Sample records for cycle improving vhtr

  1. Analysis of supercritical CO{sub 2} cycle control strategies and dynamic response for Generation IV Reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2011-04-12

    The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through themore » RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle efficiency of 49.3 %. The other approach involves reducing the minimum cycle pressure significantly below the critical pressure such that the temperature drop in the turbine is increased while the minimum cycle temperature is maintained above the critical temperature to prevent the formation of a liquid phase. The latter approach also involves the addition of a precooler and a third compressor before the main compressor to retain the benefits of compression near the critical point with the main compressor. For a minimum cycle pressure of 1 MPa, a cycle efficiency of 49.5% is achieved. Either approach opens up the door to applying the SCO{sub 2} cycle to the VHTR. In contrast, the SFR system typically has a core outlet-inlet temperature difference of about 150 C such that the standard recompression cycle is ideally suited for direct application to the SFR. The ANL Plant Dynamics Code has been modified for application to the VHTR and SFR when the reactor side dynamic behavior is calculated with another system level computer code such as SAS4A/SYSSYS-1 in the SFR case. The key modification involves modeling heat exchange in the RHX, accepting time dependent tabular input from the reactor code, and generating time dependent tabular input to the reactor code such that both the reactor and S-CO{sub 2} cycle sides can be calculated in a convergent iterative scheme. This approach retains the modeling benefits provided by the detailed reactor system level code and can be applied to any reactor system type incorporating a S-CO{sub 2} cycle. This approach was applied to the particular calculation of a scram scenario for a SFR in which the main and intermediate sodium pumps are not tripped and the generator is not disconnected from the electrical grid in order to enhance heat removal from the reactor system thereby enhancing the cooldown rate of the Na-to-CO{sub 2} RHX. The reactor side is calculated with SAS4A/SASSYS-1 while the S-CO{sub 2} cycle is calculated with the Plant Dynamics Code with a number of iterations over a timescale of 500 seconds. It is found that the RHX undergoes a maximum cooldown rate of {approx} -0.3 C/s. The Plant Dynamics Code was also modified to decrease its running time by replacing the compressible flow form of the momentum equation with an incompressible flow equation for use inside of the cooler or recuperators where the CO{sub 2} has a compressibility similar to that of a liquid. Appendices provide a quasi-static control strategy for a SFR as well as the self-adaptive linear function fitting algorithm developed to produce the tabular data for input to the reactor code and Plant Dynamics Code from the detailed output of the other code.« less

  2. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  3. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less

  4. Utilization of Minor Actinides as a Fuel Component for Ultra-Long Life Bhr Configurations: Designs, Advantages and Limitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Pavel V. Tsvetkov

    2009-05-20

    This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less

  5. Next generation fuel irradiation capability in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo

    2009-07-01

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  6. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degreesmore » C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.« less

  7. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spotsmore » in the VHTR core.« less

  8. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  9. Process design and economic analysis of the zinc selenide thermochemical hydrogen cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otsuki, H.H.; Krikorian, O.H.

    1978-09-06

    A detailed preliminary design for a hydrogen production plant has been developed based on an improved version of the ZnSe thermochemical cycle for decomposing water. In the latest version of the cycle, ZnCl/sub 2/ is converted directly to ZnO through high temperature steam hydrolysis. This eliminates the need for first converting ZnCl/sub 2/ to ZnSO/sub 4/ and also slightly reduces the overall heat requirement. Moreover, it broadens the temperature range over which prime heat is required and improves the coupling of the cycle with a nuclear reactor heat source. The ZnSe cycle is driven by a very-high-temperature nuclear reactor (VHTR)more » proposed by Westinghouse that provides a high-temperature (1283 K) helium working gas for process heat and power. The plant is sized to produce 27.3 Mg H/sub 2//h (60,000 lb H/sub 2//h) and requires specially designed equipment to perform the critical reaction steps in the cycle. We have developed conceptual designs for several of the important process steps to make cost estimates, and have obtained a cycle efficiency of about 40% and a hydrogen production cost of about $14/GJ. We believe that the cost is high because input data on reaction rates and equipment lifetimes have been conservatively estimated and the cycle parameters have not been optimized. Nonetheless, this initial analysis serves an important function in delineating areas in the cycle where additional research is needed to increase efficiency and reduce costs in a more advanced version of the cycle.« less

  10. Evaluation of the DRAGON code for VHTR design analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division

    2006-01-12

    This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less

  11. NGNP Data Management and Analysis System Modeling Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the thirdmore » NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.« less

  12. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperaturemore » gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.« less

  13. HyPEP FY06 Report: Models and Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE report

    2006-09-01

    The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less

  14. Three-dimensional NDE of VHTR core components via simulation-based testing. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzina, Bojan; Kunerth, Dennis

    2014-09-30

    A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensionalmore » Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all existing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.« less

  15. Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, David Lewis

    2011-10-01

    This report documents the detailed background information that has been compiled to support the preparation of a much shorter white paper on the design features and fuel cycles of Very High-Temperature Reactors (VHTRs), including the proposed Next-Generation Nuclear Plant (NGNP), to identify the important proliferation resistance and physical protection (PR&PP) aspects of the proposed concepts. The shorter white paper derived from the information in this report was prepared for the Department of Energy Office of Nuclear Science and Technology for the Generation IV International Forum (GIF) VHTR Systems Steering Committee (SSC) as input to the GIF Proliferation Resistance and Physicalmore » Protection Working Group (PR&PPWG) (http://www.gen-4.org/Technology/horizontal/proliferation.htm). The short white paper was edited by the GIF VHTR SCC to address their concerns and thus may differ from the information presented in this supporting report. The GIF PR&PPWG will use the derived white paper based on this report along with other white papers on the six alternative Generation IV design concepts (http://www.gen-4.org/Technology/systems/index.htm) to employ an evaluation methodology that can be applied and will evolve from the earliest stages of design. This methodology will guide system designers, program policy makers, and external stakeholders in evaluating the response of each system, to determine each system's resistance to proliferation threats and robustness against sabotage and terrorism threats, and thereby guide future international cooperation on ensuring safeguards in the deployment of the Generation IV systems. The format and content of this report is that specified in a template prepared by the GIF PR&PPWG. Other than the level of detail, the key exception to the specified template format is the addition of Appendix C to document the history and status of coated-particle fuel reprocessing technologies, which fuel reprocessing technologies have yet to be deployed commercially and have only been demonstrated in testing at a laboratory scale.« less

  16. Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2008-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  17. Next Generation Nuclear Plant Methods Technical Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-12-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  18. Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg

    2010-09-01

    One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less

  19. The use of a very high temperature nuclear reactor in the manufacture of synthetic fuels

    NASA Technical Reports Server (NTRS)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    The three parts of a program directed toward creating a cost-effective nuclear hydrogen production system are described. The discussion covers the development of a very high temperature nuclear reactor (VHTR) as a nuclear heat and power source capable of producing the high temperature needed for hydrogen production and other processes; the development of a hydrogen generation process based on water decomposition, which can utilize the outputs of the VHTR and be integrated with many different ultimate hydrogen consuming processes; and the evaluation of the process applications of the nuclear hydrogen systems to assess the merits and potential payoffs. It is shown that the use of VHTR for the manufacture of synthetic fuels appears to have a very high probability of making a positive contribution to meeting the nation's energy needs in the future.

  20. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less

  1. Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fok, Alex

    2013-10-30

    The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less

  2. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  3. Analytical modeling of helium turbomachinery using FORTRAN 77

    NASA Astrophysics Data System (ADS)

    Balaji, Purushotham

    Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.

  4. Aqueous alteration of VHTR fuels particles under simulated geological conditions

    NASA Astrophysics Data System (ADS)

    Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd

    2014-05-01

    Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.

  5. Parametric Study on the Tensile Properties of Ni-Based Alloy for a VHTR

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Jin; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo

    2015-01-01

    A very high-temperature reactor (VHTR) has been studied among generation IV nuclear power plants owing to its many advantages such as high-electric efficiency and massive hydrogen production. The material used for the heat exchanger should sustain structural integrity for its life even though the material is exposed to a harsh environment at 1223 K (950 °C) in an impure helium coolant. Therefore, an enhancement of the material performance at high temperature gives a margin in determining the operating temperature and life time. This work is an effort to find an optimum combination of alloying elements and processing parameters to improve the material performance. The tensile property and microstructure for nickel-based alloys fabricated in a laboratory were evaluated as a function of the heat treatment, cold working, and grain boundary strengthener using a tension test at 1223 K (950 °C), scanning electron microscopy, and transmission electron microscopy. Elongation to rupture was increased by additional heat treatment and cold working, followed by additional heat treatment in the temperature range from 1293 K to 1383 K (1020 °C to 1110 °C) implying that the intergranular carbide contributes to grain boundary strengthening. The temperature at which the grain boundary is improved by carbide decoration was higher for a cold-worked specimen, which was described by the difference in carbide stability and carbide formation kinetics between no cold-worked and cold-worked specimens. Zr and Hf played a scavenging effect of harmful elements causing an increase in ductility.

  6. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less

  7. Total hemispherical emissivity of very high temperature reactor (VHTR) candidate materials: Hastelloy X, Haynes 230, and Alloy 617

    NASA Astrophysics Data System (ADS)

    Maynard, Raymond K.

    An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface conditions. The emissivity increased from 0.178 at 600 K to 0.235 at 1375 K for Haynes 230 as received sample. The emissivity increased significantly when its surface roughness was increased, or was oxidized in air, or coated with graphite dust, as compared to the as received material. The total hemispherical emissivity of Alloy 617 was measured as a function of temperature. The total emissivity increased from about 0.2 at 600 K to about 0.35 at 1275 K.

  8. Use of SUSA in Uncertainty and Sensitivity Analysis for INL VHTR Coupled Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2010-06-01

    The need for a defendable and systematic Uncertainty and Sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008.The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This interim milestone report provides an overview of the current status of themore » implementation and testing of SUSA at the INL VHTR Project Office.« less

  9. Evaluation of RANS and LES models for Natural Convection in High-Aspect-Ratio Parallel Plate Channels

    NASA Astrophysics Data System (ADS)

    Fradeneck, Austen; Kimber, Mark

    2017-11-01

    The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.

  10. FY2012 summary of tasks completed on PROTEUS-thermal work.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.; Smith, M.A.

    2012-06-06

    PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less

  11. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less

  12. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  13. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    NASA Astrophysics Data System (ADS)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.

  14. ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-05-01

    Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.

  15. In Situ Measurements of Spectral Emissivity of Materials for Very High Temperature Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Cao; S. J. Weber; S. O. Martin

    2011-08-01

    An experimental facility for in situ measurements of high-temperature spectral emissivity of materials in environments of interest to the gas-cooled very high temperature reactor (VHTR) has been developed. The facility is capable of measuring emissivities of seven materials in a single experiment, thereby enhancing the accuracy in measurements due to even minor systemic variations in temperatures and environments. The system consists of a cylindrical silicon carbide (SiC) block with seven sample cavities and a deep blackbody cavity, a detailed optical system, and a Fourier transform infrared spectrometer. The reliability of the facility has been confirmed by comparing measured spectral emissivitiesmore » of SiC, boron nitride, and alumina (Al2O3) at 600 C against those reported in literature. The spectral emissivities of two candidate alloys for VHTR, INCONEL{reg_sign} alloy 617 (INCONEL is a registered trademark of the Special Metals Corporation group of companies) and SA508 steel, in air environment at 700 C were measured.« less

  16. Experimental and CFD Studies of Coolant Flow Mixing within Scaled Models of the Upper and Lower Plenums of NGNP Gas-Cooled Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Yassin; Anand, Nk

    2016-03-30

    A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensitymore » peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by comparing it with benchmark data. The experimental data gave the same pattern as the benchmark data. A turbulent single buoyant jet study was performed for the case of LOFC in the upper plenum of scaled VHTR. Time-averaged profiles show that 3,000 frames of images were sufficient for the study up to second-order statistics. Self-similarity is an important feature of jets since the behavior of jets is independent of Reynolds number and a sole function of geometry. Self-similarity profiles were well observed in the axial velocity and velocity magnitude profile regardless of z/D where the radial velocity did not show any similarity pattern. The normal components of Reynolds stresses have self-similarity within the expected range. The study shows that large vortices were observed close to the dome wall, indicating that the geometry of the VHTR has a significant impact on its safety and performance. Near the dome surface, large vortices were shown to inhibit the flows, resulting in reduced axial jet velocity. The vortices that develop subsequently reduce the Reynolds stresses that develop and the impact on the integrity of the VHTR upper plenum surface. Multiple jets study, including two, three and five jets, were investigated.« less

  17. Creep of A508/533 Pressure Vessel Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard Wright

    2014-08-01

    ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with themore » very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.« less

  18. A Distributed Fiber Optic Sensor Network for Online 3-D Temperature and Neutron Fluence Mapping in a VHTR Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph

    2014-04-30

    Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.

  19. Optimization and Comparison of Direct and Indirect Supercritical Carbon Dioxide Power Plant Cycles for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-11-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less

  20. Physics Features of TRU-Fueled VHTRs

    DOE PAGES

    Lewis, Tom G.; Tsvetkov, Pavel V.

    2009-01-01

    The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less

  1. INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom; Javier Ortensi; Sonat Sen

    2013-09-01

    The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible formore » defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III results of all other international participants in 2014, while the remaining Phase II transient case results will be reported in 2015.« less

  2. Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures

    NASA Astrophysics Data System (ADS)

    Tahir, Fraaz

    The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.

  3. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  4. Methods Data Qualification Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Sam Alessi; Tami Grimmett; Leng Vang

    The overall goal of the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) is to maintain data provenance for all NGNP data including the Methods component of NGNP data. Multiple means are available to access data stored in NDMAS. A web portal environment allows users to access data, view the results of qualification tests and view graphs and charts of various attributes of the data. NDMAS also has methods for the management of the data output from VHTR simulation models and data generated from experiments designed to verify and validate the simulation codes. These simulation models representmore » the outcome of mathematical representation of VHTR components and systems. The methods data management approaches described herein will handle data that arise from experiment, simulation, and external sources for the main purpose of facilitating parameter estimation and model verification and validation (V&V). A model integration environment entitled ModelCenter is used to automate the storing of data from simulation model runs to the NDMAS repository. This approach does not adversely change the why computational scientists conduct their work. The method is to be used mainly to store the results of model runs that need to be preserved for auditing purposes or for display to the NDMAS web portal. This interim report demonstrates the currently development of NDMAS for Methods data and discusses data and its qualification that is currently part of NDMAS.« less

  5. Bypass flow computations on the LOFA transient in a VHTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming

    2014-01-01

    Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature andmore » flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.« less

  6. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less

  7. RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, G.; Epiney, A. S.

    2012-07-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less

  8. High temperature corrosion of a nickel base alloy by helium impurities

    NASA Astrophysics Data System (ADS)

    Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.

    2007-05-01

    High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.

  9. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures upmore » to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.« less

  10. Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji-Hyun, Yoon; Sung-Ho, Kim; Bong-Sang, Lee

    2006-07-01

    Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The resultsmore » are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)« less

  11. Fracture toughness and the master curve for modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Yoon, Ji-Hyun; Yoon, Eui-Pak

    2006-12-01

    Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.

  12. NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia D. Gentillon

    2011-09-01

    Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities formore » displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.« less

  13. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less

  14. ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2015-11-01

    Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.

  15. CFD Analyses of Air-Ingress Accident for VHTRs

    NASA Astrophysics Data System (ADS)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).

  16. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less

  17. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  18. Creep-Fatigue Behavior of Alloy 617 at 850°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Laura

    Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expectedmore » reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised of a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain-controlled hold time duration no longer decreases the cycle life, has been observed for Alloy 617 at 950 °C at least to the investigated hold times[2,3], as illustrated through a plot of cycles to failure v. hold time in Figure 1. The 950 °C creep-fatigue data set generated by Totemeier and Tian[5] at the 0.3% and 1.0% strain range is consistent in magnitude in terms of the cycles to failure data of that of Carroll et al., however, 0.3% strain range data did not exhibit saturation at hold times of up to 10 min. At 1.0% total strain, saturation in the number of cycles to failure was observed within the investigated peak tensile hold times of up to 10 min[5]. The data of Carroll et al.[2,3] in Figure 1 and Totemeier and Tian[5] is also consistent in magnitude with the data of Rao and coworkers[4] investigated at the 0.6% strain range. It should be noted that saturation in the number of cycles to failure is not present in the data published by Rao and coworkers[4] for tensile hold times of up to 120 min. The latter testing was in a simulated primary-circuit helium gas as opposed to air and a single data point is reported for the longer hold time conditions.« less

  19. Investigations of the Application of CFD to Flow Expected in the Lower Plenum of the Prismatic VHTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard W.Johnson; Tara Gallaway; Donna P. Guillen

    2006-09-01

    The Generation IV (Gen IV) very high temperature reactor (VHTR) will either be a prismatic (block) or pebble bed design. However, a prismatic VHTR reference design, based on the General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) [General Atomics, 1996] has been developed for preliminary analysis purposes [MacDonald, et al., 2003]. Numerical simulation studies reported herein are based on this reference design. In the lower plenum of the prismatic reference design, the flow will be introduced by dozens of turbulent jets from the core above. The jet flow will encounter rows of columns that support the core. The flow from themore » core will have to turn ninety degrees and flow toward the exit duct as it passed through the forest of support columns. Due to the radial variation of the power density in the core, the jets will be at various temperatures at the inlet to the lower plenum. This presents some concerns, including that local hot spots may occur in the lower plenum. This may have a deleterious effect on the materials present as well as cause a variation in temperature to be present as the flow enters the power conversion system machinery, which could cause problems with the operation of the machinery. In the past, systems analysis codes have been used to model flow in nuclear reactor systems. It is recognized, however, that such codes are not capable of modeling the local physics of the flow to be able to analyze for local mixing and temperature variations. This has led to the determination that computational fluid dynamic (CFD) codes be used, which are generally regarded as having the capability of accurately simulating local flow physics. Accurate flow modeling involves determining appropriate modeling strategies needed to obtain accurate analyses. These include determining the fineness of the grid needed, the required iterative convergence tolerance, which numerical discretization method to use, and which turbulence model and wall treatment should be employed. It also involves validating the computer code and turbulence model against a series of separate and combined flow phenomena and selecting the data used for the validation. This report describes progress made to identify proper modeling strategies for simulating the lower plenum flow for the task entitled “CFD software validation of jets in crossflow,” which was designed to investigate the issues pertaining to the validation process. The flow phenomenon previously chosen to investigate is flow in a staggered tube bank because it is shown by preliminary simulations to be the location of the highest turbulence intensity in the lower plenum Numerical simulations were previously obtained assuming that the flow is steady. Various turbulence models were employed along with strategies to reduce numerical error to allow appropriate comparisons of the results. It was determined that the sophisticated Reynolds stress model (RSM) provided the best results. It was later determined that the flow is an unsteady flow wherein circulating eddies grow behind the tube and ‘peel off’ alternately from the top and the bottom of the tube. Additional calculations show that the mean velocity is well predicted when the flow is modeled as an unsteady flow. The results for U are clearly superior for the unsteady computations; the unsteady computations for the turbulence stress are similar to those for the steady calculations, showing the same trends. It is clear that strategie« less

  20. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M. P.; King, J. C.; Gorman, B. P.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less

  1. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    NASA Astrophysics Data System (ADS)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  2. Joy, exercise, enjoyment, getting out: a qualitative study of older people's experience of cycling in Sydney, Australia.

    PubMed

    Zander, Alexis; Passmore, Erin; Mason, Chloe; Rissel, Chris

    2013-01-01

    Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Seventeen adults who aged 50-75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants' confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment) and improved physical health. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising.

  3. Joy, Exercise, Enjoyment, Getting out: A Qualitative Study of Older People's Experience of Cycling in Sydney, Australia

    PubMed Central

    Passmore, Erin; Mason, Chloe; Rissel, Chris

    2013-01-01

    Introduction. Cycling can be an enjoyable way to meet physical activity recommendations and is suitable for older people; however cycling participation by older Australians is low. This qualitative study explored motivators, enablers, and barriers to cycling among older people through an age-targeted cycling promotion program. Methods. Seventeen adults who aged 50–75 years participated in a 12-week cycling promotion program which included a cycling skills course, mentor, and resource pack. Semistructured interviews at the beginning and end of the program explored motivators, enablers, and barriers to cycling. Results. Fitness and recreation were the primary motivators for cycling. The biggest barrier was fear of cars and traffic, and the cycling skills course was the most important enabler for improving participants' confidence. Reported outcomes from cycling included improved quality of life (better mental health, social benefit, and empowerment) and improved physical health. Conclusions. A simple cycling program increased cycling participation among older people. This work confirms the importance of improving confidence in this age group through a skills course, mentors, and maps and highlights additional strategies for promoting cycling, such as ongoing improvement to infrastructure and advertising. PMID:23864869

  4. Thermodynamic analysis of performance improvement by reheat on the CO2 transcritical power cycle

    NASA Astrophysics Data System (ADS)

    Tuo, Hanfei

    2012-06-01

    The CO2 transcritical rankine power cycle has been widely investigated recently, because of its better temperature glide matching between sensible heat source and working fluid in vapor generator, and its desirable qualities, such as moderate critical point, little environment impact and low cost. A reheat CO2 transcritical power cycle with two stage expansion is presented to improve baseline cycle performance in this paper. Energy and exergy analysis are carried out to investigate effects of important parameters on cycle performance. The main results show that reheat cycle performance is sensitive to the variation of medium pressures and the optimum medium pressures exist for maximizing work output and thermal efficiency, respectively. Reheat cycle is compared to baseline cycle under the same conditions. More significant improvements by reheat are obtained at lower turbine inlet temperatures and larger high cycle pressure. Work output improvement is much higher than thermal efficiency improvement, because extra waste heat is required to reheat CO2. Based on second law analysis, exergy efficiency of reheat cycle is also higher than that of baseline cycle, because more useful work is converted from waste heat. Reheat with two stage expansion has great potential to improve thermal efficiency and especially net work output of a CO2 transcritical power cycle using a low-grade heat source.

  5. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  6. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, L.; Carroll, M.

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatiguemore » for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.« less

  7. ASME code considerations for the compact heat exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestell, James; Sham, Sam

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a workingmore » fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and robustness. Classic shell and tube designs will be large and costly, and may only be appropriate in steam generator service in the SHX where boiling inside the tubes occurs. For other energy conversion systems, all of these features can be met in a compact heat exchanger design. This report will examine some of the ASME Code issues that will need to be addressed to allow use of a Code-qualified compact heat exchanger in IHX or SHX nuclear service. Most effort will focus on the IHX, since the safety-related (Class A) design rules are more extensive than those for important-to-safety (Class B) or commercial rules that are relevant to the SHX.« less

  8. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less

  9. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less

  10. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  11. Knowledge Sharing Mechanism: Enabling C2 to Adapt to Changing Environments

    DTIC Science & Technology

    2007-06-01

    seeking to improve upon it. This refinement is called kaizen , the Japanese word for continuous improvement process. With each PDCA Cycle, we can either be...in a hoshin or a kaizen mode depending on our purpose. Additionally, a successful innovation achieved during a hoshin PDCA Cycle can directly lead to a...new kaizen PDCA Cycle because the innovation has allowed us to improve an existing process or artifact. A kaizen PDCA Cycle, likewise can directly

  12. KOH concentration effect on the cycle life of nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1985-01-01

    Effects of KOH concentration on the cycle life of a sintered-type nickel electrode were studied in a boiler plate nickel-hydrogen cell at 23 C using an accelerated 45-min cycle regime at 80 percent depth of discharge. The cycle life improved greatly as the KOH concentration decreased, although the initial capacity of the cell decreased slightly. The cycle life improved by a factor of two or more when the KOH concentration was reduced from 36 to 31 percent and by a similar factor from reductions of 31 to 26 percent. For many applications, this life improvement may outweigh the initial capacity decrease.

  13. Nuclear Fuel Cycle Options Catalog: FY16 Improvements and Additions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Barela, Amanda Crystal; Schetnan, Richard Reed

    2016-08-31

    The United States Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Program sponsors nuclear fuel cycle research and development. As part of its Fuel Cycle Options campaign, the DOE has established the Nuclear Fuel Cycle Options Catalog. The catalog is intended for use by the Fuel Cycle Technologies Program in planning its research and development activities and disseminating information regarding nuclear energy to interested parties. The purpose of this report is to document the improvements and additions that have been made to the Nuclear Fuel Cycle Options Catalog in the 2016 fiscal year.

  14. Incorporation of Carrier Phase Global Positioning System Measurements into the Navigation Reference System for Improved Performance

    DTIC Science & Technology

    1993-12-01

    5-6 5.6.1 Large Cycle Slip Simulation ............................. 5-7 5.6.2 Small Cycle Slip Simulation ........................... 5-9...Appendix J. Small Cycle Slip Simulation Results ............................. J-1 Bibliography ........................................................ BIB-I...when subjected to large and small cycle slips. Results of the simulations indicate that the PNRS can provide an improved navigation solution over

  15. Quality Improvement Initiatives to Optimize the Management of Chronic Obstructive Pulmonary Disease in Patients With Lung Cancer.

    PubMed

    Digby, Geneviève C; Robinson, Andrew

    2017-11-01

    Patients with lung cancer (LC) frequently have chronic obstructive pulmonary disease (COPD), the optimization of which improves outcomes. A 2014 Queen's University Hospitals audit demonstrated that COPD was underdiagnosed and undertreated in outpatients with LC. We sought to improve the diagnosis and management of COPD in this population. We implemented change using a Define/Measure/Analyze/Improve/Control (DMAIC) improvement cycle. Data were obtained by chart review from the Cancer Care Ontario database and e-Patient System for patients with newly diagnosed LC, including patient characteristics, pulmonary function test (PFT) data, and bronchodilator therapies. Improvement cycle 1 included engaging stakeholders and prioritizing COPD management by respirologists in the Lung Diagnostic Assessment Program. Improvement cycle 2 included physician restructuring and developing a standard work protocol. Data were analyzed monthly and presented on statistical process control P-charts, which assessed differences over time. The χ 2 and McNemar tests assessed for significance between independent and dependent groups, respectively. A total of 477 patients were studied (165 patients at baseline, 166 patients in cycle 1, and 127 patients in cycle 2). There was no change in PFT completion over time, although respirology-managed patients were significantly more likely to undergo a PFT than patients who were not managed by respirology (56.7% v 96.1%; P < .00001). The proportion of respirology-managed patients with LC with airflow obstruction receiving inhaled bronchodilator significantly increased (baseline, 46.3%; cycle 1, 51.0%; and cycle 2, 74.3%). By cycle 2, patients with airflow obstruction were more likely to receive a long-acting bronchodilator if managed by respirology (74.3% v 44.8%; P = .0009). COPD is underdiagnosed and undertreated in outpatients with LC. A DMAIC quality improvement strategy emphasizing COPD treatment during LC evaluation in the Lung Diagnostic Assessment Program significantly improved COPD management.

  16. 48 CFR 211.274-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...

  17. 48 CFR 211.274-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...

  18. 48 CFR 211.274-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide reliable accountability of property and asset visibility throughout the life cycle; and (d) Reduce the...

  19. Performance tests of a two phase ejector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrell, G.S.; Kornhauser, A.A.

    1995-12-31

    The ejector expansion refrigeration cycle is a modified vapor compression cycle in which a two phase ejector is used to recover a portion of the work otherwise lost in the expansion valve. The ejector improves cycle performance by increasing compressor inlet pressure and by lowering the quality of liquid entering the evaporator. Theoretically, a cooling COP improvement of approximately 23% is achievable for a typical refrigerating cycle and an ideal ejector. If the ejector performed as well as typical single phase ejectors an improvement of 12% could be achieved. Previous tests have demonstrated a smaller 3.7% improvement; the difference ismore » in the poor performance of the two phase ejector. The purpose of this research is to understand the operating characteristics of the two phase ejector and to devise design improvements. A two phase ejector test rig has been constructed and tested. Preliminary data show performance superior to previously tested two phase ejectors, but still inferior to single phase ejectors. Ejector performance corresponds to refrigeration cycle COP improvements ranging from 3.9% to 7.6%.« less

  20. Effects of a cycle training course on children's cycling skills and levels of cycling to school.

    PubMed

    Ducheyne, Fabian; De Bourdeaudhuij, Ilse; Lenoir, Matthieu; Cardon, Greet

    2014-06-01

    The primary aim of the present study was to evaluate the short- and longer-term effects of a cycle training on children's cycling skills. A second aim of the study was to examine the effects of a cycle training, with and without parental involvement, on levels of cycling to school and on parental attitudes towards cycling. Three participating schools were randomly assigned to the "intervention" (25 children), the "intervention plus parent" (34 children) or "control" condition (35 children). A cycle training (four sessions of 45 min) took place only in the intervention schools. Parents in the "intervention plus parent" condition were asked to assist their child in completing weekly homework tasks. Children's cycling skills were assessed, using a practical cycling test. All participating children also received a short parental questionnaire on cycling behavior and parental attitudes towards cycling. Assessments took place at baseline, within 1 week after the last session and at 5-months follow-up. Repeated measure analyses were conducted to evaluate the effects of the cycle training. Children's total cycling skill score increased significantly more from pre to post and from pre to 5-months follow-up in the intervention group than in the control group. On walking with the bicycle (F=1.6), cycling in a straight line (F=2.6), cycling a slalom (F=1.9), cycling over obstacles (F=2.1), cycling on a sloping surface (F=1.7) and dismounting the bicycle (F=2.0), the cycle training had no effect. For all other cycling skills, significant improvements were observed on short- and longer-term. No significant intervention effects were found on children's cycling to school levels (F=1.9) and parental attitudes towards cycling. The cycle training course was effective in improving children's cycling skills and the improvements were maintained 5 months later. However, the cycle training course was not effective in increasing children's cycling to school levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Two cycles of plasma rich in growth factors (PRGF-Endoret) intra-articular injections improve stiffness and activities of daily living but not pain compared to one cycle on patients with symptomatic knee osteoarthritis.

    PubMed

    Vaquerizo, Víctor; Padilla, Sabino; Aguirre, José Javier; Begoña, Leire; Orive, Gorka; Anitua, Eduardo

    2017-05-19

    To assess the clinical efficacy and safety of a treatment based on one cycle versus two cycles of intra-articular injections of plasma rich in growth factors (PRGF-Endoret) on patients with knee osteoarthritis (OA). Ninety patients with knee OA were included and evaluated. A total of 48 patients received one cycle (OC group) (3 injections on a weekly basis), while 42 patients received two cycles of PRGF-Endoret (TC group) spaced 6 months between them. Patients were evaluated with LEQUESNE and WOMAC scores before treatment and after 48 weeks. Safety assessment was also performed. A significant reduction of all assessed outcome measures was shown for both groups at 48 weeks compared with baseline values (P < 0.001). Patients of TCs group showed a significantly higher reduction (P < 0.05) in WOMAC stiffness subscales. Regarding LEQUESNE INDEX, a significantly higher reduction was observed in the TC group in all subscales except in pain score. In the maximum walking distance subscale (MCD), the improvement rate was 31.8% higher for the TCs group compared with the OC group (P < 0.01). In addition, the TC group showed a significant improvement in LEQUESNE activities of daily living (ADV) and global subscales of 14.7 and 11.8% (P < 0.05) higher, respectively, than the OC group. Treatment with two cycles of PRGF did not show a significantly higher pain reduction compared with one cycle treatment. However, two cycles of PRGF showed a significant improvement in WOMAC stiffness, LEQUESNE MCD, LEQUESNE ADV and LEQUESNE global subscales. Therefore, patients treated with two cycles present an improvement in quality of life. II.

  2. AGR-2 Irradiation Test Final As-Run Report, Rev 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collin, Blaise P.

    2014-08-01

    This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO 2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samplesmore » for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO 2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO 2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO 2 fuel, while fast fluence values ranged from 1.94 to 3.47 x 10 25 n/m 2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53 x 10 25 n/m 2 (E >0.18 MeV) for UO 2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO 2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10 -6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2 x 10 -6. In the UO 2 capsule (Capsule 3), the R/B values during the first three cycles were below 10 -7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.« less

  3. Can cycling safety be improved by opening all unidirectional cycle paths for cycle traffic in both directions? A theoretical examination of available literature and data.

    PubMed

    Methorst, Rob; Schepers, Paul; Kamminga, Jaap; Zeegers, Theo; Fishman, Elliot

    2017-08-01

    Many studies have found bicycle-motor vehicle crashes to be more likely on bidirectional cycle paths than on unidirectional cycle paths because drivers do not expect cyclists riding at the right side of the road. In this paper we discuss the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions prevent this lack of expectancy and accordingly improves cycling safety. A new national standard requires careful consideration because a reversal is difficult once cyclists are used to their new freedom of route choice. We therefore explored the hypothesis using available data, research, and theories. The results show that of the length of cycle paths along distributor roads in the Netherlands, 72% is bidirectional. If drivers would become used to cyclists riding at the left side of the road, this result raises the question of why bidirectional cycle paths in the Netherlands still have a poor safety record compared to unidirectional cycle paths. Moreover, our exploration suggested that bidirectional cycle paths have additional safety problems. It increases the complexity of unsignalized intersections because drivers have to scan more directions in a short period of time. Moreover, there are some indications that the likelihood of frontal crashes between cyclists increases. We reject the hypothesis that opening all unidirectional cycle paths for cycle traffic in both directions will improve cycle safety. We recommend more attention for mitigating measures given the widespread application of bidirectional cycle paths in the Netherlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Course Development Cycle Time: A Framework for Continuous Process Improvement.

    ERIC Educational Resources Information Center

    Lake, Erinn

    2003-01-01

    Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)

  5. Systems Engineering Methodology for Fuel Efficiency and its Application to the TARDEC Fuel Efficient Demonstrator (FED) Program

    DTIC Science & Technology

    2010-08-19

    highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will

  6. 75 FR 8272 - Defense Federal Acquisition Regulation Supplement; Acquisition Strategies To Ensure Competition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Competition Throughout the Life Cycle of Major Defense Acquisition Programs AGENCY: Defense Acquisition... subcontract level of the MDAP throughout its life cycle as a means to improve contractor performance; and (2...) throughout the program life cycle as a means to improve contractor performance; and (ii) Document the...

  7. A New, Highly Improved Two-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  8. Development of Improved LOX-Compatible Laminated Gasket Composite

    DTIC Science & Technology

    1966-08-01

    Braided Teflon 2. Bleached fluorocarbon felt 3. Teflon and asbestos fibers 4. Teflon and ceramic fibers 5. Teflon and glass fibers 6. Viton A and asbestos 7...fluorinated ethylene- propylene (Teflon FEP), polychlorotrifluoroethylene films (Aclar - Kel F), and fluorocarbon elastomers (Viton A - Fluorel, etc...2nd 10th CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE CYCLE FILLED FLUOROCARBON GLASS FILLED TEFLON FLUOROCARBON LAMINATE ELASTOMER Figure 21

  9. Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.

    Ni-based superalloy Haynes 230 is used in many applications such as very high temperature reactor (VHTR) or solid oxide fuel cells (SOFCs) where it is exposed to high temperature service environment. In order to improve the resistance for high temperature oxidation, the effect of crystallographic orientation on the early stage oxidation was investigated. It was demonstrated that different oxide thicknesses are formed on grains having different orientations. Comparison of electron backscatter diffraction (EBSD) orientation maps before and after oxidation at 900 °C indicates that grains near (111) orientation, especially with the deviation angle from <111> that is smaller than 20°,more » are more oxidation resistant than grains of other orientations. Correlation between the results of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) was used to compare the oxidation rate of grains having different crystallographic orientation. The oxidation rate was found to change with the crystallographic orientation as follows (111) < (110) < (100), also it was demonstrated that the oxidation rate changes are a nearly linear function of the angle of deviation from <111> direction. The morphology of surface oxide also depends on the orientation of grains. - Highlights: • Comparison of EBSD maps before and after oxidation allows to investigate the effect of orientation on oxidation in a more direct way; • Effect of crystallographic orientation on oxidation behavior of alloy 230 is studied by combination of EBSD and AFM; • Different thickness of oxide is formed on grain with different orientation and dependence of anisotropic oxidation behavior is discussed; • The morphology of grains is also orientation dependence.« less

  10. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2012-05-01

    A randomized controlled trial, involving 35 post-acute hemiparetic patients, demonstrated that a four-week treatment of cycling induced by functional electrical stimulation (FES-cycling) promotes motor recovery. Analyzing additional data acquired during that study, the present work investigated whether these improvements were associated to changes in muscle strength and motor coordination. Participants were randomized to receive FES-cycling or placebo FES-cycling. Clinical outcome measures were: the Motricity Index (MI), the gait speed, the electromyography activation of the rectus femoris and biceps femoris, and the mechanical work produced by each leg during voluntary pedaling. To provide a comparison with normal values, healthy adults also carried out the pedaling test. Patients were evaluated before, after training, and at follow-up visits. A significant treatment effect in favor of FES-treated patients was found in terms of MI scores and unbalance in mechanical works, while differences in gait speed were not significant (ANCOVA). Significant improvements in the activation of the paretic muscles were highlighted in the FES group, while no significant change was found in the placebo group (Friedman test). Our findings suggested that improvements in motor functions induced by FES-cycling training were associated with a more symmetrical involvement of the two legs and an improved motor coordination.

  11. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    PubMed

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.

  12. Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective.

    PubMed

    Sundström Poromaa, Inger; Gingnell, Malin

    2014-01-01

    The menstrual cycle has attracted research interest ever since the 1930s. For many researchers the menstrual cycle is an excellent model of ovarian steroid influence on emotion, behavior, and cognition. Over the past years methodological improvements in menstrual cycle studies have been noted, and this review summarizes the findings of methodologically sound menstrual cycle studies in healthy women. Whereas the predominant hypotheses of the cognitive field state that sexually dimorphic cognitive skills that favor men are improved during menstrual cycle phases with low estrogen and that cognitive skills that favor women are improved during cycle phases with increased estrogen and/or progesterone, this review has not found sufficient evidence to support any of these hypotheses. Mental rotation has gained specific interest in this aspect, but a meta-analysis yielded a standardized mean difference in error rate of 1.61 (95% CI -0.35 to 3.57), suggesting, at present, no favor of an early follicular phase improvement in mental rotation performance. Besides the sexually dimorphic cognitive skills, studies exploring menstrual cycle effects on tasks that probe prefrontal cortex function, for instance verbal or spatial working memory, have also been reviewed. While studies thus far are few, results at hand suggest improved performance at times of high estradiol levels. Menstrual cycle studies on emotional processing, on the other hand, tap into the emotional disorders of the luteal phase, and may be of relevance for women with premenstrual disorders. Although evidence at present is limited, it is suggested that emotion recognition, consolidation of emotional memories, and fear extinction is modulated by the menstrual cycle in women. With the use of functional magnetic resonance imaging, several studies report changes in brain reactivity across the menstrual cycle, most notably increased amygdala reactivity in the luteal phase. Thus, to the extent that behavioral changes have been demonstrated over the course of the menstrual cycle, the best evidence suggests that differences in sexually dimorphic tasks are small and difficult to replicate. However, emotion-related changes are more consistently found, and are better associated with progesterone than with estradiol such that high progesterone levels are associated with increased amygdala reactivity and increased emotional memory.

  13. Menstrual cycle influence on cognitive function and emotion processing—from a reproductive perspective

    PubMed Central

    Sundström Poromaa, Inger; Gingnell, Malin

    2014-01-01

    The menstrual cycle has attracted research interest ever since the 1930s. For many researchers the menstrual cycle is an excellent model of ovarian steroid influence on emotion, behavior, and cognition. Over the past years methodological improvements in menstrual cycle studies have been noted, and this review summarizes the findings of methodologically sound menstrual cycle studies in healthy women. Whereas the predominant hypotheses of the cognitive field state that sexually dimorphic cognitive skills that favor men are improved during menstrual cycle phases with low estrogen and that cognitive skills that favor women are improved during cycle phases with increased estrogen and/or progesterone, this review has not found sufficient evidence to support any of these hypotheses. Mental rotation has gained specific interest in this aspect, but a meta-analysis yielded a standardized mean difference in error rate of 1.61 (95% CI −0.35 to 3.57), suggesting, at present, no favor of an early follicular phase improvement in mental rotation performance. Besides the sexually dimorphic cognitive skills, studies exploring menstrual cycle effects on tasks that probe prefrontal cortex function, for instance verbal or spatial working memory, have also been reviewed. While studies thus far are few, results at hand suggest improved performance at times of high estradiol levels. Menstrual cycle studies on emotional processing, on the other hand, tap into the emotional disorders of the luteal phase, and may be of relevance for women with premenstrual disorders. Although evidence at present is limited, it is suggested that emotion recognition, consolidation of emotional memories, and fear extinction is modulated by the menstrual cycle in women. With the use of functional magnetic resonance imaging, several studies report changes in brain reactivity across the menstrual cycle, most notably increased amygdala reactivity in the luteal phase. Thus, to the extent that behavioral changes have been demonstrated over the course of the menstrual cycle, the best evidence suggests that differences in sexually dimorphic tasks are small and difficult to replicate. However, emotion-related changes are more consistently found, and are better associated with progesterone than with estradiol such that high progesterone levels are associated with increased amygdala reactivity and increased emotional memory. PMID:25505380

  14. Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Tasaka, Yuko; Yoshimoto, Nobuko; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at a low-temperature (-20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) enhanced Li cycleability in the subsequent cycles at a room temperature (25°C). In LiPF 6-PC/DMC, not only the low-temperature precycling in the initial 10 cycles was effective in the improvement of Li cycle life but also the first low-temperature Li deposition followed by room temperature cycling enhanced the Li cycle life. Such a precycling effect was observed with various current densities at the initial Li deposition and the subsequent cycling. When the current density of the cycling was high, improved cycling efficiency was observed and the efficiency of the Li electrode undergoing the precycling was close to that at a constant temperature of -20°C.

  15. Impact of Accreditation on Improvement of Operational Inputs after Two Cycles of Assessments in Some Ghanaian Universities

    ERIC Educational Resources Information Center

    Dattey, Kwame; Westerheijden, Don F.; Hofman, W. H. A.

    2017-01-01

    The study assesses the influence of accreditation, after two cycles of evaluation on some selected Ghanaian universities. This was done by examining the changes that had occurred in specified indicators, mainly because of the implementation of suggestions for improvement made by the previous cycle's evaluators. The study employed quantitative…

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup

    In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less

  17. Cycle time reduction using lean six sigma in make-to-order (MTO) environment: Conceptual framework

    NASA Astrophysics Data System (ADS)

    Man, Siti Mariam; Zain, Zakiyah; Nawawi, Mohd Kamal Mohd

    2015-12-01

    This paper outlines the framework for application of lean six sigma (LSS) methodology to improve semiconductor assembly cycle time in a make-to-order (MTO) business environment. The cycle time reduction is the prime objective in the context of an overall productivity improvement particularly in the MTO environment. The interaction of the production rate and cycle time is described, while the emphasis is on Define-Measure-Analyze-Improve-Control (DMAIC) and Plan-Do-Check-Act (PDCA) activities. A framework for the conceptual understanding is provided along with practical implementation issues. A relevant measure for the degree of flexibility (DOF) in the context of quick setup is also discussed.

  18. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  19. Prolongation of Off-Cycle Interval by Finasteride Is Not Associated with Survival Improvement in Intermittent Androgen Deprivation Therapy in LNCaP Tumor Model

    PubMed Central

    Wang, Yujuan; Gupta, Shubham; Hua, Vi; Ramos-Garcia, Raquel; Shevrin, Daniel; Jovanovic, Borko D.; Nelson, Joel B

    2009-01-01

    BACKGROUND We have previously reported that finasteride administration in intermittent androgen deprivation therapy (IADT) can improve survival of nude mice bearing LNCaP xenograft tumors when the duration of off-cycle in IADT was fixed. A recent retrospective study showed that addition of finasteride doubled the duration of the off-cycle, without changing progression to castration resistance. In view of the above difference, we attempted to investigate the relationship of 5α-reductase inhibition with the off-cycle interval and overall survival in a murine model. METHODS Subcutaneous LNCaP tumors were established in nude mice (Balb/C-Nu). After the tumors reached a size of 0.5 cm in diameter, the mice were castrated and followed up for 2 weeks after which they were randomized to continuous androgen deprivation (CAD), CAD plus finasteride, IADT, and IADT plus finasteride. The off-cycle was discontinued when the tumor volume was doubled. Subsequent cycles were carried out similarly. RESULTS Use of finasteride during the off-cycle of IADT doubled the first off-cycle duration. However, prolongation of the off-cycle by finasteride did not translate into an increase in overall survival. CONCLUSIONS The survival advantage of IADT+F over IADT that we previously reported was lost when the off-cycle prolongation by finasteride was allowed. Maximum possible lengthening of the off-cycle by 5α-reductase inhibition is not associated with survival improvement in this animal model. PMID:19739129

  20. Application of Pharmacokinetics and Pharmacodynamics in Product Life Cycle Management. A Case Study with a Carbidopa-Levodopa Extended-Release Formulation.

    PubMed

    Modi, Nishit B

    2017-05-01

    Increasing costs in discovering and developing new molecular entities and the continuing debate on limited company pipelines mean that pharmaceutical companies are under significant pressure to maximize the value of approved products. Life cycle management in the context of drug development comprises activities to maximize the effective life of a product. Life cycle approaches can involve new formulations, new routes of delivery, new indications or expansion of the population for whom the product is indicated, or development of combination products. Life cycle management may provide an opportunity to improve upon the current product through enhanced efficacy or reduced side effects and could expand the therapeutic market for the product. Successful life cycle management may include the potential for superior efficacy, improved tolerability, or a better prescriber or patient acceptance. Unlike generic products where bioequivalence to an innovator product may be sufficient for drug approval, life cycle management typically requires a series of studies to characterize the value of the product. This review summarizes key considerations in identifying product candidates that may be suitable for life cycle management and discusses the application of pharmacokinetics and pharmacodynamics in developing new products using a life cycle management approach. Examples and a case study to illustrate how pharmacokinetics and pharmacodynamics contributed to the selection of dosing regimens, demonstration of an improved therapeutic effect, or regulatory approval of an improved product label are presented.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori

    Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.

  2. Thermodynamic Study of Multi Pressure HRSG in Gas/Steam Combined Cycle Power Plant

    NASA Astrophysics Data System (ADS)

    Sharma, Meeta; Singh, Onkar

    2018-01-01

    Combined cycle power plants have a combination of gas based topping cycle and steam based bottoming cycle through the use of Heat Recovery Steam Generator (HRSG). These HRSG may be either of single pressure (SP) or dual pressure (DP) or multiple pressure type. Here in this study thermodynamic analysis is carried out for optimal performance of HRSG using different types of HRSG layout for combined cycle efficiency improvement. Performance of single pressure HRSG and dual pressure HRSG, utilized in gas/steam combined cycle is analyzed and presented here. In comparison to single pressure, dual pressure HRSG offers 10 to 15% higher reduction in stack temperature due to greater heat recovery and thus improved plant efficiency.

  3. Redesigning the care of fragility fracture patients to improve osteoporosis management: a health care improvement project.

    PubMed

    Harrington, J Timothy; Barash, Harvey L; Day, Sherry; Lease, Joellen

    2005-04-15

    To develop new processes that assure more reliable, population-based care of fragility fracture patients. A 4-year clinical improvement project was performed in a multispecialty, community practice health system using evidence-based guidelines and rapid cycle process improvement methods (plan-do-study-act cycles). Prior to this project, appropriate osteoporosis care was provided to only 5% of our 1999 hip fracture patients. In 2001, primary physicians were provided prompts about appropriate care (cycle 1), which resulted in improved care for only 20% of patients. A process improvement pilot in 2002 (cycle 2) and full program implementation in 2003 (cycle 3) have assured osteoporosis care for all willing and able patients with any fragility fracture. Altogether, 58% of 2003 fragility fracture patients, including 46% of those with hip fracture, have had a bone measurement, have been assigned to osteoporosis care with their primary physician or a consultant, and are being monitored regularly. Only 19% refused osteoporosis care. Key process improvements have included using orthopedic billings to identify patients, referring patients directly from orthopedics to an osteoporosis care program, organizing care with a nurse manager and process management computer software, assigning patients to primary or consultative physician care based on disease severity, and monitoring adherence to therapy by telephone. Reliable osteoporosis care is achievable by redesigning clinical processes. Performance data motivate physicians to reconsider traditional approaches. Improving the care of osteoporosis and other chronic diseases requires coordinated care across specialty boundaries and health system support.

  4. Automated respiratory cycles selection is highly specific and improves respiratory mechanics analysis.

    PubMed

    Rigo, Vincent; Graas, Estelle; Rigo, Jacques

    2012-07-01

    Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t" values from ventilator respiratory cycle data are two to three times higher than ventilator respiratory cycles. Automated selection is highly specific. Automated respiratory cycle reflects most the interaction of both ventilator and patient. Improving discriminating power of ventilator monitoring will likely help in assessing disease status and following trends. Averaged parameters derived from automated respiratory cycles are more precise and could be displayed by ventilators to improve real-time fine tuning of ventilator settings.

  5. Changes in executive function after acute bouts of passive cycling in Parkinson's disease.

    PubMed

    Ridgel, Angela L; Kim, Chul-Ho; Fickes, Emily J; Muller, Matthew D; Alberts, Jay L

    2011-04-01

    Individuals with Parkinson's disease (PD) often experience cognitive declines. Although pharmacologic therapies are helpful in treating motor deficits in PD, they do not appear to be effective for cognitive complications. Acute bouts of moderate aerobic exercise have been shown to improve cognitive function in healthy adults. However, individuals with PD often have difficulty with exercise. This study examined the effects of passive leg cycling on executive function in PD. Executive function was assessed with Trail-Making Test (TMT) A and B before and after passive leg cycling. Significant improvements on the TMT-B test occurred after passive leg cycling. Furthermore, the difference between times to complete the TMT-B and TMT-A significantly decreased from precycling to postcycling. Improved executive function after passive cycling may be a result of increases in cerebral blood flow. These findings suggest that passive exercise could be a concurrent therapy for cognitive decline in PD.

  6. Improvements to the ejector expansion refrigeration cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menegay, P.; Kornhauser, A.A.

    1996-12-31

    The ejector expansion refrigeration cycle (EERC) is a variant of the standard vapor compression cycle in which an ejector is used to recover part of the work that would otherwise be lost in the expansion valve. In initial testing EERC performance was poor, mainly due to thermodynamic non-equilibrium conditions in the ejector motive nozzle. Modifications were made to correct this problem, and significant performance improvements were found.

  7. The Effects of Assisted Cycling Therapy (Act) and Voluntary Cycling on Reaction Time and Measures of Executive Function in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ringenbach, S. D. R.; Holzapfel, S. D.; Mulvey, G. M.; Jimenez, A.; Benson, A.; Richter, M.

    2016-01-01

    Background: Reports of positive effects of aerobic exercise on cognitive function in persons with Down syndrome are extremely limited. However, a novel exercise intervention, termed assisted cycling therapy (ACT), has resulted in acutely improved cognitive planning ability and reaction times as well as improved cognitive planning after 8 weeks of…

  8. The usefulness of GPS bicycle tracking data for evaluating the impact of infrastructure change on cycling behaviour.

    PubMed

    Heesch, Kristiann C; Langdon, Michael

    2016-02-01

    Issue addressed A key strategy to increase active travel is the construction of bicycle infrastructure. Tools to evaluate this strategy are limited. This study assessed the usefulness of a smartphone GPS tracking system for evaluating the impact of this strategy on cycling behaviour. Methods Cycling usage data were collected from Queenslanders who used a GPS tracking app on their smartphone from 2013-2014. 'Heat' and volume maps of the data were reviewed, and GPS bicycle counts were compared with surveillance data and bicycle counts from automatic traffic-monitoring devices. Results Heat maps broadly indicated that changes in cycling occurred near infrastructure improvements. Volume maps provided changes in counts of cyclists due to these improvements although errors were noted in geographic information system (GIS) geo-coding of some GPS data. Large variations were evident in the number of cyclists using the app in different locations. These variations limited the usefulness of GPS data for assessing differences in cycling across locations. Conclusion Smartphone GPS data are useful in evaluating the impact of improved bicycle infrastructure in one location. Using GPS data to evaluate differential changes in cycling across multiple locations is problematic when there is insufficient traffic-monitoring devices available to triangulate GPS data with bicycle traffic count data. So what? The use of smartphone GPS data with other data sources is recommended for assessing how infrastructure improvements influence cycling behaviour.

  9. Enhancing the performance of gastrointestinal tumour board by improving documentation.

    PubMed

    Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman

    2018-01-01

    Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan-Do-Study-Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts' input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process and outcomes.

  10. Enhancing the performance of gastrointestinal tumour board by improving documentation

    PubMed Central

    Alsuhaibani, Roaa Saleh; Alzahrani, Hajer; Algwaiz, Ghada; Alfarhan, Haneen; Alolayan, Ashwaq; Abdelhafiz, Nafisa; Ali, Yosra; Jazieh, Abdul Rahman

    2018-01-01

    Tumour board contributes to providing better patient care by using a multidisciplinary team approach. In the efforts of evaluating the performance of the gastrointestinal tumour board at our institution, it was difficult to assess past performance due to lack of proper use of standardised documentation tool. This project aimed at improving adherence to the documentation tool and its recommendations in order to obtain performance measures for the tumour board. A multidisciplinary team and a plan were developed to improve documentation. Four rapid improvement cycles, Plan–Do–Study–Act (PDSA) cycles, were conducted. The first cycle focused on updating the case discussion summary form (CDSF) based on experts’ input and previous identified deficiencies to enhance documentation and improve performance. The second PDSA cycle aimed at incorporating the CDSF into the electronic medical records system and assessing its functionality. The third cycle was to orient and train staff on using the form and launching it. The fourth PDSA cycle aimed at assessing the ability to obtain tumour board performance measures. Adherence to completion of the CDSF improved from 82% (baseline) to 94% after the fourth PDSA cycle. Over 104 consecutive cases discussed in the tumour board between January and July 2016 and 76 cases discussed in 2015, results were as follows: adherence to National Comprehensive Cancer Network guidelines in 2016 was observed in 141 (95%) recommendations, while it was observed in 90 (92%) recommendations in 2015. Changes in the management plans were observed in 37 (36%) cases in 2016 and in 6 (8%) cases in 2015. Regarding tumour board recommendations, 87% were done within 3 months of tumour board discussion in 2016, while 69% were done in 2015. Implementing electronic standardised documentation tool improved communication among the team and enabled getting accurate data about performance measures of the tumour board with positive impact on healthcare process and outcomes. PMID:29610771

  11. Using Quality Improvement Methods and Time-Driven Activity-Based Costing to Improve Value-Based Cancer Care Delivery at a Cancer Genetics Clinic.

    PubMed

    Tan, Ryan Y C; Met-Domestici, Marie; Zhou, Ke; Guzman, Alexis B; Lim, Soon Thye; Soo, Khee Chee; Feeley, Thomas W; Ngeow, Joanne

    2016-03-01

    To meet increasing demand for cancer genetic testing and improve value-based cancer care delivery, National Cancer Centre Singapore restructured the Cancer Genetics Service in 2014. Care delivery processes were redesigned. We sought to improve access by increasing the clinic capacity of the Cancer Genetics Service by 100% within 1 year without increasing direct personnel costs. Process mapping and plan-do-study-act (PDSA) cycles were used in a quality improvement project for the Cancer Genetics Service clinic. The impact of interventions was evaluated by tracking the weekly number of patient consultations and access times for appointments between April 2014 and May 2015. The cost impact of implemented process changes was calculated using the time-driven activity-based costing method. Our study completed two PDSA cycles. An important outcome was achieved after the first cycle: The inclusion of a genetic counselor increased clinic capacity by 350%. The number of patients seen per week increased from two in April 2014 (range, zero to four patients) to seven in November 2014 (range, four to 10 patients). Our second PDSA cycle showed that manual preappointment reminder calls reduced the variation in the nonattendance rate and contributed to a further increase in patients seen per week to 10 in May 2015 (range, seven to 13 patients). There was a concomitant decrease in costs of the patient care cycle by 18% after both PDSA cycles. This study shows how quality improvement methods can be combined with time-driven activity-based costing to increase value. In this paper, we demonstrate how we improved access while reducing costs of care delivery. Copyright © 2016 by American Society of Clinical Oncology.

  12. Premenstrual dysphoric disorder symptom cluster improvement by cycle with the combined oral contraceptive ethinylestradiol 20 mcg plus drospirenone 3 mg administered in a 24/4 regimen.

    PubMed

    Marr, Joachim; Niknian, Minoo; Shulman, Lee P; Lynen, Richard

    2011-07-01

    A combined oral contraceptive comprising ethinylestradiol (EE) 20 mcg/drospirenone 3 mg in a 24/4 regimen has been clinically shown to alleviate the symptoms associated with premenstrual dysphoric disorder (PMDD). However, previous studies did not report data according to cycle-by-cycle improvement. This was a subanalysis of a Phase III, double-blind, multicenter, United States-based study. Women with confirmed PMDD were randomized to EE 20 mcg/drospirenone 3 mg 24/4 or placebo for three treatment cycles. Ten of the 21 emotional and physical items on the Daily Record of Severity of Problems scale were grouped to define three symptom clusters: (a) negative emotions, (b) food cravings and (c) water retention-related symptoms. The change from baseline at each treatment cycle was compared between groups using a weighted analysis of covariance model. The full analysis set comprised 449 women. Daily Record of Severity of Problems scores for each symptom cluster were significantly reduced from baseline with both EE 20 mcg/drospirenone 3 mg 24/4 and placebo (p<.0001 for all). The greatest symptom improvements were achieved within the first cycle of treatment and continued throughout cycles 2 to 3. The mean between-treatment difference was significant in favor of EE 20 mcg/drospirenone 3 mg 24/4 for all three symptom clusters in all three treatment cycles (p≤.0001 vs. placebo in percent change from baseline). Ethinylestradiol 20 mcg/drospirenone 3 mg 24/4 improved commonly recognizable PMDD symptom clusters relating to negative emotions, food cravings and water retention-related symptoms to a significantly greater extent than placebo during all three cycles of treatment. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment.

    PubMed

    Edwards, Thomas; Motl, Robert W; Pilutti, Lara A

    2018-01-01

    Exercise training is one strategy for improving cardiorespiratory fitness (CRF) in multiple sclerosis (MS); however, few modalities are accessible for those with severe mobility impairment. Functional electrical stimulation (FES) cycling is an adapted exercise modality with the potential for improving CRF in people with severe MS. The objective of this study was to characterize the cardiorespiratory response of acute voluntary cycling with FES in people with MS with severe mobility impairment, and to compare this response to passive leg cycling. Eleven participants with MS that required assistance for ambulation completed a single bout of voluntary cycling with FES or passive leg cycling. Oxygen consumption, heart rate (HR), work rate (WR), and ratings of perceived exertion (RPE) were recorded throughout the session. For the FES group, mean exercising oxygen consumption was 8.7 ± 1.8 mL/(kg·min) -1 , or 63.5% of peak oxygen consumption. Mean HR was 102 ± 9.7 bpm, approximately 76.4% of peak HR. Mean WR was 27.0 ± 9.2 W, or 57.3% of peak WR, and median RPE was 13.5 (interquartile range = 5.5). Active cycling with FES was significantly (p < 0.05) more intense than passive leg cycling based on oxygen consumption, HR, WR, and RPE during exercise. In conclusion, voluntary cycling with FES elicited an acute response that corresponded with moderate-to vigorous-intensity activity, suggesting that active cycling with FES can elicit a sufficient stimulus for improving CRF.

  14. Clinical audit system as a quality improvement tool in the management of breast cancer.

    PubMed

    Vijayakumar, Chellappa; Maroju, Nanda Kishore; Srinivasan, Krishnamachari; Reddy, K Satyanarayana

    2016-11-01

    Quality improvement is recognized as a major factor that can transform healthcare management. This study is a clinical audit that aims at analysing treatment time as a quality indicator and explores the role of setting a target treatment time on reducing treatment delays. All newly diagnosed patients with breast cancer between September 2011 and August 2013 were included in the study. Clinical care pathway for breast cancer patients was standardized and the timeliness of care at each step of the pathway was calculated. Data collection was spread over three phases, baseline, audit cycle I, and audit cycle II. Each cycle was preceded by a quality improvement intervention, and followed by analysis. A total of 334 patients with breast cancer were included in the audit. The overall time from first visit to initiation of treatment was 66.3 days during the baseline period. This improved to 40.4 and 28.5 days at the end of Audit cycle I and II, respectively. The idealized target time of 28 days for initiating treatment was achieved in 5, 23.5, and 65.2% of patients in the baseline period, Audit cycle I, and Audit Cycle II, respectively. There was improvement noted across all steps of the clinical care pathway. This study confirms that audit is a powerful tool in quality improvement programs and helps achieve timely care. Gains achieved through an audit process may not be sustainable unless underlying patient factors and resource deficits are addressed. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys.

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modification of niobium alloys prior to coating with Si-20Cr-20Fe and slurry composition modification were investigated to improve performance in a 1370 C, ambient pressure, slow-cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe coated Cb-752 and FS-85 to 57 and 41 cycles, respectively (50 and 20 percent improvements in weight parity life, respectively).

  16. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Hu, D.

    2017-03-01

    To overcome the bottleneck of traditional gas wave refrigeration, an improved wave rotor refrigerator (WRR) cycle has been proposed, in which the expansion work was recycled during the process of refrigeration. Thermodynamic analysis of the two cycles shows that the refrigeration efficiency of the improved WRR cycle has been greatly increased compared with the traditional WRR. The performance of an improved WRR was investigated by adjusting the major operational parameters, such as the rotational speed of the wave rotor, port size, and inflow overpressure. The experimental results show that pressure loss can be reduced by nearly 40 % in this improved refrigeration system. Meanwhile, a two-dimensional numerical simulation was performed to understand the wave interactions that take place inside the rotor channels.

  17. Effects of audio coaching and visual feedback on the stability of respiration during radiotherapy.

    PubMed

    Baba, Fumiya; Tanaka, Satoshi; Nonogaki, Yoshinori; Hasegawa, Shinji; Nishihashi, Minami; Ayakawa, Shiho; Yamada, Maho; Shibamoto, Yuta

    2016-08-01

    The aim of this study is to compare the respiration-stabilizing abilities of audio coaching (AC) and AC with visual feedback (VF) with that of free breathing (FB). Ten healthy volunteers were told to breathe in FB, under AC and under AC + VF in random order. The standard deviation (SD) values of the respiratory cycle, the amplitude, the lowest points (exhalation), and the highest points (inhalation) of respiratory wave were used as indices of respiratory stability. Compared with FB, the AC method significantly improved respiratory cycle stability (p = 0.001). The AC + VF method improved the stability of the respiratory cycle, the amplitude and the lowest point of respiratory wave (all p < 0.001). In analyses of each subject's data, compared with FB, the AC method significantly improved the respiratory cycle stability in five subjects, and the AC + VF method improved the stability of the respiratory cycle, the amplitude and the lowest point of respiratory wave in 4, 5, and 4 subjects, respectively. In two cases, coaching did not improve respiratory stability. The AC + VF method had the most beneficial effects on respiratory stability. However, coaching is not necessarily effective in all cases. Therefore, the most suitable method should be chosen on an individual basis.

  18. Performance improvement of GaN-based metal-semiconductor-metal photodiodes grown on Si(111) substrate by thermal cycle annealing process

    NASA Astrophysics Data System (ADS)

    Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin

    2014-01-01

    A simple thermal cycle annealing (TCA) process was used to improve the quality of GaN grown on a Si substrate. The X-ray diffraction (XRD) and etch pit density (EPD) results revealed that using more process cycles, the defect density cannot be further reduced. However, the performance of GaN-based metal-semiconductor-metal (MSM) photodiodes (PDs) prepared on Si substrates showed significant improvement. With a two-cycle TCA process, it is found that the dark current of the device was only 1.46 × 10-11 A, and the photo-to-dark-current contrast ratio was about 1.33 × 105 at 5 V. Also, the UV/visible rejection ratios can reach as high as 1077.

  19. Systematic review of the application of the plan–do–study–act method to improve quality in healthcare

    PubMed Central

    Taylor, Michael J; McNicholas, Chris; Nicolay, Chris; Darzi, Ara; Bell, Derek; Reed, Julie E

    2014-01-01

    Background Plan–do–study–act (PDSA) cycles provide a structure for iterative testing of changes to improve quality of systems. The method is widely accepted in healthcare improvement; however there is little overarching evaluation of how the method is applied. This paper proposes a theoretical framework for assessing the quality of application of PDSA cycles and explores the consistency with which the method has been applied in peer-reviewed literature against this framework. Methods NHS Evidence and Cochrane databases were searched by three independent reviewers. Empirical studies were included that reported application of the PDSA method in healthcare. Application of PDSA cycles was assessed against key features of the method, including documentation characteristics, use of iterative cycles, prediction-based testing of change, initial small-scale testing and use of data over time. Results 73 of 409 individual articles identified met the inclusion criteria. Of the 73 articles, 47 documented PDSA cycles in sufficient detail for full analysis against the whole framework. Many of these studies reported application of the PDSA method that failed to accord with primary features of the method. Less than 20% (14/73) fully documented the application of a sequence of iterative cycles. Furthermore, a lack of adherence to the notion of small-scale change is apparent and only 15% (7/47) reported the use of quantitative data at monthly or more frequent data intervals to inform progression of cycles. Discussion To progress the development of the science of improvement, a greater understanding of the use of improvement methods, including PDSA, is essential to draw reliable conclusions about their effectiveness. This would be supported by the development of systematic and rigorous standards for the application and reporting of PDSAs. PMID:24025320

  20. Highly efficient 6-stroke engine cycle with water injection

    DOEpatents

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  1. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  2. 48 CFR 211.274-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... delivered to DoD that will enhance logistics, contracting, and financial business transactions supporting... on leading practices and embraces open standards, DoD can— (a) Achieve lower life-cycle cost of item management and improve life-cycle property management; (b) Improve operational readiness; (c) Provide...

  3. JPL's Role in Advancing Earth System Science to Meet the Challenges of Climate and Environmental Change

    NASA Technical Reports Server (NTRS)

    Evans, Diane

    2012-01-01

    Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.

  4. Two pilot studies of the effect of bicycling on balance and leg strength among older adults.

    PubMed

    Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna

    2013-01-01

    Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Study 1: a cross-sectional survey of 43 adults aged 44-79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49-72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Cycling by healthy older adults appears promising for improving risk factors for falls.

  5. Two Pilot Studies of the Effect of Bicycling on Balance and Leg Strength among Older Adults

    PubMed Central

    Rissel, Chris; Passmore, Erin; Mason, Chloe; Merom, Dafna

    2013-01-01

    Objectives. Study 1 examines whether age-related declines in balance are moderated by bicycling. Study 2 tests whether regular cycling can increase leg strength and improve balance. Methods. Study 1: a cross-sectional survey of 43 adults aged 44–79 was conducted. Leg strength was measured, and Balance was measured using the choice stepping reaction time (CSRT) test (decision time and response time), leg strength and timed single leg standing. Study 2: 18 older adults aged 49–72 were recruited into a 12-week cycling program. The same pre- and postmeasures as used in Study 1 were collected. Results. Study 1: participants who had cycled in the last month performed significantly better on measures of decision time and response time. Study 2: cycling at least one hour a week was associated with significant improvements in balance (decision time and response time) and timed single leg standing. Conclusions. Cycling by healthy older adults appears promising for improving risk factors for falls. PMID:23690805

  6. Quality improvement on chemistry practicum courses through implementation of 5E learning cycle

    NASA Astrophysics Data System (ADS)

    Merdekawati, Krisna

    2017-03-01

    Two of bachelor of chemical education's competences are having practical skills and mastering chemistry material. Practicum courses are organized to support the competency achievement. Based on observation and evaluation, many problems were found in the implementation of practicum courses. Preliminary study indicated that 5E Learning Cycle can be used as an alternative solution in order to improve the quality of chemistry practicum course. The 5E Learning Cycle can provide positive influence on the achievement of the competence, laboratory skills, and students' understanding. The aim of the research was to describe the feasibility of implementation of 5E Learning Cycle on chemistry practicum courses. The research was based on phenomenology method in qualitative approach. The participants of the research were 5 person of chemistry laboratory manager (lecturers at chemistry and chemistry education department). They concluded that the 5E Learning Cycle could be implemented to improve the quality of the chemistry practicum courses. Practicum guides and assistant competences were organized to support the implementation of 5E Learning Cycle. It needed training for assistants to understand and implement in the stages of 5E Learning Cycle. Preparation of practical guidelines referred to the stages of 5E Learning Cycle, started with the introduction of contextual and applicable materials, then followed with work procedures that accommodate the stage of engagement, exploration, explanation, extension, and evaluation

  7. Cycling induced by functional electrical stimulation in children affected by cerebral palsy: case report.

    PubMed

    Trevisi, E; Gualdi, S; De Conti, C; Salghetti, A; Martinuzzi, A; Pedrocchi, A; Ferrante, S

    2012-03-01

    Recently, the efficacy of functional electrical stimulation (FES) cycling have been demonstrated on the improvement of strength and motor control in adults with stroke. FES-cycling, providing a repetitive goal-oriented task, could facilitate cortical reorganization and utilization of residual cortico-spinal pathways. These benefits could be more enhanced in children because of the greater plasticity and flexibility of their central nervous system. The aim of the present case report study was to explore the feasibility of FES-cycling in children with cerebral palsy (CP) and to provide a set of instrumental measures able to evaluate the effects of this novel treatment on cycling and walking ability. Interventional study. Two ambulant outpatient children with diplegic CP were recruited by the "E. Medea" Scientific Institute. Patients followed a FES-cycling treatment for 30 minutes a day, 3 days a week for 7 weeks. Pre and post treatment tests were performed, namely clinical measures and electromyographic, kinematic and oxygen expenditure analysis during gait and cycling. The treatment was safe, feasible and well accepted by the 2 children. After treatment both patients achieved a more symmetrical muscular strategy during voluntary cycling and gait and a significant reduction of muscle co-contractions during cycling. These improvements were corroborated by a decrease in oxygen expenditure during the post test for one of the two children, the less impaired, implying a better exploiting of bi-articular muscles. FES-cycling is feasible and safe and it may be an alternative rehabilitation method for diplegic CP patients. The set of instrumental measurements proposed seems to be a valuable tool for functional assessment to identify subclinical anomalies and improvements on cycling and gait in CP patients.

  8. Variability in Cadence During Forced Cycling Predicts Motor Improvement in Individuals With Parkinson’s Disease

    PubMed Central

    Ridgel, Angela L.; Abdar, Hassan Mohammadi; Alberts, Jay L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2014-01-01

    Variability in severity and progression of Parkinson’s disease symptoms makes it challenging to design therapy interventions that provide maximal benefit. Previous studies showed that forced cycling, at greater pedaling rates, results in greater improvements in motor function than voluntary cycling. The precise mechanism for differences in function following exercise is unknown. We examined the complexity of biomechanical and physiological features of forced and voluntary cycling and correlated these features to improvements in motor function as measured by the Unified Parkinson’s Disease Rating Scale (UPDRS). Heart rate, cadence, and power were analyzed using entropy signal processing techniques. Pattern variability in heart rate and power were greater in the voluntary group when compared to forced group. In contrast, variability in cadence was higher during forced cycling. UPDRS Motor III scores predicted from the pattern variability data were highly correlated to measured scores in the forced group. This study shows how time series analysis methods of biomechanical and physiological parameters of exercise can be used to predict improvements in motor function. This knowledge will be important in the development of optimal exercise-based rehabilitation programs for Parkinson’s disease. PMID:23144045

  9. NASA's Earth Science Enterprise's Water and Energy Cycle Focus Area

    NASA Astrophysics Data System (ADS)

    Entin, J. K.

    2004-05-01

    Understanding the Water and Energy cycles is critical towards improving our understanding of climate change, as well as the consequences of climate change. In addition, using results from water and energy cycle research can help improve water resource management, agricultural efficiency, disaster management, and public health. To address this, NASA's Earth Science Enterprise (ESE) has an end-to-end Water and Energy Cycle Focus Area, which along with the ESE's other five focus areas will help NASA answer key Earth Science questions. In an effort to build upon the pre-existing discipline programs, which focus on precipitation, radiation sciences, and terrestrial hydrology, NASA has begun planning efforts to create an implementation plan for integrative research to improve our understanding of the water and energy cycles. The basics of this planning process and the core aspects of the implementation plan will be discussed. Roadmaps will also be used to show the future direction for the entire focus area. Included in the discussion, will be aspects of the end-to-end nature of the Focus Area that encompass current and potential actives to extend research results to operational agencies to enable improved performance of policy and management decision support systems.

  10. Unexpected Dual Task Benefits on Cycling in Parkinson Disease and Healthy Adults: A Neuro-Behavioral Model

    PubMed Central

    Altmann, Lori J. P.; Stegemöller, Elizabeth; Hazamy, Audrey A.; Wilson, Jonathan P.; Okun, Michael S.; McFarland, Nikolaus R.; Shukla, Aparna Wagle; Hass, Chris J.

    2015-01-01

    Background When performing two tasks at once, a dual task, performance on one or both tasks typically suffers. People with Parkinson’s disease (PD) usually experience larger dual task decrements on motor tasks than healthy older adults (HOA). Our objective was to investigate the decrements in cycling caused by performing cognitive tasks with a range of difficulty in people with PD and HOAs. Methods Twenty-eight participants with Parkinson’s disease and 20 healthy older adults completed a baseline cycling task with no secondary tasks and then completed dual task cycling while performing 12 tasks from six cognitive domains representing a wide range of difficulty. Results Cycling was faster during dual task conditions than at baseline, and was significantly faster for six tasks (all p<.02) across both groups. Cycling speed improved the most during the easiest cognitive tasks, and cognitive performance was largely unaffected. Cycling improvement was predicted by task difficulty (p<.001). People with Parkinson’s disease cycled slower (p<.03) and showed reduced dual task benefits (p<.01) than healthy older adults. Conclusions Unexpectedly, participants’ motor performance improved during cognitive dual tasks, which cannot be explained in current models of dual task performance. To account for these findings, we propose a model integrating dual task and acute exercise approaches which posits that cognitive arousal during dual tasks increases resources to facilitate motor and cognitive performance, which is subsequently modulated by motor and cognitive task difficulty. This model can explain both the improvement observed on dual tasks in the current study and more typical dual task findings in other studies. PMID:25970607

  11. 90-Day Cycle Handbook

    ERIC Educational Resources Information Center

    Park, Sandra; Takahashi, Sola

    2013-01-01

    90-Day Cycles are a disciplined and structured form of inquiry designed to produce and test knowledge syntheses, prototyped processes, or products in support of improvement work. With any type of activity, organizations inevitably encounter roadblocks to improving performance and outcomes. These barriers might include intractable problems at…

  12. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    NASA Astrophysics Data System (ADS)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  13. NASA Lewis advanced IPV nickel-hydrogen technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Britton, Doris L.

    1993-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts. Some of the advancements are as follows: to use 26 percent potassium hydroxide electrolyte to improve cycle life and performance, to modify the state of the art cell design to eliminate identified failure modes and further improve cycle life, and to develop a lightweight nickel electrode to reduce battery mass, hence reduce launch and/or increase satellite payload. A breakthrough in the LEO cycle life of individual pressure vessel nickel-hydrogen battery cells was reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 accelerated LEO cycles at 80 percent DOD compared to 3,500 cycles for cells containing 31 percent KOH. Results of the boiler plate cell tests have been validated at NWSC, Crane, Indiana. Forty-eight ampere-hour flight cells containing 26 and 31 percent KOH have undergone real time LEO cycle life testing at an 80 percent DOD, 10 C. The three cells containing 26 percent KOH failed on the average at cycle 19,500. The three cells containing 31 percent KOH failed on the average at cycle 6,400. Validation testing of NASA Lewis 125 Ah advanced design IPV nickel-hydrogen flight cells is also being conducted at NWSC, Crane, Indiana under a NASA Lewis contract. This consists of characterization, storage, and cycle life testing. There was no capacity degradation after 52 days of storage with the cells in the discharged state, on open circuit, 0 C, and a hydrogen pressure of 14.5 psia. The catalyzed wall wick cells have been cycled for over 22,694 cycles with no cell failures in the continuing test. All three of the non-catalyzed wall wick cells failed (cycles 9,588; 13,900; and 20,575). Cycle life test results of the Fibrex nickel electrode has demonstrated the feasibility of an improved nickel electrode giving a higher specific energy nickel-hydrogen cell. A nickel-hydrogen boiler plate cell using an 80 mil thick, 90 percent porous Fibrex nickel electrode has been cycled for 10,000 cycles at 40 percent DOD.

  14. Life cycle assessment of switchgrass- and corn stover-derived ethanol-fueled automobiles.

    PubMed

    Spatari, Sabrina; Zhang, Yimin; MacLean, Heather L

    2005-12-15

    Utilizing domestically produced cellulose-derived ethanol for the light-duty vehicle fleet can potentially improve the environmental performance and sustainability of the transport and energy sectors of the economy. A life cycle assessment model was developed to examine environmental implications of the production and use of ethanol in automobiles in Ontario, Canada. The results were compared to those of low-sulfur reformulated gasoline (RFG) in a functionally equivalent automobile. Two time frames were evaluated, one near-term (2010), which examines converting a dedicated energy crop (switchgrass) and an agricultural residue (corn stover) to ethanol; and one midterm (2020), which assumes technological improvements in the switchgrass-derived ethanol life cycle. Near-term results show that, compared to a RFG automobile, life cycle greenhouse gas (GHG) emissions are 57% lower for an E85-fueled automobile derived from switchgrass and 65% lower for ethanol from corn stover, on a grams of CO2 equivalent per kilometer basis. Corn stover ethanol exhibits slightly lower life cycle GHG emissions, primarily due to sharing emissions with grain production. Through projected improvements in crop and ethanol yields, results for the mid-term scenario show that GHG emissions could be 25-35% lower than those in 2010 and that, even with anticipated improvements in RFG automobiles, E85 automobiles could still achieve up to 70% lower GHG emissions across the life cycle.

  15. Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn2O4 electrode.

    PubMed

    Wang, Jiexi; Zhang, Qiaobao; Li, Xinhai; Wang, Zhixing; Guo, Huajun; Xu, Daguo; Zhang, Kaili

    2014-08-14

    To improve the cycle performance of LiMn2O4 at elevated temperature, a graphite layer is introduced to directly cover the surface of a commercial LiMn2O4-based electrode via room-temperature DC magnetron sputtering. The as-modified cathodes display improved capacity retention as compared to the bare LiMn2O4 cathode (BLMO) at 55 °C. When sputtering graphite for 30 min, the sample shows the best cycling performance at 55 °C, maintaining 96.2% capacity retention after 200 cycles. Reasons with respect to the graphite layer for improving the elevated-temperature performance of LiMn2O4 are systematically investigated via the methods of cyclic voltammetry, electrochemical impedance spectroscopy, X-ray photoelectron spectrometry, scanning and transmission electron microscopy, X-ray diffraction and inductively coupled plasma-atomic emission spectrometry. The results demonstrate that the graphite coated LiMn2O4 cathode has much less increased electrode polarization and electrochemical impedance than BLMO during the elevated-temperature cycling process. Furthermore, the graphite layer is able to alleviate the severe dissolution of manganese ions into the electrolyte and mitigate the morphological and structural degradation of LiMn2O4 during cycling. A model for the electrochemical kinetics process is also suggested for explaining the roles of the graphite layer in suppressing the Mn dissolution.

  16. Aqueous lithium air batteries

    DOEpatents

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  17. WHY DO YOU NEED TO USE A CARIES RISK ASSESSMENT PROTOCOL TO PROVIDE AN EFFECTIVE CARIES PREVENTIVE REGIME?

    PubMed

    Afuakwah, Charles; Welbury, Richard

    2015-11-01

    Clinical guidelines recommend an individual is given a caries risk status based on analysis of defined clinical and social criteria before implementing a tailored preventive plan. Improve documentation of caries risk assessment (CRA) in a general dental practice setting, using a systems-based approach to quality improvement methods. Investigate the impact of quality improvement efforts on subsequent design and delivery of preventive care. Identify barriers to delivery of CRA and provision of preventive care. Data for patients aged 0-16 years was collected over two cycles using standard audit methodology. The first cycle was a retrospective analysis (n = 400) using random sampling. The second cycle a prospective analysis (n = 513) using consecutive sampling over a 15-week period. Five staff meetings with feedback occurred between cycles. In cycle one, no specific CRA system was identified. CRA status was not stated widely, risk factors were not analysed and there was variation with respect to the prescription and delivery of preventive strategies. These discrepancies were demonstrable for all four participating dentists and at all ages. In cycle two, 100% recorded CRA. All risk factors were analysed and individual caries risk was correctly annotated. There was 100% compliance with the protocol for preventive plans. The use of CRA improved documentation of caries risk status. This has improved subsequent prescription of age specific evidence-based preventive care appropriate to the risk status of that individual. Barriers were identified to the delivery of CRA and the provision of comprehensive preventive care by the dentists and other healthcare professionals.

  18. Can FES-Augmented Active Cycling Training Improve Locomotion in Post-Acute Elderly Stroke Patients?

    PubMed Central

    Peri, Elisabetta; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Nava, Claudia; Longoni, Valentina; Monticone, Marco; Ferrante, Simona

    2016-01-01

    Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only). This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results. PMID:27990234

  19. Can FES-Augmented Active Cycling Training Improve Locomotion in Post-Acute Elderly Stroke Patients?

    PubMed

    Peri, Elisabetta; Ambrosini, Emilia; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Nava, Claudia; Longoni, Valentina; Monticone, Marco; Ferrante, Simona

    2016-06-13

    Recent studies advocated the use of active cycling coupled with functional electrical stimulation to induce neuroplasticity and enhance functional improvements in stroke adult patients. The aim of this work was to evaluate whether the benefits induced by such a treatment are superior to standard physiotherapy. A single-blinded randomized controlled trial has been performed on post-acute elderly stroke patients. Patients underwent FES-augmented cycling training combined with voluntary pedaling or standard physiotherapy. The intervention consisted of fifteen 30-minutes sessions carried out within 3 weeks. Patients were evaluated before and after training, through functional scales, gait analysis and a voluntary pedaling test. Results were compared with an age-matched healthy group. Sixteen patients completed the training. After treatment, a general improvement of all clinical scales was obtained for both groups. Only the mechanical efficiency highlighted a group effect in favor of the experimental group. Although a group effect was not found for any other cycling or gait parameters, the experimental group showed a higher percentage of change with respect to the control group (e.g. the gait velocity was improved of 35.4% and 25.4% respectively, and its variation over time was higher than minimal clinical difference for the experimental group only). This trend suggests that differences in terms of motor recovery between the two groups may be achieved increasing the training dose. In conclusion, this study, although preliminary, showed that FES-augmented active cycling training seems to be effective in improving cycling and walking ability in post-acute elderly stroke patients. A higher sample size is required to confirm results.

  20. Li Anode Technology for Improved Performance

    NASA Technical Reports Server (NTRS)

    Chen, Tuqiang

    2011-01-01

    A novel, low-cost approach to stabilization of Li metal anodes for high-performance rechargeable batteries was developed. Electrolyte additives are selected and used in Li cell electrolyte systems, promoting formation of a protective coating on Li metal anodes for improved cycle and safety performance. Li batteries developed from the new system will show significantly improved battery performance characteristics, including energy/power density, cycle/ calendar life, cost, and safety.

  1. Enough is enough! Patients who do not conceive on 600IU/day of gonadotropins show no improvement from an additional 150IU of LH activity

    PubMed Central

    Maguire, Marcy; Csokmay, John; Segars, James; Payson, Mark; Armstrong, Alicia

    2010-01-01

    Studies have suggested that supplemental LH improves outcomes in ART cycles. In this retrospective review, an additional 150IU of LH activity did not improve ART outcomes in women undergoing a second round of IVF/ICSI following an initial failed cycle employing 600IU of gonadotropins. PMID:20850732

  2. The Development of Terrestrial Water Cycle Applications for SMAP Soil Moisture Data Products

    USDA-ARS?s Scientific Manuscript database

    Soil moisture storage sits at the locus of the terrestrial water cycle and governs the relative partitioning of precipitation into various land surface flux components. Consequently, improved observational constraint of soil moisture variations should improve our ability to globally monitor the te...

  3. Emissions data by category of engines

    NASA Technical Reports Server (NTRS)

    Barriage, J.; Westfield, W.; Becker, E. E.

    1976-01-01

    Exhaust gas pollutant emissions data under test stand conditions were obtained for the following: (1) full-rich baseline test (7-mode cycle), (2) lean-out tests for each power mode, and (3) different spark settings. The test data were also used to create a theoretical 5-mode cycle baseline. The emissions data in the framework of the theoretical 5-mode cycle were emphasized. There is no significant difference in the test results produced by data exhibited on the 7-mode cycle or 5-mode cycle. The 5-mode cycle was slightly more conservative for the carbon monoxide pollutant than the 7-mode cycle. The data were evaluated to determine which mode(s) had the greatest influence on improving general aviation piston engine emissions. Improvements that were achieved as a result of making lean-out adjustments to the fuel metering device were: (1) taxi mode only, (2) taxi and approach modes combined, and (3) leaning-out of the climb mode to best power.

  4. Characteristics of a Refrigeration Cycle Using a Zeotropic Refrigerant Mixture with a Temperature Glide Shift Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Endoh, Kazuhiro; Matsushima, Hiroaki; Nonaka, Masayuki

    HFC zeotropic refrigerant mixture R-407C is one of the promising alternatives for HCFC-22. We have found that the coefficient of performance (COP) of the refrigeration cycle using R-407C is improved by installing a temperature glide shift heat exchanger (TGSX) which takes advantage of zeotropic characteristics to an air-conditioner. We obtained the characteristics of a refrigeration cycle of experimental apparatus with comparison to those of a fundamental refrigeration cycle based on the refrigerant thermodynamic properties. We concluded that the COP improvement ratio of experimental apparatus with the TGSX to that without the TGSX is greater than that ratio which is calculated from the fundamental refrigeration cycle. This proved to be caused by the pressure loss of low pressure side which is not taken into account in the fundamental refrigeration cycle.

  5. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    PubMed

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  6. Bridging the gap between financial reporting and the revenue cycle.

    PubMed

    Clark, Kari; Bang, Derek A

    2012-09-01

    Implementing a standardized financial reporting and revenue cycle monitoring platform can help healthcare organizations improve their net revenue reporting and budgeting processes. Consistent, standardized data help the finance office estimate accounts receivable reserves more accurately, streamline the month-end closing process, and strengthen internal controls. The benefits of standardizing the finance and revenue cycle functions are particularly significant in large organizations with multiple facilities, but even single-facility providers can benefit from improved communication between the business office and finance.

  7. Using Iterative Plan-Do-Study-Act Cycles to Improve Teaching Pedagogy.

    PubMed

    Murray, Elizabeth J

    2018-01-15

    Most students entering nursing programs today are members of Generation Y or the Millennial generation, and they learn differently than previous generations. Nurse educators must consider implementing innovative teaching strategies that appeal to the newest generation of learners. The Plan-Do-Study-Act cycle is a framework that can be helpful when planning, assessing, and continually improving teaching pedagogy. This article describes the use of iterative Plan-Do-Study-Act cycles to implement a change in teaching pedagogy.

  8. High-intensity cycle interval training improves cycling and running performance in triathletes.

    PubMed

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  9. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    NASA Astrophysics Data System (ADS)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  10. Triple-effect absorption chiller cycle: A step beyond double-effect cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVault, R.C.

    1990-01-01

    Many advanced'' absorption cycles have been proposed during the current century. Of the hundreds of absorption cycles which have been patented throughout the world, all commercially manufactured products for air conditioning buildings have been variations of just two basic absorption cycles: single-effect and condenser-coupled double-effect cycles. The relatively low cooling coefficients of performance (COPs) inherent in single-effect and double-effect cycles limits the economic applicability of absorption air conditioners (chillers) in the United States. A triple-effect absorption chiller cycle is discussed. This cycle uses two condensers and two absorbers to achieve the triple effect.'' Depending on the absorption fluids selected, thismore » triple-effect cycle is predicted to improve cooling COPs by 18% to 60% compared with the equivalent double-effect cycle. This performance improvement is obtained without increasing the total amount of heat-transfer surface area needed for the heat exchangers. A comparison between the calculated performances of a double-effect cycle and a triple-effect cycle (both using ammonia-water (NH{sub 3}/H{sub 2}O) as the absorption fluid pair) is presented. The triple-effect cycle is predicted to have an 18% higher cooling COP (1.41 compared with 1.2 for a double-effect), lower pressure (47.70 atm (701 psi) instead of 68.05 atm (1000 psi)), significantly reduced pumping power (less than one-half that of the double-effect cycle), and potentially lower construction cost (33% less total heat exchange needed). Practical implications for this triple-effect cycle are discussed. 16 refs., 5 figs., 1 tab.« less

  11. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  12. Evaluation of Functional Electrical Stimulation to Assist Cycling in Four Adolescents with Spastic Cerebral Palsy

    PubMed Central

    Harrington, Ann Tokay; McRae, Calum G. A.; Lee, Samuel C. K.

    2012-01-01

    Introduction. Adolescents with cerebral palsy (CP) often have difficulty participating in exercise at intensities necessary to improve cardiovascular fitness. Functional electrical stimulation- (FES-) assisted cycling is proposed as a form of exercise for adolescents with CP. The aims of this paper were to adapt methods and assess the feasibility of applying FES cycling technology in adolescents with CP, determine methods of performing cycling tests in adolescents with CP, and evaluate the immediate effects of FES assistance on cycling performance. Materials/Methods. Four participants (12–14 years old; GMFCS levels III-IV) participated in a case-based pilot study of FES-assisted cycling in which bilateral quadriceps muscles were activated using surface electrodes. Cycling cadence, power output, and heart rate were collected. Results. FES-assisted cycling was well tolerated (n = 4) and cases are presented demonstrating increased cadence (2–43 rpm), power output (19–70%), and heart rates (4-5%) and decreased variability (8–13%) in cycling performance when FES was applied, compared to volitional cycling without FES assistance. Some participants (n = 2) required the use of an auxiliary hub motor for assistance. Conclusions. FES-assisted cycling is feasible for individuals with CP and may lead to immediate improvements in cycling performance. Future work will examine the potential for long-term fitness gains using this intervention. PMID:22685479

  13. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands.

    PubMed

    Cho, Jeong-Hyun; Picraux, S Tom

    2013-01-01

    It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ~1000 mA·h/g discharge capacity over 1100 cycles.

  14. From Centralized Disassembly to Life Cycle Management: Status and Progress of E-waste Treatment System in China

    NASA Astrophysics Data System (ADS)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Yang, Dong

    2017-01-01

    China is now facing e-waste problems from both growing domestic generation and illegal imports. Many stakeholders are involved in the e-waste treatment system due to the complexity of e-waste life cycle. Beginning with the state of the e-waste treatment industry in China, this paper summarizes the latest progress in e-waste management from such aspects as the new edition of the China RoHS Directive, new Treatment List, new funding subsidy standard, and eco-design pilots. Thus, a conceptual model for life cycle management of e-waste is generalized. The operating procedure is to first identify the life cycle stages of the e-waste and extract the important life cycle information. Then, life cycle tools can be used to conduct a systematic analysis to help decide how to maximize the benefits from a series of life cycle engineering processes. Meanwhile, life cycle thinking is applied to improve the legislation relating to e-waste so as to continuously improve the sustainability of the e-waste treatment system. By providing an integrative framework, the life cycle management of e-waste should help to realize sustainable management of e-waste in developing countries.

  15. The effects of aerobic exercise on psychosocial functioning of adolescents who are overweight or obese.

    PubMed

    Goldfield, Gary S; Adamo, Kristi B; Rutherford, Jane; Murray, Marisa

    2012-01-01

    To evaluate effects of stationary cycling to music versus interactive video game cycling on psychosocial functioning in obese adolescents. 30 obese adolescents aged 12-17 years were randomized to twice weekly laboratory-based sessions of stationary cycling to music or interactive video game cycling for a 10-week trial. Participant's self-reported measures of scholastic competence, social competence, athletic competence, body image, and self-esteem were obtained. Aerobic fitness and body composition were directly measured. Although no differences emerged between exercise groups over time, when collapsed across exercise modality, significant pre-post improvements were found for body image, perceived scholastic competence and social competence. Changes in aerobic fitness, but not body composition, were positively associated with psychosocial functioning. Aerobic exercise was associated with improvements in body image, perceived academic performance, and social competence in obese adolescents, and these psychological benefits were related to improved aerobic fitness but not changes in body composition.

  16. Rapid-cycle testing cuts bed turnaround by 85%.

    PubMed

    2004-11-01

    You can use rapid-cycle testing to try out new approaches to overcrowding much more frequently than with more traditional process improvement strategies. Improving bed turnaround notification can yield dramatic improvements. Telling staff they have to try a new process only for three days makes it easier to gain buy-in. Look for old policies that are no longer needed, yet continue to keep your staff bogged down.

  17. Blastocyst transfer does not improve cycle outcome as compared to D3 transfer in antagonist cycles with an elevated progesterone level on the day of hCG.

    PubMed

    Demirel, Cem; Aydoğdu, Serkan; Özdemir, Arzu İlknur; Keskin, Gülşah; Baştu, Ercan; Buyru, Faruk

    2017-09-01

    To evaluate the association between progesterone elevation on the day of human chorionic gonadotropin (hCG) administration and clinical pregnancy rates of gonadotropin-releasing hormone (GnRH) antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles with the transfer of embryos at different developmental stages (day-3 versus day-5 ETs). This is a retrospective analysis of fresh IVF/ICSI; 194 cycles out of 2676 conducted in a single center. A total of 2676 cycles were analyzed, of which 386 had no progesterone measurements available. Two hundred eighteen cycles had progesterone elevation (p>1.5 ng/mL) giving an overall incidence of 9.5%. Twenty-four cycles were excluded from further analysis. Of the remaining 194 cycles, 151 had day-3 transfers and 43 had blastocyst transfers. There was no statistically significant difference in pregnancy and clinical pregnancy rates per transfer between the D3-ET and D5-ET groups (46% vs. 49%, and 39% vs. 35%, respectively). The results of this study suggest that blastocyst transfer does not improve cycle outcomes compared with D3 transfer in GnRH antagonist cycles with an elevated progesterone level on the day of hCG.

  18. Improving early cycle economic evaluation of diagnostic technologies.

    PubMed

    Steuten, Lotte M G; Ramsey, Scott D

    2014-08-01

    The rapidly increasing range and expense of new diagnostics, compels consideration of a different, more proactive approach to health economic evaluation of diagnostic technologies. Early cycle economic evaluation is a decision analytic approach to evaluate technologies in development so as to increase the return on investment as well as patient and societal impact. This paper describes examples of 'early cycle economic evaluations' as applied to diagnostic technologies and highlights challenges in its real-time application. It shows that especially in the field of diagnostics, with rapid technological developments and a changing regulatory climate, early cycle economic evaluation can have a guiding role to improve the efficiency of the diagnostics innovation process. In the next five years the attention will move beyond the methodological and analytic challenges of early cycle economic evaluation towards the challenge of effectively applying it to improve diagnostic research and development and patient value. Future work in this area should therefore be 'strong on principles and soft on metrics', that is, the metrics that resonate most clearly with the various decision makers in this field.

  19. Improving visit cycle time using patient flow analysis in a high-volume inner-city hospital-based ambulatory clinic serving minority New Yorkers.

    PubMed

    Dhar, Sanjay; Michel, Raquel; Kanna, Balavenkatesh

    2011-01-01

    Patient waiting time and waiting room congestion are quality indicators that are related to efficiency of ambulatory care systems and patient satisfaction. Our main purpose was to test a program to decrease patient visit cycle time, while maintaining high-quality healthcare in a high-volume inner-city hospital-based clinic in New York City. Use of patient flow analysis and the creation of patient care teams proved useful in identifying areas for improvement, target, and measure effectiveness of interventions. The end result is reduced visit cycle time, improved provider team performance, and sustained patient care outcomes. © 2010 National Association for Healthcare Quality.

  20. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced epithelial ovarian cancer.

    PubMed

    Lesnock, Jamie L; Farris, Coreen; Krivak, Thomas C; Smith, Kenneth J; Markman, Maurie

    2011-09-01

    Randomized trials have demonstrated significant improvements in progression-free survival (PFS) with consolidation paclitaxel (P) and bevacizumab (B) following cytoreduction and adjuvant carboplatin/paclitaxel (CP) for advanced epithelial ovarian cancer (EOC). We sought to evaluate the cost-effectiveness (C/E) of these consolidation strategies. A decision model was developed based on Gynecologic Oncology Group (GOG) protocols #178 and #218. Arm 1 is 6 cycles of CP. Arm 2 is 6 cycles of CP followed by 12 cycles of P (CP+P). Arm 3 is 1 cycle of CP, 5 cycles of CPB, and 16 cycles of B (CPB+B). Parameters include PFS, overall survival (OS), cost, complications (neuropathy for P and bowel perforation for B), and quality-of-life utility values. Sensitivity analyses were performed. The incremental cost-effectiveness ratio (ICER) for CT+T is $13,402/quality adjusted life year (QALY) gained compared to CP. For CPB+B compared to CP, the ICER is $326,530/QALY. When compared simultaneously, CPB+B is dominated, i.e. is more costly and less effective than CP+P. Results were robust to parameter variation. At a willingness to pay threshold of $100,000/QALY, CP+P was the preferred option throughout most of the decision space. Sensitivity analyses suggest that CPB+B would become the preferred option if it were to improve OS by 6.1 years over CP+P. In this model, B consolidation for advanced EOC was associated with a modest improvement in effectiveness that is less than that with P consolidation and more costly. A statistically significant improvement in survival may improve the value of B consolidation. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    NASA Astrophysics Data System (ADS)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  2. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. M. Ougouag; R. M. Ferrer

    2010-10-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less

  3. Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kun; Lv, Wei; Tung, Hsiao-Ming

    2016-05-18

    In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to he the primary candidate structural materials for very high-temperature reactors (VITITRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 degrees C for the effective stress range of 15-35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to he dominant over the entire creep lives of bothmore » alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form epsilon= cosh 1(1 rt) + P-sigma ntm agree well with the experimental results for both alloys at die temperatures of 850-950 degrees C.« less

  4. Early in-session cognitive-emotional problem-solving predicts 12-month outcomes in depression with personality disorder.

    PubMed

    McCarthy, Kye L; Mergenthaler, Erhard; Grenyer, Brin F S

    2014-01-01

    Therapist-patient verbalizations reveal complex cognitive-emotional linguistic data. How these variables contribute to change requires further research. Emotional-cognitive text analysis using the Ulm cycles model software was applied to transcripts of the third session of psychotherapy for 20 patients with depression and personality disorder. Results showed that connecting cycle sequences of problem-solving in the third hour predicted 12-month clinical outcomes. Therapist-patient dyads most improved spent significantly more time early in session in connecting cycles, whilst the least improved moved into connecting cycles late in session. For this particular sample, it was clear that positive emotional problem-solving in therapy was beneficial.

  5. Improving Teaching through Collaborative Reflective Teaching Cycles

    ERIC Educational Resources Information Center

    Murray, Eileen

    2015-01-01

    Reflection and collaboration are two activities teachers can use to change and improve their practice. However, finding the time and space to do so can be challenging. The collaborative reflective teaching cycle is a structured activity teachers can use to engage in reflection and collaboration. This article describes how a seventh grade teaching…

  6. Method of Evaluating the Life Cycle Cost of Small Earth Dams Considering the Risk of Heavy Rainfall and Selection Method of the Optimum Countermeasure

    NASA Astrophysics Data System (ADS)

    Hori, Toshikazu; Mohri, Yoshiyuki; Matsushima, Kenichi; Ariyoshi, Mitsuru

    In recent years the increase in the number of heavy rainfall occurrences such as through unpredictable cloudbursts have resulted in the safety of the embankments of small earth dams needing to be improved. However, the severe financial condition of the government and local autonomous bodies necessitate the cost of improving them to be reduced. This study concerns the development of a method of evaluating the life cycle cost of small earth dams considered to pose a risk and in order to improve the safety of the downstream areas of small earth dams at minimal cost. Use of a safety evaluation method that is based on a combination of runoff analysis, saturated and unsaturated seepage analysis, and slope stability analysis enables the probability of a dam breach and its life cycle cost with the risk of heavy rainfall taken into account to be calculated. Moreover, use of the life cycle cost evaluation method will lead to the development of a technique for selecting the method of the optimal improvement or countermeasures against heavy rainfall.

  7. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  8. An English Vocabulary Learning System Based on Fuzzy Theory and Memory Cycle

    NASA Astrophysics Data System (ADS)

    Wang, Tzone I.; Chiu, Ti Kai; Huang, Liang Jun; Fu, Ru Xuan; Hsieh, Tung-Cheng

    This paper proposes an English Vocabulary Learning System based on the Fuzzy Theory and the Memory Cycle Theory to help a learner to memorize vocabularies easily. By using fuzzy inferences and personal memory cycles, it is possible to find an article that best suits a learner. After reading an article, a quiz is provided for the learner to improve his/her memory of the vocabulary in the article. Early researches use just explicit response (ex. quiz exam) to update memory cycles of newly learned vocabulary; apart from that approach, this paper proposes a methodology that also modify implicitly the memory cycles of learned word. By intensive reading of articles recommended by our approach, a learner learns new words quickly and reviews learned words implicitly as well, and by which the vocabulary ability of the learner improves efficiently.

  9. Use of ICSI in IVF cycles in women with tubal ligation does not improve pregnancy or live birth rates.

    PubMed

    Grimstad, F W; Nangia, Ajay K; Luke, B; Stern, J E; Mak, W

    2016-12-01

    Does ICSI improve outcomes in ART cycles without male factor, specifically in couples with a history of tubal ligation as their infertility diagnosis? The use of ICSI showed no significant improvement in fertilization rate and resulted in lower pregnancy and live birth (LB) rates for women with the diagnosis of tubal ligation and no male factor. Prior studies have suggested that ICSI use does not improve fertilization, pregnancy or LB rates in couples with non-male factor infertility. However, it is unknown whether couples with tubal ligation only diagnosis and therefore iatrogenic infertility could benefit from the use of ICSI during their ART cycles. Longitudinal cohort of nationally reported cycles in the Society for Assisted Reproductive Technology Clinic Outcomes Reporting System (SART CORS) of ART cycles performed in the USA between 2004 and 2012. There was a total of 8102 first autologous fresh ART cycles from women with the diagnosis of tubal ligation only and no reported male factor in the SART database. Of these, 957 were canceled cycles and were excluded from the final analysis. The remaining cycles were categorized by the use of conventional IVF (IVF, n = 3956 cycles) or ICSI (n = 3189 cycles). The odds of fertilization, clinical intrauterine gestation (CIG) and LB were calculated by logistic regression modeling, and the adjusted odds ratios (AORs) with 95% confidence intervals were calculated by adjusting for the confounders of year of treatment, maternal age, race and ethnicity, gravidity, number of oocytes retrieved, day of embryo transfer and number of embryos transferred. The main outcome measures of the study were odds of fertilization (2PN/total oocytes), clinical intrauterine gestation (CIG/cycle) and live birth (LB/cycle). The fertilization rate was higher in the ICSI versus IVF group (57.5% vs 49.1%); however, after adjustment this trend was no longer significant (AOR 1.14, 0.97-1.35). Interestingly, both odds of CIG (AOR 0.78, 0.70-0.86), and odds of LB were lower (AOR 0.77, 0.69-0.85) in the ICSI group. Plurality at birth, mean length of gestation and birth weight did not differ between the two groups. This was a retrospective study, therefore only the available parameters could be included, with parameters of interest such as smoking status not available for inclusion. Smoking status may have led practitioners to use ICSI to improve pregnancy and LB outcomes. Studies have shown that in the USA there is an increasing usage of ICSI for non-male factor infertility despite a lack of evidence-based benefit. Our study corroborates this increasing use over the last 8 years, specifically in the tubal ligation only patient population. Even after adjusting for multiple confounders, the patients who underwent ICSI had no statistically significant improvement in fertilization rate and actually had a lower likelihood of achieving a clinical pregnancy and LB. Therefore, our data suggest that the use of ICSI in tubal ligation patients has no overall benefit. This study contributes to the body of evidence that the use of ICSI for non-male factor diagnosis does not improve ART outcomes over conventional IVF. None. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Decreasing Turnaround Time and Increasing Patient Satisfaction in a Safety Net Hospital-Based Pediatrics Clinic Using Lean Six Sigma Methodologies.

    PubMed

    Jayasinha, Yasangi

    2016-01-01

    Increasingly, health care quality indicators are focusing on patient-centeredness as an indicator of performance. The National Quality Forum lists assessment of patient experience, often conducted using patient surveys, as a top priority. We developed a patient-reported time stamp data collection tool that was used to collect cycle times in a safety net hospital-based outpatient pediatrics clinic. Data were collected using patient-reported survey to obtain cycle times in Pediatric clinic, as well as qualitative and quantitative patient satisfaction data. Several rapid-cycle improvements were performed using Lean Six Sigma methodologies to reduce cycle time by eliminating waste and revise unnecessary processes to improve operational effectiveness and patient and staff satisfaction. A total of 94 surveys were collected and revealed average cycle time of 113 minutes. Our measured patient satisfaction rating was 87%. Discharge and check-in processes were identified as the least efficient and were targeted for intervention. Following implementation, the overall cycle time was decreased from 113 to 90 minutes. Patient satisfaction ratings increased from 87% to 95%. We demonstrate that using Lean Six Sigma tools can be invaluable to clinical restructuring and redesign and results in measurable, improved outcomes in care delivery.

  11. Learning outcomes through the cooperative learning team assisted individualization on research methodology’ course

    NASA Astrophysics Data System (ADS)

    Pakpahan, N. F. D. B.

    2018-01-01

    All articles must contain an abstract. The research methodology is a subject in which the materials must be understood by the students who will take the thesis. Implementation of learning should create the conditions for active learning, interactive and effective are called Team Assisted Individualization (TAI) cooperative learning. The purpose of this study: 1) improving student learning outcomes at the course research methodology on TAI cooperative learning. 2) improvement of teaching activities. 3) improvement of learning activities. This study is a classroom action research conducted at the Department of Civil Engineering Universitas Negeri Surabaya. The research subjects were 30 students and lecturer of courses. Student results are complete in the first cycle by 20 students (67%) and did not complete 10 students (33%). In the second cycle students who complete being 26 students (87%) and did not complete 4 students (13%). There is an increase in learning outcomes by 20%. Results of teaching activities in the first cycle obtained the value of 3.15 with the criteria enough well. In the second cycle obtained the value of 4.22 with good criterion. The results of learning activities in the first cycle obtained the value of 3.05 with enough criterion. In the second cycle was obtained 3.95 with good criterion.

  12. Effects of Weight Loss, Weight Cycling, and Weight Loss Maintenance on Diabetes Incidence and Change in Cardiometabolic Traits in the Diabetes Prevention Program

    PubMed Central

    Pan, Qing; Jablonski, Kathleen A.; Aroda, Vanita R.; Watson, Karol E.; Bray, George A.; Kahn, Steven E.; Florez, Jose C.; Perreault, Leigh; Franks, Paul W.

    2014-01-01

    OBJECTIVE This study examined specific measures of weight loss in relation to incident diabetes and improvement in cardiometabolic risk factors. RESEARCH DESIGN AND METHODS This prospective, observational study analyzed nine weight measures, characterizing baseline weight, short- versus long-term weight loss, short- versus long-term weight regain, and weight cycling, within the Diabetes Prevention Program (DPP) lifestyle intervention arm (n = 1,000) for predictors of incident diabetes and improvement in cardiometabolic risk factors over 2 years. RESULTS Although weight loss in the first 6 months was protective of diabetes (hazard ratio [HR] 0.94 per kg, 95% CI 0.90, 0.98; P < 0.01) and cardiometabolic risk factors (P < 0.01), weight loss from 0 to 2 years was the strongest predictor of reduced diabetes incidence (HR 0.90 per kg, 95% CI 0.87, 0.93; P < 0.01) and cardiometabolic risk factor improvement (e.g., fasting glucose: β = −0.57 mg/dL per kg, 95% CI −0.66, −0.48; P < 0.01). Weight cycling (defined as number of 5-lb [2.25-kg] weight cycles) ranged 0–6 times per participant and was positively associated with incident diabetes (HR 1.33, 95% CI 1.12, 1.58; P < 0.01), fasting glucose (β = 0.91 mg/dL per cycle; P = 0.02), HOMA-IR (β = 0.25 units per cycle; P = 0.04), and systolic blood pressure (β = 0.94 mmHg per cycle; P = 0.01). After adjustment for baseline weight, the effect of weight cycling remained statistically significant for diabetes risk (HR 1.22, 95% CI 1.02, 1.47; P = 0.03) but not for cardiometabolic traits. CONCLUSIONS Two-year weight loss was the strongest predictor of reduced diabetes risk and improvements in cardiometabolic traits. PMID:25024396

  13. Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (Bacillus subtilis C-3102).

    PubMed

    Kritas, S K; Marubashi, T; Filioussis, G; Petridou, E; Christodoulopoulos, G; Burriel, A R; Tzivara, A; Theodoridis, A; Pískoriková, M

    2015-01-01

    This field study assessed the efficacy of a probiotic based on viable spores of Bacillus subtilis C-3102 (Calsporin; Calpis Co. Ltd., Japan) on the health status and productivity of sows and their litters through 2 full, sequential reproductive cycles from service of the first cycle to weaning of the second cycle. Fifty-six sows were allocated to 2 experimental groups, an untreated control (T1) group and a probiotic-treated (T2) group that received the same basal feed as the T1 group plus the probiotic at an approximate allowance of 30 g/t of feed (3 × 10(5) cfu/g). The offspring of T1 and T2 sows were offered basal and T2 creep feed (3 × 10(5) cfu/g), respectively. Health and zootechnical parameters of sows and piglets were recorded. Feeding the probiotic to sows and piglets resulted in significant benefits, observed in both cycles: 1) improved sow body condition during pregnancy (P < 0.05), 2) increased sow feed consumption, 3) reduced sow weight loss during lactation (P < 0.05), 4) reduced sow weaning-estrus interval (P < 0.05), and 5) higher BW of piglets at weaning (P < 0.05). Additionally, a significant (P < 0.05) improvement in piglet birth weight and in the number of piglets weaned was observed in the second cycle of T2 sows, while a significant improvement of mean daily gain of piglets from birth to weaning was observed in the first cycle of T2 sows. Microbiological examination of fecal samples showed that probiotic treatment significantly reduced both Escherichia coli and Clostridium spp. in piglet feces, particularly during the second cycle. The data suggested that continuous feed supplementation with the probiotic is beneficial for both sows and piglets, since zootechnical benefits were observed in both cycles.

  14. Keeping the rhythm: light/dark cycles during postharvest storage preserve the tissue integrity and nutritional content of leafy plants.

    PubMed

    Liu, John D; Goodspeed, Danielle; Sheng, Zhengji; Li, Baohua; Yang, Yiran; Kliebenstein, Daniel J; Braam, Janet

    2015-03-27

    The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.

  15. NASA Contributions to Improve Understanding of Extreme Events in the Global Energy and Water Cycle

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.

    2008-01-01

    The U.S. Climate Change Science Program (CCSP) has established the water cycle goals of the Nation's climate change program. Accomplishing these goals will require, in part, an accurate accounting of the key reservoirs and fluxes associated with the global water and energy cycle, including their spatial and temporal variability. through integration of all necessary observations and research tools, To this end, in conjunction with NASA's Earth science research strategy, the overarching long-term NASA Energy and Water Cycle Study (NEWS) grand challenge can he summarized as documenting and enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. This challenge requires documenting and predicting trends in the rate of the Earth's water and energy cycling that corresponds to climate change and changes in the frequency and intensity of naturally occurring related meteorological and hydrologic events, which may vary as climate may vary in the future. The cycling of water and energy has obvious and significant implications for the health and prosperity of our society. The importance of documenting and predicting water and energy cycle variations and extremes is necessary to accomplish this benefit to society.

  16. Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries.

    PubMed

    Chen, Jie; Xu, Mao-Wen; Wu, Jinggao; Li, Chang Ming

    2018-05-17

    Iodine edge-doped graphene can improve the capacity and stability of lithium-ion batteries (LIBs). Our theoretical calculations indicate that center-iodization can further significantly enhance the anode catalytic process. To experimentally prove the theoretical prediction, iodine-doped graphene materials were prepared by one-pot hydrothermal and ball-milling approaches to realize different doping-sites. Results show that the center-iodinated graphene (CIG) anode exhibits a remarkably high reversible capacity (1121 mA h g-1 after 180 cycles at 0.5 A g-1), long-cycle life (0.01% decay per cycle over 300 cycles at 1 A g-1) and high-rate capacity (374 mA h g-1 after 800 cycles at 8 A g-1), which greatly improves the performance of the edge-iodinated graphene anode and these results are in good agreement with the theoretical analysis. More importantly, the CIG anode also delivers a high-rate capacity and excellent cycling stability (279 mA h g-1 after 500 cycles at 10 A g-1) in full-cells. Both the theoretical analysis and experimental investigation reveal the enhancement mechanism, in which the center-iodization increases the surface charge for fast electron transfer rate, improves the conductivity for charge transport and rationalizes the pore structure for enhanced mass transport and ion insertion/desertion, thus resulting in a high rate capacity and long cycle life. This work not only discloses the critical role of catalytic sites including both amounts and site positions but also offers great potential for high-power rechargeable LIB applications.

  17. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  18. LIFE CYCLE DESIGN OF AMORPHOUS SILICON PHOTOVOLTAIC MODULES

    EPA Science Inventory

    The life cycle design framework was applied to photovoltaic module design. The primary objective of this project was to develop and evaluate design metrics for assessing and guiding the Improvement of PV product systems. Two metrics were used to assess life cycle energy perform...

  19. Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.

  20. Second law analysis of advanced power generation systems using variable temperature heat sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliem, C.J.; Mines, G.L.

    1990-01-01

    Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less

  1. Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.

    2000-01-01

    Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.

  2. Enhancing the revenue cycle experience for patients.

    PubMed

    Consolver, Patti; Phillips, Scott

    2014-09-01

    In 2013, Texas Health Resources began to record discussions with patients at each revenue cycle touch point, from scheduling through registration. The recordings give leaders insight on the accuracy and consistency of information communicated at each touch point and provide a tool for improving customer service. The initiative has improved patient satisfaction and increased point-of-service collections.

  3. Water Literacy in College Freshmen: Could a Cognitive Imagery Strategy Improve Understanding?

    ERIC Educational Resources Information Center

    Ewing, Margaret S.; Mills, Terence J.

    1994-01-01

    Presents a study designed to determine whether levels of water literacy differed between (n=83) college freshman nonscience majors having one versus two years of high school science coursework, visual imagery exercises could improve understanding of the water cycle, and patterns exist in the concept of the water cycle. (Contains 23 references.)…

  4. Investigators share improved understanding of the North American carbon cycle

    Treesearch

    Richard A. Birdsey; Robert Cook; Scott Denning; Peter Griffith; Beverly Law; Jeffrey Masek; Anna Michalak; Stephen Ogle; Dennis Ojima; Yude Pan; Christopher Sabine; Edwin Sheffner; Eric Sundquist

    2007-01-01

    The U.S. North American Carbon Program (NACP) sponsored an "all-scientist" meeting to review progress in understanding the dynamics of the carbon cycle of North American and adjacent oceans, and to chart a course for improved integration across scientifi c disciplines, scales, and Earth system boundaries. The meeting participants also addressed the need for...

  5. Hypothesis driven drug design: improving quality and effectiveness of the design-make-test-analyse cycle.

    PubMed

    Plowright, Alleyn T; Johnstone, Craig; Kihlberg, Jan; Pettersson, Jonas; Robb, Graeme; Thompson, Richard A

    2012-01-01

    In drug discovery, the central process of constructing and testing hypotheses, carefully conducting experiments and analysing the associated data for new findings and information is known as the design-make-test-analyse cycle. Each step relies heavily on the inputs and outputs of the other three components. In this article we report our efforts to improve and integrate all parts to enable smooth and rapid flow of high quality ideas. Key improvements include enhancing multi-disciplinary input into 'Design', increasing the use of knowledge and reducing cycle times in 'Make', providing parallel sets of relevant data within ten working days in 'Test' and maximising the learning in 'Analyse'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Permselective SPEEK/Nafion Composite-Coated Separator as a Potential Polysulfide Crossover Barrier Layer for Li-S Batteries.

    PubMed

    Babu, Dasari Bosu; Giribabu, Krishnan; Ramesha, Kannadka

    2018-06-13

    Minimizing the shuttle effect by constraining polysulfides to the cathode compartment and activating the passive layer between cathode and separator are highly important for improving the Li-S cell performance, Coulombic efficiency, and cycle life. Here, we report a submicron thin coating of permselective sulfonated poly(ether ether ketone) (SPEEK) composite layer on the separator that would reduce polysulfide crossover, imparting a significant improvement in cycle life. It is observed that SPEEK increases the stability, and adding Nafion improves the capacity value. Among different ratios of Nafion and SPEEK (25:75, 50:50, and 75:25), the composite with a SPEEK/Nafion ratio of 50:50 showed a controlled shuttle effect with a stable cell capacity of 600 mA h g -1 up to 300 cycles. This modified separator with permselective coatings not only reduces the polysulfide shuttle but also improves the wettability and interfacial contact, which results in an improvement in average cell potential and lithium diffusivity. It is demonstrated here that the combination of functional (ionomer coating on separator) and nonfunctional (extra cathode layer) physical barriers effectively suppresses the polysulfide crossover and improves the electrochemical performance of Li-S batteries. The cell shows an initial capacity of 1300 mA h g -1 and a capacity retention of 650 mA h g -1 over 500 cycles with a 6 mg/cm 2 sulfur loading.

  7. Branched GAX cycle gas fired heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Anand, G.; Papar, R.A.

    1996-12-31

    GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less

  8. Assisted Hatching and Intracytoplasmic Sperm Injection are not Associated with Improved Outcomes in ART Cycles for Diminished Ovarian Reserve: An Analysis of US Cycles from 2004–2011

    PubMed Central

    Butts, Samantha F.; Owen, Carter; Mainigi, Monica; Senapati, Suneeta; Seifer, David B.; Dokras, Anuja

    2014-01-01

    Objective To investigate the impact of intracytoplasmic sperm injection (ICSI) and assisted hatching (AH) on ART outcomes in cycles with diminished ovarian reserve (DOR) as the primary diagnosis. Design Retrospective cohort study of cycles from the SART-CORS database. Setting NA. Patient(s) A total of 422,949 fresh, non-donor, initial ART cycles of which 8,597 were diagnosed with only elevated FSH and 38,926 were diagnosed with only DOR according to the SART DOR categorization. Intervention(s) None. Main Outcome Measure(s) Live birth and clinical pregnancy rates. Result(s) ICSI and AH were associated with diminished odds of live birth in SART DOR only cycles (AOR, 95% CI 0.88, 0.81–0.96 for ICSI; AOR, 95% CI 0.77 0.71–0.84 for AH). No association between either ICSI or AH in Elevated FSH only cycles was observed. The combination of ICSI and AH resulted in significantly lower odds of live birth in SART DOR only cycles but not in Elevated FSH only cycles. Conclusion(s) In initial ART cycles for which the only indication relates to a diagnosis of diminished ovarian reserve, assisted hatching and ICSI are not associated with improved live birth rates. PMID:25086790

  9. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    PubMed

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals after CVA. Interestingly, the correlation between PSR and PPR suggests that improvements in pedaling symmetry may translate to a more symmetric gait pattern.

  10. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    PubMed

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  11. LIFE CYCLE IMPACT ASSESSMENT AN INTRODUCTION AND INTERNATIONAL UPDATE

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Within the UNEP / SETAC Life Cycle Initiative an effort is underway to provide recommendations about the direction of research and selection of LC...

  12. 10 CFR 436.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Life Cycle Cost Analyses § 436.11 Definitions. As used in this subpart— Base Year means the fiscal year in which a life cycle cost analysis is conducted. Building energy system means an energy conservation... building that improve energy efficiency and are life cycle cost effective and that involve energy...

  13. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    EPA Science Inventory

    Life cycle approaches are critical for identifying and managing to reduce burdens in the sustainability of product systems. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA) methods fail to integrate the multiple im...

  14. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  15. Exhaustive identification of steady state cycles in large stoichiometric networks

    PubMed Central

    Wright, Jeremiah; Wagner, Andreas

    2008-01-01

    Background Identifying cyclic pathways in chemical reaction networks is important, because such cycles may indicate in silico violation of energy conservation, or the existence of feedback in vivo. Unfortunately, our ability to identify cycles in stoichiometric networks, such as signal transduction and genome-scale metabolic networks, has been hampered by the computational complexity of the methods currently used. Results We describe a new algorithm for the identification of cycles in stoichiometric networks, and we compare its performance to two others by exhaustively identifying the cycles contained in the genome-scale metabolic networks of H. pylori, M. barkeri, E. coli, and S. cerevisiae. Our algorithm can substantially decrease both the execution time and maximum memory usage in comparison to the two previous algorithms. Conclusion The algorithm we describe improves our ability to study large, real-world, biochemical reaction networks, although additional methodological improvements are desirable. PMID:18616835

  16. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  17. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    NASA Astrophysics Data System (ADS)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  19. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis.

    PubMed

    Beck-Fruchter, Ronit; Shalev, Eliezer; Weiss, Amir

    2016-03-01

    The human oocyte is surrounded by hyaluronic acid, which acts as a natural selector of spermatozoa. Human sperm that express hyaluronic acid receptors and bind to hyaluronic acid have normal shape, minimal DNA fragmentation and low frequency of chromosomal aneuploidies. Use of hyaluronic acid binding assays in intracytoplasmic sperm injection (ICSI) cycles to improve clinical outcomes has been studied, although none of these studies had sufficient statistical power. In this systematic review and meta-analysis, electronic databases were searched up to June 2015 to identify studies of ICSI cycles in which spermatozoa able to bind hyaluronic acid was selected. The main outcomes were fertilization rate and clinical pregnancy rate. Secondary outcomes included cleavage rate, embryo quality, implantation rate, spontaneous abortion and live birth rate. Seven studies and 1437 cycles were included. Use of hyaluronic acid binding sperm selection technique yielded no improvement in fertilization and pregnancy rates. A meta-analysis of all available studies showed an improvement in embryo quality and implantation rate; an analysis of prospective studies only showed an improvement in embryo quality. Evidence does not support routine use of hyaluronic acid binding assays in all ICSI cycles. Identification of patients that might benefit from this technique needs further study. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  20. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  1. The Improvement Cycle: Analyzing Our Experience

    NASA Technical Reports Server (NTRS)

    Pajerski, Rose; Waligora, Sharon

    1996-01-01

    NASA's Software Engineering Laboratory (SEL), one of the earliest pioneers in the areas of software process improvement and measurement, has had a significant impact on the software business at NASA Goddard. At the heart of the SEL's improvement program is a belief that software products can be improved by optimizing the software engineering process used to develop them and a long-term improvement strategy that facilitates small incremental improvements that accumulate into significant gains. As a result of its efforts, the SEL has incrementally reduced development costs by 60%, decreased error rates by 85%, and reduced cycle time by 25%. In this paper, we analyze the SEL's experiences on three major improvement initiatives to better understand the cyclic nature of the improvement process and to understand why some improvements take much longer than others.

  2. WaterNet:The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Belvedere, D. R.; Houser, P. R.; Pozzi, W.; Imam, B.; Schiffer, R.; Schlosser, C. A.; Gupta, H.; Martinez, G.; Lopez, V.; Vorosmarty, C.; Fekete, B.; Matthews, D.; Lawford, R.; Welty, C.; Seck, A.

    2008-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering. Projections of the effects of such factors will remain speculative until more effective global prediction systems and applications are implemented. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction, and has taken steps to collaborate and improve interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. WaterNet is a Solutions Network, devoted to the identification and recommendation of candidate solutions that propose ways in which water-cycle related NASA research results can be skillfully applied by partner agencies, international organizations, state, and local governments. It is designed to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment Decision Support Tools that address national needs.

  3. Comparative analysis of gas and coal-fired power generation in ultra-low emission condition using life cycle assessment (LCA)

    NASA Astrophysics Data System (ADS)

    Yin, Libao; Liao, Yanfen; Liu, Guicai; Liu, Zhichao; Yu, Zhaosheng; Guo, Shaode; Ma, Xiaoqian

    2017-05-01

    Energy consumption and pollutant emission of natural gas combined cycle power-generation (NGCC), liquefied natural gas combined cycle power-generation (LNGCC), natural gas combined heat and power generation (CHP) and ultra-supercritical power generation with ultra-low gas emission (USC) were analyzed using life cycle assessment method, pointing out the development opportunity and superiority of gas power generation in the period of coal-fired unit ultra-low emission transformation. The results show that CO2 emission followed the order: USC>LNGCC>NGCC>CHP the resource depletion coefficient of coal-fired power generation was lower than that of gas power generation, and the coal-fired power generation should be the main part of power generation in China; based on sensitivity analysis, improving the generating efficiency or shortening the transportation distance could effectively improve energy saving and emission reduction, especially for the coal-fired units, and improving the generating efficiency had a great significance for achieving the ultra-low gas emission.

  4. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    PubMed

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  5. A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement.

    PubMed

    Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting

    2016-01-01

    Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference.

  6. A queueing network model to analyze the impact of parallelization of care on patient cycle time.

    PubMed

    Jiang, Lixiang; Giachetti, Ronald E

    2008-09-01

    The total time a patient spends in an outpatient facility, called the patient cycle time, is a major contributor to overall patient satisfaction. A frequently recommended strategy to reduce the total time is to perform some activities in parallel thereby shortening patient cycle time. To analyze patient cycle time this paper extends and improves upon existing multi-class open queueing network model (MOQN) so that the patient flow in an urgent care center can be modeled. Results of the model are analyzed using data from an urgent care center contemplating greater parallelization of patient care activities. The results indicate that parallelization can reduce the cycle time for those patient classes which require more than one diagnostic and/ or treatment intervention. However, for many patient classes there would be little if any improvement, indicating the importance of tools to analyze business process reengineering rules. The paper makes contributions by implementing an approximation for fork/join queues in the network and by improving the approximation for multiple server queues in both low traffic and high traffic conditions. We demonstrate the accuracy of the MOQN results through comparisons to simulation results.

  7. Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Oh, Dahyun; Qi, Jifa; Lu, Yi-Chun; Zhang, Yong; Shao-Horn, Yang; Belcher, Angela M.

    2013-11-01

    Lithium-oxygen batteries have a great potential to enhance the gravimetric energy density of fully packaged batteries by two to three times that of lithium ion cells. Recent studies have focused on finding stable electrolytes to address poor cycling capability and improve practical limitations of current lithium-oxygen batteries. In this study, the catalyst electrode, where discharge products are deposited and decomposed, was investigated as it has a critical role in the operation of rechargeable lithium-oxygen batteries. Here we report the electrode design principle to improve specific capacity and cycling performance of lithium-oxygen batteries by utilizing high-efficiency nanocatalysts assembled by M13 virus with earth-abundant elements such as manganese oxides. By incorporating only 3-5 wt% of palladium nanoparticles in the electrode, this hybrid nanocatalyst achieves 13,350 mAh g-1c (7,340 mAh g-1c+catalyst) of specific capacity at 0.4 A g-1c and a stable cycle life up to 50 cycles (4,000 mAh g-1c, 400 mAh g-1c+catalyst) at 1 A g-1c.

  8. Evaluating Online CPD Using Educational Criteria Derived from the Experiential Learning Cycle.

    ERIC Educational Resources Information Center

    Friedman, Andrew; Watts, David; Croston, Judith; Durkin, Catherine

    2002-01-01

    Develops a set of educational evaluation criteria for online continuing professional development (CPD) courses using Kolb's experiential learning cycle theory. Evaluates five courses provided by online CPD Web sites, concludes that these online courses neglect parts of the learning cycle, and suggests improvements. (Author/LRW)

  9. LCACCESS: MAKING LIFE CYCLE DATA AVAILABLE VIA THE INTERNET(SYSTEMS ANLAYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The lack of readily available, quality environmental life cycle inventory (LCI) data is often a barrier to manufacturers, among others, for incorporating life cycle considerations into their decision-making process. While much progress has been made on standardizing and improving...

  10. The use of indicators to improve the quality of intensive care: theoretical aspects and experiences from the Dutch intensive care registry.

    PubMed

    van der Voort, P H J; van der Veer, S N; de Vos, M L G

    2012-10-01

    In the concept of total quality management that was originally developed in industry, the use of quality indicators is essential. The implementation of quality indicators in the intensive care unit to improve the quality of care is a complex process. This process can be described in seven subsequent steps of an indicator-based quality improvement (IBQI) cycle. With this IBQI cycle, a continuous quality improvement can be achieved with the use of indicator data in a benchmark setting. After the development of evidence-based indicators, a sense of urgency has to be created, registration should start, raw data must be analysed, feedback must be given, and interpretation and conclusions must be made, followed by a quality improvement plan. The last step is the implementation of changes that needs a sense of urgency, and this completes the IBQI cycle. Barriers and facilitators are found in each step. They should be identified and addressed in a multifaceted quality improvement strategy. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  11. Advanced binary geothermal power plants: Limits of performance

    NASA Astrophysics Data System (ADS)

    Bliem, C. J.; Mines, G. L.

    1991-01-01

    The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.

  12. FY 2014 Educational Facilities Master Plan and Amendments to the FY 2013-2018 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2013

    2013-01-01

    In November 1996, the voters of Montgomery County (Maryland) approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on-years) the County…

  13. Superintendent's Recommended FY 2012 Capital Budget and Amendments to the FY 2011-2016 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2010

    2010-01-01

    In November 1996, the voters of Montgomery County (Maryland) approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on-years) the County…

  14. Superintendent's Recommended FY 2011 Capital Budget and the FY 2011-2016 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2009

    2009-01-01

    In November 1996, the voters of Montgomery County approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on-years) the County Council would…

  15. Superintendent's Recommended FY 2014 Capital Budget and Amendments to the FY 2013-2018 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2012

    2012-01-01

    In November 1996, the voters of Montgomery County (Maryland) approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on years) the County…

  16. Superintendent's Recommended FY 2008 Capital Budget & Amendments to the FY 2007-2012 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2006

    2006-01-01

    In November 1996, the voters of Montgomery County (Maryland) approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on years) the County…

  17. Superintendent's Recommended FY 2009 Capital Budget and the FY 2009-2014 Capital Improvements Program

    ERIC Educational Resources Information Center

    Montgomery County Public Schools, 2007

    2007-01-01

    In November 1996, the voters of Montgomery County (Maryland) approved by referendum an amendment to the County Charter that changed the County Council's review and approval cycle of the six-year Capital Improvements Program (CIP) from an annual to biennial cycle. The referendum specified that in odd-numbered fiscal years (on years) the County…

  18. Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Treesearch

    P. Ciais; A. J. Dolman; A. Bombelli; R. Duren; A. Peregon; P. J. Rayner; C. Miller; N. Gobron; G. Kinderman; G. Marland; N. Gruber; F. Chevallier; R. J. Andres; G. Balsamo; L. Bopp; F.-M. Bréon; G. Broquet; R. Dargaville; T. J. Battin; A. Borges; H. Bovensmann; M. Buchwitz; J. Butler; J. G. Canadell; R. B. Cook; R. DeFries; R. Engelen; K. R. Gurney; C. Heinze; M. Heimann; A. Held; M. Henry; B. Law; S. Luyssaert; J. Miller; T. Moriyama; C. Moulin; R. B. Myneni; C. Nussli; M. Obersteiner; D. Ojima; Y. Pan; J.-D. Paris; S. L. Piao; B. Poulter; S. Plummer; S. Quegan; P. Raymond; M. Reichstein; L. Rivier; C. Sabine; D. Schimel; O. Tarasova; R. Valentini; R. Wang; G. van der Werf; D. Wickland; M. Williams; C. Zehner

    2014-01-01

    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires...

  19. Engine design considerations for 2nd generation supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    The environmental and economic goals projected for advanced supersonic transports will require revolutionary improvements in propulsion systems. Variable cycle engine concepts that incorporate unique components and advanced technologies show promise in meeting these goals. Pratt & Whitney Aircraft is conducting conceptual design studies of variable cycle engine concepts under NASA sponsorship. This paper reviews some of the design considerations for these engine concepts. Emphasis is placed on jet noise abatement, reduction of emissions, performance improvements, installation considerations, hot-section characteristics and control system requirements. Two representative variable cycle engine concepts that incorporate these basic design considerations are described.

  20. Advanced single crystal for SSME turbopumps

    NASA Technical Reports Server (NTRS)

    Fritzemeier, L. G.

    1989-01-01

    The objective of this program was to evaluate the influence of high thermal gradient casting, hot isostatic pressing (HIP) and alternate heat treatments on the microstructure and mechanical properties of a single crystal nickel base superalloy. The alloy chosen for the study was PWA 1480, a well characterized, commercial alloy which had previously been chosen as a candidate for the Space Shuttle Main Engine high pressure turbopump turbine blades. Microstructural characterization evaluated the influence of casting thermal gradient on dendrite arm spacing, casting porosity distribution and alloy homogeneity. Hot isostatic pressing was evaluated as a means of eliminating porosity as a preferred fatigue crack initiation site. The alternate heat treatment was chosen to improve hydrogen environment embrittlement resistance and for potential fatigue life improvement. Mechanical property evaluation was aimed primarily at determining improvements in low cycle and high cycle fatigue life due to the advanced processing methods. Statistically significant numbers of tests were conducted to quantitatively demonstrate life differences. High thermal gradient casting improves as-cast homogeneity, which facilitates solution heat treatment of PWA 1480 and provides a decrease in internal pore size, leading to increases in low cycle and high cycle fatigue lives.

  1. Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.

    PubMed

    Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian

    2018-01-17

    Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

  2. Understanding Side Reactions in K–O 2 Batteries for Improved Cycle Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaodi; Lau, Kah Chun; Yu, Mingzhe

    2014-10-20

    Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studiesmore » and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K+) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O-2 battery with the Nafion-K+ separator can be discharged and charged for more than 40 cycles without increases in charging overpotential.« less

  3. Recent Cycle Time Reduction at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Kegelman, Jerome T.

    2000-01-01

    The NASA Langley Research Center (LaRC) has been engaged in an effort to reduce wind tunnel test cycle time in support of Agency goals and to satisfy the wind tunnel testing needs of the commercial and military aerospace communities. LaRC has established the Wind Tunnel Enterprise (WTE), with goals of reducing wind tunnel test cycle time by an order of magnitude by 2002, and by two orders of magnitude by 2010. The WTE also plans to meet customer expectations for schedule integrity, as well as data accuracy and quality assurance. The WTE has made progress towards these goals over the last year with a focused effort on technological developments balanced by attention to process improvements. This paper presents a summary of several of the WTE activities over the last year that are related to test cycle time reductions at the Center. Reducing wind tunnel test cycle time, defined here as the time between the freezing of loft lines and delivery of test data, requires that the relationship between high productivity and data quality assurance be considered. The efforts have focused on all of the drivers for test cycle time reduction, including process centered improvements, facility upgrades, technological improvements to enhance facility readiness and productivity, as well as advanced measurement techniques. The application of internet tools and computer modeling of facilities to allow a virtual presence of the customer team is also presented.

  4. An improved turbine disk design to increase reliability of aircraft jet engines

    NASA Technical Reports Server (NTRS)

    Barack, W. N.; Domas, P. A.

    1976-01-01

    An analytical study was performed on a novel disk design to replace the existing high-pressure turbine, stage 1 disk on the CF6-50 turbofan engine. Preliminary studies were conducted on seven candidate disk design concepts. An integral multidisk design with bore entry of the turbine blade cooling air was selected as the improved disk design. This disk has the unique feature of being redundant such that if one portion of the disk would fail, the remaining portion would prevent the release of large disk fragments from the turbine system. Low cycle fatigue lives, initial defect propagation lives, burst speed, and the kinetic energies of probable disk fragment configurations were calculated, and comparisons were made with the existing disk, both in its current material, IN 718, and with the substitution of an advanced alloy, Rene 95. The design for redundancy approach which necessitated the addition of approximately 44.5 kg (98 lb) to the design disk substantially improved the life of the disk. The life to crack initiation was increased from 30,000 cycles to more than 100,000 cycles. The cycles to failure from initial defect propagation were increased from 380 cycles to 1564 cycles. Burst speed was increased from 126 percent overspeed to 149 percent overspeed. Additionally, the maximum fragment energies associated with a failure were decreased by an order of magnitude.

  5. NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century

    NASA Technical Reports Server (NTRS)

    Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.

    2000-01-01

    There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.

  6. Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements

    NASA Astrophysics Data System (ADS)

    Dagger, Tim; Lürenbaum, Constantin; Schappacher, Falko M.; Winter, Martin

    2017-02-01

    A modified self-extinguishing time (SET) device which enhances the reproducibility of the results is presented. Pentafluoro(phenoxy)cyclotriphosphazene (FPPN) is investigated as flame retardant electrolyte additive for lithium ion batteries (LIBs) in terms of thermal stability and electrochemical performance. SET measurements and adiabatic reaction calorimetry are applied to determine the flammability and the reactivity of a standard LIB electrolyte containing 5% FPPN. The results reveal that the additive-containing electrolyte is nonflammable for 10 s whereas the commercially available reference electrolyte inflames instantaneously after 1 s of ignition. The onset temperature of the safety enhanced electrolyte is delayed by ≈ 21 °C. Compatibility tests in half cells show that the electrolyte is reductively stable while the cyclic voltammogram indicates oxidative decomposition during the first cycle. Cycling experiments in full cells show improved cycling performance and rate capability, which can be attributed to cathode passivation during the first cycle. Post-mortem analysis of the electrolyte by gas chromatography-mass spectrometry confirms the presence of the additive in high amounts after 501 cycles which ensures enhanced safety of the electrolyte. The investigations present FPPN as stable electrolyte additive that improves the intrinsic safety of the electrolyte and its cycling performance at the same time.

  7. Introduction of the identification, situation, background, assessment, recommendations tool to improve the quality of information transfer during medical handover in intensive care.

    PubMed

    Ramasubbu, Benjamin; Stewart, Emma; Spiritoso, Rosalba

    2017-02-01

    To audit the quality and safety of the current doctor-to-doctor handover of patient information in our Cardiothoracic Intensive Care Unit. If deficient, to implement a validated handover tool to improve the quality of the handover process. In Cycle 1 we observed the verbal handover and reviewed the written handover information transferred for 50 consecutive patients in St George's Hospital Cardiothoracic Intensive Care Unit. For each patient's handover, we assessed whether each section of the Identification, Situation, Background, Assessment, Recommendations tool was used on a scale of 0-2. Zero if no information in that category was transferred, one if the information was partially transferred and two if all relevant information was transferred. Each patient's handover received a score from 0 to 10 and thus, each cycle a total score of 0-500. Following the implementation of the Identification, Situation, Background, Assessment, Recommendations handover tool in our Intensive Care Unit in Cycle 2, we re-observed the handover process for another 50 consecutive patients hence, completing the audit cycle. There was a significant difference between the total scores from Cycle 1 and 2 (263/500 versus 457/500, p < 0.001). The median handover score for Cycle 1 was 5/10 (interquartile range 4-6). The median handover score for Cycle 2 was 9/10 (interquartile range 9-10). Patient handover scores increased significantly between Cycle 1 and 2, U = 13.5, p < 0.001. The introduction of a standardised handover template (Identification, Situation, Background, Assessment, Recommendations tool) has improved the quality and safety of the doctor-to-doctor handover of patient information in our Intensive Care Unit.

  8. Propellant Reuse/Recovery Technology

    DTIC Science & Technology

    1988-08-31

    viscosity of the nitrocellulose (NC) determine the solvent/solvent and solvent/propellant ratios required to properly resolvate the propellant. It was also...plasticization. An 11-min drying cycle was required to remove the excess solvent from the over-solvated propellant. To improve plasticization using...solvent, and (4) 15-min mix cycle. To eliminate the drying cycle and determine that a 15-min mix cycle will resolvate the propellart, an additional 1 h

  9. Exploration of alloy surface and slurry modification to improve oxidation life of fused silicide coated niobium alloys

    NASA Technical Reports Server (NTRS)

    Levine, S. R.; Grisaffe, S. J.

    1972-01-01

    Edge and surface modifications of niobium alloys were investigated prior to coating with Si-20Cr-20Fe and slurry composition modification for performance in a 1370 C ambient pressure slow cycle test. The best coating obtained was Si-20Cr-20Mn with an average life of 63 cycles, compared to 40 for Si-20Cr-20Fe on FS-85 (100 percent improvement in weight parity life). Edge beading extended the lives of Si-20Cr-20Fe-coated Cb-752 and FS-85 to 57 and 41 cycles respectively (50 and 20 percent improvements in weight parity life respectively). W, Al2O3 and ZrO2(CaO) surface modifications altered coating crack frequency and microstructure and increased life somewhat.

  10. Computer-Assisted Sperm Analysis (CASA) parameters and their evolution during preparation as predictors of pregnancy in intrauterine insemination with frozen-thawed donor semen cycles.

    PubMed

    Fréour, Thomas; Jean, Miguel; Mirallié, Sophie; Dubourdieu, Sophie; Barrière, Paul

    2010-04-01

    To study the potential of CASA parameters in frozen-thawed donor semen before and after preparation on silica gradient as predictors of pregnancy in IUI with donor semen cycles. CASA parameters were measured in thawed donor semen before and after preparation on a silica gradient in 132 couples undergoing 168 IUI cycles with donor semen. The evolution of these parameters throughout this process was calculated. The relationship with cycle outcome was then studied. Clinical pregnancy rate was 18.4% per cycle. CASA parameters on donor semen before or after preparation were not significantly different between pregnancy and failure groups. However, amplitude of lateral head displacement (ALH) of spermatozoa improved in all cycles where pregnancy occurred, thus predicting pregnancy with a sensitivity of 100% and a specificity of 20%. Even if CASA parameters do not seem to predict pregnancy in IUI with donor semen cycles, their evolution during the preparation process should be evaluated, especially for ALH. However, the link between ALH improvement during preparation process and pregnancy remains to be explored. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Seasonal variation in assisted conception cycles and the influence of photoperiodism on outcome in in vitro fertilization cycles.

    PubMed

    Wood, Simon; Quinn, Alison; Troupe, Stephen; Kingsland, Charles; Lewis-Jones, Iwan

    2006-12-01

    The effect of seasonality and daylight length on mammalian reproduction leading to spring births has been well established, and is known as photoperiodism. In assisted reproduction there is much greater uncertainty as to the effect of seasonality. This was a 4-year retrospective analysis of 2709 standardised cycles of IVF/ICSI. Data was analysed with regard to the 1642 cycles occurring during the months of extended daylight (Apr-Sept) and those 1067 cycles during winter months of restricted light length (Oct-Mar). The results showed that there was significant improvement in assisted conception outcomes in cycles performed in summer (lighter) months with more efficient ovarian stimulation 766iu v880iu/per oocyte retrieved (p=0.006). There was similarly a significantly improved implantation rate per embryo transferred 11.42% vs 9.35% (p=0.011) and greater clinical pregnancy rate 20% vs 15% (p=0.0033) during summer cycles. This study appears to demonstrate a significant benefit of increased daylight length on outcomes of IVF/ICSI cycles. Whilst the exact mechanism of this is unclear, it would seem probable that melatonin may have actions at multiple sites and on multiple levels of the reproductive tract, and may exert a more profound effect on outcomes of assisted conception cycles than has been previously considered.

  12. Fuel cycle cost reduction through Westinghouse fuel design and core management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, F.J.; Scherpereel, L.R.

    1985-11-01

    This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.

  13. Sex and age-related differences in performance in a 24-hour ultra-cycling draft-legal event - a cross-sectional data analysis.

    PubMed

    Pozzi, Lara; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald; Rüst, Christoph Alexander

    2014-01-01

    The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. For all finishers, the age of peak cycling performance decreased significantly (β = -0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = -0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = -0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35-39 years. In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance.

  14. Correlation between Thermodynamic Efficiency and Ecological Cyclicity for Thermodynamic Power Cycles

    PubMed Central

    Layton, Astrid; Reap, John; Bras, Bert; Weissburg, Marc

    2012-01-01

    A sustainable global community requires the successful integration of environment and engineering. In the public and private sectors, designing cyclical (“closed loop”) resource networks increasingly appears as a strategy employed to improve resource efficiency and reduce environmental impacts. Patterning industrial networks on ecological ones has been shown to provide significant improvements at multiple levels. Here, we apply the biological metric cyclicity to 28 familiar thermodynamic power cycles of increasing complexity. These cycles, composed of turbines and the like, are scientifically very different from natural ecosystems. Despite this difference, the application results in a positive correlation between the maximum thermal efficiency and the cyclic structure of the cycles. The immediate impact of these findings results in a simple method for comparing cycles to one another, higher cyclicity values pointing to those cycles which have the potential for a higher maximum thermal efficiency. Such a strong correlation has the promise of impacting both natural ecology and engineering thermodynamics and provides a clear motivation to look for more fundamental scientific connections between natural and engineered systems. PMID:23251638

  15. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical modelmore » of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.« less

  16. Hospital financial management: what is the link between revenue cycle management, profitability, and not-for-profit hospitals' ability to grow equity?

    PubMed

    Singh, Simone Rauscher; Wheeler, John

    2012-01-01

    Effective revenue cycle management--from appointment scheduling and patient registration at the front end of the revenue cycle to billing and cash collections at the back end--plays a crucial role in hospitals' efforts to improve their financial performance. Using data for 1,397 bond-issuing, not-for-profit US hospitals for 2000 to 2007, this study analyzed the relationship between hospitals' performance at managing the revenue cycle and their profitability and ability to build equity capital. Hospital-level fixed effects regression analysis was used to model four different measures of profitability and equity capital as functions of two key financial indicators of revenue cycle management--amount of patient revenue and speed of revenue collection. The results indicated that higher amounts of patient revenue in relation to a hospital's assets were associated with statistically significant increases in operating and total profit margins, free cash flow, and equity capital (p < 0.01 for all four models); that is, hospitals that generated more patient revenue per dollar of assets invested reported improved financial performance. Likewise, a statistically significant link existed between lower revenue collection periods and all four indicators of hospital financial performance (p < 0.01 for three models; p < 0.05 for one model). Hospitals that collected faster on their patient revenue reported higher profit margins and larger equity values. For revenue cycle managers, these findings represent good news: Streamlining a hospital's management of the patient revenue cycle can advance the organization's financial viability by improving profitability and enabling equity growth.

  17. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Pedrocchi, Alessandra; Ferrigno, Giancarlo; Molteni, Franco

    2011-04-01

    This study assessed whether cycling induced by functional electrical stimulation (FES) was more effective than passive cycling with placebo stimulation in promoting motor recovery and walking ability in postacute hemiparetic patients. In a double-blind, randomized, controlled trial, 35 patients were included and randomized to receive FES-induced cycling training or placebo FES cycling. The 4-week treatment consisted of 20 sessions lasting 25 minutes each. Primary outcome measures included the leg subscale of the Motricity Index and gait speed during a 50-meter walking test. Secondary outcomes were the Trunk Control Test, the Upright Motor Control Test, the mean work produced by the paretic leg, and the unbalance in mechanical work between paretic and nonparetic legs during voluntary pedaling. Participants were evaluated before training, after training, and at 3- to 5-month follow-up visits. No significant differences were found between groups at baseline. Repeated-measures ANOVA (P<0.05) revealed significant increases in Motricity Index, Trunk Control Test, Upright Motor Control Test, gait speed, and mean work of the paretic leg after training and at follow-up assessments for FES-treated patients. No outcome measures demonstrated significant improvements after training in the placebo group. Both groups showed no significant differences between assessments after training and at follow-up. A main effect favoring FES-treated patients was demonstrated by repeated-measures ANCOVA for Motricity Index (P<0.001), Trunk Control Test (P=0.001), Upright Motor Control Test (P=0.005), and pedaling unbalance (P=0.038). The study demonstrated that 20 sessions of FES cycling training significantly improved lower extremity motor functions and accelerated the recovery of overground locomotion in postacute hemiparetic patients. Improvements were maintained at follow-up.

  18. An 8-Week Low-Intensity Progressive Cycling Training Improves Motor Functions in Patients with Early-Stage Parkinson's Disease.

    PubMed

    Chang, Hsiu Chen; Lu, Chin Song; Chiou, Wei Da; Chen, Chiung Chu; Weng, Yi Hsin; Chang, Ya Ju

    2018-04-01

    The effects of high-intensity cycling as an adjuvant therapy for early-stage Parkinson's disease (PD) were highlighted recently. However, patients experience difficulties in maintaining these cycling training programs. The present study investigated the efficacy of cycling at a mild-to-moderate intensity in early-stage PD. Thirteen PD patients were enrolled for 16 serial cycling sessions over a 2-month period. Motor function was assessed using the Unified Parkinson's Disease Rating Scale part III (UPDRS III) and Timed Up and Go (TUG) test as primary outcomes. The Montreal Cognitive Assessment (MoCA), modified Hoehn and Yahr Stage (mHYS), total UPDRS, Falls Efficacy Scale, New Freezing of Gait Questionnaire, Schwab and England Activities of Daily Living, 39-item Parkinson's Disease Questionnaire, Patient Global Impression of Change, and gait performance were assessed as secondary outcomes. The age and the age at onset were 59.67±7.24 and 53.23±10.26 years (mean±SD), respectively. The cycling cadence was 53.27±8.92 revolutions per minute. The UPDRS III score improved significantly after 8 training sessions (p=0.011) and 16 training sessions (T2) (p=0.001) in the off-state, and at T2 (p=0.004) in the on-state compared to pretraining (T0). The TUG duration was significantly shorter at T2 than at T0 (p<0.05). The findings of MoCA, total UPDRS, double limb support time, and mHYS (in both the off- and on-states) also improved significantly at T2. Our pioneer study has demonstrated that a low-intensity progressive cycling exercise can improve motor function in PD, especially akinesia. The beneficial effects were similar to those of high-intensity rehabilitation programs. Copyright © 2018 Korean Neurological Association.

  19. Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: a randomized controlled trial.

    PubMed

    Fowler, Eileen G; Knutson, Loretta M; Demuth, Sharon K; Siebert, Kara L; Simms, Victoria D; Sugi, Mia H; Souza, Richard B; Karim, Roksana; Azen, Stanley P

    2010-03-01

    Effective interventions to improve and maintain strength (force-generating capacity) and endurance are needed for children with cerebral palsy (CP). This study was performed to examine the effects of a stationary cycling intervention on muscle strength, locomotor endurance, preferred walking speed, and gross motor function in children with spastic diplegic CP. This was a phase I randomized controlled trial with single blinding. The interventions were performed in community-based outpatient physical therapy clinics. Outcome assessments were performed in university laboratories. Sixty-two ambulatory children aged 7 to 18 years with spastic diplegic CP and Gross Motor Function Classification System levels I to III participated in this study. Participants were randomly assigned to cycling or control (no-intervention) groups. Thirty intervention sessions occurred over 12 weeks. Primary outcomes were peak knee extensor and flexor moments, the 600-Yard Walk-Run Test, the Thirty-Second Walk Test, and the Gross Motor Function Measure sections D and E (GMFM-66). Significant baseline-postintervention improvements were found for the 600-Yard Walk-Run Test, the GMFM-66, peak knee extensor moments at 120 degrees /s, and peak knee flexor moments at 30 degrees /s for the cycling group. Improved peak knee flexor moments at 120 degrees/s were found for the control group only, although not all participants could complete this speed of testing. Significant differences between the cycling and control groups based on change scores were not found for any outcomes. Limitations Heterogeneity of the patient population and intrasubject variability were limitations of the study. Significant improvements in locomotor endurance, gross motor function, and some measures of strength were found for the cycling group but not the control group, providing preliminary support for this intervention. As statistical differences were not found in baseline-postintervention change scores between the 2 groups; the results did not demonstrate that stationary cycling was more effective than no intervention. The results of this phase I study provide guidance for future research.

  20. Specific aspects of contemporary triathlon: implications for physiological analysis and performance.

    PubMed

    Bentley, David J; Millet, Grégoire P; Vleck, Verónica E; McNaughton, Lars R

    2002-01-01

    Triathlon competitions are performed over markedly different distances and under a variety of technical constraints. In 'standard-distance' triathlons involving 1.5km swim, 40km cycling and 10km running, a World Cup series as well as a World Championship race is available for 'elite' competitors. In contrast, 'age-group' triathletes may compete in 5-year age categories at a World Championship level, but not against the elite competitors. The difference between elite and age-group races is that during the cycle stage elite competitors may 'draft' or cycle in a sheltered position; age-group athletes complete the cycle stage as an individual time trial. Within triathlons there are a number of specific aspects that make the physiological demands different from the individual sports of swimming, cycling and running. The physiological demands of the cycle stage in elite races may also differ compared with the age-group format. This in turn may influence performance during the cycle leg and subsequent running stage. Wetsuit use and drafting during swimming (in both elite and age-group races) result in improved buoyancy and a reduction in frontal resistance, respectively. Both of these factors will result in improved performance and efficiency relative to normal pool-based swimming efforts. Overall cycling performance after swimming in a triathlon is not typically affected. However, it is possible that during the initial stages of the cycle leg the ability of an athlete to generate the high power outputs necessary for tactical position changes may be impeded. Drafting during cycling results in a reduction in frontal resistance and reduced energy cost at a given submaximal intensity. The reduced energy expenditure during the cycle stage results in an improvement in running, so an athlete may exercise at a higher percentage of maximal oxygen uptake. In elite triathlon races, the cycle courses offer specific physiological demands that may result in different fatigue responses when compared with standard time-trial courses. Furthermore, it is possible that different physical and physiological characteristics may make some athletes more suited to races where the cycle course is either flat or has undulating sections. An athlete's ability to perform running activity after cycling, during a triathlon, may be influenced by the pedalling frequency and also the physiological demands of the cycle stage. The technical features of elite and age-group triathlons together with the physiological demands of longer distance events should be considered in experimental design, training practice and also performance diagnosis of triathletes.

  1. Learning Achievement Improvement Efforts Course Learn and Learning Using the Jigsaw Method and Card Media in STKIP PGRI Ngawi 2014/2015 Academic Year

    ERIC Educational Resources Information Center

    Haryono

    2015-01-01

    Subject Teaching and Learning is a basic educational courses that must be taken by all student teachers. Class Action Research aims to improve student achievement Teaching and Learning course by applying Jigsaw and media cards. Research procedures using Classroom Action Research (CAR) with multiple cycles. Each cycle includes four phases:…

  2. Efforts to Improve Teacher Competence in Developing a Lesson Plan through Sustainable Guidance in SMKN 1 Mamuju

    ERIC Educational Resources Information Center

    Sudirman

    2017-01-01

    This study aims to improve the competence of teachers in preparing a lesson plan through continuous guidance in SMK 1 Mamuju, West Sulawesi province. Action research school is implemented through two cycles to see an increase in the competence of teachers write eleven components in the lesson plan. In the first cycle (first) all Master (twelve)…

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myronakis, M; Cai, W; Dhou, S

    Purpose: To determine if 4DCT-based motion modeling and external surrogate motion measured during treatment simulation can enhance prediction of residual tumor motion and duty cycle during treatment delivery. Methods: This experiment was conducted using simultaneously recorded tumor and external surrogate motion acquired over multiple fractions of lung cancer radiotherapy. These breathing traces were combined with the XCAT phantom to simulate CT images. Data from the first day was used to estimate the residual tumor motion and duty cycle both directly from the 4DCT (the current clinical standard), and from external-surrogate based motion modeling. The accuracy of these estimated residual tumormore » motions and duty cycles are evaluated by comparing to the measured internal/external motions from other treatment days. Results: All calculations were done for 25% and 50% duty cycles. The results indicated that duty cycle derived from 4DCT information alone is not enough to accurately predict duty cycles during treatment. Residual tumor motion was determined from the recorded data and compared with the estimated residual tumor motion from 4DCT. Relative differences in residual tumor motion varied from −30% to 55%, suggesting that more information is required to properly predict residual tumor motion. Compared to estimations made from 4DCT, in three out of four patients examined, the 30 seconds of motion modeling data was able to predict the duty cycle with better accuracy than 4DCT. No improvement was observed in prediction of residual tumor motion for this dataset. Conclusion: Motion modeling during simulation has the potential to enhance 4DCT and provide more information about target motion, duty cycles, and delivered dose. Based on these four patients, 30 seconds of motion modeling data produced improve duty cycle estimations but showed no measurable improvement in residual tumor motion prediction. More patient data is needed to verify this Result. I would like to acknowledge funding from MRA, VARIAN Medical Systems, Inc.« less

  4. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  5. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  6. Seven Q-Tracks monitors of laboratory quality drive general performance improvement: experience from the College of American Pathologists Q-Tracks program 1999-2011.

    PubMed

    Meier, Frederick A; Souers, Rhona J; Howanitz, Peter J; Tworek, Joseph A; Perrotta, Peter L; Nakhleh, Raouf E; Karcher, Donald S; Bashleben, Christine; Darcy, Teresa P; Schifman, Ron B; Jones, Bruce A

    2015-06-01

    Many production systems employ standardized statistical monitors that measure defect rates and cycle times, as indices of performance quality. Clinical laboratory testing, a system that produces test results, is amenable to such monitoring. To demonstrate patterns in clinical laboratory testing defect rates and cycle time using 7 College of American Pathologists Q-Tracks program monitors. Subscribers measured monthly rates of outpatient order-entry errors, identification band defects, and specimen rejections; median troponin order-to-report cycle times and rates of STAT test receipt-to-report turnaround time outliers; and critical values reporting event defects, and corrected reports. From these submissions Q-Tracks program staff produced quarterly and annual reports. These charted each subscriber's performance relative to other participating laboratories and aggregate and subgroup performance over time, dividing participants into best and median performers and performers with the most room to improve. Each monitor's patterns of change present percentile distributions of subscribers' performance in relation to monitoring durations and numbers of participating subscribers. Changes over time in defect frequencies and the cycle duration quantify effects on performance of monitor participation. All monitors showed significant decreases in defect rates as the 7 monitors ran variously for 6, 6, 7, 11, 12, 13, and 13 years. The most striking decreases occurred among performers who initially had the most room to improve and among subscribers who participated the longest. All 7 monitors registered significant improvement. Participation effects improved between 0.85% and 5.1% per quarter of participation. Using statistical quality measures, collecting data monthly, and receiving reports quarterly and yearly, subscribers to a comparative monitoring program documented significant decreases in defect rates and shortening of a cycle time for 6 to 13 years in all 7 ongoing clinical laboratory quality monitors.

  7. Resveratrol Improves Cell Cycle Arrest in Chronic Prostatitis Rats, by C-kit/SCF Suppression.

    PubMed

    He, Yi; Zeng, Huizhi; Yu, Yang; Zhang, Jiashu; Zeng, Xiaona; Gong, Fengtao; Liu, Qi; Yang, Bo

    2017-08-01

    Chronic prostatitis (CP) with complex pathogenesis is difficult for treatment. c-kit has been associated with the control of cell proliferation of prostate cells. This study aims to evaluate the role of resveratrol, an activator of Sirt1, in regulating the expression of c-kit in CP and investigate the consequent effects on cell cycle. Rat model of CP was established through subcutaneous injections of diphtheria-pertussis-tetanus vaccine and subsequently treated with resveratrol. Hematoxylin and eosin staining was performed to identify the histopathological changes in prostates. Western blotting and immunohistochemical staining examined the expression level of c-kit, stem cell factor (SCF), Sirt1, and cell cycle-associated proteins. The model group exhibited severe diffuse chronic inflammation, characterized by leukocyte infiltration and papillary frond protrusion into the gland cavities, and a notable increase in prostatic epithelial height. Gland lumen diameter was also significantly smaller; the activity of c-kit/SCF in the CP rats was increased significantly compared to the control group. Meanwhile, the cell cycle proteins are dysregulated significantly in CP rats. Resveratrol treatment significantly improved these factors by Sirt1 activation. Dysregulation of cell cycle was involved in the pathological processes of CP, which was improved after resveratrol treatment by the downregulation of c-kit/SCF by activating Sirt1.

  8. Long-term shifts in life-cycle energy efficiency and carbon intensity.

    PubMed

    Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier

    2013-03-19

    The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.

  9. Advanced supersonic propulsion study, phase 2. [propulsion system performance, design analysis and technology assessment

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.

    1975-01-01

    A continuation of the NASA/P and WA study to evaluate various types of propulsion systems for advanced commercial supersonic transports has resulted in the identification of two very promising engine concepts. They are the Variable Stream Control Engine which provides independent temperature and velocity control for two coannular exhaust streams, and a derivative of this engine, a Variable Cycle Engine that employs a rear flow-inverter valve to vary the bypass ratio of the cycle. Both concepts are based on advanced engine technology and have the potential for significant improvements in jet noise, exhaust emissions and economic characteristics relative to current technology supersonic engines. Extensive research and technology programs are required in several critical areas that are unique to these supersonic Variable Cycle Engines to realize these potential improvements. Parametric cycle and integration studies of conventional and Variable Cycle Engines are reviewed, features of the two most promising engine concepts are described, and critical technology requirements and required programs are summarized.

  10. Progress in Multi-Disciplinary Data Life Cycle Management

    NASA Astrophysics Data System (ADS)

    Jung, C.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.

    2015-12-01

    Modern science is most often driven by data. Improvements in state-of-the-art technologies and methods in many scientific disciplines lead not only to increasing data rates, but also to the need to improve or even completely overhaul their data life cycle management. Communities usually face two kinds of challenges: generic ones like federated authorization and authentication infrastructures and data preservation, and ones that are specific to their community and their respective data life cycle. In practice, the specific requirements often hinder the use of generic tools and methods. The German Helmholtz Association project ’’Large-Scale Data Management and Analysis” (LSDMA) addresses both challenges: its five Data Life Cycle Labs (DLCLs) closely collaborate with communities in joint research and development to optimize the communities data life cycle management, while its Data Services Integration Team (DSIT) provides generic data tools and services. We present most recent developments and results from the DLCLs covering communities ranging from heavy ion physics and photon science to high-throughput microscopy, and from DSIT.

  11. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  12. Promoting Safe Walking and Cycling to Improve Public Health: Lessons From The Netherlands and Germany

    PubMed Central

    Pucher, John; Dijkstra, Lewis

    2003-01-01

    Objectives. We examined the public health consequences of unsafe and inconvenient walking and bicycling conditions in American cities to suggest improvements based on successful policies in The Netherlands and Germany. Methods. Secondary data from national travel and crash surveys were used to compute fatality trends from 1975 to 2001 and fatality and injury rates for pedestrians and cyclists in The Netherlands, Germany, and the United States in 2000. Results. American pedestrians and cyclists were much more likely to be killed or injured than were Dutch and German pedestrians and cyclists, both on a per-trip and on a per-kilometer basis. Conclusions. A wide range of measures are available to improve the safety of walking and cycling in American cities, both to reduce fatalities and injuries and to encourage walking and cycling. PMID:12948971

  13. Amyotrophic Lateral Sclerosis (ALS) treated with Low Level LASER Therapy (LLLT): a case report

    NASA Astrophysics Data System (ADS)

    Longo, Leonardo; Postiglione, Marco; Gabellini, Massimiliano; Longo, Diego

    2009-06-01

    The topic concerns the effect of LLLT on ALS. The purpose is to find a new and effective approach to treat ALS by utilizing the beneficial biological effects on human tissues provided by LLLT and by testing the effectiveness of a specific treatment protocol. There are no reports in literature dealing with this topic. A 69 year old male with signs of lower motor neuron degeneration diagnosed in 2003 as ALS was given LLLT. Two different types of LASERs (wavelengths 810 and 890 nm) where used with specific parameters in March 2007. Three cycles of 20 daily sessions at 40 days interval were given. Gradual and significant improvements were noted after each cycle particularly appreciated by the patient especially in muscular mobility and respiratory functions. However signs of improvement 20 days after the third cycle showed a tendency to regression. Results obtained indicate that LLLT with the specific protocol used gives significant improvement of the ALS clinical picture but that its duration is not permanent. Further research on a large cohort is justified especially as regards LASER parameters and treatment cycles.

  14. Status of nickel/zinc and nickel/iron battery technology for electric vehicle applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, N.P.; Christianson, C.C.; Elliott, R.C.

    1980-01-01

    Significant progress in nickel/zinc and nickel/iron technology has been made towards achieving the battery technical performance goals necessary for widespread use of these battery systems in electric vehicle applications. This progress is reviewed. Nickel/zinc module test data have shown a specific energy of nearly 70 Whr/kg and a specific power of 130 W/kg. However, cycle life improvements are still needed (presently demonstrated capability of 120 cycles) and are expected to be demonstrated during 1980. Nickel/iron modules have demonstrated a specific energy of nearly 50 Wh/kg and a specific power of 100 W/kg. Indications are that improved performance in these areasmore » can be shown during 1980. Nickel/iron modules cycle lives of 300 have been achieved during early 1980 and testing continues. Energy efficiency has been improved from less than 50% to over 65%. Cost reduction (both initial and operating) continues to receive major emphasis at developers of both nickel/zinc and nickel/iron batteries in order to achieve the lowest possible life cycle cost to the battery user.« less

  15. Cycle-Based Budgeting and Continuous Improvement at Jefferson County Public Schools: Year 1 Report

    ERIC Educational Resources Information Center

    Yan, Bo

    2016-01-01

    This report documents the first-year of implementing Cycle-based Budgeting at Jefferson County Public Schools (Louisville, KY). To address the limitations of incremental budgeting and zero-based budgeting, a Cycle-based Budgeting model was developed and implemented in JCPS. Specifically, each new program needs to submit an on-line budget request…

  16. [Future development of the "integrated water cycle"].

    PubMed

    de Marinis, G

    2003-01-01

    In this presentation problems connected to the usage and management of entire water cycle are illustrated. The solution has to be found in a reorganization of the national water system. When the regulation n. 36/94 (legge Galli) will be completely in force, an improvement of the efficiency of the entire organization of the integrated water cycle will be obtained.

  17. 3 Steps to Great Coaching: A Simple but Powerful Instructional Coaching Cycle Nets Results

    ERIC Educational Resources Information Center

    Knight, Jim; Elford, Marti; Hock, Michael; Dunekack, Devona; Bradley, Barbara; Deshler, Donald D.; Knight, David

    2015-01-01

    In this article the authors describe a three-step instructional coaching cycle that can helps coaches become more effective. The article provides the steps and related components to: (1) Identify; (2) Learn; and (3) Improve. While the instructional coaching cycle is only one effective coaching program, coaches also need professional learning that…

  18. Training for Content Teachers of English Language Learners: Using Experiential Learning to Improve Instruction

    ERIC Educational Resources Information Center

    Bohon, Leslie L.; McKelvey, Susan; Rhodes, Joan A.; Robnolt, Valerie J.

    2017-01-01

    Experiential learning theory places experience at the center of learning. Kolb's four-stage cycle of experiential learning suggests that effective learners must engage fully in each stage of the cycle--feeling, reflection, thinking, and action. This research assesses the alignment of Kolb's experiential learning cycle with the week-long Summer…

  19. A Completed Cycle Audit of Psychiatric Discharge Summaries.

    PubMed

    Najim, Hellme; Jaffar, Khalid

    2015-09-01

    Patients discharge summaries are important as they record a vital miles stone in patients' care. Their accurate record improves patients' care and clarifies communication between different health professionals. 60 Discharge summaries from different consultant psychiatrists' case load were audited. The results were analysed and presented with recommendations to improve them a format was suggested. A reaudit of 62 discharge summaries was carried out by the same team after three years in the same catchment area but the practice has changed to inpatient and community. Improvement in most of the areas audited occur in the reaudit which indicates the usefulness of audit in improving clinical practice which a pivotal part of clinical governance. This completed audit cycle has proven that clinical practice has been reviewed and methods of improving it have been implemented. It has been noted that more items were reviewed and added to the second cycle which should be condoned. Discharge summaries are important clinical documents in secondary and primary care communications. They are helpful for secondary care staff as they good references for people in out of hours services and Accident and Emergency. Good quality discharge summaries improve patients care and make it easy to manage clinical risk.

  20. Life-cycle assessment of Nebraska bridges.

    DOT National Transportation Integrated Search

    2013-05-01

    Life-cycle cost analysis (LCCA) is a necessary component in bridge management systems (BMSs) for : assessing investment decisions and identifying the most cost-effective improvement alternatives. The : LCCA helps to identify the lowest cost alternati...

  1. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    PubMed

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  2. Intensive aerobic cycling training with lower limb weights in Chinese patients with chronic stroke: discordance between improved cardiovascular fitness and walking ability.

    PubMed

    Jin, Hong; Jiang, Yibo; Wei, Qin; Wang, Bilei; Ma, Genshan

    2012-01-01

    To evaluate the effect of aerobic cycling training with lower limb weights on cardiovascular fitness (peak VO(2)) and walking ability in chronic stroke survivors, and to investigate the relationship between changes in these parameters. 133 Chinese patients with chronic hemiparetic stroke (mean age 58 years) were randomized to either 8-week (5×/week) aerobic cycling training with lower limb weights group (n = 68) or a low-intensity overground walking group (n = 65). Peak VO(2), 6-minute walk distance (6MWD), knee muscle strength, balance and spasticity were measured before and after intervention. Cycling training increased peak VO(2) (24% vs. 3%, p < 0.001), 6MWD (2.7% vs. 0.5%, p < 0.001), paretic (11% vs. 1.6%, p < 0.001) and nonparetic knee strength (16% vs. 1.0%, p < 0.001). In the cycling group, percent changes in peak VO(2) were positively associated with those in paretic (r = 0.491, p < 0.001) and nonparetic knee strength (r = 0.432, p < 0.001). Increased 6MWD correlated significantly with improved balance, spasticity and paretic knee strength by the stepwise regression analysis (r(2) = 0.342, p = 0.004), but not fitness gains. The enhanced cardiovascular fitness after aerobic cycling training in Chinese patients with chronic stroke is not associated with the increased walking ability. Unparallel improvements in these parameters related different determinants may have implications for intervention strategy.

  3. Realization of process improvement at a diagnostic radiology department with aid of simulation modeling.

    PubMed

    Oh, Hong-Choon; Toh, Hong-Guan; Giap Cheong, Eddy Seng

    2011-11-01

    Using the classical process improvement framework of Plan-Do-Study-Act (PDSA), the diagnostic radiology department of a tertiary hospital identified several patient cycle time reduction strategies. Experimentation of these strategies (which included procurement of new machines, hiring of new staff, redesign of queue system, etc.) through pilot scale implementation was impractical because it might incur substantial expenditure or be operationally disruptive. With this in mind, simulation modeling was used to test these strategies via performance of "what if" analyses. Using the output generated by the simulation model, the team was able to identify a cost-free cycle time reduction strategy, which subsequently led to a reduction of patient cycle time and achievement of a management-defined performance target. As healthcare professionals work continually to improve healthcare operational efficiency in response to rising healthcare costs and patient expectation, simulation modeling offers an effective scientific framework that can complement established process improvement framework like PDSA to realize healthcare process enhancement. © 2011 National Association for Healthcare Quality.

  4. Rotary Vapor Compression Cycle Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariya, Arthur; Staats, Wayne; Koplow, Jeffrey P.

    While there are several heat pump technologies such thermoelectric, adsorption and magnetocaloric cycles, the oldest and most widely used is the vapor compression cycle (VCC). Currently, thermoelectric cycles have not yet achieved efficiencies nor cooling capacities comparable to VCCs. Adsorption cycles offer the benefit of using low-quality heat as the energy input, but are significantly more complex and expensive and are therefore limited to certain niche applications. Magnetocaloric cycles are still in the research phase. Consequently, improvements made for VCCs will likely have the most immediate and encompassing impact. The objective of this work is to develop an alternative VCCmore » topology to reduce the above inefficiencies.« less

  5. Arbuscular mycorrhizal fungi improve photosynthetic energy use efficiency and decrease foliar construction cost under recurrent water deficit in woody evergreen species.

    PubMed

    Barros, Vanessa; Frosi, Gabriella; Santos, Mariana; Ramos, Diego Gomes; Falcão, Hiram Marinho; Santos, Mauro Guida

    2018-06-01

    Plants suffer recurrent cycles of water deficit in semiarid regions and have several mechanisms to tolerate low water availability. Thus, arbuscular mycorrhizal fungi (AMF) can alleviate deleterious effects of stress. In this study, Cynophalla flexuosa plants, a woody evergreen species from semiarid, when associated with AMF were exposed to two consecutive cycles of water deficit. Leaf primary metabolism, specific leaf area (SLA), leaf construction cost (CC) and photosynthetic energy use efficiency (PEUE) were measured. The maximum stress occurred on seven days (cycle 1) and ten days (cycle 2) after suspending irrigation (photosynthesis close to zero). The rehydration was performed for three days after each maximum stress. In both cycles, plants submitted to water deficit showed reduced gas exchange and leaf relative water content. However, Drought + AMF plants had significantly larger leaf relative water content in cycle 2. At cycle 1, the SLA was larger in non-inoculated plants, while CC was higher in inoculated plants. At cycle 2, Drought + AMF treatment had lower CC and large SLA compared to control, and high PEUE compared to Drought plants. These responses suggest AMFs increase tolerance of C. flexuosa to recurrent water deficit, mainly in cycle 2, reducing the CC, promoting the improvement of SLA and PEUE, leading to higher photosynthetic area. Thus, our result emphasizes the importance of studies on recurrence of water deficit, a common condition in semiarid environments. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. [Analysis of the impact of decitabine treatment cycles on efficacy and safety in patients of myelodysplastic syndrome-refractory anemia with excess blasts].

    PubMed

    Luo, X P; Xu, Z F; Qin, T J; Zhang, Y; Zhang, H L; Fang, L W; Pan, L J; Hu, N B; Qu, S Q; Li, B; Xiao, Z J

    2016-10-14

    Objective: To explore the impact of decitabine treatment cycles on efficacy and adverse events(AEs)in patients of myelodysplastic syndrome-refractory anemia with excess blasts(MDSRAEB). Methods: A total of fifty-six patients with MDS-RAEB who received decitabine 20 mg·m -2 ·d -1 by IV infusion daily for 5 consecutive days every 4 weeks at a single institute in China were enrolled from December 2008 to March 2016. Their clinical features, efficacy, predictors of efficacy and AEs were analyzed retrospectively. Results: Of the 56 patients enrolled, 25 cases were MDS- RAEB1, another 31 were MDS-RAEB2. A median of 3 cycles(range, 1-15 cycles)were delivered. The overall response rate was 67.9%(10 complete responses, 8 marrow complete responses without hematologic improvement, 17 marrow complete responses with hematologic improvements, and 3 hematologic improvements). With a median follow-up duration of 7.9(1.0-56.3)months, the median overall survival was 21.1(95% CI 16.0- 26.1)months. Compared with RAEB-2, RAEB-1 predicted higher overall response rates in a multivariate analysis. Of the 38 patients who experienced clinical responses, initial responses were detected by the end of two cycles in 37 patients. Twenty- five of the 38 patients who experienced clinical responses had their best response within the first two cycles, and 37 cases of the patients achieved best response by the end of fourth cycles. Grade 3 or 4 cytopenia and infection were the most prevalent AEs, which occurred frequently in the early courses and decreased later, and other non- hematologic AEs were rare. Conclusion: Decitabine treatment was favorable in patients with MDS- RAEB. In most of the cases, initial responses were observed within 2 cycles, and best response was achieved by the end of 4 th cycles. The most common AEs were grade 3 or 4 cytopenia and infection, which were observed frequently in first 2 cycles and decreased later as objective response were achieved.

  7. The menstrual cycle regularization following D-chiro-inositol treatment in PCOS women: a retrospective study.

    PubMed

    La Marca, Antonio; Grisendi, Valentina; Dondi, Giulia; Sighinolfi, Giovanna; Cianci, Antonio

    2015-01-01

    Polycystic ovary syndrome is characterized by irregular cycles, hyperandrogenism, polycystic ovary at ultrasound and insulin resistance. The effectiveness of D-chiro-inositol (DCI) treatment in improving insulin resistance in PCOS patients has been confirmed in several reports. The objective of this study was to retrospectively analyze the effect of DCI on menstrual cycle regularity in PCOS women. This was a retrospective study of patients with irregular cycles who were treated with DCI. Of all PCOS women admitted to our centre, 47 were treated with DCI and had complete medical charts. The percentage of women reporting regular menstrual cycles significantly increased with increasing duration of DCI treatment (24% and 51.6% at a mean of 6 and 15 months of treatment, respectively). Serum AMH levels and indexes of insulin resistance significantly decreased during the treatment. Low AMH levels, high HOMA index, and the presence of oligomenorrhea at the first visit were the independent predictors of obtaining regular menstrual cycle with DCI. In conclusion, the use of DCI is associated to clinical benefits for many women affected by PCOS including the improvement in insulin resistance and menstrual cycle regularity. Responders to the treatment may be identified on the basis of menstrual irregularity and hormonal or metabolic markers.

  8. Is high-intensity interval cycling feasible and more beneficial than continuous cycling for knee osteoarthritic patients? Results of a randomised control feasibility trial

    PubMed Central

    Grigg, Josephine

    2018-01-01

    Background Knee osteoarthritis (OA) patients often suffer joint pain and stiffness, which contributes to negative changes in body composition, strength, physical performance (function), physical activity and health-related quality of life. To reduce these symptoms and side effects of knee OA, moderate-intensity continuous training (MICT) cycling is often recommended. While resistance training is considered the optimal form of training to improve sarcopenic outcomes, it imposes higher joint loads and requires supervision, either initially or continuously by trained exercise professionals. Therefore, this pilot study sought to gain some insight into the feasibility and potential benefits of high-intensity interval training (HIIT) cycling as an alternative exercise option to MICT cycling for individuals with knee OA. Methods Twenty-seven middle-aged and older adults with knee OA were randomly allocated to either MICT or HIIT, with both programs involving four unsupervised home-based cycling sessions (∼25 min per session) each week for eight weeks. Feasibility was assessed by enrolment rate, withdrawal rate, exercise adherence and number of adverse effects. Efficacy was assessed by health-related quality of life (Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Lequesne index), physical function (Timed Up and Go (TUG), Sit to Stand (STS) and preferred gait speed) and body composition (body mass, BMI, body fat percentage and muscle mass). Results Twenty-seven of the interested 50 potential participants (54%) enrolled in the study, with 17 of the 27 participants completing the trial (withdrawal rate of 37%); with the primary withdrawal reasons being unrelated injuries or illness or family related issues. Of the 17 participants who completed the trial, exercise adherence was very high (HIIT 94%; MICT 88%). While only three individuals (one in the MICT and two in the HIIT group) reported adverse events, a total of 28 adverse events were reported, with 24 of these attributed to one HIIT participant. Pre–post-test analyses indicated both groups significantly improved their WOMAC scores, with the HIIT group also significantly improving in the TUG and STS. The only significant between-group difference was observed in the TUG, whereby the HIIT group improved significantly more than the MICT group. No significant changes were observed in the Lequesne index, gait speed or body composition for either group. Discussion An unsupervised home-based HIIT cycle program appears somewhat feasible for middle-aged and older adults with knee OA and may produce similar improvements in health-related quality of life but greater improvements in physical function than MICT. These results need to be confirmed in larger randomised controlled trials to better elucidate the potential for HIIT to improve outcomes for those with knee OA. Additional research needs to identify and modify the potential barriers affecting the initiation and adherence to home-based HIIT cycling exercise programs by individuals with knee OA. PMID:29761054

  9. Is high-intensity interval cycling feasible and more beneficial than continuous cycling for knee osteoarthritic patients? Results of a randomised control feasibility trial.

    PubMed

    Keogh, Justin W; Grigg, Josephine; Vertullo, Christopher J

    2018-01-01

    Knee osteoarthritis (OA) patients often suffer joint pain and stiffness, which contributes to negative changes in body composition, strength, physical performance (function), physical activity and health-related quality of life. To reduce these symptoms and side effects of knee OA, moderate-intensity continuous training (MICT) cycling is often recommended. While resistance training is considered the optimal form of training to improve sarcopenic outcomes, it imposes higher joint loads and requires supervision, either initially or continuously by trained exercise professionals. Therefore, this pilot study sought to gain some insight into the feasibility and potential benefits of high-intensity interval training (HIIT) cycling as an alternative exercise option to MICT cycling for individuals with knee OA. Twenty-seven middle-aged and older adults with knee OA were randomly allocated to either MICT or HIIT, with both programs involving four unsupervised home-based cycling sessions (∼25 min per session) each week for eight weeks. Feasibility was assessed by enrolment rate, withdrawal rate, exercise adherence and number of adverse effects. Efficacy was assessed by health-related quality of life (Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Lequesne index), physical function (Timed Up and Go (TUG), Sit to Stand (STS) and preferred gait speed) and body composition (body mass, BMI, body fat percentage and muscle mass). Twenty-seven of the interested 50 potential participants (54%) enrolled in the study, with 17 of the 27 participants completing the trial (withdrawal rate of 37%); with the primary withdrawal reasons being unrelated injuries or illness or family related issues. Of the 17 participants who completed the trial, exercise adherence was very high (HIIT 94%; MICT 88%). While only three individuals (one in the MICT and two in the HIIT group) reported adverse events, a total of 28 adverse events were reported, with 24 of these attributed to one HIIT participant. Pre-post-test analyses indicated both groups significantly improved their WOMAC scores, with the HIIT group also significantly improving in the TUG and STS. The only significant between-group difference was observed in the TUG, whereby the HIIT group improved significantly more than the MICT group. No significant changes were observed in the Lequesne index, gait speed or body composition for either group. An unsupervised home-based HIIT cycle program appears somewhat feasible for middle-aged and older adults with knee OA and may produce similar improvements in health-related quality of life but greater improvements in physical function than MICT. These results need to be confirmed in larger randomised controlled trials to better elucidate the potential for HIIT to improve outcomes for those with knee OA. Additional research needs to identify and modify the potential barriers affecting the initiation and adherence to home-based HIIT cycling exercise programs by individuals with knee OA.

  10. The effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players.

    PubMed

    Crewther, Blair T; Cook, Christian J; Lowe, Tim E; Weatherby, Robert P; Gill, Nicholas

    2011-01-01

    This study examined the effects of short-cycle sprints on power, strength, and salivary hormones in elite rugby players. Thirty male rugby players performed an upper-body power and lower-body strength (UPLS) and/or a lower-body power and upper-body strength (LPUS) workout using a crossover design (sprint vs. control). A 40-second upper-body or lower-body cycle sprint was performed before the UPLS and LPUS workouts, respectively, with the control sessions performed without the sprints. Bench throw (BT) power and box squat (BS) 1 repetition maximum (1RM) strength were assessed in the UPLS workout, and squat jump (SJ) power and bench press (BP) 1RM strength were assessed in the LPUS workout. Saliva was collected across each workout and assayed for testosterone (Sal-T) and cortisol (Sal-C). The cycle sprints improved BS (2.6 ± 1.2%) and BP (2.8 ± 1.0%) 1RM but did not affect BT and SJ power. The lower-body cycle sprint produced a favorable environment for the BS by elevating Sal-T concentrations. The upper-body cycle sprint had no hormonal effect, but the workout differences (%) in Sal-T (r = -0.59) and Sal-C (r = 0.42) concentrations correlated to the BP, along with the Sal-T/C ratio (r = -0.49 to -0.66). In conclusion, the cycle sprints improved the BP and BS 1RM strength of elite rugby players but not power output in the current format. The improvements noted may be explained, in part, by the changes in absolute or relative hormone concentrations. These findings have practical implications for prescribing warm-up and training exercises.

  11. Excellent rate capability and cycling stability in Li+-conductive Li2SnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries.

    PubMed

    Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin

    2018-05-22

    High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.

  12. Pituitary block with gonadotrophin-releasing hormone antagonist during intrauterine insemination cycles: a systematic review and meta-analysis of randomised controlled trials.

    PubMed

    Vitagliano, A; Saccone, G; Noventa, M; Borini, A; Coccia, M E; Nardelli, G B; Saccardi, C; Bifulco, G; Litta, P S; Andrisani, A

    2018-06-03

    Several randomised controlled trials (RCTs) have investigated the usefulness of pituitary block with gonadotrophin-releasing hormone (GnRH) antagonists during intrauterine insemination (IUI) cycles, with conflicting results. The aim of the present systematic review and meta-analysis of RCTs was to evaluate the effectiveness of GnRH antagonist administration as an intervention to improve the success of IUI cycles. Electronic databases (MEDLINE, Scopus, EMBASE, Sciencedirect) and clinical registers were searched from their inception until October 2017. Randomised controlled trials of infertile women undergoing one or more IUI stimulated cycles with GnRH antagonists compared with a control group. The primary outcomes were ongoing pregnancy/live birth rate (OPR/LBR) and clinical pregnancy rate (CPR). Pooled results were expressed as odds ratio (OR) or mean differences with 95% confidence interval (95% CI). Sources of heterogeneity were investigated through sensitivity and subgroups analysis. The body of evidence was rated using GRADE methodology. Publication bias was assessed with funnel plot, Begg's and Egger's tests. Fifteen RCTs were included (3253 IUI cycles, 2345 participants). No differences in OPR/LBR (OR 1.14, 95% CI 0.82-1.57, P = 0.44) and CPR (OR 1.28, 95% CI 0.97-1.69, P = 0.08) were found. Sensitivity and subgroup analyses did not provide statistical changes in pooled results. The body of evidence was rated as low (GRADE 2/4). No publication bias was detected. Pituitary block with GnRH antagonists does not improve OPR/LBR and CPR in women undergoing IUI cycles. Pituitary block with GnRH antagonists does not improve the success of IUI cycles. © 2018 Royal College of Obstetricians and Gynaecologists.

  13. An Approach for Assessing Development and Deployment Risks in the DOE Fuel Cycle Options Evaluation and Screening Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehin, Jess C; Oakley, Brian; Worrall, Andrew

    2015-01-01

    Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less

  14. Fuel development for gas-cooled fast reactors

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Fielding, R.; Gan, J.

    2007-09-01

    The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.

  15. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

    PubMed

    Yao, Yan; McDowell, Matthew T; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D; Cui, Yi

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.

  16. How an educational improvement project improved the summative evaluation of medical students.

    PubMed

    Hoffman, K G; Brown, R Margaret A; Gay, J W; Headrick, L A

    2009-08-01

    At the University of Missouri-Columbia School of Medicine (USA) "commitment to improving quality and safety in healthcare" is one of eight key characteristics set as goals for our graduates. As educators, commitment to continuous improvement in the educational experience has been modelled through improvement of the Medical Student Performance Evaluation (MSPE) letter (formerly the Dean's letter). This educational improvement project decreased waste, increased collaboration and developed locally useful knowledge. By applying continuous improvement principles to the construction of the MSPE the overall efficiency of the process could be enhanced, and the MSPE committee was able to spend less cognitive energy on structure and format and focus more on the content of the letters. Four MSPE cycles have been completed using a new Web-based system; after each cycle, additional enhancements were identified and implemented. This work adds to the literature, as it describes the application of continuous improvement principles to an educational system.

  17. Designing a Clinical Data Warehouse Architecture to Support Quality Improvement Initiatives.

    PubMed

    Chelico, John D; Wilcox, Adam B; Vawdrey, David K; Kuperman, Gilad J

    2016-01-01

    Clinical data warehouses, initially directed towards clinical research or financial analyses, are evolving to support quality improvement efforts, and must now address the quality improvement life cycle. In addition, data that are needed for quality improvement often do not reside in a single database, requiring easier methods to query data across multiple disparate sources. We created a virtual data warehouse at NewYork Presbyterian Hospital that allowed us to bring together data from several source systems throughout the organization. We also created a framework to match the maturity of a data request in the quality improvement life cycle to proper tools needed for each request. As projects progress in the Define, Measure, Analyze, Improve, Control stages of quality improvement, there is a proper matching of resources the data needs at each step. We describe the analysis and design creating a robust model for applying clinical data warehousing to quality improvement.

  18. Designing a Clinical Data Warehouse Architecture to Support Quality Improvement Initiatives

    PubMed Central

    Chelico, John D.; Wilcox, Adam B.; Vawdrey, David K.; Kuperman, Gilad J.

    2016-01-01

    Clinical data warehouses, initially directed towards clinical research or financial analyses, are evolving to support quality improvement efforts, and must now address the quality improvement life cycle. In addition, data that are needed for quality improvement often do not reside in a single database, requiring easier methods to query data across multiple disparate sources. We created a virtual data warehouse at NewYork Presbyterian Hospital that allowed us to bring together data from several source systems throughout the organization. We also created a framework to match the maturity of a data request in the quality improvement life cycle to proper tools needed for each request. As projects progress in the Define, Measure, Analyze, Improve, Control stages of quality improvement, there is a proper matching of resources the data needs at each step. We describe the analysis and design creating a robust model for applying clinical data warehousing to quality improvement. PMID:28269833

  19. A Life Cycle Assessment Framework for Pavement Maintenance and Rehabilitation Technologies : or An Integrated Life Cycle Assessment (LCA) – Life Cycle Cost Analysis (LCCA) Framework for Pavement Maintenance and Rehabilitation

    DOT National Transportation Integrated Search

    2018-02-01

    Qing Lu (ORCID ID 0000-0002-9120-9218) Given a huge amount of annual investment and large inputs of energy and natural resources in pavement maintenance and rehabilitation (M&R) activities, significant environmental improvement and budget saving can ...

  20. Acute Bouts of Assisted Cycling Improves Cognitive and Upper Extremity Movement Functions in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Ringenbach, Shannon D. R; Albert, Andrew R.; Chen, Chih-Chia; Alberts, Jay L.

    2014-01-01

    The aim of this study was to examine the effectiveness of 2 modes of exercise on cognitive and upper extremity movement functioning in adolescents with Down syndrome (DS). Nine participants randomly completed 3 interventions over 3 consecutive weeks. The interventions were: (a) voluntary cycling (VC), in which participants cycled at their…

  1. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  2. Comparison of running and cycling economy in runners, cyclists, and triathletes.

    PubMed

    Swinnen, Wannes; Kipp, Shalaya; Kram, Rodger

    2018-07-01

    Exercise economy is one of the main physiological factors determining performance in endurance sports. Running economy (RE) can be improved with running-specific training, while the improvement of cycling economy (CE) with cycling-specific training is controversial. We investigated whether exercise economy reflects sport-specific skills/adaptations or is determined by overall physiological factors. We compared RE and CE in 10 runners, 9 cyclists and 9 triathletes for running at 12 km/h and cycling at 200 W. Gross rates of oxygen consumption and carbon dioxide production were collected and used to calculate gross metabolic rate in watts for both running and cycling. Runners had better RE than cyclists (917 ± 107 W vs. 1111 ± 159 W) (p < 0.01). Triathletes had intermediate RE values (1004 ± 98 W) not different from runners or cyclists. CE was not different (p = 0.20) between the three groups (runners: 945 ± 60 W; cyclists: 982 ± 44 W; triathletes: 979 ± 54 W). RE can be enhanced with running-specific training, but CE is independent of cycling-specific training.

  3. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  4. The impact of different cross-training modalities on performance and injury-related variables in high school cross country runners.

    PubMed

    Paquette, Max R; Peel, Shelby A; Smith, Ross E; Temme, Mark; Dwyer, Jeffrey N

    2017-11-29

    There are many different types of aerobic cross-training modalities currently available. It is important to consider the effects that these different modalities have on running performance and injury risks. The purpose of this study was to compare movement quality, running economy and performance, injury-related biomechanical variables and, hip muscle strength before and after training with different cross-training modalities in high school runners. Thirty-one high school male runners trained for four weeks in one of three cross-training modalities, in addition to a running-only (RUN, n=9) group, for which training sessions replaced two easy runs per week: cycling (CYCLE; n=6), indoor elliptical (ELLIP; n=7) and, outdoor elliptical bike (EBIKE; n=9). Functional movement screen (FMS), running economy (RE), 3,000m performance, hip kinematics, hip muscle strength were assessed. Paired t-tests and Cohen's d effect sizes were used to assess mean differences for each variable before and after training within each group. EBIKE training was the only modality that improved FMS scores (d = 1.36) and RE before and after training (d = 0.48). All groups showed improvements in 3,000m performance but large effects were only found for the CYCLE (d = 1.50) and EBIKE (d = 1.41) groups. RUN (d = 1.25), CYCLE (d = 1.17) and, EBIKE (d = 0.82) groups showed improvements in maximal hip extensor strength. Outdoor cycling and elliptical bike cross-training may be the most effective cross-training modalities to incorporate in early season training to improve running performance in high school runners.

  5. Potential of electric bicycles to improve the health of people with Type 2 diabetes: a feasibility study.

    PubMed

    Cooper, A R; Tibbitts, B; England, C; Procter, D; Searle, A; Sebire, S J; Ranger, E; Page, A S

    2018-05-08

    To explore in a feasibility study whether 'e-cycling' was acceptable to, and could potentially improve the health of, people with Type 2 diabetes. Twenty people with Type 2 diabetes were recruited and provided with an electric bicycle for 20 weeks. Participants completed a submaximal fitness test at baseline and follow-up to measure predicted maximal aerobic power, and semi-structured interviews were conducted to assess the acceptability of using an electric bicycle. Participants wore a heart rate monitor and a Global Positioning System (GPS) receiver in the first week of electric bicycle use to measure their heart-rate during e-cycling. Eighteen participants completed the study, cycling a median (interquartile range) of 21.4 (5.5-37.7) km per week Predicted maximal aerobic power increased by 10.9%. Heart rate during electric bicycle journeys was 74.7% of maximum, compared with 64.3% of maximum when walking. Participants used the electric bicycles for commuting, shopping and recreation, and expressed how the electric bicycle helped them to overcome barriers to active travel/cycling, such as hills. Fourteen participants purchased an electric bicycle on study completion. There was evidence that e-cycling was acceptable, could increase fitness and elicited a heart rate that may lead to improvements in cardiometabolic risk factors in this population. Electric bicycles have potential as a health-improving intervention in people with Type 2 diabetes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Sex and age-related differences in performance in a 24-hour ultra-cycling draft-legal event – a cross-sectional data analysis

    PubMed Central

    2014-01-01

    Background The purpose of this study was to examine the sex and age-related differences in performance in a draft-legal ultra-cycling event. Methods Age-related changes in performance across years were investigated in the 24-hour draft-legal cycling event held in Schötz, Switzerland, between 2000 and 2011 using multi-level regression analyses including age, repeated participation and environmental temperatures as co-variables. Results For all finishers, the age of peak cycling performance decreased significantly (β = −0.273, p = 0.036) from 38 ± 10 to 35 ± 6 years in females but remained unchanged (β = −0.035, p = 0.906) at 41.0 ± 10.3 years in males. For the annual fastest females and males, the age of peak cycling performance remained unchanged at 37.3 ± 8.5 and 38.3 ± 5.4 years, respectively. For all female and male finishers, males improved significantly (β = 7.010, p = 0.006) the cycling distance from 497.8 ± 219.6 km to 546.7 ± 205.0 km whereas females (β = −0.085, p = 0.987) showed an unchanged performance of 593.7 ± 132.3 km. The mean cycling distance achieved by the male winners of 960.5 ± 51.9 km was significantly (p < 0.001) greater than the distance covered by the female winners with 769.7 ± 65.7 km but was not different between the sexes (p > 0.05). The sex difference in performance for the annual winners of 19.7 ± 7.8% remained unchanged across years (p > 0.05). The achieved cycling distance decreased in a curvilinear manner with advancing age. There was a significant age effect (F = 28.4, p < 0.0001) for cycling performance where the fastest cyclists were in age group 35–39 years. Conclusion In this 24-h cycling draft-legal event, performance in females remained unchanged while their age of peak cycling performance decreased and performance in males improved while their age of peak cycling performance remained unchanged. The annual fastest females and males were 37.3 ± 8.5 and 38.3 ± 5.4 years old, respectively. The sex difference for the fastest finishers was ~20%. It seems that women were not able to profit from drafting to improve their ultra-cycling performance. PMID:24883191

  7. Effect of steam addition on cycle performance of simple and recuperated gas turbines

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.

    1979-01-01

    Results are presented for the cycle efficiency and specific power of simple and recuperated gas turbine cycles in which steam is generated and used to increase turbine flow. Calculations showed significant improvements in cycle efficiency and specific power by adding steam. The calculations were made using component efficiencies and loss assumptions typical of stationary powerplants. These results are presented for a range of operating temperatures and pressures. Relative heat exchanger size and the water use rate are also examined.

  8. Non-invasive ventilation during cycle exercise training in patients with chronic respiratory failure on long-term ventilatory support: A randomized controlled trial.

    PubMed

    Vitacca, Michele; Kaymaz, Dicle; Lanini, Barbara; Vagheggini, Guido; Ergün, Pınar; Gigliotti, Francesco; Ambrosino, Nicolino; Paneroni, Mara

    2018-02-01

    The role of non-invasive ventilation (NIV) during exercise training (ET) in patients with chronic respiratory failure (CRF) is still unclear. The aim of this study was to test whether NIV during ET had an additional effect in increasing the 6-min walking distance (6MWD) and cycle endurance time compared with ET alone. All patients underwent 20 sessions of cycle training over 3 weeks and were randomly assigned to ET with NIV or ET alone. Outcome measures were 6MWD (primary outcome), incremental and endurance cycle ergometer exercise time, respiratory muscle function, quality of life by the Maugeri Respiratory Failure questionnaire (MRF-28), dyspnoea (Medical Research Council scale) and leg fatigue at rest. Forty-two patients completed the study. Following training, no significant difference in 6MWD changes were found between groups. Improvement in endurance time was significantly greater in the NIV group compared with the non-NIV training group (754 ± 973 vs 51 ± 406 s, P = 0.0271); dyspnoea improved in both groups, while respiratory muscle function and leg fatigue improved only in the NIV ET group. MRF-28 improved only in the group training without NIV. In CRF patients on long-term NIV and long-term oxygen therapy (LTOT), the addition of NIV to ET sessions resulted in an improvement in endurance time, but not in 6MWD. © 2017 Asian Pacific Society of Respirology.

  9. Interventions to promote cycling: systematic review

    PubMed Central

    Yang, Lin; Sahlqvist, Shannon; McMinn, Alison; Griffin, Simon J

    2010-01-01

    Objectives To determine what interventions are effective in promoting cycling, the size of the effects of interventions, and evidence of any associated benefits on overall physical activity or anthropometric measures. Design Systematic review. Data sources Published and unpublished reports in any language identified by searching 13 electronic databases, websites, reference lists, and existing systematic reviews, and papers identified by experts in the field. Review methods Controlled “before and after” experimental or observational studies of the effect of any type of intervention on cycling behaviour measured at either individual or population level. Results Twenty five studies (of which two were randomised controlled trials) from seven countries were included. Six studies examined interventions aimed specifically at promoting cycling, of which four (an intensive individual intervention in obese women, high quality improvements to a cycle route network, and two multifaceted cycle promotion initiatives at town or city level) were found to be associated with increases in cycling. Those studies that evaluated interventions at population level reported net increases of up to 3.4 percentage points in the population prevalence of cycling or the proportion of trips made by bicycle. Sixteen studies assessing individualised marketing of “environmentally friendly” modes of transport to interested households reported modest but consistent net effects equating to an average of eight additional cycling trips per person per year in the local population. Other interventions that targeted travel behaviour in general were not associated with a clear increase in cycling. Only two studies assessed effects of interventions on physical activity; one reported a positive shift in the population distribution of overall physical activity during the intervention. Conclusions Community-wide promotional activities and improving infrastructure for cycling have the potential to increase cycling by modest amounts, but further controlled evaluative studies incorporating more precise measures are required, particularly in areas without an established cycling culture. Studies of individualised marketing report consistent positive effects of interventions on cycling behaviour, but these findings should be confirmed using more robust study designs. Future research should also examine how best to promote cycling in children and adolescents and through workplaces. Whether interventions to promote cycling result in an increase in overall physical activity or changes in anthropometric measures is unclear. PMID:20959282

  10. Interventions to promote cycling: systematic review.

    PubMed

    Yang, Lin; Sahlqvist, Shannon; McMinn, Alison; Griffin, Simon J; Ogilvie, David

    2010-10-18

    To determine what interventions are effective in promoting cycling, the size of the effects of interventions, and evidence of any associated benefits on overall physical activity or anthropometric measures. Systematic review. Published and unpublished reports in any language identified by searching 13 electronic databases, websites, reference lists, and existing systematic reviews, and papers identified by experts in the field. Review methods Controlled "before and after" experimental or observational studies of the effect of any type of intervention on cycling behaviour measured at either individual or population level. Twenty five studies (of which two were randomised controlled trials) from seven countries were included. Six studies examined interventions aimed specifically at promoting cycling, of which four (an intensive individual intervention in obese women, high quality improvements to a cycle route network, and two multifaceted cycle promotion initiatives at town or city level) were found to be associated with increases in cycling. Those studies that evaluated interventions at population level reported net increases of up to 3.4 percentage points in the population prevalence of cycling or the proportion of trips made by bicycle. Sixteen studies assessing individualised marketing of "environmentally friendly" modes of transport to interested households reported modest but consistent net effects equating to an average of eight additional cycling trips per person per year in the local population. Other interventions that targeted travel behaviour in general were not associated with a clear increase in cycling. Only two studies assessed effects of interventions on physical activity; one reported a positive shift in the population distribution of overall physical activity during the intervention. Community-wide promotional activities and improving infrastructure for cycling have the potential to increase cycling by modest amounts, but further controlled evaluative studies incorporating more precise measures are required, particularly in areas without an established cycling culture. Studies of individualised marketing report consistent positive effects of interventions on cycling behaviour, but these findings should be confirmed using more robust study designs. Future research should also examine how best to promote cycling in children and adolescents and through workplaces. Whether interventions to promote cycling result in an increase in overall physical activity or changes in anthropometric measures is unclear.

  11. [Cycling in Zagreb].

    PubMed

    Matos, Stipan; Krapac, Ladislav; Krapac, Josip

    2007-01-01

    Cycling in Zagreb, as means of urban transport inside and outside the city, has a bright past, hazy presence but a promising future. Every day, aggressive citizens who lack urban traffic culture mistreat many cyclists but also many pedestrians. Sedentary way of living, unhealthy eating habits and inadequate recreation would surely be reduced if Zagreb had a network of cycling tracks (190 cm) or lanes (80 cm). Main city roads were constructed at the beginning of the 20th century. Today, the lack of cycling tracks is particularly evident in terms of missing connections between northern and southern parts of the city. Transportation of bikes in public vehicles, parking of bikes as well as cycling along the foot of the mountains Medvednica and Zumberacko gorje is not adequately organized. Better organization is necessary not only because of the present young generation but also because of the young who will shortly become citizens of the EU, where cycling is enormously popular. Cycling tourism is not known in Zagreb, partly due to inadequate roads. The surroundings of Zagreb are more suitable for cycling tourism and attractive brochures and tourist guides offer information to tourists on bikes. Professional, acrobatic and sports cycling do not have a tradition in Zagreb and in Croatia. The same holds true for recreational cycling and indoor exercise cycling. The authors discuss the impact of popularization of cycling using print and electronic media. The role of district and local self-government in the construction and improvement of traffic roads in Zagreb is very important. It is also significant for the implementation of legal regulations that must be obeyed by all traffic participants in order to protect cyclists, the most vulnerable group of traffic participants besides passengers. Multidisciplinary action of all benevolent experts would surely increase safety and pleasure of cycling in the city and its surroundings. This would also help reduce daily stress and improve the quality of living in the capital of Croatia.

  12. Improvement of Learning Process and Learning Outcomes in Physics Learning by Using Collaborative Learning Model of Group Investigation at High School (Grade X, SMAN 14 Jakarta)

    ERIC Educational Resources Information Center

    Astra, I. Made; Wahyuni, Citra; Nasbey, Hadi

    2015-01-01

    The aim of this research is to improve the quality of physics learning through application of collaborative learning of group investigation at grade X MIPA 2 SMAN 14 Jakarta. The method used in this research is classroom action research. This research consisted of three cycles was conducted from April to May in 2014. Each cycle consists of…

  13. Targeting Quiescence in Prostate Cancer

    DTIC Science & Technology

    2017-10-01

    CRISPR /Cas9 to generate cell lines where the reporters are integrated endogenously into 5 essential cell cycle genes to avoid epigenetic silencing. In...Developed and began an improved CRISPR /Cas9-based strategy to target reporters to endogenous gene loci in PC3 and C4-2B cells to prevent silencing...serum. An improved CRISPR /Cas9-based strategy to avoid cell cycle reporter silencing and incorporate a constitutive nuclear marker As described

  14. Potential performance improvement using a reacting gas (nitrogin tetroxide) as the working fluid in a closed Brayton cycle

    NASA Technical Reports Server (NTRS)

    Stochl, R. J.

    1979-01-01

    The results of an analysis to estimate the performance that could be obtained by using a chemically reacting gas (nitrogen tetroxide) as the working fluid in a closed Brayton cycle are presented. Compared with data for helium as the working fluid, these results indicate efficiency improvements from 4 to 90 percent, depending on turbine inlet temperature, pressures, and gas residence time in heat transfer equipment.

  15. Modular avionics packaging standardization

    NASA Astrophysics Data System (ADS)

    Austin, M.; McNichols, J. K.

    The Modular Avionics Packaging (MAP) Program for packaging future military avionics systems with the objective of improving reliability, maintainability, and supportability, and reducing equipment life cycle costs is addressed. The basic MAP packaging concepts called the Standard Avionics Module, the Standard Enclosure, and the Integrated Rack are summarized, and the benefits of modular avionics packaging, including low risk design, technology independence with common functions, improved maintainability and life cycle costs are discussed. Progress made in MAP is briefly reviewed.

  16. Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di

    2015-01-01

    In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164

  17. Cycle chemistry monitoring system as means of improving the reliability of the equipment at the power plants

    NASA Astrophysics Data System (ADS)

    Yegoshina, O. V.; Voronov, V. N.; Yarovoy, V. O.; Bolshakova, N. A.

    2017-11-01

    There are many problems in domestic energy at the present that require urgent solutions in the near future. One of these problems - the aging of the main and auxiliary equipment. Wear of equipment is the cause of decrease reliability and efficiency of power plants. Reliability of the equipment are associated with the introduction of cycle chemistry monitoring system. The most damageable equipment’s are boilers (52.2 %), turbines (12.6 %) and heating systems (12.3 %) according to the review of failure rate on the power plants. The most part of the damageability of the boiler is heated surfaces (73.2 %). According to the Russian technical requirements, the monitoring systems are responsible to reduce damageability the boiler heating surfaces and to increase the reliability of the equipment. All power units capacity of over 50 MW are equipped with cycle chemistry monitoring systems in order to maintain water chemistry within operating limits. The main idea of cycle chemistry monitoring systems is to improve water chemistry at power plants. According to the guidelines, cycle chemistry monitoring systems of a single unit depends on its type (drum or once-through boiler) and consists of: 20…50 parameters of on-line chemical analyzers; 20…30 «grab» sample analyses (daily) and about 15…20 on-line monitored operating parameters. The operator of modern power plant uses with many data at different points of steam/water cycle. Operators do not can estimate quality of the cycle chemistry due to the large volume of daily and every shift information and dispersion of data, lack of systematization. In this paper, an algorithm for calculating the quality index developed for improving control the water chemistry of the condensate, feed water and prevent scaling and corrosion in the steam/water cycle.

  18. IRIS++ database: Merging of IRIS + Mark-1 + LOWL

    NASA Astrophysics Data System (ADS)

    Salabert, D.; Fossat, E.; Gelly, B.; Tomczyk, S.; Pallé, P.; Jiménez-Reyes, S. J.; Cacciani, A.; Corbard, T.; Ehgamberdiev, S.; Grec, G.; Hoeksema, J. T.; Kholikov, S.; Lazrek, M.; Schmider, F. X.

    2002-08-01

    The IRIS network has been operated continuously since July 1st 1989. To date, it has acquired more than a complete solar cycle of full-disk helioseismic data which has been used to constrain the structure and rotation of the deep solar interior. However, the duty cycle of the network data has never reached initial expectations. To improve this situation, several cooperations have been developed with teams collecting observations with similar instruments. This paper demonstrates that we are able to merge data from these different instruments in a consistent manner resulting in a very significant improvement in network duty cycle over more than one solar cycle initiating what we call the IRIS++ network. The integrated radial velocities from the IRIS++ database (1989 to 1999) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/390/717

  19. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  20. Variable cycle engines for advanced supersonic transports

    NASA Technical Reports Server (NTRS)

    Howlett, R. A.; Kozlowski, H.

    1975-01-01

    Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.

  1. Advancing data management and analysis in different scientific disciplines

    NASA Astrophysics Data System (ADS)

    Fischer, M.; Gasthuber, M.; Giesler, A.; Hardt, M.; Meyer, J.; Prabhune, A.; Rigoll, F.; Schwarz, K.; Streit, A.

    2017-10-01

    Over the past several years, rapid growth of data has affected many fields of science. This has often resulted in the need for overhauling or exchanging the tools and approaches in the disciplines’ data life cycles. However, this allows the application of new data analysis methods and facilitates improved data sharing. The project Large-Scale Data Management and Analysis (LSDMA) of the German Helmholtz Association has been addressing both specific and generic requirements in its data life cycle successfully since 2012. Its data scientists work together with researchers from the fields such as climatology, energy and neuroscience to improve the community-specific data life cycles, in several cases even all stages of the data life cycle, i.e. from data acquisition to data archival. LSDMA scientists also study methods and tools that are of importance to many communities, e.g. data repositories and authentication and authorization infrastructure.

  2. The energetics of cycling on Earth, Moon and Mars.

    PubMed

    Lazzer, Stefano; Plaino, Luca; Antonutto, Guglielmo

    2011-03-01

    From 1885, technological improvements, such as the use of special metal alloys and the application of aerodynamics principles, have transformed the bicycle from a human powered heavy transport system to an efficient, often expensive, object used to move not only in our crowded cities, but also in leisure activities and in sports. In this paper, the concepts of mechanical work and efficiency of cycling together with the corresponding metabolic expenditure are discussed. The effects of altitude and aerodynamic improvements on sports performances are also analysed. A section is dedicated to the analysis of the maximal cycling performances. Finally, since during the next decades the return of Man on the Moon and, why not, a mission to Mars can be realistically hypothesised, a section is dedicated to cycling-based facilities, such as man powered short radius centrifuges, to be used to prevent cardiovascular and skeletal muscle deconditioning otherwise occurring during long-term exposure to microgravity.

  3. Clothes Dryer Automatic Termination Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.

    Volume 2: Improved Sensor and Control Designs Many residential clothes dryers on the market today provide automatic cycles that are intended to stop when the clothes are dry, as determined by the final remaining moisture content (RMC). However, testing of automatic termination cycles has shown that many dryers are susceptible to over-drying of loads, leading to excess energy consumption. In particular, tests performed using the DOE Test Procedure in Appendix D2 of 10 CFR 430 subpart B have shown that as much as 62% of the energy used in a cycle may be from over-drying. Volume 1 of this reportmore » shows an average of 20% excess energy from over-drying when running automatic cycles with various load compositions and dryer settings. Consequently, improving automatic termination sensors and algorithms has the potential for substantial energy savings in the U.S.« less

  4. Endurance and Cycle-to-cycle Uniformity Improvement in Tri-Layered CeO2/Ti/CeO2 Resistive Switching Devices by Changing Top Electrode Material

    PubMed Central

    Rana, Anwar Manzoor; Akbar, Tahira; Ismail, Muhammad; Ahmad, Ejaz; Hussain, Fayyaz; Talib, Ijaz; Imran, Muhammad; Mehmood, Khalid; Iqbal, Khalid; Nadeem, M. Younus

    2017-01-01

    Resistance switching characteristics of CeO2/Ti/CeO2 tri-layered films sandwiched between Pt bottom electrode and two different top electrodes (Ti and TaN) with different work functions have been investigated. RRAM memory cells composed of TaN/CeO2/Ti/CeO2/Pt reveal better resistive switching performance instead of Ti/CeO2/Ti/CeO2/Pt memory stacks. As compared to the Ti/CeO2 interface, much better ability of TaN/CeO2 interface to store and exchange plays a key role in the RS performance improvement, including lower forming/SET voltages, large memory window (~102) and no significant data degradation during endurance test of >104 switching cycles. The formation of TaON thinner interfacial layer between TaN TE and CeO2 film is found to be accountable for improved resistance switching behavior. Partial charge density of states is analyzed using density functional theory. It is found that the conductive filaments formed in CeO2 based devices is assisted by interstitial Ti dopant. Better stability and reproducibility in cycle-to-cycle (C2C) resistance distribution and Vset/Vreset uniformity were achieved due to the modulation of current conduction mechanism from Ohmic in low field region to Schottky emission in high field region. PMID:28079056

  5. Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS).

    PubMed

    Homa, Lori D; Burger, Laura L; Cuttitta, Ashley J; Michele, Daniel E; Moenter, Suzanne M

    2015-12-01

    Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.

  6. Control of microstructure and mechanical properties of laser solid formed Inconel 718 superalloy by electromagnetic stirring

    NASA Astrophysics Data System (ADS)

    Liu, Fencheng; Cheng, Hongmao; Yu, Xiaobin; Yang, Guang; Huang, Chunping; Lin, Xin; Chen, Jing

    2018-02-01

    The coarse columnar grains and special interface in laser solid formed (LSFed) Inconel 718 superalloy workpieces seriously affect their mechanical properties. To improve the microstructure and mechanical properties of LSFed Inconel 718 superalloy, electromagnetic stirring (EMS) was introduced to alter the solidification process of the molten pool during LSF. The results show that EMS could not completely eliminate the epitaxially growing columnar grains, however, the strong convection of liquid metals can effectively influence the solid-liquid interface growing mode. The segregation of alloying elements on the front of solid-liquid interface is inhibited and the degree of constitutional supercooling decreases correspondingly. Comparing the microstructures of samples formed under different process parameters, the size and amount of the γ+Laves eutectic phases formed in interdendritic area decrease along with the increasing magnetic field intensity, resulting in more uniformly distributed alloying elements. The residual stress distribution is proved to be more uniform, which is beneficial to the grain refinement after recrystallilzaiton. Mechanical properties testing results show an improvement of 100 MPa in tensile strength and 22% in elongation was obtained after EMS was used. The high cycle fatigue properties at room temperature was also improved from 4.09 × 104 cycles to 8.21 × 104 cycles for the as-deposited samples, and from 5.45 × 104 cycles to 12.73 × 104 cycles for the heat treated samples respectively.

  7. Motion management within two respiratory-gating windows: feasibility study of dual quasi-breath-hold technique in gated medical procedures

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Kim, Siyong; Park, Yang-Kyun; Youn, Kaylin K.; Keall, Paul; Lee, Rena

    2014-11-01

    A dual quasi-breath-hold (DQBH) technique is proposed for respiratory motion management (a hybrid technique combining breathing-guidance with breath-hold task in the middle). The aim of this study is to test a hypothesis that the DQBH biofeedback system improves both the capability of motion management and delivery efficiency. Fifteen healthy human subjects were recruited for two respiratory motion measurements (free breathing and DQBH biofeedback breathing for 15 min). In this study, the DQBH biofeedback system utilized the abdominal position obtained using an real-time position management (RPM) system (Varian Medical Systems, Palo Alto, USA) to audio-visually guide a human subject for 4 s breath-hold at EOI and 90% EOE (EOE90%) to improve delivery efficiency. We investigated the residual respiratory motion and the delivery efficiency (duty-cycle) of abdominal displacement within the gating window. The improvement of the abdominal motion reproducibility was evaluated in terms of cycle-to-cycle displacement variability, respiratory period and baseline drift. The DQBH biofeedback system improved the abdominal motion management capability compared to that with free breathing. With a phase based gating (mean ± std: 55  ±  5%), the averaged root mean square error (RMSE) of the abdominal displacement in the dual-gating windows decreased from 2.26 mm of free breathing to 1.16 mm of DQBH biofeedback (p-value = 0.007). The averaged RMSE of abdominal displacement over the entire respiratory cycles reduced from 2.23 mm of free breathing to 1.39 mm of DQBH biofeedback breathing in the dual-gating windows (p-value = 0.028). The averaged baseline drift dropped from 0.9 mm min-1 with free breathing to 0.09 mm min-1 with DQBH biofeedback (p-value = 0.048). The averaged duty-cycle with an 1 mm width of displacement bound increased from 15% of free breathing to 26% of DQBH biofeedback (p-value = 0.003). The study demonstrated that the DQBH biofeedback system has the potential to significantly reduce the residual respiratory motion with the improved duty cycle during the respiratory gating procedure.

  8. Triple effect absorption cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Potnis, S.V.; Tang, J.

    1996-12-31

    Triple effect absorption chillers can achieve 50% COP improvement over double-effect systems. However, to translate this potential into cost-effective hardware, the most promising embodiments must be identified. In this study, 12 generic triple effect cycles and 76 possible hermetic loop arrangements of those 12 generic cycles were identified. The generic triple effect cycles were screened based on their pressure and solubility field requirements, generic COPs, risk involved in the component design, and number of components in a high corrosive environment. This screening identified four promising arrangements: Alkitrate Topping cycle, Pressure Staged Envelope cycle, High Pressure Overlap cycle, and Dual Loopmore » cycle. All of these arrangements have a very high COP ({approximately} 1.8), however the development risk and cost involved is different for each arrangement. Therefore, the selection of a particular arrangement will depend upon the specific situation under consideration.« less

  9. LIFE CYCLE IMPACT ASSESSMENT - A GLOBAL PERSPECTIVE

    EPA Science Inventory

    Research within the field of life cycle impact assessment has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe and Asia. Internationally researchers are working togethe...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Mark A.; Roesler, Erika Louise; Bosler, Peter Andrew

    The Department of Energy’s (DOE) Biological and Environmental Research project, “Water Cycle and Climate Extremes Modeling” is improving our understanding and modeling of regional details of the Earth’s water cycle. Sandia is using high resolution model behavior to investigate storms in the Arctic.

  11. Exploring bicycle route choice behavior with space syntax analysis : final report.

    DOT National Transportation Integrated Search

    2016-12-31

    Cycling provides an environmentally friendly alternative mode of transportation. It improves : urban mobility, livability, and public health, and it also helps in reducing traffic congestion and : emissions. Cycling is gaining popularity both as a re...

  12. IMPACT ON SURVIVAL OF 12 VERSUS 3 MONTHLY CYCLES OF PACLITAXEL (175 MG/M2) ADMINISTERED TO PATIENTS WITH ADVANCED OVARIAN CANCER WHO ATTAINED A COMPLETE RESPONSE TO PRIMARY PLATINUM-PACLITAXEL: FOLLOW-UP OF A SOUTHWEST ONCOLOGY GROUP AND GYNECOLOGIC ONCOLOGY GROUP PHASE 3 TRIAL

    PubMed Central

    Markman, Maurie; Liu, PY; Moon, James; Monk, Bradley J.; Copeland, Larry; Wilczynski, Sharon; Alberts, David

    2009-01-01

    Objectives A SWOG/GOG phase 3 trial exploring the impact of 12-monthly cycles of paclitaxel given to patients with advanced ovarian cancer who achieved a complete response to primary chemotherapy was discontinued by the Data Safety and Monitoring Committee when a prospectively-defined interim analysis revealed a highly statistically significant improvement in progression-free survival (PFS). At study closure, it was too early to assess the impact on overall survival. Methods Patients (n = 296) received either 3 or 12 monthly cycles of paclitaxel (175 mg/m2 over 3-hours). Results Of the 146 patients on the 3-cycle arm, 9 (6%) received > 3-cycles. Median (12 versus 3 cycle; intention-to-treat analysis) updated PFS (all pts) 22 versus 14 months, p=0.006; overall survival (all pts) 53 versus 48 months, p=0.34. Conclusion Twelve cycles of single agent maintenance paclitaxel significantly improves PFS. Explanations for the lack of a favorable influence on overall survival include: (a) treatment at relapse equalized outcome; (b) the sample size was insufficient to reveal a difference; (c) “crossover” of patients from 3 cycles to longer treatment masked a potential difference. An ongoing phase 3 trial will hopefully provide a definitive answer to the question of the impact of this maintenance strategy on overall survival. PMID:19447479

  13. Improved performance of CdSe/CdS co-sensitized solar cells adopting efficient CuS counter electrode modified by PbS film using SILAR method

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Lin, Yu; Wu, Jihuai; Fang, Biaopeng; Zeng, Jiali

    2018-04-01

    In this paper, CuS film was deposited onto fluorine-doped tin oxide (FTO) substrate using a facile chemical bath deposition method, and then modified by PbS using simple successive ionic layer absorption and reaction (SILAR) method with different cycles. These CuS/PbS films were utilized as counter electrodes (CEs) for CdSe/CdS co-sensitized solar cells. Field-emission scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer was used to characterize the CuS/PbS films. The results show that CuS/PbS (10 cycles) CE exhibits an improved power conversion efficiency of 5.54% under the illumination of one sun (100 mW cm-2), which is higher than the CuS/PbS (0 cycles), CuS/PbS (5 cycles), and CuS/PbS (15 cycles) CEs. This enhancement is mainly attributed to good catalytic activity and lower charge-transfer and series resistances, which have been proved by electrochemical impedance spectroscopy, and Tafel polarization measurements.

  14. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    PubMed

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  15. Improving cycle stability of SnS anode for sodium-ion batteries by limiting Sn agglomeration

    NASA Astrophysics Data System (ADS)

    Wang, Wenhui; Shi, Liang; Lan, Danni; Li, Quan

    2018-02-01

    Flower-like SnS nanostructures are obtained by a simple solvothermal method for anode applications in Na-ion batteries. We show experimental evidence of progressive Sn agglomeration and crystalline Na2S enrichment at the end of de-sodiation process of the SnS electrode, both of which contribute to the capacity decay of the electrode upon repeated cycles. By replacing the commonly adopted acetylene black conductive additive with multi-wall carbon nanotubes (MWCNT), the cycle stability of the SnS electrode is largely improved, which correlates well with the observed suppression of both Sn agglomeration and Na2S enrichment at the end of de-sodiation cycle. A full cell is assembled with the SnS/MWCNT anode and the P2-Na2/3Ni1/3Mn1/2Ti1/6O2 cathode. An initial energy density of 262 Wh/kg (normalized to the total mass of cathode and anode) is demonstrated for the full cell, which retains 71% of the first discharge capacity after 40 cycles.

  16. Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: Effects of Nitrogen Deficiency and Oil Extraction Technology

    PubMed Central

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from “cradle to grave.” Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae. PMID:26000338

  17. Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-01

    The first development effort in improving lead-acid batteries fore electric vehicles was the improvement of electric vehicle batteries using flat pasted positive plates and the second was for a tubular long life positive plate. The investigation of 32 component variables based on a flat pasted positive plate configuration is described. The experiment tested 96 - six volt batteries for characterization at 0, 25, and 40/sup 0/C and for cycle life capability at the 3 hour discharge rate with a one cycle, to 80% DOD, per day regime. Four positive paste formulations were selected. Two commercially available microporous separators were usedmore » in conjunction with a layer of 0.076 mm thick glass mat. Two concentrations of battery grade sulfuric acid were included in the test to determine if an increase in concentration would improve the battery capacity sufficient to offset the added weight of the more concentrated solution. Two construction variations, 23 plate elements with outside negative plates and 23 plate elements with outside positive plates, were included. The second development effort was an experiment designed to study the relationship of 32 component variables based on a tubular positive plate configuration. 96-six volt batteries were tested at various discharge rates at 0, 25, and 40/sup 0/C along with cycle life testing at 80% DOD of the 3 hour rate. 75 batteries remain on cycle life testing with 17 batteries having in excess of 365 life cycles. Preliminary conclusions indicate: the tubular positive plate is far more capable of withstanding deep cycles than is the flat pasted plate; as presently designed 40 Whr/kg can not be achieved, since 37.7 Whr/kg was the best tubular data obtained; electrolyte circulation is impaired due to the tight element fit in the container; and a redesign is required to reduce the battery weight which will improve the Whr/kg value. This redesign is complete and new molds have been ordered.« less

  18. An Analysis of the Defense Logistics Agency Medical Supplies Requisition Process

    DTIC Science & Technology

    1991-09-01

    Flowchart of the Improvement Process .... ....... 8 2. Generic Order Processing Flow .. .......... 19 3. Total Order Cycle: A Customer’s Perspective . 20 4...concentrated in the area of order processing and how it can be improved, especially in the medical supplies arena. This chapter is divided into four major...1989b:l). This time period may be also referred to as lead time, or the replenishment cycle. Figure 2 illustrates a generic order processing flow, which

  19. Qualification of Life Extension Schemes for Engine Components (Homologation des Programmes de Prolongation du cycle de vie des Organes Moteur)

    DTIC Science & Technology

    1999-03-01

    cycle managers include (1) improving the durability of components through material substitution, or the addition of protective coatings, (2) returning... including in service trials, is required to demonstrate that the repaired and/or modified component is safe to use and remains so once returned to...Better Turbine Materials and Technology Including 5 Predicted Life Improvements by T.J. Williams Repair Developments to Fit Customer Needs (Presented

  20. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    NASA Astrophysics Data System (ADS)

    Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain

    2017-09-01

    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.

  1. The Electrochemistry of Fe 3 O 4 /Polypyrrole Composite Electrodes in Lithium-Ion Cells: The Role of Polypyrrole in Capacity Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.

    In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less

  2. Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation.

    PubMed

    Rigamonti, L; Falbo, A; Grosso, M

    2013-11-01

    This paper reports some of the findings of the 'GERLA' project: GEstione Rifiuti in Lombardia - Analisi del ciclo di vita (Waste management in Lombardia - Life cycle assessment). The project was devoted to support Lombardia Region in the drafting of the new waste management plan by applying a life cycle thinking perspective. The present paper mainly focuses on four Provinces in the Region, which were selected based on their peculiarities. Life cycle assessment (LCA) was adopted as the methodology to assess the current performance of the integrated waste management systems, to discuss strengths and weaknesses of each of them and to design their perspective evolution as of year 2020. Results show that despite a usual business approach that is beneficial to all the provinces, the introduction of technological and management improvements to the system provides in general additional energy and environmental benefits for all four provinces. The same improvements can be easily extended to the whole Region, leading to increased environmental benefits from the waste management sector, in line with the targets set by the European Union for 2020. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Background qualitative analysis of the European reference life cycle database (ELCD) energy datasets - part II: electricity datasets.

    PubMed

    Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice

    2015-01-01

    The aim of this paper is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) electricity datasets. The revision is based on the data quality indicators described by the International Life Cycle Data system (ILCD) Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD electricity datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the electricity-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD electricity datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall Data Quality Requirements of databases.

  4. The Electrochemistry of Fe 3 O 4 /Polypyrrole Composite Electrodes in Lithium-Ion Cells: The Role of Polypyrrole in Capacity Retention

    DOE PAGES

    Bruck, Andrea M.; Gannett, Cara N.; Bock, David C.; ...

    2016-12-15

    In two series of magnetite (Fe 3O4) composite electrodes, one group with and one group without added carbon, containing varying quantities of polypyrrole (PPy), and a non-conductive polyvinylidene difluoride (PVDF) binder were constructed and then analyzed using electrochemical and spectroscopic techniques. Galvanostatic cycling and alternating current (AC) impedance measurements were used in tandem to measure delivered capacity, capacity retention, and the related impedance at various stages of discharge and charge. Further, the reversibility of Fe 3O 4 to iron metal (Fe0) conversion observed during discharge was quantitatively assessed ex-situ using X-ray Absorption Spectroscopy (XAS). The Fe 3O 4 composite containingmore » the largest weight fraction of PPy (20 wt%) with added carbon demonstrated reduced irreversible capacity on initial cycles and improved cycling stability over 50 cycles, attributed to decreased reaction with the electrolyte in the presence of PPy. Our study illustrated the beneficial role of PPy addition to Fe 3O 4 based electrodes was not strongly related to improved electrical conductivity, but rather to improved ion transport related to the formation of a more favorable surface electrolyte interphase (SEI).« less

  5. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study.

    PubMed

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-12-01

    To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients' breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors' preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management.

  6. Quality of sexual life of women using the contraceptive vaginal ring in extended cycles: preliminary report.

    PubMed

    Caruso, Salvatore; Cianci, Stefano; Malandrino, Chiara; Cicero, Carla; Lo Presti, Lucia; Cianci, Antonio

    2014-08-01

    To evaluate the quality of the sexual life of healthy women who are using a contraceptive vaginal ring (CVR) in extended cycles. Fifty-two women (18 to 32 years old) seeking hormonal contraception were enrolled in this prospective study. Women were to use a CVR releasing daily 15 μg of ethinylestradiol (EE) and 120 μg of etonogestrel (ENG) for 63 days, followed by a four-day hormone-free interval, for two such extended cycles. At baseline and at the first (day 63-73) and second (day 126-134) follow-ups the Female Sexual Function Index (FSFI) and the Short Form-36 (SF-36) questionnaires were administered to investigate, respectively, sexual behaviour and the quality of life (QoL). The Female Sexual Distress Scale (FSDS) was used to verify whether sexual dysfunction caused significant personal distress to the woman. The FSFI and FSDS scores obtained at the first and second follow-up appointments detected an improvement with respect to the baseline score (p < 0.05). QoL measures of body pain, general health and emotional role improved at the first follow-up visit (p < 0.05); at the second one, all variables showed improvement (p < 0.05). According to these preliminary data the CVR in extended cycles could improve the sexual function and the QoL of women.

  7. Development and Testing of Coupled Land-surface, PBL and Shallow/Deep Convective Parameterizations within the MM5

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Seaman, Nelson L.; Munoz, Ricardo C.

    2000-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins using a 3-D mesoscale model, the PSUINCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. It was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having a detailed land-surface parameterization, an advanced boundary-layer parameterization, and a more complete shallow convection parameterization than are available in most current models. The methodology was based on the application in the MM5 of new or recently improved parameterizations covering these three physical processes. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the Southern Great Plains (SGP): (1) the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) described by Wetzel and Boone; (2) the 1.5-order turbulent kinetic energy (TKE)-predicting scheme of Shafran et al.; and (3) the hybrid-closure sub-grid shallow convection parameterization of Deng. Each of these schemes has been tested extensively through this study and the latter two have been improved significantly to extend their capabilities.

  8. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  9. The swiss neonatal quality cycle, a monitor for clinical performance and tool for quality improvement

    PubMed Central

    2013-01-01

    Background We describe the setup of a neonatal quality improvement tool and list which peer-reviewed requirements it fulfils and which it does not. We report on the so-far observed effects, how the units can identify quality improvement potential, and how they can measure the effect of changes made to improve quality. Methods Application of a prospective longitudinal national cohort data collection that uses algorithms to ensure high data quality (i.e. checks for completeness, plausibility and reliability), and to perform data imaging (Plsek’s p-charts and standardized mortality or morbidity ratio SMR charts). The collected data allows monitoring a study collective of very low birth-weight infants born from 2009 to 2011 by applying a quality cycle following the steps ′guideline – perform - falsify – reform′. Results 2025 VLBW live-births from 2009 to 2011 representing 96.1% of all VLBW live-births in Switzerland display a similar mortality rate but better morbidity rates when compared to other networks. Data quality in general is high but subject to improvement in some units. Seven measurements display quality improvement potential in individual units. The methods used fulfil several international recommendations. Conclusions The Quality Cycle of the Swiss Neonatal Network is a helpful instrument to monitor and gradually help improve the quality of care in a region with high quality standards and low statistical discrimination capacity. PMID:24074151

  10. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  11. Improving compliance with iron infusion therapy in the treatment of chronic anemia in haemodialysis patients with chronic kidney disease.

    PubMed

    Nuti, Amith

    2015-01-01

    This quality improvement project was conducted at the haemodialysis unit in the paediatric nephrology department at Noah's Ark Children's Hospital, Cardiff. Stakeholders involved were the medical and nursing staff at the haemodialysis unit, responsible for the care of children with chronic kidney disease CKD. Anaemia is prevalent among children with CKD. Iron infusion is administered to such children with chronic anaemia. Children on haemodialysis attending the Children's Kidney Center receive iron infusion if they satisfy the criteria based on haemoglobin and serum ferritin values according to departmental guidelines. This involves measurement of c-reactive protein and serum ferritin prior to iron administration. High iron exposure is detrimental to end organ function and hence warrants regular monitoring in conjunction with CRP, another inflammatory marker. We suspect that some children may be receiving iron infusions despite being iron replete. Also, we may be over-investigating these children with anaemia. We identified all children receiving iron infusion in the haemodialysis unit over a four week period. We retrospectively enquired blood investigations done, prior to and after iron infusion. Blood investigations lagged on pre and post infusion times. We devised a checklist for nursing staff to follow, primarily looking at set times for measuring haemoglobin, serum ferritin, and CRP during the month (at the start of the first and third week of the month) and also tabulating the ferritin values that would trigger frequency of iron infusions. These were aimed to: 1. Prevent iron overloading in patients with chronic anemia 2. Regularise the checking of bloods in those receiving iron infusions 3. Empower the nursing staff to independently take decisions on iron infusion delivery. The strategy for change encompassed multiple PDSA cycles. Plan: empower decision making on iron infusion by haemodialysis nursing staff Do: formulate a checklist for iron infusion based on the recommended set values of ferritin, CRP and haemoglobin Study: analyse adherence to checklist in three months time Act: make appropriate changes to workplace behaviour based on findings of the PDSA cycle We analysed 13 patient episodes prior to the intervention and a total of 19 patient episodes after the improvement cycles. The checklist was improved based on feedback obtained after the first PDSA cycle. A second cycle showed that investigations done were optimised. The third cycle showed improved adherence and compliance with prevention of over-treatment with iron infusion. There was 100% adherence to the investigations done prior to infusion and complied well with the department guidelines. This meant that the required number of blood tests were done on a more regular basis and it did not exceed from those done previously. Nursing behaviour with regard to initiation and maintenance of iron infusion became more independent. This empowered nursing decision making skills and consequently freed doctor-time. It also resulted in improving team morale and ultimately patient safety by mitigating human errors. For any QI project, interventions should be carefully designed. Stakeholder buy-in and easy accessibility of the intervention improves sustainability. Multiple PDSA cycles and incorporating stakeholder feedback into the cycle are key to success.

  12. Improving compliance with iron infusion therapy in the treatment of chronic anemia in haemodialysis patients with chronic kidney disease

    PubMed Central

    Nuti, Amith

    2015-01-01

    This quality improvement project was conducted at the haemodialysis unit in the paediatric nephrology department at Noah's Ark Children's Hospital, Cardiff. Stakeholders involved were the medical and nursing staff at the haemodialysis unit, responsible for the care of children with chronic kidney disease CKD. Anaemia is prevalent among children with CKD. Iron infusion is administered to such children with chronic anaemia. Children on haemodialysis attending the Children's Kidney Center receive iron infusion if they satisfy the criteria based on haemoglobin and serum ferritin values according to departmental guidelines. This involves measurement of c-reactive protein and serum ferritin prior to iron administration. High iron exposure is detrimental to end organ function and hence warrants regular monitoring in conjunction with CRP, another inflammatory marker. We suspect that some children may be receiving iron infusions despite being iron replete. Also, we may be over-investigating these children with anaemia. We identified all children receiving iron infusion in the haemodialysis unit over a four week period. We retrospectively enquired blood investigations done, prior to and after iron infusion. Blood investigations lagged on pre and post infusion times. We devised a checklist for nursing staff to follow, primarily looking at set times for measuring haemoglobin, serum ferritin, and CRP during the month (at the start of the first and third week of the month) and also tabulating the ferritin values that would trigger frequency of iron infusions. These were aimed to: 1. Prevent iron overloading in patients with chronic anemia 2. Regularise the checking of bloods in those receiving iron infusions 3. Empower the nursing staff to independently take decisions on iron infusion delivery. The strategy for change encompassed multiple PDSA cycles. Plan: empower decision making on iron infusion by haemodialysis nursing staff Do: formulate a checklist for iron infusion based on the recommended set values of ferritin, CRP and haemoglobin Study: analyse adherence to checklist in three months time Act: make appropriate changes to workplace behaviour based on findings of the PDSA cycle We analysed 13 patient episodes prior to the intervention and a total of 19 patient episodes after the improvement cycles. The checklist was improved based on feedback obtained after the first PDSA cycle. A second cycle showed that investigations done were optimised. The third cycle showed improved adherence and compliance with prevention of over-treatment with iron infusion. There was 100% adherence to the investigations done prior to infusion and complied well with the department guidelines. This meant that the required number of blood tests were done on a more regular basis and it did not exceed from those done previously. Nursing behaviour with regard to initiation and maintenance of iron infusion became more independent. This empowered nursing decision making skills and consequently freed doctor-time. It also resulted in improving team morale and ultimately patient safety by mitigating human errors. For any QI project, interventions should be carefully designed. Stakeholder buy-in and easy accessibility of the intervention improves sustainability. Multiple PDSA cycles and incorporating stakeholder feedback into the cycle are key to success. PMID:26734315

  13. Breaking the Cycle of Illiteracy in America: Moving beyond the Status Quo.

    ERIC Educational Resources Information Center

    Edlund, Jenel K.

    1992-01-01

    Today's literacy crusade still emphasizes economic rather than humanistic reasons for literacy education. However, lasting change will come only through breaking the familial cycle of illiteracy, integrating improvement of work-based, family, and generic learning skills. (SK)

  14. LIFE CYCLE IMPACT ASSESSMENT: A GLOBAL PERSPECTIVE, II

    EPA Science Inventory

    Research within the field of Life Cycle Impact Assessment (LCIA) has greatly improved since the work of Heijungs and Guinee in 1992. Methodologies are currently available to address specific locations within North America, Europe, and Asia. Internationally, researchers are work...

  15. Effect of Cycling Skills on Bicycle Safety and Comfort Associated with Bicycle Infrastructure and Environment

    DOT National Transportation Integrated Search

    2017-08-31

    This study seeks to improve the methodology for determining the relationship between cycling dynamic performance and roadway environment characteristics across different bicyclists' skill levels. To achieve the goal of this study, an Instrumented Pro...

  16. Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP)

    NASA Technical Reports Server (NTRS)

    Vane, Deborah

    1993-01-01

    A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.

  17. Enhancing power cycle efficiency for a supercritical Brayton cycle power system using tunable supercritical gas mixtures

    DOEpatents

    Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.

    2017-08-29

    Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.

  18. Analysis of the Diurnal Cycle of Precipitation and its Relation to Cloud Radiative Forcing Using TRMM Products

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Fowler, Laura D.; Lin, Xin

    1998-01-01

    In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.

  19. Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data.

    PubMed

    Sun, Yeran; Mobasheri, Amin

    2017-03-08

    With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the number of non-commuting cycling activities works well in this study. The results highlight: (1) a need for policymakers to consider how to improve cycling infrastructure and road safety in outskirts of cities; and (2) a possible way of estimating the number of non-commuting cycling activities when the trip purpose of cycling data is unknown.

  20. Utilizing Crowdsourced Data for Studies of Cycling and Air Pollution Exposure: A Case Study Using Strava Data

    PubMed Central

    Sun, Yeran; Mobasheri, Amin

    2017-01-01

    With the development of information and communications technology, user-generated content and crowdsourced data are playing a large role in studies of transport and public health. Recently, Strava, a popular website and mobile app dedicated to tracking athletic activity (cycling and running), began offering a data service called Strava Metro, designed to help transportation researchers and urban planners to improve infrastructure for cyclists and pedestrians. Strava Metro data has the potential to promote studies of cycling and health by indicating where commuting and non-commuting cycling activities are at a large spatial scale (street level and intersection level). The assessment of spatially varying effects of air pollution during active travel (cycling or walking) might benefit from Strava Metro data, as a variation in air pollution levels within a city would be expected. In this paper, to explore the potential of Strava Metro data in research of active travel and health, we investigate spatial patterns of non-commuting cycling activities and associations between cycling purpose (commuting and non-commuting) and air pollution exposure at a large scale. Additionally, we attempt to estimate the number of non-commuting cycling trips according to environmental characteristics that may help identify cycling behavior. Researchers who are undertaking studies relating to cycling purpose could benefit from this approach in their use of cycling trip data sets that lack trip purpose. We use the Strava Metro Nodes data from Glasgow, United Kingdom in an empirical study. Empirical results reveal some findings that (1) when compared with commuting cycling activities, non-commuting cycling activities are more likely to be located in outskirts of the city; (2) spatially speaking, cyclists riding for recreation and other purposes are more likely to be exposed to relatively low levels of air pollution than cyclists riding for commuting; and (3) the method for estimating of the number of non-commuting cycling activities works well in this study. The results highlight: (1) a need for policymakers to consider how to improve cycling infrastructure and road safety in outskirts of cities; and (2) a possible way of estimating the number of non-commuting cycling activities when the trip purpose of cycling data is unknown. PMID:28282865

  1. Effects of a Non-Circular Chainring on Sprint Performance During a Cycle Ergometer Test

    PubMed Central

    Hintzy, Frédérique; Grappe, Frédéric; Belli, Alain

    2016-01-01

    Non-circular chainrings have been reported to alter the crank angular velocity profile over a pedal revolution so that more time is spent in the effective power phase. The purpose of this study was to determine whether sprint cycling performance could be improved using a non-circular chainring (Osymetric: ellipticity 1.25 and crank lever mounted nearly perpendicular to the major axis), in comparison with a circular chainring. Twenty sprint cyclists performed an 8 s sprint on a cycle ergometer against a 0.5 N/kg-1 friction force in four crossing conditions (non-circular or circular chainring with or without clipless pedal). Instantaneous force, velocity and power were continuously measured during each sprint. Three main characteristic pedal downstrokes were selected: maximal force (in the beginning of the sprint), maximal power (towards the middle), and maximal velocity (at the end of the sprint). Both average and instantaneous force, velocity and power were calculated during the three selected pedal downstrokes. The important finding of this study was that the maximal power output was significantly higher (+ 4.3%, p < 0.05) when using the non-circular chainring independent from the shoe-pedal linkage condition. This improvement is mainly explained by a significantly higher instantaneous external force that occurs during the downstroke. Non-circular chainring can have potential benefits on sprint cycling performance. Key points The Osymetric non-circular chainring significantly maximized crank power by 4.3% during sprint cycling, in comparison with a circular chainring. This maximal power output improvement was due to significant higher force developed when the crank was in the effective power phase. This maximal power output improvement was independent from the shoe-pedal linkage condition. Present benefits provided by the non-circular chainring on pedalling kinetics occurred only at high cadences. PMID:27274658

  2. Using mental mapping to unpack perceived cycling risk.

    PubMed

    Manton, Richard; Rau, Henrike; Fahy, Frances; Sheahan, Jerome; Clifford, Eoghan

    2016-03-01

    Cycling is the most energy-efficient mode of transport and can bring extensive environmental, social and economic benefits. Research has highlighted negative perceptions of safety as a major barrier to the growth of cycling. Understanding these perceptions through the application of novel place-sensitive methodological tools such as mental mapping could inform measures to increase cyclist numbers and consequently improve cyclist safety. Key steps to achieving this include: (a) the design of infrastructure to reduce actual risks and (b) targeted work on improving safety perceptions among current and future cyclists. This study combines mental mapping, a stated-preference survey and a transport infrastructure inventory to unpack perceptions of cycling risk and to reveal both overlaps and discrepancies between perceived and actual characteristics of the physical environment. Participants translate mentally mapped cycle routes onto hard-copy base-maps, colour-coding road sections according to risk, while a transport infrastructure inventory captures the objective cycling environment. These qualitative and quantitative data are matched using Geographic Information Systems and exported to statistical analysis software to model the individual and (infra)structural determinants of perceived cycling risk. This method was applied to cycling conditions in Galway City (Ireland). Participants' (n=104) mental maps delivered data-rich perceived safety observations (n=484) and initial comparison with locations of cycling collisions suggests some alignment between perception and reality, particularly relating to danger at roundabouts. Attributing individual and (infra)structural characteristics to each observation, a Generalised Linear Mixed Model statistical analysis identified segregated infrastructure, road width, the number of vehicles as well as gender and cycling experience as significant, and interactions were found between individual and infrastructural variables. The paper concludes that mental mapping is a highly useful tool for assessing perceptions of cycling risk with a strong visual aspect and significant potential for public participation. This distinguishes it from more traditional cycling safety assessment tools that focus solely on the technical assessment of cycling infrastructure. Further development of online mapping tools is recommended as part of bicycle suitability measures to engage cyclists and the general public and to inform 'soft' and 'hard' cycling policy responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. 2nd Generation Reusable Launch Vehicle (2G RLV). Revised

    NASA Technical Reports Server (NTRS)

    Matlock, Steve; Sides, Steve; Kmiec, Tom; Arbogast, Tim; Mayers, Tom; Doehnert, Bill

    2001-01-01

    This is a revised final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.

  4. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  5. Efficiency Enhancement of Chiller and Heat Pump Using Natural Working Fluids with Two-phase Flow Ejector

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Choiku; Hattori, Kazuhiro; Jeong, Jongsoo; Saito, Kiyoshi; Kawai, Sunao

    An ejector can transform the expansion energy of the driving flow into the pressure build-up energy of the suction flow. Therefore, by utilizing the ejector instead of the expansion valve for the vapor compression cycle, the performance of the cycle can be greatly improved. Until now, the performance of the vapor compression cycle with the ejector has not been examined sufficiently. Therefore, this paper constructs the simulation model of the vapor compression cycle with the ejector and investigates the performance of that cycle by the simulation. Working fluids are ammonia and CO2. As a result, in case of the ejector efficiency 90%, COP of the vapor compression cycle using ammonia with the ejector is 5% higher than that of the conventional cycle and COP using CO2 with the ejector is 22% higher than that of the conventional cycle.

  6. Improving UV protection by clothing--recent developments.

    PubMed

    Osterwalder, Uli; Rohwer, Hauke

    2002-01-01

    The assessment of UV transmittance of clothing and the determination of the UV protection factor (UPF) are now well established and the influencing factors such as type of fiber, color, and fabric construction are known. Quick and reliable instruments to measure UV transmittance are crucial. Besides expensive scientific laboratory instruments, a low-cost UV meter is now available for this purpose. The questions arise as to what can be done about a given garment and whether there are ways to improve textiles by the consumer. The many opportunities to improve UV protection of clothing along the textile chain of manufacturing are discussed. The latest possibility for improving the UV-protective properties of clothing is now available at the fabric care stage in every household. A UV absorber can be brought into contact with a fabric during the wash or rinse cycle of a laundry operation. The high UV transmittance of 30% of a thin, bleached cotton swatch in the dry state (UPF 3), can be reduced tenfold to about 3% (UPF >30) in ten washes cycles. This is more than the effect achieved by dyestuffs. The detergent should contain about 0.1-0.3% of the special UV absorber. The same effect can be achieved as early as after one wash cycle with a higher concentration provided by a special laundry additive. Yet another form of application is via rinse cycle fabric conditioner. To make these new types of improvement of fabrics visible the Skin Cancer Foundation now provides the possibility for laundry products to qualify for the "Seal of Recommendation".

  7. Non-invasive fat reduction of the flanks using a new cryolipolysis applicator and overlapping, two-cycle treatments

    PubMed Central

    Bernstein, Eric F; Bloom, Jason D; Basilavecchio, Lisa D; Plugis, Jessica M

    2014-01-01

    Background and Objectives A sharply contoured cryolipolysis vacuum applicator was developed to improve fit and tissue draw in the abdomen and flanks to better accommodate a range of body types and a variety of treatment sites. This study was carried out to evaluate the safety and efficacy of the new applicator for treatment of flank fat (“love handles”). Study Design/Materials and Methods A cryolipolysis vacuum applicator with a sharply contoured cup and curved cooling plates was used to treat 20 flanks. Two treatment cycles were delivered sequentially to each flank (60-minute cycle at a Cooling Intensity Factor of 41.6). Efficacy was evaluated 12 weeks post-treatment by physicians performing blinded, independent review of clinical photographs. Safety was assessed by the treating physician monitoring subjects for side effects and adverse events. Results Four blinded, independent physician reviewers properly identified the pre- and post-treatment photographs 94.4% of the time. Improvement was scored from 0 (none) to 10 (complete) and showed an average 4.3 point (43%) improvement. Side-effects were limited to erythema, edema, bruising, and numbness or tingling at the treatment site, and resolved without treatment. Conclusions Multiple treatment cycles from a new improved-fit cryolipolysis applicator are safe and effective for reduction of flank fat bulges. A high degree of improvement was reported by blinded, physician evaluation of standardized photographs. Laser Surg. Med. 46:731–735, 2014. © 2014 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc. PMID:25395266

  8. Repeated B cell depletion in treatment of refractory systemic lupus erythematosus

    PubMed Central

    Ng, K P; Leandro, M J; Edwards, J C; Ehrenstein, M R; Cambridge, G; Isenberg, D A

    2006-01-01

    Objectives To report the clinical outcome and safety profile of repeated B cell depletion in seven patients with refractory systemic lupus erythematosus (SLE). Methods Since June 2000, seven patients with refractory SLE had repeated cycles of B cell depletion (18 cycles in total, up to three cycles per patient) because of disease relapse. The clinical response (assessed by the British Isles Lupus Activity Guide (BILAG) activity index), duration of B cell depletion, and adverse events in these patients was reviewed. Results Four patients (Nos 1, 2, 3, 6) had three cycles of treatment and three (Nos 4, 5, 7) had two cycles. Four of the seven patients (Nos 1, 3, 5, 6) improved. The mean global BILAG scores dropped from 15 to 6 at 5–7 months. The median duration of clinical response and B cell depletion was 13 months and 6 months, respectively. After the third cycle, 2/4 patients (Nos 1 and 2) improved. The median duration of clinical benefit was 12 months. Most patients tolerate re‐treatment very well. Conclusion Re‐treatment with B cell depletion of patients with severe SLE is safe and may be effective for 6–12 months on average. PMID:16269424

  9. Public health approaches to safer cycling for children based on developmental and physiological readiness: implications for practice

    PubMed Central

    Lenton, Simon; Finlay, Fiona Olwen

    2018-01-01

    Introduction Cyclists have a high mortality and morbidity per mile travelled compared with car occupants, a figure that is likely to increase if campaigns to increase active travel are successful. Concerns about safety is the leading factor limiting cycling for children. Objective This review brings together a paediatric perspective based on the developmental readiness of children and young people and a public health approach to reducing injuries, to produce a practical agenda for improving the safety of cycling for children. Method Selective literature review. Results While most sports realise the importance of practice and training to create mastery of the game, similar thinking has not been consistently applied to cycling proficiency, so many children do not have an opportunity to master cycling before riding on the roads. Conclusions The aim should be to minimise road traffic injuries involving children and young people in ways that create cobenefits for other members of society, increasing opportunities for active travel, reducing air pollution, creating more green space to play and reducing dependence on motor vehicles. Changes in legislation are required now to enable younger children to cycle on pavements while learning to ride and improvements in road design to separate cyclists from motor vehicles especially routes to school for older children. PMID:29637180

  10. Quantification of the degradation of Ni-YSZ anodes upon redox cycling

    NASA Astrophysics Data System (ADS)

    Song, Bowen; Ruiz-Trejo, Enrique; Bertei, Antonio; Brandon, Nigel P.

    2018-01-01

    Ni-YSZ anodes for Solid Oxide Fuel Cells are vulnerable to microstructural damage during redox cycling leading to a decrease in the electrochemical performance. This study quantifies the microstructural changes as a function of redox cycles at 800 °C and associates it to the deterioration of the mechanical properties and polarisation resistance. A physically-based model is used to estimate the triple-phase boundary (TPB) length from impedance spectra, and satisfactorily matches the TPB length quantified by FIB-SEM tomography: within 20 redox cycles, the TPB density decreases from 4.63 μm-2 to 1.06 μm-2. Although the polarisation resistance increases by an order of magnitude after 20 cycles, after each re-reduction the electrode polarisation improves consistently due to the transient generation of Ni nanoparticles around the TPBs. Nonetheless, the long-term degradation overshadows this transient improvement due to the nickel agglomeration. In addition, FIB-SEM tomography reveals fractures along YSZ grain boundaries, Ni-YSZ detachment and increased porosity in the composite that lead to irreversible mechanical damage: the elastic modulus diminishes from 36.4 GPa to 20.2 GPa and the hardness from 0.40 GPa to 0.15 GPa. These results suggest that microstructural, mechanical and electrochemical properties are strongly interdependent in determining the degradation caused by redox cycling.

  11. Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1979-01-01

    Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described.

  12. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles

    NASA Astrophysics Data System (ADS)

    Leblanc, Dominic; Hovington, Pierre; Kim, Chisu; Guerfi, Abdelbast; Bélanger, Daniel; Zaghib, Karim

    2015-12-01

    In this work, we demonstrate that a new mechanical attrition process can be used to prepare nanosilicon powder from metallurgical grade silicon lumps. Composite Li-ion anode made from this nanometer-size powder was found to have a high reversible capacity of 2400 mAh g-1 and an improved cycling stability compared to micrometer-sized powder. It is proposed that improved battery cycling performance is ascribed to the nanoscale silicon particles which supresses the volume expansion owing to its superplasticity.

  13. Technology Options for Improved Air Vehicle Fuel Efficiency: Executive Summary and Annotated Brief

    DTIC Science & Technology

    2006-05-01

    turbine cycle, and detonation-based engine cycles. Aerodynamic Solutions. In the near term, wing retrofits such as winglets have demonstrated the...Release 30 Public Release Aerodynamic Solutions: Benefits/Cost • Near term (0-5 years): ∆ FE ∆ FE/Cost • Wing retrofits, e.g., winglets 5% High • Mid...engine’s overall efficiency, ηo), by improved vehicle aerodynamic characteristics (e.g., through an increase in the lift-to-drag or L/D ratio), and

  14. Project Management Life Cycle Models to Improve Management in High-rise Construction

    NASA Astrophysics Data System (ADS)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  15. 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Wilburn, Monique; Hall, Dan; Roth, Peter; Das Gupta, Sankar; Jacobs, Jim; Bhola, Rakesh; Milicic, Gordan; Vandemeer, Dave

    2006-01-01

    Objective: Consider a new battery design for EMU. Results: a) Electrovaya s aerospace cell production line is improving, but must further improve to achieve acceptable reliability; b) Completed functional, vibration, and thermal cycling of LIB; c) So far, electrical safety tests have produced good results; d) Completed functional, vibration, thermal cycling, power quality and EMI of LIB Charger; e) Completed CDR on 9/23/04; and f) Manufacturing Readiness Review for flight cell/battery production scheduled for Dec 04.

  16. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  17. Environment-friendly cycle time optimization and quality improvisation using Six Sigma.

    PubMed

    Deshpande, V S; Mungle, N P

    2008-07-01

    Healthy environment in any organization can make a difference in improving productivity and quality with low defect, lack of concentration, willingness to work, minimum accidental problems etc. Six Sigma is one of the more recent quality improvement initiatives to gain popularity and acceptance in many industries across the globe. It is an alternative to TQM to obtain minimum manufacturing defect, cycle time reduction, cost reduction, inventory reduction etc. Its use is increasingly widespread in many industries, in both manufacturing and service industries with many proponents of the approach claiming that it has developed beyond a quality control approach into a broader process improvement concept.

  18. Thermodynamic analysis of a new dual evaporator CO2 transcritical refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Ezzaalouni Yathreb; Kairouani, Lakdar Kairouani

    2017-03-01

    In this work, a new dual-evaporator CO2 transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2 vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

  19. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  20. A Satellite View of Global Water and Energy Cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air/sea fluxes, ocean circulation, atmospheric states, radiative balances, land surface states, sub-surface hydrology, snow and ice. This presentation will feature an overview of recent progress towards this challenge, and lay out the plan for coordination with complementary international efforts.

  1. Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    NASA Astrophysics Data System (ADS)

    Scholze, Marko; Buchwitz, Michael; Dorigo, Wouter; Guanter, Luis; Quegan, Shaun

    2017-07-01

    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties).We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations.

  2. Patients' perspectives on the implementation of intra-dialytic cycling--a phenomenographic study.

    PubMed

    Heiwe, Susanne; Tollin, Helena

    2012-07-25

    Adults undergoing haemodialysis have significantly reduced physical capacity and run a high risk of developing cardiovascular complications. Research has shown that intra-dialytic cycling has many evidence-based health effects, but implementation is rare within renal clinical practice. This may be due to several causes, and this study focuses on the patients' perspective. This perspective has seldom been taken into account when aiming to assess and improve the implementation of clinical research. The aim of this study was to describe how adults undergoing in-centre haemodialysis treatment experienced an implementation process of intra-dialytic cycling. It aimed to identify potential motivators and barriers to the implementation process from a patient perspective. Maximum-variation purposive sampling was used. Data were collected until saturation, through semistructured interviews, which were analysed using phenomenography. The implementation of intra-dialytic cycling was experienced as positive, as it had beneficial effects on physical and psychological well-being. It was easy to perform and did not intrude on patients' spare time. These factors increased the acceptance of the implementation and supported the maintenance of intra-dialytic cycling as an evidence-based routine within their haemodialysis care. The patients did, however, experience some barriers to accepting the implementation of intra-dialytic cycling. These barriers were sometimes so strong that they outweighed the participants' knowledge of the advantages of intra-dialytic cycling and the research evidence of its benefits. The barriers sometimes also outweighed the participants' own wish to cycle. The barriers that we identified concerned not only the patients but also the work situation of the haemodialysis nurses. Consideration of the motivators and barriers that we have identified can be used in direct care to improve the implementation of intra-dialytic cycling.

  3. 5-ASA affects cell cycle progression in colorectal cells by reversibly activating a replication checkpoint.

    PubMed

    Luciani, M Gloria; Campregher, Christoph; Fortune, John M; Kunkel, Thomas A; Gasche, Christoph

    2007-01-01

    Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116(p53-/-), HCT116+chr3, and LoVo were treated with 5-ASA for 2-96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis.

  4. Study of Lithium Silicide Nanoparticles as Anode Materials for Advanced Lithium Ion Batteries.

    PubMed

    Li, Xuemin; Kersey-Bronec, Faith E; Ke, John; Cloud, Jacqueline E; Wang, Yonglong; Ngo, Chilan; Pylypenko, Svitlana; Yang, Yongan

    2017-05-17

    The development of high-performance silicon anodes for the next generation of lithium ion batteries (LIBs) evokes increasing interest in studying its lithiated counterpart-lithium silicide (Li x Si). In this paper we report a systematic study of three thermodynamically stable phases of Li x Si (x = 4.4, 3.75, and 2.33) plus nitride-protected Li 4.4 Si, which are synthesized via the high-energy ball-milling technique. All three Li x Si phases show improved performance over that of unmodified Si, where Li 4.4 Si demonstrates optimum performance with a discharging capacity of 3306 (mA h)/g initially and maintains above 2100 (mA h)/g for over 30 cycles and above 1200 (mA h)/g for over 60 cycles at the current density of 358 mA/g of Si. A fundamental question studied is whether different electrochemical paradigms, that is, delithiation first or lithiation first, influence the electrode performance. No significant difference in electrode performance is observed. When a nitride layer (Li x N y Si z ) is created on the surface of Li 4.4 Si, the cyclability is improved to retain the capacity above 1200 (mA h)/g for more than 80 cycles. By increasing the nitridation extent, the capacity retention is improved significantly from the average decrease of 1.06% per cycle to 0.15% per cycle, while the initial discharge capacity decreases due to the inactivity of Si in the Li x N y Si z layer. Moreover, the Coulombic efficiencies of all Li x Si-based electrodes in the first cycle are significantly higher than that of a Si electrode (∼90% vs 40-70%).

  5. Microdose flare protocol with interrupted follicle stimulating hormone and added androgen for poor responders--an observational pilot study.

    PubMed

    Mitri, Frederic; Behan, Lucy Ann; Murphy, Courtney A; Hershko-Klement, Anat; Casper, Robert F; Bentov, Yaakov

    2016-01-01

    To investigate whether temporarily withholding FSH and adding androgen could improve follicular response during a microdose flare protocol in women with slow follicular growth or asynchronous follicular development. Observational pilot study. University-affiliated private fertility center. Twenty-six women aged 34-47 years with poor response to stimulation or a previous cancelled IVF cycle and with slow or asynchronous follicular growth during a microdose flare cycle. For 13 women, after initiation of ovarian stimulation using the microdose flare protocol, gonadotropin administration was interrupted and transdermal testosterone gel was added for several days (4.4 ± 1.2 d) starting after cycle day 7 (mean cycle day 10 ± 2.6). FSH, E2, follicular growth, and total number of mature oocytes retrieved were determined for all of the patients. Cycle cancellation rate as well as pregnancy rate following embryo transfer were also documented when applicable. FSH levels declined (25.2 ± 6.5 to 6.8 ± 3.2 IU/L), E2 levels increased (896 ± 687 to 2,163 ± 1,667 pmol/L), and follicular growth improved significantly during gonadotropin interruption and were tracked for 2 days during this time frame. The average number of oocytes retrieved was 5.3 ± 2.6, and the ratio of mature to total oocytes was 4:5. Four of the 13 women in the interruption group conceived following frozen embryo transfer, whereas none in the control group did. The androgen-interrupted FSH protocol may improve follicular response to gonadotropins in cycles that might otherwise be cancelled. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Effect of contrast water therapy duration on recovery of cycling performance: a dose-response study.

    PubMed

    Versey, Nathan; Halson, Shona; Dawson, Brian

    2011-01-01

    This study investigated whether contrast water therapy (CWT) has a dose-response effect on recovery from high-intensity cycling. Eleven trained male cyclists completed four trials, each commencing with a 75-min cycling protocol containing six sets of five 15-s sprints and three 5-min time-trials in thermoneutral conditions. Ten minutes post-exercise, participants performed one of four recovery protocols: CWT for 6 min (CWT6), 12 min (CWT12), or 18 min (CWT18) duration, or a seated rest control trial. The CWT commenced in hot water (38.4 ± 0.6°C) and alternated between hot and cold water (14.6 ± 0.3°C) every minute with a 5-s changeover. The cycling protocol was repeated 2 h after completion of exercise bout one. Prior to exercise bout two, core temperature was lower in CWT12 (-0.19 ± 0.14°C, mean ± 90% CL) and CWT18 (-0.21 ± 0.10°C) than control. Compared with control, CWT6 substantially improved time-trial (1.5 ± 2.1%) and sprint performance (3.0 ± 3.1%), and CWT12 substantially improved sprint total work (4.3 ± 3.4%) and peak power (2.7 ± 3.8%) in exercise bout two. All CWT conditions generally improved thermal sensation, whole body fatigue and muscle soreness compared with control, but no differences existed between conditions in heart rate or rating of perceived exertion. In conclusion, CWT duration did not have a dose-response effect on recovery from high-intensity cycling; however, CWT for up to 12 min assisted recovery of cycling performance.

  7. A preliminary evaluation of a reusable digital sterilization indicator prototype.

    PubMed

    Puttaiah, R; Griggs, J; D'Onofrio, M

    2014-09-01

    Sterilization of critical and semicritical instruments used in patient care must undergo a terminal process of sterilization. Use of chemical and physical indicators are important in providing information on the sterilizer's performance during each cycle. Regular and periodic monitoring of sterilizers using biological indicators is necessary in periodically validating performance of sterilizers. Data loggers or independent digital parametric indicators are innovative devices that provide more information than various classes chemical indicators. In this study we evaluated a prototype of an independent digital parametric indicator's use in autoclaves. The purpose of this study was to evaluate the performance of an independent digital indicator/data logger prototype (DS1922F) that could be used for multiple cycles within an autoclave.MG Materials and methods: Three batches of the DS1922F (150 samples) were used in this study that was conducted in a series. The first batch was challenged with 300 sterilization cycles within an autoclave and the data loggers evaluated to study failures and the reason for failure, make corrections and improve the prototype design. After changes made based on studying the first batch, the second batch of the prototype (150 samples) were challenged once again with 300 sterilization cycles within an autoclave and failure studied again in further improvement of the prototype. The final batch (3rd batch) of the prototype (150 samples) was challenged again but with 600 cycles to see how long they would last. Kaplan-Meier survival analysis analyses of all three batches was conducted (α = 0.05) and failed samples qualitatively studied in understanding the variables involved in the failure of the prototype, and in improving quality. Each tested batch provided crucial information on device failure and helped in improvement of the prototype. Mean lifetime survival of the final batch (Batch 3) of prototype was 498 (480, 516) sterilization cycles in an autoclave. In this study, the final batch of the DS1922F prototype data logger was found to be robust in withstanding the challenge of 600 autoclave cycles, with a mean lifetime of more than 450 cycles, multiple times more than prescribed number of cycles. Instrument reprocessing is among the important aspects of infection control. While stringent procedures are followed in instrument reprocessing within the clinic in assuring patient safety, regular use of sterilization process indicators and periodic biological validation of the sterilizer's performance is necessary. Chemical indicators for use in Autoclaves provide information on whether the particular cycle's parameters were achieved but do not provide at what specific point in time or temperature the failure occurred. Data loggers and associated reader software as the tested prototype in this evaluation (DS1922F), are designed to provide continuous information on time and temperature of the prescribed cycle. Data loggers provide immediate information on the process as opposed to Biological Indicators that take from days to a week in obtaining a confirmatory result. Further, many countries do not have the sterilization monitoring service infrastructure to meet the demands of the end users. In the absence of sterilization monitoring services, use of digital data loggers for each sterilization cycle is more pragmatic.

  8. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505).

    PubMed

    Pachman, Deirdre R; Qin, Rui; Seisler, Drew; Smith, Ellen M Lavoie; Kaggal, Suneetha; Novotny, Paul; Ruddy, Kathryn J; Lafky, Jacqueline M; Ta, Lauren E; Beutler, Andreas S; Wagner-Johnston, Nina D; Staff, Nathan P; Grothey, Axel; Dougherty, Patrick M; Cavaletti, Guido; Loprinzi, Charles L

    2016-12-01

    Oxaliplatin and paclitaxel are commonly used chemotherapies associated with acute and chronic neuropathies. There is a need to better understand the similarities and differences of these clinical syndromes. Neuropathy data were pooled from patients receiving adjuvant oxaliplatin and weekly paclitaxel or every 3 weeks of paclitaxel. Patients completed daily questionnaires after each chemotherapy dose and the European Organization for Research and Treatment of Cancer quality-of-life questionnaire for patients with chemotherapy-induced peripheral neuropathy before each chemotherapy cycle and for 12 months post-treatment. Acute neuropathy symptoms from both drugs peaked around day 3. Acute symptoms experienced in cycle 1 predicted occurrence in subsequent cycles. Paclitaxel-induced acute symptoms were similar in intensity in each cycle and largely resolved between cycles. Oxaliplatin-induced acute symptoms were about half as severe in the first cycle as in later cycles and did not resolve completely between cycles. Both drugs caused a predominantly sensory chronic neuropathy (with numbness and tingling being more common than pain). Oxaliplatin-induced neuropathy worsened after the completion of treatment and began to improve 3 months post-treatment. In contrast, paclitaxel-induced neuropathy began improving immediately after chemotherapy cessation. During treatment, the incidence of paclitaxel sensory symptoms was similar in the hands and feet; with oxaliplatin, the hands were affected more than the feet. Both paclitaxel- and oxaliplatin-induced acute neurotoxicity appeared to predict the severity of chronic neuropathy, more prominently with oxaliplatin. Knowledge of the similarities and differences between neuropathy syndromes may provide insight into their underlying pathophysiology and inform future research to identify preventative treatment approaches.

  9. Improving the Amazonian Hydrologic Cycle in a Coupled Land-Atmosphere, Single Column Model

    NASA Astrophysics Data System (ADS)

    Harper, A. B.; Denning, S.; Baker, I.; Prihodko, L.; Branson, M.

    2006-12-01

    We have coupled a land-surface model, the Simple Biosphere Model (SiB3), to a single column of the Colorado State University General Circulation Model (CSU-GCM) in the Amazon River Basin. This is a preliminary step in the broader goal of improved simulation of Basin-wide hydrology. A previous version of the coupled model (SiB2) showed drought and catastrophic dieback of the Amazon rain forest. SiB3 includes updated soil hydrology and root physiology. Our test area for the coupled single column model is near Santarem, Brazil, where measurements from the km 83 flux tower in the Tapajos National Forest can be used to evaluate model output. The model was run for 2001 using NCEP2 Reanalysis as driver data. Preliminary results show that the updated biosphere model coupled to the GCM produces improved simulations of the seasonal cycle of surface water balance and precipitation. Comparisons of the diurnal and seasonal cycles of surface fluxes are also being made.

  10. Stirling Air Conditioner for Compact Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less

  11. Process improvement by cycle time reduction through Lean Methodology

    NASA Astrophysics Data System (ADS)

    Siva, R.; patan, Mahamed naveed khan; lakshmi pavan kumar, Mane; Purusothaman, M.; pitchai, S. Antony; Jegathish, Y.

    2017-05-01

    In present world, every customer needs their products to get on time with good quality. Presently every industry is striving to satisfy their customer requirements. An aviation concern trying to accomplish continuous improvement in all its projects. In this project the maintenance service for the customer is analyzed. The maintenance part service is split up into four levels. Out of it, three levels are done in service shops and the fourth level falls under customer’s privilege to change the parts in their aircraft engines at their location. An enhancement for electronics initial provisioning (eIP) is done for fourth level. Customers request service shops to get their requirements through Recommended Spare Parts List (RSPL) by eIP. To complete this RSPL for one customer, it takes 61.5 hours as a cycle time which is very high. By mapping current state VSM and takt time, future state improvement can be done in order to reduce cycle time using Lean tools such as Poke-Yoke, Jidoka, 5S, Muda etc.,

  12. Conceptual design study of an improved gas turbine powertrain

    NASA Technical Reports Server (NTRS)

    Chapman, W. I.

    1980-01-01

    The conceptual design for an improved gas turbine (IGT) powertrain and vehicle was investigated. Cycle parameters, rotor systems, and component technology were reviewed and a dual rotor gas turbine concept was selected and optimized for best vehicle fuel economy. The engine had a two stage centrifugal compressor with a design pressure ratio of 5.28, two axial turbine stages with advanced high temperature alloy integral wheels, variable power turbine nozzle for turbine temperature and output torque control, catalytic combustor, and annular ceramic recuperator. The engine was rated at 54.81 kW, using water injection on hot days to maintain vehicle acceleration. The estimated vehicle fuel economy was 11.9 km/l in the combined driving cycle, 43 percent over the 1976 compact automobile. The estimated IGT production vehicle selling price was 10 percent over the comparable piston engine vehicle, but the improved fuel economy and reduced maintenance and repair resulted in a 9 percent reduction in life cycle cost.

  13. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries

    DOE PAGES

    Wang, Ziying; Lee, Jungwoo Z.; Xin, Huolin L.; ...

    2016-05-30

    All-solid-state lithium-ion batteries have the potential to not only push the current limits of energy density by utilizing Li metal, but also improve safety by avoiding flammable organic electrolyte. However, understanding the role of solid electrolyte – electrode interfaces will be critical to improve performance. In this paper, we conducted long term cycling on commercially available lithium cobalt oxide (LCO)/lithium phosphorus oxynitride (LiPON)/lithium (Li) cells at elevated temperature to investigate the interfacial phenomena that lead to capacity decay. STEM-EELS analysis of samples revealed a previously unreported disordered layer between the LCO cathode and LiPON electrolyte. This electrochemically inactive layer grewmore » in thickness leading to loss of capacity and increase of interfacial resistance when cycled at 80 °C. Finally, the stabilization of this layer through interfacial engineering is crucial to improve the long term performance of thin-film batteries especially under thermal stress.« less

  14. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  15. Critical factors affecting life cycle assessments of material choice for vehicle mass reduction

    EPA Science Inventory

    This review examines the use of life-cycle assessments (LCAs) to compare different lightweight materials being developed to improve light-duty vehicle fuel economy. Vehicle manufacturers are designing passenger cars and light-duty trucks using lighter weight materials and design ...

  16. Contracting to improve your revenue cycle performance.

    PubMed

    Welter, Terri L; Semko, George A; Miller, Tony; Lauer, Roberta

    2007-09-01

    The following key drivers of commercial contract variability can have a material effect on your hospital's revenue cycle: Claim form variance. Benefit design. Contract complexity. Coding variance. Medical necessity. Precertification/authorization. Claim adjudication/appeal requirements. Additional documentation requirements. Timeliness of payment. Third-party payer activity.

  17. Impact of sulphurous water politzer inhalation on audiometric parameters in children with otitis media with effusion.

    PubMed

    Mirandola, Prisco; Gobbi, Giuliana; Malinverno, Chiara; Carubbi, Cecilia; Ferné, Filippo M; Artico, Marco; Vitale, Marco; Vaccarezza, Mauro

    2013-03-01

    The positive effects of spa therapy on ear, nose, and throat pathology are known but robust literature in this field, is still lacking. The aim of this study was to assess through a retrospective analysis, the effects on otitis media with effusion of Politzer endotympanic inhalation of sulphurous waters in children aged 5-9 years. A cohort of 95 patients was treated with Politzer insufflations of sulphurous water: 58 patients did a cycle consisting of a treatment of 12 days per year for three consecutive years; 37 patients followed the same procedure for 5 years consecutively. The control population was represented by untreated, age-matched children. A standard audiometric test was used before and after each cycle of treatment. One cycle of Politzer inhalation of sulphur-rich water improved the symptoms. Three cycles definitively stabilized the improvement of hearing function. Our results show that otitis media with effusion in children can be resolved by an appropriate non-pharmacological treatment of middle ear with sulphur-rich water.

  18. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    PubMed Central

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-01-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178

  19. Modelling urea-cycle disorder citrullinemia type 1 with disease-specific iPSCs.

    PubMed

    Yoshitoshi-Uebayashi, Elena Yukie; Toyoda, Taro; Yasuda, Katsutaro; Kotaka, Maki; Nomoto, Keiko; Okita, Keisuke; Yasuchika, Kentaro; Okamoto, Shinya; Takubo, Noriyuki; Nishikubo, Toshiya; Soga, Tomoyoshi; Uemoto, Shinji; Osafune, Kenji

    2017-05-06

    Citrullinemia type 1 (CTLN1) is a urea cycle disorder (UCD) caused by mutations of the ASS1 gene, which is responsible for production of the enzyme argininosuccinate synthetase (ASS), and classically presented as life-threatening hyperammonemia in newborns. Therapeutic options are limited, and neurological sequelae may persist. To understand the pathophysiology and find novel treatments, induced pluripotent stem cells (iPSCs) were generated from a CTLN1 patient and differentiated into hepatocyte-like cells (HLCs). CTLN1-HLCs have lower ureagenesis, recapitulating part of the patient's phenotype. l-arginine, an amino acid clinically used for UCD treatment, improved this phenotype in vitro. Metabolome analysis revealed an increase in tricarboxylic acid (TCA) cycle metabolites in CTLN1, suggesting a connection between CTLN1 and the TCA cycle. This CTLN1-iPSC model improves the understanding of CTLN1 pathophysiology and can be used to pursue new therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ammonia toxicity and its prevention in inherited defects of the urea cycle.

    PubMed

    Walker, V

    2009-09-01

    The urea cycle is the final pathway for removal of surplus nitrogen from the body, and the major route in humans for detoxification of ammonia. The full complement of enzymes is expressed only in liver. Inherited deficiencies of urea cycle enzymes lead to hyperammonaemia, which causes brain damage. Severe defects present with hyperammonaemic crises in neonates. Equally devastating episodes may occur in previously asymptomatic adults with mild defects, most often X-linked ornithine transcarbamylase (OTC) deficiency. Several mechanisms probably contribute to pathogenesis. Treatment aims to reduce plasma ammonia quickly, reduce production of waste nitrogen, dispose of waste nitrogen using alternative pathways to the urea cycle and replace arginine. These therapies have increased survival and probably improve the neurological outcome. Arginine, sodium benzoate, sodium phenylbutyrate and, less often, sodium phenylacetate are used. Long-term correction is achieved by liver transplantation. Gene therapy for OTC deficiency is effective in animals, and work is ongoing to improve persistence and safety.

  1. Long-term intensive electrically stimulated cycling by spinal cord-injured people: effect on muscle properties and their relation to power output.

    PubMed

    Duffell, Lynsey D; Donaldson, Nick de N; Perkins, Tim A; Rushton, David N; Hunt, Kenneth J; Kakebeeke, Tanja H; Newham, Di J

    2008-10-01

    Inactivity and muscular adaptations following spinal cord injury (SCI) result in secondary complications such as cardiovascular disease, obesity, and pressure sores. Functional electrically stimulated (FES) cycling can potentially reduce these complications, but previous studies have provided inconsistent results. We studied the effect of intensive long-term FES cycle training on muscle properties in 11 SCI subjects (mean +/- SEM: 41.8 +/- 2.3 years) who had trained for up to 1 hour/day, 5 days/week, for 1 year. Comparative measurements were made in 10 able-bodied (AB) subjects. Quadriceps maximal electrically stimulated torque increased fivefold (n = 5), but remained lower than in AB individuals. Relative force response at 1 HZ decreased, relaxation rate remained unchanged, and fatigue resistance improved significantly. Power output (PO) improved to a lesser extent than quadriceps torque and not to a greater extent than has been reported previously. We need to understand the factors that limit PO in order to maximize the benefits of FES cycling.

  2. Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik

    2016-05-01

    Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.

  3. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling,more » are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the harmonic generation method to tubular mechanical test specimens and pipes for nondestructive evaluation. Tubular specimens and pipes act as waveguides, thus we applied the acoustic harmonic generation method to guided waves in both plates and shells. Magnetostrictive transducers were used to generate and receive guided wave modes in the shell sample and the received signals were processed to show the sensitivity of higher harmonic generation to microstructure evolution. Modeling was initiated to correlate higher harmonic generation with the microstructure that will lead to development of a life prediction model that is informed by the nonlinear acoustics measurements.« less

  4. A probability-based multi-cycle sorting method for 4D-MRI: A simulation study

    PubMed Central

    Liang, Xiao; Yin, Fang-Fang; Liu, Yilin; Cai, Jing

    2016-01-01

    Purpose: To develop a novel probability-based sorting method capable of generating multiple breathing cycles of 4D-MRI images and to evaluate performance of this new method by comparing with conventional phase-based methods in terms of image quality and tumor motion measurement. Methods: Based on previous findings that breathing motion probability density function (PDF) of a single breathing cycle is dramatically different from true stabilized PDF that resulted from many breathing cycles, it is expected that a probability-based sorting method capable of generating multiple breathing cycles of 4D images may capture breathing variation information missing from conventional single-cycle sorting methods. The overall idea is to identify a few main breathing cycles (and their corresponding weightings) that can best represent the main breathing patterns of the patient and then reconstruct a set of 4D images for each of the identified main breathing cycles. This method is implemented in three steps: (1) The breathing signal is decomposed into individual breathing cycles, characterized by amplitude, and period; (2) individual breathing cycles are grouped based on amplitude and period to determine the main breathing cycles. If a group contains more than 10% of all breathing cycles in a breathing signal, it is determined as a main breathing pattern group and is represented by the average of individual breathing cycles in the group; (3) for each main breathing cycle, a set of 4D images is reconstructed using a result-driven sorting method adapted from our previous study. The probability-based sorting method was first tested on 26 patients’ breathing signals to evaluate its feasibility of improving target motion PDF. The new method was subsequently tested for a sequential image acquisition scheme on the 4D digital extended cardiac torso (XCAT) phantom. Performance of the probability-based and conventional sorting methods was evaluated in terms of target volume precision and accuracy as measured by the 4D images, and also the accuracy of average intensity projection (AIP) of 4D images. Results: Probability-based sorting showed improved similarity of breathing motion PDF from 4D images to reference PDF compared to single cycle sorting, indicated by the significant increase in Dice similarity coefficient (DSC) (probability-based sorting, DSC = 0.89 ± 0.03, and single cycle sorting, DSC = 0.83 ± 0.05, p-value <0.001). Based on the simulation study on XCAT, the probability-based method outperforms the conventional phase-based methods in qualitative evaluation on motion artifacts and quantitative evaluation on tumor volume precision and accuracy and accuracy of AIP of the 4D images. Conclusions: In this paper the authors demonstrated the feasibility of a novel probability-based multicycle 4D image sorting method. The authors’ preliminary results showed that the new method can improve the accuracy of tumor motion PDF and the AIP of 4D images, presenting potential advantages over the conventional phase-based sorting method for radiation therapy motion management. PMID:27908178

  5. The integration of studio cycling into a worksite stress management programme.

    PubMed

    Clark, Matthew M; Soyring, Jason E; Jenkins, Sarah M; Daniels, Denise C; Berkland, Bridget E; Werneburg, Brooke L; Hagen, Philip T; Lopez-Jimenez, Francisco; Warren, Beth A; Olsen, Kerry D

    2014-04-01

    High stress is a prevalent problem in the worksite. To reduce stress, improve productivity, reduce absenteeism, and lower healthcare costs, many companies offer exercise classes or stress management programmes. Although physical activity is an important component of stress management, few worksites have integrated physical activity into their comprehensive stress reduction programmes. The purpose of this single-arm pilot project was to examine the potential effectiveness of an integrated exercise (studio cycling) and cognitive-behavioural stress management programme. Eighty-four adults, 75% female, mostly aged 40+ years, participated in an integrated 12-week cycling studio and cognitive-behavioural stress management programme. Participants experienced a significant and clinically meaningful reduction on the Perceived Stress Scale (p < 0.01), rating of current stress level and confidence to manage stress at the programme's end and at a 1-month follow-up. Participants also reported having significantly improved overall health, improved nutritional habits, higher physical activity level, greater confidence in their ability to follow a healthy diet, higher spiritual well-being, improved sleep, receiving more support for maintaining healthy living and improved quality of life at the completion of the 12-week programme and 1-month follow-up. These findings provide further support for an integrated exercise and stress management programme. © 2013 John Wiley & Sons, Ltd.

  6. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  7. Improving patient safety through a clinical audit spiral: prevention of wrong tooth extraction in orthodontics.

    PubMed

    Anwar, H; Waring, D

    2017-07-07

    Introduction With an increasing demand to improve patient safety within the NHS, it is important to ensure that measures are undertaken to continually improve patient care. Wrong site surgery has been defined as a 'never event'. This article highlights the importance of preventing wrong tooth extraction within orthodontics through an audit spiral over five years investigating the accuracy and clarity of orthodontic extraction letters at the University Dental Hospital of Manchester.Aims To examine compliance with the standards for accuracy and clarity of extraction letters and the incidence of wrong tooth extractions, and to increase awareness of the errors that can occur with extraction letters and of the current guidelines.Method A retrospective audit was conducted examining extraction letters sent to clinicians outside the department.Results It can be seen there has been no occurrence of a wrong site tooth extraction. The initial audit highlighted issues in conformity, with it falling below expected standards. Cycle two generally demonstrated a further reduction in compliance. Cycle three appeared to result in an increase in levels of compliance. Cycles 4 and 5 have demonstrated gradual improvements. However, it is noteworthy that in all cycles the audit standards were still not achieved, with the exception of no incidences of the incorrect tooth being extracted.Conclusion This audit spiral demonstrates the importance of long term re-audit to aim to achieve excellence in clinical care. There has been a gradual increase in standards through each audit.

  8. Endogenously determined cycles: empirical evidence from livestock industries.

    PubMed

    McCullough, Michael P; Huffaker, Ray; Marsh, Thomas L

    2012-04-01

    This paper applies the techniques of phase space reconstruction and recurrence quantification analysis to investigate U.S. livestock cycles in relation to recent literature on the business cycle. Results are presented for pork and cattle cycles, providing empirical evidence that the cycles themselves have slowly diminished. By comparing the evolution of production processes for the two livestock cycles we argue that the major cause for this moderation is largely endogenous. The analysis suggests that previous theoretical models relying solely on exogenous shocks to create cyclical patterns do not fully capture changes in system dynamics. Specifically, the biological constraint in livestock dynamics has become less significant while technology and information are relatively more significant. Concurrently, vertical integration of the supply chain may have improved inventory management, all resulting in a small, less deterministic, cyclical effect.

  9. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  10. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  11. Ethinyl estradiol 20μg/drospirenone 3mg 24/4 oral contraceptive for the treatment of functional impairment in women with premenstrual dysphoric disorder.

    PubMed

    Marr, Joachim; Heinemann, Klaas; Kunz, Michael; Rapkin, Andrea

    2011-05-01

    To determine the effects of ethinyl estradiol (EE)/drospirenone in a 24/4 regimen (24days of active and 4days of inactive pills) on functional impairment (affecting work, partnership, and social activities) in women with premenstrual dysphoric disorder (PMDD). The present study was a secondary analysis of a double-blind, randomized, parallel-design multicenter trial. Women received EE 20μg/drospirenone 3mg (n=232) or placebo (n=218) and completed the Daily Record of Severity of Problems (DRSP) scale daily. The decrease in mean scores for all 3 DRSP functional impairment items (work, partnership, and social activities) from baseline to cycle 3 mirrored changes in the total DRSP symptom score; the greatest decreases were observed in cycle 1 with further small reductions through to cycle 3. The proportional mean decreases from baseline to cycle 1 for the 3 functional items ranged from 47% to 48%. For all 3 functional items, the mean reductions from baseline to cycle 1 (but not from cycle 1 to cycles 2 and 3) were significantly greater with EE/drospirenone than with placebo (P<0.05). Ethinyl estradiol 20μg/drospirenone 3mg in a 24/4 regimen significantly improved functional impairment in women with PMDD. Symptoms improved in parallel. Copyright © 2011 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Insights from Modeling the Integrated Climate, Biogeochemical Cycles, Human Activities and Their Interactions in the ACME Earth System Model

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Thornton, P. E.; Riley, W. J.; Calvin, K. V.

    2017-12-01

    Towards the goal of understanding the contributions from natural and managed systems to current and future greenhouse gas fluxes and carbon-climate and carbon-CO2 feedbacks, efforts have been underway to improve representations of the terrestrial, river, and human components of the ACME earth system model. Broadly, our efforts include implementation and comparison of approaches to represent the nutrient cycles and nutrient limitations on ecosystem production, extending the river transport model to represent sediment and riverine biogeochemistry, and coupling of human systems such as irrigation, reservoir operations, and energy and land use with the ACME land and river components. Numerical experiments have been designed to understand how terrestrial carbon, nitrogen, and phosphorus cycles regulate climate system feedbacks and the sensitivity of the feedbacks to different model treatments, examine key processes governing sediment and biogeochemistry in the rivers and their role in the carbon cycle, and exploring the impacts of human systems in perturbing the hydrological and carbon cycles and their interactions. This presentation will briefly introduce the ACME modeling approaches and discuss preliminary results and insights from numerical experiments that lay the foundation for improving understanding of the integrated climate-biogeochemistry-human system.

  13. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle

    NASA Astrophysics Data System (ADS)

    Lenka, Maheswata; Sarkar, Debasis

    2018-03-01

    This work investigates the effect of internal seeding and an initial cooling/heating cycle on the final crystal size distribution (CSD) during a combined cooling/antisolvent crystallization of L-asparagine monohydrate from it's aqueous solution using isopropyl-alcohol as antisolvent. Internal seeds were generated by one-pot addition of various amounts of antisolvent to the crystallizer. It was then followed by a cooling/heating cycle to dissolve the fines produced and thus obtain a suitable initial seed. A combined cooling/antisolvent crystallization was then followed by employing a linear cooling profile with simultaneous addition of antisolvent with a constant mass flow rate to promote the growth of the internally generated seeds. The amount of initial antisolvent influences the characteristics of the internal seeds generated and the effect of initial amount of antisolvent on the final CSD is investigated. It was found that the introduction of a single cooling/heating cycle significantly improves the reproducibility of final CSD as well as the mean size. Overall, the study indicates that the application of internal seeding with a single cooling/heating cycle for fines dissolution is an effective technique to tailor crystal size distribution.

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  15. Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang

    2016-10-01

    The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.

  16. Improving the argumentative skills of high school students through teacher’s questioning techniques and argumentative assessment

    NASA Astrophysics Data System (ADS)

    Kristianti, T. P.; Ramli, M.; Ariyanto, J.

    2018-05-01

    This research aims to know how students’ argumentative skills improved by applying teacher’s questioning techniques and argumentative assessment through collaborative action research between college student who did teaching practicum, biology teacher as tutor teacher, and lecturers. The action research was done in three cycles involving one class consisted of 36 eleventh graders. Lesson plans were developed collaboratively, and teaching practices were by the student teacher. In the reflective phase prior to the first cycle, learning processes were dominated by the teacher, hence students did not have sufficient opportunity to argue. Students were divided into two, 14 students were grouped as low achievement (LA) and 22 students were the high achievement (HA). Teacher questions and students’ responses were furtherly coded and interpreted following the validated rubric of level of argumentation. A divergent essay as an argumentative assessment was also tested to students at the end of each cycle. At the end of the third cycle, HA and LA students showed a significant change in argumentative skills responded the teacher’s questions. However, only four LA students who actively argued. Students from HA groups also showed the improvement on the level of argumentation, where they move from level 1 to 3.

  17. Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5

    NASA Astrophysics Data System (ADS)

    Du, Z.

    2017-12-01

    Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.

  18. Electromechanical conversion efficiency for dielectric elastomer generator in different energy harvesting cycles

    NASA Astrophysics Data System (ADS)

    Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin

    2017-11-01

    In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.

  19. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penney, T R

    1985-11-01

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  20. 2nd Generation RLV Risk Reduction Definition Program: Pratt & Whitney Propulsion Risk Reduction Requirements Program (TA-3 & TA-4)

    NASA Technical Reports Server (NTRS)

    Matlock, Steve

    2001-01-01

    This is the final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.

  1. The Learning Cycle and College Science Teaching.

    ERIC Educational Resources Information Center

    Barman, Charles R.; Allard, David W.

    Originally developed in an elementary science program called the Science Curriculum Improvement Study, the learning cycle (LC) teaching approach involves students in an active learning process modeled on four elements of Jean Piaget's theory of cognitive development: physical experience, referring to the biological growth of the central nervous…

  2. Precision control of soil N cycling via soil functional zone management

    USDA-ARS?s Scientific Manuscript database

    Managing the soil nitrogen (N) cycle is a major component of agricultural sustainability. Soil functional zone management (SFZM), a novel framework of agroecosystem management, may improve soil N management compared with conventional and no-tillage approaches by focusing on the timing and location (...

  3. Modeling of dust deposition in central Asia

    USDA-ARS?s Scientific Manuscript database

    The deposition of dust particles has a significant influence on the global bio-geochemical cycle. Currently, the lack of spatiotemporal data creates great uncertainty in estimating the global dust budget. To improve our understanding of the fate, transport and cycling of airborne dust, there is a ne...

  4. High duty cycle far-infrared germanium lasers

    NASA Astrophysics Data System (ADS)

    Chamberlin, Danielle Russell

    The effects of crystal geometry, heat transport, and optics on high duty cycle germanium hole population inversion lasers are investigated. Currently the laser's low duty cycle limits its utility for many applications. This low duty cycle is a result of the combination of the large electrical input power necessary and insufficient heat extraction. In order to achieve a continuous-wave device, the input power must be decreased and the cooling power increased. In order to improve laser efficiency and lower the input power, the effect of laser crystal geometry on the electric field uniformity is considered. Geometries with d/L>>1 or <<1 are shown to have improved electric field uniformity, where d is the distance between electrical contacts and L is the length in the direction of the Hall electric field. A geometry with d/L>>1 is shown to decrease the threshold voltage for lasing. Laser crystals with the traditional contact geometry have been compared to a new, planar contact design with both electrical contacts on the same side of the laser crystal. This new geometry provides a large d/L ratio while also allowing effective heat sinking. A pure, single-crystal silicon heat sink is developed for planar contact design lasers, which improves the duty cycle tenfold. For the traditional contact design, copper heat sinks are developed that demonstrate cooling powers up to 10 Watts. The effects of thermal conductivity, surface area, and interfacial thermal resistance on the heat transport are compared. To improve the cavity quality, thereby allowing for smaller crystal volumes, new optical designs are investigated. A vertical cavity structure is demonstrated for the planar contact structure using strontium titanate single crystals as mirrors. A mode-selecting cavity is implemented for the traditional contact design. The spectra of small-volume, near-threshold lasers are measured. In contrast to the emission of larger lasers, these lasers emit within narrow frequency peaks that do not shift smoothly with magnetic field. The details of the emission are shown to strongly depend on the optical cavity. A record duty cycle of 5% is achieved using a laser of dimensions 0.80 x 3 x 11 mm3 with the traditional contact geometry, improved copper heat sinks, and carefully etched crystal surfaces.

  5. The VRLA modular wound design for 42 V mild hybrid systems

    NASA Astrophysics Data System (ADS)

    Trinidad, F.; Gimeno, C.; Gutiérrez, J.; Ruiz, R.; Sainz, J.; Valenciano, J.

    Mild hybrid vehicles with 42 V electrical systems require advanced batteries with low cost, very high reliability and peak power performance. Valve-regulated lead-acid (VRLA) batteries could provide better performance/cost ratio than any other electrochemical couples, by improving their cycle life performance at partial state-of-charge (SoC), charge acceptance of the negative plate and thermal management under power assist conditions. Modular wound designs are being developed for this application, because they can combine the best attributes of the high power VRLA designs (low resistance and high compression) with a more efficient thermal management and could improve reliability by reducing the potential cell failures in manufacturing (better quality control could be assured for individual 3-cell modules than for complete 18-cell block batteries). Thermal management is an important issue for VRLA batteries in a power assist cycling profile. Although water cooling is very efficient, it is not economical and increases the weight of the complete storage system. The modular VRLA design allows air circulation around the external walls of every cell in order to maintain the temperature around 40 °C, even at very high power cycling profiles. In order to increase the life at higher depth-of-discharge (DoD) and consequently to optimise the weight of the complete battery systems, a new 6 V module has been designed with improved thermal management features. Cycle life performance under partial-SoC conditions (around 60% SoC) has been tested in both 6 and 12 V modules. The basic power assist profile as specified by the European car manufacturers is composed of a high power discharge (boost) period followed by a rest (cruise) and recharge in three steps (regenerative braking). Very good results have been obtained for 12 V VRLA spiral wound batteries under power assist profile (more than 200,000 cycles at 1.25% DoD, equivalent to 2500 times the nominal capacity), but smaller 6 V modules, although providing very promising results (50,000 power assist cycles at 2.5% DoD, equivalent to 1250 times the nominal capacity), still need further improvement to comply with the very demanding conditions of mild hybrid vehicles. Failure mode is related to negative active material sulfation, that could be overcome by improving charge acceptance with high surface conducting additives in the active material.

  6. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  7. Proceedings: 1990 fossil plant cycling conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities,more » vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.« less

  8. Planetary resonances, bi-stable oscillation modes, and solar activity cycles

    NASA Technical Reports Server (NTRS)

    Sleeper, H. P., Jr.

    1972-01-01

    The natural resonance structure of the planets in the solar system yields resonance periods of 11.08 and 180 years. The 11.08 year period is due to resonance of the sidereal periods of the three inner planets. The 180-year period is due to synodic resonances of the four major planets. These periods are also observed in the sunspot time series. The 11-year sunspot cycles from 1 to 19 are separated into categories of positive and negative cycles, Mode 1 and Mode 2 cycles, and typical and anomalous cycles. Each category has a characteristic shape, magnitude, or duration, so that statistical prediction techniques are improved when a cycle can be classified in a given category. These categories provide evidence for bistable modes of solar oscillation. The next minimum is expected in 1977 and the next maximum in 1981 or later. These epoch values are 2.5 years later than those based on typical cycle characteristics.

  9. The Data-to-Action Framework: A Rapid Program Improvement Process.

    PubMed

    Zakocs, Ronda; Hill, Jessica A; Brown, Pamela; Wheaton, Jocelyn; Freire, Kimberley E

    2015-08-01

    Although health education programs may benefit from quality improvement methods, scant resources exist to help practitioners apply these methods for program improvement. The purpose of this article is to describe the Data-to-Action framework, a process that guides practitioners through rapid-feedback cycles in order to generate actionable data to improve implementation of ongoing programs. The framework was designed while implementing DELTA PREP, a 3-year project aimed at building the primary prevention capacities of statewide domestic violence coalitions. The authors describe the framework's main steps and provide a case example of a rapid-feedback cycle and several examples of rapid-feedback memos produced during the project period. The authors also discuss implications for health education evaluation and practice. © 2015 Society for Public Health Education.

  10. Efficacy and safety of the combined oral contraceptive ethinylestradiol/drospirenone (Yasmin) in healthy Chinese women: a randomized, open-label, controlled, multicentre trial.

    PubMed

    Guang-Sheng, Fan; Mei-Lu, Bian; Li-Nan, Cheng; Xiao-Ming, Cao; Zi-Rong, Huang; Zi-Yan, Han; Xiao-Ping, Jing; Jian, Li; Shu-Ying, Wu; Cheng-Liang, Xiong; Zheng-Ai, Xiong; Tian-Fu, Yue

    2010-01-01

    To evaluate and compare the contraceptive efficacy, bleeding pattern, side effects and other positive effects of a combined oral contraceptive (COC) containing drospirenone (DRSP) [Yasmin] with those of a COC containing desogestrel (DSG) in healthy Chinese women. This was a randomized, open-label, controlled, multicentre study of 768 healthy Chinese women requiring contraception. The subjects were randomized to ethinylestradiol (EE) 30 microg/DRSP 3 mg (n = 573) or EE 30 microg/ DSG 150 microg (n = 195), at a ratio of 3 : 1. Each individual was treated for 13 cycles. Further visits were required at cycle 4, cycle 7, cycle 10 and cycle 13 of treatment. Weight, height and body mass index were evaluated at each visit. The Menstrual Distress Questionnaire (MDQ) was administered at baseline, visit 3 (cycle 7) and visit 5 (after cycle 13). Baseline characteristics were similar between the two groups (p > 0.05). The Pearl Index (method failure) for EE/DRSP was 0.208 per 100 women-years, which was lower than that for EE/DSG (0.601 per 100 women-years). There were no significant differences between the treatment groups with regard to bleeding patterns. According to the MDQ subscale, improvements in water retention and increases in appetite during the intermenstrual period and in water retention and general well-being during the menstrual period in the EE/DRSP group (-0.297, -0.057, 0.033 and 0.150, respectively) were significantly improved compared with the EE/DSG group (-0.108, 0.023, 0.231 and -0.023, respectively) [all p < 0.05]. Other values that improved in both groups, particularly improvement in breast pain and tenderness and skin condition, were more evident in the EE/DRSP group (18.0%, 89/494; 12.6%, 62/494) than in the EE/DSG group (11.3%, 19/168; 5.4%, 9/168). Mean weight increased in the EE/DSG group (0.57 kg) while there was a significant decrease in mean weight (-0.28 kg) in the EE/DRSP group (p < 0.01). Both EE/DRSP and EE/DSG have good contraceptive efficacy and a comparable bleeding pattern. EE/DRSP had a more favourable effect on weight and premenstrual symptoms than EE/DSG.

  11. Phenotypic approaches to drought in cassava: review

    PubMed Central

    Okogbenin, Emmanuel; Setter, Tim L.; Ferguson, Morag; Mutegi, Rose; Ceballos, Hernan; Olasanmi, Bunmi; Fregene, Martin

    2012-01-01

    Cassava is an important crop in Africa, Asia, Latin America, and the Caribbean. Cassava can be produced adequately in drought conditions making it the ideal food security crop in marginal environments. Although cassava can tolerate drought stress, it can be genetically improved to enhance productivity in such environments. Drought adaptation studies in over three decades in cassava have identified relevant mechanisms which have been explored in conventional breeding. Drought is a quantitative trait and its multigenic nature makes it very challenging to effectively manipulate and combine genes in breeding for rapid genetic gain and selection process. Cassava has a long growth cycle of 12–18 months which invariably contributes to a long breeding scheme for the crop. Modern breeding using advances in genomics and improved genotyping, is facilitating the dissection and genetic analysis of complex traits including drought tolerance, thus helping to better elucidate and understand the genetic basis of such traits. A beneficial goal of new innovative breeding strategies is to shorten the breeding cycle using minimized, efficient or fast phenotyping protocols. While high throughput genotyping have been achieved, this is rarely the case for phenotyping for drought adaptation. Some of the storage root phenotyping in cassava are often done very late in the evaluation cycle making selection process very slow. This paper highlights some modified traits suitable for early-growth phase phenotyping that may be used to reduce drought phenotyping cycle in cassava. Such modified traits can significantly complement the high throughput genotyping procedures to fast track breeding of improved drought tolerant varieties. The need for metabolite profiling, improved phenomics to take advantage of next generation sequencing technologies and high throughput phenotyping are basic steps for future direction to improve genetic gain and maximize speed for drought tolerance breeding. PMID:23717282

  12. Ontogenetic improvement of visual function in the medaka Oryzias latipes based on an optomotor testing system for larval and adult fish

    USGS Publications Warehouse

    Carvalho, Paulo S. M.; Noltie, Douglas B.; Tillitt, D.E.

    2002-01-01

    We developed a system for evaluation of visual function in larval and adult fish. Both optomotor (swimming) and optokinetic (eye movement) responses were monitored and recorded using a system of rotating stripes. The system allowed manipulation of factors such as width of the stripes used, rotation speed of the striped drum, and light illuminance levels within both the scotopic and photopic ranges. Precise control of these factors allowed quantitative measurements of visual acuity and motion detection. Using this apparatus, we tested the hypothesis that significant posthatch ontogenetic improvements in visual function occur in the medaka Oryzias latipes, and also that this species shows significant in ovo neuronal development. Significant improvements in the acuity angle alpha (ability to discriminate detail) were observed from approximately 5 degrees at hatch to 1 degree in the oldest adult stages. In addition, we measured a significant improvement in flicker fusion thresholds (motion detection skills) between larval and adult life stages within both the scotopic and photopic ranges of light illuminance. Ranges of flicker fusion thresholds (X±SD) at log I=1.96 (photopic) varied from 37.2±1.6 cycles/s in young adults to 18.6±1.6 cycles/s in young larvae 10 days posthatch. At log I=−2.54 (scotopic), flicker fusion thresholds varied from 5.8±0.7 cycles/s in young adults to 1.7±0.4 cycles/s in young larvae 10 days posthatch. Light sensitivity increased approximately 2.9 log units from early hatched larval stages to adults. The demonstrated ontogenetic improvements in visual function probably enable the fish to explore new resources, thereby enlarging their fundamental niche.

  13. Measurements and modeling of CO 2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, Ralph F.

    The major goal of this project was to improve understanding of processes that control the exchanges of CO 2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO 2 concentration and the isotopes of CO 2 ( 13C/ 12C and 18O/ 16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years andmore » to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO 2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/ 12C. The core element of this project was providing partial support for continuing measurements of CO 2 concentrations and isotopes from the Scripps CO 2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO 2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/ 12C of CO 2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College« less

  14. Improved Thermal Cycling Durability of Thermal Barrier Coatings Manufactured by PS-PVD

    NASA Astrophysics Data System (ADS)

    Rezanka, S.; Mauer, G.; Vaßen, R.

    2014-01-01

    The plasma spray-physical vapor deposition (PS-PVD) process is a promising method to manufacture thermal barrier coatings (TBCs). It fills the gap between traditional thermal spray processes and electron beam physical vapor deposition (EB-PVD). The durability of PS-PVD manufactured columnar TBCs is strongly influenced by the compatibility of the metallic bondcoat (BC) and the ceramic TBC. Earlier investigations have shown that a smooth BC surface is beneficial for the durability during thermal cycling. Further improvements of the bonding between BC and TBC could be achieved by optimizing the formation of the thermally grown oxide (TGO) layer. In the present study, the parameters of pre-heating and deposition of the first coating layer were investigated in order to adjust the growth of the TGO. Finally, the durability of the PS-PVD coatings was improved while the main advantage of PS-PVD, i.e., much higher deposition rate in comparison to EB-PVD, could be maintained. For such coatings, improved thermal cycling lifetimes more than two times higher than conventionally sprayed TBCs, were measured in burner rigs at ~1250 °C/1050 °C surface/substrate exposure temperatures.

  15. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Robin; Davenport, Roger; Talbot, Jan

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle formore » reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are proposed for future activities. Electrolysis membranes that permit higher temperatures and lower voltages are attainable. The oxygen half cycle will need further development and improvement.« less

  16. Conventional vs. extended-cycle oral contraceptives on the quality of sexual life: comparison between two regimens containing 3 mg drospirenone and 20 µg ethinyl estradiol.

    PubMed

    Caruso, Salvatore; Iraci Sareri, Marco; Agnello, Carmela; Romano, Mattea; Lo Presti, Lucia; Malandrino, Chiara; Cianci, Antonio

    2011-05-01

    Women may use new oral contraceptives (OC) having flexible extended-cycle regimens with a reduced hormone-free interval. To study the changes of the quality of sexual life in users of the traditional 21/7 or extended-cycle 24/4 OC regimens both containing 3 mg drospirenone and 20 µg ethinyl estradiol. One hundred fifteen women (age range 18-37 years) were enrolled. Fifty-four women were randomly placed on traditional OC standard regimen, administered for 21 days, followed by a 7-day hormone-free interval (group A); and 61 women were placed on extended-cycle OC regimen covering 24 days of the cycle with a 4-day hormone-free interval (group B). The Short Form-36 (SF-36) validate questionnaire to assess quality of life (QoL) and the Short Personal Experience Questionnaire (SPEQ) to measure the changes of sexual behavior were administered before starting OC intake and at the 3rd and 6th cycle follow-ups. The SF-36 and the SPEQ questionnaires. Group A women reported QoL improvement during the 6th cycle on all the scales (P < 0.05). Group B women reported QoL improvement during the 3rd and 6th cycle (P < 0.05). Satisfaction with sexual activity, arousal, orgasm, and desire increased during the 3rd cycle in women on the group B (P < 0.05). Group A women did not report any change in all SPEQ items. At the 6th cycle, group B women reported better sexual experience than baseline in all SPEQ items (P < 0.05). All subjects who were affected by dyspareunia before OC intake reported decreased genital pain associated with intercourse at the 3rd and 6th cycle of both OC regimens (P < 0.05). Women could use OCs in a subjective flexible modality. The extended-cycle OC might produce positive effects on the quality of sexual life, enforcing the concept of tailoring an OC to a woman. © 2011 International Society for Sexual Medicine.

  17. Research on WNN Modeling for Gold Price Forecasting Based on Improved Artificial Bee Colony Algorithm

    PubMed Central

    2014-01-01

    Gold price forecasting has been a hot issue in economics recently. In this work, wavelet neural network (WNN) combined with a novel artificial bee colony (ABC) algorithm is proposed for this gold price forecasting issue. In this improved algorithm, the conventional roulette selection strategy is discarded. Besides, the convergence statuses in a previous cycle of iteration are fully utilized as feedback messages to manipulate the searching intensity in a subsequent cycle. Experimental results confirm that this new algorithm converges faster than the conventional ABC when tested on some classical benchmark functions and is effective to improve modeling capacity of WNN regarding the gold price forecasting scheme. PMID:24744773

  18. Application Specific Electronic Module Program (ASEM), Final Technical Report.

    DTIC Science & Technology

    1994-12-14

    relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The

  19. Self-Standing Polypyrrole/Black Phosphorus Laminated Film: Promising Electrode for Flexible Supercapacitor with Enhanced Capacitance and Cycling Stability.

    PubMed

    Luo, Shaojuan; Zhao, Jinlai; Zou, Jifei; He, Zhiliang; Xu, Changwen; Liu, Fuwei; Huang, Yang; Dong, Lei; Wang, Lei; Zhang, Han

    2018-01-31

    With the rapid development of portable electronics, solid-state flexible supercapacitors (SCs) are considered as one of the promising energy devices in powering electronics because of their intrinsic advantages. Polypyrrole (PPy) is an ideal electrode material in constructing flexible SCs owing to its high electrochemical activity and inherent flexibility, although its relatively low capacitance and poor cycling stability are still worthy of improvement. Herein, through the innovative introduction of black phosphorus (BP) nanosheets, we developed a laminated PPy/BP self-standing film with enhanced capacitance and cycling stability via a facile one-step electrochemical deposition method. The film exhibits a high capacitance of 497.5 F g -1 (551.7 F cm -3 ) and outstanding cycling stability of 10 000 charging/discharging cycles, thanks to BP nanosheets inducing laminated assembly which hinder dense and disordered stacking of PPy during electrodeposition, consequently providing a precise pathway for ion diffusion and electron transport together with alleviation of the structural deterioration during charge/discharge. The flexible SC fabricated by laminated films delivers a high capacitance of 452.8 F g -1 (7.7 F cm -3 ) besides its remarkable mechanical flexibility and cycling stability. Our facile strategy paves the way to improve the electrochemical performance of PPy-based SC that could serve as promising flexible energy device for portable electronics.

  20. Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage.

    PubMed

    An, Geon-Hyoung; Kim, Hyeonjin; Ahn, Hyo-Jin

    2018-02-21

    Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g -1 at 100 mA g -1 after 100 cycles), superb high-rate performance (969 mA h g -1 at 2000 mA g -1 ), and outstanding ultrafast cycling stability (532 mA h g -1 at 2000 mA g -1 after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.

  1. Randomized controlled trial of the effect of endometrial injury on implantation and clinical pregnancy rates during the first ICSI cycle.

    PubMed

    Maged, Ahmed M; Rashwan, Hamsa; AbdelAziz, Suzy; Ramadan, Wafaa; Mostafa, Walaa A I; Metwally, Ahmed A; Katta, Maha

    2018-02-01

    To assess whether endometrial injury in the cycle preceding controlled ovarian hyperstimulation during intracytoplasmic sperm injection (ICSI) improves the implantation and pregnancy rates. Between January 1, 2016, and March 31, 2017, a randomized controlled trial was conducted at a center in Egypt among 300 women who met inclusion criteria (first ICSI cycle, aged <40 years, day-3 follicle-stimulating hormone <10 IU/L, normal serum prolactin, no uterine cavity abnormality). The women were randomly allocated using a web-based system to undergo endometrial scratch in the cycle preceding controlled ovarian hyperstimulation (n=150) or to a control group (n=150). Only data analysts were masked to group assignment. The primary outcomes were the implantation and clinical pregnancy rates at 14 days and 4 weeks after embryo transfer, respectively. Analyses were by intention to treat. The implantation rate was significantly higher in the endometrial scratch group (41.3% [90/218]) than in the control group (30.0% [63/210]; P<0.001). The clinical pregnancy rate was also significantly higher in the endometrial scratch group (44.2% [61/138]) than in the control group (30.4% [41/135]; P<0.001). Endometrial injury in the cycle preceding the stimulation cycle improved implantation and pregnancy rates during ICSI. CLINICALTRIALS.GOV: NCT02660125. © 2017 International Federation of Gynecology and Obstetrics.

  2. Improving Precipitation Forcings for the National Water Model

    NASA Astrophysics Data System (ADS)

    Fall, G. M.; Zhang, Z.; Miller, D.; Kitzmiller, D.; Patrick, N.; Sparrow, K.; Olheiser, C.; Szeliga, T.

    2017-12-01

    The National Weather Service's Office of Water Prediction (NWS/OWP) produces operational hydrologic products, many of which are generated by the National Water Model (NWM). NWM analysis cycles (also known as "near-real-time" or "update" cycles) are of key importance, since the land surface states and fluxes they produce are used to initialize all forecast cycles. Among all forcing fields (which include precipitation, temperature, humidity, radiation, and wind), precipitation is particularly important. Currently, NWM precipitation forcings for analysis cycles are generated by combining hourly radar-derived precipitation products from the Multi-Radar, Multi-Sensor (MRMS) system with short-term quantitative precipitation forecasts (QPF) from the Rapid Refresh (RAP) and High Resolution Rapid Refresh (HRRR) systems. Short term QPF is used in analysis cycles to fill coverage gaps in MRMS products, and its inclusion is necessary due to the short latency associated with NWM analysis cycles relative to the availability of other operational precipitation analyses. This presentation will describe the methodology used to remove QPF bias and to spatially merge MRMS, HRRR, and RAP into hourly forcing inputs for NWM version 2.0, expected to enter into operations in late 2018. The accuracy of version 2.0 precipitation forcings relative to reference data sources, and the degree to which these forcings will represent an improvement over those used to drive the previous NWM version (1.2), will be described.

  3. Effect of ethylene glycol bis (propionitrile) ether (EGBE) on the performance and interfacial chemistry of lithium-rich layered oxide cathode

    NASA Astrophysics Data System (ADS)

    Hong, Pengbo; Xu, Mengqing; Zheng, Xiongwen; Zhu, Yunmin; Liao, Youhao; Xing, Lidan; Huang, Qiming; Wan, Huaping; Yang, Yongjun; Li, Weishan

    2016-10-01

    Ethylene glycol bis (propionitrile) ether (EGBE) is used as an electrolyte additive to improve the cycling stability and rate capability of Li/Li1.2Mn0.54Ni0.13Co0.13O2 cells at high operating voltage (4.8 V). After 150 cycles, cells with 1.0 wt% of EGBE containing electrolyte have remarkable cycling performance, 89.0% capacity retention; while the cells with baseline electrolyte only remain 67.4% capacity retention. Linear sweep voltammetry (LSV) and computation results demonstrate that EGBE preferably oxidizes on the cathode surface compared to the LiPF6/carbonate electrolyte. In order to further understand the effects of EGBE on Li1.2Mn0.54Ni0.13Co0.13O2 cathode upon cycling at high voltage, electrochemical behaviors and ex-situ surface analysis of Li1.2Mn0.54Ni0.13Co0.13O2 are investigated via electrochemical impedance spectroscopy (EIS), scanning electron spectroscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and inductive coupled plasma spectroscopy (ICP-MS). The improved cycling performance can be attributed to more stable and robust surface layer yield via incorporation of EGBE, which mitigates the oxidation of electrolyte on the cathode electrode, and also inhibits the dissolution of bulk transition metal ions as well upon cycling at high voltage.

  4. Infrastructure for Large-Scale Quality-Improvement Projects: Early Lessons from North Carolina Improving Performance in Practice

    ERIC Educational Resources Information Center

    Newton, Warren P.; Lefebvre, Ann; Donahue, Katrina E.; Bacon, Thomas; Dobson, Allen

    2010-01-01

    Introduction: Little is known regarding how to accomplish large-scale health care improvement. Our goal is to improve the quality of chronic disease care in all primary care practices throughout North Carolina. Methods: Methods for improvement include (1) common quality measures and shared data system; (2) rapid cycle improvement principles; (3)…

  5. Reliability improvements in tunable Pb1-xSnxSe diode lasers

    NASA Technical Reports Server (NTRS)

    Linden, K. J.; Butler, J. F.; Nill, K. W.; Reeder, R. E.

    1980-01-01

    Recent developments in the technology of Pb-salt diode lasers which have led to significant improvements in reliability and lifetime, and to improved operation at very long wavelengths are described. A combination of packaging and contacting-metallurgy improvements has led to diode lasers that are stable both in terms of temperature cycling and shelf-storage time. Lasers cycled over 500 times between 77 K and 300 K have exhibited no measurable changes in either electrical contact resistance or threshold current. Utilizing metallurgical contacting process, both lasers and experimental n-type and p-type bulk materials are shown to have electrical contact resistance values that are stable for shelf storage periods well in excess of one year. Problems and experiments which have led to devices with improved performance stability are discussed. Stable device configurations achieved for material compositions yielding lasers which operate continuously at wavelengths as long as 30.3 micrometers are described.

  6. Creating a high-value delivery system for health care.

    PubMed

    Teisberg, Elizabeth O; Wallace, Scott

    2009-01-01

    Health care reform that focuses on improving value enhances both the well-being of patients and the professional satisfaction of physicians. Value in health care is the improvement in health outcomes achieved for patients relative to the money spent. Dramatic and ongoing improvement in the value of health care delivered will require fundamental restructuring of the system. Current efforts to improve safety and reduce waste are truly important but not sufficient. The following three structural changes will drive simultaneous improvement in outcomes and efficiency: (1) reorganizing care delivery into clinically integrated teams defined by patient needs over the full cycle of care; (2) measuring and reporting patient outcomes by clinical teams, across the cycle of care and for identified clusters of medical circumstances; and (3) enabling reimbursement tied to value rather than to quantity of services. Many of these changes require physician leadership. We discuss steps on the journey to value-based care delivery.

  7. Quality Improvement on the Acute Inpatient Psychiatry Unit Using the Model for Improvement

    PubMed Central

    Singh, Kuldeep; Sanderson, Joshua; Galarneau, David; Keister, Thomas; Hickman, Dean

    2013-01-01

    Background A need exists for constant evaluation and modification of processes within healthcare systems to achieve quality improvement. One common approach is the Model for Improvement that can be used to clearly define aims, measures, and changes that are then implemented through a plan-do-study-act (PDSA) cycle. This approach is a commonly used method for improving quality in a wide range of fields. The Model for Improvement allows for a systematic process that can be revised at set time intervals to achieve a desired result. Methods We used the Model for Improvement in an acute psychiatry unit (APU) to improve the screening incidence of abnormal involuntary movements in eligible patients—those starting or continuing on standing neuroleptics—with the Abnormal Involuntary Movement Scale (AIMS). Results After 8 weeks of using the Model for Improvement, both of the participating inpatient services in the APU showed substantial overall improvement in screening for abnormal involuntary movements using the AIMS. Conclusion Crucial aspects of a successful quality improvement initiative based on the Model for Improvement are well-defined goals, process measures, and structured PDSA cycles. Success also requires communication, organization, and participation of the entire team. PMID:24052768

  8. Quality improvement on the acute inpatient psychiatry unit using the model for improvement.

    PubMed

    Singh, Kuldeep; Sanderson, Joshua; Galarneau, David; Keister, Thomas; Hickman, Dean

    2013-01-01

    A need exists for constant evaluation and modification of processes within healthcare systems to achieve quality improvement. One common approach is the Model for Improvement that can be used to clearly define aims, measures, and changes that are then implemented through a plan-do-study-act (PDSA) cycle. This approach is a commonly used method for improving quality in a wide range of fields. The Model for Improvement allows for a systematic process that can be revised at set time intervals to achieve a desired result. We used the Model for Improvement in an acute psychiatry unit (APU) to improve the screening incidence of abnormal involuntary movements in eligible patients-those starting or continuing on standing neuroleptics-with the Abnormal Involuntary Movement Scale (AIMS). After 8 weeks of using the Model for Improvement, both of the participating inpatient services in the APU showed substantial overall improvement in screening for abnormal involuntary movements using the AIMS. Crucial aspects of a successful quality improvement initiative based on the Model for Improvement are well-defined goals, process measures, and structured PDSA cycles. Success also requires communication, organization, and participation of the entire team.

  9. Experimental research made during a city cycle on the feasibility of electrically charged SI engines

    NASA Astrophysics Data System (ADS)

    Kocsis, Levente B.; Burnete, Nicolae

    2014-06-01

    The paper presents experimental research on performance improvements in a city cycle (operating mostly transient) of a compact class vehicle equipped with a turbocharged SI engine which had attached an electric charger, to improve engine response at low operational speeds. During tests, functional parameters, energy consumption of the electric charger and vehicle performances were measured while driving in two operating conditions: with active and inactive electric charger. The tests were carried out on a well-defined path, in the same driving style, by the same driver.

  10. Corrigendum to "Sinusoidal potential cycling operation of a direct ethanol fuel cell to improving carbon dioxide yields" [J. Power Sources 268 (5 December 2014) 439-442

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2016-09-01

    The authors regret that Equation (5) is incorrect and has resulted in errors in Fig. 4 and the efficiencies stated on p. 442. The corrected equation, figure and text are presented below. In addition, the title should be 'Sinusoidal potential cycling operation of a direct ethanol fuel cell to improve carbon dioxide yields', and the reversible cell potential quoted on p. 441 should be 1.14 V. The authors would like to apologise for any inconvenience caused.

  11. Improving the rates of electronic results acknowledgement at a tertiary eye care centre.

    PubMed

    Phua, Val; Au, Benjamin; Soh, Yu Qiang; Husain, Rahat

    2017-01-01

    Hundreds of thousands of tests are performed annually in hospitals worldwide. Safety Issues arise when abnormal results are not recognized promptly resulting in delayed treatment and increased morbidity and mortality. As a result Singapore's largest healthcare group, Singhealth introduced an electronic result acknowledgement system. This system was adopted by the Singapore National Eye Centre (SNEC) in February 2016. Baseline measurements show that weekly numbers of unacknowledged results ranged from 193 to 617. The current standards of electronic results acknowledgement posts a significant patient safety hazard. Root cause analysis was performed to identify contributory factors. Pareto principle was then used by the authors to identify the main contributory factors. We employed the rapid cycle improvement Plan-do-study-act (PDSA) strategy to test and evaluate implemented changes. Changes are implemented for 2 weeks and data collected prospectively. The data is analyzed the week after and the following PDSA actions are decided and instituted the following week. 3 PDSA cycles were undertaken in total. The first PDSA cycle focused on raising awareness of the problem at hand, the number of unacknowledged results drastically decreased during the 1 st week of implementation of our PDSA from 617 to 254. The second PDSA cycle targeted the lack of knowledge of doctors involved in the electronic result acknowledgement process. There was a trend downwards near the end of the cycle which continued through the week after. The third PDSA cycle targeted individual doctors and provided individual remedial training. Second line doctors were also equipped to better handle abnormal results. There was significant improvement with the number of unacknowledged abnormal results dropping to <5 a week. Multiple factors were identified to contribute to the low compliance to electronic acknowledgement of results. The role doctors play in the issue at hand was paramount and required careful handling in a professional manner with multiple reminders and emphasis on the importance of acknowledging and acting on the results.A significant improvement in the rates of acknowledgement of abnormal results was demonstrated with clear benefits to patient safety. Interventions can be replicated when implementing similar systems to other areas of healthcare.

  12. Improving the rates of electronic results acknowledgement at a tertiary eye care centre

    PubMed Central

    Phua, Val; Au, Benjamin; Soh, Yu Qiang; Husain, Rahat

    2017-01-01

    Background Hundreds of thousands of tests are performed annually in hospitals worldwide. Safety Issues arise when abnormal results are not recognized promptly resulting in delayed treatment and increased morbidity and mortality. As a result Singapore’s largest healthcare group, Singhealth introduced an electronic result acknowledgement system. This system was adopted by the Singapore National Eye Centre (SNEC) in February 2016. Baseline measurements show that weekly numbers of unacknowledged results ranged from 193 to 617. The current standards of electronic results acknowledgement posts a significant patient safety hazard. Methods Root cause analysis was performed to identify contributory factors. Pareto principle was then used by the authors to identify the main contributory factors. We employed the rapid cycle improvement Plan-do-study-act (PDSA) strategy to test and evaluate implemented changes. Changes are implemented for 2 weeks and data collected prospectively. The data is analyzed the week after and the following PDSA actions are decided and instituted the following week. 3 PDSA cycles were undertaken in total. Results The first PDSA cycle focused on raising awareness of the problem at hand, the number of unacknowledged results drastically decreased during the 1stweek of implementation of our PDSA from 617 to 254. The second PDSA cycle targeted the lack of knowledge of doctors involved in the electronic result acknowledgement process. There was a trend downwards near the end of the cycle which continued through the week after. The third PDSA cycle targeted individual doctors and provided individual remedial training. Second line doctors were also equipped to better handle abnormal results. There was significant improvement with the number of unacknowledged abnormal results dropping to <5 a week. Conclusions Multiple factors were identified to contribute to the low compliance to electronic acknowledgement of results. The role doctors play in the issue at hand was paramount and required careful handling in a professional manner with multiple reminders and emphasis on the importance of acknowledging and acting on the results.A significant improvement in the rates of acknowledgement of abnormal results was demonstrated with clear benefits to patient safety. Interventions can be replicated when implementing similar systems to other areas of healthcare. PMID:29450290

  13. Computer, Video, and Rapid-Cycling Plant Projects in an Undergraduate Plant Breeding Course.

    ERIC Educational Resources Information Center

    Michaels, T. E.

    1993-01-01

    Studies the perceived effectiveness of four student projects involving videotape production, computer conferencing, microcomputer simulation, and rapid-cycling Brassica breeding for undergraduate plant breeding students in two course offerings in consecutive years. Linking of the computer conferencing and video projects improved the rating of the…

  14. Tying It All Together

    ERIC Educational Resources Information Center

    Hirsh, Stephanie; Crow, Tracy

    2017-01-01

    The learning team cycle as described in "Becoming a Learning Team: A Guide to a Teacher-Led Cycle of Continuous Improvement" by Stephanie Hirsh and Tracy Crow was created to support teams of teachers working on particular lessons and instructional challenges within classrooms. Even as the day-to-day work of classroom teaching continues,…

  15. Current Status of an Organic Rankine Cycle Engine Development Program

    NASA Technical Reports Server (NTRS)

    Barber, R. E.

    1984-01-01

    The steps taken to achieve improved bearing life in the organic Rankine cycle (ORC) engine being developed for use on solar parabolic dishes are presented. A summary of test results is given. Dynamic tests on the machine shaft and rotors of the ORC engine are also discussed.

  16. Student-to-Student Legacies in Exploratory Action Research

    ERIC Educational Resources Information Center

    Moran, Katherine

    2017-01-01

    In 2013/2014, I conducted two consecutive cycles of exploratory action research aimed at improving the quality of my French engineering students' oral presentations in English. Each cycle involved a different group of students. I collaborated with the students extensively throughout the project and found that the experience was highly beneficial…

  17. Improving post-detonation energetics residues estimations for the Life Cycle Environmental Assessment process for munitions.

    EPA Science Inventory

    The Life Cycle Environmental Assessment (LCEA) process for military munitions tracks possible environmental impacts incurred during all phases of the life of a munition. The greatest energetics-based emphasis in the current LCEA process is on manufacturing. A review of recent LCE...

  18. Impact of Accreditation on Public and Private Universities: A Comparative Study

    ERIC Educational Resources Information Center

    Dattey, Kwame; Westerheijden, Don F.; Hofman, Wiecher H. Adriaan

    2014-01-01

    Based on two cycles of assessments for accreditation, this study assesses the differential impacts of accreditation on public and private universities in Ghana. Analysis of the evaluator reports indicates no statistically significant difference--improvement or deterioration--between the two cycles of evaluations for both types of institutions. A…

  19. Conceptual Change in Elementary School Teacher Candidate Knowledge of Rock-Cycle Processes.

    ERIC Educational Resources Information Center

    Stofflett, Rene Therese

    1994-01-01

    Investigates the knowledge of elementary school teacher candidates on rock-cycle processes. Three different instructional interventions were used to improve their knowledge: (1) conceptual-change teaching; (2) traditional didactic teaching; and (3) microteaching. The conceptual-change group showed the most growth in understanding, supporting…

  20. Development of the ANL plant dynamics code and control strategies for the supercritical carbon dioxide Brayton cycle and code validation with data from the Sandia small-scale supercritical carbon dioxide Brayton cycle test loop.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.

    2011-11-07

    Significant progress has been made in the ongoing development of the Argonne National Laboratory (ANL) Plant Dynamics Code (PDC), the ongoing investigation and development of control strategies, and the analysis of system transient behavior for supercritical carbon dioxide (S-CO{sub 2}) Brayton cycles. Several code modifications have been introduced during FY2011 to extend the range of applicability of the PDC and to improve its calculational stability and speed. A new and innovative approach was developed to couple the Plant Dynamics Code for S-CO{sub 2} cycle calculations with SAS4A/SASSYS-1 Liquid Metal Reactor Code System calculations for the transient system level behavior onmore » the reactor side of a Sodium-Cooled Fast Reactor (SFR) or Lead-Cooled Fast Reactor (LFR). The new code system allows use of the full capabilities of both codes such that whole-plant transients can now be simulated without additional user interaction. Several other code modifications, including the introduction of compressor surge control, a new approach for determining the solution time step for efficient computational speed, an updated treatment of S-CO{sub 2} cycle flow mergers and splits, a modified enthalpy equation to improve the treatment of negative flow, and a revised solution of the reactor heat exchanger (RHX) equations coupling the S-CO{sub 2} cycle to the reactor, were introduced to the PDC in FY2011. All of these modifications have improved the code computational stability and computational speed, while not significantly affecting the results of transient calculations. The improved PDC was used to continue the investigation of S-CO{sub 2} cycle control and transient behavior. The coupled PDC-SAS4A/SASSYS-1 code capability was used to study the dynamic characteristics of a S-CO{sub 2} cycle coupled to a SFR plant. Cycle control was investigated in terms of the ability of the cycle to respond to a linear reduction in the electrical grid demand from 100% to 0% at a rate of 5%/minute. It was determined that utilization of turbine throttling control below 50% load improves the cycle efficiency significantly. Consequently, the cycle control strategy has been updated to include turbine throttle valve control. The new control strategy still relies on inventory control in the 50%-90% load range and turbine bypass for fine and fast generator output adjustments, but it now also includes turbine throttling control in the 0%-50% load range. In an attempt to investigate the feasibility of using the S-CO{sub 2} cycle for normal decay heat removal from the reactor, the cycle control study was extended beyond the investigation of normal load following. It was shown that such operation is possible with the extension of the inventory and the turbine throttling controls. However, the cycle operation in this range is calculated to be so inefficient that energy would need to be supplied from the electrical grid assuming that the generator could be capable of being operated in a motoring mode with an input electrical energy from the grid having a magnitude of about 20% of the nominal plant output electrical power level in order to maintain circulation of the CO{sub 2} in the cycle. The work on investigation of cycle operation at low power level will be continued in the future. In addition to the cycle control study, the coupled PDC-SAS4A/SASSYS-1 code system was also used to simulate thermal transients in the sodium-to-CO{sub 2} heat exchanger. Several possible conditions with the potential to introduce significant changes to the heat exchanger temperatures were identified and simulated. The conditions range from reactor scram and primary sodium pump failure or intermediate sodium pump failure on the reactor side to pipe breaks and valve malfunctions on the S-CO{sub 2} side. It was found that the maximum possible rate of the heat exchanger wall temperature change for the particular heat exchanger design assumed is limited to {+-}7 C/s for less than 10 seconds. Modeling in the Plant Dynamics Code has been compared with available data from the Sandia National Laboratories (SNL) small-scale S-CO{sub 2} Brayton cycle demonstration that is being assembled in a phased approach currently at Barber-Nichols Inc. and at SNL in the future. The available data was obtained with an earlier configuration of the S-CO{sub 2} loop involving only a single-turbo-alternator-compressor (TAC) instead of two TACs, a single low temperature recuperator (LTR) instead of both a LTR and a high temperature recuperator (HTR), and fewer than the later to be installed full set of electric heaters. Due to the absence of the full heating capability as well as the lack of a high temperature recuperator providing additional recuperation, the temperature conditions obtained with the loop are too low for the loop conditions to be prototypical of the S-CO{sub 2} cycle.« less

  1. Enhancing the oxidation resistance of graphite by applying an SiC coat with crack healing at an elevated temperature

    NASA Astrophysics Data System (ADS)

    Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.

    2016-08-01

    The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.

  2. Ecotypic variability in the metabolic response of seeds to diurnal hydration-dehydration cycles and its relationship to seed vigor.

    PubMed

    Bai, Bing; Sikron, Noga; Gendler, Tanya; Kazachkova, Yana; Barak, Simon; Grafi, Gideon; Khozin-Goldberg, Inna; Fait, Aaron

    2012-01-01

    Seeds in the seed bank experience diurnal cycles of imbibition followed by complete dehydration. These conditions pose a challenge to the regulation of germination. The effect of recurring hydration-dehydration (Hy-Dh) cycles were tested on seeds from four Arabidopsis thaliana accessions [Col-0, Cvi, C24 and Ler]. Diurnal Hy-Dh cycles had a detrimental effect on the germination rate and on the final percentage of germination in Col-0, Cvi and C24 ecotypes, but not in the Ler ecotype, which showed improved vigor following the treatments. Membrane permeability measured by ion conductivity was generally increased following each Hy-Dh cycle and was correlated with changes in the redox status represented by the GSSG/GSH (oxidized/reduced glutathione) ratio. Among the ecotypes, Col-0 seeds displayed the highest membrane permeability, whilst Ler was characterized by the greatest increase in electrical conductivity following Hy-Dh cycles. Following Dh 2 and Dh 3, the respiratory activity of Ler seeds significantly increased, in contrast to the other ecotypes, indicative of a dramatic shift in metabolism. These differences were associated with accession-specific content and patterns of change of (i) cell wall-related laminaribiose and mannose; (ii) fatty acid composition, specifically of the unsaturated oleic acid and α-linoleic acid; and (iii) asparagine, ornithine and the related polyamine putrescine. Furthermore, in the Ler ecotype the content of the tricarboxylic acid (TCA) cycle intermediates fumarate, succinate and malate increased in response to dehydration, in contrast to a decrease in the other three ecotypes. These findings provide a link between seed respiration, energy metabolism, fatty acid β-oxidation, nitrogen mobilization and membrane permeability and the improved germination of Ler seeds following Hy-Dh cycles.

  3. Poor response cycles: when should we cancel? Comparison of outcome between egg collection, intrauterine insemination conversion, and follow-up cycles after abandonment.

    PubMed

    Nicopoullos, James D M; Abdalla, Hossam

    2011-01-01

    To determine optimal management with one or two mature follicles after stimulation. Retrospective analysis. Lister fertility clinic. A total of 1,350 IVF/intracytoplasmic sperm injection cycles (7.3% of total) during 1998-2009 were found to have one or two mature follicles. Group 1 (n = 807) comprised those who proceeded to vaginal egg collection (VEC) (59.8%; outcome per egg collection), group 2 (n=248) those who converted to IUI (18.4%; outcome per insemination) and group 3 (n=259) those who abandoned the current cycle (21.9%; outcome per abandoned cycle in first subsequent cycle). Live birth rate, clinical pregnancy rate, and biochemical pregnancy rate. Biochemical pregnancy rates of 13.1%, 4.9%, and 9.7%, clinical pregnancy rates of 8.1%, 3.6%, and 7.2%, and ongoing pregnancy rates of 6.8%, 2.0%, and 5.5% were achieved in groups 1, 2, and 3, respectively. All pregnancy outcomes were significantly higher after VEC (group 1) than for those converted to IUI (group 2), and all pregnancy outcomes were higher with borderline significance in group 3 vs. group 2. There was no significant difference in outcome between groups 1 and 3. Our data suggest that for such poor responders, proceeding to VEC may represent their best chance of successful outcome. Conversion to IUI offers the poorest outcome, and despite the potential for improvements in cycle protocol, abandoning and a further attempt does not improve outcome (using abandoned cycle as the denominator). Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives.

    PubMed

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients' compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate.

  5. The Effect of Tamoxifen on Thin Endometrium in Patients Undergoing Frozen-Thawed Embryo Transfer.

    PubMed

    Ke, Hanni; Jiang, Jingjing; Xia, Mingdi; Tang, Rong; Qin, Yingying; Chen, Zi-Jiang

    2018-06-01

    Tamoxifen has played a vital role in endocrine therapy for the treatment of estrogen receptor-positive breast cancer. We examined the effect of tamoxifen in patients with a thin endometrium in frozen-thawed embryo transfer (FET) cycles and compared the improvement in endometrial thickness (EMT) and pregnancy outcomes stratified by different etiologies of thin endometrium. A total of 226 women were recruited for a new tamoxifen protocol; all had an EMT of less than 7.5 mm in previous cycles, including natural cycle (NC), hormone replacement treatment (HRT), and ovulation induction (OI) cycles. Compared with previous cycles, tamoxifen cycles showed a significantly increased EMT (from 6.11 ± 0.98 mm to 7.87 ± 1.48 mm in the NC group, from 6.24 ± 1.01 mm to 8.22 ± 1.67 mm in the HRT group, and from 6.34 ± 1.03 mm to 8.05 ± 1.58 mm in the OI group; all P < .001). Patients were further divided into 3 groups based on the causes of their thin endometrium: (1) history of intrauterine adhesion (n = 34), (2) history of uterine curettage (n = 141), and (3) polycystic ovary syndrome (PCOS; n = 51). Patients with PCOS obtained the thickest EMT (9.31 ± 1.55 mm), the lowest cycle cancellation rate (11.76%), and the highest rate of clinical pregnancy (60%) and live birth (55.56%) per transfer ( P < .001). Multivariable regression analysis showed that EMT was related to live birth (odds ratio: 1.487; 95% confidence interval: 1.172-1.887). A tamoxifen protocol improves EMT in patients after NC, HRT, and OI cycles during FET. Patients with PCOS show the most benefit from tamoxifen and achieve better pregnancy outcomes.

  6. Profile of sodium phenylbutyrate granules for the treatment of urea-cycle disorders: patient perspectives

    PubMed Central

    Peña-Quintana, Luis; Llarena, Marta; Reyes-Suárez, Desiderio; Aldámiz-Echevarria, Luis

    2017-01-01

    Urea-cycle disorders are a group of rare hereditary metabolic diseases characterized by deficiencies of one of the enzymes and transporters involved in the urea cycle, which is necessary for the removal of nitrogen produced from protein breakdown. These hereditary metabolic diseases are characterized by hyperammonemia and life-threatening hyperammonemic crises. Pharmacological treatment of urea-cycle disorders involves alternative nitrogen-scavenging pathways. Sodium benzoate combines with glycine and phenylacetate/phenylbutyrate with glutamine, forming, respectively, hippuric acid and phenylacetylglutamine, which are eliminated in the urine. Among the ammonia-scavenging drugs, sodium phenylbutyrate is a well-known long-term treatment of urea-cycle disorders. It has been used since 1987 as an investigational new drug, and was approved for marketing in the US in 1996 and the EU in 1999. However, sodium phenylbutyrate has an aversive odor and taste, which may compromise patients’ compliance, and many patients have reported difficulty in taking this drug. Sodium phenylbutyrate granules are a new tasteless and odor-free formulation of sodium phenylbutyrate, which is indicated in the treatment of urea-cycle disorders. This recently developed taste-masked formulation of sodium phenylbutyrate granules was designed to overcome the considerable issues that taste has on adherence to therapy. Several studies have reported the clinical experience of patients with urea-cycle disorders treated with this new tasteless formulation of sodium phenylbutyrate. Analysis of the data indicated that this taste-masked formulation of sodium phenylbutyrate granules improved quality of life for urea-cycle disorder patients. Furthermore, a postmarketing report on the use of the product has confirmed the previous observations of improved compliance, efficacy, and safety with this taste-masked formulation of sodium phenylbutyrate. PMID:28919721

  7. Patients’ perspectives on the implementation of intra-dialytic cycling—a phenomenographic study

    PubMed Central

    2012-01-01

    Background Adults undergoing haemodialysis have significantly reduced physical capacity and run a high risk of developing cardiovascular complications. Research has shown that intra-dialytic cycling has many evidence-based health effects, but implementation is rare within renal clinical practice. This may be due to several causes, and this study focuses on the patients’ perspective. This perspective has seldom been taken into account when aiming to assess and improve the implementation of clinical research. The aim of this study was to describe how adults undergoing in-centre haemodialysis treatment experienced an implementation process of intra-dialytic cycling. It aimed to identify potential motivators and barriers to the implementation process from a patient perspective. Methods Maximum-variation purposive sampling was used. Data were collected until saturation, through semistructured interviews, which were analysed using phenomenography. Results The implementation of intra-dialytic cycling was experienced as positive, as it had beneficial effects on physical and psychological well-being. It was easy to perform and did not intrude on patients’ spare time. These factors increased the acceptance of the implementation and supported the maintenance of intra-dialytic cycling as an evidence-based routine within their haemodialysis care. The patients did, however, experience some barriers to accepting the implementation of intra-dialytic cycling. These barriers were sometimes so strong that they outweighed the participants’ knowledge of the advantages of intra-dialytic cycling and the research evidence of its benefits. The barriers sometimes also outweighed the participants’ own wish to cycle. The barriers that we identified concerned not only the patients but also the work situation of the haemodialysis nurses. Conclusions Consideration of the motivators and barriers that we have identified can be used in direct care to improve the implementation of intra-dialytic cycling. PMID:22831388

  8. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  9. Effects of 12-week supervised treadmill training on spatio-temporal gait parameters in patients with claudication.

    PubMed

    Konik, Anita; Kuklewicz, Stanisław; Rosłoniec, Ewelina; Zając, Marcin; Spannbauer, Anna; Nowobilski, Roman; Mika, Piotr

    2016-01-01

    The purpose of the study was to evaluate selected temporal and spatial gait parameters in patients with intermittent claudication after completion of 12-week supervised treadmill walking training. The study included 36 patients (26 males and 10 females) aged: mean 64 (SD 7.7) with intermittent claudication. All patients were tested on treadmill (Gait Trainer, Biodex). Before the programme and after its completion, the following gait biomechanical parameters were tested: step length (cm), step cycle (cycle/s), leg support time (%), coefficient of step variation (%) as well as pain-free walking time (PFWT) and maximal walking time (MWT) were measured. Training was conducted in accordance with the current TASC II guidelines. After 12 weeks of training, patients showed significant change in gait biomechanics consisting in decreased frequency of step cycle (p < 0.05) and extended step length (p < 0.05). PFWT increased by 96% (p < 0.05). MWT increased by 100% (p < 0.05). After completing the training, patients' gait was more regular, which was expressed via statistically significant decrease of coefficient of variation (p < 0.05) for both legs. No statistically significant relation between the post-training improvement of PFWT and MWT and step length increase and decreased frequency of step cycle was observed (p > 0.05). Twelve-week treadmill walking training programme may lead to significant improvement of temporal and spatial gait parameters in patients with intermittent claudication. Twelve-week treadmill walking training programme may lead to significant improvement of pain-free walking time and maximum walking time in patients with intermittent claudication.

  10. Intradialytic aerobic cycling exercise alleviates inflammation and improves endothelial progenitor cell count and bone density in hemodialysis patients.

    PubMed

    Liao, Min-Tser; Liu, Wen-Chih; Lin, Fu-Huang; Huang, Ching-Feng; Chen, Shao-Yuan; Liu, Chuan-Chieh; Lin, Shih-Hua; Lu, Kuo-Cheng; Wu, Chia-Chao

    2016-07-01

    Inflammation, endothelial dysfunction, and mineral bone disease are critical factors contributing to morbidity and mortality in hemodialysis (HD) patients. Physical exercise alleviates inflammation and increases bone density. Here, we investigated the effects of intradialytic aerobic cycling exercise on HD patients. Forty end-stage renal disease patients undergoing HD were randomly assigned to either an exercise or control group. The patients in the exercise group performed a cycling program consisting of a 5-minute warm-up, 20 minutes of cycling at the desired workload, and a 5-minute cool down during 3 HD sessions per week for 3 months. Biochemical markers, inflammatory cytokines, nutritional status, the serum endothelial progenitor cell (EPC) count, bone mineral density, and functional capacity were analyzed. After 3 months of exercise, the patients in the exercise group showed significant improvements in serum albumin levels, the body mass index, inflammatory cytokine levels, and the number of cells positive for CD133, CD34, and kinase insert domain-conjugating receptor. Compared with the exercise group, the patients in the control group showed a loss of bone density at the femoral neck and no increases in EPCs. The patients in the exercise group also had a significantly greater 6-minute walk distance after completing the exercise program. Furthermore, the number of EPCs significantly correlated with the 6-minute walk distance both before and after the 3-month program. Intradialytic aerobic cycling exercise programs can effectively alleviate inflammation and improve nutrition, bone mineral density, and exercise tolerance in HD patients.

  11. Improving physician's hand over among oncology staff using standardized communication tool

    PubMed Central

    Alolayan, Ashwaq; Alkaiyat, Mohammad; Ali, Yosra; Alshami, Mona; Al-Surimi, Khaled; Jazieh, Abdul-Rahman

    2017-01-01

    Cancer patients are frequently admitted to hospital for many reasons. During their hospitalization they are handled by different physicians and other care providers. Maintaining good communication among physicians is essential to assure patient safety and the delivery of quality patient care. Several incidents of miscommunication issues have been reported due to lack of a standardized communication tool for patients' hand over among physicians at our oncology department. Hence, this improvement project aims at assessing the impact of using a standardized communication tool on improving patients' hand over and quality of patient care. A quality improvement team has been formed to address the issue of cancer patients' hand over. We adopted specific hand over tool to be used by physicians. This tool was developed based on well-known and validated communication tool called ISBAR - Identify, Situation, Background, Assessment and Recommendation, which contains pertinent information about the patient's condition. The form should be shared at a specific point in time during the handover process. We monitored the compliance of physician's with this tool over 16 weeks embedded by four ‘purposive’ and ‘sequential’ Plan-Do-Study-Act (PDSA) cycles; where each PDSA cycle was developed based on the challenges faced and lessons learned in each step and the result of the previous PDSA cycle. Physicians compliance rate of using the tool had improved significantly from 45% (baseline) to 100% after the fourth PDSA cycle. Other process measure was measuring acknowledgment of hand over receipt email at two checkpoints at 8:00 – 9:00 a.m. and 4:00 – 5:00 p.m. The project showed that using a standardized handover form as a daily communication method between physicians is a useful idea and feasible to improve cancer patients handover with positive impact on many aspects of healthcare process and outcomes. PMID:28174657

  12. Rapid-fire improvement with short-cycle kaizen.

    PubMed

    Heard, E

    1999-05-01

    Continuous improvement is an attractive idea, but it is typically more myth than reality. SCK is no myth. It delivers dramatic improvements in traditional measures quickly. SCK accomplishes this via kaizens: rapid, repeated, time-compressed changes for the better in bite-sized chunks of the business.

  13. The effects of assisted cycling therapy (ACT) and voluntary cycling on reaction time and measures of executive function in adolescents with Down syndrome.

    PubMed

    Ringenbach, S D R; Holzapfel, S D; Mulvey, G M; Jimenez, A; Benson, A; Richter, M

    2016-11-01

    Reports of positive effects of aerobic exercise on cognitive function in persons with Down syndrome are extremely limited. However, a novel exercise intervention, termed assisted cycling therapy (ACT), has resulted in acutely improved cognitive planning ability and reaction times as well as improved cognitive planning after 8 weeks of ACT in adolescents and young adults with Down syndrome. Here, we report the effects of 8 weeks of ACT on reaction time, set-shifting, inhibition and language fluency in adolescents with Down syndrome. Adolescents with Down syndrome (age: ~18 years) were randomly assigned to 8 weeks of ACT (n = 17) or voluntary cycling (VC: n = 16), and a convenience sample (n = 11) was assigned to be an inactive comparison group (NC: n = 11). During ACT, the cycling cadence of the participants was augmented to an average cadence that was 80% faster than the voluntary cadence of the VC group. The increase in cadence was achieved with an electric motor in the stationary bicycle. Reaction time, set-shifting, inhibition and language fluency were assessed before and after 8 weeks of intervention. Power output and heart rates of the ACT and VC groups were almost identical, but the ACT cadence was significantly faster. The ACT group, but not the VC or NC groups, showed significantly improved reactions times (Hedges' g = -0.42) and inhibitory control (g = 0.18). Only the VC group showed improved set-shifting ability (g = 0.57). The ACT and VC groups displayed improved semantic language fluency (g = 0.25, g = 0.22, respectively). These and previous results support the hypothesis of increased neuroplasticity and prefrontal cortex function following ACT and, to a smaller extent, following VC. Both ACT and VC appear to be associated with cortical benefits, but based on current and previous results, ACT seems to maximize the benefits. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  14. Correlation Between Cycling Power and Muscle Thickness in Cyclists.

    PubMed

    Lee, Hyung-Jin; Lee, Kang-Woo; Lee, Yong-Woo; Kim, Hee-Jin

    2018-05-17

    The aim of this study was to determine the correlation between muscle thickness (MT) and cycling power in varsity cyclists using ultrasonography (US) and to identify any differences in MT between short- and long-distance cyclists. Twelve cyclists participated in this study. Real-time two-dimensional B-mode US was used to measure the MT in the anterior thigh, anterior lower leg, and trunk, especially in the abdominal and lumbar regions. A Wattbike cycle ergometer was used to measure cycling power parameters such as maximum anaerobic power (over 5 s), mean anaerobic power (over 30 s), and aerobic power (over 3 min). This study was approved by the Ethics Committee of Korea National Sports University. There was a significant relationship between the MT and cycling power for the rectus femoris (RF) and vastus lateralis (VL) in the thigh, the rectus abdominis (RA) in the abdominal region, and the erector spinae (ES) in the lower back. The MT values of the RF, VL, and ES were strongly associated with the maximum and mean anaerobic power. There were significant differences between short- and long-distance cyclists in the MT of the RF in the thigh, the RA, the external abdominal oblique, the internal abdominal oblique, and the transverse abdominis muscle in the abdomen. We suggest that training programs attempting to improve cycling performance focus on improving the VL and ES via resistance weight or cycle training and also the core muscles for short-distance cyclists. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  15. [Acute Hyperuricemia and Kidney Injury after Three Cycles of Dose-Dense Chemotherapy for Retroperitoneal Choriocarcinoma -- A Case Report].

    PubMed

    Sakai, Hitomi; Matsuda, Masanori; Kadokura, Genmu; Katsumata, Noriyuki

    2016-02-01

    A 32 year-old man was diagnosed with retroperitoneal choriocarcinoma with metastasis to the lungs and liver. One cycle of modified BEP regimen did not sufficiently decrease the hCG. Therefore, we chose the GETUG 13 protocol of dose dense chemotherapy. After 6 days of cisplatin administration(3 cycles), he was diagnosed with acute hyperuricemia and kidney injury. He was treated with intravenous hydration and rasburicase. The hyperuricemia improved after a few days.

  16. Analytical investigation of thermal barrier coatings on advanced power generation gas turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical investigation of present and advanced gas turbine power generation cycles incorporating thermal barrier turbine component coatings was performed. Approximately 50 parametric points considering simple, recuperated, and combined cycles (including gasification) with gas turbine inlet temperatures from current levels through 1644K (2500 F) were evaluated. The results indicated that thermal barriers would be an attractive means to improve performance and reduce cost of electricity for these cycles. A recommended thermal barrier development program has been defined.

  17. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yunchao; Wan, Shun; Veith, Gabriel M.

    2016-11-07

    Here, lithium bis(2-methyl-2-fluoromalonato)borate (LiBMFMB), as an additive in conventional electrolyte for LiNi 0.5Mn 1.5O 4, exhibits improved coulombic efficiencies and cycling stability. Cyclic voltammograms indicate the cells with additive form good SEIs during the first cycle whereas no additive cell needs more cycles to form a functional SEI. XPS reveals LiBMFMB could reduce the decomposition of LiPF 6 salt and solvents, resulting in thinner SEI.

  18. A Study of Waste-Heat-Boiler Size and Performance of a Conceptual Marine COGAS System.

    DTIC Science & Technology

    1980-02-01

    The addition of a waste-heat boiler which extracts heat from the gas turbine exhaust gas to operate a bottoming Rankine cycle is one way to improve the...do not change significantly. Higher saturation pressure actually results in a somewhat lower boiler heat transfer, but the Rankine - cycle performance...of heat transferred in the waste-heat boiler and (2) the conversion efficiency of the Rankine cycle . In sizing the waste-heat boiler, attention was

  19. The Hybrid Automobile and the Atkinson Cycle

    NASA Astrophysics Data System (ADS)

    Feldman, Bernard J.

    2008-10-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle instead of the Otto cycle; and what are the advantages and disadvantages of the hybrid automobile. This is a follow-up to my two previous papers on the physics of automobile engines.1,2

  20. Isotope Exchange in Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M., Jr.; Hoyt, Ronald F.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Replacement technique maintains level of CO2/18 in closed-cycle CO2 lasers. High-energy, pulsed CO2 lasers using rare chemical isotopes must be operated in closed cycles to conserve gas. Rare isotopes operated in closed cycles to conserve gas. Rare isotopes as CO2/18 used for improved transmission of laser beam in atmosphere. To maintain laser power, CO2 must be regenerated, and O2 concentration kept below few tenths of percent. Conditions achieved by recombining CO and O2.

  1. Measuring collections effort improves cash performance.

    PubMed

    Shutts, Joe

    2009-09-01

    Having a satisfied work force can lead to an improved collections effort. Hiring the right people and training them ensures employee engagement. Measuring collections effort and offering incentives is key to revenue cycle success.

  2. The application of implementation science for pressure ulcer prevention best practices in an inpatient spinal cord injury rehabilitation program.

    PubMed

    Scovil, Carol Y; Flett, Heather M; McMillan, Lan T; Delparte, Jude J; Leber, Diane J; Brown, Jacquie; Burns, Anthony S

    2014-09-01

    To implement pressure ulcer (PU) prevention best practices in spinal cord injury (SCI) rehabilitation using implementation science frameworks. Quality improvement. SCI Rehabilitation Center. Inpatients admitted January 2012 to July 2013. Implementation of two PU best practices were targeted: (1) completing a comprehensive PU risk assessment and individualized interprofessional PU prevention plan (PUPP); and (2) providing patient education for PU prevention; as part of the pan-Canadian SCI Knowledge Mobilization Network. At our center, the SCI Pressure Ulcer Scale replaced the Braden risk assessment scale and an interprofessional PUPP form was implemented. Comprehensive educational programing existed, so efforts focused on improving documentation. Implementation science frameworks provided structure for a systematic approach to best practice implementation (BPI): (1) site implementation team, (2) implementation drivers, (3) stages of implementation, and (4) improvement cycles. Strategies were developed to address key implementation drivers (staff competency, organizational supports, and leadership) through the four stages of implementation: exploration, installation, initial implementation, and full implementation. Improvement cycles were used to address BPI challenges. Implementation processes (e.g. staff training) and BPI outcomes (completion rates). Following BPI, risk assessment completion rates improved from 29 to 82%. The PUPP completion rate was 89%. PU education was documented for 45% of patients (vs. 21% pre-implementation). Implementation science provided a framework and effective tools for successful pressure ulcer BPI in SCI rehabilitation. Ongoing improvement cycles will target timeliness of tool completion and documentation of patient education.

  3. Effect of bright light therapy on delayed sleep/wake cycle and reaction time of athletes participating in the Rio 2016 Olympic Games.

    PubMed

    Rosa, João Paulo P; Silva, Andressa; Rodrigues, Dayane F; Simim, Mário Antônio; Narciso, Fernanda V; Tufik, Sergio; Bichara, Jorge J; Pereira, Sebastian Rafael D; Da Silva, Sidney C; de Mello, Marco Tulio

    2018-04-16

    This study investigated the effect of using an artificial bright light on the entrainment of the sleep/wake cycle as well as the reaction times of athletes before the Rio 2016 Olympic Games. A total of 22 athletes from the Brazilian Olympic Swimming Team were evaluated, with the aim of preparing them to compete at a time when they would normally be about to go to bed for the night. During the 8-day acclimatization period, their sleep/wake cycles were assessed by actigraphy, with all the athletes being treated with artificial light therapy for between 30 and 45 min (starting at day 3). In addition, other recommendations to improve sleep hygiene were made to the athletes. In order to assess reaction times, the Psychomotor Vigilance Test was performed before (day 1) and after (day 8) the bright light therapy. As a result of the intervention, the athletes slept later on the third (p = 0.01), seventh (p = 0.01) and eighth (p = 0.01) days after starting bright light therapy. Regarding reaction times, when tested in the morning the athletes showed improved average (p = 0.01) and minimum reaction time (p = 0.03) when comparing day 8 to day 1. When tested in the evening, they showed improved average (p = 0.04), minimum (p = 0.03) and maximum reaction time (p = 0.02) when comparing day 8 to day 1. Light therapy treatment delayed the sleep/wake cycles and improved reaction times of members of the swimming team. The use of bright light therapy was shown to be effective in modulating the sleep/wake cycles of athletes who had to perform in competitions that took place late at night.

  4. Performance and sex differences in 'Isklar Norseman Xtreme Triathlon'.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis Theodoros; Stiefel, Michael; Rosemann, Thomas; Rüst, Christoph Alexander

    2016-10-31

    The performance and sex differences of long-distance triathletes competing in 'Ironman Hawaii' are well investigated. However, less information is available with regards to triathlon races of the Ironman distance held under extreme environmental conditions (e.g. extreme cold) such as the 'Isklar Norseman Xtreme Triathlon' which started in 2003. In 'Isklar Norseman Xtreme Triathlon', athletes swim at a water temperature of ~13-15°C, cycle at temperatures of ~5-20°C and run at temperatures of ~12-28°C in the valley and of ~2-12°C at Mt. Gaustatoppen. This study analysed the performance trends and sex differences in 'Isklar Norseman Xtreme Triathlon' held from 2003 to 2015 using mixed-effects regression analyses. During this period, a total of 175 women (10.6%) and 1,852 men (89.4%) successfully finished the race. The number of female (r² = 0.53, P = 0.0049) and male (r² = 0.37, P = 0.0271) finishers increased and the men-to-women ratio decreased (r² = 0.86, P < 0.0001). Men were faster than women in cycling (25.41 ± 2.84 km/h versus 24.25 ± 2.17 km/h) (P < 0.001), but not in swimming (3.06 ± 0.62 km/h vs. 2.94 ± 0.57 km/h), running (7.43 ± 1.13 km/h vs. 7.31 ± 0.93 km/h) and overall race time (874.57 ± 100.62 min vs. 899.95 ± 90.90 min) (P > 0.05). Across years, women improved in swimming and both women and men improved in cycling and in overall race time (P < 0.001). In running, however, neither women nor men improved (P > 0.05). In summary, in 'Isklar Norseman Xtreme Triathlon' from 2003 to 2015, the number of successful women increased across years, women achieved a similar performance to men in swimming, cycling and overall race time, and women improved across years in swimming, cycling and overall race time.

  5. Repeated cycles of 5-fluorouracil chemotherapy impaired anti-tumor functions of cytotoxic T cells in a CT26 tumor-bearing mouse model.

    PubMed

    Wu, Yanhong; Deng, Zhenling; Wang, Huiru; Ma, Wenbo; Zhou, Chunxia; Zhang, Shuren

    2016-09-20

    Recently, the immunostimulatory roles of chemotherapeutics have been increasingly revealed, although bone marrow suppression is still a common toxicity of chemotherapy. While the numbers and ratios of different immune subpopulations are analyzed after chemotherapy, changes to immune status after each cycle of treatment are less studied and remain unclear. To determine the tumor-specific immune status and functions after different cycles of chemotherapy, we treated CT26 tumor-bearing mice with one to four cycles of 5-fluorouracil (5-FU). Overall survival was not improved when more than one cycle of 5-FU was administered. Here we present data concerning the immune statuses after one and three cycles of chemotherapy. We analyzed the amount of spleen cells from mice treated with one and three cycles of 5-FU as well as assayed their proliferation and cytotoxicity against the CT26 tumor cell line. We found that the absolute numbers of CD8 T-cells and NK cells were not influenced significantly after either one or three cycles of chemotherapy. However, after three cycles of 5-FU, proliferated CD8 T-cells were decreased, and CT26-specific cytotoxicity and IFN-γ secretion of spleen cells were impaired in vitro. After one cycle of 5-FU, there was a greater percentage of tumor infiltrating CD8 T-cells. In addition, more proliferated CD8 T-cells, enhanced tumor-specific cytotoxicity as well as IFN-γ secretion of spleen cells against CT26 in vitro were observed. Given the increased expression of immunosuppressive factors, such as PD-L1 and TGF-β, we assessed the effect of early introduction of immunotherapy in combination with chemotherapy. We found that mice treated with cytokine induced killer cells and PD-L1 monoclonal antibodies after one cycle of 5-FU had a better anti-tumor performance than those treated with chemotherapy or immunotherapy alone. These data suggest that a single cycle of 5-FU treatment promoted an anti-tumor immune response, whereas repeated chemotherapy cycles impaired anti-tumor immune functions. Though the amount of immune cells could recover after chemotherapy suspension, their anti-tumor functions were damaged by multiple rounds of chemotherapy. These findings also point towards early implementation of immunotherapy to improve the anti-tumor effect.

  6. A case study of translating ACGME practice-based learning and improvement requirements into reality: systems quality improvement projects as the key component to a comprehensive curriculum.

    PubMed

    Tomolo, A M; Lawrence, R H; Aron, D C

    2009-10-01

    In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.

  7. A case study of translating ACGME practice-based learning and improvement requirements into reality: systems quality improvement projects as the key component to a comprehensive curriculum.

    PubMed

    Tomolo, A M; Lawrence, R H; Aron, D C

    2009-06-01

    In 2002, the Accreditation Council for Graduate Medical Education (ACGME) introduced a new requirement: residents must demonstrate competency in Practice-Based Learning and Improvement (PBLI). Training in this domain is still not consistently integrated into programmes, with few, if any, adequately going beyond knowledge of basic content and addressing all components of the requirement. To summarise the implementation of a PBLI curriculum designed to address all components of the requirement and to evaluate the impact on the practice system. A case-study approach was used for identifying and evaluating the steps for delivering the curriculum, along with the Model for Improvement's successive Plan-Do-Study-Act (PDSA) cycles (July 2004-May 2006). Notes from curriculum development meetings, notes and presentation slides made by teams about their projects, resident curriculum exit evaluations curriculum and interviews. Residents reported high levels of comfort by applying PBLI-related knowledge and skills and that the curriculum improved their ability to do various PBLI tasks. The involvement of multiple stakeholders increased. Twelve of the 15 teams' suggestions with practical systems-relevant outcomes were implemented and sustained beyond residents' project periods. While using the traditional PDSA cycles was helpful, there were limitations. A PBLI curriculum that is centred around practice-based quality improvement projects can fulfil the objectives of this ACGME competency while accomplishing sustained outcomes in quality improvement. A comprehensive curriculum is an investment but offers organisational rewards. We propose a more realistic and informative representation of rapid PDSA cycle changes.

  8. Cycle cancellation and pregnancy after luteal estradiol priming in women defined as poor responders: a systematic review and meta-analysis

    PubMed Central

    Reynolds, Kasey A.; Omurtag, Kenan R.; Jimenez, Patricia T.; Rhee, Julie S.; Tuuli, Method G.; Jungheim, Emily S.

    2013-01-01

    STUDY QUESTION Does a luteal estradiol (LE) stimulation protocol improve outcomes in poor responders to IVF? SUMMARY ANSWER LE priming is associated with decreased cycle cancellation and increased chance of clinical pregnancy in poor responders WHAT IS KNOWN ALREADY Poor responders to IVF are one of the most challenging patient populations to treat. Many standard protocols currently exist for stimulating these patients but all have failed to improve outcomes. STUDY DESIGN, SIZE, DURATION Systematic review and meta-analysis including eight published studies comparing assisted reproduction technology (ART) outcomes in poor responders exposed to controlled ovarian hyperstimulation with and without LE priming. A search of the databases MEDLINE, EMBASE and PUBMED was carried out for studies in the English language published up to January 2012. PARTICIPANTS/MATERIALS, SETTING, METHODS Studies evaluating women defined as poor responders to ART were evaluated. These studies were identified following a systematic review of the literature and data were analyzed using the DerSimonian–Laird random effects model. The main outcomes of interest were cycle cancellation rate and clinical pregnancy. Although the definition of clinical pregnancy varied between studies, the principal definition included fetal cardiac activity as assessed by transvaginal ultrasonography after 5 weeks of gestation. MAIN RESULTS AND THE ROLE OF CHANCE A total of 2249 publications were identified from the initial search, and the bibliographies, abstracts and other sources yielded 11 more. After excluding duplications, 1227 studies remained and 8 ultimately met the inclusion criteria. Compared with women undergoing non-LE primed protocols (n = 621), women exposed to LE priming (n = 468) had a lower risk of cycle cancellation [relative risk (RR): 0.60, 95% confidence interval (CI): 0.45–0.78] and an improved chance of clinical pregnancy (RR: 1.33, 95% CI: 1.02–1.72). There was no significant improvement in the number of mature oocytes obtained or number of zygotes obtained per cycle. LIMITATIONS, REASONS FOR CAUTION These findings are limited by the body of literature currently available. As the poor responder lacks a concrete definition, there is some heterogeneity to these results, which merits caution when applying our findings to individual patients. Furthermore, the increased clinical pregnancy rate demonstrated when using the LE protocol may be principally related to the decreased cycle cancellation rate. WIDER IMPLICATIONS OF THE FINDINGS The LE protocol may be of some utility in the poor responder to IVF and may increase clinical pregnancy rates in this population by improving stimulation and thereby decreasing cycle cancellation. STUDY FUNDING/COMPETING INTERESTS NIH K12 HD063086 (ESJ, MGT), NIH T32 HD0040135-11 (KAR), F32 HD040135-10 NIH (KRO), 5K12HD000849-25 (PTJ). No competing interests. PMID:23887073

  9. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  10. Baseline Concept Description of a Small Modular High Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans D.

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less

  11. Life-Cycle Assessment of a Distributed-Scale Thermochemical Bioenergy Conversion System

    Treesearch

    Hongmei Gu; Richard Bergman

    2016-01-01

    Expanding bioenergy production from woody biomass has the potential to decrease net greenhouse gas (GHG) emissions and improve the energy security of the United States. Science-based and internationally accepted life-cycle assessment (LCA) is an effective tool for policy makers to make scientifically informed decisions on expanding renewable energy production from...

  12. Elucidating the nutritional dynamics of fungi using stable isotopes

    Treesearch

    Jordan R. Mayor; Edward A.G. Schuur; Terry W. Henkel

    2009-01-01

    Mycorrhizal and saprotrophic (SAP) fungi are essential to terrestrial element cycling due to their uptake of mineral nutrients and decomposition of detritus. Linking these ecological roles to specific fungi is necessary to improve our understanding of global nutrient cycling, fungal ecophysiology, and forest ecology. Using discriminant analyses of nitrogen and carbon...

  13. Life-Cycle Analysis and Inquiry-Based Learning in Chemistry Teaching

    ERIC Educational Resources Information Center

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The purpose of this design research is to improve the quality of environmental literacy and sustainability education in chemistry teaching through combining a socio-scientific issue, life-cycle analysis (LCA), with inquiry-based learning (IBL). This first phase of the cyclic design research involved 20 inservice trained chemistry teachers from…

  14. Tightly-coupled plant-soil nitrogen cycling: Implications for multiple ecosystem services on organic farms across an intensively managed agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Variability among farms across an agricultural landscape may reveal diverse biophysical contexts and experiences that show innovations and insights to improve nitrogen (N) cycling and yields, and thus the potential for multiple ecosystem services. In order to assess potential tradeoffs between yield...

  15. Reproductive cycles of Mugil cephalus, Liza ramada and Liza aurata (Teleostei: Mugilidae).

    PubMed

    Bartulović, V; Dulčić, J; Matić-Skoko, S; Glamuzina, B

    2011-06-01

    The reproductive cycles of three mullet species from the Eastern Adriatic coast were described using several biological parameters (gonado-somatic index, oocyte diameter and sex ratio) to improve knowledge about their reproduction. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.

  16. Improved performances of β-Ni(OH)2@reduced-graphene-oxide in Ni-MH and Li-ion batteries.

    PubMed

    Li, Baojun; Cao, Huaqiang; Shao, Jin; Zheng, He; Lu, Yuexiang; Yin, Jiefu; Qu, Meizhen

    2011-03-21

    Incorporation of reduced graphene oxide into β-Ni(OH)(2) presents high performances with specific discharge capacity of 283 mA hg(-1) after 50 cycles in Ni-MH batteries, and 507 mA hg(-1) after 30 cycles in Li ion batteries.

  17. Life-Cycle Inventory Analysis of Bioproducts from a Modular Advanced Biomass Pyrolysis System

    Treesearch

    Richard Bergman; Hongmei Gu

    2014-01-01

    Expanding bioenergy production has the potential to reduce net greenhouse gas (GHG) emissions and improve energy security. Science-based assessments of new bioenergy technologies are essential tools for policy makers dealing with expanding renewable energy production. Using life cycle inventory (LCI) analysis, this study evaluated a 200-kWe...

  18. EXTENSION OF COMPUTER-AIDED PROCESS ENGINEERING APPLICATIONS TO ENVIRONMENTAL LIFE CYCLE ASSESSMENT AND SUPPLY CHAIN MANAGEMENT

    EPA Science Inventory

    The potential of computer-aided process engineering (CAPE) tools to enable process engineers to improve the environmental performance of both their processes and across the life cycle (from cradle-to-grave) has long been proffered. However, this use of CAPE has not been fully ach...

  19. Vehicle test report: South Coast Technology electric Volkswagen Rabbit with developmental low-power armature chopper

    NASA Technical Reports Server (NTRS)

    Marte, J. E.; Bryant, J. A.; Livingston, R.

    1983-01-01

    Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.

  20. Background qualitative analysis of the European Reference Life Cycle Database (ELCD) energy datasets - part I: fuel datasets.

    PubMed

    Garraín, Daniel; Fazio, Simone; de la Rúa, Cristina; Recchioni, Marco; Lechón, Yolanda; Mathieux, Fabrice

    2015-01-01

    The aim of this study is to identify areas of potential improvement of the European Reference Life Cycle Database (ELCD) fuel datasets. The revision is based on the data quality indicators described by the ILCD Handbook, applied on sectorial basis. These indicators evaluate the technological, geographical and time-related representativeness of the dataset and the appropriateness in terms of completeness, precision and methodology. Results show that ELCD fuel datasets have a very good quality in general terms, nevertheless some findings and recommendations in order to improve the quality of Life-Cycle Inventories have been derived. Moreover, these results ensure the quality of the fuel-related datasets to any LCA practitioner, and provide insights related to the limitations and assumptions underlying in the datasets modelling. Giving this information, the LCA practitioner will be able to decide whether the use of the ELCD fuel datasets is appropriate based on the goal and scope of the analysis to be conducted. The methodological approach would be also useful for dataset developers and reviewers, in order to improve the overall DQR of databases.

  1. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-02-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles.

  2. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    DOE PAGES

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; ...

    2014-11-26

    A strategy of mixing both an ionic liquid and sulfone is reported to give synergistic effects of reducing viscosity, increasing ionic conductivity, reducing polysulfide dissolution, and improving safety. The mixtures of ionic liquids and sulfones also show distinctly different physicochemical properties, including thermal properties and crystallization behavior. By using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAhg- 1 (second cycle) by using 40% 1.0 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in N-methyl-Npropylpyrrolidinium bis(trifluoromethylsulfonyl)imide with 60% 1.0 M LiTFSI in methylisopropylsulfone in the first cycle. This capacity is slightly lower thanmore » that obtained in pure 1.0 M LiTFSI as the sulfone electrolyte; however, it exhibits excellent cycling stability and remains as high as 655 mAhg 1 even after 50 cycles. This strategy provides a method to alleviate polysulfide dissolution and redox shuttle phenomena, at the same time, with improved ionic conductivity.« less

  3. Enhanced performance of sulfur-infiltrated bimodal mesoporous carbon foam by chemical solution deposition as cathode materials for lithium sulfur batteries

    PubMed Central

    Jeong, Tae-Gyung; Chun, Jinyong; Cho, Byung-Won; Lee, Jinwoo; Kim, Yong-Tae

    2017-01-01

    The porous carbon matrix is widely recognized to be a promising sulfur reservoir to improve the cycle life by suppressing the polysulfide dissolution in lithium sulfur batteries (LSB). Herein, we synthesized mesocellular carbon foam (MSUF-C) with bimodal mesopore (4 and 30 nm) and large pore volume (1.72 cm2/g) using MSUF silica as a template and employed it as both the sulfur reservoir and the conductive agent in the sulfur cathode. Sulfur was uniformly infiltrated into MSUF-C pores by a chemical solution deposition method (MSUF-C/S CSD) and the amount of sulfur loading was achieved as high as 73% thanks to the large pore volume with the CSD approach. MSUF-C/S CSD showed a high capacity (889 mAh/g after 100 cycles at 0.2 C), an improved rate capability (879 mAh/g at 1C and 420 mAh/g at 2C), and a good capacity retention with a fade rate of 0.16% per cycle over 100 cycles. PMID:28165041

  4. Numerical Assessment of Four-Port Through-Flow Wave Rotor Cycles with Passage Height Variation

    NASA Technical Reports Server (NTRS)

    Paxson, D. E.; Lindau, Jules W.

    1997-01-01

    The potential for improved performance of wave rotor cycles through the use of passage height variation is examined. A Quasi-one-dimensional CFD code with experimentally validated loss models is used to determine the flowfield in the wave rotor passages. Results indicate that a carefully chosen passage height profile can produce substantial performance gains. Numerical performance data are presented for a specific profile, in a four-port, through-flow cycle design which yielded a computed 4.6% increase in design point pressure ratio over a comparably sized rotor with constant passage height. In a small gas turbine topping cycle application, this increased pressure ratio would reduce specific fuel consumption to 22% below the un-topped engine; a significant improvement over the already impressive 18% reductions predicted for the constant passage height rotor. The simulation code is briefly described. The method used to obtain rotor passage height profiles with enhanced performance is presented. Design and off-design results are shown using two different computational techniques. The paper concludes with some recommendations for further work.

  5. Improving the Thermochemical Energy Storage Performance of the Mn2 O3 /Mn3 O4 Redox Couple by the Incorporation of Iron.

    PubMed

    Carrillo, Alfonso J; Serrano, David P; Pizarro, Patricia; Coronado, Juan M

    2015-06-08

    Redox cycles of manganese oxides (Mn2 O3 /Mn3 O4 ) are a promising alternative for thermochemical heat storage systems coupled to concentrated solar power plants as manganese oxides are abundant and inexpensive materials. Although their cyclability for such a purpose has been proved, sintering processes, related to the high-temperature conditions at which charge-discharge cycles are performed, generally cause a cycle-to-cycle decrease in the oxidation rate of Mn3 O4 . To guarantee proper operation, both reactions should present stable reaction rates. In this study, it has been demonstrated that the incorporation of Fe, which is also an abundant material, into the manganese oxides improves the redox performance of this system by increasing the heat storage density, narrowing the redox thermal hysteresis, and, above all, stabilizing and enhancing the oxidation rate over long-term operation, which counteracts the negative effects caused by sintering, although its presence is not avoided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Flake-like oxygen-deficient lithium vanadium oxides as a high ionic and electronic conductive cathode material for high-power Li-ion battery

    NASA Astrophysics Data System (ADS)

    Li, Jing-quan; Han, Chong; Jing, Mao-xiang; Yang, Hua; Shen, Xiang-qian; Qin, Shi-biao

    2018-06-01

    Low electronic and ionic conductivity for LiV3O8 cathode material could lead to poor cycling stability and rate capability, which are considered as the main restraint for its application in Li-ion battery. A novel flake-like LiV3O7.9 material modified by high ionic and electronic conductive Li0.3V2O5/C was fabricated via electrospinning and controlled thermal sintering processes. This oxygen-deficient LiV3O7.9/Li0.3V2O5-C composite electrode sintered at 500 °C exhibits improved rate and cycle stability. The electrode possesses a retention capacity of 151.9mAh/g after 500 cycles at 5C and 84.8mAh/g after 1000 cycles at 10C, respectively. The improvement of the electrochemical performance could be attributed to the synergistic effects of flake-like morphology, oxygen-deficiency and surface modification of Li0.3V2O5/C, which increase the ionic and electronic conductivity of LiV3O8.

  7. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guoxing; Gao, Yue; He, Xin

    Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less

  8. Improved glucose tolerance and insulin sensitivity after electrical stimulation-assisted cycling in people with spinal cord injury.

    PubMed

    Jeon, J Y; Weiss, C B; Steadward, R D; Ryan, E; Burnham, R S; Bell, G; Chilibeck, P; Wheeler, G D

    2002-03-01

    Longitudinal training. The purpose was to determine the effect of electrical stimulation (ES)-assisted cycling (30 min/day, 3 days/week for 8 weeks) on glucose tolerance and insulin sensitivity in people with spinal cord injury (SCI). The Steadward Centre, Alberta, Canada. Seven participants with motor complete SCI (five males and two females aged 30 to 53 years, injured 3-40 years, C5-T10) underwent 2-h oral glucose tolerance tests (OGTT, n=7) and hyperglycaemic clamp tests (n=3) before and after 8 weeks of training with ES-assisted cycling. Results indicated that subjects' glucose level were significantly lower at 2 h OGTT following 8 weeks of training (122.4+/-10 vs 139.9+/-16, P=0.014). Two-hour hyperglycaemic clamps tests showed improvement in all three people for glucose utilisation and in two of three people for insulin sensitivity. These results suggested that exercise with ES-assisted cycling is beneficial for the prevention and treatment of Type 2 diabetes mellitus in people with SCI. Supported by Alberta Paraplegic Foundation, Therapeutic Alliance.

  9. Generating cycle flow between dark and light zones with double paddlewheels to improve microalgal growth in a flat plate photo-bioreactor.

    PubMed

    Cheng, Jun; Xu, Junchen; Lu, Hongxiang; Ye, Qing; Liu, Jianzhong; Zhou, Junhu

    2018-08-01

    Double paddlewheels were proposed to generate cycle flow for increasing horizontal fluid velocity between dark and light zones in a flat plate photo-bioreactor, which strengthened the mass transfer and the mixing effect to improve microalgal growth with 15% CO 2 . Numerical fluid dynamics were used to simulate the cycle flow field with double paddlewheels. The local flow field measured with particle image velocimetry fitted well with the numerical simulation results. The horizontal fluid velocity in the photo-bioreactor was markedly increased from 5.8 × 10 -5  m/s to 0.45 m/s with the rotation of double paddlewheels, resulting in a decreased dark/light cycle period. Therefore, bubble formation time and diameter reduced by 24.4% and 27.4%, respectively. Meanwhile, solution mixing time reduced by 31.3% and mass transfer coefficient increased by 41.2%. The biomass yield of microalgae Nannochloropsis Oceanic increased by 127.1% with double paddlewheels under 15% CO 2 condition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Impact of Sulphurous Water Politzer Inhalation on Audiometric Parameters in Children with Otitis Media with Effusion

    PubMed Central

    Mirandola, Prisco; Gobbi, Giuliana; Malinverno, Chiara; Carubbi, Cecilia; Ferné, Filippo M.; Artico, Marco; Vitale, Marco

    2013-01-01

    Objectives The positive effects of spa therapy on ear, nose, and throat pathology are known but robust literature in this field, is still lacking. The aim of this study was to assess through a retrospective analysis, the effects on otitis media with effusion of Politzer endotympanic inhalation of sulphurous waters in children aged 5-9 years. Methods A cohort of 95 patients was treated with Politzer insufflations of sulphurous water: 58 patients did a cycle consisting of a treatment of 12 days per year for three consecutive years; 37 patients followed the same procedure for 5 years consecutively. The control population was represented by untreated, age-matched children. A standard audiometric test was used before and after each cycle of treatment. Results One cycle of Politzer inhalation of sulphur-rich water improved the symptoms. Three cycles definitively stabilized the improvement of hearing function. Conclusion Our results show that otitis media with effusion in children can be resolved by an appropriate non-pharmacological treatment of middle ear with sulphur-rich water. PMID:23524467

  11. Mixed Polyanion Glass Cathodes: Mixed Alkali Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kercher, A. K.; Chapel, A. S.; Kolopus, J. A.

    2017-01-01

    In lithium-ion batteries, mixed polyanion glass cathodes have demonstrated high capacities (200-500 mAh/g) by undergoing conversion and intercalation reactions. Mixed polyanion glasses typically have the same fundamental issues as other conversion cathodes, i.e.: large hysteresis, capacity fade, and 1st-cycle irreversible loss. A key advantage of glass cathodes is the ability to tailor their composition to optimize the desired physical properties and electrochemical performance. The strong dependence of glass physical properties (e.g., ionic diffusivity, electrical conductivity, and chemical durability) on the composition of alkali mixtures in a glass is well known and has been named the mixed alkali effect. The mixedmore » alkali effect on battery electrochemical properties is reported here for the first time. Depending on glass composition, the mixed alkali effect is shown to improve capacity retention during cycling (from 39% to 50% after 50 cycle test), to reduce the 1st-cycle irreversible loss (from 41% to 22%), and improve the high power (500 mA/g) capacity (from 50% to 67% of slow discharge capacity).« less

  12. Synergetic Effect of Yolk-Shell Structure and Uniform Mixing of SnS-MoS₂ Nanocrystals for Improved Na-Ion Storage Capabilities.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2015-11-11

    Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.

  13. Manufacturing Enhancement through Reduction of Cycle Time using Different Lean Techniques

    NASA Astrophysics Data System (ADS)

    Suganthini Rekha, R.; Periyasamy, P.; Nallusamy, S.

    2017-08-01

    In recent manufacturing system the most important parameters in production line are work in process, TAKT time and line balancing. In this article lean tools and techniques were implemented to reduce the cycle time. The aim is to enhance the productivity of the water pump pipe by identifying the bottleneck stations and non value added activities. From the initial time study the bottleneck processes were identified and then necessary expanding processes were also identified for the bottleneck process. Subsequently the improvement actions have been established and implemented using different lean tools like value stream mapping, 5S and line balancing. The current state value stream mapping was developed to describe the existing status and to identify various problem areas. 5S was used to implement the steps to reduce the process cycle time and unnecessary movements of man and material. The improvement activities were implemented with required suggested and the future state value stream mapping was developed. From the results it was concluded that the total cycle time was reduced about 290.41 seconds and the customer demand has been increased about 760 units.

  14. Orbital infections: a complete cycle 7-year audit and a management guideline.

    PubMed

    Atfeh, Mihiar Sami; Singh, Kathryn; Khalil, Hisham Saleh

    2018-06-04

    Orbital infections are regularly encountered and are managed by various healthcare disciplines. Sepsis of the orbit and adjacent tissues can be associated with considerable acute complication and long-term sequelae. Therefore, prompt recognition and management of this condition are crucial. This article presents the outcomes of a 7-year complete cycle audit project and describes the development of the new local guideline on the management of orbital infections in our tertiary centre. (1) A retrospective 5-year audit cycle on patients with orbital infections. (2) A review of available evidence on the management of orbital infections. (3) A new local multidisciplinary guideline on the management of orbital infections. (4) A retrospective 2-year second audit cycle to assess the clinical outcomes. Various disciplines intersect in the management of orbital infections. Standardising the management of this condition proved to be achievable through the developed guideline. However, room for improvement in practice exists in areas such as the promptness in referring patients to specialist care, the multidisciplinary assessment of patients on admission, and the improvement of scanning requests of patients.

  15. Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries

    DOE PAGES

    Li, Guoxing; Gao, Yue; He, Xin; ...

    2017-10-11

    Lithium metal is a promising anode candidate for the next-generation rechargeable battery due to its highest specific capacity (3860 mA h g -1) and lowest potential, but low Coulombic efficiency and formation of lithium dendrites hinder its practical application. Here, we report a self-formed flexible hybrid solid-electrolyte interphase layer through co-deposition of organosulfides/organopolysulfides and inorganic lithium salts using sulfur-containing polymers as an additive in the electrolyte. The organosulfides/organopolysulfides serve as “plasticizer” in the solid-electrolyte interphase layer to improve its mechanical flexibility and toughness. The as-formed robust solid-electrolyte interphase layers enable dendrite-free lithium deposition and significantly improve Coulombic efficiency (99% overmore » 400 cycles at a current density of 2mAcm -2). A lithium-sulfur battery based on this strategy exhibits long cycling life (1000 cycles) and good capacity retention. This study reveals an avenue to effectively fabricate stable solid-electrolyte interphase layer for solving the issues associated with lithium metal anodes.« less

  16. Fuel economy of hybrid fuel-cell vehicles

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajesh K.; Wang, X.; Rousseau, A.

    The potential improvement in fuel economy of a mid-size fuel-cell vehicle by combining it with an energy storage system has been assessed. An energy management strategy is developed and used to operate the direct hydrogen, pressurized fuel-cell system in a load-following mode and the energy storage system in a charge-sustaining mode. The strategy places highest priority on maintaining the energy storage system in a state where it can supply unanticipated boost power when the fuel-cell system alone cannot meet the power demand. It is found that downsizing a fuel-cell system decreases its efficiency on a drive cycle which is compensated by partial regenerative capture of braking energy. On a highway cycle with limited braking energy the increase in fuel economy with hybridization is small but on the stop-and-go urban cycle the fuel economy can improve by 27%. On the combined highway and urban drive cycles the fuel economy of the fuel-cell vehicle is estimated to increase by up to 15% by hybridizing it with an energy storage system.

  17. Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer.

    PubMed

    Park, Seong-Jin; Hwang, Jang-Yeon; Yoon, Chong S; Jung, Hun-Gi; Sun, Yang-Kook

    2018-05-30

    Lithium (Li) metals have been considered most promising candidates as an anode to increase the energy density of Li-ion batteries because of their ultrahigh specific capacity (3860 mA h g -1 ) and lowest redox potential (-3.040 V vs standard hydrogen electrode). However, unstable dendritic electrodeposition, low Coulombic efficiency, and infinite volume changes severely hinder their practical uses. Herein, we report that ethyl methyl carbonate (EMC)- and fluoroethylene carbonate (FEC)-based electrolytes significantly enhance the energy density and cycling stability of Li-metal batteries (LMBs). In LMBs, using commercialized Ni-rich Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (NCM622) and 1 M LiPF 6 in EMC/FEC = 3:1 electrolyte exhibits a high initial capacity of 1.8 mA h cm -2 with superior cycling stability and high Coulombic efficiency above 99.8% for 500 cycles while delivering a unprecedented energy density. The present work also highlights a significant improvement in scaled-up pouch-type Li/NCM622 cells. Moreover, the postmortem characterization of the cycled cathodes, separators, and Li-metal anodes collected from the pouch-type Li/NCM622 cells helped identifying the improvement or degradation mechanisms behind the observed electrochemical cycling.

  18. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE PAGES

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia; ...

    2018-01-04

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

  19. The cycle characteristics of clomiphene with clomiphene and menotropins in polycystic ovary syndrome and non polycystic ovary syndrome infertile patients.

    PubMed

    Ghasemi, M; Ashraf, H; Koushyar, H; Mousavifar, N

    2013-06-01

    This study compares the cycle characteristics of clomiphene (CC) with CC+HMG (Human Menopausal Gonadotropin or Menotropins) in Polycystic Ovary Syndrome (PCOS) and non-PCOS infertile patients. Patients were treated by CC + minimal HMg protocol. The cancellation rate, the mean number of different follicle sizes and endometrial thickness and pattern were compared. The cancelled cycles due to non-responsiveness were significantly higher in CC compared to CC+ minimal HMg protocol. PCOS patients are significantly nonresponsive in CC cycle and hyperresponsive in CC+ minimal HMg cycles. The mean number of different sizes of follicles and the endometrial thickness were significantly higher in CC+ minimal HMg. PCOS patients were significantly different from non-PCOS regarding the number of mature follicle and endometrial thickness. The pregnancy rate was 11% (10.2% in non-PCOS and 12.2% in PCOS). CC+ minimal HMg is a viable alternative to HMg /FSH only protocol in CC failure or resistant patients, and its efficacy can be mostly attributed to improvement of endometrial quality and increase in follicle number. Moreover, due to high cancellation of PCOS patients treated by this protocol, seemingly other alternatives should be found; perhaps sequential letrozole+HMg/FSH that have been shown to improve the ovarian response in this group of patients.

  20. Effect of Binder Architecture on the Performance of Silicon/Graphite Composite Anodes for Lithium Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Peng-Fei; Naguib, Michael; Du, Zhijia

    Although significant progress has been made in improving cycling performance of silicon-based electrodes, few studies have been performed on the architecture effect on polymer binder performance for lithium-ion batteries. A systematic study on the relationship between polymer architectures and binder performance is especially useful in designing synthetic polymer binders. In this paper, a graft block copolymer with readily tunable architecture parameters is synthesized and tested as the polymer binder for the high-mass loading silicon (15 wt %)/graphite (73 wt %) composite electrode (active materials >2.5 mg/cm 2). With the same chemical composition and functional group ratio, the graft block copolymermore » reveals improved cycling performance in both capacity retention (495 mAh/g vs 356 mAh/g at 100th cycle) and Coulombic efficiency (90.3% vs 88.1% at first cycle) than the physical mixing of glycol chitosan (GC) and lithium polyacrylate (LiPAA). Galvanostatic results also demonstrate the significant impacts of different architecture parameters of graft copolymers, including grafting density and side chain length, on their ultimate binder performance. Finally, by simply changing the side chain length of GC-g-LiPAA, the retaining delithiation capacity after 100 cycles varies from 347 mAh/g to 495 mAh/g.« less

Top