cold creep responses of the two alloys to be captured accurately and demonstrates why the observed near-identical rate sensitivity under non-dwell loading is entirely consistent with the dwell behaviour. The activation energies determined are then utilised within a recently developed thermally-activated discrete dislocation plasticity model to predict the strain rate sensitivities of the two alloys associated with nano-indentation into basal and prism planes. It is shown that Ti-6242 experiences a strong crystallographic orientation-dependent rate sensitivity while Ti-6246 does not which is shown to agree with recently published independent measurements; the dependence of rate sensitivity on indentation slip plane is also well captured. The thermally-activated discrete dislocation plasticity model shows that the incorporation of a stress dwell in fatigue loading leads to remarkable stress redistribution from soft to hard grains in the classical cold dwell fatigue rogue grain combination in alloy Ti-6242, but that no such load shedding occurs in alloy Ti-6246. The key property controlling the behaviour is the time constant of the thermal activation process relative to that of the loading. This work provides the first mechanistic basis to explain why alloy Ti-6242 shows a dwell debit but Ti-6246 does not.

  12. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  13. Polarization fatigue of organic ferroelectric capacitors

    PubMed Central

    Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.

    2014-01-01

    The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542

  14. Nondestructive characterization of fatigue damage with thermography

    NASA Astrophysics Data System (ADS)

    Roesner, Henrik; Sathish, Shamachary; Meyendorf, Norbert

    2001-08-01

    A thermal imaging NDE method has been developed for nondestructive characterization of early stages of fatigue damage. The method is based on evaluation of the thermal effects induced in a material by a short-term mechanical loading. The mechanical loading causes in addition to thermoelastic temperature change, an increase due to heat dissipation that depends upon the microstructure of the material in a characteristic manner. The origin of this heat dissipation is the mechanical damping process. Utilizing the initial temperature rise due to a short-term mechanical loading, the dissipated energy per cycle was evaluated as a thermal parameter. This new thermal NDE parameter allows a quantitative characterization of the mechanical hysteresis, without the need for calibration to eliminate influences of thermal boundary conditions. The measurement of the thermal NDE parameters has been performed on Ti-6Al-4V dog-bone specimens, fatigued in low cycle fatigue (LCF) as well as in high cycle fatigue (HCF) experiments. Characteristic dependence of the NDE parameters on the already accumulated fatigue damage has been observed. The advantage of the thermal method is the applicability to components under service conditions because of simplicity, rapid measurements (a few seconds) and the ability of locally resolved evaluations.

  15. Polarization fatigue of organic ferroelectric capacitors.

    PubMed

    Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W M; de Leeuw, Dago M

    2014-05-27

    The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 10(8) times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts.

  16. Thermomechanical Fatigue of LEAD-97 - TIN-3

    NASA Astrophysics Data System (ADS)

    Lawson, Lawrence Richard

    The thermomechanical fatigue properties of 96.5 wt.% Pb 3.5 wt% Sn alloy were studied at temperatures ranging from 15^circC to 100 ^circC. Cycling was performed at various periods ranging from 184 to 1040 seconds. Hold times at peak tensile strain of up to 419 seconds were introduced. Triangular waveforms for strain control and temperature were employed and the effects of varying the relative phase of these were studied. As a part of fatigue testing, measurements of crack length per unit area and depth of penetration were made. In addition to these fatigue tests, additional measurements of the production and recovery of excess lattice vacancy concentration due to straining and measurements of grain boundary sliding were also performed. Strong thermomechanical and phase effects were seen. The number of cycles to failure was seen to be smaller, when the peak temperature of the temperature cycle coincided with the peak tensile strain, than in an isothermal test under the same conditions except at the peak temperature of the thermal cycle. The number of cycles to failure was larger, when the lowest temperature of the thermal cycle coincided with the peak tensile strain, than in an isothermal test under the same conditions except at the maximum temperature of the thermal cycle and, where measured, at the minimum temperature of the thermal cycle as well. Also, unusual dependence of the number of cycles to failure on frequency was observed. These and other results were modeled using a vacancy -impurity complex model. Oxygen was chosen as the principal impurity since fatigue tests were conducted in air. Treating the complexes thermodynamically as if they were a chemical compound, the theoretical dependence of the number of cycles to failure on oxygen partial pressure was explored.

  17. Probabilistic fatigue methodology and wind turbine reliability

    SciTech Connect

    Lange, C.H.

    1996-05-01

    Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

  18. Fatigue in rheumatic diseases

    PubMed Central

    Sandıkçı, Sevinç Can; Özbalkan, Zeynep

    2015-01-01

    Fatigue is a common and important problem in many diseases including rheumatologic illnesses, and it has a negative impact on health-related quality of life. Fatigue is described as having an impact on multiple aspects of a patient’s life. There is a need for knowledge about causes of and treatments for fatigue to ensure that patient outcomes are improved. There are several effective treatment strategies available for fatigue including pharmacological and non-pharmacological therapies. We aim to provide an overview of fatigue in rheumatologic disorders and some recommendations on its optimal management. PMID:27708942

  19. Cognitive and Physical Fatigue Tasks Enhance Pain, Cognitive Fatigue and Physical Fatigue in People with Fibromyalgia

    PubMed Central

    Dailey, Dana L; Keffala, Valerie J; Sluka, Kathleen A

    2014-01-01

    Objective Fibromyalgia is a condition characterized by chronic widespread muscle pain and fatigue. The primary objective of this study was to determine if pain, perceived cognitive fatigue, and perceived physical fatigue were enhanced in participants with fibromyalgia compared to healthy controls during a cognitive fatigue task, a physical fatigue task and a dual fatigue task. Methods Twenty four people with fibromyalgia and 33 healthy controls completed pain, fatigue and function measures. A cognitive fatigue task (Controlled Oral Word Association Test) and physical fatigue task (Valpar peg test) were done individually and combined for a dual fatigue task. Resting pain, perceived cognitive fatigue and perceived physical fatigue were assessed during each task using visual analogue scales. Function was assessed with shoulder range of motion and grip. Results People with fibromyalgia had significantly higher increases in pain, cognitive fatigue and physical fatigue when compared to healthy controls after completion of a cognitive fatigue task, a physical fatigue task, or a dual fatigue task (p<0.01). People with fibromyalgia performed equivalently on measures of physical performance and cognitive performance on the physical and cognitive fatigue tasks, respectively. Conclusions These data show that people with fibromyalgia show larger increases in pain, perceived cognitive fatigue and perceived physical fatigue to both cognitive and physical fatigue tasks compared to healthy controls. The increases in pain and fatigue during cognitive and physical fatigue tasks could influence subject participation in daily activities and rehabilitation. PMID:25074583

  20. Reliability improvement of wire bonds subjected to fatigue stresses.

    NASA Technical Reports Server (NTRS)

    Ravi, K. V.; Philofsky, E. M.

    1972-01-01

    The failure of wire bonds due to repeated flexure when semiconductor devices are operated in an on-off mode has been investigated. An accelerated fatigue testing apparatus was constructed and the major fatigue variables, aluminum alloy composition, and bonding mechanism, were tested. The data showed Al-1% Mg wires to exhibit superior fatigue characteristics compared to Al-1% Cu or Al-1% Si and ultrasonic bonding to be better than thermocompression bonding for fatigue resistance. Based on these results highly reliable devices were fabricated using Al-1% Mg wire with ultrasonic bonding which withstood 120,000 power cycles with no failures.

  1. German experiences in local fatigue monitoring

    SciTech Connect

    Abib, E.; Bergholz, S.; Rudolph, J.

    2012-07-01

    are the various manual control options and also different operating modes. It is clear that showing the covering of real loads by design loads, requires a relatively complex and well-qualified detection process. The difficulty of this task is increased due to the lack of data or incomplete information and the exclusive reliance on existing operation plant data. The strategy of employing local fatigue monitoring is a straightforward solution enabling the direct measurement of loads on the fatigue-sensitive zones. Nowadays a direct derivation of the complete stress tensor at the fatigue-relevant locations is enabled thanks to the recorded local loads and combination with finite element (FE) analyses. So, additionally to the recorded temperature curves, a representation of the time evolution of the six stress components for each monitored component is possible. This allows the application of the simplified elasto-plastic fatigue check according to design codes. The fatigue level can be realistically analyzed with a suitable cycle-counting method. Furthermore, the knowledge of the time evolution of the stresses and strains enables to take into account an environmental factor to include the corrosive fluid influence in the calculations. Without local recording, it is impossible to calculate realistic fatigue usage. AREVA offers the AREVA fatigue concept (AFC) and the new fatigue monitoring system integrated (FAMOSi), necessary tools to monitor local fatigue and to provide realistic assessment. (authors)

  2. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  3. Cyclic fatigue behavior of cross-woven C/SiC composite

    SciTech Connect

    Wang, M.; Laird, C.

    1994-12-31

    Tension-tension fatigue experiments were conducted on CVI processed cross-woven Tension-tension fatigue experiments C/SiC composites. A S-N curve was obtained for this composite system, which defines a ``fatigue endurance`` in the range of 320 MPa 340 MPa (80%--85% of tensile strength) for run out cycles of 10{sup 6}. The behaviors of elapsed strains vs. cycles for the fatigue failed and run out samples are found to differ systematically, indicating that the elapsed strain is an appropriate parameter for describing fatigue damage. The total elapsed strains of the fatigue failed samples are in the range of 0.65%--O.75% which is characteristic of the cross woven C/SiC composite. The residual monotonic strength of the fatigue survived samples increased about 10% to 20% above the average monotonic tensile strength. Mechanisms for these 9 processes are discussed on the basis of fatigue damage development.

  4. Influence of fretting on flexural fatigue of 304 stainless steel and mild steel

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Rohn, D. A.

    1978-01-01

    Fretting fatigue experiments conducted on 304 stainless steel using a flexural fatigue test arrangement with bolted on fretting pads demonstrated that fatigue life is reduced by at least a factor of 10 in the 265 to 334 MPa (38,500 - to 48,500 psi) nominal flexural fatigue stress range. In addition, experiments in which the fretting pads were removed after selected numbers of cycles, followed by continued flexural fatigue without fretting show that continued fretting beyond 50,000 cycles does not significantly further reduce fatigue life of 304 stainless steel at 317 MPa (46,000 psi). Microscopic examination of the fretted contact areas revealed fracture initiation sites as well as numerous cracks that did not propagate to failure. Flexural fretting fatigue experiments performed on mild steel showed an insensitivity of fatigue life to the incidence of fretting under flexural stress conditions of from 162 to 217 MPa (23,500 to 31,500 psi).

  5. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  6. A combined mode fatigue model for glass reinforced nylon as applied to molded engine cooling fans

    SciTech Connect

    Smith, J.D.; Bennet, M.L.

    1985-01-01

    The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.

  7. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  8. Fatigue characterization of high pressure die-cast magnesium AM60B alloy using experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Lu, You

    The object of the current dissertation is to foster fundamental advances in microstructure-fatigue characteristics of a high pressure die cast magnesium AM60B alloy. First, high cycle fatigue staircase experiments were conducted on specimens extracted from automobile instrument panels. The resulting fracture surfaces were then examined with scanning electron microscopic imaging to elucidate the fatigue crack initiation sites and propagation paths at different stages of the fatigue life. Due to the fact that the qualification of the crack initiation and propagation mechanisms through experiment alone is difficult, complementary micromechanical finite element simulations were conducted. Particularly, the effects of different applied loading conditions and the porosity morphology (e.g. pore shape, pore size, pore spacing, proximity to the free surface) on the maximum plastic shear strain range, as a driving force for crack initiation, were analyzed. Moreover, at the microstructually small crack (MSC) propagation stage, the shielding effects of beta-phase Mg17Al12 particles were systematically studied. Based on the distribution of the maximum principal stress within the particles and the maximum hydrostatic stress along the particle/matrix interfaces, the relative influence of the pre-damaged (fractured or debonded) particles and various particle cluster morphologies were carefully investigated. In the finite element simulations, the constitutive behaviours of AM60B alloy and the alpha-matrix were simulated by the advanced kinematic hardening law tuned with experimentally determined material parameters under cyclic loading.

  9. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    PubMed

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort

  10. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  11. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  12. Bending Fatigue of Carburized Steel at Very Long Lives

    NASA Astrophysics Data System (ADS)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  13. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery.

    PubMed

    McDonald, Alison C; Tse, Calvin T F; Keir, Peter J

    2016-08-01

    The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.

  14. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  15. Faecal progesterone metabolites and behavioural observations for the non-invasive assessment of oestrous cycles in the common wombat (Vombatus ursinus) and the southern hairy-nosed wombat (Lasiorhinus latifrons).

    PubMed

    Paris, M C J; White, A; Reiss, A; West, M; Schwarzenberger, F

    2002-08-15

    Wombats belong to Australia's unique marsupial species. Two of the three remaining species, the common wombat (Vombatus ursinus) and the southern hairy-nosed wombat (Lasiorhinus latifrons) are abundant. The third species, the northern hairy-nosed wombat (Lasiorhinus krefftii) has only about 115 individuals left in the wild. This study aimed to gain further insight into the basic reproductive biology of wombat species and evaluate the value of faecal progesterone metabolites and behavioural patterns as a means for non-invasive monitoring of the oestrous cycle in common and the southern hairy-nosed wombats. In an initial study, three different faecal steroid assays showed that 20alpha-OH-pregnanes were the main progesterone metabolites. These metabolites were examined in captive female common wombats (n = 5) and southern hairy-nosed wombats (n = 2). In one female common wombat 11.7 days with a follicular phase of 25.6 +/- 6.3 days and a luteal phase of 28.2 +/- 12.7 days. The data for faecal pregnanes obtained in the southern and in one male common wombat oestrous related behavioural data were obtained. Individual cycling females exhibited a significant relationship between plasma progesterone and faecal pregnanes. In the common wombat, the values for faecal pregnanes showed an oestrous cycle length of 55.1 +/- hairy-nosed wombat during the breeding season gave an oestrous cycle length of 41.1 +/- 12.8 days with a follicular phase of 27.9 +/- 12.3 days and a short luteal phase of 13.3 +/- 1.1 days. The behavioural data show that the faecal sniffing behaviour of the male, tended to increase around the time that oestrous was found. In conclusion, monitoring of 20alpha-OH-pregnanes in wombat faeces could be a useful methodology to monitor reproductive cycles in the wombat, and can possibly be applied to monitor the endangered northern hairy-nosed wombat. PMID:12137986

  16. Faecal progesterone metabolites and behavioural observations for the non-invasive assessment of oestrous cycles in the common wombat (Vombatus ursinus) and the southern hairy-nosed wombat (Lasiorhinus latifrons).

    PubMed

    Paris, M C J; White, A; Reiss, A; West, M; Schwarzenberger, F

    2002-08-15

    Wombats belong to Australia's unique marsupial species. Two of the three remaining species, the common wombat (Vombatus ursinus) and the southern hairy-nosed wombat (Lasiorhinus latifrons) are abundant. The third species, the northern hairy-nosed wombat (Lasiorhinus krefftii) has only about 115 individuals left in the wild. This study aimed to gain further insight into the basic reproductive biology of wombat species and evaluate the value of faecal progesterone metabolites and behavioural patterns as a means for non-invasive monitoring of the oestrous cycle in common and the southern hairy-nosed wombats. In an initial study, three different faecal steroid assays showed that 20alpha-OH-pregnanes were the main progesterone metabolites. These metabolites were examined in captive female common wombats (n = 5) and southern hairy-nosed wombats (n = 2). In one female common wombat 11.7 days with a follicular phase of 25.6 +/- 6.3 days and a luteal phase of 28.2 +/- 12.7 days. The data for faecal pregnanes obtained in the southern and in one male common wombat oestrous related behavioural data were obtained. Individual cycling females exhibited a significant relationship between plasma progesterone and faecal pregnanes. In the common wombat, the values for faecal pregnanes showed an oestrous cycle length of 55.1 +/- hairy-nosed wombat during the breeding season gave an oestrous cycle length of 41.1 +/- 12.8 days with a follicular phase of 27.9 +/- 12.3 days and a short luteal phase of 13.3 +/- 1.1 days. The behavioural data show that the faecal sniffing behaviour of the male, tended to increase around the time that oestrous was found. In conclusion, monitoring of 20alpha-OH-pregnanes in wombat faeces could be a useful methodology to monitor reproductive cycles in the wombat, and can possibly be applied to monitor the endangered northern hairy-nosed wombat.

  17. A model for the formation of fatigue striations and its relationship with small fatigue crack growth in an aluminum alloy

    SciTech Connect

    Shyam, Amit; Lara-Curzio, Edgar

    2010-01-01

    The fatigue crack growth process involves damage accumulation and crack extension. The two sub-processes that lead to fatigue crack extension were quantified separately in a recent model for small fatigue crack growth applicable to engineering alloys. Here, we report the results of an experimental investigation to assess the assumptions of that model. The fatigue striation formation in an aluminum alloy is modeled and it is verified that the number of cycles required for striation formation is related to the cyclic crack tip opening displacement and that the striation spacing is related to the monotonic crack tip displacement. It is demonstrated that extensive cyclic crack tip plasticity in the aluminum alloy causes a reduction in the magnitude of the slope of the fatigue crack propagation curves. The implications of these results on the fatigue crack propagation lifetime calculations are identified.

  18. Fatigue and fracture behavior of U-6 wt. pct. Nb

    SciTech Connect

    Strum, M.J.; Freeman, D.C.; Elmer, J.W.

    1993-05-21

    The fatigue and fracture properties of U6Nb were measured to provide the materials property data needed for structural designs in material processed by solution quenching and aging 200 C/2h. Limited testing was also performed on as-quenched U6Nb. The authors have extended the database on fatigue properties in U6Nb to include both crack initiation data and crack propagation data. The static load carrying capabilities have been characterized through fracture toughness and tensile property measurements. Using a rotating beam fatigue machine, a fatigue strength of 248 MPa was measured at 10{sup 8} cycles for smooth bars at zero mean load. As is typical of nonferrous alloys, U6Nb does not exhibit a fatigue endurance limit. Reductions in fatigue strength for notched bars and for mean loads of 276 MPa and 483 MPa (70 ksi) were also determined. The predominant sites for fatigue crack initiation were identified as niobium carbide and uranium oxide inclusion clusters and the distribution of these inclusions are presented. Fatigue crack propagation rates were measured in the near-threshold regime using compact tension specimens. The fatigue threshold for crack growth rates below 10{sup {minus}7} mm/cycle were measured at both R = 0.1, for which a fatigue threshold of 3.2 MPa{radical}m was measured, and for constant Kmax cycles with Kmax values of 14.6 MPa{radical}m and 30.5 MPa{radical}m, for which the fatigue threshold was reduced to 0.9 MPa{radical} and 0.6 MPa{radical}m, respectively.

  19. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  20. Quantifying the Thermal Fatigue of CPV Modules

    SciTech Connect

    Bosco, N.; Kurtz, S.

    2011-02-01

    A method is presented to quantify thermal fatigue in the CPV die-attach from meteorological data. A comparative; study between cities demonstrates a significant difference in the accumulated damage. These differences are most; sensitive to the number of larger (ΔT) thermal cycles experienced for a location. High frequency data (<1/min) may; be required to most accurately employ this method.

  1. Predicting fatigue life of metal bellows

    NASA Technical Reports Server (NTRS)

    Daniels, C. M.

    1968-01-01

    Classical method of presenting fatigue data in plots of alternating stress vs number of deflection cycles is applied to bellows formed of various metals, including corrosion-resistant steel, nickel alloys, and aluminum alloys. The expected life of a new bellows design can then be determined before fabrication and testing.

  2. Influence of oxidation treatment on fatigue and fatigue-induced damage of commercially pure titanium.

    PubMed

    Leinenbach, C; Eifler, D

    2009-09-01

    In this investigation, the cyclic deformation behaviour of commercially pure titanium was characterized in axial stress controlled constant amplitude and load increase tests, as well as in rotating bending tests. The influence of different clinically relevant surface treatments (polishing, thermal and anodic oxidizing) on the fatigue behaviour was investigated. All tests were realized in oxygen-saturated Ringer's solution. The cyclic deformation behaviour was characterized by mechanical hysteresis measurements. In addition, the change of the free corrosion potential and the corrosion current during the fatigue tests in simulated physiological media indicated such types of surface damage as slip bands, microcracks and oxide film ablation. Microstructural changes on the specimen surfaces were examined by scanning electron microscopy. PMID:19394905

  3. Etude par microscopie electronique a balayage de l'endommagement par fatigue du cuivre apres implantation de divers elements (de He à Xe)

    NASA Astrophysics Data System (ADS)

    Mendez, J.; Violan, P.; Fayoux, C.

    1983-05-01

    The effect of ion implantation of the surface fatigue damage in polycrystalline copper has been studied. Several elements were employed, from He to Xe, which induce different defect structures. Implanted and non-implanted specimens were cycled up to rupture in tension-compression conditions under two cyclic stress levels. Fatigue tests were conducted at room temperature in laboratory air or in vacuum. Fatigue life is only modified on the He-implanted specimen cycled at the lower stress level; other implanted specimens do not show measurable changes in the fatigue lives. Scanning electron microscopy was used to characterize the effect of the implantations of the cyclic slip behaviour at the specimens surface. While Al or Cu implantations induce no changes and Xe implantation has a small effect, on the other hand, the implantation of He, B, C, N, O or Ar causes a strong inhibition of slip bands at the specimen surface. This inhibition is correlated with the nonsolubility of the elements in thermodynamic equilibrium conditions.

  4. Fatigue characterization of advanced carbon-carbon composites

    NASA Technical Reports Server (NTRS)

    Mahfuz, Hassan; Das, Partha S.; Jeelani, Shaik; Baker, Dean M.; Johnson, Sigured A.

    1992-01-01

    Response of quasi-isotropic laminates of SiC coated Carbon-Carbon (C/C) composites under flexural fatigue are investigated at room temperature. Virgin as well as mission cycled specimens are tested to study the effects of thermal and pressure cycling on the fatigue performance of C/C. Tests were conducted in three point bending with a stress ratio of 0.2 and frequency of 1 Hz. Fatigue strength of C/C has been found to be considerably high - approximately above 85 percent of the ultimate flexural strength. The fatigue strength appears to be decreasing with the increase in the number of mission cycling of the specimens. This lower strength with the mission cycled specimens is attributed to the loss of interfacial bond strength due to thermal and pressure cycling of the material. C/C is also found to be highly sensitive to the applied stress level during cyclic loading, and this sensitivity is observed to increase with the mission cycling. Weibull characterization on the fatigue data has been performed, and the wide scatter in the Weibull distribution is discussed. Fractured as well as untested specimens were C-scanned, and the progressive damage growth during fatigue is presented.

  5. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  6. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1990-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  7. Fatigue life estimates for helicopter loading spectra

    NASA Technical Reports Server (NTRS)

    Khosrovaneh, A. K.; Dowling, N. E.; Berens, A. P.; Gallagher, J. P.

    1989-01-01

    Helicopter loading histories applied to notch metal samples are used as examples, and their fatigue lives are calculated by using a simplified version of the local strain approach. This simplified method has the advantage that it requires knowing the loading history in only the reduced form of ranges and means and number of cycles from the rain-flow cycle counting method. The calculated lives compare favorably with test data.

  8. Clinical neurophysiology of fatigue.

    PubMed

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  9. Mental Fatigue Affects Visual Selective Attention

    PubMed Central

    Faber, Léon G.; Maurits, Natasha M.; Lorist, Monicque M.

    2012-01-01

    Mental fatigue is a form of fatigue, induced by continuous task performance. Mentally fatigued people often report having a hard time keeping their attention focussed and being easily distracted. In this study, we examined the relation between mental fatigue, as induced by time on task, and attention-related changes in event-related potentials (ERPs). EEG, reaction times and response accuracies were obtained from 17 healthy volunteers during two hours of task performance on an adapted Eriksen flanker task. In this task, the size of targets and flankers was manipulated to discern neuronal processes that are related to processing of relevant information from processes related to the processing of irrelevant information. The ERP data showed that effects induced by target size manipulation were not affected by time on task, while an initial effect of flanker size manipulation decreased gradually with increasing time on task. We conclude that attention was affected by mental fatigue, in the form of a decrease in the ability to suppress irrelevant information. In behavioural results, this was reflected by a tendency of participants to increasingly base their response decision on irrelevant information, resulting in decreased response accuracies. PMID:23118927

  10. Mental fatigue affects visual selective attention.

    PubMed

    Faber, Léon G; Maurits, Natasha M; Lorist, Monicque M

    2012-01-01

    Mental fatigue is a form of fatigue, induced by continuous task performance. Mentally fatigued people often report having a hard time keeping their attention focussed and being easily distracted. In this study, we examined the relation between mental fatigue, as induced by time on task, and attention-related changes in event-related potentials (ERPs). EEG, reaction times and response accuracies were obtained from 17 healthy volunteers during two hours of task performance on an adapted Eriksen flanker task. In this task, the size of targets and flankers was manipulated to discern neuronal processes that are related to processing of relevant information from processes related to the processing of irrelevant information. The ERP data showed that effects induced by target size manipulation were not affected by time on task, while an initial effect of flanker size manipulation decreased gradually with increasing time on task. We conclude that attention was affected by mental fatigue, in the form of a decrease in the ability to suppress irrelevant information. In behavioural results, this was reflected by a tendency of participants to increasingly base their response decision on irrelevant information, resulting in decreased response accuracies.

  11. Modeling Thermal Fatigue in CPV Cell Assemblies: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Kurtz, S.

    2011-07-01

    A finite element model has been created to quantify the thermal fatigue damage of the CPV die attach. Simulations are used to compare to results of empirical thermal fatigue equations originally developed for accelerated chamber cycling. While the empirical equations show promise when extrapolated to the lower temperature cycles characteristic of weather-induced temperature changes in the CPV die attach, it is demonstrated that their damage does not accumulate linearly: the damage a particular cycle contributes depends on the preceding cycles. Simulations of modeled CPV cell temperature histories provided for direct comparison of the FEM and empirical methods, and for calculation of equivalent times provided by standard accelerated test sequences.

  12. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  13. Mechanical fatigue in repetitively stretched single molecules of titin.

    PubMed Central

    Kellermayer, M S; Smith, S B; Bustamante, C; Granzier, H L

    2001-01-01

    Relaxed striated muscle cells exhibit mechanical fatigue when exposed to repeated stretch and release cycles. To understand the molecular basis of such mechanical fatigue, single molecules of the giant filamentous protein titin, which is the main determinant of sarcomeric elasticity, were repetitively stretched and released while their force response was characterized with optical tweezers. During repeated stretch-release cycles titin becomes mechanically worn out in a process we call molecular fatigue. The process is characterized by a progressive shift of the stretch-force curve toward increasing end-to-end lengths, indicating that repeated mechanical cycles increase titin's effective contour length. Molecular fatigue occurs only in a restricted force range (0-25 pN) during the initial part of the stretch half-cycle, whereas the rest of the force response is repeated from one mechanical cycle to the other. Protein-folding models fail to explain molecular fatigue on the basis of an incomplete refolding of titin's globular domains. Rather, the process apparently derives from the formation of labile nonspecific bonds cross-linking various sites along a pre-unfolded titin segment. Because titin's molecular fatigue occurs in a physiologically relevant force range, the process may play an important role in dynamically adjusting muscle's response to the recent history of mechanical perturbations. PMID:11159452

  14. Elevated Temperature Fatigue Endurance of Three Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Verrilli, Michael J.

    2007-01-01

    High-cycle fatigue endurance of three candidate materials for the acoustic liners of the Enabling Propulsion Materials Nozzle Program was investigated. The ceramic matrix composite materials investigated were N720/AS (Nextel 720, 3M Corporation), Sylramic S200 (Dow Corning), and UT 22. High-cycle fatigue tests were conducted in air at 910 C on as-machined specimens and on specimens subjected to tensile cyclic load excursions every 160 hr followed by thermal exposure at 910 C in a furnace up to total exposure times of 2066 and 4000 hr. All the fatigue tests were conducted in air at 100 Hz with a servohydraulic test machine. In the as-machined condition, among the three materials investigated only the Sylramic S200 exhibited a deterministic type of high-cycle fatigue behavior. Both the N720/AS and UT-22 exhibited significant scatter in the experimentally observed high-cycle fatigue lives. Among the thermally exposed specimens, N720/AS and Sylramic S200 materials exhibited a reduction in the high-cycle fatigue lives, particularly at the exposure time of 4000 hr.

  15. Creep-fatigue interaction of titanium alloy Ti-6Al-2Cb-1Ta-0.8Mo at room temperature

    NASA Technical Reports Server (NTRS)

    Chu, H. P.; Mcdonald, B. A.; Arora, O. P.

    1985-01-01

    The present investigation is concerned with the mutual influence of creep and fatigue in the case of Ti-6211, which represents a new weldable, stress-corrosion resistant alloy. Attention is given to the effect of creep on fatigue, the effect of fatigue on creep, and microstructural studies. It is found that prior creep in the amounts investigated, from 0.2 percent to 2.7 percent, is beneficial to low-cycle fatigue life. Hold time at peak strain is found to be beneficial to low-cycle fatigue life. Hold time at constant stress has no effect on low-cycle fatigue when specimens are cycled only once between hold times; but increasing fatigue loading for 50 or more cycles between hold times can prolong the fatigue life. There is an acceleration of creep by cyclic loading when comparison of cyclic and static creep is based on mean stress.

  16. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    NASA Astrophysics Data System (ADS)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  17. Ultrasonic fatigue of E319 cast aluminum alloy in the long lifetime regime

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoxia

    2007-12-01

    The fatigue behavior of an E319 cast aluminum alloy used in the production of automotive cylinder heads, was studied by using both ultrasonic and conventional fatigue techniques in order to understand the potential effect of frequency on fatigue behavior of cast aluminum alloys. The effect of frequency, environment and temperature on S-N behavior, fatigue crack initiation and propagation behavior of E319 cast aluminum alloy was investigated. It was observed that, at room temperature, in the lifetime regime of less than 107 cycles, fatigue lives at 20 kHz are approximately five to ten times longer than fatigue lives at 75 Hz; while at 107 cycles, the effect of frequency is substantially reduced. At elevated temperature (150 and 250°C), however, the difference in fatigue lives between 20 kHz and 75 Hz persists over the entire range of stress examined. The effect of frequency on fatigue resistance is attributable to an environmental effect on fatigue crack growth rate at all temperatures. For E319 cast aluminum alloy, fatigue crack growth rates increase with increasing water exposure, P/f, which can be estimated by a modified superposition model. Fatigue resistance decreased with increasing temperature and the temperature dependence of fatigue strength at 108 cycles follows closely the temperature dependence of yield and tensile strength. The effect of temperature on fatigue resistance primarily results from the intrinsic effect of temperature on Young's modulus and yield strength. The environmental contribution to fatigue crack growth rates modestly decreases with increasing temperature. At room temperature, an endurance limit is demonstrated in the lifetime regime beyond 107 cycles and the fatigue strength at 10 8 cycles was investigated using the ultrasonic fatigue technique. The fatigue strength is correlated with both size and location of the initiating pores through a threshold stress intensity factor for fatigue crack growth. A probabilistic model was

  18. Fatigue damage analysis under variable amplitude cycling

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Forte, T. P.

    1983-01-01

    This paper explores the suitability of a recently proposed mean stress parameter and introduces a nonlinear damage accumulation procedure. Data covering a range of positive and negative stress ratios from +0.6 to -2.66, for several aluminum alloys and steels, are assembled and shown to be well correlated by a simple damage parameter. A nonlinear damage accumulation postulate is advanced to replace the usual linear procedure. Results of critical experiments performed to assess the suitability of the postulate are introduced and shown to support a non-linear criterion. The implications of this work related to variable amplitude life prediction are discussed.

  19. Fatigue properties of Graphene interconnects on flexible substrates

    NASA Astrophysics Data System (ADS)

    Paradee, Gary

    This thesis represents the first determination of the fatigue behavior of Graphene as interconnect material electronic components on flexible substrates. The potential application of this interconnect material is for displays on flexible substrates where fatigue resistance is required due to the stress placed on the interconnect during mechanical bending. As the display is cyclically deformed (fatigued) during normal operation, cracks in the interconnect layer initiate and propagate leading to the lineout failure condition. The major contribution of this work is to show that Graphene is a superior interconnect material to the present state of the art Indium Tin Oxide (ITO) due to its electrical, optical and mechanical properties. The experimental approach in this thesis is based on Graphene samples which were fabricated on Silicon Nitrite (Si3N4)/Polyethylene Naphthalate (PEN) substrates. For comparison, both patterned and uniform ITO films ITO films on Si3N4/PEN were fabricated. The results of the in-depth characterization of Graphene are reported and based on Atomic Force Microscopy (AFM), Raman Spectroscopy and Scanning Electron Microscopy (SEM) are reported. The fatigue characteristics of ITO were determined at stress amplitudes ranging from 2000 MPa to 400 MPa up to 5000 cycles. The fatigue characteristics of Graphene were determined at stress amplitudes ranging from 80 GPa to 40 GPa up to 5000 cycles. The fatigue S-N curves were determined and showed that Graphene's endurance limit is 40 GPa. Beyond the endurance limit, there is no observable high cycle or low cycle fatigue indication for Graphene on a flexible substrate such as PEN. The microstructural analysis by SEM and AFM did not reveal normal fatigue crack growth and propagation. This thesis presents the first comprehensive behavior of Graphene in a bending fatigue stress environment present in numerous flexible electronic applications. The design and stress environments for safe operation has been

  20. Aerodynamic Heating and Fatigue

    NASA Technical Reports Server (NTRS)

    Kroll, Wilhelmina D.

    1959-01-01

    A review of the physical condition's under which future airplanes will operate has been made and the necessity for considering fatigue in the design has been established. A survey of the literature shows what phases of elevated-temperature fatigue have been investigated. Other studies that would yield data of particular interest to the designer of aircraft structures are indicated.

  1. A systems approach to solder joint fatigue in spacecraft electronic packaging

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1991-01-01

    Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.

  2. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  3. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  4. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  5. Nonlinear Ultrasonic Characterization of Fatigue Microstructures

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2001-01-01

    Dislocation dipole substructures formed during metal fatigue are shown to produce a substantial distortion of ultrasonic waves propagating through the fatigued material. A model of ultrasonic wave-dislocation dipole interactions is developed that quantifies the wave distortion by means of a material nonlinearity parameter (beta). Application of the model to AA2024-T4 predicts a value of p approximately 300% larger in material cyclically loaded for 100 kcycles in stress-control at 276 MPa and R=0 than that measured for virgin material. Experimental measurements show a monotonic increase in p as a function of the number of fatigue cycles that closely approaches the predicted increase. The experiments also suggest that the relevant dislocation substructures are localized in the material.

  6. Environmental Effects on Graphite-Epoxy Fatigue Properties

    NASA Technical Reports Server (NTRS)

    Sumsion, H. T.

    1976-01-01

    Effects of torsional and flexural fatigue on the long-time Integrity of advanced graphite-epoxy structural composites have been investigated. Torsional fatigue tests were run at stress ratios of R = 0 (zero to maximum, repeated) and R = -1 (zero mean stress) on unidirectional, angleply, and woven graphite fiber materials in air and water at room temperature and at 74 C. Flexural fatigue tests (four-point bending) with R = -1 were run in air and water at room temperature, and with R = 0 in air. Results show that, in torsional cycling, both water environment and higher test temperature contribute to significant degradation of torsional stiffness. The degradation of stiffness from torsional stress cycling was observed to be much greater with R = -1 than with simple R = 0 cycling. The effect of environment also is greater in the fully reversed cycling. Flexural fatigue results on +/- 30 deg material show a large fatigue effect, with fatigue limits of less than 50% and 30% of the static failure strength for specimens tested under stress ratios of R = 0 and R = -1, respectively. Compliance measurements indicate that the final failures are preceded by damage initiation and accumulation, which begins at about 1% of the specimen life.

  7. Eddy current pulsed thermography for fatigue evaluation of gear

    NASA Astrophysics Data System (ADS)

    Tian, Gui Yun; Yin, Aijun; Gao, Bin; Zhang, Jishan; Shaw, Brian

    2014-02-01

    The pulsed eddy current (PEC) technique generates responses over a wide range of frequencies, containing more spectral coverage than traditional eddy current inspection. Eddy current pulsed thermography (ECPT), a newly developed non-destructive testing (NDT) technique, has advantages such as rapid inspection of a large area within a short time, high spatial resolution, high sensitivity and stand-off measurement distance. This paper investigates ECPT for the evaluation of gear fatigue tests. The paper proposes a statistical method based on single channel blind source separation to extract details of gear fatigue. The discussion of transient thermal distribution and patterns of fatigue contact surfaces as well as the non-contact surfaces have been reported. In addition, the measurement for gears with different cycles of fatigue tests by ECPTand the comparison results between ECPT with magnetic Barkhausen noise (MBN) have been evaluated. The comparison shows the competitive capability of ECPT in fatigue evaluation.

  8. Sources of fatigue damage to passive yaw wind turbine blades

    SciTech Connect

    Laino, D.J.

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  9. Statistical summaries of fatigue data for design purposes

    NASA Technical Reports Server (NTRS)

    Wirsching, P. H.

    1983-01-01

    Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.

  10. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    NASA Astrophysics Data System (ADS)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  11. On the fatigue life of 3D woven composite

    SciTech Connect

    Dadkhah, M.S.; Cox, B.N.

    1995-12-31

    Polymer composites with three-dimensional woven graphite fiber reinforcement (3D interlock weaves) have been tested in compression-compression fatigue under load control. As under monotonic loading, the principal mechanism of failure is kink band formation in the primary load bearing twos. Observations of kink bands and microcracking in sectioned specimens suggest that fatigue progresses by the accumulation of damage to the resin within individual tows. If it is assumed that resin damage accumulates at a rate proportional to some power of the local axial shear stress in a misaligned tow, then a simple formula follows for the cycles to kink band formation. Under load control, only a few kink bands are required for specimen failure. Then the formula is also the basis for estimates of fatigue life. Fatigue life data and measured misalignment angles, which determine the local axial shear stress, support the fatigue model.

  12. Fatigue Characteristics of Laser Welded Zircaloy Thin Sheet

    NASA Astrophysics Data System (ADS)

    Jeong, Dong Hee; Kim, Jae Hoon; Park, Joon Kyoo; Jeon, Kyeong Lak; Lee, Seong Ki; Suh, Jung Min

    The spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and maintains geometry from external impact load and cyclic stress by the vibration of nuclear fuel rod, it is necessary to have sufficient strength against dynamic external load and fatigue strength. In this study, the mechanical properties and fatigue characteristics of laser beam welded zircaloy thin sheet are examined. The fatigue strength under cyclic load was evaluated by staircase method at stress ratio R=0.1. The most appropriate distribution for probabilistic characteristics of fatigue strength at 2×106 cycles was 2-paramer Weibull distribution. Results show that reliability analysis strength was derived from the strength-stress interference model. As a result of the experimental approach, the design guide of fatigue strength for laser welded joint is proposed and the results obtained in this are to be the useful data for spacer gird design.

  13. Fatigue studies of polyurethane sandwich structures

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Narasimha Murthy, H. N.; Sathyamoorthy, M.; Bhattacharya, Debes

    2004-10-01

    The fatigue characteristics of polyurethane foam-cored (PUF) composite sandwich structures were investigated using three-point bending tests carried out according to ASTM C 393. Three types of specimens (epoxy/glass-PUF-epoxy/glass, polyester/glass-PUF-polyester/glass, and epoxy/glass-PUF-polyester/glass) were considered for investigation. Experimental results indicate that degradation of stiffness occurs due to debonding and sliding between the skin and the foam during fatigue cycles. Epoxy/glass-PUF-epoxy/glass sandwich structures exhibit higher bending strength along with higher stiffness degradation than the other two types of sandwich panels, due to higher initial fatigue loading. The lowest fatigue properties have been obtained for the polyester/glass-PUF-polyester/glass sandwich panel specimens. Better performance of the epoxy/glass-PUF-epoxy/glass sandwich panels is most likely due to the superior properties of the outer thin skins. Most of the specimens fail within the foam region and not at the skin level. This situation is possibly due to debonding between the foam and the skin. The fatigue damage development in the foam and skin has been investigated using scanning electron microscopy.

  14. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  15. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  16. Serum concentrations of oestradiol and progesterone and frequency of sexual behaviour during the normal oestrous cycle in the snow leopard (Panthera uncia).

    PubMed

    Schmidt, A M; Hess, D L; Schmidt, M J; Lewis, C R

    1993-05-01

    Serum oestradiol and progesterone concentrations were measured at weekly intervals for six months, and correlated with daily behavioural observations in two adult female snow leopards (Panthera uncia). Three oestradiol peaks (> 21 pg ml-1; interval 3.6 weeks) were identified in a snow leopardess housed alone (two more were probably missed because of the weekly sampling schedule), and three oestradiol peaks were identified in a snow leopardess housed with a male as a breeding pair (interval 6 weeks). Daily frequencies of feline reproductive behaviour averaged 1.77 observations per observation period during weeks of high oestradiol and 0.62 during weeks of low oestradiol. Progesterone concentrations did not rise above baseline values (< 2 ng ml-1) in the isolated animal, but 6 weeks of high progesterone concentrations (4.9-38.8 ng ml-1) was recorded in the paired snow leopardess following mating. No offspring were produced. Snow leopards were observed daily for an additional 4.5 years. Sexual behaviour peaks could be clearly identified from December through April, and average daily sexual behaviour scores were higher during these months than during the rest of the year. Intervals between sexual behaviour peaks for the isolated snow leopardess averaged 3.03 weeks. The sexual behaviour of the paired snow leopards decreased for 8-9 weeks following mating when no offspring were produced, and decreased for 13 weeks in one year when a single cub was born.

  17. Serum concentrations of oestradiol and progesterone and frequency of sexual behaviour during the normal oestrous cycle in the snow leopard (Panthera uncia).

    PubMed

    Schmidt, A M; Hess, D L; Schmidt, M J; Lewis, C R

    1993-05-01

    Serum oestradiol and progesterone concentrations were measured at weekly intervals for six months, and correlated with daily behavioural observations in two adult female snow leopards (Panthera uncia). Three oestradiol peaks (> 21 pg ml-1; interval 3.6 weeks) were identified in a snow leopardess housed alone (two more were probably missed because of the weekly sampling schedule), and three oestradiol peaks were identified in a snow leopardess housed with a male as a breeding pair (interval 6 weeks). Daily frequencies of feline reproductive behaviour averaged 1.77 observations per observation period during weeks of high oestradiol and 0.62 during weeks of low oestradiol. Progesterone concentrations did not rise above baseline values (< 2 ng ml-1) in the isolated animal, but 6 weeks of high progesterone concentrations (4.9-38.8 ng ml-1) was recorded in the paired snow leopardess following mating. No offspring were produced. Snow leopards were observed daily for an additional 4.5 years. Sexual behaviour peaks could be clearly identified from December through April, and average daily sexual behaviour scores were higher during these months than during the rest of the year. Intervals between sexual behaviour peaks for the isolated snow leopardess averaged 3.03 weeks. The sexual behaviour of the paired snow leopards decreased for 8-9 weeks following mating when no offspring were produced, and decreased for 13 weeks in one year when a single cub was born. PMID:8345484

  18. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  19. Dislocation Theory of the Fatigue of Metals

    NASA Technical Reports Server (NTRS)

    Machlin, E S

    1949-01-01

    A dislocation theory of fatigue failure for annealed solid solutions is presented. On the basis of this theory, an equation giving the dependence of the number of cycles for failure on the stress, the temperature, the material parameters, and the frequency is derived for uniformly stressed specimens. The equation is in quantitative agreement with the data. Inasmuch as one material parameter is indicated to be temperature-dependent and its temperature dependence is unknown, it is impossible to predict the temperature dependence of the number of cycles for failure. A predicted quantitative correlation between fatigue and creep was found to exist, which suggests the practical possibility of obtaining fatigue data for annealed solid solutions and elements from steady-state creep-rate data for these materials. As a result of this investigation, a modification of the equation for the steady-state creep rate previously developed on the basis of the dislocation theory is suggested. Additional data are required to verify completely the dislocation theory of fatigue.

  20. Fatigue behavior of unirradiated V-5Cr-5Ti

    SciTech Connect

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L.

    1995-04-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature, 240, and 400{degree}C. A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatiuge properties exists in this alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range.

  1. Fatigue damage accumulation in nickel prior to crack initiation

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.; Sivashankaran, S.; Welsch, G.; Panigrahi, N.; Mcgervey, J. D.; Blue, J. W.

    1991-01-01

    The accumulation of lattice defects during fatigue cycling of nickel was investigated by electrical resistivity measurements, positron annihilation lifetime spectroscopy and transmission electron microscopy. Dislocations and vacancy clusters were found to be the main defect types. During cycling of axial and flexural samples at constant load amplitude, the dislocations form a saturated structure early in the fatigue life. This saturated structure consists of a cellular dislocation matrix, in which persistent slip bands (PSBs) begin to operate after the saturation has been established. Vacancies and vacancy clusters are formed during fatigue as a consequence of repetitive dislocation glide in the PSB structure. When PSBs operate, the matrix is assumed to be dormant, allowing vacancies to accumulate preferentially in the PSBs. The increase in vacancy concentration then accounts for the monotonic accumulation of fatigue damage, which points to the importance of vacancy accumulation as a precursor to crack nucleation.

  2. Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1-3 type piezocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Y.; Arockiarajan, A.

    2016-03-01

    1-3 type piezocomposites are very attractive materials for transducers and biomedical application, due to its high electromechanical coupling effects. Reliability study on 1-3 piezocomposites subjected to cyclic loading condition in transducer application is one of the primary concern. Hence, this study focuses on 1-3 piezocomposites for various PZT5A1 fiber volume fraction subjected to electrical fatigue loading up-to 106 cycles and at various elevated temperature. Initially experiments are performed on 1-3 piezocomposites, in order to understand the degradation phenomena due to various range in amplitude of electric fields (unipolar & bipolar), frequency of applied electric field and for various ambient temperature. Performing experiments for high cycle fatigue and for different fiber volume fraction of PZT5A1 is a time consuming process. Hence, a simplified macroscopic uni-axial model based on physical mechanisms of domain switching and continuum damage mechanics has been developed to predict the non-linear fatigue behaviour of 1-3 piezocomposites for temperature dependent electrical fatigue loading conditions. In this model, damage effects namely domain pinning, frozen domains and micro cracks, are considered as a damage variable (ω). Remnant variables and material properties are considered as a function of internal damage variable and the growth of the damage is derived empirically based on the experimental observation to predict the macroscopic changes in the properties. The measured material properties and dielectric hysteresis (electric displacement vs. electric field) as well as butterfly curves (longitudinal strain vs. electric field) are compared with the simulated results. It is observed that variation in amplitude of bipolar electric field and temperature has a strong influence on the response of 1-3 piezocomposites.

  3. The measurement of fatigue: a new instrument.

    PubMed

    Schwartz, J E; Jandorf, L; Krupp, L B

    1993-10-01

    Fatigue is a frequent medical symptom which has not been routinely measured. We present a 29-item fatigue assessment instrument, describe its psychometric properties, and use it to differentiate normal fatigue from fatigue related medical disorders. Differences in fatigue across a variety of medical disorders, the reproducibility of the fatigue instrument, and its convergent validity with other fatigue measures are also described.

  4. Trajectories of Evening Fatigue in Oncology Outpatients Receiving Chemotherapy

    PubMed Central

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is a distressing, persistent sense of physical tiredness that is not proportional to a person’s recent activity. Fatigue impacts patients’ treatment decisions and can limit their self-care activities. While significant interindividual variability in fatigue severity has been noted, little is known about predictors of interindividual variability in initial levels and trajectories of evening fatigue severity in oncology patients receiving chemotherapy (CTX). Objectives To determine whether demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the evening fatigue trajectories. A piecewise model fit the data best. Patients who were White, diagnosed with breast, gynecological, or lung cancer, and who had more years of education, child care responsibilities, lower functional status, and higher levels of sleep disturbance and depression reported higher levels of evening fatigue at enrollment. Conclusion This study identified both non-modifiable (e.g., ethnicity) and modifiable (e.g., child care responsibilities, depressive symptoms, sleep disturbance) risk factors for more severe evening fatigue. Using this information, clinicians can identify patients at higher risk for more severe evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828560

  5. Creep contributes to the fatigue behavior of bovine trabecular bone.

    PubMed

    Bowman, S M; Guo, X E; Cheng, D W; Keaveny, T M; Gibson, L J; Hayes, W C; McMahon, T A

    1998-10-01

    Repetitive, low-intensity loading from normal daily activities can generate fatigue damage in trabecular bone, a potential cause of spontaneous fractures of the hip and spine. Finite element models of trabecular bone (Guo et al., 1994) suggest that both creep and slow crack growth contribute to fatigue failure. In an effort to characterize these damage mechanisms experimentally, we conducted fatigue and creep tests on 85 waisted specimens of trabecular bone obtained from 76 bovine proximal tibiae. All applied stresses were normalized by the previously measured specimen modulus. Fatigue tests were conducted at room temperature; creep tests were conducted at 4, 15, 25, 37, 45, and 53 degrees C in a custom-designed apparatus. The fatigue behavior was characterized by decreasing modulus and increasing hysteresis prior to failure. The hysteresis loops progressively displaced along the strain axis, indicating that creep was also involved in the fatigue process. The creep behavior was characterized by the three classical stages of decreasing, constant, and increasing creep rates. Strong and highly significant power-law relationships were found between cycles-to-failure, time-to-failure, steady-state creep rate, and the applied loads. Creep analyses of the fatigue hysteresis loops also generated strong and highly significant power law relationships for time-to-failure and steady-state creep rate. Lastly, the products of creep rate and time-to-failure were constant for both the fatigue and creep tests and were equal to the measured failure strains, suggesting that creep plays a fundamental role in the fatigue behavior of trabecular bone. Additional analysis of the fatigue strain data suggests that creep and slow crack growth are not separate processes that dominate at high and low loads, respectively, but are present throughout all stages of fatigue.

  6. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Kim, Yong-Suk; Gabb, Timothy P.

    1989-01-01

    The high temperature fatigue behavior of a 9 vol percent, tungsten fiber reinforced copper matrix composite was investigated. Load-controlled isothermal fatigue experiments at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in phase and out of phase between 260 and 560 C, were performed. The stress-strain response displayed considerable inelasticity under all conditions. Also, strain ratcheting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratcheting was always in a tensile direction, continuing until failure. The ratcheting during the out-of-phase TMF test shifted from a tensile direction to a compressive direction. This behavior was thought to be associated with the observed bulging and the extensive cracking of the out-of-phase specimen. For all cases, the fatigue lives were found to be controlled by damage to the copper matrix. Grain boundary cavitation was the dominant damage mechanism of the matrix. On a stress basis, TMF loading reduced lives substantially, relative to isothermal cycling. In-phase cycling resulted in the shortest lives, and isothermal fatigue at 260 C, the longest.

  7. A literature review and inventory of the effects of environment on the fatigue behavior of metals

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.; Seward, S. K.

    1976-01-01

    The current state of knowledge of the effects of gas environments (at atmospheric pressure and below) on the fatigue behavior of metals is reviewed. Among the topics considered are the mechanisms proposed to explain the differences observed in the fatigue behavior of vacuum- and air-tested specimens, the effects of environment on the surface topography of fatigue cycled specimens, the effect of environment on the various phases of the fatigue phenomenon, the effect of prolonged exposure to vacuum on fatigue life, the variation of fatigue life with decreasing gas pressure, and gas evolution during fatigue cycling. Analysis of the findings of this review indicates that hydrogen embrittlement is primarily responsible for decreased fatigue resistance in humid environments, and that dislocations move more easily during tests in vacuum than during test in air. It was found that fatigue cracks generally initiated and propagated more rapidly in air than in vacuum. Prolonged exposure to vacuum does not adversely affect fatigue resistance. The variation of fatigue life with decreasing gas pressure is sometimes stepped and sometimes continuous.

  8. A Nonlinear Reduced Order Method for Prediction of Acoustic Fatigue

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to assess the quality of high-cycle-fatigue life estimation via a reduced order method, for structures undergoing geometrically nonlinear random vibrations. Modal reduction is performed with several different suites of basis functions. After numerically solving the reduced order system equations of motion, the physical displacement time history is obtained by an inverse transformation and stresses are recovered. Stress ranges obtained through the rainflow counting procedure are used in a linear damage accumulation method to yield fatigue estimates. Fatigue life estimates obtained using various basis functions in the reduced order method are compared with those obtained from numerical simulation in physical degrees-of-freedom.

  9. Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-04-01

    Understanding the fatigue lifetime of common perfluorosulfonic acid (PFSA) ionomer membranes under fluctuating hygrothermal conditions is essential for the development of durable fuel cell technologies. For this purpose, a finite element based fatigue lifetime prediction model is developed based on an elastic-plastic constitutive model combined with a Smith-Watson-Topper (SWT) fatigue formulation. The model is validated against previously reported experimental results for a membrane under cyclic mechanical loadings. The validated model is then utilized to investigate the membrane fatigue lifetime in ex-situ applications under cyclic humidity and temperature conditions. The simulations suggest that the membrane fatigue lifetime is shorter under fluctuating humidity loadings than for temperature loadings. Additionally, the membrane fatigue lifetime is found to be more sensitive to the amplitude of the strain oscillations than to the mean strain under hygrothermal cycling. Most notably, the model predicts that simultaneous humidity and temperature cycling can exacerbate the fatigue process and reduce the fatigue lifetime by several orders of magnitude compared to isolated humidity or temperature cycling. The combination of measured mechanical fatigue data and the present numerical model provides a useful toolkit for analysis of membrane fatigue due to hygrothermal variations, which can be costly and time-consuming when addressed experimentally.

  10. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  11. Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Sun, Qiaoyan; Xiao, Lin; Sun, Jun

    2016-01-01

    The high-cycle fatigue behavior was investigated in pure titanium after surface nanocrystallization (SNC Ti). Compared with the coarse-grained titanium (CG Ti) samples, the SNC Ti samples exhibit an improved fatigue life. The SNC has a remarkable influence on the fatigue cracks initiation and growth of pure titanium. The results show that, because the free-surface cracking is suppressed by the surface nanogradient structure in the SNC Ti, the fatigue cracks initiation sites change from the free surface to the subsurface. Meanwhile, the fatigue crack growth rate decreases due to the microstructural feature and residual compressive stress. The deformation twins in the subsurface of SNC Ti have a marked effect on the fatigue crack initiation and the crack growth. The former effect is due to the twin boundaries being preferential sites for crack initiation, while the latter is associated with the barriers that the twin boundaries pose to the propagation of dislocations. Furthermore, microstructural analysis indicates that the dislocation distribution in SNC Ti gradually becomes homogenous as fatigue processes. This homogeneous microstructure is also beneficial to the improvement of fatigue life.

  12. Thermal-mechanical fatigue crack growth in aircraft engine materials

    NASA Astrophysics Data System (ADS)

    Dai, Yi

    1993-05-01

    A thermal mechanical fatigue (TMF) testing rig was built which is capable of studying the fatigue behaviors of gas turbine engine materials under simultaneous changes of temperatures and strains or stress. An advance alternating current potential drop (ACPD) measurement system was also developed which is capable of performing on-line monitoring of fatigue crack initiation and growth in specimen testing under isothermal and TMF conditions. Fatigue crack initiation and short crack growth data were obtained for titanium alloy specimens designed with notch features associated with bolt holes of compressor discs. TMF data were also obtained for two titanium alloys used in aircraft engine components. Those data explained the material fatigue behavior encountered in full-scale component testing. A complete fractographic analysis was performed on the tested specimens enhancing the understanding of the fatigue crack growth mechanisms and helping to formulate an analytical crack growth model. The ACPD fatigue crack monitoring technique was applied to the low cycle fatigue testing of Pratt & Whitney 1480 monocrystalline nickel alloy. A completely automated, computer controlled test procedure was developed which could obtain crack initiation and growth data with greater speed, precision, and reliability than previous methods.

  13. Fatigue and Creep-Fatigue Deformation of an Ultra-Fine Precipitate Strengthened Advanced Austenitic Alloy

    SciTech Connect

    M.C. Carroll; L.J. Carroll

    2012-10-01

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. The low-cycle fatigue and creep-fatigue behavior of an HT-UPS alloy have been investigated at 650 °C and a 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain as long as 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in fatigue and creep-fatigue of both alloys at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present for hold times of 60 min and longer, and substantially more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ significantly; an equiaxed cellular structure is observed in 316 SS, whereas in HT-UPS the microstructure takes the form of widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as it evolves with continued cycling.

  14. Study of fatigue behavior of longitudinal welded pipes

    NASA Astrophysics Data System (ADS)

    Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.

    2016-08-01

    During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.

  15. Temperature stable and fatigue resistant lead-free ceramics for actuators

    NASA Astrophysics Data System (ADS)

    Khesro, Amir; Wang, Dawei; Hussain, Fayaz; Sinclair, Derek C.; Feteira, Antonio; Reaney, Ian M.

    2016-10-01

    Lead-free ceramics with the composition 0.91K1/2Bi1/2TiO3-0.09(0.82BiFeO3-0.15NdFeO3-0.03Nd2/3TiO3) were prepared using a conventional solid state, mixed oxide route. The ceramics exhibited a high strain of 0.16% at 6 kV mm-1, stable from room temperature to 175 °C, with a variation of <10%. The materials were fabricated into multilayer structures by co-firing with Pt internal electrodes. The prototype multilayer actuator exhibited constant strains up to 300 °C with a variation of ˜15%. The composition showed fatigue resistant behaviour in both monolithic and multilayer form after bipolar loading of 106 cycles.

  16. Chronic fatigue syndrome

    MedlinePlus

    Bennett RM. Fibromyalgia, chronic fatigue syndrome, and myofascial pain. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 274. Engleberg NC. Chronic ...

  17. Fatigue and Multiple Sclerosis

    MedlinePlus

    Fatigue - National Multiple Sclerosis Society Skip to navigation Skip to content Menu Navigation National Multiple Sclerosis Society Sign In In Your Area ... help* daily life for: positive-mom* The National MS Society is Here to Help Need More Information? ...

  18. Brain Tumors and Fatigue

    MedlinePlus

    ... tiredness. You may experience a profound lack of energy that can come on suddenly and bring dramatic ... to manage the severity. Respect the Fatigue The energy you’re accustomed to having has been transferred ...

  19. Cognitive Fatigue Destabilizes Economic Decision Making Preferences and Strategies

    PubMed Central

    Mullette-Gillman, O’Dhaniel A.; Leong, Ruth L. F.; Kurnianingsih, Yoanna A.

    2015-01-01

    Objective It is common for individuals to engage in taxing cognitive activity for prolonged periods of time, resulting in cognitive fatigue that has the potential to produce significant effects in behaviour and decision making. We sought to examine whether cognitive fatigue modulates economic decision making. Methods We employed a between-subject manipulation design, inducing fatigue through 60 to 90 minutes of taxing cognitive engagement against a control group that watched relaxing videos for a matched period of time. Both before and after the manipulation, participants engaged in two economic decision making tasks (one for gains and one for losses). The analyses focused on two areas of economic decision making—preferences and choice strategies. Uncertainty preferences (risk and ambiguity) were quantified as premium values, defined as the degree and direction in which participants alter the valuation of the gamble in comparison to the certain option. The strategies that each participant engaged in were quantified through a choice strategy metric, which contrasts the degree to which choice behaviour relies upon available satisficing or maximizing information. We separately examined these metrics for alterations within both the gains and losses domains, through the two choice tasks. Results The fatigue manipulation resulted in significantly greater levels of reported subjective fatigue, with correspondingly higher levels of reported effort during the cognitively taxing activity. Cognitive fatigue did not alter uncertainty preferences (risk or ambiguity) or informational strategies, in either the gains or losses domains. Rather, cognitive fatigue resulted in greater test-retest variability across most of our economic measures. These results indicate that cognitive fatigue destabilizes economic decision making, resulting in inconsistent preferences and informational strategies that may significantly reduce decision quality. PMID:26230404

  20. Fatigue crack growth automated testing method

    SciTech Connect

    Hatch, P.W.; VanDenAvyle, J.A.; Laing, J.

    1989-06-01

    A computer controlled servo-hydraulic mechanical test system has been configured to conduct automated fatigue crack growth testing. This provides two major benefits: it allows continuous cycling of specimens without operator attention over evenings and weekends; and complex load histories, including random loading and spectrum loading, can be applied to the specimens to simulate cyclic loading of engineering structures. The software is written in MTS Multi-User Basic to control test machine output and acquire data at predetermined intervals. Compact tension specimens are cycled according to ASTM specification E647-86. Fatigue crack growth is measured via specimen compliance during the test using a compliance/crack length calibration determined earlier by visual crack length measurements. This setup was used to measure crack growth rates in 6063 aluminum alloy for a variety of cyclic loadings, including spectrum loads. Data collected compared well with tests run manually. 13 figs.