40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Gasoline-fueled engine test cycle. 86... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in...
40 CFR 86.335-79 - Gasoline-fueled engine test cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Gasoline-fueled engine test cycle. 86....335-79 Gasoline-fueled engine test cycle. (a) The following test sequence shall be followed in.... Cycle No. Mode No. Mode Observed torque (percent of maximum observed) Time in mode-seconds Cumulative...
40 CFR 86.1401 - Scope; applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... procedures for gasoline-fueled Otto-cycle light-duty vehicles, and for gasoline-fueled Otto-cycle light-duty...
A Primer on Alternative Transportation Fuels
2010-09-01
cycles used are the Otto Cycle (gasoline engines), the Diesel Cycle, and the Brayton Cycle (gas and steam turbines). These cycles are usually...can be achieved. This leads to diesel engines usually being about 30% more efficient than gasoline engines. The ideal Brayton cycle operates between...wetted area of the vessel. For analytical simplicity we will use a formula for A developed by David Taylor : 2 1)(6.2 LA Δ
40 CFR 86.1403 - Abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pingen; Lin, Qinghua; Prikhodko, Vitaly Y.
Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuelmore » penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.« less
Design and experimental investigations on six-stroke SI engine using acetylene with water injection.
Gupta, Keshav; Suthar, Kishanlal; Jain, Sheetal Kumar; Agarwal, Ghanshyam Das; Nayyar, Ashish
2018-06-02
In the present study, a four-stroke cycle gasoline engine is redesigned and converted into a six-stroke cycle engine and experimental study has been conducted using gasoline and acetylene as fuel with water injection at the end of the recompression stroke. Acetylene has been used as an alternative fuel along with gasoline and performance of the six-stroke spark ignition (SI) engine with these two fuels has been studied separately and compared. Brake power and thermal efficiency are found to be 5.18 and 1.55% higher with acetylene as compared to gasoline in the six-stroke engine. However, thermal efficiency is found to be 45% higher with acetylene in the six-stroke engine as compared to four-stroke SI engine. The CO and HC emissions were found to be reduced by 13.33 and 0.67% respectively with acetylene as compared to gasoline due to better combustion of acetylene. The NO x emission was reduced by 5.65% with acetylene due to lower peak temperature by water injection. The experimental results showed better engine performance and emissions with acetylene as fuel in the six-stroke engine.
40 CFR 86.1407-86.1412 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
40 CFR 86.1417-86.1421 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
40 CFR 86.1414-86.1415 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light...
A life-cycle comparison of alternative automobile fuels.
MacLean, H L; Lave, L B; Lankey, R; Joshi, S
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
A Life-Cycle Comparison of Alternative Automobile Fuels.
MacLean, Heather L; Lave, Lester B; Lankey, Rebecca; Joshi, Satish
2000-10-01
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C 2 H 5 OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C 2 H 5 OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C 2 H 5 OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C 2 H 5 OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.
Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.
2014-12-22
In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NO X and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustionmore » when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less
Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William
2005-01-01
Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...
Hige Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heywood, John; Jo, Young Suk; Lewis, Raymond
The overall objective of this project was to quantify the potential for improving the performance and efficiency of gasoline engine technology by use of alcohols to suppress knock. Knock-free operation is obtained by direct injection of a second “anti-knock” fuel such as ethanol, which suppresses knock when, with gasoline fuel, knock would occur. Suppressing knock enables increased turbocharging, engine downsizing, and use of higher compression ratios throughout the engine’s operating map. This project combined engine testing and simulation to define knock onset conditions, with different mixtures of gasoline and alcohol, and with this information quantify the potential for improving themore » efficiency of turbocharged gasoline spark-ignition engines, and the on-vehicle fuel consumption reductions that could then be realized. The more focused objectives of this project were therefore to: Determine engine efficiency with aggressive turbocharging and downsizing and high compression ratio (up to a compression ratio of 13.5:1) over the engine’s operating range; Determine the knock limits of a turbocharged and downsized engine as a function of engine speed and load; Determine the amount of the knock-suppressing alcohol fuel consumed, through the use of various alcohol-gasoline and alcohol-water gasoline blends, for different driving cycles, relative to the gasoline consumed; Determine implications of using alcohol-boosted engines, with their higher efficiency operation, in both light-duty and medium-duty vehicle sectors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curran, Scott; Briggs, Thomas E; Cho, Kukwon
2011-01-01
In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the usemore » of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.« less
NASA Astrophysics Data System (ADS)
Saldivar Olague, Jose
A Continental "O-200" aircraft Otto-cycle engine has been modified to burn diesel fuel. Algebraic models of the different processes of the cycle were developed from basic principles applied to a real engine, and utilized in an algorithm for the simulation of engine performance. The simulation provides a means to investigate the performance of the modified version of the Continental engine for a wide range of operating parameters. The main goals of this study are to increase the range of a particular aircraft by reducing the specific fuel consumption of the engine, and to show that such an engine can burn heavier fuels (such as diesel, kerosene, and jet fuel) instead of gasoline. Such heavier fuels are much less flammable during handling operations making them safer than aviation gasoline and very attractive for use in flight operations from naval vessels. The cycle uses an electric spark to ignite the heavier fuel at low to moderate compression ratios, The stratified charge combustion process is utilized in a pre-chamber where the spray injection of the fuel occurs at a moderate pressure of 1200 psi (8.3 MPa). One advantage of fuel injection into the combustion chamber instead of into the intake port, is that the air-to-fuel ratio can be widely varied---in contrast to the narrower limits of the premixed combustion case used in gasoline engines---in order to obtain very lean combustion. Another benefit is that higher compression ratios can be attained in the modified cycle with heavier fuels. The combination of injection into the chamber for lean combustion, and higher compression ratios allow to limit the peak pressure in the cylinder, and to avoid engine damage. Such high-compression ratios are characteristic of Diesel engines and lead to increase in thermal efficiency without pre-ignition problems. In this experimental investigation, operations with diesel fuel have shown that considerable improvements in the fuel efficiency are possible. The results of simulations using performance models show that the engine can deliver up to 178% improvement in fuel efficiency and operating range, and reduce the specific fuel consumption to 58% when compared to gasoline. Directions for future research and other modifications to the proposed spark assisted cycle are also described.
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
40 CFR 86.336-79 - Diesel engine test cycle.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...
Life cycle models of conventional and alternative-fueled automobiles
NASA Astrophysics Data System (ADS)
Maclean, Heather Louise
This thesis reports life cycle inventories of internal combustion engine automobiles with feasible near term fuel/engine combinations. These combinations include unleaded gasoline, California Phase 2 Reformulated Gasoline, alcohol and gasoline blends (85 percent methanol or ethanol combined with 15 percent gasoline), and compressed natural gas in spark ignition direct and indirect injection engines. Additionally, I consider neat methanol and neat ethanol in spark ignition direct injection engines and diesel fuel in compression ignition direct and indirect injection engines. I investigate the potential of the above options to have a lower environmental impact than conventional gasoline-fueled automobiles, while still retaining comparable pricing and consumer benefits. More broadly, the objective is to assess whether the use of any of the alternative systems will help to lead to the goal of a more sustainable personal transportation system. The principal tool is the Economic Input-Output Life Cycle Analysis model which includes inventories of economic data, environmental discharges, and resource use. I develop a life cycle assessment framework to assemble the array of data generated by the model into three aggregate assessment parameters; economics, externalities, and vehicle attributes. The first step is to develop a set of 'comparable cars' with the alternative fuel/engine combinations, based on characteristics of a conventional 1998 gasoline-fueled Ford Taurus sedan, the baseline vehicle for the analyses. I calculate the assessment parameters assuming that these comparable cars can attain the potential thermal efficiencies estimated by experts for each fuel/engine combination. To a first approximation, there are no significant differences in the assessment parameters for the vehicle manufacture, service, fixed costs, and the end-of-life for any of the options. However, there are differences in the vehicle operation life cycle components and the state of technology development for the combinations. Overall, none of the alternatives emerges as a clear winner, lowering the externalities and improving sustainability, while considering technology issues and vehicle attributes. The majority of the alternatives are not likely to displace the baseline automobile. However, the attractiveness of the alternatives depends on the focus of future regulations, government priorities, and technology development. If long-term global sustainability is the principal concern, then improvements in fuel economy alone will not provide the level of reduction in impact required. A switch to renewable fuels (e.g., alcohols or diesel produced from biomass) to power the vehicles will likely be necessary. (Abstract shortened by UMI.)
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
40 CFR 86.334-79 - Test procedure overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...
Code of Federal Regulations, 2013 CFR
2013-07-01
... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...
Code of Federal Regulations, 2014 CFR
2014-07-01
... test sequence described in § 86.1230-96, diurnal plus hot soak measurements: 3.0 grams per test. (2... measurements (gasoline-fueled vehicles only): 3.5 grams per test. (B) Running loss test (gasoline-fueled vehicles only): 0.05 grams per mile. (C) Fuel dispensing spitback test (gasoline-fueled vehicles only): 1.0...
Kerosene-base fuels in small gasoline engines. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Failla, C.C.; Pouring, A.A.
1991-01-01
This document presents the results of an engineering study to demonstrate the technology for converting small gasoline spark-ignited engines, to burn kerosene type fuels to power small generators (0.5 to 3.0 kw). Commercially available (plus those in the developmental stage), reciprocating, two-stroke, four stroke and rotary engines were evaluated for their conversion potential. Unique combustion systems were identified and trade-off studies conducted on engine type, combustion systems, and modification required to burn kerosene type fuels, with special emphasis given to minimizing life cycle cost. Recommendations for the most feasible system are given.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... production of heavy-duty Otto-cycle motor vehicle engines for model year 2008, except as explicitly allowed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.
This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.
Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle
NASA Technical Reports Server (NTRS)
Weinstein, Leonard
2004-01-01
A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, D.
2011-10-01
Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deteriorationmore » that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.« less
Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine
NASA Astrophysics Data System (ADS)
Loeper, C. Paul
Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low fuel consumption (gross indicated fuel consumption <200 g/kWh). [1] Dec, J. E., Yang, Y., and Dronniou, N., 2011, "Boosted HCCI - Controlling Pressure- Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline," SAE Int. J. Engines, 4(1), pp. 1169-1189. [2] Kalghatgi, G., Hildingsson, L., and Johansson, B., 2010, "Low NO(x) and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels," Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 132(9), p. 9. [3] Manente, V., Zander, C.-G., Johansson, B., Tunestal, P., and Cannella, W., 2010, "An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion," SAE International, 2010-01-2198. [4] Ra, Y., Loeper, P., Reitz, R., Andrie, M., Krieger, R., Foster, D., Durrett, R., Gopalakrishnan, V., Plazas, A., Peterson, R., and Szymkowicz, P., 2011, "Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime," SAE Int. J. Engines, 4(1), pp. 1412-1430. [5] Ra, Y., Loeper, P., Andrie, M., Krieger, R., Foster, D., Reitz, R., and Durrett, R., 2012, "Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection," SAE Int. J. Engines, 5(3), pp. 1109-1132.
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; ...
2016-04-05
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH 3 production via a passivemore » SCR approach is of interest. In a passive SCR system, NH 3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH 3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH 3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH 3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH 3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH 3 generation further resulted in even higher NOX conversion; however, tailpipe NH 3 emissions resulted. At higher underfloor temperatures, NH 3 oxidation over the SCR limited NH 3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11 % compared with stoichiometric operation.« less
7 CFR 3201.102 - Engine crankcase oils.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section 3201.102... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to provide lubrication and wear protection for four-cycle gasoline or diesel engines. (b) Minimum biobased content. The...
Small Engines Care, Operation, Maintenance and Repair. Volume I.
ERIC Educational Resources Information Center
Turner, J. Howard
Developed by teacher educators and agricultural engineers and tested by vocational agriculture teachers, this reference is for student and teacher use as part of a course on servicing and operating an engine. Content includes: (1) Distinguishing Features of Small Engines, (2) How Small Gasoline Engines Work, (3) Comparing 4-(Stroke)Cycle and…
Characteristics of black carbon emissions from in-use light-duty passenger vehicles.
Zheng, Xuan; Zhang, Shaojun; Wu, Ye; Zhang, K Max; Wu, Xian; Li, Zhenhua; Hao, Jiming
2017-12-01
Mitigating black carbon (BC) emissions from various combustion sources has been considered an urgent policy issue to address the challenges of climate change, air pollution and health risks. Vehicles contribute considerably to total anthropogenic BC emissions and urban BC concentrations. Compared with heavy-duty diesel vehicles, there is much larger uncertainty in BC emission factors for light-duty passenger vehicles (LDPVs), in particular for gasoline LDPVs, which warrants further studies. In this study, we employed the dynamometer and the Aethalometer (AE-51) to measure second-by-second BC emissions from eight LDPVs by engine technology and driving cycle. The average BC emission factors under transient cycles (e.g., ECE-15, New European Driving Cycle, NEDC, Worldwide Harmonized Light Vehicles Test Cycle, WLTC) are 3.6-91.5 mg/km, 7.6 mg/km and 0.13-0.58 mg/km, respectively, for diesel (N = 3), gasoline direct injection (GDI) (N = 1) and gasoline port-fuel injection (PFI) engine categories (N = 4). For gasoline PFI LDPVs, the instantaneous emission profiles show a strong association of peak BC emissions with cold-start and high-speed aggressive driving. Such impacts lead to considerable BC emission contributions in cold-start periods (e.g., the first 47 s-94 s) over the entire cycle (e.g., 18-76% of the NEDC and 13-36% of the WLTC) and increased BC emission factors by 80-440% under the WLTC compared to the NEDC. For diesel BC emissions, the size distribution exhibits a typical unimodal pattern with one single peak appearing approximately from 120 to 150 nm, which is largely consistent with previous studies. Nevertheless, the average mass ratios of BC to particle mass (PM) range from 0.38 to 0.54 for three diesel samples, representing substantial impacts from both driving and engine conditions. The significant discrepancy between gasoline BC emission factors obtained from tailpipe exhaust versus ambient conditions suggest that more comparative measurements and fine-grained simulations should be designed and implemented to address this discrepancy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ribeiro, Camilo Bastos; Martins, Kelly Geronazzo; Gueri, Matheus Vitor Diniz; Pavanello, Guilherme Pozzobom; Schirmer, Waldir Nagel
2018-06-12
Ethanol is a renewable fuel and it is considered an alternative to gasoline in Otto-cycle engines. The present study evaluated the behavior of exhaustion gas carbon monoxide (CO) and total hydrocarbons (THC) according to the levels of anhydrous ethyl alcohol (AEA) added to gasoline in different proportions (E0, E10, E20, E27, that is, pure gasoline and its blends with AEA at 10, 20, and 27% v/v) in the use of non-road single cylinder engines of different powers (13 and 6.5 hp), to the loads applied to engine-generators and the air-fuel ratio (A/F) admitted to the engine cylinders. Also, the performance of engine-generators was verified in terms of mass, specific and energetic consumption and efficiency of the evaluated systems for the same blends and loads. The results showed that an increase in the AEA content in the blend resulted in significant drops in CO and THC concentrations for both engine-generators, while fuel consumption showed a slight upward trend; the increases in applied loads resulted in an increase in CO and THC concentrations and fuel consumption. In general, a higher AEA content (oxygenated) in the blends had a greater effect on gaseous emissions compared to the effect on consumption and system efficiency.
Cooney, Gregory; Jamieson, Matthew; Marriott, Joe; Bergerson, Joule; Brandt, Adam; Skone, Timothy J
2017-01-17
The National Energy Technology Laboratory produced a well-to-wheels (WTW) life cycle greenhouse gas analysis of petroleum-based fuels consumed in the U.S. in 2005, known as the NETL 2005 Petroleum Baseline. This study uses a set of engineering-based, open-source models combined with publicly available data to calculate baseline results for 2014. An increase between the 2005 baseline and the 2014 results presented here (e.g., 92.4 vs 96.2 g CO 2 e/MJ gasoline, + 4.1%) are due to changes both in modeling platform and in the U.S. petroleum sector. An updated result for 2005 was calculated to minimize the effect of the change in modeling platform, and emissions for gasoline in 2014 were about 2% lower than in 2005 (98.1 vs 96.2 g CO 2 e/MJ gasoline). The same methods were utilized to forecast emissions from fuels out to 2040, indicating maximum changes from the 2014 gasoline result between +2.1% and -1.4%. The changing baseline values lead to potential compliance challenges with frameworks such as the Energy Independence and Security Act (EISA) Section 526, which states that Federal agencies should not purchase alternative fuels unless their life cycle GHG emissions are less than those of conventionally produced, petroleum-derived fuels.
Electric and hybrid vehicle environmental control subsystem study
NASA Technical Reports Server (NTRS)
Heitner, K. L.
1980-01-01
An environmental control subsystem (ECS) in electric and hybrid vehicles is studied. A combination of a combustion heater and gasoline engine (Otto cycle) driven vapor compression air conditioner is selected. The combustion heater, the small gasoline engine, and the vapor compression air conditioner are commercially available. These technologies have good cost and performance characteristics. The cost for this ECS is relatively close to the cost of current ECS's. Its effect on the vehicle's propulsion battery is minimal and the ECS size and weight do not have significant impact on the vehicle's range.
Code of Federal Regulations, 2010 CFR
2010-07-01
... internal combustion engines with a maximum engine power greater than 19 KW (25 HP) that do not use gasoline... the D-1 cycle of International Organization of Standardization 8178-4: 1996(E) (incorporated by reference, see 40 CFR 60.17) or the test cycle requirements specified in Table 5 to 40 CFR 1048.505, except...
Martinet, Simon; Liu, Yao; Louis, Cédric; Tassel, Patrick; Perret, Pascal; Chaumond, Agnès; André, Michel
2017-05-16
This study aims to measure and analyze unregulated compound emissions for two Euro 6 diesel and gasoline vehicles. The vehicles were tested on a chassis dynamometer under various driving cycles: Artemis driving cycles (urban, road, and motorway), the New European Driving Cycle (NEDC) and the World Harmonized Light-Duty Test Cycle (WLTC) for Europe, and world approval cycles. The emissions of unregulated compounds (such as total particle number (PN) (over 5.6 nm); black carbon (BC); NO 2 ; benzene, toluene, ethylbenzene, and xylene (BTEX); carbonyl compounds; and polycyclic aromatic hydrocarbons (PAHs)) were measured with several online devices, and different samples were collected using cartridges and quartz filters. Furthermore, a preliminary statistical analysis was performed on eight Euro 4-6 diesel and gasoline vehicles to study the impacts of driving conditions and after-treatment and engine technologies on emissions of regulated and unregulated pollutants. The results indicate that urban conditions with cold starts induce high emissions of BTEX and carbonyl compounds. Motorway conditions are characterized by high emissions of particle numbers and CO, which mainly induced by gasoline vehicles. Compared with gasoline vehicles, diesel vehicles equipped with catalyzed or additive DPF emit fewer particles but more NO x and carbonyl compounds.
40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...
Two-stroke engine diagnostics and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-01-01
This paper focuses on research and development efforts on two-stroke cycle engines for automotive applications. Partial contents include: Velocity Field Characteristics in Motored Two-Stroke Ported Engines; Flow Vector Measurements at the Scavenging Ports in a Fired Two-Stroke Engine; A Study on Exhaust Dynamic Effect of Two-Stroke Motorcycle Petrol Engine; Characterization of Ignition and Parametric Study of a Two-Stroke-Cycle Direct-Injected Gasoline Engine; LDV Measurements of Intake Port Flow in a Two-Stroke Engine with and without Combustion; Appraisal of Regenerative Blowers for Scavenging of Small 2T S.I. Powerplants; and Development Experience of a Poppet-Valved Two-Stroke Flagship Engine.
Zhao, Yunliang; Nguyen, Ngoc T; Presto, Albert A; Hennigan, Christopher J; May, Andrew A; Robinson, Allen L
2016-04-19
Dynamometer experiments were conducted to characterize the intermediate volatility organic compound (IVOC) emissions from a fleet of on-road gasoline vehicles and small off-road gasoline engines. IVOCs were quantified through gas chromatography/mass spectrometry analysis of adsorbent samples collected from a constant volume sampler. The dominant fraction (>80%, on average) of IVOCs could not be resolved on a molecular level. These unspeciated IVOCs were quantified as two chemical classes (unspeciated branched alkanes and cyclic compounds) in 11 retention-time-based bins. IVOC emission factors (mg kg-fuel(-1)) from on-road vehicles varied widely from vehicle to vehicle, but showed a general trend of lower emissions for newer vehicles that met more stringent emission standards. IVOC emission factors for 2-stroke off-road engines were substantially higher than 4-stroke off-road engines and on-road vehicles. Despite large variations in the magnitude of emissions, the IVOC volatility distribution and chemical characteristics were consistent across all tests and IVOC emissions were strongly correlated with nonmethane hydrocarbons (NMHCs), primary organic aerosol and speciated IVOCs. Although IVOC emissions only correspond to approximately 4% of NMHC emissions from on-road vehicles over the cold-start unified cycle, they are estimated to produce as much or more SOA than single-ring aromatics. Our results clearly demonstrate that IVOCs from gasoline engines are an important class of SOA precursors and provide observational constraints on IVOC emission factors and chemical composition to facilitate their inclusion into atmospheric chemistry models.
The causes of unstable engine idle speed and their solutions
NASA Astrophysics Data System (ADS)
Yang, Fan
2018-06-01
There are many types of engines. The most commonly used engine for automobiles is the internal combustion engine. Internal combustion engines use a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach, also known as the "Ototo cycle," commemorates Nicklaus Otto, who invented it in 1867. The working cycle of a four-stroke engine consists of four piston strokes, ie, intake stroke, compression stroke, power stroke, and exhaust stroke. This article focuses on the cause of the instability of the four-stroke engine and its solution. There are many reasons for the instability of the engine, so this article will be divided into four areas: intake system, fuel system, ignition system and mechanical structure. Based on the above reasons, the corresponding solution is proposed.
40 CFR 86.005-1 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... this subpart generally apply to 2005 and later model year new Otto-cycle heavy-duty engines used in...
Pirjola, Liisa; Karjalainen, Panu; Heikkilä, Juha; Saari, Sampo; Tzamkiozis, Theodoros; Ntziachristos, Leonidas; Kulmala, Kari; Keskinen, Jorma; Rönkkö, Topi
2015-03-17
Particle emissions from a modern turbocharged gasoline direct injection passenger car equipped with a three-way catalyst and an exhaust gas recirculation system were studied while the vehicle was running on low-sulfur gasoline and, consecutively, with five different lubrication oils. Exhaust particle number concentration, size distribution, and volatility were determined both at laboratory and on-road conditions. The results indicated that the choice of lubricant affected particle emissions both during the cold start and warm driving cycles. However, the contribution of engine oil depended on driving conditions being higher during acceleration and steady state driving than during deceleration. The highest emission factors were found with two oils that had the highest metal content. The results indicate that a 10% decrease in the Zn content of engine oils is linked with an 11-13% decrease to the nonvolatile particle number emissions in steady driving conditions and a 5% decrease over the New European Driving Cycle. The effect of lubricant on volatile particles was even higher, on the order of 20%.
Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A
Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest.more » In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel efficiency benefits ranging between 6-11% compared with stoichiometric operation.« less
Zhao, Yunliang; Lambe, Andrew T; Saleh, Rawad; Saliba, Georges; Robinson, Allen L
2018-02-06
Secondary organic aerosol (SOA) formation from dilute exhaust from 16 gasoline vehicles was investigated using a potential aerosol mass (PAM) oxidation flow reactor during chassis dynamometer testing using the cold-start unified cycle (UC). Ten vehicles were equipped with gasoline direct injection engines (GDI vehicles) and six with port fuel injection engines (PFI vehicles) certified to a wide range of emissions standards. We measured similar SOA production from GDI and PFI vehicles certified to the same emissions standard; less SOA production from vehicles certified to stricter emissions standards; and, after accounting for differences in gas-particle partitioning, similar effective SOA yields across different engine technologies and certification standards. Therefore the ongoing, dramatic shift from PFI to GDI vehicles in the United States should not alter the contribution of gasoline vehicles to ambient SOA and the natural replacement of older vehicles with newer ones certified to stricter emissions standards should reduce atmospheric SOA levels. Compared to hot operations, cold-start exhaust had lower effective SOA yields, but still contributed more SOA overall because of substantially higher organic gas emissions. We demonstrate that the PAM reactor can be used as a screening tool for vehicle SOA production by carefully accounting for the effects of the large variations in emission rates.
Exergetic life cycle assessment of hydrogen production from renewables
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.
Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Barone, Teresa L; Thomas, John F
2012-01-01
Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol contentmore » beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.« less
Che, Wangjun; Liu, Guiming; Qiu, Hong; Zhang, Hao; Ran, Yun; Zeng, Xianggui; Wen, Weihua; Shu, Ya
2010-06-01
Gasoline engine exhaust has been considered as a major source of air pollution in China. Due to lower cyto- and geno-toxicity effects of methanol engine exhaust, methanol is regarded as a potential substitute for gasoline. We have previously compared cyto- and geno-toxicities of gasoline engine exhaust with that of methanol engine exhaust in A549 cells (Zhang et al., 2007).To characterize the immunotoxic effects for gasoline and methanol engine exhausts in immune cell, in this study, we further compared effects of gasoline and methanol engine exhausts on immune function in RAW264.7 cell and rabbit alveolar macrophages. Results showed that both gasoline and methanol engine exhaust could evidently inhibit RAW264.7 cell proliferation, promote RAW264.7 cell apoptosis, decrease E-rosette formation rate and inhibit anti-tumor effects of alveolar macrophages, at the same time, these effects of gasoline engine exhaust were far stronger than those of methanol engine exhaust. In addition, gasoline engine exhaust could significantly inhibit activities of ADCC of alveolar macrophages, but methanol engine exhaust could not. These results suggested that both gasoline and methanol engine exhausts might be immunotoxic atmospheric pollutants, but some effects of gasoline engine exhaust on immunotoxicities may be far stronger than that of methanol engine exhaust. Copyright 2010 Elsevier Ltd. All rights reserved.
Thermal Loss Determination for a Small Internal Combustion Engine
2014-03-27
calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conklin, Jim; Szybist, James P
2010-01-01
A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
46 CFR 58.10-5 - Gasoline engine installations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Gasoline engine installations. 58.10-5 Section 58.10-5... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-5 Gasoline engine... drained by a device for automatic return of all drip to engine air intakes. (2) All gasoline engines must...
Code of Federal Regulations, 2014 CFR
2014-07-01
...-methane Hydrocarbons (NMHC) for engines fueled with either gasoline, natural gas, or liquefied petroleum gas. 0.14 grams per brake horsepower-hour (0.052grams per megajoule). (B) Non-methane Hydrocarbon... NOX plus NMHC standard may not exceed 50 percent of the manufacturer's U.S.-directed production of...
Reed Valve Regulates Welding Back-Purge Pressure
NASA Technical Reports Server (NTRS)
Coby, J. Ben, Jr.; Weeks, Jack L.
1991-01-01
Simple modification yields welds of better quality. Reed valve halves fluctuations in pressure in back-purge chamber attached to workpiece undergoing keyhole plasma arc welding. Identical to one used in fuel system of two-cycle gasoline engine. Backbead smoother, and weld penetrates more uniformly.
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.; ...
2016-11-03
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Kolodziej, Christopher P.; Ciatti, Stephen A.
In this study, we study the effects of injector nozzle inclusion angle, injection pressure, boost, and swirl ratio on gasoline compression ignition combustion. Closed-cycle computational fluid dynamics simulations using a 1/7th sector mesh representing a single cylinder of a four-cylinder 1.9 L diesel engine, operated in gasoline compression ignition mode with 87 anti-knock index (AKI) gasoline, were performed. Two different operating conditions were studied—the first is representative of idle operation (4 mg fuel/cylinder/cycle, 850 r/min), and the second is representative of a low-load condition (10 mg fuel/cylinder/cycle, 1500 r/min). The mixture preparation and reaction space from the simulations were analyzedmore » to gain insights into the effects of injection pressure, nozzle inclusion angle, boost, and swirl ratio on achieving stable low-load to idle gasoline compression ignition operation. It was found that narrower nozzle inclusion angles allow for more reactivity or propensity to ignition (determined qualitatively by computing constant volume ignition delays) and are suitable over a wider range of injection timings. Under idle conditions, it was found that lower injection pressures helped to reduce overmixing of the fuel, resulting in greater reactivity and ignitability (ease with which ignition can be achieved) of the gasoline. However, under the low-load condition, lower injection pressures did not increase ignitability, and it is hypothesized that this is because of reduced chemical residence time resulting from longer injection durations. Reduced swirl was found to maintain higher in-cylinder temperatures through compression, resulting in better ignitability. It was found that boosting the charge also helped to increase reactivity and advanced ignition timing.« less
Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCluskey, F. P.
Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollutionmore » of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been advancing has been the development of electronics that can operate in the high temperature environments present in hybrid vehicles. The temperatures under the hood for a gasoline-electric hybrid vehicle are comparable to those for traditional internal combustion engines. This is known to be a difficult environment with respect to commercial-grade electronics, as there are surface and ambient temperatures ranging from 125 C to 175 C. In addition, some hybrid drive electronics are placed in even harsher environments, such as on or near the brakes, where temperatures can reach 250 C. Furthermore, number of temperature cycles experienced by electronics in a hybrid vehicle is different from that experienced in a traditional vehicle. A traditional internal combustion vehicle will have the engine running for longer periods, whereas a mild or micro-hybrid engine will experience many more starts and stops.[3] This means that hybrid automotive electronics will undergo more cycles of a potential wider temperature cycle than standard automotive electronics, which in turn see temperature cycles of 2 to 3 times the magnitude of the {Delta}T = 50 C-75 C experienced by commercial-grade electronics. This study will discuss the effects of these harsh environments on the failure mechanisms and ultimate reliability of electronic systems developed for gasoline-electric hybrid vehicles. In addition, it will suggest technologies and components that can reasonably be expected to perform well in these environments. Finally, it will suggest areas where further research is needed or desirable. Areas for further research will be highlighted in bold, italic type. It should be noted that the first area where further research is desirable is in developing a clearer understanding of the actual hybrid automotive electronics environment and how to simulate it through accelerated testing, thus: Developing specific mission profiles and accelerated testing protocols for the underhood environment for hybrid cars, as has previously been done for gasoline-powered vehicles, is an important area for further study.« less
Saffaripour, Meghdad; Chan, Tak W; Liu, Fengshan; Thomson, Kevin A; Smallwood, Gregory J; Kubsh, Joseph; Brezny, Rasto
2015-10-06
The size and morphology of particulate matter emitted from a light-duty gasoline-direct-injection (GDI) vehicle, over the FTP-75 and US06 transient drive cycles, have been characterized by transmission-electron-microscope (TEM) image analysis. To investigate the impact of gasoline particulate filters on particulate-matter emission, the results for the stock-GDI vehicle, that is, the vehicle in its original configuration, have been compared to the results for the same vehicle equipped with a catalyzed gasoline particulate filter (GPF). The stock-GDI vehicle emits graphitized fractal-like aggregates over all driving conditions. The mean projected area-equivalent diameter of these aggregates is in the 78.4-88.4 nm range and the mean diameter of primary particles varies between 24.6 and 26.6 nm. Post-GPF particles emitted over the US06 cycle appear to have an amorphous structure, and a large number of nucleation-mode particles, depicted as low-contrast ultrafine droplets, are observed in TEM images. This indicates the emission of a substantial amount of semivolatile material during the US06 cycle, most likely generated by the incomplete combustion of accumulated soot in the GPF during regeneration. The size of primary particles and soot aggregates does not vary significantly by implementing the GPF over the FTP-75 cycle; however, particles emitted by the GPF-equipped vehicle over the US06 cycle are about 20% larger than those emitted by the stock-GDI vehicle. This may be attributed to condensation of large amounts of organic material on soot aggregates. High-contrast spots, most likely solid nonvolatile cores, are observed within many of the nucleation-mode particles emitted over the US06 cycle by the GPF-equipped vehicle. These cores are either generated inside the engine or depict incipient soot particles which are partially carbonized in the exhaust line. The effect of drive cycle and the GPF on the fractal parameters of particles, such as fractal dimension and fractal prefactor, is insignificant.
Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf
2015-09-02
Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions.
Dietrich, Markus; Jahn, Christoph; Lanzerath, Peter; Moos, Ralf
2015-01-01
Recently, a novel method emerged to determine the oxygen storage degree of three way catalysts (TWC) by a microwave-based method. Up to now, this method has been investigated only in lab-scale reactors or under steady state conditions. This work expands those initial studies. A TWC-coated gasoline particulate filter was investigated in a dynamic engine test bench simulating a typical European driving cycle (NEDC). It could be shown that both the oxygen storage degree and the soot loading can be monitored directly, but not simultaneously due to their competitive effects. Under normal driving conditions, no soot accumulation was observed, related to the low raw emissions and the catalytic coating of the filter. For the first time, the quality factor of the cavity resonator in addition to the resonance frequency was used, with the benefit of less cross sensitivity to inconstant temperature and water. Therefore, a temperature dependent calibration of the microwave signal was created and applied to monitor the oxidation state in transient driving cycles. The microwave measurement mirrors the oxidation state determined by lambda probes and can be highly beneficial in start-stop phases (where lambda-probes do not work) and to determine the oxygen storage capacity (OSC) without unnecessary emissions. PMID:26340629
Generation and characterization of gasoline engine exhaust inhalation exposure atmospheres.
McDonald, Jacob D; Barr, Edward B; White, Richard K; Kracko, Dean; Chow, Judith C; Zielinska, Barbara; Grosjean, Eric
2008-10-01
Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 4.3-L gasoline engine coupled to a dynamometer and operated on an adapted California Unified Driving Cycle. Exposure levels were maintained at three different dilution rates. One chamber at the lowest dilution had particles removed by filtration. Each exposure atmosphere was characterized for particle mass, particle number, particle size distribution, and detailed chemical speciation. The majority of the mass in the exposure atmospheres was gaseous carbon monoxide, nitrogen oxides, and volatile organics, with small amounts of particle-bound carbon/ions and metals. The atmospheres varied according to the cycle, with the largest spikes in volatile organic and inorganic species shown during the "cold start" portion of the cycle. Ammonia present from the exhaust and rodents interacted with the gasoline exhaust to form secondary inorganic particles, and an increase in exhaust resulted in higher proportions of secondary inorganics as a portion of the total particle mass. Particle size had a median of 10-20 nm by number and approximately 150 nm by mass. Volatile organics matched the composition of the fuel, with large proportions of aliphatic and aromatic hydrocarbons coupled to low amounts of oxygenated organics. A new measurement technique revealed organics reacting with nitrogen oxides have likely resulted in measurement bias in previous studies of combustion emissions. Identified and measured particle organic species accounted for about 10% of total organic particle mass and were mostly aliphatic acids and polycyclic aromatic hydrocarbons.
Emissions from diesel and stratified charge powered cars. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, K.J.
A total of ten passenger cars, four powered by diesel engines, two by stratified charge gasoline engines, one by a stratified charge operating on gasoline and diesel fuel, two by control equipped conventional engines, and one powered by a gas turbine, have been subjected to a wide variety of emissions evaluations. The vehicles, all late model, low mileage, included a Nissan Datsun, a Mercedes 220D, a Peugeot 504D, an Opel Rekord 2100D, a standard Capri, a stratified charge (PROCO) Capri, a low emission prototype Ford LTD, the Texaco TCCS stratified charge powered Cricket operated on gasoline and on diesel fuel,more » a Honda CVCC stratified charge, and a Chrysler gas turbine car. All were 4-cylinder except the LTD and the gas turbine. Tailpipe emissions were measured by the 1975 light duty Federal Test Procedure for gaseous emissions. Smoke and fuel economy were also determined during this test cycle. Chassis dynamometer versions of the 1974 heavy duty diesel smoke and gaseous emissions tests were employed. Odor and related instrumental-chemical measurements were made under seven steady state and three acceleration conditions. The prototype diesel odor analytical system, developed under CRC contract, was applied to the exhaust from both diesel and gasoline engines. Its use as a predictive method of diesel odor was investigated. Noise measurements were taken by SAE driveby as well as under a variety of exterior-interior conditions. Comparisons of the results for all vehicles are by emission category. The emissions from the group of diesel cars are compared to the conventional gasoline, Ford PROCO, Texas TCCS, and Honda CVCC.« less
Effective hydrogen generator testing for on-site small engine
NASA Astrophysics Data System (ADS)
Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.
2009-07-01
We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.
Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives
NASA Astrophysics Data System (ADS)
Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.
2017-02-01
Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.
Analog simulation of a hybrid gasoline-electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, D.B.
1982-03-01
Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less
Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto
2014-05-20
Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C).
Code of Federal Regulations, 2011 CFR
2011-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
Code of Federal Regulations, 2014 CFR
2014-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
Code of Federal Regulations, 2010 CFR
2010-07-01
... deposits formed in the carburetor during operation of a carburetted gasoline engine which can disrupt the... additive package to prevent the formation of deposits in gasoline engines. Deposit control efficiency means... and after operation of a gasoline engine, as evaluated by the reduction in the gasoline flow rate...
NASA Technical Reports Server (NTRS)
Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.
1975-01-01
Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.
Batu Pahat Driving Cycle for Light Duty Gasoline Engine
NASA Astrophysics Data System (ADS)
Zainul Abidin, Zainul Ameerul Ikhsan B.; Faisal Hushim, Mohd; Ahmad, Osman Bin
2017-08-01
Driving cycle is a series of data points that represents the vehicle speed versus time. Transient driving cycles involve many changes such as frequent speed changes during typical on-road driving condition [2]. Model driving cycles involve protracted periods at constant speeds. The Batu Pahat Driving Cycle (BPDC) developed to represent the driving pattern of people in a district of Batu Pahat. Based on this driving cycle, it will be a reference to other researchers to study about the gases emission release and fuel consumption by the vehicle on the dynamometer or automotive simulation based on this driving cycle. Existing driving cycles used such as the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72/75, and Japan 10-15 Mode Cycle is not appropriate for Batu Pahat district because of different road conditions, driving habits and environmental of developed driving cycle countries are not same [2][14]. Batu Pahat drive cycle was developed for low-capacity gasoline engine under 150 cc and operating on urban roads, rural roads and road around Universiti Tun Hussein Onn. The importance of these driving cycle as the reference for other research to measure and do automotive simulation regarding fuel consumption and gas emission release from the motorcycle for these three type of driving cycle area. Another use for driving cycles is in vehicle simulations [3]. More specifically, they are used in propulsion system simulations to predict the performance of internal combustion engines, transmissions, electric drive systems, batteries, fuel cell systems, and similar components [18]. Data collection methods used in this study is the use of Global Positioning System (GPS). The results obtained are not similar to each other due to differences in congestion on data taken. From the driving cycle graph obtained, such as the average velocity, maximum velocity, the duration and Positive Acceleration Kinetic Energy (PKE) can be determined. In addition, the best driving cycle sample can be determined from the sum of error calculated. The least sum of error means the best driving cycle
Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng
2007-09-01
Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.
ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE
The contributions of three major gasoline blending components (reformate, alkylate and cracked gasoline) to potential environmental impacts are assessed. This study estimates losses of the gasoline blending components due to evaporation and leaks through their life cycle, from pe...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-gasoline fueled engines. 90.419 Section 90.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled...-stroke gasoline small engines, as follows: KH = (9.953 × H + 0.832) Where: H = the amount of water in an...
7 CFR 3201.103 - Gasoline fuel additives.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Gasoline fuel additives. 3201.103 Section 3201.103... Designated Items § 3201.103 Gasoline fuel additives. (a) Definition. Chemical agents added to gasoline to increase octane levels, improve lubricity, and provide engine cleaning properties to gasoline-fired engines...
40 CFR 205.157-2 - Compliance with standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... manufacturer may use more parameters): (A) Engine type: (1) Gasoline-two stroke; (2) gasoline-four stroke; (3) gasoline-rotary; and (4) other. (B) Engine displacement. (C) Engine configuration: (1) Number of cylinders...
ENVIRONMENTAL LIFE CYCLE ASSESSMENT OF GASOLINE ALTERNATIVES: MTBE AND ETHANOL ADDITIVES
Currently, the U.S. is considering options for additives to reformulated gasoline. To inform this debate the U.S. EPA's Office of Research and Development is conducting a screening life cycle assessment (LCA) of three gasoline alternatives. These alternatives include gasoline w...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L
2010-01-01
Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). Inmore » this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size distribution remained approximately the same (50 nm) but the particle number concentration decreased with increasing ethanol content in the fuel. In addition, increasing ethanol content significantly reduced the number concentration of 50 and 100 nm particles during gradual and WOT accelerations.« less
: gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary assists the gasoline engine when additional power is needed. It also acts as a generator, converting also starts the gasoline engine instantly when needed. Main stage: See through car with battery, engine
On-board generation of a highly volatile starting fuel to reduce automobile cold-start emissions.
Ashford, Marcus D; Matthews, Ronald D
2006-09-15
The on-board distillation system (OBDS) was developed to extract, from gasoline, a high-volatility fuel for exclusive use during the starting and warm-up periods. The use of OBDS distillate fuel results in much improved mixture preparation, allowing combinations of air/fuel ratio and ignition timing that are not possible with gasoline, even with a fully warm engine. The volatility of the distillate is a function of the parent fuel volatility; however, the variability in distillate quality can be diminished via manipulation of the OBDS operating conditions. Thus, it is possible to develop aggressive starting calibrations that are relatively immune to variations in pump gasoline volatility. The key benefits provided bythe OBDS fuel relative to standard gasoline were found to be (1) improved mixture preparation allowing a 70% reduction of cranking fuel requirements, elimination of air-fuel mixture enrichment during the warm-up period, and significant extension of warm-up ignition timing retard; (2) a 57% decrease in catalyst light-off time, (3) emissions reductions over the FTP drive cycle of 81% for regulated hydrocarbons (NMOG); (4) emissions index (NMOG) approaching that of SULEV/PZEV vehicles; and (5) an apparent 1% increase in fuel economy over the FTP drive cycle.
Pulsed, Hydraulic Coal-Mining Machine
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1986-01-01
In proposed coal-cutting machine, piston forces water through nozzle, expelling pulsed jet that cuts into coal face. Spring-loaded piston reciprocates at end of travel to refill water chamber. Machine a onecylinder, two-cycle, internal-combustion engine, fueled by gasoline, diesel fuel, or hydrogen. Fuel converted more directly into mechanical energy of water jet.
Hydrogen-fueled postal vehicle performance evaluation
NASA Technical Reports Server (NTRS)
Hall, R. A.
1979-01-01
Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.
ENVIRONMENTAL COMPARISON OF GASOLINE BLENDING OPTIONS USING LIFE CYCLE ASSESSMENT
A life cycle assessment has been done on various gasoline blends, The purpose of this study is to compare several gasoline blends of 95 and 98 octaine, that meet the vapour pressure upper limit requirement of 60 kPa. This study accounts for the gasoline losses due to evaporation ...
SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT ...
Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI vehicle tested in this study utilized slightly different fuel injection technology: Vehicle 1 used a 2.4 liter, naturally aspirated, wall-guided GDI; Vehicle 2 used a 1.8 liter, turbocharged GDI engine; Vehicle 3 used a 1.5 liter, turbocharged, spray-guided GDI engine. Vehicle testing was conducted in a temperature controlled chassis dynamometer test cell at 22 °C over the EPA Federal Test Procedure (FTP) and a portion of the Supplemental FTP (SFTP). The FTP was conducted as a three phase cycle with a cold start, hot transient, and warm start phase (also known as the FTP-75 driving cycle). The SFTP consisted of the US06 driving cycle (conducted without the vehicle’s air conditioning on), which provides a more aggressive driving pattern than the FTP. The vehicles operated on 10 percent ethanol blended gasoline (E10). VOC emissions from diluted vehicle exhaust were sampled over each FTP phase and over the Supplemental FTP with SUMMA canisters for EPA Method TO-15 analysis and with DNPH cartridges for carbonyl analysis by EPA Method TO-11A. This presentation will report the impact of driving cycle and GDI technology on speciated MSAT emissions. MSAT emission rates will be compared
The effect of alcohol blends on the performance of an air cooled Rotary Trochoidal Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
The effect of alcohol blends on the performance of an air cooled rotary trochoidal engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutman, M.; Iuster, I.
Results obtained from tests on an air cooled Rotary Trochoidal Engine fueled with a gasoline-alcohol mixture, without modification of the carburetor, are presented in this paper. The tests were performed with one and two spark plugs. Amongst the obtained results, lower thermal load, better economy and improvement in cycling uniformity when running with two spark plugs were observed. The observed reduction in the rotor housing wall temperature and in the oil sump temperature presents particular advantages for an air cooled engine.
battery, engine, and electric motor visible. The car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the gasoline engine to the electric car is moving. There are red arrows flowing from the gasoline engine to the front wheels. There are
Earnest, G S; Mickelsen, R L; McCammon, J B; O'Brien, D M
1997-11-01
This study modeled the time required for a gasoline-powered, 5 horsepower (hp), 4-cycle engine to generate carbon monoxide (CO) concentrations exceeding the National Institute for Occupational Safety and Health 200-ppm ceiling and 1200-ppm immediately dangerous to life and health concentration for various room sizes and ventilation rates. The model permitted the ambiguous term "well-ventilated area" to be defined. The model was compared with field data collected at a site where two workers were poisoned while operating a 5-hp concrete saw in a bathroom having open doors and an operating ventilation system. There is agreement between both the modeled and field-generated data, indicating that hazardous CO concentrations can develop within minutes. Comparison of field and modeling data showed the measured CO generation rate at approximately one-half of the value used in the model, which may be partially because the engine used in the field was not under load during data collection. The generation rate and room size from the actual poisoning was then used in the model. The model determined that ventilation rates of nearly 5000 ft3/min (120 air changes per hour) would be required to prevent the CO concentration from exceeding the 200-ppm ceiling for short periods. Results suggest that small gasoline-powered engines should not be operated inside of buildings or in semienclosed spaces and that manufacturers of such tools should improve their warnings and develop engineering control options for better user protection.
Conventional engine technology. Volume 1: Status of OTTO cycle engine technology
NASA Technical Reports Server (NTRS)
Dowdy, M. W.
1981-01-01
Federally-mandated emissions standards have led to major changes in automotive technology during the last decade. Efforts to satisfy the new standards were directed more toward the use of add-on devices, such as catalytic converters, turbochargers, and improved fuel metering, than toward complete engine redesign. The resulting changes are described and the improvement brought about by them in fuel economy and emissions levels are fully documented. Four specific categories of gasoline-powered internal combustion engines are covered, including subsystem and total engine development. Also included are the results of fuel economy and exhaust emissions tests performed on representative vehicles from each category.
Automotive Stirling engine: Mod 2 design report
NASA Technical Reports Server (NTRS)
Nightingale, Noel P.
1986-01-01
The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.
NASA Astrophysics Data System (ADS)
Short, D.; , D., Vi; Durbin, T.; Karavalakis, G.; Asa-Awuku, A. A.
2013-12-01
Passenger vehicles are known emitters of climate warming pollutants. CO2 from automobile emissions are an anthropogenic greenhouse gas (GHG) and a large contributor to global warming. Worldwide, CO2 emissions from passenger vehicles are responsible for 11% of the total CO2 emissions inventory. Black Carbon (BC), another common vehicular emission, may be the second largest contributor to global warming (after CO2). Currently, 52% of BC emissions in the U.S are from the transportation sector, with ~10% originating from passenger vehicles. The share of pollutants from passenger gasoline vehicles is becoming larger due to the reduction of BC from diesel vehicles. Currently, the majority of gasoline passenger vehicles in the United States have port- fuel injection (PFI) engines. Gasoline direct injection (GDI) engines have increased fuel economy compared to the PFI engine. GDI vehicles are predicted to dominate the U.S. passenger vehicle market in the coming years. The method of gasoline injection into the combustion chamber is the primary difference between these two technologies, which can significantly impact primary emissions from light-duty vehicles (LDV). Our study will measure LDV climate warming emissions and assess the impact on climate due to the change in U.S vehicle technologies. Vehicles were tested on a light- duty chassis dynamometer for emissions of CO2, methane (CH4), and BC. These emissions were measured on F3ederal and California transient test cycles and at steady-state speeds. Vehicles used a gasoline blend of 10% by volume ethanol (E10). E10 fuel is now found in 95% of gasoline stations in the U.S. Data is presented from one GDI and one PFI vehicle. The 2012 Kia Optima utilizes GDI technology and has a large market share of the total GDI vehicles produced in the U.S. In addition, The 2012 Toyota Camry, equipped with a PFI engine, was the most popular vehicle model sold in the U.S. in 2012. Methane emissions were ~50% lower for the GDI technology. While BC emissions were 96% higher for the GDI technology. The GDI technology had a smaller effect on CO2 emissions with a 4% rise compared to the other emissions. Additional results will discuss the emission rates converted to reflect total yearly passenger vehicular emissions in the U.S. Overall, the results show increases of global warming emissions from GDI passenger vehicle technology.
Performance of a Half-Heusler Thermoelectric Generator for Automotive Application
Szybist, James; Davis, Steven; Thomas, John; ...
2018-04-03
Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less
Performance of a Half-Heusler Thermoelectric Generator for Automotive Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James; Davis, Steven; Thomas, John
Thermoelectric generators (TEGs) have been researched and developed for harvesting energy from otherwise wasted heat. For automotive applications this will most likely involve using internal combustion engine exhaust as the heat source, with the TEG positioned after the catalyst system. Applications to exhaust gas recirculation systems and compressed air coolers have also been suggested. A thermoelectric generator based on half-Heusler thermoelectric materials was developed, engineered, and fabricated, targeting a gasoline passenger sedan application. This generator was installed on a gasoline engine exhaust system in a dynamometer cell, and positioned immediately downstream of the closecoupled three-way catalyst. The generator was characterizedmore » using a matrix of steady-state conditions representing the important portions of the engine map. Detailed performance results are presented. Measurements indicate the generator can produces over 300 W of power with 900 °C exhaust at relatively high flow rates, but less than 50 W when the exhaust is 600 °C and at lower flow rates. The latter condition is typical of standard test cycles and most driving scenarios.« less
40 CFR 86.343-79 - Chart reading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...
40 CFR 86.343-79 - Chart reading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.343-79 Chart... responses corresponding to the end of each mode. (c) For gasoline-fueled engines, determine whether the test... gasoline-fueled engine mode); or (3) 5 percent of maximum torque during the remainder of the mode...
LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS
A life cycle assessment has been done to compare the potential environmental impacts of various gasoline blends that meet octane and vapour pressure specifications. The main blending components of alkylate, cracked gasoline and reformate have different octane and vapour pressure...
Economic and environmental benefits of higher-octane gasoline.
Speth, Raymond L; Chow, Eric W; Malina, Robert; Barrett, Steven R H; Heywood, John B; Green, William H
2014-06-17
We quantify the economic and environmental benefits of designing U.S. light-duty vehicles (LDVs) to attain higher fuel economy by utilizing higher octane (98 RON) gasoline. We use engine simulations, a review of experimental data, and drive cycle simulations to estimate the reduction in fuel consumption associated with using higher-RON gasoline in individual vehicles. Lifecycle CO2 emissions and economic impacts for the U.S. LDV fleet are estimated based on a linear-programming refinery model, a historically calibrated fleet model, and a well-to-wheels emissions analysis. We find that greater use of high-RON gasoline in appropriately tuned vehicles could reduce annual gasoline consumption in the U.S. by 3.0-4.4%. Accounting for the increase in refinery emissions from production of additional high-RON gasoline, net CO2 emissions are reduced by 19-35 Mt/y in 2040 (2.5-4.7% of total direct LDV CO2 emissions). For the strategies studied, the annual direct economic benefit is estimated to be $0.4-6.4 billion in 2040, and the annual net societal benefit including the social cost of carbon is estimated to be $1.7-8.8 billion in 2040. Adoption of a RON standard in the U.S. in place of the current antiknock index (AKI) may enable refineries to produce larger quantities of high-RON gasoline.
Vaughan, Adam; Bohac, Stanislav V
2015-10-01
Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Research on NEDC ultrafine particle emission characters of a port fuel injection gasoline car].
Hu, Zhi-Yuan; Li, Jin; Tan, Pi-Qiang; Lou, Di-Ming
2012-12-01
A Santana gasoline car with multi-port fuel injection (PFI) system was used as the research prototype and an engine exhaust particle sizer (EEPS) was employed to investigate the exhaust ultrafine particle number and size distribution characters of the tested vehicle in new European driving cycle (NEDC). The tested results showed that the vehicle's nuclear particle number, accumulation particle number, as well as the total particle number emission increased when the car drove in accelerated passage, and the vehicle's particle number emission was high during the first 40 seconds after test started and when the speed was over 90 km x h(-1) in extra urban driving cycle (EUDC) in NEDC. The ultrafine particle distribution of the whole NEDC showed a single peak logarithmic distribution, with diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameter was 24 nm. The ultrafine particle distribution of the urban driving cycle named by the economic commission for Europe (ECE) e. g. ECE I, ECE II - IV, the extra urban driving cycle e. g. EUDC, and the idling, constant speed, acceleration, deceleration operation conditions of NEDC all showed a single peak logarithmic distribution, also with particle diameters of the peak particle number emission ranging from 10 nm to 30 nm, and the geometric mean diameters of different driving cycle and different driving mode were from 14 nm to 42 nm. Therefore, the ultrafine particle emissions of the tested PFI gasoline car were mainly consisted of nuclear mode particles with a diameter of less than 50 nm.
Trends in auto emissions and gasoline composition.
Sawyer, R F
1993-01-01
The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353
NASA Astrophysics Data System (ADS)
Liu, Yuhan; Lu, Keding; Ma, Yufang; Yang, Xinping; Zhang, Wenbin; Wu, Yusheng; Peng, Jianfei; Shuai, Shijin; Hu, Min; Zhang, Yuanhang
2017-11-01
HONO plays a key role in atmospheric chemistry, and while its importance is well-known, the sources of HONO are still not completely understood. As a component of ambient HONO sources, direct emission from vehicles is an area that should be extensively studied. In this study, we determined the HONO emission index for typical gasoline vehicles in the car population of China through a chassis dynamometer with different types of engines (PFI/GDI), starting conditions (cold/warm) and running styles (Beijing cycle). Emission ratios of HONO to nitrogen oxide (NOX) for the Chinese gasoline cars are determined to be in the range of (0.03-0.42) % and an averaged value is about 0.18%, which are comparable to those reported in the few studies available in Europe, the United States and Japan for gasoline cars while smaller for those of the diesel cars. The atmospheric impact of the direct HONO emission from gasoline cars was analyzed for a typical urban site in Beijing, significant contributions of the direct emission toward the HONO budget were found during morning rush hours or twilight conditions to be 8-12%.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
... Gasoline; Extension of Comment Period AGENCY: Environmental Protection Agency (EPA). ACTION: Advance notice...-Engine Aircraft Using Leaded Aviation Gasoline (hereinafter referred to as the ANPR). EPA published this... from the use of leaded aviation gasoline (avgas) in piston-engine powered aircraft. The ANPR is one of...
Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.
2016-01-14
Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.
Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.« less
Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines
NASA Astrophysics Data System (ADS)
Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong
Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.
NASA Astrophysics Data System (ADS)
Stepien, Z.
2016-09-01
Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.
Saliba, Georges; Saleh, Rawad; Zhao, Yunliang; Presto, Albert A; Lambe, Andrew T; Frodin, Bruce; Sardar, Satya; Maldonado, Hector; Maddox, Christine; May, Andrew A; Drozd, Greg T; Goldstein, Allen H; Russell, Lynn M; Hagen, Fabian; Robinson, Allen L
2017-06-06
Recent increases in the Corporate Average Fuel Economy standards have led to widespread adoption of vehicles equipped with gasoline direct-injection (GDI) engines. Changes in engine technologies can alter emissions. To quantify these effects, we measured gas- and particle-phase emissions from 82 light-duty gasoline vehicles recruited from the California in-use fleet tested on a chassis dynamometer using the cold-start unified cycle. The fleet included 15 GDI vehicles, including 8 GDIs certified to the most-stringent emissions standard, superultra-low-emission vehicles (SULEV). We quantified the effects of engine technology, emission certification standards, and cold-start on emissions. For vehicles certified to the same emissions standard, there is no statistical difference of regulated gas-phase pollutant emissions between PFIs and GDIs. However, GDIs had, on average, a factor of 2 higher particulate matter (PM) mass emissions than PFIs due to higher elemental carbon (EC) emissions. SULEV certified GDIs have a factor of 2 lower PM mass emissions than GDIs certified as ultralow-emission vehicles (3.0 ± 1.1 versus 6.3 ± 1.1 mg/mi), suggesting improvements in engine design and calibration. Comprehensive organic speciation revealed no statistically significant differences in the composition of the volatile organic compounds emissions between PFI and GDIs, including benzene, toluene, ethylbenzene, and xylenes (BTEX). Therefore, the secondary organic aerosol and ozone formation potential of the exhaust does not depend on engine technology. Cold-start contributes a larger fraction of the total unified cycle emissions for vehicles meeting more-stringent emission standards. Organic gas emissions were the most sensitive to cold-start compared to the other pollutants tested here. There were no statistically significant differences in the effects of cold-start on GDIs and PFIs. For our test fleet, the measured 14.5% decrease in CO 2 emissions from GDIs was much greater than the potential climate forcing associated with higher black carbon emissions. Thus, switching from PFI to GDI vehicles will likely lead to a reduction in net global warming.
Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph J.; Lackner, Klaus S.
2011-04-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.
Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H
2014-10-07
Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.
A comparative study of emission motorcycle with gasoline and CNG fuel
NASA Astrophysics Data System (ADS)
Sasongko, M. N.; Wijayanti, W.; Rahardja, R. A.
2016-03-01
A comparison of the exhaust emissions of the engine running gasoline and Compressed Natural Gas have been performed in this study. A gasoline engine 4 stroke single-cylinder with volume of 124.8 cc and compression ratio of 9.3:1 was converted to a CNG gaseous engine. The fuel injector was replaced with a solenoid valve system for injecting CNG gas to engine. The concentrations of CO, CO2, O2 and HC in the exhaust gas of engine were measured over the range of fuel flow rate from 25.32 mg/s to 70.22 mg/s and wide range of Air Fuel Ratio. The comparative analysis of this study showed that CNG engine has a lower HC, CO2 and CO emission at the stoichiometry mixture of fuel and air combustion. The emissions increased when the Air-Fuel ratio was switched from the stoichiometry condition. Moreover, CNG engine produced a lower HC and CO emission compared to the gasoline for difference air flow rate. The average of HC and CO emissions of the CNG was 92 % and 78 % lower than that of the gasoline
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...
NASA Astrophysics Data System (ADS)
Hu, Min; Peng, Jianfei; Qin, Yanhong; Du, Zhuofei; Li, Mengjin; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Lu, Sihua; Wu, Yusheng; Zeng, Limin; Guo, Song; Shao, Min; Wang, Yinhui; Shuai, Shijin
2017-04-01
Along with the urbanization and economic growth, vehicle population in China reached 269 million, ranked the second in the world in 2015. Gasoline vehicle is identified to be the main source for urban PM2.5 in China, accounting for 15%-31%. In this study the impact of fuel components on PM2.5 and volatile organic compounds (VOCs) emissions from a gasoline port fuel injection (PFI) engine and a gasoline direct injection (GDI) engine are discussed. Results show that, higher proportion of aromatics, alkenes or sulfur in gasoline fuel will lead to higher PM emissions. The PM from the PFI engine mainly consists of OC and a small amount of EC and inorganic ions, while the PM discharge from the GDI engine mainly consists of EC, OM and a small amount of inorganic ions. Since the GDI engines can reduce fuel consumption and CO2 emissions, and it would become more and more popular in the near future. The characteristics of POM component, emission factors and source profile were investigated from GDI engine, particularly focused on the effect of engine speed, load and the catalyst, which will be very much helpful for source identification as source indicators. Chamber experiments were conducted to quantify the potential of secondary aerosol formation from exhaust of a PFI gasoline engine and China V gasoline fuel. During 4-5 h simulation, equivalent to10 days of atmospheric photo-oxidation in Beijing, the extreme SOA production was 426 ± 85 mg/kg fuel, with high precursors and OH exposure. 14% of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatility organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reduction of emissions of aerosol precursor gases from vehicles is essential to mediate pollution in China.
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2017-01-01
The purpose of this study was to determine if selected factors influenced the ability of students in school-based agricultural education programs to generate a correct hypothesis when troubleshooting small gasoline engines. Variables of interest included students' cognitive style, age, GPA, and content knowledge in small gasoline engines. Kirton's…
Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.
2015-04-14
The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less
ENVIRONMENTAL IMPACTS OF HYDROCARBON EMISSIONS IN LIFE CYCLE ANALYSIS OF GASOLINE BLENDING OPTIONS
Changes in gasoline specifications worldwide affect demand for all major gasoline-blending components. The purpose of this study is to compare different gasoline formulations based on the accounting of the environmental impacts due to hydrocarbon emissions during the gasoline pro...
Comparison of alcogas aviation fuel with export aviation gasoline
NASA Technical Reports Server (NTRS)
Gage, V R; Sparrow, S W; Harper, D R
1921-01-01
Mixtures of gasoline and alcohol when used in internal combustion engines designed for gasoline have been found to possess the advantage of alcohol in withstanding high compression without "knock" while retaining advantages of gasoline with regard to starting characteristics. Test of such fuels for maximum power-producing ability and fuel economy at various rates of consumption are thus of practical importance, with especial reference to high-compression engine development. This report discusses the results of tests which compares the performance of alcogas with x gasoline (export grade) as a standard.
Associations of cycling with urban sprawl and the gasoline price.
Rashad, Inas
2009-01-01
Determine the relationships between cycling and urban sprawl and between cycling and the gasoline price. Cross-sectional multivariate regression analyses using pooled data from two individual-level national surveys to analyze the effects of variations in levels of urban sprawl and the gasoline price on cycling as a form of physical activity. Metropolitan areas representative of the U.S. population, 1990 to 2001. Behavioral Risk Factor Surveillance System: 146,730 individuals at least 18-years-old in the United States; Nationwide Personal Transportation Survey: 73,903 individuals at least 18-years-old in the United States. Self-reported information on bicycling served as the dependent variable. Urban sprawl and the gasoline price served as key independent variables. Living in a metropolitan area with a lower degree of urban sprawl increased the probability of cycling in the past month by 3.4 to 4.4 percentage points and 1.6 to 2.1 percentage points from the means for men and women, respectively. Increasing the gasoline price by one dollar increased the probability of cycling by 4.3 to 4.7 percentage points and 2.9 to 3.5 percentage points for men and women, respectively. Results indicate that the prevalence of cycling is higher in less sprawling areas and areas with higher gasoline prices. More research is needed to refine results on how individuals respond to incentives and the roles that monetary and time costs play in improving public health.
Durbin, Thomas D; Sauer, Claudia G; Pisano, John T; Rhee, Sam H; Huai, Tao; Miller, J Wayne; MacKay, Gervase I; Robbins, John; Gamble, Heather; Hochhauser, Albert M; Ingham, Michael C; Gorse, Robert A; Beard, Loren K
2004-03-01
The impact of the sulfur (S) content in lubricating oil was evaluated for four ultra-low-emission vehicles and two super-ultra-low-emission vehicles, all with low mileage. The S content in the lube oils ranged from 0.01 to 0.76%, while the S content of the gasoline was fixed at 0.2 ppmw. Vehicles were configured with aged catalysts and tested over the Federal Test Procedure, at idle and at 50-mph cruise conditions. In all testing modes, variations in the S level of the lubricant did not significantly affect the regulated gas-phase tailpipe emissions. In addition to the regulated gas-phase emissions, a key element of the research was measuring the engine-out sulfur dioxide (SO2) in near-real-time. This research used a new methodology based on a differential optical absorption spectrometer (DOAS) to measure SO2 from the lubricants used in this study. With the DOAS, the contribution of SO2 emissions for the highest-S lubricant was found to range from less than 1 to 6 ppm on a gasoline S equivalent basis over the range of vehicles and test cycles used. The development and operation of the DOAS is discussed in this paper.
Tests of several bearing materials lubricated by gasoline
NASA Technical Reports Server (NTRS)
Joachin, W F; Case, Harold W
1926-01-01
This investigation on the relative wear of several bearing materials lubricated by gasoline was conducted at the Langley Memorial Aeronautical Laboratory, as part of a general research on fuel injection engines for aircraft. The specific purpose of the work was to find a durable bearing material for gear pumps to be used for the delivery of gasoline and diesel engine fuel oil at moderate pressures to the high pressure pumps of fuel injection engines.
Feasibility demonstration of a road vehicle fueled with hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Hoehn, F. W.; Dowdy, M. W.
1974-01-01
Evaluation of the concept of using hydrogen-enriched gasoline in a modified internal combustion engine in order to make possible the burning of ultralean mixtures. The use of such an engine in a road vehicle demonstrated that the addition of small quantities of gaseous hydrogen to gasoline resulted in significant reductions in exhaust emissions of carbon monoxide and nitrogen oxides as well as in thermal efficiency improvements of the engine performance.
Advanced hybrid vehicle propulsion system study
NASA Technical Reports Server (NTRS)
Schwarz, R.
1982-01-01
Results are presented of a study of an advanced heat engine/electric automotive hybrid propulsion system. The system uses a rotary stratified charge engine and ac motor/controller in a parallel hybrid configuration. The three tasks of the study were (1) parametric studies involving five different vehicle types, (2) design trade-off studies to determine the influence of various vehicle and propulsion system paramaters on system performance fuel economy and cost, and (3) a conceptual design establishing feasibility at the selected approach. Energy consumption for the selected system was .034 1/km (61.3 mpg) for the heat engine and .221 kWh/km (.356 kWh/mi) for the electric power system over a modified J227 a schedule D driving cycle. Life cycle costs were 7.13 cents/km (11.5 cents/mi) at $2/gal gasoline and 7 cents/kWh electricity for 160,000 km (100,000 mi) life.
NASA Technical Reports Server (NTRS)
Cassidy, J. F.
1977-01-01
A multicylinder reciprocating engine was used to extend the efficient lean operating range of gasoline by adding hydrogen. Both bottled hydrogen and hydrogen produced by a research methanol steam reformer were used. These results were compared with results for all gasoline. A high-compression-ratio, displacement production engine was used. Apparent flame speed was used to describe the differences in emissions and performance. Therefore, engine emissions and performance, including apparent flame speed and energy lost to the cooling system and the exhaust gas, were measured over a range of equivalence ratios for each fuel. All emission levels decreased at the leaner conditions. Adding hydrogen significantly increased flame speed over all equivalence ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Mira supercomputer at the Argonne Leadership Computing Facility helped Argonne researchers model what happens inside an engine when you use gasoline in a diesel engine. Engineers are exploring this type of combustion as a sustainable transportation option because it may be more efficient than traditional gasoline combustion engines but produce less soot than diesel.
Nitrogen dioxide in exhaust emissions from motor vehicles
NASA Astrophysics Data System (ADS)
Lenner, Magnus
NO 2/NO x (v/v) fractions and NO 2 exhaust emission rates were determined for diesel- and gasoline-powered passenger cars and a diesel truck, at several conditions of constant engine load and speed. Vehicles with various kinds of emission control equipment were investigated. Also, integrations of NO 2/NO x percentages during Federal Test Procedure driving cycles were made for six types of passenger car. High (> 30 %) NO 2 fractions were measured for gasoline cars with air injection, and for diesel vehicles. A gasoline car with a 3-way catalyst had low NO x totals with small (< 1 %) NO 2 fractions. A passenger diesel with particle trap yielded surprisingly small (0-2%) NO 2 fractions at moderate speeds. The results have implications for NO 2 concentration in the atmosphere of northern cities during wintertime inversions, in view of the increasing use of air injection systems for passenger cars to meet legal restrictions on vehicle emissions of hydrocarbons and CO.
Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method.
Chen, Yu-Liang; Chen, Suming; Tsai, Jin-Ming; Tsai, Chao-Yin; Fang, Hsin-Hsiung; Yang, I-Chang; Liu, Sen-Yuan
2012-01-01
In view of energy shortage and air pollution, ethanol-gasoline blended fuel used for motorcycle engine was studied in this work. The emissions of carbon monoxide (CO), nitrogen oxides (NO(X)) and engine performance of a 125 cc four-stroke motorcycle engine with original carburetor using ethanol-gasoline fuels were investigated. The model of three-variable Box Behnken design (BBD) was used for experimental design, the ethanol blend ratios were prepared at 0, 10, 20 vol%; the speeds of motorcycle were selected as 30, 45, 60 km/h; and the throttle positions were set at 30, 60, 90 %. Both engine performance and air pollutant emissions were then analyzed by response surface method (RSM) to yield optimum operation parameters for tolerable pollutant emissions and maximum engine performance. The RSM optimization analysis indicated that the most suitable ethanol-gasoline blended ratio was found at the range of 3.92-4.12 vol% to yield a comparable fuel conversion efficiency, while considerable reductions of exhaust pollutant emissions of CO (-29 %) and NO(X) (-12 %) when compared to pure gasoline fuel. This study demonstrated low ethanol-gasoline blended fuels could be used in motorcycle carburetor engines without any modification to keep engine power while reducing exhaust pollutants.
Performance and driveline analyses of engine capacity in range extender engine hybrid vehicle
NASA Astrophysics Data System (ADS)
Praptijanto, Achmad; Santoso, Widodo Budi; Nur, Arifin; Wahono, Bambang; Putrasari, Yanuandri
2017-01-01
In this study, range extender engine designed should be able to meet the power needs of a power generator of hybrid electrical vehicle that has a minimum of 18 kW. Using this baseline model, the following range extenders will be compared between conventional SI piston engine (Baseline, BsL), engine capacity 1998 cm3, and efficiency-oriented SI piston with engine capacity 999 cm3 and 499 cm3 with 86 mm bore and stroke square gasoline engine in the performance, emission prediction of range extender engine, standard of charge by using engine and vehicle simulation software tools. In AVL Boost simulation software, range extender engine simulated from 1000 to 6000 rpm engine loads. The highest peak engine power brake reached up to 38 kW at 4500 rpm. On the other hand the highest torque achieved in 100 Nm at 3500 rpm. After that using AVL cruise simulation software, the model of range extended electric vehicle in series configuration with main components such as internal combustion engine, generator, electric motor, battery and the arthemis model rural road cycle was used to simulate the vehicle model. The simulation results show that engine with engine capacity 999 cm3 reported the economical performances of the engine and the emission and the control of engine cycle parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Curran, Scott; Daw, C Stuart
2013-01-01
In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and loadmore » fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.« less
Influence of bio-fuels on passenger car vehicle emissions
NASA Astrophysics Data System (ADS)
Petrea, M.; Kapernaum, M.; Wahl, C.
2009-04-01
In order to reduce the emissions of air pollutants, vehicles design and fuel formulation have changed. Ultra clean vehicle technologies started to be used in increased number. As a result, the emissions composition is expected to change as well. The use of new technologies and new fuels require new emissions tests especially for non-regulated compounds. The interest in using bio fuels as alternative fuels for petroleum-based ones has increased constantly in the last years. The advantages of the bio fuels usage is given by their similar proprieties, characteristics of renew ability, biodegradability and potential beneficial effects on the exhaust emission. The study involved measurements on a roller test facility of a reference passenger car representing new technologies (emission standards, injection system). The vehicle operated by use of reference gasoline and reference gasoline blended (10 and 20%) with bio-ethanol (EtOH). The measurements used different driving cycles: ARTEMIS cycle, real world driving cycle, NEDC cycle, the standard European driving cycle and additionally, a driving cycle consisting in Idle, 30, 50, 90 km/h. The sampling positions were before and after the catalyst and in the exhaust pipe. The detailed speciation of NMVOC' (non methane volatile organic compounds) was completed by use of active carbon tubes, DNPH (2,4-dinitrophenylhydrazine) tubes and cold traps. The particles were monitored by use of an on-line EEPS (Engine Exhaust Particle Sizer). CO2, NO, NO2 and NOX (NO +NO2) were continuously monitored by use of an on- line FTIR (Fourier transform infrared spectroscopy)- MEXA system. The investigations reveal that among the carbonylic compounds 15 oxygenated species were found in engine out exhaust and only 3 in tailpipe emissions, namely formaldehyde, acetaldehyde and acroleine. These are of great interest due to their impacts on human health. The hydrocarbons emissions decrease by increased of EtOH content. New compounds were observed. The nitro-compounds found in the after engine position by increased EtOH were no more found in the exhaust gas. The results show that total particle concentration, mass and diameter decreased substantially after catalyst and filter by increased ethanol blend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Szybist, James P
2013-01-01
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanolmore » enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pihl, Josh A.; Toops, Todd J.; Fisher, Galen B.
Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NO x conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH 3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%.more » NO 2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH 3 SCR of NO x does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. In conclusion, the gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.« less
High altitude aerodynamic platform concept evaluation and prototype engine testing
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1984-01-01
A design concept has been developed for maintaining a 150-pound payload at 60,000 feet altitude for about 50 hours. A 600-pound liftoff weight aerodynamic vehicle is used which operates at sufficient speeds to withstand prevailing winds. It is powered by a turbocharged four-stoke cycle gasoline fueled engine. Endurance time of 100 hours or more appears to be feasible with hydrogen fuel and a lighter payload. A prototype engine has been tested to 40,000 feet simulated altitude. Mismatch of the engine and the turbocharger system flow and problems with fuel/air mixture ratio control characteristics prohibited operation beyond 40,000 feet. But there seems to be no reason why the concept cannot be developed to function as analytically predicted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems.more » Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.« less
Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars
NASA Astrophysics Data System (ADS)
Meinrenken, Christoph; Lackner, Klaus S.
2012-02-01
Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.
ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE
The purpose of this study is to access the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to...
ENVIRONMENTAL ANALYSIS OF GASOLINE BLENDING COMPONENTS THROUGH THEIR LIFE CYCLE
The purpose of this study is to assess the contribution of the three major gasoline blending components to the potential environmental impacts (PEI), which are the reformate, alkylate and cracked gasoline. This study accounts for losses of the gasoline blending components due to ...
NASA Astrophysics Data System (ADS)
Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin
2009-07-01
Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.
A New Concept of Dual Fuelled SI Engines Run on Gasoline and Alcohol
NASA Astrophysics Data System (ADS)
Stelmasiak, Zdzisław
2011-06-01
The paper discusses tests results of dual-fuel spark ignition engine with multipoint injection of alcohol and gasoline, injected in area of inlet valve. Fuelling of the engine was accomplished via prototype inlet system comprising duplex injectors controlled electronically. Implemented system enables feeding of the engine with gasoline only or alcohol only, and simultaneous combustion of a mixture of the both fuels with any fraction of alcohol. The tests were performed on four cylinders, spark ignition engine of Fiat 1100 MPI type. The paper presents comparative results of dual-fuel engine test when the engine runs on changing fraction of methyl alcohol. The tests have demonstrated an advantageous effect of alcohol additive on efficiency and TCH and NOx emission of the engine, especially in case of bigger shares of the alcohol and higher engine loads.
Gasoline Engine Mechanics. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…
40 CFR 86.306-79 - Equipment required and specifications; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...
40 CFR 86.306-79 - Equipment required and specifications; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...
40 CFR 86.306-79 - Equipment required and specifications; overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...
40 CFR 86.306-79 - Equipment required and specifications; overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, M; Kukkadapu, G; Kumar, K
The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less
NASA Astrophysics Data System (ADS)
Vuilleumier, David Malcolm
The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.
40 CFR 86.1108-87 - Maintenance of records.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... heavy-duty engine or heavy-duty vehicle subject to any of the provisions of this subpart shall establish... testing under this subpart, specifically; (i) If testing heavy-duty gasoline engines, the equipment...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) Gasoline for testing must have octane values that represent commercially available fuels for the...
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Overall system efficiency and performance of a Beech Model 20 Duke aircraft was studied to provide analytical representations of an aircraft piston engine system, including all essential components required for onboard hydrogen generation. Lower emission levels and a 20% reduction in fuel consumption may be obtained by using a catalytic hydrogen generator, incorporated as part of the air induction system, to generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen is then mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultra lean fuel/air ratios, resulting in higher efficiencies.
Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.
Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru
2010-02-01
This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Gasoline. 1065.710 Section 1065.710... PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.710 Gasoline. (a) This section specifies test fuel properties for gasoline with ethanol (low-level blend only) and...
IRIS Toxicological Review and Summary Documents for Methyl Tert-Butyl Ether (MTBE)
MTBE is a volatile organic chemical used to oxygenate gasoline. Oxygenated gasoline improves the exhaust emissions from gasoline engines. Since 1992 it has been used to comply with the Federal Reformulated Gasoline (begun in 1995) and Wintertime Oxygenated Fuel (begun in 1992) p...
An experimental study of fuel injection strategies in CAI gasoline engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunicz, J.; Kordos, P.
2011-01-15
Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuelmore » mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)« less
gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator the gasoline engine when pulling out from a stop and generating electricity which is stored in the
Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.
Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, J. P.; Confer, K.
2012-09-11
Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less
Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret; Boehman, Andre; Lavoie, George
Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dempsey, Adam B.; Curran, Scott; Reitz, Rolf D.
The focus of the present paper was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over amore » variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition. The experiments were conducted on a modern four cylinder light-duty diesel engine that was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. The results indicate that the authority to control the combustion phasing through the fuel delivery strategy (e.g., direct injection timing or premixed gasoline percentage) is not a strong function of the EHN concentration in the direct-injected fuel. It was also observed that NOx emissions are a strong function of the global EHN concentration in-cylinder and the combustion phasing. Finally, in general, NOx emissions are significantly elevated for gasoline/gasoline+EHN operation compared with gasoline/diesel RCCI operation at a given operating condition.« less
NASA Astrophysics Data System (ADS)
Taneja, Sumit; Singh, Perminderjit, Dr; Singh, Gurtej
2018-02-01
Global warming and energy security being the global problems have shifted the focus of researchers on the renewable sources of energy which could replace petroleum products partially or as a whole. Ethanol and butanol are renewable sources of energy which can be produced through fermentation of biomass. A lot of research has already been done to develop suitable ethanol-gasoline blends. In contrast very little literature available on the butanol-gasoline blends. This research focuses on the comparison of ethanol-gasoline fuels with butanol-gasoline fuels with regard to the emission and performance in an SI engine. Experiments were conducted on a variable compression ratio SI engine at 1600 rpm and compression ratio 8. The experiments involved the measurement of carbon monoxide, carbon dioxide, oxides of nitrogen and unburned hydrocarbons emission and among performance parameters brake specific fuel consumption and brake thermal efficiency were recorded at three loads of 2.5kgs (25%), 5kgs (50%) and 7.5kgs (75%). Results show that ethanol and butanol content in gasoline have decreased brake specific fuel consumption, carbon monoxide and unburned hydrocarbon emissions while the brake thermal efficiency and oxides of nitrogen are increased. Results indicate thatbutanol-gasoline blends have improved brake specific fuel consumption, carbon monoxide emissions in an SI engine as compared to ethanol-gasoline blends. The carbon dioxide emissions and brake thermal efficiencies are comparable for ethanol-gasoline blends and butanol-gasoline blends. The butanol content has a more adverse effect on emissions of oxides of nitrogen than ethanol.
accelerating or when additional power is needed, the gasoline engine and electric motor are both used to propel . The car is passing another vehicle. There are red arrows flowing from the gasoline engine to the front wheels. There are blue arrows flowing from the battery to the electric engine to the front wheels. Main
NASA Technical Reports Server (NTRS)
Useller, James W; Harp, James L JR; Barson, Zelmar
1952-01-01
An investigation was made comparing the performance of JFC-2 fuel and unleaded, clear gasoline in a 3000-pound-thrust turbojet engine. The JFC-2 fuel was a blend of percent diesel fuel and 25 percent aviation gasoline. Engine combustion efficiency was equal to that obtained with gasoline at rated engine speed and altitudes up to 35,000 feet, but at lower engine speeds or at higher altitudes the JFC-2 fuel gave lower combustion efficiency. No discernible difference was obtained in starting or low-speed combustiion blow-out characteristics of the two fuels. Turbine-discharge radial temperature profiles were nearly the same at altitudes up to 35,000 feet.
Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H
2002-01-15
Scanning mobility and electrical low-pressure impactor particle size measurements conducted during chassis dynamometer testing reveal that neither the catalytic converter nor the fuel sulfur content has a significant effect on gasoline vehicle tailpipe particulate matter (PM) emissions. For current technology, port fuel injection, gasoline engines, particle number emissions are < or = 2 times higher from vehicles equipped with blank monoliths as compared to active catalysts, insignificant in contrast to the 90+% removal of hydrocarbons. PM mass emission rates derived from the size distributions are equal within the experimental uncertainty of 50-100%. Gravimetric measurements exhibit a 3-10-fold PM mass increase when the active catalyst is omitted, which is attributed to gaseous hydrocarbons adsorbing onto the filter medium. Both particle number and gravimetric measurements show that gasoline vehicle tailpipe PM emissions are independent (within 2 mg/mi) of fuel sulfur content over the 30-990 ppm concentration range. Nuclei mode sulfate aerosol is not observed in either test cell measurements or during wind tunnel testing. For three-way catalyst equipped vehicles, the principal sulfur emission is SO2; however a sulfur balance is not obtained over the drive cycle. Instead, sulfur is stored on the catalyst during moderate driving and then partially removed during high speed/load operation.
NASA Technical Reports Server (NTRS)
Klann, J. L.; Tew, R. C., Jr.
1977-01-01
Ranges in design and off-design operating conditions of an advanced gas turbine and their effects on fuel economy were analyzed. The assumed engine incorporated a single stage radial flow turbine and compressor with fixed geometry. Fuel economies were calculated over the composite driving cycle with gasoline as the fuel. At a constant turbine-inlet temperature, with a regenerator sized for a full power effectiveness the best fuel economies ranged from 11.1 to 10.2 km/liter (26.2 to 22.5 mpg) for full power turbine tip speeds of 770 to 488m/sec (2530 to 1600ft/sec), respectively.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.160 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., automobile, engine, or component manufacturers for research, development, or test purposes, or any gasoline... such facility is associated with detergent, fuel, automotive, or engine research, development or... FUELS AND FUEL ADDITIVES Detergent Gasoline § 80.173 Exemptions. (a) Research, development, and testing...
SCREENING LIFE CYCLE ASSESSMENT OF GASOLINE ADDITIVES
The EPA's ORD is conducting a screening of Life Cycle Assessment (LCA) of selected automotive fuel (i.e., gasoline) systems. Although no specific guidelines exist on how to conduct such a streamlined approach, the basic idea is to use a mix of qualitative and quantitative generi...
[Effect of ethanol gasoline and unleaded gasoline on exhaust emissions of EFI vehicles with TWC].
Wang, Chun-jie; Wang, Wei; Tang, Da-gang; Cui, Ping
2004-07-01
The injectors' flow-rate of all test vehicles that each was fixed with a three-way catalytic converter (TWC) and Electronic Fuel Injection System (EFI) was tested including before and after vehicles operated on unleaded and ethanol gasoline respectively running for a long time on real road. The three main engine-out exhaust emissions (HC, CO and NOx) from vehicles operating on different fuels were also analyzed by exhaust testing procedure for the whole light-duty vehicle. Test results showed that comparing with unleaded gasoline and ethanol gasoline has a remarkable effect on decreasing engine-out exhaust emissions of CO and HC (both at about ten percent) and the exhaust emissions of CO, HC and NOx from vehicles with TWC respectively. When burning with unleaded gasoline the three main pollutants from vehicles with TWC have already or nearly reached Europe Exhaust First Standard, after changing to ethanol gasoline CO has drastically decreased at about thirty percent, while HC and NOx decreased at about eighteen and ten percent respectively, at this time which they were all above Europe Exhaust Standard First or nearly reached Europe Exhaust Second Standard; ethanol gasoline has also other better performance such as a slight cleaning function on injectors, a slower deteriorative trend of engine-out CO and HC and a longer operating life-span of TWC.
LIFE CYCLE ASSESSMENT OF GASOLINE BLENDING OPTIONS
Most petroleum refineries are facing the challenge of producing gasoline, which contains the desirable properties and complies with the ever-increasing environmental regulations and health restrictions. The impact of gasoline on the environment is directly related to its composit...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Pihl, Josh A; Toops, Todd J
Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream ofmore » the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.« less
Delavarrafiee, Maryam; Frey, H Christopher
2018-03-01
Flex fuel vehicles (FFVs) typically operate on gasoline or E85, an 85%/15% volume blend of ethanol and gasoline. Differences in FFV fuel use and tailpipe emission rates are quantified for E85 versus gasoline based on real-world measurements of five FFVs with a portable emissions measurement system (PEMS), supplemented chassis dynamometer data, and estimates from the Motor Vehicle Emission Simulator (MOVES) model. Because of inter-vehicle variability, an individual FFV may have higher nitrogen oxide (NO x ) or carbon monoxide (CO) emission rates on E85 versus gasoline, even though average rates are lower. Based on PEMS data, the comparison of tailpipe emission rates for E85 versus gasoline is sensitive to vehicle-specific power (VSP). For example, although CO emission rates are lower for all VSP modes, they are proportionally lowest at higher VSP. Driving cycles with high power demand are more advantageous with respect to CO emissions, but less advantageous for NO x . Chassis dynamometer data are available for 121 FFVs at 50,000 useful life miles. Based on the dynamometer data, the average difference in tailpipe emissions for E85 versus gasoline is -23% for NO x , -30% for CO, and no significant difference for hydrocarbons (HC). To account for both the fuel cycle and tailpipe emissions from the vehicle, a life cycle inventory was conducted. Although tailpipe NO x emissions are lower for E85 versus gasoline for FFVs and thus benefit areas where the vehicles operate, the life cycle NO x emissions are higher because the NO x emissions generated during fuel production are higher. The fuel production emissions take place typically in rural areas. Although there are not significant differences in the total HC emissions, there are differences in HC speciation. The net effect of lower tailpipe NO x emissions and differences in HC speciation on ozone formation should be further evaluated. Reported comparisons of flex fuel vehicle (FFV) tailpipe emission rates for E85 versus gasoline have been inconsistent. To date, this is the most comprehensive evaluation of available and new data. The large range of inter-vehicle variability illustrates why prior studies based on small sample sizes led to apparently contradictory findings. E85 leads to significant reductions in tailpipe nitrogen oxide (NO x ) and carbon monoxide (CO) emission rates compared with gasoline, indicating a potential benefit for ozone air quality management in NO x -limited areas. The comparison of FFV tailpipe emissions between E85 and gasoline is sensitive to power demand and driving cycles.
Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.; ...
2015-05-12
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to createmore » a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).« less
Muñoz, Maria; Heeb, Norbert V; Haag, Regula; Honegger, Peter; Zeyer, Kerstin; Mohn, Joachim; Comte, Pierre; Czerwinski, Jan
2016-11-01
Bioethanol as an alternative fuel is widely used as a substitute for gasoline and also in gasoline direct injection (GDI) vehicles, which are quickly replacing traditional port-fuel injection (PFI) vehicles. Better fuel efficiency and increased engine power are reported advantages of GDI vehicles. However, increased emissions of soot-like nanoparticles are also associated with GDI technology with yet unknown health impacts. In this study, we compare emissions of a flex-fuel Euro-5 GDI vehicle operated with gasoline (E0) and two ethanol/gasoline blends (E10 and E85) under transient and steady driving conditions and report effects on particle, polycyclic aromatic hydrocarbon (PAH), and alkyl- and nitro-PAH emissions and assess their genotoxic potential. Particle number emissions when operating the vehicle in the hWLTC (hot started worldwide harmonized light-duty vehicle test cycle) with E10 and E85 were lowered by 97 and 96% compared with that of E0. CO emissions dropped by 81 and 87%, while CO 2 emissions were reduced by 13 and 17%. Emissions of selected PAHs were lowered by 67-96% with E10 and by 82-96% with E85, and the genotoxic potentials dropped by 72 and 83%, respectively. Ethanol blending appears to reduce genotoxic emissions on this specific flex-fuel GDI vehicle; however, other GDI vehicle types should be analyzed.
40 CFR 80.1651 - Product transfer document requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., “This gasoline is for use in vehicles, engines, or equipment under an EPA-approved national security exemption only.” (2) For gasoline with a research, development, or testing exemption under § 80.1656, “This gasoline is for research, development, or testing purposes only.” (3) For gasoline for use in American...
A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels
NASA Astrophysics Data System (ADS)
He, Bang-Quan; Wang, Jian-Xin; Hao, Ji-Ming; Yan, Xiao-Guang; Xiao, Jian-Hua
The effect of ethanol blended gasoline fuels on emissions and catalyst conversion efficiencies was investigated in a spark ignition engine with an electronic fuel injection (EFI) system. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and changes distillation temperature. Ethanol can decrease engine-out regulated emissions. The fuel containing 30% ethanol by volume can drastically reduce engine-out total hydrocarbon emissions (THC) at operating conditions and engine-out THC, CO and NO x emissions at idle speed, but unburned ethanol and acetaldehyde emissions increase. Pt/Rh based three-way catalysts are effective in reducing acetaldehyde emissions, but the conversion of unburned ethanol is low. Tailpipe emissions of THC, CO and NO x have close relation to engine-out emissions, catalyst conversion efficiency, engine's speed and load, air/fuel equivalence ratio. Moreover, the blended fuels can decrease brake specific energy consumption.
Health effects of inhaled gasoline engine emissions.
McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L
2007-01-01
Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in significant biological effects for upregulation of MIP-2, clearance of Pseudomonas bacteria, development of allergic response after in utero exposure, and cardiovascular indicators of vasoconstriction, oxidant stress, and damage.
This rulemaking amends the regulations applicable to new gasoline spark-ignition marine engines to address an oversight regarding the production line testing program in the final regulations published on October 4, 1996, (61 FR 52087).
40 CFR 86.1439 - Certification Short Test emission test procedures-EPA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1439 Certification Short... seconds (mt=30), whichever comes second. (B) The vehicle fails the idle mode and the test is immediately...
40 CFR 86.1439 - Certification Short Test emission test procedures-EPA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1439 Certification Short... seconds (mt=30), whichever comes second. (B) The vehicle fails the idle mode and the test is immediately...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Szybist, James P
The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios withmore » high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.« less
Understanding fuel anti-knock performances in modern SI engines using fundamental HCCI experiments
Yang, Yi; Dec, John E.; Sjoberg, Magnus; ...
2015-08-19
Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie
Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less
Storey, John; Lewis, Samuel; Moses-DeBusk, Melanie; ...
2017-02-05
Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on a Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEP g) to mediummore » load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEP g). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations. In addition, part of the raw exhaust was diluted and sampled for HC speciation. Canisters and sorbent membranes were used to collect volatile HCs and semi-volatile HCs, respectively. Di-nitrophenyl hydrazine (DNPH) cartridges were also used for collecting oxygenated species. Results showed overall lower HC emissions with the RON 80 E0 fuel compared to the RON 92 E10 fuel. For both fuels, the percentage of aromatic HCs was higher in the exhaust than in the fuels themselves. High engine-out aldehyde and ketone emissions were observed for both fuels. The reported HC speciation information can be useful for the development of a robust emission control system.« less
Cloud Forming Potential of Aerosol from Light-duty Gasoline Direct Injection Vehicles
DOT National Transportation Integrated Search
2017-12-01
In this study, we evaluate the hygroscopicity and droplet kinetics of fresh and aged emissions from new generation gasoline direct injector engines retrofitted with a gasoline particulate filter (GPF). Furthermore, ageing and subsequent secondary aer...
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The special properties of the hydrogen-enriched gasoline allow the engine to operate at ultralean fuel/air ratios, resulting in higher efficiencies and hence less fuel consumption. This paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.
NASA Astrophysics Data System (ADS)
Hashim, Akasha; Khalid, Amir; Sapit, Azwan; Samsudin, Dahrum
2016-11-01
There are many technologies about exhaust emissions reduction for wide variety of spark ignition (SI) engine have been considered as the improvement throughout the combustion process. The stricter on legislation of emission and demands of lower fuel consumption needs to be priority in order to satisfy the demand of emission quality. Besides, alternative fuel such as methanol-gasoline blends is used as working fluid in this study due to its higher octane number and self-sustain concept which capable to contribute positive effect to the combustion process. The purpose of this study is to investigate the effects of methanol-gasoline fuel with different blending ratio and variant ambient pressures on flame development and emission for gasoline engine. An experimental study is carried towards to the flame development of methanol-gasoline fuel in a constant volume chamber. Schlieren optical visualization technique is a visual process that used when high sensitivity is required to photograph the flow of fluids of varying density used for captured the combustion images in the constant volume chamber and analysed through image processing technique. Apart from that, the result showed combustion burn rate increased when the percentage of methanol content in gasoline increased. Thus, high percentage of methanol-gasoline blends gave greater flame development area. Moreover, the emissions of CO, NOX and HC are performed a reduction when the percentage of methanol content in gasoline is increased. Contrarily, the emission of Carbon dioxide, CO2 is increased due to the combustion process is enhanced.
Code of Federal Regulations, 2012 CFR
2012-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... am an owner or operator of a stationary SI gasoline fired internal combustion engine subject to this... Stationary Spark Ignition Internal Combustion Engines Other Requirements for Owners and Operators § 60.4235... internal combustion engine subject to this subpart? Owners and operators of stationary SI ICE subject to...
Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor
NASA Astrophysics Data System (ADS)
Regitz, S.; Collings, N.
2008-07-01
A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50-100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ~20 ms and enables cyclic AFR measurements for engine speeds of up to ~4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Ning; Yang, Yang; Cai, Hao
This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well tomore » wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.« less
electric motor provides additional power when needed, such as for accelerating and passing. This allows a at an intersection. Electric Motor: The electric motor assists the gasoline engine when additional braking into electricity and stores it in the battery. It also starts the gasoline engine instantly when
40 CFR 86.1101-87 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... year gasoline-fueled and diesel heavy-duty engines and heavy-duty vehicles. These vehicles include... heavy-duty vehicles under the provisions of subpart S of this part. [65 FR 59957, Oct. 6, 2000] ...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
40 CFR 86.1434 - Equipment preparation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty... the device(s) for removing water from the exhaust sample and the sample filter(s). Remove any water from the water trap(s). Clean and replace the filter(s) as necessary. (c) Set the zero and span points...
ENVIRONMENTAL COMPARISON OF GASOLINE BLENDING OPTIONS USING LIFE CYCLE ASSESSMENT: JOURNAL ARTICLE
NRMRL-CIN-1612A Mata, T.M., Smith*, R.L., Young*, D.M., and Costa, C.A.V. Environmental Comparison of Gasoline Blending Options using Life Cycle Assessment. R'02 Recovery, Recycling, Re-Integration, Geneva, Switzerland, 2/12-15/2002. EPA/600/A-02/068, [DISK]. 09/27/2001 A li...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F; West, Brian H; Huff, Shean P
The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There aremore » over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yi; Dec, John E.; Sjoberg, Magnus
Modern spark-ignition (SI) engine technologies have considerably changed in-cylinder conditions under which fuel autoignition and engine knock take place. In this paper, fundamental HCCI engine experiments are proposed as a means for characterizing the impact of these technologies on the knock propensity of different fuels. In particular, the impacts of turbocharging, direct injection (DI), and downspeeding on operation with ethanol and gasoline are investigated to demonstrate this approach. Results reported earlier for ethanol and gasoline on HCCI combustion are revisited with the new perspective of how their autoignition characteristics fit into the anti-knock requirement in modern SI engines. For example,more » the weak sensitivity to pressure boost demonstrated by ethanol in HCCI autoignition can be used to explain the strong knock resistance of ethanol fuels for turbocharged SI engines. Further, ethanol's high sensitivity to charge temperature makes charge cooling, which can be produced by fuel vaporization via direct injection or by piston expansion via spark-timing retard, very effective for inhibiting knock. On the other hand, gasoline autoignition shows a higher sensitivity to pressure, so only very low pressure boost can be applied before knock occurs. Gasoline also demonstrates low temperature sensitivity, so it is unable to make as effective use of the charge cooling produced by fuel vaporization or spark retard. These arguments comprehensively explain literature results on ethanol's substantially better anti-knock performance over gasoline in modern turbocharged DISI engines. Fundamental HCCI experiments such as these can thus be used as a diagnostic and predictive tool for knock-limited SI engine performance for various fuels. As a result, examples are presented where HCCI experiments are used to identify biofuel compounds with good potential for modern SI-engine applications.« less
Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…
Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.
ERIC Educational Resources Information Center
University of South Florida, Tampa. Dept. of Adult and Vocational Education.
This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…
Speciation Profiles and Toxic Emission Factors for Nonroad Engines: DRAFT REPORT
This document details the research and development behind how MOVES2014a estimates air toxic emissions for nonroad engines and equipment run on conventional gasoline without ethanol (E0) and gasoline blended with 10% ethanol (E10) as well as diesel fuel, compressed natural gas (C...
/generator visible. The car is moving. There are purple arrows flowing from the gasoline engine to the electric starter/generator. There are red arrows flowing from the gasoline engine to the front wheels . There are blue arrows flowing from the electric starter/generator to the battery. Main stage: See
Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C
2018-08-01
Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rohadi, Heru; Syaiful, Bae, Myung-Whan
2016-06-01
Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.
NASA Astrophysics Data System (ADS)
Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio
2016-05-01
The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neame, G.R.; Gardiner, D.P.; Mallory, R.W.
1995-12-31
This paper describes an experimental study in which the potential for fuel economy improvements with EGR was investigated using an automotive V6 engine. Steady state engine dynamometer tests were run at 2,000 rpm and 200 kPa Brake Mean Effective Pressure (BMEP). The engine was fueled with gasoline, methanol or natural gas. Plasma jet ignition was evaluated as a means of improving EGR tolerance. EGR tolerance with methanol was found to be better than with gasoline, while natural gas showed the poorest EGR tolerance. Plasma jet ignition extended EGR limits for all three fuels. Fuel economy benefits were realized with naturalmore » gas and gasoline at low EGR rates and without EGR but plasma jet ignition provided no improvements with methanol until over 10% EGR was used. Plasma jet ignition made stable operation possible with methanol at 40% EGR, where fuel economy improvements were ultimately limited by the slow burning associated with the high EGR rate. Both slow burning and high cyclic variation affected gasoline at high EGR rates, while stability limits to spark advance with natural gas caused fuel economy to degrade at relatively low EGR rates.« less
Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L
2013-12-17
Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.
Multiple fuel supply system for an internal combustion engine
Crothers, William T.
1977-01-01
A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.
NASA Astrophysics Data System (ADS)
Gupta, Priyank; Protim Das, Partha; Mubarak, M.; Shaija, A.
2018-01-01
Rapid depletion of world’s crude oil reserve, rising global energy demand and concerns about greenhouse gases emission have led to the high-level interest in biofuels. The biofuel, bioethanol is found as an alternative fuel for SI engines as it has similar properties those of gasoline. Higher areal productivity with fast growth rate of microalgae and aquatic weeds makes them promising alternative feedstocks for bioethanol production. In this study, bioethanol produced from S.molesta (aquatic weed) using combined pre-treatment and hydrolysis followed by fermentation with yeast was used to make bioethanol-gasoline blend. The quantity of bioethanol produced from S.molesta was 99.12% pure. The physical properties such as density and heating value of bioethanol were 792.2 kg/m3 and 26.12 MJ/kg, respectively. In this work, the effects of bioethanol-gasoline (E5) fuel blends on the performance and combustion characteristics of a spark ignition (SI) engine were investigated. In the experiments, a single-cylinder, four-stroke SI engine was used. The tests were performed using electric dynamometer while running the engine at the speed (3200 rpm), and seven different load (0, 0.5, 1, 1.5, 2, 2.5 and 3 kW). The results obtained from the use of bioethanol-gasoline fuel blends were compared to those of gasoline fuel. The test results showed an increase of 0.3% in brake thermal efficiency for E5. From the emission analysis, reduced emissions of 39 ppm unburned hydrocarbon, 1.55% carbon monoxide and 2% smoke opacity, respectively was observed with E5 at full load. An increase in CO2 by 0.17% and NOx by 86.7 ppm was observed for E5 at full load.
Tessum, Christopher W; Hill, Jason D; Marshall, Julian D
2014-12-30
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration-response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or "grid average" electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.
NASA Technical Reports Server (NTRS)
Gardiner, Arthur W; Whedon, William E
1928-01-01
This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.
THE DEVELOPMENT OF A STANDARDIZED ACHIEVEMENT TEST FOR SMALL GASOLINE ENGINE INSTRUCTION.
ERIC Educational Resources Information Center
EBBERT, J. MARVIN
THE PURPOSE OF THE STUDY WAS TO DEVELOP A STANDARDIZED, MULTIPLE-CHOICE ACHIEVEMENT TEST ON THE OPERATION, CARE, AND MAINTENANCE OF SMALL GASOLINE ENGINES. OBJECTIVES AND A UNIT OUTLINE WERE DEVELOPED WITH THE COOPERATION OF 75 INDIANA VOCATIONAL AGRICULTURE TEACHERS. A PANEL SUGGESTED MODIFICATIONS, AND THE REFINED OBJECTIVES AND OUTLINE WERE…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written notifications...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written notifications...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II, (``HEDGE II'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is...--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... DEPARTMENT OF JUSTICE Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Cooperative Research Group on High-Efficiency Dilute Gasoline Engine II Notice is... Research Group on High-Efficiency Dilute Gasoline Engine II (``HEDGE II'') has filed written notifications...
Gasoline Engine Mechanics. Performance Objectives. Basic Course.
ERIC Educational Resources Information Center
Jones, Marion
Several intermediate performance objectives and corresponding criterion measures are listed for each of five terminal objectives presented in this curriculum guide for a basic gasoline engine mechanics course at the secondary level. (For the intermediate course guide see CE 010 946.) The materials were developed for a two semester (2 hours daily)…
40 CFR 86.345-79 - Emission calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...
40 CFR 86.345-79 - Emission calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...
40 CFR 86.345-79 - Emission calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...
40 CFR 86.345-79 - Emission calculations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gasoline-fueled engine test from the pre-test data. Apply the Y value to the K W equation for the entire test. (5) Calculate a separate Y value for each Diesel test segment from the pretest-segment data... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.345-79...
Chemical Pollution from Transportation Vehicles
Starkman, Ernest S.
1969-01-01
Recent publicity on electrically powered vehicles notwithstanding, the gasoline engine will probably be the principal power plant for passenger cars for at least the next decade. Chemical pollutants discharged by the gasoline engine are now under partial control. Motor cars of 1968 and 1969 model discharge only about 30 percent as much carbon monoxide and unburned hydrocarbons as do older models. In theory, carbon monoxide, unburned hydrocarbons and oxides of nitrogen ultimately can be completely removed from gasoline engine exhaust. In order to accomplish this it would be necessary to modify cars to operate satisfactorily on a lean mixture and perhaps to use a catalyst in the exhaust system. Present designs of gas turbines for aircraft and for future projected application to ground vehicles yield pollutants (except for smoke) at levels below those of gasoline engines for a decade to come. It has also been shown possible to eliminate smoke as well as odor from the gas turbine. Thus with proper effort it is feasible to reduce pollution of the atmosphere due to transportation to an acceptable level, even if electrically or alternatively powered vehicles cannot be developed for a decade. PMID:4183827
Engine performance with a hydrogenated safety fuel
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of an investigation to determine the engine performance obtained with a hydrogenated safety fuel developed to eliminate fire hazard. The tests were made on a single-cylinder universal test engine at compression ratios of 5.0, 5.5, and 6.0. Most of the tests were made with a fuel-injection system, although one set of runs was made with a carburetor when using gasoline to establish comparative performance. The tests show that the b.m.e.p. obtained with safety fuel when using a fuel-injection system is slightly higher than that obtained with gasoline when using a carburetor, although the fuel consumption with safety fuel is higher. When the fuel-injection system is used with each fuel and with normal engine temperatures the b.m.e.p. with safety fuel is from 2 to 4 percent lower than with gasoline and the fuel consumption about 25 to 30 percent higher. However, a few tests at an engine coolant temperature of 250 F have shown a specific fuel consumption approximating that obtained with gasoline with only a slight reduction in power. The idling of the test engine was satisfactory with the safety fuel. Starting was difficult with a cold engine but could be readily accomplished when the jacket water was hot. It is believed that the use of the safety fuel would practically eliminate crash fires.
Real-time black carbon emission factor measurements from light duty vehicles.
Forestieri, Sara D; Collier, Sonya; Kuwayama, Toshihiro; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D
2013-11-19
Eight light-duty gasoline low emission vehicles (LEV I) were tested on a Chassis dynamometer using the California Unified Cycle (UC) at the Haagen-Smit vehicle test facility at the California Air Resources Board in El Monte, CA during September 2011. The UC includes a cold start phase followed by a hot stabilized running phase. In addition, a light-duty gasoline LEV vehicle and ultralow emission vehicle (ULEV), and a light-duty diesel passenger vehicle and gasoline direct injection (GDI) vehicle were tested on a constant velocity driving cycle. A variety of instruments with response times ≥0.1 Hz were used to characterize how the emissions of the major particulate matter components varied for the LEVs during a typical driving cycle. This study focuses primarily on emissions of black carbon (BC). These measurements allowed for the determination of BC emission factors throughout the driving cycle, providing insights into the temporal variability of BC emission factors during different phases of a typical driving cycle.
2010-03-01
of gasoline. History of Diesel Diesel fuel received its name from the inventor Rudolph Diesel who invented the diesel engine in 1892 and was...additional emissions” (Searchinger, et al., 2008). The authors of this well-documented peer -reviewed paper go on to state that with land-use change the...ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 25-03-2010 2. REPORT TYPE Master’s Thesis 3. DATES COVERED (From – To) Jan 2009 – Mar 2010 4. TITLE
Design and analysis of aluminum/air battery system for electric vehicles
NASA Astrophysics Data System (ADS)
Yang, Shaohua; Knickle, Harold
Aluminum (Al)/air batteries have the potential to be used to produce power to operate cars and other vehicles. These batteries might be important on a long-term interim basis as the world passes through the transition from gasoline cars to hydrogen fuel cell cars. The Al/air battery system can generate enough energy and power for driving ranges and acceleration similar to gasoline powered cars. From our design analysis, it can be seen that the cost of aluminum as an anode can be as low as US 1.1/kg as long as the reaction product is recycled. The total fuel efficiency during the cycle process in Al/air electric vehicles (EVs) can be 15% (present stage) or 20% (projected) comparable to that of internal combustion engine vehicles (ICEs) (13%). The design battery energy density is 1300 Wh/kg (present) or 2000 Wh/kg (projected). The cost of battery system chosen to evaluate is US 30/kW (present) or US$ 29/kW (projected). Al/air EVs life-cycle analysis was conducted and compared to lead/acid and nickel metal hydride (NiMH) EVs. Only the Al/air EVs can be projected to have a travel range comparable to ICEs. From this analysis, Al/air EVs are the most promising candidates compared to ICEs in terms of travel range, purchase price, fuel cost, and life-cycle cost.
Zhai, Haibo; Frey, H Christopher; Rouphail, Nagui M; Gonçalves, Gonçalo A; Farias, Tiago L
2009-08-01
The objective of this research is to evaluate differences in fuel consumption and tailpipe emissions of flexible fuel vehicles (FFVs) operated on ethanol 85 (E85) versus gasoline. Theoretical ratios of fuel consumption and carbon dioxide (CO2) emissions for both fuels are estimated based on the same amount of energy released. Second-by-second fuel consumption and emissions from one FFV Ford Focus fueled with E85 and gasoline were measured under real-world traffic conditions in Lisbon, Portugal, using a portable emissions measurement system (PEMS). Cycle average dynamometer fuel consumption and emission test results for FFVs are available from the U.S. Department of Energy, and emissions certification test results for ethanol-fueled vehicles are available from the U.S. Environmental Protection Agency. On the basis of the PEMS data, vehicle-specific power (VSP)-based modal average fuel and emission rates for both fuels are estimated. For E85 versus gasoline, empirical ratios of fuel consumption and CO2 emissions agree within a margin of error to the theoretical expectations. Carbon monoxide (CO) emissions were found to be typically lower. From the PEMS data, nitric oxide (NO) emissions associated with some higher VSP modes are higher for E85. From the dynamometer and certification data, average hydrocarbon (HC) and nitrogen oxides (NOx) emission differences vary depending on the vehicle. The differences of average E85 versus gasoline emission rates for all vehicle models are -22% for CO, 12% for HC, and -8% for NOx emissions, which imply that replacing gasoline with E85 reduces CO emissions, may moderately decrease NOx tailpipe emissions, and may increase HC tailpipe emissions. On a fuel life cycle basis for corn-based ethanol versus gasoline, CO emissions are estimated to decrease by 18%. Life-cycle total and fossil CO2 emissions are estimated to decrease by 25 and 50%, respectively; however, life-cycle HC and NOx emissions are estimated to increase by 18 and 82%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Huifang; Lam, William; Remias, Joseph
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less
Induced cytotoxic damage by exposure to gasoline vapors: a study in Sinaloa, Mexico.
Martinez-Valenzuela, Carmen; Soto, Fernanda Balderrama; Waliszewski, Stefan M; Meza, Enrique; Arroyo, Sandra Gómez; Martínez, Luis Daniel Ortega; Meraz, Eliakym Arambula; Caba, Mario
2017-01-01
Gasoline is a blend of organic compounds used in internal combustion engines. Gasoline-station attendants are exposed to gasoline vapors, which pose a potentially mutagenic risk. According to the International Agency for Research on Cancer, exposure to gasoline and engine exhaust is possibly carcinogenic to humans. We determined the frequency of micronucleus and other nuclear abnormalities, such as pyknotic nuclei, chromatin condensation, cells with nuclear buds, karyolytic cells, karyorrhexis, and binucleated cells in buccal mucosal smears of 60 gasoline-station attendants and 60 unexposed controls. In addition, we explored if factors such as smoking habits, alcohol consumption, and worked years exert an additional synergistic cytotoxic effect. There were statistically significant higher frequencies (p < 0.05) of nuclear abnormalities among exposed attendants compared to the controls. No statistical significant (p > 0.05) additional effect of lifestyle habits such as smoking and alcohol consumption or worked years on the cytotoxicity was observed. The results showed that from the beginning exposure to gasoline vapors increased the frequency of nuclear abnormalities in buccal epithelial cells. Our results provide valuable information on cytotoxic damage for an early pre-symptomatic diagnosis.
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. Center for Vocational and Technical Education.
ONE OF A SERIES DESIGNED TO HELP TEACHERS PREPARE POSTSECONDARY STUDENTS FOR THE AGRICULTURAL MACHINERY SERVICE OCCUPATIONS AS PARTS MEN, MECHANICS, MECHANIC'S HELPERS, OR SERVICE SUPERVISORS, THIS GUIDE AIMS TO DEVELOP STUDENT COMPETENCY IN THE ADJUSTMENT, MAINTENANCE, AND REPAIR OF SMALL GASOLINE ENGINES. IT WAS DEVELOPED BY A NATIONAL TASK…
Code of Federal Regulations, 2010 CFR
2010-07-01
... I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or... NEW STATIONARY SOURCES Standards of Performance for Stationary Spark Ignition Internal Combustion... manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of...
35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM ...
35. MODEL T GASOLINE ENGINE. USED TO PUMP WATER FROM THE ARTISAN WELL (THROUGH THE DOORWAY) TO THE CISTERN ON THE ROOF. WATER WAS THEN FED BY GRAVITY TO THE REST OF THE FACTORY. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA
Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Instructor's Guide.
ERIC Educational Resources Information Center
Mishler, Glenn; Spignesi, Bill
This instructor's guide contains materials that are intended for use as part of the regular auto mechanics curriculum and that provide information necessary to convert a gasoline engine with a niminum of modifications to successfully be operated on ethanol alcohol. It accompanies a student guide that is available separately. Contents include a…
Conversion of Gasoline Engines to Use Ethanol as the Sole Fuel. Student Guide.
ERIC Educational Resources Information Center
Mishler, Glenn; Spignesi, Bill
This student guide is a learning packet that is intended for use as part of the regular auto mechanics curriculum and that provides the information necessary to convert a gasoline engine with a minimum of modifications to successfully be operated on ethanol alcohol. Contents include an introduction, objectives, procedures, list of tasks to be…
Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex
Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on amore » GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.« less
Chikhi, Saâdane; Boughedaoui, Ménouèr; Kerbachi, Rabah; Joumard, Robert
2014-08-01
On-board measurements of unit emissions of CO, HC, NOx and CO₂ were conducted on 17 private cars powered by different types of fuels including gasoline, dual gasoline-liquefied petroleum gas (LPG), gasoline, and diesel. The tests performed revealed the effect of LPG injection technology on unit emissions and made it possible to compare the measured emissions to the European Artemis emission model. A sequential multipoint injection LPG kit with no catalyst installed was found to be the most efficient pollutant reduction device for all of the pollutants, with the exception of the NOx. Specific test results for a sub-group of LPG vehicles revealed that LPG-fueled engines with no catalyst cannot compete with catalyzed gasoline and diesel engines. Vehicle age does not appear to be a determining parameter with regard to vehicle pollutant emissions. A fuel switch to LPG offers many advantages as far as pollutant emissions are concerned, due to LPG's intrinsic characteristics. However, these advantages are being rapidly offset by the strong development of both gasoline and diesel engine technologies and catalyst converters. The LPG's performance on a chassis dynamometer under real driving conditions was better than expected. The enforcement of pollutant emission standards in developing countries is an important step towards introducing clean technology and reducing vehicle emissions. Copyright © 2014. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
... Gasoline (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: In compliance...: Detergent Gasoline (Renewal). ICR numbers: EPA ICR No. 1655.07, OMB Control No. 2060-0275. ICR Status: This... regulations is consolidated in 40 CFR part 9. Abstract: Gasoline combustion results in the formation of engine...
NASA Technical Reports Server (NTRS)
Gerrish, Harold C; Tessmann, Arthur M
1935-01-01
The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP HP 25 HP Table 1 to Subpart JJJJ of...
Fresh gasoline emissions, not paved road dust, alter cardiac repolarization in ApoE-/- mice.
Campen, Matthew J; McDonald, Jacob D; Reed, Matthew D; Seagrave, Jeanclare
2006-01-01
Fresh vehicular emissions potentially represent a ubiquitous environmental concern for cardiovascular health. We compared electrocardiographic effects of fresh gasoline engine emissions with resuspended paved road dust in a mouse model of coronary insufficiency. Apolipoprotein E (ApoE)-/- mice on a high fat diet were exposed by whole-body inhalation to either gasoline emissions at 60 microg/m3 particulate matter (PM), an equivalent atmosphere with particles filtered out of the whole exhaust, or paved road dust at 0.5 and 3.5 mg /m3 for 6 h/d for 3 d. Radiotelemetry recordings of electrocardiogram (ECG) were analyzed for changes in T-wave morphology (QT interval, T-wave amplitude, and T-wave Area). Following exposures, lung lavage and blood samples were obtained to assay for markers of pulmonary and systemic inflammation. No exposure induced significant changes in heart rate and only the high concentration of road dust induced signs of pulmonary inflammation. T-wave area exhibited significant deviation from baseline values during exposure to gasoline exhaust particulates, but not to either concentration of road dust or gasoline emissions sans particulates. Gasoline-exposed mice demonstrated elevated plasma endothelin-1, but did not cause systemic inflammation. These data support the hypothesis that freshly-generated engine emissions, as opposed to resuspended paved road dust, may drive cardiac effects that have been observed at road-sides in the environment. The absence of ECG effects for both very high concentrations of road dust PM and equivalent concentrations of the vapor/gas phase of gasoline engine exhaust further indicate the specific risk conferred by fresh vehicular PM.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is under study in a new NASA program. The objective of the program is to determine the feasibility of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. A catalytic hydrogen generator will be incorporated as part of the air induction system of a Lycoming turbocharged engine and will generate hydrogen by breaking down small amounts of the aviation gasoline used in the normal propulsion system. This hydrogen will then be mixed with gasoline and compressed air from the turbocharger before entering the engine combustion chamber. The paper summarizes the results of a systems analysis study. Calculations assuming a Beech Duke aircraft indicate that fuel savings on the order of 20% are possible. An estimate of the potential for the utilization of hydrogen enrichment to control exhaust emissions indicates that it may be possible to meet the 1979 Federal emission standards.
Comparison of Performance of AN-F-58 Fuel and Gasoline in J34-WE-22 Turbojet Engine
NASA Technical Reports Server (NTRS)
Dowman, Harry W; Younger, George G
1949-01-01
As part of an investigation of the performance of AN-F-58 fuel in various types of turbojet engine, the performance of this fuel in a 3000-pound-thrust turbojet engine has been investigated in an altitude test chamber together with the comparative performance of 62-octane gasoline. The investigation of normal engine performance, which covered a range of engine speeds at altitudes from 5000 to 50,000 feet and flight Mach numbers up to 1.00, showed that both the net thrust and average turbine-outlet temperatures were approximately the same for both fuels. The specific fuel consumption and the combustion efficiency at the maximum engine speeds investigated were approximately the same for both fuels at altitudes up to 35,000 feet, but at an altitude of 50,000 feet the specific fuel consumption was about 9 percent higher and the combustion efficiency was correspondingly lower with the AN-F-58 fuel than with gasoline. The low-engine-speed blow-out limits were about the same for both fuels. Ignition of AN-F-58 fuel with the standard spark plug was possible only with the spark plug in a clean condition; ignition was impossible at all flight conditions investigated when the plug was fouled by an accumulation of liquid fuel from a preceding false start. Use of an extended-electrode spark plug provided satisfactory ignition over a slightly smaller range of altitudes and flight Mach numbers than for gasoline with the standard spark plug.
Libalova, Helena; Rossner, Pavel; Vrbova, Kristyna; Brzicova, Tana; Sikorova, Jitka; Vojtisek-Lom, Michal; Beranek, Vit; Klema, Jiri; Ciganek, Miroslav; Neca, Jiri; Machala, Miroslav; Topinka, Jan
2018-04-01
Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.
Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B
2010-04-01
Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.
Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.; Ratcliff, M. A.; Zigler, B. T.
2012-04-19
A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.
Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less
Prikhodko, Vitaly Y.; Parks, James E.; Pihl, Josh A.; ...
2016-02-18
Lean gasoline engines offer greater fuel economy than common stoichiometric gasoline engines. However, excess oxygen prevents the use of the current three-way catalyst (TWC) to control nitrogen oxide (NO X) emissions in lean exhaust. A passive SCR concept, introduced by General Motors Global R&D, makes use of a TWC that is already onboard to generate NH 3 under slightly rich conditions, which is stored on the downstream SCR. The stored NH 3 is then used to reduce NO X emissions when the engine switches to lean operation. In this work, the effect of engine parameters, such as air-fuel equivalence ratiomore » and spark timing, on NH 3 generation over a commercial Pd-only TWC with no dedicated oxygen storage component was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine. NO X reduction, NH 3 formation, and reductant utilization processes were evaluated, and fuel efficiency was assessed and compared to the stoichiometric engine operation case. We found air-fuel equivalence ratio to be one of the most important parameters in controlling the NH 3 production; however, the rich operation necessary for NH 3 production results in a fuel consumption penalty. The fuel penalty can be minimized by adjusting spark timing to increase rich-phase engine out NO X emissions and, thereby, NH 3 levels. Additionally, higher engine out NO X during engine load increase to simulate acceleration resulted in additional fuel savings. Ultimately, a 10% fuel consumption benefit was achieved with the passive SCR approach by optimizing rich air-fuel equivalence ratio and spark timing while also utilizing acceleration load conditions.« less
Enabling High Efficiency Ethanol Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, J.; Confer, K.
2011-03-01
Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy ismore » due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.« less
Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. The Maximum Contaminant Levels...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI...-Emergency SI Natural Gas b and Non-Emergency SI Lean Burn LPG b 100≤HP<500 7/1/2008 2.0 4.0 1.0 160 540 86 1...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Petitpas, Guillaume; McNenly, Matthew J.; Whitesides, Russell A.
2017-03-28
In this study, a framework for estimating experimental measurement uncertainties for a Homogenous Charge Compression Ignition (HCCI)/Low-Temperature Gasoline Combustion (LTGC) engine testing facility is presented. Detailed uncertainty quantification is first carried out for the measurement of the in-cylinder pressure, whose variations during the cycle provide most of the information for performance evaluation. Standard uncertainties of other measured quantities, such as the engine geometry and speed, the air and fuel flow rate and the intake/exhaust dry molar fractions are also estimated. Propagating those uncertainties using a Monte Carlo simulation and Bayesian inference methods then allows for estimation of uncertainties of themore » mass-average temperature and composition at IVC and throughout the cycle; and also of the engine performances such as gross Integrated Mean Effective Pressure, Heat Release and Ringing Intensity. Throughout the analysis, nominal values for uncertainty inputs were taken from a well-characterized engine test facility. However, the analysis did not take into account the calibration practice of experiments run in that facility and the resulting uncertainty values are therefore not indicative of the expected accuracy of those experimental results. A future study will employ the methodology developed here to explore the effects of different calibration methods on the different uncertainty values in order to evaluate best practices for accurate engine measurements.« less
Composition and Chemical Stability of Motor Fuels,
Fuels, *Hydrocarbons, Cycloalkanes, Chemical analysis, Gasoline, Diesel fuels, Fuel additives, Chemical reactions, Stability, Jet engine fuels...Aviation gasoline, Aviation fuels, Chemical composition, Aromatic hydrocarbons, Unsaturated hydrocarbons, Storage, USSR, Translations, Fuel systems, Alkanes
NASA Astrophysics Data System (ADS)
Fenkl, Michael; Pechout, Martin; Vojtisek, Michal
2016-03-01
The paper reports on an experimental investigation of the relationship between the pulse width of a gasoline engine port fuel injector and the quantity of the fuel injected when butanol is used as a fuel. Two isomers of butanol, n-butanol and isobutanol, are considered as potential candidates for renewable, locally produced fuels capable of serving as a drop-in replacement fuel for gasoline, as an alternative to ethanol which poses material compatibility and other drawbacks. While the injected quantity of fuel is typically a linear function of the time the injector coil is energized, the flow through the port fuel injector is complex, non ideal, and not necessarily laminar, and considering that butanol has much higher viscosity than gasoline, an experimental investigation was conducted. A production injector, coupled to a production fueling system, and driven by a pulse width generator was operated at various pulse lengths and frequencies, covering the range of engine rpm and loads on a car engine. The results suggest that at least at room temperature, the fueling rate remains to be a linear function of the pulse width for both n-butanol and isobutanol, and the volumes of fuel injected are comparable for gasoline and both butanol isomers.
Performance and emissions of an engine fuelled by biogas of palm oil mill effluent
NASA Astrophysics Data System (ADS)
Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.
2018-02-01
This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.
12. Detail of clutch and backup gasoline engine for powering ...
12. Detail of clutch and backup gasoline engine for powering Stoney gates. Clutch mechanism manufactured by Baldridge Machine Company, Detroit, Michigan, ca. 1910. Instrument to the left records volume of flow through headworks. View looking south towards Stoney gates. Photo by Jet Lowe, HAER, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
ERIC Educational Resources Information Center
Turner, Howard
Objectives of a 2-volume book developed as a comprehensive reference for teachers and a text for students on small gasoline engines were that it be: (1) organized for teaching, (2) complete in detail, (3) well illustrated, (4) authentic, (5) edited to high school reading level, (6) correlated with basic scientific principles, and (7) evaluated by…
Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.
2014-12-30
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozonemore » (O 3) and fine particulate matter (PM 2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles.« less
Hill, Jason D.; Marshall, Julian D.
2014-01-01
Commonly considered strategies for reducing the environmental impact of light-duty transportation include using alternative fuels and improving vehicle fuel economy. We evaluate the air quality-related human health impacts of 10 such options, including the use of liquid biofuels, diesel, and compressed natural gas (CNG) in internal combustion engines; the use of electricity from a range of conventional and renewable sources to power electric vehicles (EVs); and the use of hybrid EV technology. Our approach combines spatially, temporally, and chemically detailed life cycle emission inventories; comprehensive, fine-scale state-of-the-science chemical transport modeling; and exposure, concentration–response, and economic health impact modeling for ozone (O3) and fine particulate matter (PM2.5). We find that powering vehicles with corn ethanol or with coal-based or “grid average” electricity increases monetized environmental health impacts by 80% or more relative to using conventional gasoline. Conversely, EVs powered by low-emitting electricity from natural gas, wind, water, or solar power reduce environmental health impacts by 50% or more. Consideration of potential climate change impacts alongside the human health outcomes described here further reinforces the environmental preferability of EVs powered by low-emitting electricity relative to gasoline vehicles. PMID:25512510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, B.B.
The object of the study reported in this paper was to investigate the possibility of using the blend of kerosene with petrol in a gasoline engines, without much losses in performance. The authors carried out experiments on a four-stroke cycle Briggs and Stratton S. I. Engine using five blends of kerosene with petrol at a compression ratios 5.3 and 7.47 to 1 with and without surge chambers, at a constant engine speed of 1500 rev/min with the following conclusions: 1. At part-load and the lower compression ratio the brake thermal efficiency is improved with percentage increase of kerosene but atmore » the higher compression ratio it is improved only upto 50% kerosene blend with petrol. 2. The knock-free maximum bhp is reduced with (a) the percentage increase of kerosene, (b) the increase of compression ratio. 3. Use of a surge chamber increase the knock-free maximum bhp, and reduces the brake thermal efficiency.« less
The effect of changes in compression ratio upon engine performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)
Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. If leaded gasoline is spilled to...
Recent European Developments in Helicopters
NASA Technical Reports Server (NTRS)
1921-01-01
Descriptions are given of two captured helicopters, one driven by electric power, the other by a gasoline engine. An account is given of flight tests of the gasoline powered vehicle. After 15 successful flight tests, the gasoline powered vehicle crashed due to the insufficient thrust. Also discussed here are the applications of helicopters for military observations, for meteorological work, and for carrying radio antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; Burton, J.; Sindler, P.
2014-10-01
This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less
Measurements of ion concentration in gasoline and diesel engine exhaust
NASA Astrophysics Data System (ADS)
Yu, Fangqun; Lanni, Thomas; Frank, Brian P.
The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.
Lean NOx catalysis for gasoline fueled European cars
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
There is increasing interest in operating gasoline fueled passenger cars lean of the stoichiometric air/fuel (A/F) ratio to improve fuel economy. These types of engines will operate at lean A/F ratios while cruising at partial load, and return to stoichiometric or even rich conditions when more power is required. The challenge for the engine and catalyst manufacturer is to develop a system which will combine the high activity rates of a state-of-the-art three-way catalyst (TWC) with the ability to reduce nitrogen oxides (NOx) in the presence of excess oxygen. The objective is to achieve the future legislative limits (EURO III/IV)more » in the European Union. Recent developments in automotive pollution control catalysis show that the use of NOx adsorption materials is a suitable way to reduce NOx emissions of gasoline-fueled lean-burn engines. However, the primary task for the implementation of this technology in the European market will be to improve the catalyst`s high-temperature stability and to decrease its susceptibility to sulfur poisoning. Outlined here are results of a recent R and D program to achieve NOx reduction under lean-burn gasoline engine conditions. Model gas test results as well as engine bench data are used for discussion of the parameters which control NOx adsorption efficiency under various conditions.« less
Rhys-Tyler, Glyn A; Bell, Margaret C
2012-10-02
A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models.
NASA Astrophysics Data System (ADS)
Lee, Berto Paul; Kwok Keung Louie, Peter; Luk, Connie; Keung Chan, Chak
2017-12-01
Road traffic has significant impacts on air quality particularly in densely urbanized and populated areas where vehicle emissions are a major local source of ambient particulate matter. Engine type (i.e., fuel use) significantly impacts the chemical characteristics of tailpipe emission, and thus the distribution of engine types in traffic impacts measured ambient concentrations. This study provides an estimation of the contribution of vehicles powered by different fuels (gasoline, diesel, LPG) to carbonaceous submicron aerosol mass (PM1) based on ambient aerosol mass spectrometer (AMS) and elemental carbon (EC) measurements and vehicle count data in an urban inner city environment in Hong Kong with the aim to gauge the importance of different engine types to particulate matter burdens in a typical urban street canyon. On an average per-vehicle basis, gasoline vehicles emitted 75 and 93 % more organics than diesel and LPG vehicles, respectively, while EC emissions from diesel vehicles were 45 % higher than those from gasoline vehicles. LPG vehicles showed no appreciable contributions to EC and thus overall represented a small contributor to traffic-related primary ambient PM1 despite their high abundance (˜ 30 %) in the traffic mix. Total carbonaceous particle mass contributions to ambient PM1 from diesel engines were only marginally higher (˜ 4 %) than those from gasoline engines, which is likely an effect of recently introduced control strategies targeted at commercial vehicles and buses. Overall, gasoline vehicles contributed 1.2 µg m-3 of EC and 1.1 µ m-3 of organics, LPG vehicles 0.6 µg m-3 of organics and diesel vehicles 2.0 µg m-3 of EC and 0.7 µg m-3 of organics to ambient carbonaceous PM1.
NASA Astrophysics Data System (ADS)
Karjalainen, Panu; Timonen, Hilkka; Saukko, Erkka; Kuuluvainen, Heino; Saarikoski, Sanna; Aakko-Saksa, Päivi; Murtonen, Timo; Bloss, Matthew; Dal Maso, Miikka; Simonen, Pauli; Ahlberg, Erik; Svenningsson, Birgitta; Brune, William Henry; Hillamo, Risto; Keskinen, Jorma; Rönkkö, Topi
2016-07-01
Changes in vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic-related emissions, both primary (direct) particulate emission and secondary particle formation (from gaseous precursors in the exhaust emissions) need to be characterized. In this study, we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a Euro 5 level gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the tailpipe to the atmosphere, and also takes into account differences in driving patterns. We observed that, in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FINNEY, Charles E A; Edwards, Kevin Dean; Stoyanov, Miroslav K
2015-01-01
Combustion instabilities in dilute internal combustion engines are manifest in cyclic variability (CV) in engine performance measures such as integrated heat release or shaft work. Understanding the factors leading to CV is important in model-based control, especially with high dilution where experimental studies have demonstrated that deterministic effects can become more prominent. Observation of enough consecutive engine cycles for significant statistical analysis is standard in experimental studies but is largely wanting in numerical simulations because of the computational time required to compute hundreds or thousands of consecutive cycles. We have proposed and begun implementation of an alternative approach to allowmore » rapid simulation of long series of engine dynamics based on a low-dimensional mapping of ensembles of single-cycle simulations which map input parameters to output engine performance. This paper details the use Titan at the Oak Ridge Leadership Computing Facility to investigate CV in a gasoline direct-injected spark-ignited engine with a moderately high rate of dilution achieved through external exhaust gas recirculation. The CONVERGE CFD software was used to perform single-cycle simulations with imposed variations of operating parameters and boundary conditions selected according to a sparse grid sampling of the parameter space. Using an uncertainty quantification technique, the sampling scheme is chosen similar to a design of experiments grid but uses functions designed to minimize the number of samples required to achieve a desired degree of accuracy. The simulations map input parameters to output metrics of engine performance for a single cycle, and by mapping over a large parameter space, results can be interpolated from within that space. This interpolation scheme forms the basis for a low-dimensional metamodel which can be used to mimic the dynamical behavior of corresponding high-dimensional simulations. Simulations of high-EGR spark-ignition combustion cycles within a parametric sampling grid were performed and analyzed statistically, and sensitivities of the physical factors leading to high CV are presented. With these results, the prospect of producing low-dimensional metamodels to describe engine dynamics at any point in the parameter space will be discussed. Additionally, modifications to the methodology to account for nondeterministic effects in the numerical solution environment are proposed« less
Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L
2017-08-01
The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montalvo, D.A.; Hare, C.T.
1985-03-01
The report describes the laboratory testing of nine in-use light-duty gasoline passenger cars using up to four PCV disablement configurations. The nine vehicles included 1975 to 1983 model years, with odometer readings generally between 20,000 and 60,000 miles. No two vehicles were identical in make and engine type, and engine displacements ranged from 89 to 403 cu in. The vehicles were tested over the 1975 Federal Test Procedure, with sampling for crankcase HC conducted during each individual cycle of the 3-bag FTP and during the 10-minute hot soak. Emissions of crankcase HC are provided in g/mi for the 3-bag FTP,more » and in g/min for the 10-minute soak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dempsey, Adam B.; Curran, Scott; Wagner, Robert M.
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to createmore » a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from -91° to -324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection GTP-15-1067, Dempsey 2 pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L
2010-01-01
Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less
Yan, Xiaoyu; Inderwildi, Oliver R; King, David A; Boies, Adam M
2013-06-04
Bioethanol is the world's largest-produced alternative to petroleum-derived transportation fuels due to its compatibility within existing spark-ignition engines and its relatively mature production technology. Despite its success, questions remain over the greenhouse gas (GHG) implications of fuel ethanol use with many studies showing significant impacts of differences in land use, feedstock, and refinery operation. While most efforts to quantify life-cycle GHG impacts have focused on the production stage, a few recent studies have acknowledged the effect of ethanol on engine performance and incorporated these effects into the fuel life cycle. These studies have broadly asserted that vehicle efficiency increases with ethanol use to justify reducing the GHG impact of ethanol. These results seem to conflict with the general notion that ethanol decreases the fuel efficiency (or increases the fuel consumption) of vehicles due to the lower volumetric energy content of ethanol when compared to gasoline. Here we argue that due to the increased emphasis on alternative fuels with drastically differing energy densities, vehicle efficiency should be evaluated based on energy rather than volume. When done so, we show that efficiency of existing vehicles can be affected by ethanol content, but these impacts can serve to have both positive and negative effects and are highly uncertain (ranging from -15% to +24%). As a result, uncertainties in the net GHG effect of ethanol, particularly when used in a low-level blend with gasoline, are considerably larger than previously estimated (standard deviations increase by >10% and >200% when used in high and low blends, respectively). Technical options exist to improve vehicle efficiency through smarter use of ethanol though changes to the vehicle fleets and fuel infrastructure would be required. Future biofuel policies should promote synergies between the vehicle and fuel industries in order to maximize the society-wise benefits or minimize the risks of adverse impacts of ethanol.
Exposure to diesel and gasoline engine emissions and the risk of lung cancer.
Parent, Marie-Elise; Rousseau, Marie-Claude; Boffetta, Paolo; Cohen, Aaron; Siemiatycki, Jack
2007-01-01
Pollution from motor vehicles constitutes a major environmental health problem. The present paper describes associations between diesel and gasoline engine emissions and lung cancer, as evidenced in a 1979-1985 population-based case-control study in Montreal, Canada. Cases were 857 male lung cancer patients. Controls were 533 population controls and 1,349 patients with other cancer types. Subjects were interviewed to obtain a detailed lifetime job history and relevant data on potential confounders. Industrial hygienists translated each job description into indices of exposure to several agents, including engine emissions. There was no evidence of excess risks of lung cancer with exposure to gasoline exhaust. For diesel engine emissions, results differed by control group. When cancer controls were considered, there was no excess risk. When population controls were studied, the odds ratios, after adjustments for potential confounders, were 1.2 (95% confidence interval: 0.8, 1.8) for any exposure and 1.6 (95% confidence interval: 0.9, 2.8) for substantial exposure. Confidence intervals between risk estimates derived from the two control groups overlapped considerably. These results provide some limited support for the hypothesis of an excess lung cancer risk due to diesel exhaust but no support for an increase in risk due to gasoline exhaust.
NASA Astrophysics Data System (ADS)
Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Dal Maso, M.; Ahlberg, E.; Svenningsson, B.; Brune, W. H.; Hillamo, R.; Keskinen, J.; Rönkkö, T.
2015-11-01
Changes in traffic systems and vehicle emission reduction technologies significantly affect traffic-related emissions in urban areas. In many densely populated areas the amount of traffic is increasing, keeping the emission level high or even increasing. To understand the health effects of traffic related emissions, both primary and secondary particles that are formed in the atmosphere from gaseous exhaust emissions need to be characterized. In this study we used a comprehensive set of measurements to characterize both primary and secondary particulate emissions of a modern gasoline passenger car. Our aerosol particle study covers the whole process chain in emission formation, from the engine to the atmosphere, and takes into account also differences in driving patterns. We observed that in mass terms, the amount of secondary particles was 13 times higher than the amount of primary particles. The formation, composition, number, and mass of secondary particles was significantly affected by driving patterns and engine conditions. The highest gaseous and particulate emissions were observed at the beginning of the test cycle when the performance of the engine and the catalyst was below optimal. The key parameter for secondary particle formation was the amount of gaseous hydrocarbons in primary emissions; however, also the primary particle population had an influence. Thus, in order to enhance human health and wellbeing in urban areas, our study strongly indicates that in future legislation, special attention should be directed into the reduction of gaseous hydrocarbons.
Hatanaka, Rafael Rodrigues; Sequinel, Rodrigo; Gualtieri, Carlos Eduardo; Tercini, Antônio Carlos Bergamaschi; Flumignan, Danilo Luiz; de Oliveira, José Eduardo
2013-05-15
Lubricating oils are crucial in the operation of automotive engines because they both reduce friction between moving parts and protect against corrosion. However, the performance of lubricant oil may be affected by contaminants, such as gasoline, diesel, ethanol, water and ethylene glycol. Although there are many standard methods and studies related to the quantification of contaminants in lubricant oil, such as gasoline and diesel oil, to the best of our knowledge, no methods have been reported for the quantification of ethanol in used Otto cycle engine lubrication oils. Therefore, this work aimed at the development and validation of a routine method based on partial least-squares multivariate analysis combined with attenuated total reflectance in the mid-infrared region to quantify ethanol content in used lubrication oil. The method was validated based on its figures of merit (using the net analyte signal) as follows: limit of detection (0.049%), limit of quantification (0.16%), accuracy (root mean square error of prediction=0.089% w/w), repeatability (0.05% w/w), fit (R(2)=0.9997), mean selectivity (0.047), sensitivity (0.011), inverse analytical sensitivity (0.016% w/w(-1)) and signal-to-noise ratio (max: 812.4 and min: 200.9). The results show that the proposed method can be routinely implemented for the quality control of lubricant oils. Copyright © 2013 Elsevier B.V. All rights reserved.
Fuels Containing Methane of Natural Gas in Solution
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
2004-01-01
While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)
Carbon isotopic characterization of formaldehyde emitted by vehicles in Guangzhou, China
NASA Astrophysics Data System (ADS)
Hu, Ping; Wen, Sheng; Liu, Yonglin; Bi, Xinhui; Chan, Lo Yin; Feng, Jialiang; Wang, Xinming; Sheng, Guoying; Fu, Jiamo
2014-04-01
Formaldehyde (HCHO) is the most abundant carbonyl compound in the atmosphere, and vehicle exhaust emission is one of its important anthropogenic sources. However, there is still uncertainty regarding HCHO flux from vehicle emission as well as from other sources. Herein, automobile source was characterized using HCHO carbon isotopic ratio to assess its contributions to atmospheric flux and demonstrate the complex production/consumption processes during combustion in engine cylinder and subsequent catalytic treatment of exhaust. Vehicle exhausts were sampled under different idling states and HCHO carbon isotopic ratios were measured by gas chromatograph-combustion-isotopic ratio mass spectrometry (GC-C-IRMS). The HCHO directly emitted from stand-alone engines (gasoline and diesel) running at different load was also sampled and measured. The HCHO carbon isotopic ratios were from -30.8 to -25.7‰ for gasoline engine, and from -26.2 to -20.7‰ for diesel engine, respectively. For diesel vehicle without catalytic converter, the HCHO carbon isotopic ratios were -22.1 ± 2.1‰, and for gasoline vehicle with catalytic converter, the ratios were -21.4 ± 0.7‰. Most of the HCHO carbon isotopic ratios were heavier than the fuel isotopic ratios (from -29 to -27‰). For gasoline vehicle, the isotopic fractionation (Δ13C) between HCHO and fuel isotopic ratios was 7.4 ± 0.7‰, which was higher than that of HCHO from stand-alone gasoline engine (Δ13Cmax = 2.7‰), suggesting additional consumption by the catalytic converter. For diesel vehicle without catalytic converter, Δ13C was 5.7 ± 2.0‰, similar to that of stand-alone diesel engine. In general, the carbon isotopic signatures of HCHO emitted from automobiles were not sensitive to idling states or to other vehicle parameters in our study condition. On comparing these HCHO carbon isotopic data with those of past studies, the atmospheric HCHO in a bus station in Guangzhou might mainly come from vehicle emission for the accordance of carbon isotopic data.
The Impact of Low Octane Hydrocarbon Blending Streams on Ethanol Engine Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P; West, Brian H
2013-01-01
Ethanol is a very attractive fuel from an end-use perspective because it has a high chemical octane number and a high latent heat of vaporization. When an engine is optimized to take advantage of these fuel properties, both efficiency and power can be increased through higher compression ratio, direct fuel injection, higher levels of boost, and a reduced need for enrichment to mitigate knock or protect the engine and aftertreatment system from overheating. The ASTM D5798 specification for high level ethanol blends, commonly called E85, underwent a major revision in 2011. The minimum ethanol content was revised downward from 68more » vol% to 51 vol%, which combined with the use of low octane blending streams such as natural gasoline introduces the possibility of a lower octane E85 fuel. While this fuel is suitable for current ethanol tolerant flex fuel vehicles, this study experimentally examines whether engines can still be aggressively optimized for the resultant fuel from the revised ASTM D5798 specification. The performance of six ethanol fuel blends, ranging from 51-85% ethanol, is compared to a premium-grade certification gasoline (UTG-96) in a single-cylinder direct-injection (DI) engine with a compression ratio of 12.9:1 at knock-prone engine conditions. UTG-96 (RON = 96.1), light straight run gasoline (RON = 63.6), and n-heptane (RON = 0) are used as the hydrocarbon blending streams for the ethanol-containing fuels in an effort to establish a broad range of knock resistance for high ethanol fuels. Results show that nearly all ethanol-containing fuels are more resistant to engine knock than UTG-96 (the only exception being the ethanol blend with 49% n-heptane). This knock resistance allows ethanol blends made with 33 and 49% light straight run gasoline, and 33% n-heptane to be operated at significantly more advanced combustion phasing for higher efficiency, as well as at higher engine loads. While experimental results show that the octane number of the hydrocarbon blend stock does impact engine performance, there remains a significant opportunity for engine optimization when considering even the lowest octane fuels that are in compliance with the current revision of ASTM D5798 compared to premium-grade gasoline.« less
Potential of secondary aerosol formation from Chinese gasoline engine exhaust.
Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin
2018-04-01
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.
Decontamination of Water Containing Radiological Warfare Agents
1975-03-01
debris was cond~ucted undcr Project Snowball. Open tanks of water were exposed to a 500- toxi TNT explosion 2 at varying distances from grouind zero...trailhr; 4-cylinder, 4-stroke, liquid- cooled gasoline engine: aluminum evaporator-conden ser; vapor complressor; watcr pumps; heat exchanger; cngine...field consists of a 10-kw gasoline -engine-driven generator and three electric-motor-driven pumps. See Figure 21 for a photograph of the cation and anion
Claxton, Larry D
2015-01-01
Within this review the genotoxicity of diesel and gasoline fuels and emissions is placed in an historical context. New technologies have changed the composition of transportation methods considerably, reducing emissions of many of the components of health concern. The similarity of modern diesel and gasoline fuels and emissions to other carbonaceous fuels and emissions is striking. Recently an International Agency for Research on Cancer (IARC) Working Group concluded that there was sufficient evidence in humans for the carcinogenicity of diesel exhaust (Group 1). In addition, the Working Group found that diesel exhaust has "a positive association (limited evidence) with an increased risk of bladder cancer." Like most other carbonaceous fuel emissions, diesel and gasoline exhausts contain toxic levels of respirable particles (PM <2.5μm) and polycyclic aromatic hydrocarbons. However, the level of toxic components in exhausts from diesel and gasoline emissions has declined in certain regions over time because of changes in engine design, the development of better aftertreatment devices (e.g., catalysts), increased fuel economy, changes in the fuels and additives used, and greater regulation. Additional research and better exposure assessments are needed so that decision makers and the public can decide to what extent diesel and gasoline engines should be replaced. Copyright © 2014 Elsevier B.V. All rights reserved.
Yao, Yung-Chen; Tsai, Jiun-Horng
2013-01-01
A new four-stroke carburettor motorcycle engine without any engine adjustments was used to study the impact of fuel aromatic content on the exhaust emissions of organic air pollutants (volatile organic compounds and carbonyls). Three levels of aromatic content, i.e. 15, 25, and 50% (vol.) aromatics mixed with gasoline were tested. The emissions of aromatic fuel were compared with those of commercial unleaded gasoline. The results indicated that the A 15 (15 vol% aromatics in gasoline) fuel exhibited the greatest total organic emission improvement among these three aromatic fuels as compared with commercial gasoline, reaching 59%. The highest emission factors of alkanes, alkenes, and carbonyl groups appeared in the reference fuel (RF) among all of the test fuels. A 15 showed the highest emission reduction in alkanes (73%), aromatics (36%), and carbonyls (28%), as compared to those of the RF. The highest emission reduction ofalkenes was observed when using A25 as fuel. A reduction in fuel aromatic content from 50 to 25 and 15 vol% in gasoline decreased benzene and toluene emissions, but increased the aldehyde emissions. In general, the results showed that the highest emission reductions for the most of measured organic pollutants appeared when using A 15 as the fuel.
Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.
Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver
2013-08-01
A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current-generation gasoline engines. Most comparison studies of black carbon (BC) measurement methods were carried out in the ambient air. This study assesses the agreement among various BC measurement instrument in emissions from light-duty gasoline vehicles (LDGVs) on standard test cycles, and evaluates applicability of these methods under various fuel types, driving cycles, and engine combustion technologies. This research helps to fill in the knowledge gap of BC method standardization as stated in the U.S. Environmental Protection Agency (EPA) 2011 Report to Congress on Black Carbon, and these results demonstrate the feasibility of quantification of BC at the 1 mg/mi PM standard in California Low Emission Vehicle III regulations.
NASA Astrophysics Data System (ADS)
Thanikasalam, K.; Rahmat, M.; Fahmi, A. G. Mohammad; Zulkifli, A. M.; Shawal, N. Noor; Ilanchelvi, K.; Ananth, M.; Elayarasan, R.
2018-05-01
Since there is a developing practice of utilizing automotive fuels as flight fuel, there are higher chances of dangerous scenarios, particularly in the operation of piston aircraft engines. The use of motor vehicle gas (MOGAS) or aviation gas (AVGAS) in the operation of aviation piston engine increases the risk of vapour locking. A statistical examination of European aviation industry indicates that around 20,000 aircraft are affected either specifically or conceivably by the different negative impacts of gasoline blended with ethanol. Particularly, for most contemporary carburettor engines, there are risks associated with ethanol-admixed fuels that have potential to upset engine operation. The danger of vapour locking, which is the generation of gas bubbles inside the fuel system causing an impairment of fuel movement in the engine, is well documented particularly by studies on aircraft using MOGAS. Contrasted with AVGAS, MOGAS is inclined to demonstrate this phenomenon. Vapour lock is perhaps the leading serious problem that ought to be addressed if MOGAS is to be used as a substitute for AVGAS. Vapour lock problem is critical because it causes malfunctions to aircraft engines. Thus, an understanding of vapour handling ability of small aircraft is essential to establish safe operating confines at existing fuel temperature and pressures.
Comparative effects of MTBE and ethanol additions into gasoline on exhaust emissions
NASA Astrophysics Data System (ADS)
Song, Chong-Lin; Zhang, Wen-Mei; Pei, Yi-Qiang; Fan, Guo-Liang; Xu, Guan-Peng
The effects of the additives of ethanol (EA) and methyl tert-butyl ether (MTBE) in various blend ratios into the gasoline fuel on the exhaust emissions and the catalytic conversion efficiencies were investigated in an EFI gasoline engine. The regulated exhaust emissions (CO, THC and NO X) and the unregulated exhaust emissions (benzene, formaldehyde, acetaldehyde, unburned EA and MTBE) before and after the three-way catalytic converter were measured. The experimental results showed that EA brought about generally lower regulated engine-out emissions than MTBE did. But, the comparison of the unregulated engine-out emissions between both additives was different. Concretely, the effect of EA on benzene emission was worse than that of MTBE on the whole, which was a contrast with formaldehyde emission. The difference in the acetaldehyde comparison depended much on the engine operating conditions, especially the engine speed. Both EA and MTBE were identified in the engine exhaust gases only when they were added to the fuel, and their volume fraction increased with blend ratios. The catalytic conversion efficiencies of the regulated emissions for the EA blends were in general lower than those for MTBE blends, especially at the low and high engine speeds. There was little difference in the catalytic conversion efficiencies for both benzene and formaldehyde, while distinct difference for acetaldehyde.
77 FR 72653 - Designation of Product Categories for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... cleaners; automotive care products; engine crankcase oil; gasoline fuel additives; metal cleaners and... crankcase oil; gasoline fuel additives; metal cleaners and corrosion removers; microbial cleaning products... for biobased feed stock? Does manufacturing of products within this product category increase...
Magaril, Elena; Magaril, Romen
2016-09-01
The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.
Aithal, S. M.
2018-01-01
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less
Evaluation of the flame propagation within an SI engine using flame imaging and LES
NASA Astrophysics Data System (ADS)
He, Chao; Kuenne, Guido; Yildar, Esra; van Oijen, Jeroen; di Mare, Francesca; Sadiki, Amsini; Ding, Carl-Philipp; Baum, Elias; Peterson, Brian; Böhm, Benjamin; Janicka, Johannes
2017-11-01
This work shows experiments and simulations of the fired operation of a spark ignition engine with port-fuelled injection. The test rig considered is an optically accessible single cylinder engine specifically designed at TU Darmstadt for the detailed investigation of in-cylinder processes and model validation. The engine was operated under lean conditions using iso-octane as a substitute for gasoline. Experiments have been conducted to provide a sound database of the combustion process. A planar flame imaging technique has been applied within the swirl- and tumble-planes to provide statistical information on the combustion process to complement a pressure-based comparison between simulation and experiments. This data is then analysed and used to assess the large eddy simulation performed within this work. For the simulation, the engine code KIVA has been extended by the dynamically thickened flame model combined with chemistry reduction by means of pressure dependent tabulation. Sixty cycles have been simulated to perform a statistical evaluation. Based on a detailed comparison with the experimental data, a systematic study has been conducted to obtain insight into the most crucial modelling uncertainties.
Shi, Xiao-Qing; Sun, Zhao-Xin; Li, Xiao-Nuo; Li, Jin-Xiang; Yang, Jian-Xin
2015-03-01
Tailpipe emission of internal combustion engine vehicle (ICEV) is one of the main sources leading to atmospheric environmental problems such as haze. Substituting electric vehicles for conventional gasoline vehicles is an important solution for reducing urban air pollution. In 2011, as a pilot city of electric vehicle, Beijing launched a promotion plan of electric vehicle. In order to compare the environmental impacts between Midi electric vehicle (Midi EV) and Hyundai gasoline taxi (ICEV), this study created an inventory with local data and well-reasoned assumptions, and contributed a life cycle assessment (LCA) model with GaBi4.4 software and comparative life cycle environmental assessment by Life cycle impact analysis models of CML2001(Problem oriented) and EI99 (Damage oriented), which included the environmental impacts of full life cycle, manufacture phase, use phase and end of life. The sensitivity analysis of lifetime mileage and power structure was also provided. The results indicated that the full life cycle environmental impact of Midi EV was smaller than Hyundai ICEV, which was mainly due to the lower fossil fuel consumption. On the contrary, Midi EV exhibited the potential of increasing the environmental impacts of ecosystem quality influence and Human health influence. By CML2001 model, the results indicated that Midi EV might decrease the impact of Abiotic Depletion Potential, Global Warming Potential, Ozone Layer Depletion Potential and so on. However, in the production phase, the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Ozone Layer Depletion Potential, Marine Aquatic Ecotoxicity Potential, Terrestric Ecotoxicity Potential, Human Toxicity Potential of Midi EV were increased relative to Hyundai ICEV because of emissions impacts from its power system especially the battery production. Besides, in the use phase, electricity production was the main process leading to the impact of Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Photochemical Ozone Creation Potential, Marine Aquatic Ecotoxicity Potential, Freshwater Aquatic Ecotoxicity Potential, Human Toxicity Potential. While for Hyundai ICEV, gasoline production and tailpipe emission were the primary sources of environmental impact in the use phase. Tailpipe emission was a significant cause for increase in Eutrophication Potential and Global Warming Potential, and so forth. On the basis of inventory data analysis and 2010 Beijing electricity mix, the comparative results of haze-induced pollutants emissions showed that the full life cycle emissions of PM2.5, NO(x), SO(x), VOCs of Midi EV were higher than those of Hyundai ICEV, but the emission of NH3 was lower than that of Hyundai ICEV. Different emissions in use phase were the chief reason leading to this trend. In addition, by sensitivity analysis the results indicated that with the increase of lifetime mileage and proportion of cleaning energy, the rate of GHG( Green House Gas) emission reduction per kilometer of Midi EV became higher with respect to Hyundai ICEV. Haze-induced pollutants emission from EV could be significantly reduced using cleaner power energy. According to the assessment results, some management strategies aiming at electric car promotion were proposed.
1983-02-01
Force 76-84 @ 1.82 (338)-(374)@(46.23) Intake 174.0 71 220.3 215-237 @ 1.39 88 85 81 95-105 @ I 13/16" (774) (316) (980) (956)-(1054)@ (391) (378) (360...Mfg. Specs per Veh. Gasohol Gasoline Station Chrysler V-8, 318 CID 07121303 5 16 31 -- Ft. Belvoir 07090311 6 16 38 -- Ft. Belvoir 03223146 5 16...TABLE 6. CRC RATINGS FOR TEST ENGINES FROM FT. BELVOIR, VA Type Engine Chrysler V-8, 318 CID Jeep, 4 Cylinder, 140 CID Serial Number 07121303 07090311
Co-Optimization of Fuels & Engines: Misfueling Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sluder, C. Scott; Moriarty, Kristi; Jehlik, Forrest
This report examines diesel/gasoline misfueling, leaded/unleaded gasoline misfueling, E85/E15/E10 misfueling, and consumer selection of regular grade fuel over premium grade fuel in an effort to evaluate misfueling technologies that may be needed to support the introduction of vehicles optimized for a new fuel in the marketplace. This is one of a series of reports produced as a result of the Co-Optimization of Fuels & Engines (Co-Optima) project, a Department of Energy-sponsored multi-agency project to accelerate the introduction of affordable, scalable, and sustainable biofuels and high-efficiency, low-emission vehicle engines.
NASA Astrophysics Data System (ADS)
Mathis, Urs; Mohr, Martin; Forss, Anna-Maria
Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dp<0.5μm) more efficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.
Advanced Gasoline Turbocharged Direction Injection (GTDI) Engine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Terrance
This program was undertaken in response to US Department of Energy Solicitation DE-FOA-0000079, resulting in a cooperative agreement with Ford and MTU to demonstrate improvement of fuel efficiency in a vehicle equipped with an advanced GTDI engine. Ford Motor Company has invested significantly in GTDI engine technology as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost technology. Ford envisions additional fuel economy improvement in the medium and long term by further advancing EcoBoost technology. The approach for the project was to engineer a comprehensive suite of gasoline engine systems technologies to achieve the project objectives, andmore » to progressively demonstrate the objectives via concept analysis / computer modeling, single-cylinder and multi-cylinder engine testing on engine dynamometer, and vehicle level testing on chassis rolls.« less
2012-03-01
Differences between gasoline fuel and biobutanol fuel including the effects of temperature Safety-related and health issues including safety...where engine-operating parameters such as fuel consumption , performance, and emissions are monitored under controlled conditions, with the addition...7 3.3 Power and Fuel Consumption
Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine
Choi, Seungmok; Seong, Heeje
2016-09-30
Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less
Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Seungmok; Seong, Heeje
Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...
2016-05-08
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
The Effects of Low-Level Ethanol Blends in 4-Stroke Small Non-Road Engines
NASA Astrophysics Data System (ADS)
Reek, Chris
Small Non-Road Engines (SNRE's) abound in numbers and are used daily by consumers and businesses alike. Considering the atmosphere of change looming in the air regarding alternative fuels, this particular engine classification will also be affected by any change in standardization of fuels. This body of research attempts to address possible ways SNRE's can change their operational characteristics after being fueled by specific yet differing fuels. These characteristics will be contrasted against blends of ethanol with gasoline, from 0% ethanol to 20% ethanol, run on test engines to determine patterns, if any, of these characteristics. Topics include: materials compatibility, engine longevity/durability, engine performance, emissions characteristics, operational temperatures, engine oil characteristics, and inspection of engines. These parameters will be used to compare the effects of low-level blends of ethanol with gasoline has on these particular SNRE's.
Industrial Education. "Small Engines".
ERIC Educational Resources Information Center
Parma City School District, OH.
Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides the student with information and manipulative experiences on small gasoline engines. Included are sections on shop adjustment, safety, small engines, internal combustion, engine construction, four stroke engines, two stroke engines,…
Emissions of speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs), were measured in vehicle exhaust from three light-duty gasoline vehicles. Vehicle testing was conducted using a three phase LA92 driving cycle on a temperature controlled chassis...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sileghem, L.; Wallner, T.; Verhelst, S.
As knock is one of the main factors limiting the efficiency of spark-ignition engines, the introduction of alcohol blends could help to mitigate knock concerns due to the elevated knock resistance of these blends. A model that can accurately predict their autoignition behavior would be of great value to engine designers. The current work aims to develop such a model for alcohol–gasoline blends. First, a mixing rule for the autoignition delay time of alcohol–gasoline blends is proposed. Subsequently, this mixing rule is used together with an autoignition delay time correlation of gasoline and an autoignition delay time cor-relation of methanolmore » in a knock integral model that is implemented in a two-zone engine code. The pre-dictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of gasoline–methanol blends. The knock limited spark advance, the knock intensity, the knock onset crank angle and the value of the knock integral at the experimental knock onset have been simulated and compared to the experimental values derived from in-cylinder pressure measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MaClean, H.L.; Lave, L.B.
The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases couldmore » be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.« less
Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish
2018-05-01
Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.
Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook
2017-10-01
The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of mobile source emission trends in the United States
NASA Astrophysics Data System (ADS)
Dallmann, Timothy R.; Harley, Robert A.
2010-07-01
A fuel-based approach is used to estimate exhaust emissions of nitrogen oxides (NOx) and fine particulate matter (PM2.5) from mobile sources in the United States for the years 1996-2006. Source categories considered include on-road and off-road gasoline and diesel engines. Pollutant emissions for each mobile source category were estimated by combining fuel consumption with emission factors expressed per unit of fuel burned. Over the 10-year time period that is the focus of this study, sales of gasoline and diesel fuel intended for on-road use increased by 15 and 43%, respectively. Diesel fuel use by off-road equipment increased by ˜20% over the same time period. Growth in fuel consumption offset some of the reductions in pollutant emission factors that occurred during this period. For NOx, there have been dramatic (factor of 2) decreases in emission factors for on-road gasoline engines between 1996 and 2006. In contrast, diesel NOx emission factors decreased more gradually. Exhaust PM2.5 emission factors appear to have decreased for most engine categories, but emission uncertainties are large for this pollutant. Diesel engines appear to be the dominant mobile source of both NOx and PM2.5; the diesel share of total NOx has increased over time as gasoline engine emissions have declined. Comparing fuel-based emission estimates with U.S. Environmental Protection Agency's national emission inventory led to the following conclusions: (1) total emissions of NOx and PM2.5 estimated by two different methods were similar, (2) source contributions to these totals differ significantly, with higher relative contributions coming from on-road diesel engines in this study.
Assessing the Climate Trade-Offs of Gasoline Direct Injection Engines.
Zimmerman, Naomi; Wang, Jonathan M; Jeong, Cheol-Heon; Wallace, James S; Evans, Greg J
2016-08-02
Compared to port fuel injection (PFI) engine exhaust, gasoline direct injection (GDI) engine exhaust has higher emissions of black carbon (BC), a climate-warming pollutant. However, the relative increase in BC emissions and climate trade-offs of replacing PFI vehicles with more fuel efficient GDI vehicles remain uncertain. In this study, BC emissions from GDI and PFI vehicles were compiled and BC emissions scenarios were developed to evaluate the climate impact of GDI vehicles using global warming potential (GWP) and global temperature potential (GTP) metrics. From a 20 year time horizon GWP analysis, average fuel economy improvements ranging from 0.14 to 14% with GDI vehicles are required to offset BC-induced warming. For all but the lowest BC scenario, installing a gasoline particulate filter with an 80% BC removal efficiency and <1% fuel penalty is climate beneficial. From the GTP-based analysis, it was also determined that GDI vehicles are climate beneficial within <1-20 years; longer time horizons were associated with higher BC scenarios. The GDI BC emissions spanned 2 orders of magnitude and varied by ambient temperature, engine operation, and fuel composition. More work is needed to understand BC formation mechanisms in GDI engines to ensure that the climate impacts of this engine technology are minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Eric C; Zhang, Yi Min; Schuetzle, Dennis
This study describes the results of a 'well-to-wheel' life cycle assessment (LCA) carried out to determine the potential greenhouse gas and criteria pollutant emission reductions that could be achieved by converting associated flare gas directly to synthetic fuels at oil wellheads in the US and globally. A Greyrock Flare Gas-to-Fuels(TM) conversion process at an Ohio oil well was used as the base case for this LCA. The liquid fuel produced directly from associated gas is comprised primarily of premium synthetic diesel with a small amount of synthetic gasoline. In this LCA scenario, the synthetic diesel and synthetic gasoline are blendedmore » at 20 and 10 vol% with petroleum diesel and gasoline, respectively. While the synthetic diesel fuel can be used as is (100%), the 20 vol% synthetic diesel blend (with petroleum diesel) was found to significantly improve engine performance, increase fuel economy, and reduce emissions. The direct conversion of associated gas to synthetic diesel fuels globally could reduce emissions of CO2 and CH4 by up to 356 and 5.96 million metric tons/year, respectively, resulting in the reduction of greenhouse gases (GHGs) by about 113.3 and 92.2% (20 year global warming potential) and 73.8 and 50.7% (100 year global warming potential) for synthetic diesel and gasoline fuels when compared to petroleum-derived gasoline fuels, respectively. Likewise, diesel criteria emissions could be reduced globally by up to 23.3, 0.374, 42.4, and 61.3 million metric tons/year globally for CO, particulates, NOx, and hydrocarbons, respectively. The potential economic benefit of this approach is that up to 5.30 and 71.1 billion liters of synthetic fuels could be produced each year in the US and globally from associated gas, respectively.« less
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Health effects of subchronic inhalation exposure to gasoline engine exhaust.
Reed, M D; Barrett, E G; Campen, M J; Divine, K K; Gigliotti, A P; McDonald, J D; Seagrave, J C; Mauderly, J L; Seilkop, S K; Swenberg, J A
2008-10-01
Gasoline engine emissions are a ubiquitous source of exposure to complex mixtures of particulate matter (PM) and non-PM pollutants; yet their health hazards have received little study in comparison with those of diesel emissions. As a component of the National Environmental Respiratory Center (NERC) multipollutant research program, F344 and SHR rats and A/J, C57BL/6, and BALBc mice were exposed 6 h/day, 7 days/week for 1 week to 6 months to exhaust from 1996 General Motors 4.3-L engines burning national average fuel on a simulated urban operating cycle. Exposure groups included whole exhaust diluted 1:10, 1:15, or 1:90, filtered exhaust at the 1:10 dilution, or clean air controls. Evaluations included organ weight, histopathology, hematology, serum chemistry, bronchoalveolar lavage, cardiac electrophysiology, micronuclei in circulating cells, DNA methylation and oxidative injury, clearance of Pseudomonas aeruginosa from the lung, and development of respiratory allergic responses to ovalbumin. Among the 120 outcome variables, only 20 demonstrated significant exposure effects. Several statistically significant effects appeared isolated and were not supported by related variables. The most coherent and consistent effects were those related to increased red blood cells, interpreted as likely to have resulted from exposure to 13-107 ppm carbon monoxide. Other effects supported by multiple variables included mild lung irritation and depression of oxidant production by alveolar macrophages. The lowest exposure level caused no significant effects. Because only 6 of the 20 significant effects appeared to be substantially reversed by PM filtration, the majority of effects were apparently caused by non-PM components of exhaust.
Some Notes on Gasoline-Engine Development
NASA Technical Reports Server (NTRS)
Ricardo, H R
1927-01-01
Experiments were carried out using a special engine with small glass windows and a stroboscope to record various aspects of engine performance. Valve position, supercharging, and torque recoil were all investigated with this experimental apparatus.
40 CFR 86.000-24 - Test vehicles and engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... family, the Administrator will limit selections to engine codes which have air conditioning available and...
Impact of methanol-gasoline fuel blend on the fuel consumption and exhaust emission of a SI engine
NASA Astrophysics Data System (ADS)
Rifal, Mohamad; Sinaga, Nazaruddin
2016-04-01
In this study, the effect of methanol-gasoline fuel blend (M15, M30 and M50) on the fuel consumption and exhaust emission of a spark ignition engine (SI) were investigated. In the experiment, an engine four-cylinder, four stroke injection system (engine of Toyota Kijang Innova 1TR-FE) was used. Test were did to know the relation of fuel consumption and exhaust emission (CO, CO2, HC) were analyzed under the idle throttle operating condition and variable engine speed ranging from 1000 to 4000 rpm. The experimental result showed that the fuel consumption decrease with the use of methanol. It was also shown that the CO and HC emission were reduced with the increase methanol content while CO2 were increased.
40 CFR 86.213-04 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-04 Fuel specifications. Gasoline...
40 CFR 86.213-94 - Fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.213-94 Fuel specifications. Gasoline...
Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M
2015-09-15
Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.
Hays, Michael D; Preston, William; George, Barbara J; Schmid, Judy; Baldauf, Richard; Snow, Richard; Robinson, James R; Long, Thomas; Faircloth, James
2013-12-17
This study examines the chemical properties of carbonaceous aerosols emitted from three light-duty gasoline vehicles (LDVs) operating on gasoline (e0) and ethanol-gasoline fuel blends (e10 and e85). Vehicle road load simulations were performed on a chassis dynamometer using the three-phase LA-92 unified driving cycle (UDC). Effects of LDV operating conditions and ambient temperature (-7 and 24 °C) on particle-phase semivolatile organic compounds (SVOCs) and organic and elemental carbon (OC and EC) emissions were investigated. SVOC concentrations and OC and EC fractions were determined with thermal extraction-gas chromatography-mass spectrometry (TE-GC-MS) and thermal-optical analysis (TOA), respectively. LDV aerosol emissions were predominantly carbonaceous, and EC/PM (w/w) decreased linearly with increasing fuel ethanol content. TE-GC-MS analysis accounted for up to 4% of the fine particle (PM2.5) mass, showing the UDC phase-integrated sum of identified SVOC emissions ranging from 0.703 μg km(-1) to 18.8 μg km(-1). Generally, higher SVOC emissions were associated with low temperature (-7 °C) and engine ignition; mixed regression models suggest these emissions rate differences are significant. Use of e85 significantly reduced the emissions of lower molecular weight PAH. However, a reduction in higher molecular weight PAH entities in PM was not observed. Individual SVOC emissions from the Tier 2 LDVs and fuel technologies tested are substantially lower and distributed differently than those values populating the United States emissions inventories currently. Hence, this study is likely to influence future apportionment, climate, and air quality model predictions that rely on source combustion measurements of SVOCs in PM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Lee, K.H.
2007-08-15
Emissions remain a critical issue affecting engine design and operation, while energy conservation is becoming increasingly important. One approach to favorably address these issues is to achieve homogeneous charge combustion and stratified charge combustion at lower peak temperatures with a variable compression ratio, a variable intake temperature and a trapped rate of the EGR using NVO (negative valve overlap). This experiment was attempted to investigate the origins of these lower temperature auto-ignition phenomena with SCCI and CAI using gasoline fuel. In case of SCCI, the combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition (SCCI) engine according to intake temperaturemore » and compression ratio was examined. We investigated the effects of air-fuel ratio, residual EGR rate and injection timing on the CAI combustion area. In addition, the effect of injection timing on combustion factors such as the start of combustion, its duration and its heat release rate was also investigated. (author)« less
SOA formation from gasoline vehicles: from the tailpipe to the atmosphere
NASA Astrophysics Data System (ADS)
Robinson, A. L.; Zhao, Y.; Lambe, A. T.; Saleh, R.; Saliba, G.; Tkacik, D. S.
2017-12-01
Secondary organic aerosol (SOA) formation from gasoline vehicles has been indicated as an important source of atmospheric SOA, but its contribution to atmospheric SOA is loosely constrained due to the lack of measurements to link SOA formation from the tailpipe to atmospheric SOA. In this study, we determine the contribution of SOA formation based on measurements made with a Potential Aerosol Mass (PAM) oxidation flow reactor by oxidizing vehicular exhaust and ambient air. We first investigate SOA formation from dilute gasoline-vehicle exhaust during chassis dynamometer testing. The test fleet consists of both vehicles equipped with gasoline direct injection engines (GDI vehicles) and those equipped with port fuel injection engines (PFI vehicles). These vehicles span a wide range of emissions standards from Tier0 to Super Ultra-Low Emission Vehicles (SULEV). Then, we combine our measurements of SOA formation from gasoline vehicles during dynamometer testing with measurements of SOA formation using a PAM reactor conducted in a highway tunnel and in the unban atmosphere. Comparisons of SOA formation between these datasets enable us to quantitatively connect SOA formation from individual vehicles, to a large on-road fleet, and to the atmosphere. To facilitate the comparisons, we account for the effects of both the photochemical age and dilution on SOA formation. Our results show that SOA formation from gasoline vehicles can contribute over 50% of fossil fuel-related atmospheric SOA in the Los Angeles area. Furthermore, our results demonstrate that the tightening of emissions standards effectively reduces SOA formation from gasoline vehicles, including both PFI and GDI vehicles, if the atmospheric chemistry regime remains the same.
Xie, Hui; Song, Kang; He, Yu
2014-07-01
A novel solution for electro-hydraulic variable valve timing (VVT) system of gasoline engines is proposed, based on the concept of active disturbance rejection control (ADRC). Disturbances, such as oil pressure and engine speed variations, are all estimated and mitigated in real-time. A feed-forward controller was added to enhance the performance of the system based on a simple and static first principle model, forming a hybrid disturbance rejection control (HDRC) strategy. HDRC was validated by experimentation and compared with an existing manually tuned proportional-integral (PI) controller. The results show that HDRC provided a faster response and better tolerance of engine speed and oil pressure variations. © 2013 ISA Published by ISA All rights reserved.
40 CFR 86.308-79 - Gas specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...
40 CFR 86.308-79 - Gas specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... blending. Nitrogen shall be the predominant diluent with the balance oxygen. Blends required for gasoline... zero grade nitrogen as a diluent. Combined CO and CO2 span gases are permitted. Zero grade nitrogen... analyzer shall be propane with zero-grade nitrogen as a diluent when testing gasoline-fueled engines. For...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Benzene concentration. An estimate of the average gasoline benzene concentration corresponding to the time... engineering and permitting, Procurement and Construction, and Commissioning and startup. (7) Basic information regarding the selected technology pathway for compliance (e.g., precursor re-routing or other technologies...
40 CFR 86.304-79 - Section numbering; construction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... the section number. The two digits following the hyphen designate the first model year for which a... year. (c) Unless indicated, all provisions in this subpart apply to both gasoline-fueled and Diesel...
40 CFR 86.304-79 - Section numbering; construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... the section number. The two digits following the hyphen designate the first model year for which a... year. (c) Unless indicated, all provisions in this subpart apply to both gasoline-fueled and Diesel...
40 CFR 86.201-11 - General applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... new gasoline-fueled and diesel-fueled light-duty vehicles and light-duty trucks. (b) All of the... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium...
Exposure to regular gasoline and ethanol oxyfuel during refueling in Alaska.
Backer, L C; Egeland, G M; Ashley, D L; Lawryk, N J; Weisel, C P; White, M C; Bundy, T; Shortt, E; Middaugh, J P
1997-01-01
Although most people are thought to receive their highest acute exposures to gasoline while refueling, relatively little is actually known about personal, nonoccupational exposures to gasoline during refueling activities. This study was designed to measure exposures associated with the use of an oxygenated fuel under cold conditions in Fairbanks, Alaska. We compared concentrations of gasoline components in the blood and in the personal breathing zone (PBZ) of people who pumped regular unleaded gasoline (referred to as regular gasoline) with concentrations in the blood of those who pumped an oxygenated fuel that was 10% ethanol (E-10). A subset of participants in a wintertime engine performance study provided blood samples before and after pumping gasoline (30 using regular gasoline and 30 using E-10). The biological and environmental samples were analyzed for selected aromatic volatile organic compounds (VOCs) found in gasoline (benzene, ethylbenzene, toluene, m-/p-xylene, and o-xylene); the biological samples were also analyzed for three chemicals not found in gasoline (1,4-dichlorobenzene, chloroform, and styrene). People in our study had significantly higher levels of gasoline components in their blood after pumping gasoline than they had before pumping gasoline. The changes in VOC levels in blood were similar whether the individuals pumped regular gasoline or the E-10 blend. The analysis of PBZ samples indicated that there were also measurable levels of gasoline components in the air during refueling. The VOC levels in PBZ air were similar for the two groups. In this study, we demonstrate that people are briefly exposed to low (ppm and sub-ppm) levels of known carcinogens and other potentially toxic compounds while pumping gasoline, regardless of the type of gasoline used. Images Figure 1. Figure 2. Figure 3. PMID:9347900
Maikawa, Caitlin L; Zimmerman, Naomi; Rais, Khaled; Shah, Mittal; Hawley, Brie; Pant, Pallavi; Jeong, Cheol-Heon; Delgado-Saborit, Juana Maria; Volckens, John; Evans, Greg; Wallace, James S; Godri Pollitt, Krystal J
2016-10-15
Gasoline direct injection (GDI) engines are increasingly prevalent in the global vehicle fleet. Particulate matter emissions from GDI engines are elevated compared to conventional gasoline engines. The pulmonary effects of these higher particulate emissions are unclear. This study investigated the pulmonary responses induced by GDI engine exhaust using an ex vivo model. The physiochemical properties of GDI engine exhaust were assessed. Precision cut lung slices were prepared using Balb/c mice to evaluate the pulmonary response induced by one-hour exposure to engine-out exhaust from a laboratory GDI engine operated at conditions equivalent to vehicle highway cruise conditions. Lung slices were exposed at an air-liquid interface using an electrostatic aerosol in vitro exposure system. Particulate and gaseous exhaust was fractionated to contrast mRNA production related to polycyclic aromatic hydrocarbon (PAH) metabolism and oxidative stress. Exposure to GDI engine exhaust upregulated genes involved in PAH metabolism, including Cyp1a1 (2.71, SE=0.22), and Cyp1b1 (3.24, SE=0.12) compared to HEPA filtered air (p<0.05). GDI engine exhaust further increased Cyp1b1 expression compared to filtered GDI engine exhaust (i.e., gas fraction only), suggesting this response was associated with the particulate fraction. Exhaust particulate was dominated by high molecular weight PAHs. Hmox1, an oxidative stress marker, exhibited increased expression after exposure to GDI (1.63, SE=0.03) and filtered GDI (1.55, SE=0.04) engine exhaust compared to HEPA filtered air (p<0.05), likely attributable to a combination of the gas and particulate fractions. Exposure to GDI engine exhaust contributes to upregulation of genes related to the metabolism of PAHs and oxidative stress. Copyright © 2016 Elsevier B.V. All rights reserved.
40 CFR 86.016-1 - General applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...) of this section. (h) Turbine engines. Turbine engines are deemed to be compression-ignition engines... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...
Gasoline risk management: a compendium of regulations, standards, and industry practices.
Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb
2014-11-01
This paper is part of a special series of publications regarding gasoline toxicology testing and gasoline risk management; this article covers regulations, standards, and industry practices concerning gasoline risk management. Gasoline is one of the highest volume liquid fuel products produced globally. In the U.S., gasoline production in 2013 was the highest on record (API, 2013). Regulations such as those pursuant to the Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) and many others provide the U.S. federal government with extensive authority to regulate gasoline composition, manufacture, storage, transportation and distribution practices, worker and consumer exposure, product labeling, and emissions from engines and other sources designed to operate on this fuel. The entire gasoline lifecycle-from manufacture, through distribution, to end-use-is subject to detailed, complex, and overlapping regulatory schemes intended to protect human health, welfare, and the environment. In addition to these legal requirements, industry has implemented a broad array of voluntary standards and best management practices to ensure that risks from gasoline manufacturing, distribution, and use are minimized. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Molecular hydrogen (H2) emissions from gasoline and diesel vehicles.
Bond, S W; Alvarez, R; Vollmer, M K; Steinbacher, M; Weilenmann, M; Reimann, S
2010-08-01
This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141+/-38.6 mg km(-1)), approximately 5 times higher than for gasoline-powered automobiles (26.5+/-12.1 mg km(-1)). All diesel-powered vehicles emitted marginal amounts of H2 ( approximately 0.1 mg km(-1)). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1+/-17.0 mg km(-1)). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h(-1) (mean of 40.4+/-7.1 mg km(-1)). We show that H2/CO ratios (mol mol(-1)) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature. 2010 Elsevier B.V. All rights reserved.
Possible improvements in gasoline engines
NASA Technical Reports Server (NTRS)
Ziembinski, S
1923-01-01
High-compression engines are investigated with the three main objects being elimination of vibration, increase of maximum efficiency, and conservation of this efficiency at the highest possible speeds.
Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine
NASA Astrophysics Data System (ADS)
Cofaru, Corneliu
2017-10-01
This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.
Traffic Related Air Quality Trends in São Paulo, Brazil
NASA Astrophysics Data System (ADS)
Perez-Martinez, P.; Andrade, M. D. F.
2014-12-01
An air quality based approach is used to determine pollutant-trends of carbon monoxide (CO), nitrogen oxides (NOX), ozone (O3) and particle matter (PM10) mostly from road transport sources in the Metropolitan Region of São Paulo (MRSP) for the years 2000-2013. Road transport sources included flex (gasoline and ethanol) cars and motorcycles and diesel trucks and buses. Air pollutant concentrations for the transport sources were measured and related with the fuel sales by the emission factors (EFs) expressed in grams of pollutant per kilometer driven or unit of fuel consumed. Over the 14- year time period, pollutant concentrations of NOX, CO and PM10 decreased by 0.65, 0.37 and 0.71% month-1, respectively. Oppossitely during this time, fuel sales of gasoline, ethanol and diesel increased by 0.26, 1.96 and 0.38% month-1. Flex engines are the prevalent road source of CO, oppositely to diesel ones which appear to be the major source of NOX and PM10. Decrease in air pollutants are partially offset by the increment of fuel sales and related transport activity. For CO, there have been steep decreases in pollutant concentrations (rate of -5 parts per billion, ppb, month-1) for gasoline and ethanol engines between 2000 and 2013. Similarly, diesel related NOX and PM10 concentrations decreased but at slower time rates (-0.25 and -0.09 ppb month-1). Rates uncertainties are larger for diesel pollutants (coefficient of determination R of -0.47 and -0.41) than for gasoline and ethanol related CO (R equal to -0.72). This paper led to the following conclusions: (1) concentrations of gasoline and ethanol related CO, estimated by air quality network measurements, decreased at steeper rate than diesel pollutants NOX and PM10, (2) transport source contributions to the O3 formation differ significantly through the time period focus of this work, with higher contributions coming from gasoline and ethanol engines at the beinning of the reviewed period (2000-2007) and from diesel engines at the end (2008-2013).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kukwon; Curran, Scott; Prikhodko, Vitaly Y
2011-01-01
An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm andmore » an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.« less
Yang, Jiacheng; Roth, Patrick; Durbin, Thomas D; Johnson, Kent C; Cocker, David R; Asa-Awuku, Akua; Brezny, Rasto; Geller, Michael; Karavalakis, Georgios
2018-03-06
We assessed the gaseous, particulate, and genotoxic pollutants from two current technology gasoline direct injection vehicles when tested in their original configuration and with a catalyzed gasoline particulate filter (GPF). Testing was conducted over the LA92 and US06 Supplemental Federal Test Procedure (US06) driving cycles on typical California E10 fuel. The use of a GPF did not show any fuel economy and carbon dioxide (CO 2 ) emission penalties, while the emissions of total hydrocarbons (THC), carbon monoxide (CO), and nitrogen oxides (NOx) were generally reduced. Our results showed dramatic reductions in particulate matter (PM) mass, black carbon, and total and solid particle number emissions with the use of GPFs for both vehicles over the LA92 and US06 cycles. Particle size distributions were primarily bimodal in nature, with accumulation mode particles dominating the distribution profile and their concentrations being higher during the cold-start period of the cycle. Polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs were quantified in both the vapor and particle phases of the PM, with the GPF-equipped vehicles practically eliminating most of these species in the exhaust. For the stock vehicles, 2-3 ring compounds and heavier 5-6 ring compounds were observed in the PM, whereas the vapor phase was dominated mostly by 2-3 ring aromatic compounds.
Curran, Mary Ann
2007-10-15
How one models the input and output data for a life-cycle assessment (LCA) can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, specific guidance is still lacking: Earlier research focused on the effects of applying various allocation schemes to industrial processes when creating life-cycle inventories. To determine the impact of different allocation approaches upon product choice, this study evaluated the gas- and water-phase emissions during the production, distribution, and use of three hypothetical fuel systems (data that represent conventional gasoline and gasoline with 8.7 and 85% ethanol were used as the basis for modeling). This paper presents an explanation of the allocation issue and the results from testing various allocation schemes (weight, volume, market value, energy, and demand-based) when viewed across the entire system. Impact indicators for global warming, ozone depletion, and human health noncancer (water impact) were lower for the ethanol-containing fuels, while impact indicators for acidification, ecotoxicity, eutrophication, human health criteria, and photochemical smog were lower for conventional gasoline (impacts for the water-related human health cancer category showed mixed results). The relative ranking of conventional gasoline in relation to the ethanol-containing fuels was consistent in all instances, suggesting that, in this case study, the choice of allocation methodology had no impact on indicating which fuel has lower environmental impacts.
Divided Combustion Chamber Gasoline Engines - A Review for Emissions and Efficiency
ERIC Educational Resources Information Center
Bascunana, Jose L.
1974-01-01
Describes characteristic designs of the engine. Data for fuel economy and emission are presented. Data show that automobiles equipped with one of the engines described have passed the 1975 Federal Emissions Standards. (SLH)
Conventional engine technology. Volume 2: Status of diesel engine technology
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1981-01-01
The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.
33 CFR 183.501 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems General § 183.501 Applicability. (a) This subpart applies to all boats that have gasoline engines, except outboard engines, for electrical...
Dernotte, Jeremie; Dec, John E.; Ji, Chunsheng
2015-04-14
A detailed understanding of the various factors affecting the trends in gross-indicated thermal efficiency with changes in key operating parameters has been carried out, applied to a one-liter displacement single-cylinder boosted Low-Temperature Gasoline Combustion (LTGC) engine. This work systematically investigates how the supplied fuel energy splits into the following four energy pathways: gross-indicated thermal efficiency, combustion inefficiency, heat transfer and exhaust losses, and how this split changes with operating conditions. Additional analysis is performed to determine the influence of variations in the ratio of specific heat capacities (γ) and the effective expansion ratio, related to the combustion-phasing retard (CA50), onmore » the energy split. Heat transfer and exhaust losses are computed using multiple standard cycle analysis techniques. Furthermore, the various methods are evaluated in order to validate the trends.« less
Analysis of liquid-propellant rocket engines designed by F. A. Tsander
NASA Technical Reports Server (NTRS)
Dushkin, L. S.; Moshkin, Y. K.
1977-01-01
The development of the oxygen-gasoline OR-2 engines and the oxygen-alcohol GIRD-10 rocket engine is described. A result of Tsander's rocket research was an engineering method for propellant calculation of oxygen-propellant rocket engines that determined the basic parameters of the engine and the structural elements.
These standards apply for outboard engines, personal watercraft engines, and jet boat engines. This rule also adds a national security exemption for Nonroad Compression-Ignition (CI) and Small SI sectors.
Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, John F; Huff, Shean P; West, Brian H
2012-01-01
Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less
Life cycle assessment of gasoline production and use in Chile.
Morales, Marjorie; Gonzalez-García, Sara; Aroca, Germán; Moreira, María Teresa
2015-02-01
Gasoline is the second most consumed fuel in Chile, accounting for 34% of the total fuel consumption in transportation related activities in 2012. Chilean refineries process more than 97% of the total gasoline commercialized in the national market. When it comes to evaluating the environmental profile of a Chilean process or product, the analysis should consider the characteristics of the Chilean scenario for fuel production and use. Therefore, the identification of the environmental impacts of gasoline production turns to be very relevant for the determination of the associated environmental impacts. For this purpose, Life Cycle Assessment has been selected as a useful methodology to assess the ecological burdens derived from fuel-based systems. In this case study, five subsystems were considered under a "well-to-wheel" analysis: crude oil extraction, gasoline importation, refinery, gasoline storage and distribution/use. The distance of 1 km driven by a middle size passenger car was chosen as functional unit. Moreover, volume, economic and energy-based allocations were also considered in a further sensitivity analysis. According to the results, the main hotspots were the refining activities as well as the tailpipe emissions from car use. When detailing by impact category, climate change was mainly affected by the combustion emissions derived from the gasoline use and refining activities. Refinery was also remarkable in toxicity related categories due to heavy metals emissions. In ozone layer and mineral depletion, transport activities played an important role. Refinery was also predominant in photochemical oxidation and water depletion. In terms of terrestrial acidification and marine eutrophication, the combustion emissions from gasoline use accounted for large contributions. This study provides real inventory data for the Chilean case study and the environmental results give insight into their influence of the assessment of products and processes in the country. Moreover, they could be compared with production and distribution schemes in other regions. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of hecter fuel with export aviation gasoline
NASA Technical Reports Server (NTRS)
Dickinson, H C; Gage, V R; Sparrow, S W
1921-01-01
Among the fuels which will operate at compression ratios up to at least 8.0 without preignition or "pinking" is hecter fuel, whence a careful determination of its performance is of importance. For the test data presented in this report the hecter fuel used was a mixture of 30 per cent benzol and 70 per cent cyclohexane, having a low freezing point, and distilling from first drop to 90 per cent at nearly a constant temperature, about 20 degrees c. below the average distillation temperature ("mean volatility") of the x gasoline (export grade). The results of these experiments show that the power developed by hecter fuel is the same as that developed by export aviation gasoline at about 1,800 r.p.m. at all altitudes. At lower speeds differences in the power developed by the fuels become evident. Comparisons at ground level were omitted to avoid any possibility of damaging the engine by operating with open throttle on gasoline at so high a compression. The fuel consumption per unit power based on weight, not volume, averaged more than 10 per cent greater with hecter than with x gasoline. The thermal efficiency of the engine when using hecter is less than when using gasoline, particularly at higher speeds. A generalization of the difference for all altitudes and speeds being 8 per cent. A general deduction from these facts is that more hecter is exhausted unburnt. Hecter can withstand high compression pressures and temperature without preignition. (author)
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw emission sampling calculations... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled... selected as the basis for mass emission calculations using the raw gas method. ER03JY95.022 Where: WHC...
40 CFR 90.419 - Raw emission sampling calculations-gasoline fueled engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw emission sampling calculations... KILOWATTS Gaseous Exhaust Test Procedures § 90.419 Raw emission sampling calculations—gasoline fueled... selected as the basis for mass emission calculations using the raw gas method. ER03JY95.022 Where: WHC...
. . . While Others Conserve Cash by Converting from Gasoline to Propane.
ERIC Educational Resources Information Center
Rasmussen, Scott A.
1988-01-01
Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
49 CFR 393.83 - Exhaust systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the atmosphere...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... with gasoline-fueled or methanol-fueled engines only. The Administrator does not approve the test... development and application of the requisite technology, giving appropriate consideration to the cost of...
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module ...
Aviation fuels : with especial reference to "white spirit."
NASA Technical Reports Server (NTRS)
Dumanois, P
1928-01-01
Gasoline, the fuel now used, is an extremely volatile and inflammable liquid capable of forming explosive mixtures, the cause of many catastrophes in aviation. It is therefore of special interest to investigate the possibility of using fuels which, while being less volatile than gasoline, would nevertheless enable this engine to function satisfactorily.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... gasoline/electric hybrid vehicles; changes test frequency for some model year vehicles; allows motorists... hybrid vehicle gasoline engines, changing the test frequency for some model year vehicles, revising an... possible. Including the growing number of these hybrid vehicles in the I/M program will result in greater...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... inspections for 1998 and newer diesel vehicles less than 10,001 pounds and all gasoline/ electric hybrid... greater than 1,000 and less than 10,001 pounds; including all hybrid vehicle gasoline engines; changing... Promulgation of Implementation Plans; New Mexico; Albuquerque/Bernalillo County: Motor Vehicle Inspection...
On the knocking of gasoline engines
NASA Technical Reports Server (NTRS)
Richter, Ludwig
1926-01-01
It is of the greatest importance, not only for automobile engines, but also for every other kind of internal combustion engine, since it limits the degree of compression and the thermal efficiency and its investigation indicates ways for saving fuel.
Advanced Gas Turbine (AGT) powertrain system initial development report
NASA Technical Reports Server (NTRS)
1980-01-01
The powertrain consists of a single shaft regenerated gas turbine engine utilizing ceramic hot section components, coupled to a slit differential gearbox with an available variable stator torque converter and an available Ford intergral overdrive four-speed automatic transmission. Predicted fuel economy using gasoline fuel over the combined federal driving cycle (CFDC) is 15.3 km/1, which represents a 59% improvement over the spark-ignition-powered baseline vehicle. Using DF2 fuel, CFDC mileage estimates are 17.43 km/1. Zero to 96.6 km/hr acceleration time is 11.9 seconds with a four-second accleration distance of 21.0 m. The ceramic radial turbine rotor is discussed along with the control system for the powertrain.
Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis
2018-08-01
Ultrafine (<100 nm) particles related to traffic are of high environmental and human health concern, as they are supposed to be more toxic than larger particles. In the present study transmission electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles <10 nm were rarely detected. The ultrafine particles can be distinguished into the following types: soot, ash-bearing soot and ash. Ash consists of Ca, P, Mg, Zn, Fe, S, and minor Sn compounds. Most elements originate from lubricating oil additives; Sn and at least part of Fe are products of engine wear; minor W ± Si-bearing nearly spherical particles in Diesel exhaust derive from catalytic coating material. Ultrafine ash particles predominate over ultrafine soot or are nearly equal in amount, in contrast to emissions of larger sizes where soot is by far the prevalent particle type. This is probably due to the low ash amount per volume fraction in the total emissions, which does not favor formation of large ash agglomerates, opposite to soot, which is abundant and thus easily forms agglomerates of sizes larger than those of the ultrafine range. No significant differences of ultrafine particle characteristics were identified among the tested Gasoline and Diesel vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larry Zirker; James Francfort
2004-02-01
This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. Thismore » represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.« less
Sen. Hutchison, Kay Bailey [R-TX
2010-09-29
Senate - 09/29/2010 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Occupational exposure to diesel and gasoline emissions and lung cancer in Canadian men.
Villeneuve, Paul J; Parent, Marie-Élise; Sahni, Vanita; Johnson, Kenneth C
2011-07-01
The International Agency for Research on Cancer classifies diesel exhaust as a probable human carcinogen; this decision is based largely from lung cancer evidence. Gasoline exhaust is classified as a possible carcinogen. Epidemiological studies are needed that improve upon some of the limitations of previous research with respect to the characterization of exposure, and the control for the potential confounding influence of smoking and other occupational exposures. Our objective was to investigate associations between occupational exposure to diesel and gasoline engine emissions and lung cancer. We used a case-control study design that involved men 40 years of age and older at the time of interview. Analyses are based on 1681 incident cases of lung cancer and 2,053 population controls. A self-reported questionnaire elicited a lifetime occupational history, including general tasks, and information on other potential risk factors. Occupational exposures to diesel and gasoline emissions, crystalline silica, and asbestos were assigned to each job held by study subjects by industrial hygienists who were blind to case-control status. Exposure metrics for diesel and gasoline emissions that were modeled included: ever exposure, cumulative exposure, and concentration of exposure. We found a dose-response relationship between cumulative occupational exposure to diesel engine emissions and lung cancer. This association was more pronounced for the squamous and large cell subtypes with adjusted odds ratios across the three increasing tertiles of cumulative lifetime exposure relative to those with no exposure of 0.99, 1.25, and 1.32 (p=0.04) for squamous cell carcinoma, and 1.06, 1.19, 1.68 (p=0.02) for large cell carcinoma. While the association with cumulative exposure to gasoline was weakly positive, it was not statistically significant. Our findings suggest that exposure to diesel engine emissions increases the risk of lung cancer particularly for squamous and large cell carcinoma subtypes. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian
2018-03-01
Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.
Huo, Hong; Zhang, Qiang; Liu, Fei; He, Kebin
2013-02-05
Electric vehicles (EVs) and compressed natural gas vehicles (CNGVs), which are mainly coal-based and natural gas-based, are the two most widely proposed replacements of gasoline internal combustion engine vehicles (ICEVs) in P.R. China. We examine fuel-cycle emissions of greenhouse gases (GHGs), PM(2.5), PM(10), NO(x), and SO(2) of CNGVs and EVs relative to gasoline ICEVs and hybrids, by Chinese province. CNGVs can currently reduce emissions of GHGs, PM(10), PM(2,5), NO(x), and SO(2) by approximately 6%, 7%, 20%, 18% and 22%, respectively. EVs can reduce GHG emissions by 20%, but increase PM(10), PM(2.5), NO(x), and SO(2) emissions by approximately 360%, 250%, 120%, and 370%, respectively. Nevertheless, results vary significantly by province. Regarding their contribution to national emissions, PM increases from EVs are unimportant, because light-duty passenger vehicles contribute very little to overall PM emissions nationwide (≤0.05%); however, their NO(x) and SO(2) increases are important. Since China is striving to reduce power plant emissions, EVs are expected to have equivalent or even lower SO(2) and NO(x) emissions relative to ICEVs in the future (2030). Before then, however, EVs should be developed according to the cleanness of regional power mixes. This would lower their SO(2) and NO(x) emissions and earn more GHG reduction credits.
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
The emission of BTEX compounds during movement of passenger car in accordance with the NEDC.
Adamović, Dragan; Dorić, Jovan; Vojinović Miloradov, Mirjana; Adamović, Savka; Pap, Sabolč; Radonić, Jelena; Turk Sekulić, Maja
2018-05-20
The results of the research in the field of benzene, toluene, ethylbenzene and xylene isomers (BTEX) concentrations in exhaust gases of spark ignition engines under different operating conditions are presented in this paper. The aim of this paper is to gain a clearer insight into the impact of different engine working parameters on the concentrations of BTEX. The experimental investigation has been performed on the SCHENCK 230 W test stand with the controlled IC engine. The engine operating points have been chosen based on the results of a simulation and they are considered as the typical driving conditions according to the New European Driving Cycle. Concentration levels of BTEX compounds in exhaust gas mixtures have been determined by gas chromatography technique by using the combination of Supelcowax 10-Polyethylene glycol column and the PID detector. Based on the experimental research results, the emission model of BTEX compounds has been defined by the simulation of movement of a Fiat Punto Classic passenger car in accordance with the NEDC cycle. Using the results obtained within the simulation, the official statistics on the number of gasoline-powered cars on the territory of the Republic of Serbia and the European Commission data on the annual distance traveled by car, the amounts of BTEX compounds emitted annually per car have been estimated, as well as the emissions of the entire Serbian car fleet. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pamminger, Michael; Sevik, James; Scarcelli, Riccardo
Natural Gas (NG) is an alternative fuel which has attracted a lot of attention recently, in particular in the US due to shale gas availability. The higher hydrogen-to-carbon (H/C) ratio, compared to gasoline, allows for decreasing carbon dioxide emissions throughout the entire engine map. Furthermore, the high knock resistance of NG allows increasing the efficiency at high engine loads compared to fuels with lower knock resistance. NG direct injection (DI) allows for fuel to be added after intake valve closing (IVC) resulting in an increase in power density compared to an injection before IVC. Steady-state engine tests were performed onmore » a single-cylinder research engine equipped with gasoline (E10) port-fuel injection (PFI) and NG DI to allow for in-cylinder blending of both fuels. Knock investigations were performed at two discrete compression ratios (CR), 10.5 and 12.5. Operating conditions span mid-load, wide-open-throttle and boosted conditions, depending on the knock response of the fuel blend. Blended operation was performed using E10 gasoline and NG. An additional gasoline type fuel (E85) with higher knock resistance than E10 was used as a high-octane reference fuel, since the octane rating of E10-NG fuel blends is unknown. Spark timing was varied at different loads under stoichiometric conditions in order to study the knock response as well as the effects on performance and efficiency. As anticipated, results suggest that the knock resistance can be increased significantly by increasing the NG amount. Comparing the engine operation with the least knock resistant fuel, E10 PFI, and the fuel blend with the highest knock resistance, 75% NG DI, shows an increase in indicated mean effective pressure of about 9 bar at CR 12.5. The usage of reference fuels with known knock characteristics allowed an assessment of knock characteristic of intermediate E10-NG blend levels. Mathematical correlations were developed allowing characterizing the occurrence of knocking combustion by using the Livengood-Wu knock integral. For most of the fueling strategies and operating conditions, the mathematical correlations show good agreement when compared to experimental data.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-04
... (RVP) to accompany the transfer of gasoline blended with ethanol and a national survey of retail... Addition 3. General PTD Requirements C. Retail Fuel Dispenser Label and Fuel Ethanol Content Survey D.... Labeling Costs 2. PTD Costs 3. Survey Costs 4. Avoided Motor Vehicle and Nonroad Product Repair Costs G...
40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...
40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...
40 CFR 80.1335 - Can a refiner seek relief from the requirements of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Benzene Hardship... comply with the gasoline benzene standards at § 80.1230(a) or (b) by the applicable date(s); and (2) It... will be in place for engineering and construction of benzene reduction technology, a plan for applying...
Ether oxygenate additives in gasoline reduce toxicity of exhausts.
Westphal, G A; Krahl, J; Brüning, T; Hallier, E; Bünger, J
2010-02-09
Fuel additives can improve combustion and knock resistance of gasoline engines. Common additives in commercial fuels are "short-chain, oxygen containing hydrocarbons" such as methyl tert-butyl ether (MTBE) and ethyl tert-butyl ether (ETBE). Since these additives change the combustion characteristics, this may as well influence toxic effects of the resulting emissions. Therefore we compared toxicity and BTEX emissions of gasoline engine exhaust regarding addition of MTBE or ETBE. Non-reformulated gasoline served as basic fuel. This fuel was supplemented with 10%, 20%, 25% and 30% ETBE or 15% MTBE. The fuels were combusted in a gasoline engine at idling, part load and rated power. Condensates and particulate matter (PM) were collected and PM samples extracted with dichloromethane. Cytotoxic effects were investigated in murine fibroblasts (L929) using the neutral red uptake assay and mutagenicity using the bacterial reverse mutation assay. BTEX emissions were analyzed by gas chromatography. PM-extracts showed mutagenicity with and without metabolic activation. Mutagenicity was reduced by the addition of MTBE and ETBE, 10% ETBE being most effective. The condensates produced no significant mutagenic response. The cytotoxicity of the condensates from ETBE- and MTBE-reformulated fuels was reduced as well. The BTEX content in the exhaust was lowered by the addition of MTBE and ETBE. This effect was significantly related to the ETBE content at rated power and part load. Addition of MTBE and ETBE to fuels can improve combustion and leads to decreased toxicity and BTEX content of the exhaust. Reduction of mutagenicity in the PM-extracts is most probably caused by a lower content of polycyclic aromatic hydrocarbons. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Fuel cell power trains for road traffic
NASA Astrophysics Data System (ADS)
Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard
Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.
Roth, Michèle; Usemann, Jakob; Bisig, Christoph; Comte, Pierre; Czerwinski, Jan; Mayer, Andreas C R; Beier, Konstantin; Rothen-Rutishauser, Barbara; Latzin, Philipp; Müller, Loretta
2017-12-01
Air pollution exposure, including passenger car emissions, may cause substantial respiratory health effects and cancer death. In western countries, the majority of passenger cars are driven by gasoline fuel. Recently, new motor technologies and ethanol fuels have been introduced to the market, but potential health effects have not been thoroughly investigated. We developed and verified a coculture model composed of bronchial epithelial cells (ECs) and natural killer cells (NKs) mimicking the human airways to compare toxic effects between pure gasoline (E0) and ethanol-gasoline-blend (E85, 85% ethanol, 15% gasoline) exhaust emitted from a flexfuel gasoline car. We drove a steady state cycle, exposed ECs for 6h and added NKs. We assessed exhaust effects in ECs alone and in cocultures by RT-PCR, flow cytometry, and oxidative stress assay. We found no toxic effects after exposure to E0 or E85 compared to air controls. Comparison between E0 and E85 exposure showed a weak association for less oxidative DNA damage after E85 exposure compared to E0. Our results indicate that short-term exposure to gasoline exhaust may have no major toxic effects in ECs and NKs and that ethanol as part of fuel for gasoline cars may be favorable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bisig, Christoph; Comte, Pierre; Güdel, Martin; Czerwinski, Jan; Mayer, Andreas; Müller, Loretta; Petri-Fink, Alke; Rothen-Rutishauser, Barbara
2018-04-01
Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles. The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions. Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects. After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure. The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Production, purification and utilization of biogas as fuel for internal combustion engine
NASA Astrophysics Data System (ADS)
Hernandez, Noel M.; Villanueva, Eliseo P.
2018-03-01
This study attempts to modify a 4-cylinder gasoline engine to run with a purified compressed biogas as substitute for fossil fuels. Water scrubbing method was used as the easiest purification technique to remove CO2 and iron filing for H2S. The pressurized raw biogas was fed in a low cost made portable floating type gas holder with volume capacity of 0.74 m3. The purified biogas was compressed using a reciprocating compressor through a two stage series of enrichment and moisture removal process using activated alumina into the steel cylinder to improve the quality of the methane content. The enriched biogas was filled in the LPG tank for 20 minutes at 10 bars at an average of 73.67% CH4 with no traces of H2S as storage for engine utilization. The modification involved the installation and mounting of LPG conversion kit. A comparative analysis of the performance and combustion characteristics of the engine was evaluated separately with gasoline and purified compressed biogas using electro-dynamometer as variable loads. The findings show that power output deterioration in compressed biogas was mainly due to high percentage of CO2 and other gases impurities. It also shows that because of the calorific value of biogas, the thermal efficiency is lesser than that of gasoline. It implies that the overall engine performance can be improved by removing undesirable gases in the mixture.
Engine Certification and Compliance Testing
The National Vehicle and Fuel Emissions Laboratory (NVFEL) tests a portion of all heavy-duty diesel and small gasoline engines intended for sale in the United States to confirm compliance with EPA’s exhaust emissions standards.
40 CFR 86.079-31 - Separate certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...
40 CFR 86.079-31 - Separate certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied... certification of part of his product line. The selection of test vehicles (or test engines) and the computation...
40 CFR 86.1110-87 - Sample selection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... mass production processes for engines or vehicles to be distributed into commerce. In the case of heavy...
40 CFR 86.1106-87 - Production compliance auditing.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including... for heavy-duty engine or heavy-duty vehicle emission standards for one or more exhaust pollutants are...
Results from service tests on AI-91 gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turovskii, F.V.; Bakaleinik, A.M.; Belyaev, A.A.
1988-01-01
Research was conducted to establish whether the operational reliability of engines will be affected by the use of a gasoline with an octane number two points lower than that of commercial AI-93 leaded gasoline with knock resistance in acceleration that is better than that of the AI-93 by approximately the same amount. Extended road tests were run in VAZ-2106 and Moskvich-2140 automobiles using gasoline with a research octane number of 91, containing an antiknock additive based on tetramethyl lead, and AI-93. The experimental AI-91 and the commercial AI-93 gasolines were prepared from the same base blend. Average specific fuel consumptionsmore » were identical for automobiles using AI-93 and AI-91 with the tetramethyl lead additive. For automobiles using AI-91 with the additive and with ethyl bromide as a lead scavenger the fuel consumption was 2% lower.« less
Development of the Junkers-diesel Aircraft Engine
NASA Technical Reports Server (NTRS)
Gasterstadt,
1930-01-01
The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.
40 CFR 86.311-79 - Miscellaneous equipment; specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...
40 CFR 86.311-79 - Miscellaneous equipment; specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...
40 CFR 86.311-79 - Miscellaneous equipment; specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... engines. (2) When testing gasoline-fueled engines all chart recorders (analyzers, torque, rpm, etc.) shall.... (b) Accuracy of temperature measurements. (1) The following temperature measurements shall be accurate to within 1.2 °C: (i) Temperature measurements used in calculating the engine intake humidity: (ii...
Filter-based control of particulate matter from a lean gasoline direct injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less
Vehicle conversion to hybrid gasoline/alternative fuel operation
NASA Technical Reports Server (NTRS)
Donakowski, T. D.
1982-01-01
The alternative fuels considered are compressed natural gas (CNG), liquefied natural gas (LNG), liquid petroleum gas (LPG), and methanol; vehicles were required to operate in a hybrid or dual-fuel gasoline/alternative fuel mode. Economic feasibility was determined by comparing the costs of continued use of gasoline fuel with the use of alternative fuel and retrofitted equipment. Differences in the amounts of future expenditures are adjusted by means of a total life-cycle costing. All fuels studied are technically feasible to allow a retrofit conversion to hybrid gasoline/alternative fuel operation except for methanol. Conversion to LPG is not recommended for vehicles with more than 100,000 km (60,000 miles) of prior use. Methanol conversion is not recommended for vehicles with more than 50,00 km (30,000 miles).
Evaluation of Mobile Source Emissions and Trends
NASA Astrophysics Data System (ADS)
Dallmann, Timothy Ryan
Mobile sources contribute significantly to air pollution problems. Relevant pollutants include numerous gaseous and particle-phase species that can affect human health, ecosystems, and climate. Accurate inventories of emissions from these sources are needed to help understand possible adverse impacts, and to develop effective air quality management strategies. Unfortunately large uncertainties persist in the understanding of mobile source emissions, and how these emissions are changing over time. This dissertation aims to evaluate long-term trends in mobile source emissions in the United States, and to make detailed measurements of emissions from present-day fleets of on-road vehicles operating in California. Long-term trends in mobile source emissions of nitrogen oxides (NO x) and fine particulate matter (PM2.5) in the United States were investigated through development of a fuel-based emission inventory. Annual emissions from on- and off-road gasoline and diesel engines were quantified for the years 1996-2006. Diesel engines were found to be the dominant mobile source of NOx and PM2.5, and on-road diesel vehicles were identified as the single largest anthropogenic source of NOx emissions in the United States as of 2005. The importance of diesel engines as a source of exhaust particulate matter emissions has led to the recent introduction of advanced emission control technologies in the United States, such as diesel particle filters (DPF), which have been required since 2007 for all new on-road heavy-duty (HD) diesel engines. In addition to national requirements for the use of such control devices on new engines, California has mandated accelerated clean-up of statewide emissions from older in-use diesel engines. The plume capture method was further applied to measure emissions from a more diverse population of trucks observed at the Caldecott tunnel in summer 2010. Emissions from hundreds of individual trucks were measured, and emission factor distributions were characterized for nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), formaldehyde, BC, as well as optical properties of the emitted particles. Emission factor distributions for all species were skewed, with a small fraction of trucks contributing disproportionately to total emissions. These findings confirm that the use of catalyzed DPF systems is leading to increased primary NO2 emissions. Absorption and scattering cross-section emission factors were used to calculate the aerosol single scattering albedo (SSA, at 532 nm) for individual truck exhaust plumes, which averaged 0.14 +/- 0.03. This value of aerosol SSA is very low compared to typical values (0.90-0.99) observed in ambient air studies. It is indicative of a strongly light-absorbing aerosol, due to the high BC emissions that are a characteristic feature of diesel exhaust PM emissions. Measurements at the Caldecott tunnel also included efforts to quantify light-duty (LD) gasoline vehicle emission factors, and further investigation of the relative contributions of on-road gasoline and diesel engines to air pollutant emissions. Measurements of CO, NOx, PM2.5, BC, and organic aerosol (OA) were made in a tunnel traffic bore where LD vehicles account for >99% of total traffic. Measured pollutant concentrations were apportioned between LD gasoline vehicles and diesel trucks, and fleet-average emission factors were quantified for LD gasoline vehicles using a carbon balance method. Diesel trucks contributed 18 +/- 3, 22 +/- 5, 44 +/- 8% of measured NOx, OA, and BC concentrations, respectively, despite accounting for <1% of total vehicles. Emission factors and overall fuel consumption for gasoline and diesel engines were used to describe the relative contributions of these sources to overall on-road vehicle emissions. Gasoline engines were found to be the dominant source of CO, an insignificant source of BC, and a relatively minor source of on-road OA emissions at urban, state, and national scales. Measurements at the Caldecott tunnel also featured use of a new high-resolution time-of-flight aerosol mass spectrometer, which was used to characterize the chemical composition of PM emitted by gasoline and diesel vehicles. Measurements of PM in the exhaust of individual HD trucks show a predominance of cyclyoalkane-derived ion signals relative to saturated alkane ion signals in the truck exhaust OA spectra, indicating that lubricating oil, rather than diesel fuel, was the dominant source of OA emitted by diesel trucks. This conclusion is supported by the presence of lubricant-derived trace elements in truck exhaust, emitted relative to total OA at levels that correspond to their weight fractions in bulk oil. Furthermore, comparison of mass spectra for sampling periods with varying levels of diesel influence found a high degree of similarity in the chemical composition of OA emitted by gasoline and diesel engines, suggesting a common lubricating oil rather than fuel-derived source for OA emissions. (Abstract shortened by UMI.).
NASA Technical Reports Server (NTRS)
Akkerman, J. W.
1982-01-01
New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.
40 CFR 86.098-24 - Test vehicles and engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...
40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...
40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy... may establish the compliance level for a pollutant for any engine or vehicle configuration by using... pollutant using the primary PCA sampling plan shall: (i) Conduct emission tests on 24 engines or vehicles in...
40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... number of additional tests conducted shall be the difference between 24 and the number of engines or... ENGINES Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles... compliance level for a pollutant for any engine or vehicle configuration by using the primary PCA sampling...
40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.
Code of Federal Regulations, 2012 CFR
2012-07-01
... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...
40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.
Code of Federal Regulations, 2013 CFR
2013-07-01
... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...
40 CFR 86.004-26 - Mileage and service accumulation; emission measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... without making a determination. Any engine used to represent emission-data engine selections under § 86... each emission-data engine selection under § 86.094-24(b)(2). Evaporative emission controls must be...
40 CFR 86.004-26 - Mileage and service accumulation; emission measurements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural... without making a determination. Any engine used to represent emission-data engine selections under § 86... each emission-data engine selection under § 86.094-24(b)(2). Evaporative emission controls must be...
40 CFR 63.11132 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... an internal combustion engine (including the fuel system) that is not used in a motor vehicle or a... internal combustion engines. Gasoline cargo tank means a delivery tank truck or railcar which is loading or... motor vehicle, motor vehicle engine, nonroad vehicle, or nonroad engine, including a nonroad vehicle or...
40 CFR 86.000-24 - Test vehicles and engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.098-24 - Test vehicles and engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.000-24 - Test vehicles and engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.001-24 - Test vehicles and engines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.000-24 - Test vehicles and engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.000-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.001-24 - Test vehicles and engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.001-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
40 CFR 86.098-24 - Test vehicles and engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Test vehicles and engines. 86.098-24... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Provisions for...-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... Standards; Amendments to the California Heavy-Duty Engine On-Board Diagnostic Regulation; Waiver Request... that it has adopted amendments to its regulations related to heavy-duty engine on-board diagnostic (HD... and gasoline powered heavy-duty engines (engines used in vehicles having a gross vehicle weight rating...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.
We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less
Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.
2015-04-23
We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less
Gao, Zhiming; Curran, Scott J.; Parks, James E.; ...
2015-04-06
We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less
40 CFR 86.1103-87 - Criteria for availability of nonconformance penalties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty.... (a) EPA shall establish for each subclass of heavy-duty engines and heavy-duty vehicles (other than...
40 CFR 86.1104-91 - Determination of upper limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including... pollutant emission standard for a subclass of heavy-duty engines or heavy-duty vehicles for which an NCP is...
NASA Astrophysics Data System (ADS)
Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu
2016-03-01
For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.
14. June 1974. VIEW OF THE ENGINE ROOM, LOOKING NORTH, ...
14. June 1974. VIEW OF THE ENGINE ROOM, LOOKING NORTH, SHOWING THE OTTO GASOLINE ENGINE, THE DRIVE PULLEY IS BARELY VISIBLE TO THE LEFT OF THE FLYWHEEL. - Gruber Wagon Works, Pennsylvania Route 183 & State Hill Road at Red Bridge Park, Bernville, Berks County, PA
Code of Federal Regulations, 2013 CFR
2013-07-01
... room means the compartment where a permanently installed gasoline or diesel engine is installed... boat is in its static floating position, except engine rooms. Connected means allowing a flow of water in excess of one-quarter ounce per hour from the engine room bilge into any other compartment with a...
Evaporative Gasoline Emissions and Asthma Symptoms
Gordian, Mary Ellen; Stewart, Alistair W; Morris, Stephen S
2010-01-01
Attached garages are known to be associated with indoor air volatile organic compounds (VOCs). This study looked at indoor exposure to VOCs presumably from evaporative emissions of gasoline. Alaskan gasoline contains 5% benzene making benzene a marker for gasoline exposure. A survey of randomly chosen houses with attached garages was done in Anchorage Alaska to determine the exposure and assess respiratory health. Householders were asked to complete a health survey for each person and a household survey. They monitored indoor air in their primary living space for benzene, toluene, ethylbenzene and xylenes for one week using passive organic vapor monitoring badges. Benzene levels in homes ranged from undetectable to 58 parts per billion. The median benzene level in 509 homes tested was 2.96 ppb. Elevated benzene levels in the home were strongly associated with small engines and gasoline stored in the garage. High concentrations of benzene in gasoline increase indoor air levels of benzene in residences with attached garages exposing people to benzene at levels above ATSDR’s minimal risk level. Residents reported more severe symptoms of asthma in the homes with high gasoline exposure (16%) where benzene levels exceeded the 9 ppb. PMID:20948946
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (i) Calculate the 5-cycle city and highway fuel economy values from the tests performed using gasoline or diesel test fuel. (ii)(A) Calculate the 5-cycle city and highway fuel economy values from the tests performed using alcohol or natural gas test fuel, if 5-cycle testing has been performed. Otherwise...
Method for modeling driving cycles, fuel use, and emissions for over snow vehicles.
Hu, Jiangchuan; Frey, H Christopher; Sandhu, Gurdas S; Graver, Brandon M; Bishop, Gary A; Schuchmann, Brent G; Ray, John D
2014-07-15
As input to a winter use plan, activity, fuel use, and tailpipe exhaust emissions of over snow vehicles (OSV), including five snow coaches and one snowmobile, were measured on a designated route in Yellowstone National Park (YNP). Engine load was quantified in terms of vehicle specific power (VSP), which is a function of speed, acceleration, and road grade. Compared to highway vehicles, VSP for OSVs is more sensitive to rolling resistance and less sensitive to aerodynamic drag. Fuel use rates increased linearly (R2>0.96) with VSP. For gasoline-fueled OSVs, fuel-based emission rates of carbon monoxide (CO) and nitrogen oxides (NOx) typically increased with increasing fuel use rate, with some cases of very high CO emissions. For the diesel OSVs, which had selective catalytic reduction and diesel particulate filters, fuel-based NOx and particulate matter (PM) emission rates were not sensitive to fuel flow rate, and the emission controls were effective. Inter vehicle variability in cycle average fuel use and emissions rates for CO and NOx was substantial. However, there was relatively little inter-cycle variation in cycle average fuel use and emission rates when comparing driving cycles. Recommendations are made regarding how real-world OSV activity, fuel use, and emissions data can be improved.
Secondary organic aerosol formation from road vehicle emissions
NASA Astrophysics Data System (ADS)
Pieber, Simone M.; Platt, Stephen M.; El Haddad, Imad; Zardini, Alessandro A.; Suarez-Bertoa, Ricardo; Slowik, Jay G.; Huang, Ru-Jin; Hellebust, Stig; Temime-Roussel, Brice; Marchand, Nicolas; Drinovec, Luca; Mocnik, Grisa; Baltensperger, Urs; Astorga, Covadogna; Prévôt, André S. H.
2014-05-01
Organic aerosol particles (OA) are a major fraction of the submicron particulate matter. OA consists of directly emitted primary (POA) and secondary OA (SOA). SOA is formed in-situ in the atmosphere via the reaction of volatile organic precursors. The partitioning of SOA species depends not only on the exposure to oxidants, but for instance also on temperature, relative humidity (RH), and the absorptive mass chemical composition (presence of inorganics) and concentration. Vehicle exhaust is a known source of POA and likely contributes to SOA formation in urban areas [1;2]. This has recently been estimated by (i) analyzing ambient data from urban areas combined with fuel consumption data [3], (ii) by examining the chemical composition of raw fuels [4], or (iii) smog chamber studies [5, 6]. Contradictory and thus somewhat controversial results in the relative quantity of SOA from diesel vs. gasoline vehicle exhaust were observed. In order to elucidate the impact of variable ambient conditions on the potential SOA formation of vehicle exhaust, and its relation to the emitted gas phase species, we studied SOA formed from the exhaust of passenger cars and trucks as a function of fuel and engine type (gasoline, diesel) at different temperatures (T 22 vs. -7oC) and RH (40 vs. 90%), as well as with different levels of inorganic salt concentrations. The exhaust was sampled at the tailpipe during regulatory driving cycles on chassis dynamometers, diluted (200 - 400x) and introduced into the PSI mobile smog chamber [6], where the emissions were subjected to simulated atmospheric ageing. Particle phase instruments (HR-ToF-AMS, aethalometers, CPC, SMPS) and gas phase instruments (PTR-TOF-MS, CO, CO2, CH4, THC, NH3 and other gases) were used online during the experiments. We found that gasoline emissions, because of cold starts, were generally larger than diesel, especially during cold temperatures driving cycles. Gasoline vehicles also showed the highest SOA formation. Furthermore, we observed that vehicle emissions and SOA are significantly affected by temperature and RH: doubling the RH in the chamber resulted in significantly increased SOA formation. Primary emissions and secondary aerosol formation from diesel and gasoline vehicles will be compared at different temperature and RH. Also the interaction and influence of inorganics on organics will be discussed. References: [1] Robinson, A.L., et al. (2007) Science 315, 1259. [2] Weitkamp, E.A., et al. (2007) Environ. Sci. Technol. 41, 6969. [3] Bahreini, R., et al. (2012) Geophys. Res. Lett. 39, L06805. [4] Gentner, D.R. et al. (2012) PNAS 109, 18318. [5] Gordon, T.D. et al. (2013) Atmos. Chem. Phys. Discuss 13, 23173. [6] Platt, S.M., et al. (2013) Atmos. Chem. Phys. Discuss. 12, 28343.
New potentials for conventional aircraft when powered by hydrogen-enriched gasoline
NASA Technical Reports Server (NTRS)
Menard, W. A.; Moynihan, P. I.; Rupe, J. H.
1976-01-01
Hydrogen enrichment for aircraft piston engines is studied. The feasibility is examined of inflight injection of hydrogen in general aviation aircraft engines to reduce fuel consumption and to lower emission levels. Results are summarized.
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...
40 CFR 86.347-79 - Alternative calculations for diesel engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...
40 CFR 86.004-28 - Compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...) Paragraph (c) of this section applies to heavy-duty engines. (2) The applicable exhaust emission standards...
40 CFR 86.004-28 - Compliance with emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... standards. (a)-(b) [Reserved] (c)(1) Paragraph (c) of this section applies to heavy-duty engines. (2) The...
40 CFR 86.004-28 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...) Paragraph (c) of this section applies to heavy-duty engines. (2) The applicable exhaust emission standards...
Baseline tests of the Kordesh hybrid passenger vehicle
NASA Technical Reports Server (NTRS)
Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.
1978-01-01
Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.
Climate change and health costs of air emissions from biofuels and gasoline
Hill, Jason; Polasky, Stephen; Nelson, Erik; Tilman, David; Huo, Hong; Ludwig, Lindsay; Neumann, James; Zheng, Haochi; Bonta, Diego
2009-01-01
Environmental impacts of energy use can impose large costs on society. We quantify and monetize the life-cycle climate-change and health effects of greenhouse gas (GHG) and fine particulate matter (PM2.5) emissions from gasoline, corn ethanol, and cellulosic ethanol. For each billion ethanol-equivalent gallons of fuel produced and combusted in the US, the combined climate-change and health costs are $469 million for gasoline, $472–952 million for corn ethanol depending on biorefinery heat source (natural gas, corn stover, or coal) and technology, but only $123–208 million for cellulosic ethanol depending on feedstock (prairie biomass, Miscanthus, corn stover, or switchgrass). Moreover, a geographically explicit life-cycle analysis that tracks PM2.5 emissions and exposure relative to U.S. population shows regional shifts in health costs dependent on fuel production systems. Because cellulosic ethanol can offer health benefits from PM2.5 reduction that are of comparable importance to its climate-change benefits from GHG reduction, a shift from gasoline to cellulosic ethanol has greater advantages than previously recognized. These advantages are critically dependent on the source of land used to produce biomass for biofuels, on the magnitude of any indirect land use that may result, and on other as yet unmeasured environmental impacts of biofuels. PMID:19188587
Strandell, M; Zakrisson, S; Alsberg, T; Westerholm, R; Winquist, L; Rannug, U
1994-01-01
Extracts of gasoline and diesel vehicle exhaust and ambient air particles were fractionated into five fractions according to polarity on a silica gel column. Two medium polar fractions showing high genotoxic activity in the Ames test were further subfractionated, using normal-phase high-performance liquid chromatography. Chemical analyses were performed by means of gas chromatography combined with mass spectrometry and flame ionization and detection. The crude extracts, fractions, and subfractions were assayed with the Ames test, with and without S9, and the most abundant compounds in the subfractions are reported. PMID:7529708
Since aviation gasoline is now the largest remaining source of lead (Pb) emissions to the air in the United States, there is increased interest by regulatory agencies and the public in assessing the impacts on residents living in close proximity to these sources. An air quality m...
NASA Astrophysics Data System (ADS)
As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta
2018-02-01
The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2
A Summary of Research and Progress on Carbon Monoxide Exposure Control Solutions on Houseboats
Hall, Ronald M.; Earnest, G. Scott; Hammond, Duane R.; Dunn, Kevin H.; Garcia, Alberto
2015-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used. PMID:24568306
A summary of research and progress on carbon monoxide exposure control solutions on houseboats.
Hall, Ronald M; Earnest, G Scott; Hammond, Duane R; Dunn, Kevin H; Garcia, Alberto
2014-01-01
Investigations of carbon monoxide (CO-related poisonings and deaths on houseboats were conducted by the Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. These investigations measured hazardous CO concentrations on and around houseboats that utilize gasoline-powered generators. Engineering control devices were developed and tested to mitigate this deadly hazard. CO emissions were measured using various sampling techniques which included exhaust emission analyzers, detector tubes, evacuated containers (grab air samples analyzed by a gas chromatograph), and direct-reading CO monitors. CO results on houseboats equipped with gasoline-powered generators without emission controls indicated hazardous CO concentrations exceeding immediately dangerous to life and health (IDLH) levels in potentially occupied areas of the houseboat. Air sample results on houseboats that were equipped with engineering controls to remove the hazard were highly effective and reduced CO levels by over 98% in potentially occupied areas. The engineering control devices used to reduce the hazardous CO emissions from gasoline-powered generators on houseboats were extremely effective at reducing CO concentrations to safe levels in potentially occupied areas on the houseboats and are now beginning to be widely used.
Schifter, Isaac; Díaz-Gutiérrez, Luis; Rodríguez-Lara, René; González-Macías, Carmen; González-Macías, Uriel
2017-05-01
Gasoline-ethanol-methanol fuel blends were formulated with the same stoichiometric air-to-fuel ratio and volumetric energy concentration as any binary ethanol-gasoline blend. When the stoichiometric blends operated in a vehicle, the time period, injector voltage, and pressure for each fuel injection event in the engine corresponded to a given stoichiometric air-to-fuel ratio, and the load was essentially constant. Three low oxygen content iso-stoichiometric ternary gasoline-ethanol-methanol fuel blends were prepared, and the properties were compared with regular-type fuel without added oxygen. One of the ternary fuels was tested using a fleet of in-use vehicles for15 weeks and compared to neat gasoline without oxygenated compounds as a reference. Only a small number of publications have compared these ternary fuels in the same engine, and little data exist on the performance and emissions of in-use spark-ignition engines. The total hydrocarbon emissions observed was similar in both fuels, in addition to the calculated ozone forming potential of the tailpipe and evaporative emissions. In ozone non-attainment areas, the original purpose for oxygenate gasolines was to decrease carbon monoxide emissions. The results suggest that the strategy is less effective than expected because there still exist a great number of vehicles that have suffered the progressive deterioration of emissions and do not react to oxygenation, while new vehicles are equipped with sophisticated air/fuel control systems, and oxygenation does not improve combustion because the systems adjust the stoichiometric point, making it insensitive to the origin of the added excess oxygen (fuel or excess air). Graphical abstract Low level ternary blend of gasoline-ethanol-methanol were prepared with the same stoichiometric air-fuel ratio and volumetric energy concentration, based on the volumetric energy density of the pre-blended components. Exhaust and evaporative emissions was compared with a blend having no oxygen in a fleet of 12 in-use vehicles. Vehicles that had suffer a normal deterioration of emissions and do not react to oxygenation, and new vehicles with more sophisticated air/fuel control systems do not improve combustion.
NASA Astrophysics Data System (ADS)
Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav
2014-05-01
The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (< 0.5 mg.kg-1, < 0.1 mg.kg-1, respectively). To evaluate leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.
F1 style MGU-H applied to the turbocharger of a gasoline hybrid electric passenger car
NASA Astrophysics Data System (ADS)
Boretti, Albert
2017-12-01
We consider a turbocharged gasoline direct injection (DI) engine featuring a motor-generator-unit (MGU-H) fitted on the turbocharger shaft. The MGU-H receives or delivers energy to the same energy storage (ES) of the hybrid power unit that comprises a motor-generator unit on the driveline (MGU-K) in addition to the internal combustion engine (ICE). The energy supply from the ES is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, it also improves the ratio of engine crankshaft power to fuel flow power, as well as the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power. The energy supply to the ES is possible at high speeds and loads, where otherwise the turbine could have been waste gated, and during decelerations. This improves the ratio of engine crankshaft plus turbocharger shaft power to fuel flow power.
Low grade bioethanol for fuel mixing on gasoline engine using distillation process
NASA Astrophysics Data System (ADS)
Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami
2017-03-01
Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
40 CFR 86.319-79 - Analyzer checks and calibrations; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust... testing, check the NOX converter efficiency, as described in § 86.332. (c) At least once every 30 days...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false NOX, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines â¥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill... Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP Engine type and fuel Maximum engine...
Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.
O'Driscoll, Rosalind; Stettler, Marc E J; Molden, Nick; Oxley, Tim; ApSimon, Helen M
2018-04-15
In this study CO 2 and NO x emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO 2 emissions 13-66% higher than diesel. During urban driving, the average CO 2 emission factor was 210.5 (sd. 47) gkm -1 for gasoline and 170.2 (sd. 34) gkm -1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines <1.4ℓ delivered ~17% CO 2 reduction compared to Port Fuel Injection (PFI). Gasoline vehicles delivered an 86-96% reduction in NO x emissions compared to diesel cars. The average urban NO x emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm -1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm -1 . We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NO x and CO 2 . We conclude action is required to mitigate the public health risk created by excessive NO x emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO 2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO 2 and NO x emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NO x and CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Aeronautic Instruments. Section V : Power Plant Instruments
NASA Technical Reports Server (NTRS)
Washburn, G E; Sylvander, R C; Mueller, E F; Wilhelm, R M; Eaton, H N; Warner, John A C
1923-01-01
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.
Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results
Thomas, John
2014-10-13
Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less
Updated estimation of energy efficiencies of U.S. petroleum refineries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palou-Rivera, I.; Wang, M. Q.
2010-12-08
Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels suchmore » as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.« less
NASA Technical Reports Server (NTRS)
1987-01-01
Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.
40 CFR 86.004-40 - Heavy-duty engine rebuilding practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Provisions for Emission Regulations for 1977 and Later Model Year New Light-Duty Vehicles, Light-Duty Trucks and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... rebuilding practices. The provisions of this section are applicable to heavy-duty engines subject to model...
40 CFR 86.004-28 - Compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled...]. For guidance see § 86.001-28. (c)(1) Paragraph (c) of this section applies to heavy-duty engines. (2...
40 CFR 86.1108-87 - Maintenance of records.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...
40 CFR 86.1108-87 - Maintenance of records.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...
40 CFR 86.1108-87 - Maintenance of records.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...
40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy...) The final deteriorated test results for each heavy-duty engine or light-duty truck tested according to... information the Administrator may request relevant to the determination as to whether the new heavy-duty...
NASA Astrophysics Data System (ADS)
Ispas, N.; Cofaru, C.; Aleonte, M.
2017-10-01
Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.