Using Kalman Filter Chemical Data Assimilation to Study Ozone Catalytic Loss Cycles in January 1992
NASA Technical Reports Server (NTRS)
Lary, David J.
2002-01-01
This paper presents for the first time a global study of the ozone catalytic destruction cycles operating in the stratosphere using a stratospheric analyses for January 1992. The chemical analyses were produced using a Kalman filter data assimilation system. Because a major component of the variability of trace gases is due to the atmospheric motions the analyses have been cast in a flow-tracking coordinate system that moves with the large scale flow pattern. Particular attention is paid to the kinetic aspects of these cycles such as the rate limiting step and chain length. Although it is an important kinetic parameter, the chain length of the various cycles is seldom considered when the various catalytic cycles are discussed. This survey highlights that in the low stratosphere the cycles involving HO2 and halogens (notably bromine) are particularly important. In approximate order of effectiveness the most important ozone loss cycles in the polar lower stratosphere are the BrO/ClO, HO2/BrO, and OH/HO2 cycles. The ClO/ClO cycle clearly delineates the regions of chlorine activation. The chain length of the HO2/ClO, OH/HO2, Br/BrO, and ClO/NO2, clearly delineate the vortex edge region. The chain length of the BrO/NO2 and Cl/NO2 cycles highlight the regions of chemical processing outside the vortex where streamers of chemically processed air are stripped-off and transported away from the vortex. This is also true in the very low stratosphere for the Cl/ClO and BrO/ClO cycles.
Quezada-Casasola, Andrés; Avendaño-Reyes, Leonel; Macías-Cruz, Ulises; Ramírez-Godínez, José Alejandro; Correa-Calderón, Abelardo
2014-04-01
In beef and dairy cattle, the number of follicular waves affects endocrine, ovarian, and behavioral events during a normal estrous cycle. However, in Mexican-native Criollo cattle, a shortly and recently domesticated breed, the association between wave patterns and follicular development has not been studied. The objective of this study was to evaluate the effect of number of follicular waves in an estrous cycle on development of anovulatory and ovulatory follicles, corpus luteum (CL) development and functionality, as well as estrual behavior in Criollo cows. Ovarian follicular activities of 22 cycling multiparous Criollo cows were recorded daily by transrectal ultrasound examinations during a complete estrous cycle. Additionally, blood samples were collected daily to determine serum progesterone concentrations. Only two- (n = 17, 77.3%) and three-wave follicular (n = 5, 22.7%) patterns were observed. Duration of estrus, length of estrous cycle, and length of follicular and luteal phases were similar (P > 0.05) between cycles of two and three waves. Two-wave cows ovulated earlier (P < 0.05) after detection of estrus than three-wave cows. Detected day and maximum diameter of first anovulatory follicle were not affected (P > 0.05) by number of waves. Growth rate of first dominant follicle was higher (P < 0.05) in three-wave cycles. Onset of regression of the first dominant follicle was earlier (P < 0.01) in cycles with three waves than in those with two waves. In two-wave cycles, ovulatory follicles were detected earlier (P < 0.01) and had lower (P < 0.01) growth rate than in three-wave cycles. Development (i.e., maximum diameter and volume) and functionality (minimum and maximum progesterone concentration) of CL were similar (P > 0.05) between two- and three-wave patterns. In conclusion, Criollo cows have two or three follicular waves per estrous cycle, which alters partially ovulatory follicle development and ovulation time after detection of estrus. Length of estrous cycle, as well as CL development and functionality, was not affected by number of follicular waves.
Baithalu, Rubina Kumari; Singh, S K; Gupta, Chhavi; Raja, Anuj K; Saxena, Abhishake; Kumar, Yogendra; Singh, R; Agarwal, S K
2013-08-01
In the present paper, cellular composition of buffalo corpus luteum (CL) with its functional characterization based on 3β-HSD and progesterone secretory ability at different stages of estrous cycle and pregnancy was studied. Buffalo uteri along with ovaries bearing CL were collected from the local slaughter house. These were classified into different stages of estrous cycle (Stage I, II, III and IV) and pregnancy (Stage I, II and III) based on morphological appearance of CL, surface follicles on the ovary and crown rump length of conceptus. Luteal cell population, progesterone content and steroidogenic properties were studied by dispersion of luteal cells using collagenase type I enzyme, RIA and 3β-HSD activity, respectively. Large luteal cells (LLC) appeared as polyhedral or spherical in shape with a centrally placed large round nucleus and an abundance of cytoplasmic lipid droplets. However, small luteal cells (SLC) appeared to be spindle shaped with an eccentrically placed irregular nucleus and there was paucity of cytoplasmic lipid droplets. The size of SLC (range 12-23μm) and LLC (range 25-55μm) increased (P<0.01) with the advancement of stage of estrous cycle and pregnancy. The mean progesterone concentration per gram and per CL increased (P<0.01) from Stage I to III of estrous cycle with maximum concentration at Stage III of estrous cycle and pregnancy. The progesterone concentration decreased at Stage IV (day 17-20) of estrous cycle coinciding with CL regression. Total luteal cell number (LLC and SLC) also increased (P<0.01) from Stage I to III of estrous cycle and decreased (P<0.05), thereafter, at Stage IV indicating degeneration of luteal cells and regression of the CL. Total luteal cell population during pregnancy also increased (P<0.01) from Stage I to II and thereafter decreased (P>0.05) indicating cessation of mitosis. Increased (P<0.05) large luteal cell numbers from Stage I to III of estrous cycle and pregnancy coincided with the increased progesterone secretion and 3β-HSD activity of CL. Thus, proportionate increases of large compared with small luteal cells were primarily responsible for increased progesterone secretion during the advanced stages of the estrous cycle and pregnancy. Total luteal cells and progesterone content per CL during the mid-luteal stage in buffalo as observed in the present study seem to be less than with cattle suggesting inherent luteal deficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Abnormal crystal growth in CH 3NH 3PbI 3-xCl x using a multi-cycle solution coating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Qingfeng; Yuan, Yongbo; Shao, Yuchuan
2015-06-23
Recently, the efficiency of organolead trihalide perovskite solar cells has improved greatly because of improved material qualities with longer carrier diffusion lengths. Mixing chlorine in the precursor for mixed halide films has been reported to dramatically enhance the diffusion lengths of mixed halide perovskite films, mainly as a result of a much longer carrier recombination lifetime. Here we report that adding Cl containing precursor for mixed halide perovskite formation can induce the abnormal grain growth behavior that yields well-oriented grains accompanied by the appearance of some very large size grains. The abnormal grain growth becomes prominent only after multi-cycle coatingmore » of MAI : MACl blend precursor. The large grain size is found mainly to contribute to a longer carrier charge recombination lifetime, and thus increases the device efficiency to 18.9%, but without significantly impacting the carrier transport property. As a result, the strong correlation identified between material process and morphology provides guidelines for future material optimization and device efficiency enhancement.« less
Alexandre, Joachim; Saloux, Eric; Lebon, Alain; Dugué, Audrey Emmanuelle; Lemaitre, Adrien; Roule, Vincent; Labombarda, Fabien; Champ-Rigot, Laure; Gomes, Sophie; Pellissier, Arnaud; Scanu, Patrice; Milliez, Paul
2014-02-01
After an old myocardial infarction (MI), patients are at risk for reentrant ventricular tachycardia (VT) due to scar tissue that can be accurately identified by late gadolinium enhancement cardiac magnetic resonance (LGE-CMR). Although the ability of LGE-CMR to predict sustained VT in implantable cardioverter-defibrillator (ICD) recipients has been well established, its use to predict monomorphic VT (sustained or not) cycle length (CL) and so, optimize ICD programming has never been investigated. We included retrospectively 49 consecutive patients with an old MI who had undergone LGE-CMR before ICD implantation over a 4-year period (2006-09). Patients with amiodarone used were excluded. Scar extent was assessed by measuring scar mass, percent scar, and transmural scar extent. The endpoint was the occurrence of monomorphic VT, requiring an ICD therapy or not. The endpoint occurred in 26 patients. The median follow-up duration was 31 months. Scar extent parameters were significantly correlated with the study endpoint. With univariate regression analysis, the scar mass had the highest correlation with the VT CL (R = 0.671, P = 0.0002). Receiver-operating characteristic curve showed that scar mass can predict VT CL (area under the curve = 0.977, P < 0.0001). For a cut-off value of scar mass at 17.6 g, there is 100% specificity and 94.4% sensitivity. In this observational and retrospective study, scar mass studied by LGE-CMR was specific and sensitive to predict VT CL and so could be a promising option to improve ICD post-implantation programming and decrease appropriate and inappropriate shocks. These conclusions must now be confirmed in a large and prospective study.
Kaese, Sven; Bögeholz, Nils; Pauls, Paul; Dechering, Dirk; Olligs, Jan; Kölker, Katharina; Badawi, Sascha; Frommeyer, Gerrit; Pott, Christian; Eckardt, Lars
2017-08-01
The cardiac sodium/calcium (Na + /Ca 2+ ) exchanger (NCX) contributes to diastolic depolarization in cardiac pacemaker cells. Increased NCX activity has been found in heart failure and atrial fibrillation. The influence of increased NCX activity on resting heart rate, beta-adrenergic-mediated increase in heart rate, and cardiac conduction properties is unknown. The purpose of this study was to investigate the influence of NCX overexpression in a homozygous transgenic whole-heart mouse model (NCX-OE) on sinus and AV nodal function. Langendorff-perfused, beating whole hearts of NCX-OE and the corresponding wild-type (WT) were studied ± isoproterenol (ISO; 0.2 μM). Epicardial ECG, AV nodal Wenckebach cycle length (AVN-WCL), and retrograde AVN-WCL were obtained. At baseline, basal heart rate was unaltered between NCX-OE and WT (WT: cycle length [CL] 177.6 ± 40.0 ms, no. of hearts [n] = 20; NCX-OE: CL 185.9 ± 30.5 ms, n = 18; P = .21). In the presence of ISO, NCX-OE exhibited a significantly higher heart rate compared to WT (WT: CL 133.4 ± 13.4 ms, n = 20; NCX-OE: CL 117.7 ± 14.2 ms, n = 18; P <.001). ISO led to a significant shortening of the anterograde and retrograde AVN-WCL without differences between NCX-OE and WT. This study is the first to demonstrate that increased NCX activity enhances beta-adrenergic increase of heart rate. Mechanistically, increased NCX inward mode activity may promote acceleration of diastolic depolarization in sinus nodal pacemaker cells, thus enhancing chronotropy in NCX-OE. These findings suggest a novel potential therapeutic target for heart rate control in the presence of increased NCX activity, such as heart failure. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
A model analysis of halogen kinetics: the ClOOCl catalytic cycle revisited
NASA Astrophysics Data System (ADS)
Canty, T. P.; Salawitch, R. J.; Wilmouth, D. M.
2016-12-01
We revisit prior analyses of simultaneous in situ observations of [ClO] and [ClOOCl] obtained in the Arctic polar vortex to evaluate recommended updates that govern the kinetics of the ClOOCl catalytic cycle. Available laboratory measurements of the ClOOCl absorption cross sections, the ClO+ClO reaction rate constant, and the ClO/ClOOCl equilibrium constant are considered, along with compendium evaluations of these kinetic parameters. We show that the latest recommendations for the kinetics that govern the partitioning of ClO and ClOOCl put forth by the JPL panel in Spring 2016 (JPL 15-10) are in good agreement with atmospheric observations of [ClO] and [ClOOCl]. Hence, we suggest that studies of polar ozone loss adopt these most recent recommendations. The latest JPL recommendation for the equilibrium constant suggests that ClOOCl is less stable than previously assumed, resulting in a shift in the termination temperature of polar ozone loss due to the ClOOCl catalytic cycle. Remaining uncertainties in our knowledge of the kinetics that govern the partitioning of ClO and ClOOCl within the activated vortex, and hence the efficiency of O3 loss by the ClO+ClO cycle, will be best addressed by future laboratory determinations of the absolute cross section of ClOOCl as well as measurements designed to reduce the uncertainty in the rate constant of the ClO+ClO reaction at cold temperatures characteristic of the polar, lower stratosphere.
NASA Astrophysics Data System (ADS)
Ozbilen, Ahmet Ziyaettin
The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the four-step Cu-Cl cycle. Keywords: Hydrogen production, nuclear energy, Cu-Cl cycle, environmental impact, LCA.
Quantifying Short-Chain Chlorinated Paraffin Congener Groups.
Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A
2017-09-19
Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.
Method for forming H2-permselective oxide membranes
Gavalas, George R.; Nam, Suk Woo; Tsapatsis, Michael; Kim, Soojin
1995-01-01
Methods of forming permselective oxide membranes that are highly selective to permeation of hydrogen by chemical deposition of reactants in the pore of porous tubes, such as Vycor.TM. glass or Al.sub.2 O.sub.3 tubes. The porous tubes have pores extending through the tube wall. The process involves forming a stream containing a first reactant of the formula RX.sub.n, wherein R is silicon, titanium, boron or aluminum, X is chlorine, bromine or iodine, and n is a number which is equal to the valence of R; and forming another stream containing water vapor as the second reactant. Both of the reactant streams are passed along either the outside or the inside surface of a porous tube and the streams react in the pores of the porous tube to form a nonporous layer of R-oxide in the pores. The membranes are formed by the hydrolysis of the respective halides. In another embodiment, the first reactant stream contains a first reactant having the formula SiH.sub.n Cl.sub.4-n where n is 1, 2 or 3; and the second reactant stream contains water vapor and oxygen. In still another embodiment the first reactant stream containing a first reactant selected from the group consisting of Cl.sub.3 SiOSiCl.sub.3, Cl.sub.3 SiOSiCl.sub.2 OSiCl.sub.3, and mixtures thereof and the second reactant stream contains water vapor. In still another embodiment, membrane formation is carried out by an alternating flow deposition method. This involves a sequence of cycles, each cycle comprising introduction of the halide-containing stream and allowance of a specific time for reaction followed by purge and flow of the water vapor containing stream for a specific length of time. In all embodiments the nonporous layers formed are selectively permeable to hydrogen.
Method for forming H2-permselective oxide membranes
Gavalas, G.R.; Nam, S.W.; Tsapatsis, M.; Kim, S.
1995-09-26
Methods are disclosed for forming permselective oxide membranes that are highly selective to permeation of hydrogen by chemical deposition of reactants in the pore of porous tubes, such as Vycor{trademark} glass or Al{sub 2}O{sub 3} tubes. The porous tubes have pores extending through the tube wall. The process involves forming a stream containing a first reactant of the formula RX{sub n}, wherein R is silicon, titanium, boron or aluminum, X is chlorine, bromine or iodine, and n is a number which is equal to the valence of R; and forming another stream containing water vapor as the second reactant. Both of the reactant streams are passed along either the outside or the inside surface of a porous tube and the streams react in the pores of the porous tube to form a nonporous layer of R-oxide in the pores. The membranes are formed by the hydrolysis of the respective halides. In another embodiment, the first reactant stream contains a first reactant having the formula SiH{sub n}Cl{sub 4{minus}n} where n is 1, 2 or 3; and the second reactant stream contains water vapor and oxygen. In still another embodiment the first reactant stream containing a first reactant selected from the group consisting of Cl{sub 3}SiOSiCl{sub 3}, Cl{sub 3}SiOSiCl{sub 2}OSiCl{sub 3}, and mixtures thereof and the second reactant stream contains water vapor. In still another embodiment, membrane formation is carried out by an alternating flow deposition method. This involves a sequence of cycles, each cycle comprising introduction of the halide-containing stream and allowance of a specific time for reaction followed by purge and flow of the water vapor containing stream for a specific length of time. In all embodiments the nonporous layers formed are selectively permeable to hydrogen. 11 figs.
The use of prostaglandins in controlling estrous cycle of the ewe: a review.
Fierro, Sergio; Gil, Jorge; Viñoles, Carolina; Olivera-Muzante, Julio
2013-02-01
This review considers the use of prostaglandin F(2α) and its synthetic analogues (PG) for controlling the estrous cycle of the ewe. Aspects such as phase of the estrus cycle, PG analogues, PG doses, ovarian follicle development pattern, CL formation, progesterone synthesis, ovulation rate, sperm transport, embryo quality, and fertility rates after PG administration are reviewed. Furthermore, protocols for estrus synchronization and their success in timed AI programs are discussed. Based on available information, the ovine CL is refractory to PG treatment for up to 2 days after ovulation. All PG analogues are effective when an appropriate dose is given; in that regard, there is a positive association between the dose administered and the proportion of ewes detected in estrus. Follicular response after PG is dependent on the phase of the estrous cycle at treatment. Altered sperm transport and low pregnancy rates are generally reported. However, reports on alteration of the steroidogenic capacity of preovulatory follicles, ovulation rate, embryo quality, recovery rates, and prolificacy, are controversial. Although various PG-based protocols can be used for estrus synchronization, a second PG injection improves estrus response when the stage of the estrous cycle at the first injection is unknown. The estrus cycle after PG administration has a normal length. Prostaglandin-based protocols for timed AI achieved poor reproductive outcomes, but increasing the interval between PG injections might increase pregnancy rates. Attempts to improve reproductive outcomes have been directed to provide a synchronized LH surge: use of different routes of AI (cervical or intrauterine), different PG doses, and increased intervals between PG injections. Finally we present our point of view regarding future perspectives on the use of PG in programs of controlled sheep reproduction. Copyright © 2013 Elsevier Inc. All rights reserved.
Floré, Vincent; Claus, Piet; Symons, Rolf; Smith, Godfrey L; Sipido, Karin R; Willems, Rik
2013-08-01
There is convincing experimental evidence that cellular action potential duration (APD) alternans is arrhythmogenic but its relationship with body surface microvolt T-wave alternans (MTWA) remains unclear. We investigated the relationship between MTWA and APD alternans induced by alternating cycle length (CL) pacing in a pig model. In 10 pigs, catheters in the right atrium (RA) and right (RV) and left ventricle (LV) allowed pacing and recording of monophasic action potentials (MAP). During RA pacing at stable 500-ms CL, LV was paced at alternating CL (505 ms and 495 ms). Changing the alternating LV (A-LV) pacing delay changes the size of the region with alternating ventricular activation. Spectral analysis of intracardiac MAP was correlated with body surface MTWA. In a similar setup (during alternating pacing in RV and LV), we investigated concordant versus discordant APD alternans. Pacing the LV with subtle alternating cycle lengths at short A-LV delay leads to broad QRS (97 ± 10 ms), body surface MTWA (mean Valt 4.2 ± 1.8 µV), and positive RR-interval alternans. At longer A-LV delay, not resulting in QRS widening (68 ± 5 ms), body surface RR alternans was absent but MTWA remained detectable and was even more pronounced (8.7 ± 5.1 µV, P < 0.01). During both concordant and discordant pacing MTWA was present. The precordial leads were better for detecting discordant APD alternans (8.0 ± 2.9 µV and 12.8 ± 4.52 µV, P = 0.02). MTWA is a potent technique to detect subtle and isolated intracardiac APD alternans that is artificially induced by alternating pacing. In the same model, discordant activation alternans can only be discriminated from concordant when using a quantifying approach of MTWA analysis. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei
2017-08-01
Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.
An unusual alkylidyne homologation.
Han, Yong-Shen; Hill, Anthony F; Kong, Richard Y
2018-02-27
The reaction of [W([triple bond, length as m-dash]CH)Br(CO) 2 (dcpe)] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane) with t BuLi and SiCl 4 affords the trichlorosilyl ligated neopentylidyne complex [W([triple bond, length as m-dash]C t Bu)(SiCl 3 )(CO) 2 (dcpe)]. This slowly reacts with H 2 O to afford [W([triple bond, length as m-dash]CCH 2 t Bu)Cl 3 (dcpe)] and ultimately H 2 C[double bond, length as m-dash]CH t Bu via an unprecedented alkylidyne homologation in which coordinated CO is the source of the additional carbon atom with potential relevance to the Fischer-Tropsch process.
Direct observation of ClO from chlorine nitrate photolysis. [as mechanism of polar ozone depletion
NASA Technical Reports Server (NTRS)
Minton, Timothy K.; Nelson, Christine M.; Moore, Teresa A.; Okumura, Mitchio
1992-01-01
Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, ClONO2 yields ClO + NO2 and ClONO2 yields Cl + NO3, with comparable yields. This experiment provides a direct measurement of the ClO product channel and consequently raises the possibility of an analogous channel in ClO dimer photolysis. Photodissociation of the ClO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of ClO would reduce the efficiency of this cycle.
Amulya, K; Jukuri, Srinivas; Venkata Mohan, S
2015-01-01
Polyhydroxyalkanoates (PHA) production was evaluated in a multistage operation using food waste as a renewable feedstock. The first step involved the production of bio-hydrogen (bio-H2) via acidogenic fermentation. Volatile fatty acid (VFA) rich effluent from bio-H2 reactor was subsequently used for PHA production, which was carried out in two stages, Stage II (culture enrichment) and Stage III (PHA production). PHA-storing microorganisms were enriched in a sequencing batch reactor (SBR), operated at two different cycle lengths (CL-24; CL-12). Higher polymer recovery as well as VFA removal was achieved in CL-12 operation both in Stage II (16.3% dry cell weight (DCW); VFA removal, 84%) and Stage III (23.7% DCW; VFA removal, 88%). The PHA obtained was a co-polymer [P(3HB-co-3HV)] of PHB and PHV. The results obtained indicate that this integrated multistage process offers new opportunities to further leverage large scale PHA production with simultaneous waste remediation in the framework of biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of Plants on Chlorine Cycling in Terrestrial Environments
NASA Astrophysics Data System (ADS)
Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David
2016-04-01
Chlorine (Cl), one of the 20 most abundant elements on Earth, is crucial for life as a regulator of cellular ionic strength and an essential co-factor in photosynthesis. Chlorinated organic compounds (Clorg) molecules are surprisingly abundant in soils, in fact many studies during the last decades show that Clorg typically account for more than 60% of the total soil Cl pool in boreal and temperate forest soils and frequently exceed chloride (Cl-) levels. The natural and primarily biotic formation of this Clorg pool has been confirmed experimentally but the detailed content of the Clorg pool and the reasons for its high abundance remains puzzling and there is a lack of Cl budgets for different ecosystems. Recently, the radioisotope 36Cl has caused concerns because of presence in radioactive waste, a long half-life (301 000 years), potential high mobility, and limited knowledge about Cl residence times, speciation and uptake by organisms in terrestrial environments. The chlorination of organic molecules may influence the pool of available Cl- to organisms and thereby the Cl cycling dynamics. This will prolong residence times of total Cl in the soil-vegetation system, which affects exposure times in radioactive 36Cl isotope risk assessments. We tested to what extent the dominating tree species influences the overall terrestrial Cl cycling and the balance between Cl- and Clorg. Total Cl and Clorg were measured in different tree compartments and soil horizons in the Breuil experimental forest, Bourgogne, established in 1976 and located at Breuil-Chenue in Eastern France. The results from this field experiment show how the dominating tree species affected Cl cycling and accumulation over a time period of 30 years. Cl uptake by trees as well as content of both total Cl and Clorg in soil humus was much higher in experimental plots with coniferous forests compared to deciduous forests. The amounts of Clorg found in plant tissue indicate significant Clorg production inside trees in addition to substantial soil production of Clorg. A large and tree species dependent "luxury" Cl uptake, rapidly released through the leaves and returned to the soil as throughfall, was indicated for some tree species. The physiology of dominating tree species, along with tree-related soil microbial communities, thus appears more important for the local Cl levels and cycling than atmospheric Cl deposition.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2014-01-01
Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index (
NASA Astrophysics Data System (ADS)
Pan, Hongfei; Zhao, Xiaona; Fu, Zhanming; Tu, Wenmao; Fang, Pengfei; Zhang, Haining
2018-06-01
High recombination rate of photogenerated electron-hole pairs and relatively narrow photoresponsive range of TiO2-based photocatalysts are the remaining challenges for their practical applications. To address such challenges, photocatalysts consisting of AgCl covered Ag nanoparticles (AgCl@Ag), titanate nanotubes (TiNT), and nitrogen-doped reduced graphite oxide (rGON) are fabricated through alkaline hydrothermal process, followed by deposition and in situ surface-oxidation of silver nanoparticles. In the synthesized photocatalysts, the titanate nanotubes have average length of about 100 nm with inner diameters of about 5 nm and the size of the formed silver nanoparticles is in the range of 50-100 nm. The synthesized photocatalyst degrades almost all the model organic pollutant Rhodamine B in 35 min and remains 90% of photocatalytic efficiency after 5 degradation cycles under visible light irradiation. Since the oxidant FeCl3 applied for oxidation of surface Ag to AgCl is difficult to be completely removed due to the high adsorption capacity of TiNT and rGON, the effect of reside Fe atoms on photocatalytic activity is evaluated and the results reveal that the residue Fe atom only affect the initial photodegradation performance. Nevertheless, the results demonstrate that the formed composite catalyst is a promising candidate for antibiosis and remediation in aquatic environmental contamination.
Hu, Ji-Yun; Zhang, Jing; Wang, Gao-Xiang; Sun, Hao-Ling; Zhang, Jun-Long
2016-03-07
A tricoordinated gold(I) chloride complex, tBuXantphosAuCl, supported by a sterically bulky 9,9-dimethyl-4,5-bis(di-tert-butylphosphino)xanthene ligand (tBuXantphos) was synthesized. This complex features a remarkably longer Au-Cl bond length [2.632(1) Å] than bicoordinated linear gold complexes (2.27-2.30 Å) and tricoordinated XantphosAuCl [2.462(1) Å]. Single-crystal X-ray diffraction analysis of a cocrystal of tBuXantphosAuCl and pentafluoronitrobenzene (PFNB) and UV-vis spectroscopic titration experiments revealed the existence of an anion-π interaction between the Cl anion ligand and PFNB. Stoichiometric reaction between PFNB and tBuXantphosAuOtBu, after replacement of Cl by a more nucleophilic tBuO anion ligand, showed higher reactivity and para selectivity in the transformation of C-F to C-OtBu bond, distinctively different from that when only KOtBu was used (ortho selectivity) under the identical condition. Mechanistic studies including density functional theory calculations suggested a gold-mediated nucleophilic ligand attack of the C-F bond pathway via an SNAr process. On the basis of these results, using trimethylsilyl derivatives TMS-X (X = OMe, SEt, NEt2) as the nucleophilic ligand source and the fluorine acceptor, catalytic transformation of the C-F bond of aromatic substrates to the C-X (X = O, S, N) bond was achieved with tBuXantphosAuCl as the catalyst (up to 20 turnover numbers).
NASA Astrophysics Data System (ADS)
Finucci, B.; Dunn, M. R.; Jones, E. G.; Anderson, J.
2017-02-01
The family Rhinochimaeridae, the long-nose chimaerids, consists of eight species across three genera, two of which occur in New Zealand waters. Very little is known about the biology of the rhinochimaerids. Longnose spookfish, (Harriotta raleighana, Goode and Bean, 1895), and Pacific spookfish, (Rhinochimaera pacifica,Mitsukuri, 1895), were collected from research trawl surveys and by commercial fishing vessels around New Zealand at depths between 400 and 1300 m. A total of 300 H. raleighana were caught which varied in length from 18.7 to 90.4 cm chimaera length (CL), and 168 R. pacifica at lengths of 20.9-139.9 cm CL. External assessment of male claspers and female gonad mass and oviducal gland width were the best indicators for maturity. Both species matured at a large proportion of their maximum length. Length at maturity was estimated at 62.8 cm CL and 75.8 cm CL for male and female H. raleighana respectively, and 105.3 cm CL and 125.0 cm CL for male and female R. pacifica. Fecundity was low and measured up to 27 eggs for H. raleighana, and 31 eggs for R. pacifica. Sperm storage was confirmed in females of both species. Sexual dimorphism in snout length was found in H. raleighana, where male relative snout size increased at sexual maturity, suggesting the snout is a secondary sexual characteristic. This study contributes to a better understanding of the life histories of H. raleighana and R. pacifica and their vulnerability to exploitation as fisheries bycatch.
Hurtgen, J P; Ganjam, V K
1979-01-01
Endometrial biopsy or endometrial biopsy and uterine culture taken on Day 4 after oestrus induced lysis of the corpus luteum (CL), resulting in a sharp decline in serum progesterone concentration and shortened the interoestrous interval in 8/12 and 32/33 oestrous cycles, respectively, during 2 experiments. Cervical dilatation 4 days after oestrus shortened the interoestrus interval in 5/10 and 0/5 oestrous cycles. Endometrial biopsy and culture on Days 1 and 3 after oestrus also induced CL lysis during 4 of 7 cycles. Total oestrogen (oestrone plus oestradiol) concentrations increased at the onset of the subsequent oestrus in mares biopsied on Day 4 of dioestrus or in control cycle oestrous periods. Endometrial biopsy also induced lysis of the CL in mares with persistent luteal function. It is postulated that intracervical or intrauterine manipulations during the luteal phase of the oestrous cycle may directly, or indirectly, stimulate the release of an endogenous luteolysin (prostaglandin) resulting in CL regression, followed by oestrus and ovulation in the mare.
Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin
2016-01-01
It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945
Measurements of the ClO radical vibrational band intensity and the ClO + ClO + M reaction product
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Orlando, John J.; Hammer, Philip D.; Howard, Carleton J.; Goldman, Aaron
1988-01-01
There is considerable interest in the kinetics and concentrations of free radicals in the stratosphere. Chlorine monoxide is a critically important radical because of its role in catalytic cycles for ozone depletion. Depletion occurs under a wide variety of conditions including the Antarctic spring when unusual mechanisms such as the BrO sub x/ClO sub x, ClO dimer (Cl sub 2 O sub 2), and ClO sub x/HO sub x cycles are suggested to operate. Infrared spectroscopy is one of the methods used to measure ClO in the stratosphere (Menzies 1979 and 1983; Mumma et al., 1983). To aid the quantification of such infrared measurements, researchers measured the ClO ground state fundamental band intensity.
NASA Astrophysics Data System (ADS)
He, Meizhi; Yang, Luwei; Zhang, Zhentao
2018-01-01
By means of mass ratio method, binary eutectic hydrated salts inorganic phase change thermal energy storage system CaCl2·6H2O-20wt% MgCl2·6H2O was prepared, and through adding nucleating agent 1wt% SrCl2·6H2O and thickening agent 0.5wt% carboxy methyl cellulose (CMC), inoganic phase change material (PCM) modified was obtained. With recording cooling-melting curves simultaneously, this PCM was frozen and melted for 100 cycles under programmable temperature control. After per 10 cycles, the PCM was charaterized by differential scanning calorimeter (DSC), X-ray diffraction (XRD) and density meter, then analysing variation characteristics of phase change temperature, supercooling degree, superheat degree, latent heat, crystal structure and density with the increase of cycle index. The results showed that the average values of average phase change temperature for cooling and heating process were 25.70°C and 27.39°C respectively with small changes. The average values of average supercooling and superheat degree were 0.59°C and 0.49°C respectively, and the maximum value was 1.10°C. The average value and standard deviation of latent heat of fusion were 120.62 J/g and 1.90 J/g respectively. Non-molten white solid sediments resulted from phase separation were tachyhydrite (CaMg2Cl6·12H2O), which was characterized by XRD. Measuring density of the PCM after per 10 cycles, and the results suggested that the total mass of tachyhydrite was limited. In summary, such modified inoganic PCM CaCl2·6H2O-20wt% MgCl2·6H2O-1wt% SrCl2·6H2O-0.5wt% CMC could stay excellent circulation stability within 100 cycles, and providing reference value in practical use.
Whisker Formation on SAC305 Soldered Assemblies
NASA Astrophysics Data System (ADS)
Meschter, S.; Snugovsky, P.; Bagheri, Z.; Kosiba, E.; Romansky, M.; Kennedy, J.; Snugovsky, L.; Perovic, D.
2014-11-01
This article describes the results of a whisker formation study on SAC305 assemblies, evaluating the effects of lead-frame materials and cleanliness in different environments: low-stress simulated power cycling (50-85°C thermal cycling), thermal shock (-55°C to 85°C), and high temperature/high humidity (85°C/85% RH). Cleaned and contaminated small outline transistors, large leaded quad flat packs (QFP), plastic leaded chip carrier packages, and solder balls with and without rare earth elements (REE) were soldered to custom designed test boards with Sn3Ag0.5Cu (SAC305) solder. After assembly, all the boards were cleaned, and half of them were recontaminated (1.56 µg/cm2 Cl-). Whisker length, diameter, and density were measured. Detailed metallurgical analysis on components before assembly and on solder joints before and after testing was performed. It was found that whiskers grow from solder joint fillets, where the thickness is less than 25 µm, unless REE was present. The influence of lead-frame and solder ball material, microstructure, cleanliness, and environment on whisker characteristics is discussed. This article provides detailed metallurgical observations and select whisker length data obtained during this multiyear testing program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakajima, Ken-ichi; Marunaka, Yoshinori; Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto 602-8566
Chloride ion (Cl{sup −}) is one of the most abundant anions in our body. Increasing evidence suggests that Cl{sup −} plays fundamental roles in various cellular functions. We have previously reported that electroneutral cation-chloride cotransporters, such as Na{sup +}-K{sup +}-2Cl{sup −} cotransporter 1 (NKCC1) and K{sup +}-Cl{sup −} cotransporter 1 (KCC1), are involved in neurite outgrowth during neuronal differentiation. In the present study, we studied if there is correlation between intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) and the length of growing neurites. We measured [Cl{sup −}]{sub i} in the cell body and growing neurite tips using halide-sensitive fluorescent dyemore » N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), revealing that [Cl{sup −}]{sub i} in the tip of growing neurite was higher than that in cell body in a single cell. Importantly, there was a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. Bumtanide (BMT), an inhibitor of NKCC1, significantly inhibited neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. The results obtained in the present study and our previous studies together strongly suggest that high [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth. - Highlights: • Intracellular Cl{sup −} concentrations ([Cl{sup −}]{sub i}) in the tip of growing neurite is higher than that in cell body in a single cell. • There is a significant positive correlation between the length of growing neurite and [Cl{sup −}]{sub i} in neurite tip. • Bumetanide significantly inhibits neurite outgrowth and decreased [Cl{sup −}]{sub i} in neurite tip. • High [Cl{sup −}]{sub i} in neurite tip region is crucial for efficient neurite outgrowth.« less
Moderate temperature rechargeable sodium batteries
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Rupich, M. W.; Pitts, L.; Elliott, J. E.
1983-01-01
Cells utilizing the organic electrolyte, NaI in triglyme, operated at approx. 130 C with Na(+) - intercalating cathodes. However, their rate and stability were inadequate. NaAlCl4 was found to be a highly useful electrolyte for cell operation at 165-190 C. Na(+) intercalating chalcogenides reacted with NaAlCl4 during cycling to form stable phases. Thus, VS2 became essentially VS2Cl, with reversible capacity of approx 2.8 e(-)/V, and a mid-discharge voltage of approx 2.5V and 100 deep discharge cycles were readily achieved. A positive electrode consisting of VCl3 and S plus NaAlCl4 was subjected to deep-discharge cycles 300 times and it demonstrated identity with the in-situ-formed BSxCly cathode. NiS2 and NiS which are not Na(+)-intercalating structures formed highly reversible electrodes in NaAlCl4. The indicated discharge mechanism implies a theoretical capacity 4e(-)/Ni for NiS2 and 2e(-)/Ni for NiS. The mid-discharge potentials are, respectively, 2.4V and 2.1V. A Na/NiS2 cell cycling at a C/5 rate has exceeded 500 deep discharge cycles with 2.5e(-)/Ni average utilization. A 4 A-hr nominal capacity prototype Na/NiS2 cell was tested at 190 C. It was voluntarily terminated after 80 cycles. Further development, particularly of cathode structure and hardware should produce a battery capable of at least 50-W-hr/lb and more than 1000 cycles.
Guo, Hongrui; Cui, Hengmin; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Zhao, Ling; Chen, Kejie; Deng, Jie
2016-01-01
Up to now, the precise mechanism of Ni toxicology is still indistinct. Our aim was to test the apoptosis, cell cycle arrest and inflammatory response mechanism induced by NiCl2 in the liver of broiler chickens. NiCl2 significantly increased hepatic apoptosis. NiCl2 activated mitochondria-mediated apoptotic pathway by decreasing Bcl-2, Bcl-xL, Mcl-1, and increasing Bax, Bak, caspase-3, caspase-9 and PARP mRNA expression. In the Fas-mediated apoptotic pathway, mRNA expression levels of Fas, FasL, caspase-8 were increased. Also, NiCl2 induced ER stress apoptotic pathway by increasing GRP78 and GRP94 mRNA expressions. The ER stress was activated through PERK, IRE1 and ATF6 pathways, which were characterized by increasing eIF2α, ATF4, IRE1, XBP1 and ATF6 mRNA expressions. And, NiCl2 arrested G2/M phase cell cycle by increasing p53, p21 and decreasing cdc2, cyclin B mRNA expressions. Simultaneously, NiCl2 increased TNF-α, IL-1β, IL-6, IL-8 mRNA expressions through NF-κB activation. In conclusion, NiCl2 induces apoptosis through mitochondria, Fas and ER stress-mediated apoptotic pathways and causes cell cycle G2/M phase arrest via p53-dependent pathway and generates inflammatory response by activating NF-κB pathway. PMID:27824316
Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; ...
2016-02-11
Here we demonstrate for the first time that planar Na-NiCl 2 batteries can be operated at an intermediate temperature of 190°C with ultra-high energy density. A specific energy density of 350 Wh/kg, which is 3 times higher than that of conventional tubular Na-NiCl 2 batteries operated at 280°C, was obtained for planar Na-NiCl 2 batteries operated at 190°C over a long-term cell test (1000 cycles). The high energy density and superior cycle stability are attributed to the slower particle growth of the cathode materials (NaCl and Ni) at 190°C. The results reported in this work demonstrate that planar Na-NiCl 2more » batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.« less
Alvarez, P; Spicer, L J; Chase, C C; Payton, M E; Hamilton, T D; Stewart, R E; Hammond, A C; Olson, T A; Wettemann, R P
2000-05-01
To determine breed differences in ovarian function and endocrine secretion, daily rectal ultrasonography was conducted on multiparous lactating Angus (temperate Bos taurus; n = 12), Brahman (tropical Bos indicus; n = 12), and Senepol (tropical Bos taurus; n = 12) cows during an estrous cycle in summer. Blood was collected daily to quantify plasma concentrations of FSH, LH, progesterone, estradiol, GH, insulin-like growth factor (IGF)-I, IGF-II, IGF binding proteins (IGFBP), insulin, glucose, and plasma urea nitrogen (PUN). Numbers of small (2 to 5 mm), medium (6 to 8 mm), and large follicles (> or = 9 mm) were greater (P < .05) in Brahman than in Angus and(or) Senepol cows. Length of the estrous cycle (SEM = .6 d) was similar (P > .10) among Senepol (20.4 d), Angus (19.5 d), and Brahman (19.7 d) cows. Senepol cows had greater (P < .05) diameters of the corpus luteum (CL) and a delayed regression of the CL as compared with Angus cows. The secondary surge of FSH (between d 1 and 2; d 0 = estrus) was greater in Angus than Brahman or Senepol cows (breed x day, P < .05). Between d 2 and 14 of the estrous cycle, concentrations of progesterone, LH, IGF-II, and binding activities of IGFBP-3, IGFBP-2, and the 27- to 29-kDa IGFBP in plasma did not differ (P > .10) among breeds. Concentrations of GH, IGF-I, insulin, and PUN were greater (P < .001) and binding activities of the 22-kDa and 20-kDa IGFBP tended (P < .10) to be greater in plasma of Brahman than in Angus or Senepol cows. Plasma glucose concentrations were greater (P < .05) in Senepol than in Brahman or Angus cows. In conclusion, Brahman (Bos indicus) and Senepol cows (tropical Bos taurus) had greater numbers of follicles in all size categories and greater diameter of CL than Angus (temperate Bos taurus) cows. These ovarian differences may be due to changes in the pattern of secretion of FSH, insulin, IGF-I, and GH but not LH, IGF-II, or IGFBP-2 or -3.
Biological Chlorine Cycling in Arctic Peat Soils
NASA Astrophysics Data System (ADS)
Zlamal, J. E.; Raab, T. K.; Lipson, D.
2014-12-01
Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups. Incubations were conducted in the laboratory providing arctic soils with Clorg, and measurements taken to assess rates of organohalide respiration show an increase in chloride production due to microbial activity. Investigating these soils with diverse techniques affirms the importance of Cl-cycling in a pristine arctic tundra ecosystem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, T.L.; Zoller, W.H.; Crowe, B.M.
1990-08-10
Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four {sup 7}LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably duemore » to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/BR and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.« less
NASA Astrophysics Data System (ADS)
Miller, Theresa L.; Zoller, William H.; Crowe, Bruce M.; Finnegan, David L.
1990-08-01
Particle and gas samples were obtained before and after eruptive episode 35 in July and August 1985 at the fuming Pu'u O'o vent, Kilauea volcano, Hawaii. The sampling system employed consisted of a particle filter followed by four 7LiOH treated filters to collect acidic gases. The filters were analyzed using instrumental neutron activation analysis (INAA). The results indicate that Br/Cl and Re/Cl ratios do not fluctuate through an eruption cycle but the F/Cl, F/Br and metal/Cl ratios (In and Cd) do change through the cycle. An inverse relationship between F/Cl and metal/Cl was observed. The changes are probably due to influxes of relatively undegassed magma during the repose period releasing fume with lower F/Cl, F/Br and higher metal/Cl ratios. As the magma in the Pu'u O'o conduit gradually degasses either before or several days after an eruptive episode, F/Cl and F/Br ratios increase and the metal/Cl ratios decrease. One sample collected on July 24, two days before eruptive episode 35, did not follow this general trend. This can be explained by a gas pulse from a deeper, less degassed portion of magma making its way to the top of the conduit.
Ricardo, Rafael A; Bassani, Rosana A; Bassani, José W M
2008-01-01
Hypertonic NaCl solutions have been used for small-volume resuscitation from hypovolemic shock. We sought to identify osmolality- and Na(+)-dependent components of the effects of the hyperosmotic NaCl solution (85 mOsm/kg increment) on contraction and cytosolic Ca(2+) concentration ([Ca(2+)](i)) in isolated rat ventricular myocytes. The biphasic change in contraction and Ca(2+) transient amplitude (decrease followed by recovery) was accompanied by qualitatively similar changes in sarcoplasmic reticulum (SR) Ca(2+) content and fractional release and was mimicked by isosmotic, equimolar increase in extracellular [Na(+)] ([Na(+)](o)). Raising osmolality with sucrose, however, augmented systolic [Ca(2+)](i) monotonically without change in SR parameters and markedly decreased contraction amplitude and diastolic cell length. Functional SR inhibition with thapsigargin abolished hyperosmolality effects on [Ca(2+)](i). After 15-min perfusion, both hyperosmotic solutions slowed mechanical relaxation during twitches and [Ca(2+)](i) decline during caffeine-evoked transients, raised diastolic and systolic [Ca(2+)](i), and depressed systolic contractile activity. These effects were greater with sucrose solution, and were not observed after isosmotic [Na(+)](o) increase. We conclude that under the present experimental conditions, transmembrane Na(+) redistribution apparently plays an important role in determining changes in SR Ca(2+) mobilization, which markedly affect contractile response to hyperosmotic NaCl solutions and attenuate the osmotically induced depression of contractile activity.
Electron scattering in graphene with adsorbed NaCl nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drabińska, Aneta, E-mail: Aneta.Drabinska@fuw.edu.pl; Kaźmierczak, Piotr; Bożek, Rafał
2015-01-07
In this work, the results of contactless magnetoconductance and Raman spectroscopy measurements performed for a graphene sample after its immersion in NaCl solution were presented. The properties of the immersed sample were compared with those of a non-immersed reference sample. Atomic force microscopy and electron spin resonance experiments confirmed the deposition of NaCl nanoparticles on the graphene surface. A weak localization signal observed using contactless magnetoconductance showed the reduction of the coherence length after NaCl treatment of graphene. Temperature dependence of the coherence length indicated a change from ballistic to diffusive regime in electron transport after NaCl treatment. The mainmore » inelastic scattering process was of the electron-electron type but the major reason for the reduction of the coherence length at low temperatures was additional, temperature independent, inelastic scattering. We associate it with spin flip scattering, caused by NaCl nanoparticles present on the graphene surface. Raman spectroscopy showed an increase in the D and D′ bands intensities for graphene after its immersion in NaCl solution. An analysis of the D, D′, and G bands intensities proved that this additional scattering is related to the decoration of vacancies and grain boundaries with NaCl nanoparticles, as well as generation of new on-site defects as a result of the decoration of the graphene surface with NaCl nanoparticles. The observed energy shifts of 2D and G bands indicated that NaCl deposition on the graphene surface did not change carrier concentration, but reduced compressive biaxial strain in the graphene layer.« less
Du, Yu; Tu, Yong-Sheng; Tang, Yong-Bo; Huang, Yun-Ying; Zhou, Fang-Min; Tian, Tian; Li, Xiao-Yan
2018-06-01
ClC-3 is involved in the proliferation and migration of several cancer cells. However, ClC-3 expression and its role of cell-cycle control in multiple myeloma (MM) has not yet been investigated. MM cells were treated with different concentrations of IGF (30, 100, 300 ng/mL), and their proliferation was examined by CCK-8. The effects of ClC-3 on cell cycle progression was detected by flow cytometry. Western blot was used to analyze the relative levels of ClC3, CD138, P21, P27, CDK, p-Erk1/2, and t-Erk1/2 protein expression. Transfection of RPMI8226 with gpClC-3 cDNA and siRNA alters the expression of ClC-3. We compared the expression of ClC-3 in primary myeloma cells and in MM cell lines (U266 and RPMI8266) with that in normal plasma cells (PCs) from normal subjects and found that myeloma cells from patients and MM cell lines had significantly higher expression of ClC-3. Additionally, silencing of ClC-3 with the small interfering RNA (siRNA) that targets human ClC-3 decreased proliferation of RPMI8226 after IGF-1 treatment and slowed cell cycle progression from G0/G1 to S phase, which was associated with diminished phosphorylation of ERK1/2, down-expression of cyclin E, cyclin D1 and up-regulation of p27 and p21. By contrast, overexpression of ClC-3 potentiated cell proliferation induced by IGF-1, raised the percentage of S phase cells, enhanced phosphorylation of ERK1/2, downregulated p27 and p21 and upregulated cyclin E and cyclin D1. ClC-3 accelerated G0/G1 to S phase transition in the cell cycle by modulating ERK1/2 kinase activity and expression of G1/S transition related proteins, making ClC-3 an attractive therapeutic target in MM.
Boutzios, Georgios; Karalaki, Maria; Zapanti, Evangelia
2013-04-01
Luteal phase deficiency (LPD) is a consequence of the corpus luteum (CL) inability to produce and preserve adequate levels of progesterone. This is clinically manifested by short menstrual cycles and infertility. Abnormal follicular development, defects in neo-angiogenesis or inadequate steroidogenesis in the lutein cells of the CL have been implicated in CL dysfunction and LPD. LPD and polycystic ovary syndrome (PCOS) are independent disorders sharing common pathophysiological profiles. Factors such as hyperinsulinemia, AMH excess, and defects in angiogenesis of CL are at the origin of both LPD and PCOS. In PCOS ovulatory cycles, infertility could result from dysfunctional CL. The aim of this review was to investigate common mechanisms of infertility in CL dysfunction and PCOS.
Hamzah, N; Sarbon, N M; Amin, A M
2015-08-01
This study aimed to determine the effects of 2-5 wash cycles and the addition of tetrasodium pyrophosphate (TSPP) (0 %, 0.05 Surimi% and 0.1 % w/w)-with or without the addition of 0.4 % calcium chloride (CaCl2)-on the physical properties such as texture, colour, expressible moisture and microstructure of Cobia (Rachycentron canadum) surimi gel. The highest breaking force (484.85 g) was obtained with the addition 0.1 % TSPP alone on the fifth wash. However, a combination of 0.1 and 0.4 % CaCl2 in surimi gels at wash cycle 5 resulted in the highest degree of whiteness (86.8 %), as well as total expressible moisture (2.785 %) and deformation (17.11 mm). The highest surimi gel strength (6,923 g.mm) was obtained after three wash cycles with the addition of 0.1 % TSPP +0.4 % CaCl2. The physical properties of Cobia fish surimi gels were affected by the number of wash cycles and treatments with TSPP and CaCl2.
SAKUMOTO, Ryosuke; HAYASHI, Ken-Go; HOSOE, Misa; IGA, Kosuke; KIZAKI, Keiichiro; OKUDA, Kiyoshi
2014-01-01
To determine functional differences between the corpus luteum (CL) of the estrous cycle and pregnancy in cows, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. In the pregnant CL at days 20–25, 40–45 and 150–160, the expressions of 138, 265 and 455 genes differed by a factor of > 2-fold (P < 0.05) from their expressions in the cyclic CL (days 10–12 of the estrous cycle). Messenger RNA expressions of chemokines (eotaxin, lymphotactin and ENA-78) and their receptors (CCR3, XCR1 and CXCR2) were validated by quantitative real-time PCR. Transcripts of eotaxin were more abundant in the CL at days 40–45 and 150–160 of pregnancy than in the cyclic CL (P < 0.01). In contrast, the mRNA expressions of lymphotactin, ENA-78 and XCR1 were lower in the CL of pregnancy (P < 0.05). Messenger RNAs of CCR3 and CXCR2 were similarly detected both in the cyclic and pregnant CL. Tissue protein levels of eotaxin were significantly higher in the CL at days 150–160 of pregnancy than in the CL at other stages, whereas the lymphotactin protein levels in the CL at days 20–25 of pregnancy were lower (P < 0.05). Immunohistochemical staining showed that CCR3 was expressed in the luteal cells and that XCR1 was expressed in both the luteal cells and endothelial cells. Collectively, the different gene expression profiles may contribute to functional differences between the cyclic and pregnant CL, and chemokines including eotaxin and lymphotactin may regulate CL function during pregnancy in cows. PMID:25382605
Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann
2012-08-01
Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.
Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease
Chaves, Luis Fernando; Pascual, Mercedes
2006-01-01
Background Cutaneous leishmaniasis (CL) is one of the main emergent diseases in the Americas. As in other vector-transmitted diseases, its transmission is sensitive to the physical environment, but no study has addressed the nonstationary nature of such relationships or the interannual patterns of cycling of the disease. Methods and Findings We studied monthly data, spanning from 1991 to 2001, of CL incidence in Costa Rica using several approaches for nonstationary time series analysis in order to ensure robustness in the description of CL's cycles. Interannual cycles of the disease and the association of these cycles to climate variables were described using frequency and time-frequency techniques for time series analysis. We fitted linear models to the data using climatic predictors, and tested forecasting accuracy for several intervals of time. Forecasts were evaluated using “out of fit” data (i.e., data not used to fit the models). We showed that CL has cycles of approximately 3 y that are coherent with those of temperature and El Niño Southern Oscillation indices (Sea Surface Temperature 4 and Multivariate ENSO Index). Conclusions Linear models using temperature and MEI can predict satisfactorily CL incidence dynamics up to 12 mo ahead, with an accuracy that varies from 72% to 77% depending on prediction time. They clearly outperform simpler models with no climate predictors, a finding that further supports a dynamical link between the disease and climate. PMID:16903778
Lin, Ning; Han, Ying; Wang, Liangbiao; Zhou, Jianbin; Zhou, Jie; Zhu, Yongchun; Qian, Yitai
2015-03-16
Crystalline Si nanoparticles are prepared by reduction of SiCl4 with metallic magnesium in the molten salt of AlCl3 at 200 °C in an autoclave. AlCl3 not only acts as molten salt, but also participates in the reaction. The related experiments confirm that metallic Mg reduces AlCl3 to create nascent Al which could immediately reduce SiCl4 to Si, and the by-product MgCl2 would combine with AlCl3 forming complex of MgAl2Cl8. As anode for rechargeable lithium ion batteries, the as-prepared Si delivers the reversible capacity of 3083 mAh g(-1) at 1.2 A g(-1) after 50 cycles, and 1180 mAh g(-1) at 3 A g(-1) over 500 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of e-learning on quality of cervical-length measurements.
van Os, M A; van der Ven, A J; Bloemendaal, P M; Pajkrt, E; de Groot, C J M; Mol, B W J; Haak, M C
2015-09-01
To assess the effect of implementation of a newly developed e-learning module on the quality of cervical-length measurements. With the introduction of cervical-length (CL) measurement in a research setting, a CL measurement e-learning module (CLEM) was developed with the purpose to enhance the knowledge and skills of experienced ultrasonographers. CLEM was designed specifically for ultrasonographers who perform ultrasound in a general obstetrical practice but who do not regularly perform CL measurements. CLEM consists of five theoretical questions and three caliper-placement tests to learn the CL measurement technique. The quality of the CL measurements of CLEM participants was compared with images of non-participants using a CL measurement image score (CIS), defined as the sum of six items which assess the quality of the image. Each CLEM participant submitted five CL images and the images of non-CLEM participants were selected randomly from an ultrasound database. The CIS of the CLEM participants (n = 61) were significantly higher than those of non-CLEM participants (n = 23) (164.9 vs 155.6, respectively; P = 0.03). Visualization of the internal os and positioning of the calipers on the internal and external ora were found to have significantly higher CIS among the CLEM participants than among the non-CLEM participants (P = 0.001 and P < 0.001, respectively). Introducing CLEM may improve the quality of CL measurements obtained by trained and untrained sonographers. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Hintz, William D; Relyea, Rick A
2017-04-01
The use of road deicing salts in regions that experience cold winters is increasing the salinity of freshwater ecosystems, which threatens freshwater resources. Yet, the impacts of environmentally relevant road salt concentrations on freshwater organisms are not well understood, particularly in stream ecosystems where salinization is most severe. We tested the impacts of deicing salts-sodium chloride (NaCl), magnesium chloride (MgCl 2 ), and calcium chloride (CaCl 2 )-on the growth and development of newly hatched rainbow trout (Oncorhynchus mykiss). We exposed rainbow trout to a wide range of environmentally relevant chloride concentrations (25, 230, 860, 1500, and 3000 mg Cl - L -1 ) over an ecologically relevant time period (25 d). We found that the deicing salts studied had distinct effects. MgCl 2 did not affect rainbow trout growth at any concentration. NaCl had no effects at the lowest three concentrations, but rainbow trout length was reduced by 9% and mass by 27% at 3000 mg Cl - L -1 . CaCl 2 affected rainbow trout growth at 860 mg Cl - L -1 (5% reduced length; 16% reduced mass) and these effects became larger at higher concentrations (11% reduced length; 31% reduced mass). None of the deicing salts affected rainbow trout development. At sub-lethal and environmentally relevant concentrations, our results do not support the paradigm that MgCl 2 is the most toxic deicing salt to fish, perhaps due to hydration effects on the Mg 2+ cation. Our results do suggest different pathways for lethal and sub-lethal effects of road salts. Scaled to the population level, the reduced growth caused by NaCl and CaCl 2 at critical early-life stages has the potential to negatively affect salmonid recruitment and population dynamics. Our findings have implications for environmental policy and management strategies that aim to reduce the impacts of salinization on freshwater organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding the kinetics of the ClO dimer cycle
NASA Astrophysics Data System (ADS)
von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.
2006-08-01
Among the major factors controlling ozone loss in the polar winter is the kinetics of the ClO dimer catalytic cycle. The most important issues are the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate. All these issues have been addressed in a large number of laboratory, field and theoretical studies, but large discrepancies between individual results exist and a self-consistent set of parameters compatible with field observations of ClO and Cl2O2 has not been identified. Here, we use thermodynamic calculations and unimolecular rate theory to constrain the ClO/Cl2O2 equilibrium constant and the rate constants for Cl2O2 formation and dissociation. This information is used together with available atmospheric data to examine Cl2O2 photolysis rates based on different Cl2O2 absorption cross sections. Good overall consistency is achieved using a ClO/Cl2O2 equilibrium constant recently suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on averaged absorption cross sections that are roughly intermediate between the JPL 2002 assessment and a laboratory study by Burkholder et al. (1990).
Cell degradation of a Na–NiCl 2 (ZEBRA) battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.
2013-09-23
In this work, the parameters influencing the degradation of a Na-NiCl 2 (ZEBRA) battery were investigated. Planar Na-NiCl 2 cells using β”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl 2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influencemore » the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.« less
Umapathi, Reddicherla; Venkatesu, Pannuru
2017-01-01
Different biophysical techniques such as fluorescence spectroscopy, dynamic light scattering (DLS), viscosity (η) and Fourier transform infrared (FTIR) spectroscopy have been carried out to characterize the effect of imidazolium-based ionic liquids (ILs) on the thermo-responsive triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG). In addition, to demonstrate the distinct morphological changes of various self-assembled morphologies, we further employed field emission scanning electron microscope (FESEM). To investigate the effect of alkyl chain length of the cation, concentration of the ILs and the related Hofmeister series on the phase behaviour of PEG-PPG-PEG, we used a series of ILs possessing same Cl - anion and a set of cation [C n mim] + with increasing alkyl chain length of cation such as 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]), 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]), 1-hexyl-3-methylimidazolium chloride ([Hmim][Cl]) and 1-decyl-3-methylimidazolium chloride ([Dmim][Cl]). The critical micellization temperature (CMT) of the copolymer in the presence of well hydrated cations is directly correlated to their hydration. The overall specific ranking of ILs in decreasing the CMT of PEG-PPG-PEG in aqueous solution was [Emim][Cl]>[Bmim][Cl]>[Hmim][Cl]>[Dmim][Cl]. The trend of these ILs followed the well-known Hofmeister series of cations of ILs. The present study provides important information about the solution properties that can be helpful to tune the IL or temperature-sensitive copolymer CMT and micelle shapes which are crucial for understanding the drug delivery mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of nickel chloride on cell proliferation.
D'Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico
2012-01-01
Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl(2)) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl(2) on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey's test. NiCl(2) induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl(2) caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl(2) concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl(2) caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl(2) exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.
Effect of Nickel Chloride on Cell Proliferation
D’Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico
2012-01-01
Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death. PMID:23198004
A Magnesium-Activated Carbon Hybrid Capacitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, HD; Shterenberg, I; Gofer, Y
2013-12-11
Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionicmore » complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.« less
Quantifying precision of in situ length and weight measurements of fish
Gutreuter, S.; Krzoska, D.J.
1994-01-01
We estimated and compared errors in field-made (in situ) measurements of lengths and weights of fish. We made three measurements of length and weight on each of 33 common carp Cyprinus carpio, and on each of a total of 34 bluegills Lepomis macrochirus and black crappies Pomoxis nigromaculatus. Maximum total lengths of all fish were measured to the nearest 1 mm on a conventional measuring board. The bluegills and black crappies (85–282 mm maximum total length) were weighed to the nearest 1 g on a 1,000-g spring-loaded scale. The common carp (415–600 mm maximum total length) were weighed to the nearest 0.05 kg on a 20-kg spring-loaded scale. We present a statistical model for comparison of coefficients of variation of length (Cl ) and weight (Cw ). Expected Cl was near zero and constant across mean length, indicating that length can be measured with good precision in the field. Expected Cw decreased with increasing mean length, and was larger than expected Cl by 5.8 to over 100 times for the bluegills and black crappies, and by 3 to over 20 times for the common carp. Unrecognized in situ weighing errors bias the apparent content of unique information in weight, which is the information not explained by either length or measurement error. We recommend procedures to circumvent effects of weighing errors, including elimination of unnecessary weighing from routine monitoring programs. In situ weighing must be conducted with greater care than is common if the content of unique and nontrivial information in weight is to be correctly identified.
Jennings, Michael L
2013-11-01
The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.
Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs.
Przygrodzka, E; Kaczmarek, M M; Kaczynski, P; Ziecik, A J
2016-02-01
In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL. © 2016 Society for Reproduction and Fertility.
Peters, N.E.
1991-01-01
The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (> 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.
Ultrashort-Pulse Child-Langmuir Law in the Quantum and Relativistic Regimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ang, L. K.; Zhang, P.
This Letter presents a consistent quantum and relativistic model of short-pulse Child-Langmuir (CL) law, of which the pulse length {tau} is less than the electron transit time in a gap of spacing D and voltage V. The classical value of the short-pulse CL law is enhanced by a large factor due to quantum effects when the pulse length and the size of the beam are, respectively, in femtosecond duration and nanometer scale. At high voltage larger than the electron rest mass, relativistic effects will suppress the enhancement of short-pulse CL law, which is confirmed by particle-in-cell simulation. When the pulsemore » length is much shorter than the gap transit time, the current density is proportional to V, and to the inverse power of D and {tau}.« less
2018-01-01
Electrical restitution (ER) is a major determinant of repolarization stability and, under fast pacing rate, it reveals memory properties of the cardiac action potential (AP), whose dynamics have never been fully elucidated, nor their ionic mechanisms. Previous studies have looked at ER mainly in terms of changes in AP duration (APD) when the preceding diastolic interval (DI) changes and described dynamic conditions where this relationship shows hysteresis which, in turn, has been proposed as a marker of short-term AP memory and repolarization stability. By means of numerical simulations of a non-propagated human ventricular AP, we show here that measuring ER as APD versus the preceding cycle length (CL) provides additional information on repolarization dynamics which is not contained in the companion formulation. We focus particularly on fast pacing rate conditions with a beat-to-beat variable CL, where memory properties emerge from APD vs CL and not from APD vs DI and should thus be stored in APD and not in DI. We provide an ion-currents characterization of such conditions under periodic and random CL variability, and show that the memory stored in APD plays a stabilizing role on AP repolarization under pacing rate perturbations. The gating kinetics of L-type calcium current seems to be the main determinant of this safety mechanism. We also show that, at fast pacing rate and under otherwise identical pacing conditions, a periodically beat-to-beat changing CL is more effective than a random one in stabilizing repolarization. In summary, we propose a novel view of short-term AP memory, differentially stored between systole and diastole, which opens a number of methodological and theoretical implications for the understanding of arrhythmia development. PMID:29494628
Montelius, Malin; Thiry, Yves; Marang, Laura; Ranger, Jacques; Cornelis, Jean-Thomas; Svensson, Teresia; Bastviken, David
2015-04-21
Organochlorine molecules (Clorg) are surprisingly abundant in soils and frequently exceed chloride (Cl(-)) levels. Despite the widespread abundance of Clorg and the common ability of microorganisms to produce Clorg, we lack fundamental knowledge about how overall chlorine cycling is regulated in forested ecosystems. Here we present data from a long-term reforestation experiment where native forest was cleared and replaced with five different tree species. Our results show that the abundance and residence times of Cl(-) and Clorg after 30 years were highly dependent on which tree species were planted on the nearby plots. Average Cl(-) and Clorg content in soil humus were higher, at experimental plots with coniferous trees than in those with deciduous trees. Plots with Norway spruce had the highest net accumulation of Cl(-) and Clorg over the experiment period, and showed a 10 and 4 times higher Cl(-) and Clorg storage (kg ha(-1)) in the biomass, respectively, and 7 and 9 times higher storage of Cl(-) and Clorg in the soil humus layer, compared to plots with oak. The results can explain why local soil chlorine levels are frequently independent of atmospheric deposition, and provide opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.
Kinetic and thermochemical studies of the ClO + ClO + M ↔ Cl2O2 + M reaction
NASA Astrophysics Data System (ADS)
Ferracci, V.; Rowley, D. M.
2009-12-01
Chlorine monoxide (ClO) radicals play a crucial role in polar ozone destruction events and the ClO dimer cycle has been identified as one of the most effective ozone-depleting catalytic cycles operating in the polar winter. A recent paper by von Hobe et al.1 highlighted significant inconsistencies between laboratory results, theoretical calculations and field observations concerning the ClO dimer ozone destruction cycle. This work has investigated the temperature dependence of the equilibrium constant of one of the key reactions in this cycle, ClO + ClO + M ↔ Cl2O2 + M (1, -1), by means of laser flash photolysis coupled with time-resolved UV absorption spectroscopy. ClO radicals were generated via laser flash photolysis of Cl2/Cl2O mixtures in synthetic air. The concentration of radicals was monitored via UV absorption spectroscopy: the use of a Charge Coupled Device (CCD) detector allowed time resolution over a broad range of wavelengths. The equilibrium constant Keq was determined as the ratio of the rate constants of the forward and reverse reaction (1, -1) over the T range 256 - 312 K. Second Law and Third Law analytical methods were employed to determine the standard enthalpy and entropy changes of reaction 1, ΔrH° and ΔrS°, from the measured equilibrium constants. The values obtained from the Second Law analysis (ΔrH° = - 80.8 ± 2.2 kJ mol-1; ΔrS° = - 168.4 ± 7.9 J K-1 mol-1) are in good agreement with previous work 2 but greater in magnitude than current NASA recommendations 3. It was also found that, under typical laboratory conditions employed in this work, [ClO] decay exhibits pure second order kinetics at T ≤ 250 K. A higher rate constant for the ClO recombination reaction (1) was also observed in this work (compared to the NASA evaluation 3), implying a higher Keq and a different partitioning between ClO and Cl2O2, shifting towards the dimer. 1. M. Von Hobe, R. J. Salawitch, T. Canty, H. Keller-Rudek, G. K. Moortgat, J.-U. Grooss, R. Müller, F. Stroh, Atmospheric Chemistry and Physics, 2007, 7, 3055 2. S. L. Nickolaisen, R. R. Friedl, S. P. Sander, Journal of Physical Chemistry, 1994, 98, 155 3. S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, R. E. Huie, V. L. Orkin, G. K. Moortgat, A. R. Ravishankara, C. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, Chemical Kinetics and Photochemical Data for use in Atmospheric Studies, Evaluation No. 14, JPL Publication 02-25, NASA Jet Propulsion Laboratory, Pasadena CA, 2003
NASA Astrophysics Data System (ADS)
Leri, Alessandra C.; Marcus, Matthew A.; Myneni, Satish C. B.
2007-12-01
Natural organochlorine (Cl org) is ubiquitous in soil humus, but the distribution and cycling of different Cl species during the humification of plant material is poorly understood. Our X-ray spectromicroscopic studies indicate that the distributions of Cl org and inorganic Cl -(Cl inorg) in oak leaf material vary dramatically with decay stage, with the most striking changes occurring at the onset of weathering. In healthy or senescent leaves harvested from trees, Cl inorg occurs in sparsely distributed, highly localized "hotspots" associated with trichomes as well as in diffuse concentration throughout the leaf tissue. The Cl inorg associated with trichomes exists either in H-bonded form or in a solid salt matrix, while the Cl inorg in diffuse areas of lower Cl concentration appears exclusively in H-bonded form. Most solid phase Cl inorg leaches from the leaf tissue during early weathering stages, whereas the H-bonded Cl inorg appears to leach away slowly as degradation progresses, persisting through advanced weathering stages. In unweathered leaves, aromatic and aliphatic Cl org were found in rare but concentrated hotspots. In weathered leaves, by contrast, aromatic Cl org hotspots are prevalent, often coinciding with areas of elevated Fe or Mn concentration. Aromatic Cl org is highly soluble in leaves at early weathering stages and insoluble at more advanced stages. These results, combined with optical microscopy, suggest that fungi play a role in the production of aromatic Cl org in weathering leaf material. Aliphatic Cl org occurs in concentrated hotspots in weathered leaves as well as in diffuse areas of low Cl concentration. The distribution and speciation of Cl in weathering oak leaves depicted by this spectromicroscopic study provides new insight into the formation and cycling of Cl org during the decay of natural organic matter.
Nanorod Mobility within Entangled Wormlike Micelle Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh
In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less
Nanorod Mobility within Entangled Wormlike Micelle Solutions
Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...
2016-12-20
In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less
Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter
2016-11-15
The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.
The influence of quarantine on reproductive cycling in wild-caught Baboons (Papio anubis).
Liechty, Emma R; Wang, Diane Y; Chen, Emily; Chai, Daniel; Bell, Jason D; Bergin, Ingrid L
2015-12-01
Stress impacts nonhuman primate menstrual cycle length but the impact of quarantine is unknown. A retrospective analysis was performed on cycle data from 31 wild-caught baboons during and following quarantine. Cycling initiated in 94 days (19-181) and length normalized within 4-6 cycles. Quarantine significantly impacts menstrual cycle length. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Medical Student Experiences on Consultation-Liaison Psychiatry Rotations: A Nationwide Survey.
Meyer, Fremonta; Abbasi, Omair; Kasick, David; Lee, Kewchang; Pelic, Christine; Zinser, Jennifer; Harris, Thomas; Funk, Margo
Consultation-liaison (C-L) psychiatry clerkship rotations may improve medical students' understanding of psychiatric principles relevant to the settings in which they will ultimately practice. This study aimed to characterize students' experiences on C-L rotations. This cross-sectional survey study, sponsored by the Academy of Psychosomatic Medicine Subcommittee on Medical Student Education, was conducted at 5 US medical schools between 2012 and 2016. After the C-L rotation, students completed a voluntary 17-item survey. A total of 235 surveys were collected (mean response rate = 92%). The most frequently endorsed benefit of C-L was learning to manage psychiatric disorders in the context of medical illness (89%). The most frequently endorsed drawback was inconsistent/excessively variable workload (40%). Overall, 82% of respondents recommended C-L to other students; 80% reported that the ideal clerkship would include exposure to both C-L and inpatient psychiatry. Overall, 38% reported that their C-L experience increased their interest in psychiatry as a career. Effect of C-L on interest in psychiatry did not differ by study site, age, sex, clerkship length, or time spent on C-L. Respondents who noted more positive role-modeling on C-L compared to other clerkship rotations were more likely to report increased interest in a psychiatry career (odds ratio = 2.70). Most medical students perceive C-L rotations favorably. Positive role modeling may increase their consideration of psychiatry specialization. The findings that C-L rotation length did not correlate with attitudes and that most students preferred exposure to both inpatient and C-L psychiatry suggest that C-L exposure can beneficially be integrated into core clerkships containing other elements. Copyright © 2018 The Academy of Psychosomatic Medicine. Published by Elsevier Inc. All rights reserved.
Neovascularization of the corpus luteum of rats during the estrus cycle.
Tsukada, K; Matsushima, T; Yamanaka, N
1996-06-01
In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Feierabend, K.
2010-12-01
Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.
Rate dependency of delayed rectifier currents during the guinea-pig ventricular action potential
Rocchetti, Marcella; Besana, Alessandra; Gurrola, Georgina B; Possani, Lourival D; Zaza, Antonio
2001-01-01
The action potential clamp technique was exploited to evaluate the rate dependency of delayed rectifier currents (IKr and IKs) during physiological electrical activity. IKr and IKs were measured in guinea-pig ventricular myocytes at pacing cycle lengths (CL) of 1000 and 250 ms.A shorter CL, with the attendant changes in action potential shape, was associated with earlier activation and increased magnitude of both IKr and IKs. Nonetheless, the relative contributions of IKr and IKs to total transmembrane current were independent of CL.Shortening of diastolic interval only (constant action potential shape) enhanced IKs, but not IKr.IKr was increased by a change in the action potential shape only (constant diastolic interval).In ramp clamp experiments, IKr amplitude was directly proportional to repolarization rate at values within the low physiological range (< 1.0 V s−1); at higher repolarization rates proportionality became shallower and finally reversed.When action potential duration (APD) was modulated by constant current injection (I-clamp), repolarization rates > 1.0 V s−1 were associated with a reduced effect of IKr block on APD. The effect of changes in repolarization rate was independent of CL and occurred in the presence of IKs blockade.In spite of its complexity, the behaviour of IKr was accurately predicted by a numerical model based entirely on known kinetic properties of the current.Both IKr and IKs may be increased at fast heart rates, but this may occur through completely different mechanisms. The mechanisms identified are such as to contribute to abnormal rate dependency of repolarization in prolonged repolarization syndromes. PMID:11483703
Soil, plant, and terrain effects on natural perchlorate distribution in a desert landscape
Andraski, Brian J.; Jackson, W.A.; Welborn, Toby L.; Böhlke, John Karl; Sevanthi, Ritesh; Stonestrom, David A.
2014-01-01
Perchlorate (ClO4−) is a contaminant that occurs naturally throughout the world, but little is known about its distribution and interactions in terrestrial ecosystems. The objectives of this Amargosa Desert, Nevada study were to determine (i) the local-scale distribution of shallow-soil (0–30 cm) ClO4− with respect to shrub proximity (far and near) in three geomorphic settings (shoulder slope, footslope, and valley floor); (ii) the importance of soil, plant, and terrain variables on the hillslope-distribution of shallow-soil and creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville] ClO4−; and (iii) atmospheric (wet plus dry, including dust) deposition of ClO4− in relation to soil and plant reservoirs and cycling. Soil ClO4− ranged from 0.3 to 5.0 μg kg−1. Within settings, valley floor ClO4− was 17× less near shrubs due in part to enhanced leaching, whereas shoulder and footslope values were ∼2× greater near shrubs. Hillslope regression models (soil, R2 = 0.42; leaf, R2 = 0.74) identified topographic and soil effects on ClO4− deposition, transport, and cycling. Selective plant uptake, bioaccumulation, and soil enrichment were evidenced by leaf ClO4− concentrations and Cl−/ClO4− molar ratios that were ∼8000× greater and 40× less, respectively, than soil values. Atmospheric deposition ClO4− flux was 343 mg ha−1 yr−1, ∼10× that for published southwestern wet-deposition fluxes. Creosote bush canopy ClO4− (1310 mg ha−1) was identified as a previously unrecognized but important and active reservoir. Nitrate δ18O analyses of atmospheric deposition and soil supported the leaf-cycled–ClO4− input hypothesis. This study provides basic data on ClO4− distribution and cycling that are pertinent to the assessment of environmental impacts in desert ecosystems and broadly transferable to anthropogenically contaminated systems.
Brown, Kenneth L.; Cheng, Shifa; Zou, Xiang; Zubkowski, Jeffrey D.; Valente, Edward J.; Knapton, Leanne; Marques, Helder M.
1997-08-13
The crystal structures of 10-chloroaquacobalamin perchlorate hydrate (10-Cl-H(2)OCbl.ClO(4)) (Mo Kalpha, 0.710 73 Å, monoclinic system, P2(1), a = 11.922(4) Å, b = 26.592(10) Å, c = 13.511(5) Å, beta = 93.05(3) degrees, 10 535 independent reflections, R(1) = 0.0426), 10-chlorocyanocobalamin-acetone hydrate (10-Cl-CNCbl) (Mo Kalpha, 0.710 73 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.24(3) Å, b = 21.85(5) Å, c = 26.75(8) Å, 7699 independent reflections, R(1) = 0.0698), and 10-chloromethylcobalamin-acetone hydrate (10-Cl-MeCbl) (Mo Kalpha, 0.71073 Å, orthorhombic system, P2(1)2(1)2(1), a = 16.041(14) Å, b = 22.13(2) Å, c = 26.75(4) Å, 6792 independent reflections, R(1) = 0.0554), in which the C10 meso H is substituted by Cl, are reported. An unusual feature of the structures is disorder in the C ring, consistent with a two-site occupancy in which the major conformation has the C46 methyl group in the usual position, "upwardly" axial, and the C47 methyl group equatorial, while in the minor conformation both are pseudoequatorial, above and below the corrin ring. (13)C NMR chemical shifts of C46, C47, C12, and C13 suggest that the C ring disorder may persist in solution as a ring flip. Since molecular dynamics simulations fail to reveal any population of the minor conformation, the effect is likely to be electronic rather than steric. The axial bond lengths in 10-Cl-MeCbl are very similar to those in MeCbl (d(Co)(-)(C) = 1.979(7) vs 1.99(2); to 5,6-dimethylbenzimidazole, d(Co)(-)(NB3) = 2.200(7) vs 2.19(2)), but the bonds to the four equatorial N donors, d(Co)(-)(N(eq)), are on average 0.05 Å shorter. In 10-Cl-CNCbl, d(Co)(-)(C) and d(Co)(-)(NB3) are longer (by 0.10(2) and 0.03(1) Å, respectively) than the bond lengths observed in CNCbl itself, while conversely, the C-N bond length is shorter by 0.06(2) Å, but there is little difference in d(Co)(-)(N(eq)). The Co-O bond length to coordinated water in 10-Cl-H(2)OCbl(+) is very similar to that found in H(2)OCbl(+) itself, but the d(Co)(-)(NB3) bond is longer (1.967 vs1.925(2) Å), while the average d(Co)(-)(N(eq)) is very similar. The coordinated water molecule in 10-Cl-H(2)OCbl(+) is hydrogen bonded to the c side chain carbonyl oxygen, as in H(2)OCbl(+). NMR observations indicate that the H bond between coordinated H(2)O and the c side chain amide persists in solution. The equilibrium constant, K(Co), for coordination of bzm to Co(III) is smaller in 10-Cl-MeCbl and 10-Cl-CNCbl than in their C10-unsubstituted analogs (181 vs 452; 4.57 x 10(3) vs 3.35 x 10(5)), but could not be determined for 10-Cl-H(2)OCbl because hydrolysis of the phosphodiester is competitive with the establishment of the base-off equilibrium. Substitution of H by Cl at C10 causes the bands in the electronic spectrum of 10-Cl-XCbl complexes to move to lower energy, which is consistent with an increase in electron density in the corrin pi-conjugated system. This increased electron density is not due to greater electron donation from the axial ligand as bonds between these and the metal are either longer (not shorter) or unchanged, and it most probably arises from pi-donation to the corrin by Cl at C10. As the donor power of X increases (H(2)O < CN(-) < Me), the corrin ring becomes more flexible to deformation, and the number of bond lengths and bond angles that are significantly different in XCbl and 10-Cl-XCbl increases; importantly, the C10-Cl bond length, d(C10)(-)(Cl), increases as well. Thus, despite the fact that chlorine is an inductively electron withdrawing substituent, its resonance electron donation is the more important effect on electron distribution in the corrin ring. Mulliken charges obtained from semiempirical RHF-SCF MO calculations using the ZINDO/1 model on XCbl and their 10-Cl analogs at the crystal structure geometry are shown to correlate reasonably well with (13)C NMR shifts and may be used to determine the pattern of electron distribution in these complexes. Substitution by Cl at C10 causes an increase in charge density at Co when X = H(2)O and CN(-), while the charge density on the four equatorial N donors remains virtually unchanged, but a decrease when X = Me, while the charge density on the equatorial N donors also decreases. In response, d(Co)(-)(NB3) increases in the first two complexes but the equatorial bond lengths remain virtually unchanged, while d(Co)(-)(NB3) remains unchanged and the average d(Co)(-)(N(eq)) decreases in 10-Cl-MeCbl. Furthermore, the partial charge on chlorine increases as the donor power of X increases. The small decrease in the pK(a) of coordinated H(2)O in 10-Cl-H(2)OCbl(+) compared to H(2)OCbl(+) itself (7.65 vs 8.09) is due to a decreased charge density on oxygen in 10-Cl-OHCbl compared to OHCbl. The picture that emerges, therefore, is of competitive electron donation by X and Cl toward the corrin system. In 10-Cl-CNCbl, the decrease in the C&tbd1;N bond length as Co-C increases compared to CNCbl suggests that dpi-ppi bonding between cobalt and cyanide is important. (13)C and (15)N NMR observations on 10-Cl-(13)C(15)NCbl are consistent with these effects.
Han, Qi; Li, Bolei; Zhou, Xuedong; Ge, Yang; Wang, Suping; Li, Mingyun; Ren, Biao; Wang, Haohao; Zhang, Keke; Xu, Hockin H. K.; Peng, Xian; Feng, Mingye; Weir, Michael D.; Chen, Yu; Cheng, Lei
2017-01-01
The objectives of this study were to investigate the effects of dental adhesives containing quaternary ammonium methacrylates (QAMs) with different alkyl chain lengths (CL) on ecological caries prevention in vitro. Five QAMs were synthesized with a CL = 3, 6, 9, 12, and 16 and incorporated into adhesives. Micro-tensile bond strength and surface charge density were used to measure the physical properties of the adhesives. The proportion change in three-species biofilms consisting of Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was tested using the TaqMan real-time polymerase chain reaction. Lactic acid assay, MTT [3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, exopolysaccharide staining, live/dead staining, scanning electron microscopy (SEM), and transverse microradiography (TMR) were performed to study the anti-biofilm and anti-demineralization effects of the dental adhesives. The results showed that incorporating QAMs with different alkyl chain lengths into the adhesives had no obvious effect on the dentin bond strength. The adhesives containing QAMs with a longer alkyl chain developed healthier biofilms. The surface charge density, anti-biofilm, and anti-demineralization effects of the adhesives increased with a CL of the QAMs from 3 to 12, but decreased slightly with a CL from 12 to 16. In conclusion, adhesives containing QAMs with a tailored chain length are promising for preventing secondary caries in an “ecological way”. PMID:28773004
USDA-ARS?s Scientific Manuscript database
We cloned the full length 4CL ortholog encoding 4-coumarate: coenzymeA ligase from kenaf (Hibiscus cannabiuns) using degenerate primers and RACE (rapid amplification of cDNA ends) systems. The 4CL is a key regulatory enzyme of the phenylpropanoid pathway that regulates the activation of cinnamic ac...
Bartmann, M; Schaeffel, F; Hagel, G; Zrenner, E
1994-01-01
Chickens were raised with either translucent occluders or lenses, both under normal light cycles (12-h light/12-h dark) and in constant light (CL). Under normal light cycles, eyes with occluders became very myopic, and eyes with lenses became either relatively hyperopic (positive lenses) or myopic (negative lenses). After the treatment, retinal dopamine (DA), DOPAC, and serotonin levels were measured by high-pressure liquid chromatography (HPLC-EC). A significant drop in daytime retinal DOPAC (-20%) was observed after 1 week of deprivation, and in both DOPAC (-40%) and DA (-30%) after 2 weeks of deprivation. No changes in retinal serotonin levels were found. Retinal DA or DOPAC content remained unchanged after 2 or 4 days of lens wearing even though the lenses had already exerted their maximal effect on axial eye growth. When the chickens were raised in CL, development of deprivation myopia was reduced (8 days CL) or entirely blocked (13 days CL). Lens-induced changes in eye growth were not different after either 6 or 11 days in CL, compared to animals raised in a normal light cycle. Thirteen days of CL resulted in a dramatic reduction of DA and DOPAC levels, but serotonin levels were also lowered. The results suggest that lens-induced changes in refraction may not be dependent on dopaminergic pathways whereas deprivation myopia requires normal diurnal DA rhythms to develop.
Serial Change in Cervical Length for the Prediction of Emergency Cesarean Section in Placenta Previa
Shin, Jae Eun; Shin, Jong Chul; Lee, Young; Kim, Sa Jin
2016-01-01
Purpose To evaluate whether serial change in cervical length (CL) over time can be a predictor for emergency cesarean section (CS) in patients with placenta previa. Methods This was a retrospective cohort study of patients with placenta previa between January 2010 and November 2014. All women were offered serial measurement of CL by transvaginal ultrasound at 19 to 23 weeks (CL1), 24 to 28 weeks (CL2), 29 to 31 weeks (CL3), and 32 to 34 weeks (CL4). We compared clinical characteristics, serial change in CL, and outcomes between the emergency CS group (case group) and elective CS group (control group). The predictive value of change in CL for emergency CS was evaluated. Results A total of 93 women were evaluated; 31 had emergency CS due to massive vaginal bleeding. CL tended to decrease with advancing gestational age in each group. Until 29–31 weeks, CL showed no significant differences between the two groups, but after that, CL in the emergency CS group decreased abruptly, even though CL in the elective CS group continued to gradually decrease. On multivariate analysis to determine risk factors, only admissions for bleeding (odds ratio, 34.710; 95% CI, 5.239–229.973) and change in CL (odds ratio, 3.522; 95% CI, 1.210–10.253) were significantly associated with emergency CS. Analysis of the receiver operating characteristic curve showed that change in CL could be the predictor of emergency CS (area under the curve 0.734, p < 0.001), with optimal cutoff for predicting emergency cesarean delivery of 6.0 mm. Conclusions Previous admission for vaginal bleeding and change in CL are independent predictors of emergency CS in placenta previa. Women with change in CL more than 6 mm between the second and third trimester are at high risk of emergency CS in placenta previa. Single measurements of short CL at the second or third trimester do not seem to predict emergency CS. PMID:26863133
Shin, Jae Eun; Shin, Jong Chul; Lee, Young; Kim, Sa Jin
2016-01-01
To evaluate whether serial change in cervical length (CL) over time can be a predictor for emergency cesarean section (CS) in patients with placenta previa. This was a retrospective cohort study of patients with placenta previa between January 2010 and November 2014. All women were offered serial measurement of CL by transvaginal ultrasound at 19 to 23 weeks (CL1), 24 to 28 weeks (CL2), 29 to 31 weeks (CL3), and 32 to 34 weeks (CL4). We compared clinical characteristics, serial change in CL, and outcomes between the emergency CS group (case group) and elective CS group (control group). The predictive value of change in CL for emergency CS was evaluated. A total of 93 women were evaluated; 31 had emergency CS due to massive vaginal bleeding. CL tended to decrease with advancing gestational age in each group. Until 29-31 weeks, CL showed no significant differences between the two groups, but after that, CL in the emergency CS group decreased abruptly, even though CL in the elective CS group continued to gradually decrease. On multivariate analysis to determine risk factors, only admissions for bleeding (odds ratio, 34.710; 95% CI, 5.239-229.973) and change in CL (odds ratio, 3.522; 95% CI, 1.210-10.253) were significantly associated with emergency CS. Analysis of the receiver operating characteristic curve showed that change in CL could be the predictor of emergency CS (area under the curve 0.734, p < 0.001), with optimal cutoff for predicting emergency cesarean delivery of 6.0 mm. Previous admission for vaginal bleeding and change in CL are independent predictors of emergency CS in placenta previa. Women with change in CL more than 6 mm between the second and third trimester are at high risk of emergency CS in placenta previa. Single measurements of short CL at the second or third trimester do not seem to predict emergency CS.
Temporal Variation of the Rotation of the Solar Mean Magnetic Field
NASA Astrophysics Data System (ADS)
Xie, J. L.; Shi, X. J.; Xu, J. C.
2017-04-01
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle length for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Thomas A.
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman’s last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. PMID:25027273
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-07-20
Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.
Zhu, Jianbo; Xu, Youlong; Wang, Jie; Lin, Jun; Sun, Xiaofei; Mao, Shengchun
2015-11-21
In this work, polypyrrole/graphene doped by p-toluenesulfonic is prepared as an active material for supercapacitors, and its capacitance performance is investigated in various aqueous electrolytes including HCl, LiCl, NaCl, and KCl with a concentration of 3 M, respectively. A rising trend of capacitance is observed according to the cationic mobility (Li(+) < Na(+) < K(+) < H(+)), which is due to its effect on the ionic conductivity, efficient ion/charge diffusion/exchange and relaxation time. On the other hand, long-term cycling stability is in the following order: KCl < NaCl < LiCl < HCl, corresponding to the decreasing tendency of cation size (K(+) > Na(+) > Li(+) > H(+)). The reason can be attributed to the fact that the insertion/de-insertion of large size cation brings a significant doping level decrease and an over-oxidation increase during the charging-discharging cycles. Hence, we not only obtain good capacitance performance (280.3 F g(-1) at 5 mV s(-1)), superior rate capability (225.8 F g(-1) at 500 mV s(-1)) and high cycling stability (92.0% capacitance retention after 10,000 cycles at 1 A g(-1)) by employing 3 M HCl as an electrolyte, but also reveal that the electrolyte cations have a significant effect on the supercapacitors' electrochemical performance.
Moon, Dohyun; Choi, Jong-Ha
2015-01-01
The structure of the title compound, [CrCl(C12H8N2)2(H2O)][ZnCl4]·H2O, has been determined from synchrotron data. The CrIII ion is bonded to four N atoms from two 1,10-phenanthroline (phen) ligands, one water molecule and a Cl atom in a cis arrangement, displaying an overall distorted octahedral coordination environment. The Cr—N(phen) bond lengths are in the range of 2.0495 (18) to 2.0831 (18) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2734 (7) and 1.9986 (17) Å, respectively. The tetrahedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with coordinating and non-coordinating water molecules. The two types of water molecules also interact through O—H⋯O hydrogen bonds. The observed hydrogen-bonding pattern leads to the formation of a three-dimensional network structure. PMID:25844190
Lum, Kirsten J; Sundaram, Rajeshwari; Louis, Thomas A
2015-01-01
Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman's last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Understanding the kinetics of the ClO dimer cycle
NASA Astrophysics Data System (ADS)
von Hobe, M.; Salawitch, R. J.; Canty, T.; Keller-Rudek, H.; Moortgat, G. K.; Grooß, J.-U.; Müller, R.; Stroh, F.
2007-06-01
Among the major factors controlling ozone loss in the polar vortices in winter/spring is the kinetics of the ClO dimer catalytic cycle. Here, we propose a strategy to test and improve our understanding of these kinetics by comparing and combining information on the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate from laboratory experiments, theoretical studies and field observations. Concordant with a number of earlier studies, we find considerable inconsistencies of some recent laboratory results with rate theory calculations and stratospheric observations of ClO and Cl2O2. The set of parameters for which we find the best overall consistency - namely the ClO/Cl2O2 equilibrium constant suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on absorption cross sections in the range between the JPL 2006 assessment and the laboratory study by Burkholder et al. (1990) - is not congruent with the latest recommendations given by the JPL and IUPAC panels and does not represent the laboratory studies currently regarded as the most reliable experimental values. We show that the incorporation of new Pope et al. (2007) Cl2O2 absorption cross sections into several models, combined with best estimates for other key parameters (based on either JPL and IUPAC evaluations or on our study), results in severe model underestimates of observed ClO and observed ozone loss rates. This finding suggests either the existence of an unknown process that drives the partitioning of ClO and Cl2O2, or else some unidentified problem with either the laboratory study or numerous measurements of atmospheric ClO. Our mechanistic understanding of the ClO/Cl2O2 system is grossly lacking, with severe implications for our ability to simulate both present and future polar ozone depletion.
Controlling the surface density of DNA on gold by electrically induced desorption.
Arinaga, Kenji; Rant, Ulrich; Knezević, Jelena; Pringsheim, Erika; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki
2007-10-31
We report on a method to control the packing density of sulfur-bound oligonucleotide layers on metal electrodes by electrical means. In a first step, a dense nucleic acid layer is deposited by self-assembly from solution; in a second step, defined fractions of DNA molecules are released from the surface by applying a series of negative voltage cycles. Systematic investigations of the influence of the applied electrode potentials and oligonucleotide length allow us to identify a sharp desorption onset at -0.65 V versus Ag/AgCl, which is independent of the DNA length. Moreover, our results clearly show the pronounced influence of competitive adsorbents in solution on the desorption behavior, which can prevent the re-adsorption of released DNA molecules, thereby enhancing the desorption efficiency. The method is fully bio-compatible and can be employed to improve the functionality of DNA layers. This is demonstrated in hybridization experiments revealing almost perfect yields for electrically "diluted" DNA layers. The proposed control method is extremely beneficial to the field of DNA-based sensors.
Chung, Sheng-Heng; Manthiram, Arumugam
2014-06-01
Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Millimeter-wave spectroscopy of the SiCl+ ion
NASA Astrophysics Data System (ADS)
Takeda, Kazuki; Masuda, Satoshi; Harada, Kensuke; Tanaka, Keiichi
2016-05-01
The millimeter-wave spectrum of the SiCl+ ion in the ground and first excited vibrational states was observed for the two isotopic (35Cl and 37Cl) species. The ion was generated in a free-space absorption cell by a hollow cathode discharge of SiCl4 diluted with He and discriminated from neutral species by the magnetic field effect on the absorption lines. The observed millimeter-wave spectrum was combined with a previously reported diode laser spectrum in an analysis to determine mass-independent Dunham coefficients as well as the mass scaling parameters. The equilibrium bond length of SiCl+ determined is re = 1.943 978(2) Å.
Moon, Dohyun; Ryoo, Keon Sang; Choi, Jong-Ha
2016-01-01
The structure of the title salt, [CrCl(C10H8N2)2(H2O)][ZnCl4], has been determined from synchrotron data. The CrIII ion is coordinated by four N atoms from two 2,2′-bipyridine (bipy) ligands, one O atom from a water molecule and a chloride anion in a cis arrangement, displaying a distorted octahedral geometry. The tetrahedral [ZnCl4]2− anion is slightly distorted owing to its involvement in O—H⋯Cl hydrogen bonding with the coordinating water molecule. The Cr—N(bipy) bond lengths are in the range 2.0485 (13)–2.0632 (12) Å, while the Cr—Cl and Cr—(OH2) bond lengths are 2.2732 (6) and 1.9876 (12) Å, respectively. In the crystal, molecules are stacked along the a axis. PMID:27006786
Ozone Production and Loss Rate Measurements in the Middle Stratosphere
NASA Technical Reports Server (NTRS)
Jucks, Kenneth W.; Johnson, David G.; Chance, K. V.; Traub, Wesley A.; Salawitch, R. J.; Stachnik, R. A.
1996-01-01
The first simultaneous measurements of HO(x), NO(x), and Cl(x) radicals in the middle stratosphere show that NO(x) catalytic cycles dominate loss of ozone (O3) for altitudes between 24 and 38 km; Cl(x) catalytic cycles are measured to be less effective than previously expected; and there is no 'ozone deficit' in the photochemically dominated altitude range from 31 and 38 km, contrary to some previous theoretical studies.
Thermal emission spectroscopy of the middle atmosphere
NASA Technical Reports Server (NTRS)
Kunde, V. G.; Brasunas, J. C.; Conrath, B. J.; Herman, J. R.; Maguire, W. C.; Massie, S. T.; Abbas, Mian M.
1990-01-01
The general objective of this research is to obtain, via remote sensing, simultaneous measurements of the vertical distributions of stratospheric temperature, ozone, and trace constituents that participate in the catalytic destruction of ozone (NO(sub y): NO, NO2, NO3, HNO3, ClONO2, N2O5, HNO4; Cl(sub x): HOCl), and the source gases for the catalytic cycles (H2O, CH4, N2O, CF2Cl2, CFCl3, CCl4, CH3Cl, CHF2Cl, etc.). Data are collected during a complete diurnal cycle in order to test our present understanding of ozone chemistry and its associate catalytic cycles. The instrumentation employed is an emission-mode, balloon-borne, liquid-nitrogen-cooled Michelson interferometer-spectrometer (SIRIS), covering the mid-infrared range with a spectral resolution of 0.020 cm(exp -1). Cryogenic cooling combined with the use of extrinsic silicon photoconductor detectors allows the detection of weak emission features of stratospheric gaseous species. Vertical distributions of these species are inferred from scans of the thermal emission of the limb in a sequence of elevation angles. The fourth SIRIS balloon flight was carried out from Palestine, Texas on September 15-16, 1986 with 9 hours of nighttime data (40 km). High quality data with spectral resolution 0.022 cm(exp -1), were obtained for numerous limb sequences. Fifteen stratospheric species have been identified to date from this flight: five species from the NO(sub y) family (HNO3, NO2, NO, ClONO2, N2O5), plus CO2, O3, H2O, N2O, CH4, CCl3F, CCl2F2, CHF2Cl, CF4, and CCl4. The nighttime values of N2O5, ClONO2, and total odd nitrogen have been measured for the first time, and compared to model results. Analysis of the diurnal variation of N2O5 within the 1984 and 1986 data sets, and of the 1984 ClONO2 measurements, were presented in the literature. The demonstrated ability of SIRIS to measure all the major NO(sub y) species, and therefore to determine the partitioning of the nitrogen family over a continuous diurnal cycle, is a powerful tool in the verification and improvement of photochemical modeling.
Thiessen, G P; Usborne, W R; Orr, H L
1984-04-01
A large spin-type chiller in an Ontario poultry processing plant was adapted so that the chill water could be treated with various levels of chlorine dioxide ( ClO2 ), increasing the concentration of ClO2 from 0 to 1.39 mg/liter resulting in reducing the bacteria count to the point where salmonellae could not be isolated from the chill water or the chilled broiler carcasses. In addition, coliform, psychrotroph , and aerobic plate counts were all greatly reduced (less than 1 log cycle) in chill water but were only slightly reduced (less than .5 log cycle) in macerated chicken broiler breast skin. Shelf-life was lengthened for broiler carcasses treated with 1.33 and 1.39 mg/liter ClO2 as compared to control carcasses. Sensory panelists reported no off flavors for any ClO2 concentration but rated broiler skin as being slightly lighter in color compared to control carcasses at all concentrations of ClO2 treatment.
Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Li, Changyong; Shim, Eun Bo; Pak, Hui-Nam
2016-01-01
Although rotors have been considered among the drivers of atrial fibrillation (AF), the rotor definition is inconsistent. We evaluated the nature of rotors in 2D and 3D in- silico models of persistent AF (PeAF) by analyzing phase singularity (PS), dominant frequency (DF), Shannon entropy (ShEn), and complex fractionated atrial electrogram cycle length (CFAE-CL) and their ablation. Mother rotor was spatiotemporally defined as stationary reentries with a meandering tip remaining within half the wavelength and lasting longer than 5 s. We generated 2D- and 3D-maps of the PS, DF, ShEn, and CFAE-CL during AF. The spatial correlations and ablation outcomes targeting each parameter were analyzed. 1. In the 2D PeAF model, we observed a mother rotor that matched relatively well with DF (>9 Hz, 71.0%, p<0.001), ShEn (upper 2.5%, 33.2%, p<0.001), and CFAE-CL (lower 2.5%, 23.7%, p<0.001). 2. The 3D-PeAF model also showed mother rotors that had spatial correlations with DF (>5.5 Hz, 39.7%, p<0.001), ShEn (upper 8.5%, 15.1%, p <0.001), and CFAE (lower 8.5%, 8.0%, p = 0.002). 3. In both the 2D and 3D models, virtual ablation targeting the upper 5% of the DF terminated AF within 20 s, but not the ablations based on long-lasting PS, high ShEn area, or lower CFAE-CL area. Mother rotors were observed in both 2D and 3D human AF models. Rotor locations were well represented by DF, and their virtual ablation altered wave dynamics and terminated AF.
Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Li, Changyong; Shim, Eun Bo; Pak, Hui-Nam
2016-01-01
Background Although rotors have been considered among the drivers of atrial fibrillation (AF), the rotor definition is inconsistent. We evaluated the nature of rotors in 2D and 3D in- silico models of persistent AF (PeAF) by analyzing phase singularity (PS), dominant frequency (DF), Shannon entropy (ShEn), and complex fractionated atrial electrogram cycle length (CFAE-CL) and their ablation. Methods Mother rotor was spatiotemporally defined as stationary reentries with a meandering tip remaining within half the wavelength and lasting longer than 5 s. We generated 2D- and 3D-maps of the PS, DF, ShEn, and CFAE-CL during AF. The spatial correlations and ablation outcomes targeting each parameter were analyzed. Results 1. In the 2D PeAF model, we observed a mother rotor that matched relatively well with DF (>9 Hz, 71.0%, p<0.001), ShEn (upper 2.5%, 33.2%, p<0.001), and CFAE-CL (lower 2.5%, 23.7%, p<0.001). 2. The 3D-PeAF model also showed mother rotors that had spatial correlations with DF (>5.5 Hz, 39.7%, p<0.001), ShEn (upper 8.5%, 15.1%, p <0.001), and CFAE (lower 8.5%, 8.0%, p = 0.002). 3. In both the 2D and 3D models, virtual ablation targeting the upper 5% of the DF terminated AF within 20 s, but not the ablations based on long-lasting PS, high ShEn area, or lower CFAE-CL area. Conclusion Mother rotors were observed in both 2D and 3D human AF models. Rotor locations were well represented by DF, and their virtual ablation altered wave dynamics and terminated AF. PMID:26909492
Debnath, Mainak; Dolai, Malay; Pal, Kaberi; Bhunya, Sourav; Paul, Ankan; Lee, Hon Man; Ali, Mahammad
2018-02-20
The mono- and dinuclear oxidovanadium(v) complexes [V V O(L 1 )(Cl)] (1) and [L 1 V V O(μ 2 -O)VO(L 1 )] (2) of ONNO donor amine-bis(phenolate) ligand (H 2 L 1 ) were readily synthesized by the reaction between H 2 L 1 and VCl 3 .(THF) 3 or VO(acac) 2 in MeOH or MeCN, respectively, and then characterized through mass spectroscopy, 1 H-NMR and FTIR techniques. Both the complexes possess distorted octahedral geometry around each V centre. Upon the addition of 1 equivalent or more acid to a MeCN solution of complex 1, it immediately turned into the protonated form, which might be in equilibrium as: [L 1 ClV V [double bond, length as m-dash]OH] + ↔ [L 1 ClV V -OH] + (in the case of [L 1 ClV V [double bond, length as m-dash]OH] + oxo-O is just protonated, whereas in [L 1 ClV V -OH] + it is a hydroxo species), with the shift in λ max from 610 nm to 765 nm. Similar was the case for complex 2. The complexes 1 and 2 could efficiently catalyze the oxidative bromination of salicylaldehyde in the presence of H 2 O 2 to produce 5-bromo salicylaldehyde as the major product with TONs of 405 and 450, respectively, in the mixed solvent system (H 2 O : MeOH : THF = 4 : 3 : 2, v/v). The kinetic analysis of the bromide oxidation reaction indicated a first-order mechanism in the protonated peroxidovanadium complex and a bromide ion and limiting first-order mechanism on [H + ]. The evaluated k Br and k H values were 5.78 ± 0.20 and 11.01 ± 0.50 M -1 s -1 for complex 1 and 6.21 ± 0.13 and 20.14 ± 0.72 M -1 s -1 for complex 2, respectively. The kinetic and thermodynamic acidities of the protonated oxido species of complexes 1 and 2 were pK a = 2.55 (2.35) and 2.16 (2.19), respectively, which were far more acidic than those reported by Pecoraro et al. for peroxido-protonation instead of oxido protonation. On the basis of the chemistry observed for these model compounds, a mechanism of halide oxidation and a detailed catalytic cycle are proposed for the vanadium haloperoxidase enzyme and these were substantiated by detailed DFT calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, J. L.; Shi, X. J.; Xu, J. C., E-mail: xiejinglan@ynao.ac.cn
Based on continuous wavelet transformation analysis, the daily solar mean magnetic field (SMMF) from 1975 May 16 to 2014 July 31 is analyzed to reveal its rotational behavior. Both the recurrent plot in Bartels form and the continuous wavelet transformation analysis show the existence of rotational modulation in the variation of the daily SMMF. The dependence of the rotational cycle lengths on solar cycle phase is also studied, which indicates that the yearly mean rotational cycle lengths generally seem to be longer during the rising phase of solar cycles and shorter during the declining phase. The mean rotational cycle lengthmore » for the rising phase of all of the solar cycles in the considered time is 28.28 ± 0.67 days, while for the declining phase it is 27.32 ± 0.64 days. The difference of the mean rotational cycle lengths between the rising phase and the declining phase is 0.96 days. The periodicity analysis, through the use of an auto-correlation function, indicates that the rotational cycle lengths have a significant period of about 10.1 years. Furthermore, the cross-correlation analysis indicates that there exists a phase difference between the rotational cycle lengths and solar activity.« less
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Elliot, J. E.
1984-01-01
NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.
Sohda, Satoshi; Suzuki, Kenta; Igari, Ichiro
2017-11-27
There are many mobile phone apps aimed at helping women map their ovulation and menstrual cycles and facilitating successful conception (or avoiding pregnancy). These apps usually ask users to input various biological features and have accumulated the menstrual cycle data of a vast number of women. The purpose of our study was to clarify how the data obtained from a self-tracking health app for female mobile phone users can be used to improve the accuracy of prediction of the date of next ovulation. Using the data of 7043 women who had reliable menstrual and ovulation records out of 8,000,000 users of a mobile phone app of a health care service, we analyzed the relationship between the menstrual cycle length, follicular phase length, and luteal phase length. Then we fitted a linear function to the relationship between the length of the menstrual cycle and timing of ovulation and compared it with the existing calendar-based methods. The correlation between the length of the menstrual cycle and the length of the follicular phase was stronger than the correlation between the length of the menstrual cycle and the length of the luteal phase, and there was a positive correlation between the lengths of past and future menstrual cycles. A strong positive correlation was also found between the mean length of past cycles and the length of the follicular phase. The correlation between the mean cycle length and the luteal phase length was also statistically significant. In most of the subjects, our method (ie, the calendar-based method based on the optimized function) outperformed the Ogino method of predicting the next ovulation date. Our method also outperformed the ovulation date prediction method that assumes the middle day of a mean menstrual cycle as the date of the next ovulation. The large number of subjects allowed us to capture the relationships between the lengths of the menstrual cycle, follicular phase, and luteal phase in more detail than previous studies. We then demonstrated how the present calendar methods could be improved by the better grouping of women. This study suggested that even without integrating various biological metrics, the dataset collected by a self-tracking app can be used to develop formulas that predict the ovulation day when the data are aggregated. Because the method that we developed requires data only on the first day of menstruation, it would be the best option for couples during the early stages of their attempt to have a baby or for those who want to avoid the cost associated with other methods. Moreover, the result will be the baseline for more advanced methods that integrate other biological metrics. ©Satoshi Sohda, Kenta Suzuki, Ichiro Igari. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 27.11.2017.
Koa-Wing, Michael; Nakagawa, Hiroshi; Luther, Vishal; Jamil-Copley, Shahnaz; Linton, Nick; Sandler, Belinda; Qureshi, Norman; Peters, Nicholas S; Davies, D Wyn; Francis, Darrel P; Jackman, Warren; Kanagaratnam, Prapa
2015-11-15
Ripple Mapping (RM) is designed to overcome the limitations of existing isochronal 3D mapping systems by representing the intracardiac electrogram as a dynamic bar on a surface bipolar voltage map that changes in height according to the electrogram voltage-time relationship, relative to a fiduciary point. We tested the hypothesis that standard approaches to atrial tachycardia CARTO™ activation maps were inadequate for RM creation and interpretation. From the results, we aimed to develop an algorithm to optimize RMs for future prospective testing on a clinical RM platform. CARTO-XP™ activation maps from atrial tachycardia ablations were reviewed by two blinded assessors on an off-line RM workstation. Ripple Maps were graded according to a diagnostic confidence scale (Grade I - high confidence with clear pattern of activation through to Grade IV - non-diagnostic). The RM-based diagnoses were corroborated against the clinical diagnoses. 43 RMs from 14 patients were classified as Grade I (5 [11.5%]); Grade II (17 [39.5%]); Grade III (9 [21%]) and Grade IV (12 [28%]). Causes of low gradings/errors included the following: insufficient chamber point density; window-of-interest<100% of cycle length (CL); <95% tachycardia CL mapped; variability of CL and/or unstable fiducial reference marker; and suboptimal bar height and scar settings. A data collection and map interpretation algorithm has been developed to optimize Ripple Maps in atrial tachycardias. This algorithm requires prospective testing on a real-time clinical platform. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.
Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M
2016-01-28
A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.
A high performance hybrid battery based on aluminum anode and LiFePO 4 cathode
Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; ...
2015-12-07
A unique battery hybrid utilizes an aluminum anode, a LiFePO 4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl 3) (EMImCl-AlCl 3, 1-1.1 in molar ratio) with or without LiAlCl 4 is proposed. This hybrid ion battery delivers an initial high capacity of 160 mAh g -1 at a current rate of C/5. It also shows good rate capability and cycling performance.
Chlorination by-products in drinking water and menstrual cycle function.
Windham, Gayle C; Waller, Kirsten; Anderson, Meredith; Fenster, Laura; Mendola, Pauline; Swan, Shanna
2003-06-01
We analyzed data from a prospective study of menstrual cycle function and early pregnancy loss to explore further the effects of trihalomethanes (THM) on reproductive end points. Premenopausal women ((italic)n(/italic) = 403) collected urine samples daily during an average of 5.6 cycles for measurement of steroid metabolites that were used to define menstrual parameters such as cycle and phase length. Women were asked about consumption of various types of water as well as other habits and demographics. A THM level was estimated for each cycle based on residence and quarterly measurements made by water utilities during a 90-day period beginning 60 days before the cycle start date. We found a monotonic decrease in mean cycle length with increasing total THM (TTHM) level; at > 60 microg/L, the adjusted decrement was 1.1 days [95% confidence interval (CI), -1.8 to -0.40], compared with less than or equal to 40 microg/L. This finding was also reflected as a reduced follicular phase length (difference -0.94 day; 95% CI, -1.6 to -0.24). A decrement in cycle and follicular phase length of 0.18 days (95% CI, -0.29 to -0.07) per 10 microg/L unit increase in TTHM concentration was found. There was little association with luteal phase length, menses length, or cycle variability. Examining the individual THMs by quartile, we found the greatest association with chlorodibromomethane or the sum of the brominated compounds. Incorporating tap water consumption showed a similar pattern of reduced cycle length with increasing TTHM exposure. These findings suggest that THM exposure may affect ovarian function and should be confirmed in other studies.
NASA Astrophysics Data System (ADS)
Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.
2009-12-01
Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with the Pope et al. study will be discussed. Finally, using the Cl2O2 UV cross sections reported in this work representative atmospheric photolysis rates along with a detailed analysis of estimated uncertainties will be presented. A conclusion from this work is that the Cl2O2 absorption cross section data obtained in this work is sufficient to adequately model the observed ozone losses in the Antarctic and Arctic stratosphere.
NASA Astrophysics Data System (ADS)
Hocker, Matthias; Maier, Pascal; Jerg, Lisa; Tischer, Ingo; Neusser, Gregor; Kranz, Christine; Pristovsek, Markus; Humphreys, Colin J.; Leute, Robert A. R.; Heinz, Dominik; Rettig, Oliver; Scholz, Ferdinand; Thonke, Klaus
2016-08-01
We demonstrate the application of low-temperature cathodoluminescence (CL) with high lateral, depth, and spectral resolution to determine both the lateral (i.e., perpendicular to the incident primary electron beam) and axial (i.e., parallel to the electron beam) diffusion length of excitons in semiconductor materials. The lateral diffusion length in GaN is investigated by the decrease of the GaN-related luminescence signal when approaching an interface to Ga(In)N based quantum well stripes. The axial diffusion length in GaN is evaluated from a comparison of the results of depth-resolved CL spectroscopy (DRCLS) measurements with predictions from Monte Carlo simulations on the size and shape of the excitation volume. The lateral diffusion length was found to be (95 ± 40) nm for nominally undoped GaN, and the axial exciton diffusion length was determined to be (150 ± 25) nm. The application of the DRCLS method is also presented on a semipolar (11 2 ¯ 2 ) sample, resulting in a value of (70 ± 10) nm in p-type GaN.
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest.
Kaspari, Michael; Yanoviak, Stephen P; Dudley, Robert; Yuan, May; Clay, Natalie A
2009-11-17
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13-18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO(4)) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl(2), and CaCl(2)) relative to NaCl and three other Na compounds (NaNO(3), Na(3)PO(4), and Na(2)SO(4)). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation.
Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest
Kaspari, Michael; Yanoviak, Stephen P.; Dudley, Robert; Yuan, May; Clay, Natalie A.
2009-01-01
Sodium (Na) is uncommon in plants but essential to the metabolism of plant consumers, both decomposers and herbivores. One consequence, previously unexplored, is that as Na supplies decrease (e.g., from coastal to inland forests), ecosystem carbon should accumulate as detritus. Here, we show that adding NaCl solution to the leaf litter of an inland Amazon forest enhanced mass loss by 41%, decreased lignin concentrations by 7%, and enhanced decomposition of pure cellulose by up to 50%, compared with stream water alone. These effects emerged after 13–18 days. Termites, a common decomposer, increased 7-fold on +NaCl plots, suggesting an agent for the litter loss. Ants, a common predator, increased 2-fold, suggesting that NaCl effects cascade upward through the food web. Sodium, not chloride, was likely the driver of these patterns for two reasons: two compounds of Na (NaCl and NaPO4) resulted in equivalent cellulose loss, and ants in choice experiments underused Cl (as KCl, MgCl2, and CaCl2) relative to NaCl and three other Na compounds (NaNO3, Na3PO4, and Na2SO4). We provide experimental evidence that Na shortage slows the carbon cycle. Because 80% of global landmass lies >100 km inland, carbon stocks and consumer activity may frequently be regulated via Na limitation. PMID:19884505
Effect of Air Pollution on Menstrual Cycle Length—A Prognostic Factor of Women’s Reproductive Health
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2017-01-01
Air pollution can influence women’s reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM10, SO2, CO, and NOx) to represent a source-related mixture. PM10 and SO2 assessed separately negatively affected the length of the luteal phase after standardization (b = −0.02; p = 0.03; b = −0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = −0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NOx assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women. PMID:28726748
Elek, J; Prochazka, A; Hulliger, M; Vincent, S
1990-01-01
1. It has been claimed that stretch in the non-contractile (extramysial) portion of muscles is substantial, and may produce large discrepancies between the origin-to-insertion muscle length and the internal length variations 'seen' by muscle spindle endings. 2. In eight pentobarbitone-anaesthetized cats, we estimated stretch in the extramysial portion of medial gastrocnemius (MG) muscle with a method similar to the spindle null technique. 3. Length variations of MG previously monitored in a normal step cycle were reproduced with a computer-controlled length servo. The responses of test MG spindle endings were monitored in dorsal root filaments. Distributed stimulation of ventral root filaments, rate-modulated by the step-cycle EMG envelope, served to reproduce step-cycle forces. The filaments were selected so as to have no fusimotor action on the test spindle. 4. Spindle responses in active cycles were compared with those in passive cycles (stretch, but no distributed stimulation). In some cases concomitant tonic fusimotor stimulation was used to maintain spindle responsiveness throughout the cycle, both in active and passive trials. Generally, small discrepancies in spindle firing were seen. The passive trials were now repeated, with iterative adjustments of the length function, until the response matched the spindle firing profile in the active trial. The spindle 'saw' the same internal length change in the final passive trial as in the active trial. Any difference between the corresponding length profiles was attributed to extramysial displacement. 5. Extramysial displacement estimated in this was was maximal at short mean muscle lengths, reaching about 0.5 mm in a typical step cycle (force rising from 0 to 10 N). At longer mean muscle lengths where muscle force rose from say 2 to 12 N in the cycle, extramysial displacement was in the range 0.2-0.4 mm. 6. Except at very short lengths, the displacement was probably mainly tendinous. On this assumption, our results suggested that the stiffness of the MG tendinous compartment was force related, and about double that of cat soleus muscle at any given force. Calculations indicated that though the stretch was small, the MG tendon would store and release enough strain energy per cycle to contribute significantly to the E3 phase of the step cycle. The discrepancies in spindle firing were generally quite subtle, so we reject the claim that extramysial stretch poses a serious difficulty for inferences about fusimotion from chronic spindle afferent recordings. PMID:2148952
Stable Isotope Analysis of Chlorate
NASA Astrophysics Data System (ADS)
Brundrett, M.; Jackson, W. A.; Sturchio, N. C.; Bohlke, J. K.; Hatzinger, P.
2016-12-01
Studies have confirmed the presence of chlorate (ClO3-) throughout terrestrial and extraterrestrial systems generally in excess of perchlorate (ClO4-) [1, 2]. ClO3- occurrence, production, and post depositional transformation has significant implications to our understanding of atmospheric Cl cycling and potential biogeochemical reactions on Earth and Mars. The isotopic composition of oxyanions can be used to evaluate their production mechanisms and post-depositional alteration [3, 4]. However, no information is available on the natural isotopic composition of ClO3-. The objective of this study was to develop a method to measure the stable isotope composition (δ18O, δ17O and δ37Cl) of ClO3- and to determine the isotopic composition of ClO3- in natural desert salt accumulations that have been studied previously for NO3- and ClO4- isotopic composition. The process of ClO3- purification and analysis of δ18O, δ 17O and δ37Cl is problematic but has recently been resolved by adapting previously published methods for ClO4-. Competitive anions (e.g. NO3-, Cl-, ClO4-, and SO4-2) are removed through a series of processes including biological reduction, solid phase extraction, and anion or cation exchange. Initial results for control samples treated with the above method have a maximum variation of ± 2 ‰. These methods are being applied to representative samples to determine if various sources of natural and synthetic ClO3- have distinctive isotopic compositions, as reported previously for ClO4- [3, 4]. Establishing the range of isotopic composition of natural ClO3- also could provide information about atmospheric ClO3- production mechanisms and post-depositional processing, with implications for the atmospheric chemistry of oxychlorine compounds and the global biogeochemical cycling of Cl. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Bao and Gu (2004) ES&T 38, 5073-5077.
Sun, Jian; Akiba, Uichi; Fujihira, Masamichi
2008-09-01
Stretch lengths of pure gold mono-atomic wires have been studied recently with an electrochemical scanning tunneling microscope (STM). Here, we will report a study of stretch lengths of gold mono-atomic wires with and without 1,6-hexanedithiol (HDT) using the STM break-junction method. First, the stretch length was measured as a function of electrode potentials of a bare Au(111) substrate and a gold STM tip in a 0.1 M NaClO4 aqueous solution. Second, a self-assembled monolayer (SAM) was fabricated on an Au(111) substrate by dipping the substrate into a 1 mM HDT ethanol solution. At last, we measured the stretch length of gold mono-atomic wires on a substrate covered with the SAM in place of the bare Au(111) substrate. We compared the electrode potential dependence of the stretch lengths of gold mono-atomic wires covered with and without HDT. We will discuss the effect of the electrode potential on the stretch lengths by taking account of electrocapillarity of gold mono-atomic wires.
High efficiency Dual-Cycle Conversion System using Kr-85.
Prelas, Mark A; Tchouaso, Modeste Tchakoua
2018-04-26
This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it will disperse quickly in case of an accident and if it enters the lungs there is no significant biological half-life. Copyright © 2018 Elsevier Ltd. All rights reserved.
Direct studies of low-energy resonances in 31P(p, ) 28Si and 35Cl(p, )32S
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moazen, Brian; Matei, Catalin; Bardayan, Daniel W
2011-01-01
Low-energy resonances in 31P(p,a)28Si and 35Cl(p,a)32S were studied directly in order to gain a better understanding of reaction cycling in the Si-Ar region in novae, supernovae, and X-ray bursts. Resonance strengths at Ec:m = 600 and 622 keV in 31P(p,a)28Si were measured as well as the Ec:m: = 611 keV resonance in 35Cl(p,a)32S, the lowest energy that any resonance in this reaction has been observed. The strengths of these resonances were found to be lower than previously determined through indirect methods, resulting in weak cycling in the Si-Ar region.
NASA Astrophysics Data System (ADS)
Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo
2003-09-01
A new precursor combination (SiCl4 and Zr(OtC4H9)4) was used to deposit Zr silicate with Zr(OtC4H9)4 as a zirconium source and oxygen source at the same time. SiCl4 and Zr(OtC4H9)4 have higher vapor pressures than their counterpart, ZrCl4 and tetra-n-butyl orthosilicate (TBOS), and it was expected that the cycle time would be shorter. The deposition temperature of the new combination was about 150 °C lower than that of ZrCl4 and TBOS. The film was zirconium rich while it was silicon rich with ZrCl4 and TBOS. Growth rate (nm/cycle), composition ratio [Zr/(Zr+Si)], and chlorine impurity were decreased with increasing deposition temperature from 125 to 225 °C. The composition ratio of the film deposited at 225 °C was 0.53 and the chlorine content was about 0.4 at. %. No carbon was detected by x-ray photoelectron spectroscopy.
Hermans, Frederik J R; Bruijn, Merel M C; Vis, Jolande Y; Wilms, Femke F; Oudijk, Martijn A; Porath, Martina M; Scheepers, Hubertina C J; Bloemenkamp, Kitty W M; Bax, Caroline J; Cornette, Jérôme M J; Nij Bijvanck, Bas W A; Franssen, Maureen T M; Vandenbussche, Frank P H A; Kok, Marjolein; Grobman, William A; Van Der Post, Joris A M; Bossuyt, Patrick M M; Opmeer, Brent C; Mol, Ben Willem J; Schuit, Ewoud; Van Baaren, Gert-Jan
2015-07-01
To stratify the risk of spontaneous preterm delivery using cervical length (CL) and fetal fibronectin (fFN) in women with threatened preterm labor who remained pregnant after 7 days. Prospective observational study. Nationwide cohort of women with threatened preterm labor from the Netherlands. Women with threatened preterm labor between 24 and 34 weeks with a valid CL and fFN measurement and remaining pregnant 7 days after admission. Kaplan-Meier and Cox proportional hazards models were used to estimate cumulative percentages and hazard ratios (HR) for spontaneous delivery. Spontaneous delivery between 7 and 14 days after initial presentation and spontaneous preterm delivery before 34 weeks. The risk of delivery between 7 and 14 days was significantly increased for women with a CL < 15 mm or a CL ≥15 to <30 mm and a positive fFN, compared with women with a CL ≥30 mm: HR 22.3 [95% confidence interval (CI) 2.6-191] and 14 (95% CI 1.8-118), respectively. For spontaneous preterm delivery before 34 weeks the risk was increased for women with a CL < 15 mm [HR 6.3 (95% CI 2.6-15)] or with a CL ≥15 to <30 mm with either positive fFN [HR 3.6 (95% CI 1.5-8.7)] or negative fFN [HR 3.0 (95% CI 1.2-7.1)] compared with women with a CL ≥ 30 mm. In women remaining pregnant 7 days after threatened preterm labor, CL and fFN results can be used in risk stratification for spontaneous delivery. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
Long length cuttings from no. 2 common hardwood lumber
Edwin L. Lucas; Edwin L. Lucas
1973-01-01
Long length cuttings (up to 60 inches) are obtainable in abundance from No. 2 Common oak lumber. Cutting for the maximum area of clear one face (ClF) parts 18 to 60 inches in length, we found that 46 percent of all the cuttings were 36 inches long or longer. The recovery of the long length cuttings did not reduce the overall yield of parts produced from the lumber....
Levine, Lisa D; Downes, Katheryne L; Romero, Julie A; Pappas, Hope; Elovitz, Michal A
2018-05-15
Our objectives were to determine whether quantitative fetal fibronectin (fFN) and cervical length (CL) screening can be used alone or in combination as prognostic tests to identify symptomatic women at the highest or lowest risk for spontaneous preterm birth (sPTB). A prospective, blinded cohort study of women presenting with a singleton gestation to our triage unit between 22-33w6d with preterm labor symptoms was performed. Women with ruptured membranes, moderate/severe bleeding, and dilation >2 cm were excluded. The primary outcome was sPTB <37 weeks. We evaluated test characteristics of quantitative fFN and CL assessment, both separately and in combination, considering traditionally reported cut-points (fFN ≥50 and CL <25), as well as cut-points above and below these measures. We found interactions between fFN >50 and CL <25 and sPTB by parity and obstetric history (p < .05) and therefore stratified results. Test characteristics are presented with positive predictive value (PPV) and negative predictive value (NPV). Five hundred eighty women were enrolled and 537 women were available for analysis. Overall sPTB rate was 11.1%. Among nulliparous women, increasing levels of fFN were associated with increasing risk of sPTB, with PPV going from 26.5% at ≥20 ng/mL to 44.4% at ≥200 ng/mL. A cut-point of 20 ng/mL had higher sensitivity (69.2%) and higher NPV (96.8%) and therefore identified a "low-risk" group. fFN was not informative for multiparous women regardless of prior obstetrical history or quantitative level chosen. For all women, a shorter CL was associated with an increased sPTB risk. Among nulliparas and multiparas without a prior sPTB, a CL <20 mm optimized test characteristics (PPV 25 and 20%, NPV 95.5, and 92.7%, respectively). For multiparas with a prior sPTB, CL <25 mm was more useful. Using fFN and CL in combination for nulliparas did not improve test characteristics over using the individual fFN (p = .74) and CL (p = .31) components separately. This study identifies the importance of stratifying by parity and obstetrical history when using screening modalities for risk assessment in symptomatic women. For nulliparous women, either quantitative fFN or cervical length assessment can be utilized, depending on resources available, but a lower cut-point of 20 ng/mL should be used for quantitative fFN. For multiparous women, fFN is not useful and cervical length assessment should be the main screening tool utilized when there is clinical uncertainty. Regardless of parity, the PPV of fFN and CL is low and therefore the greatest clinical utility remains in its NPV.
Length of the solar cycle influence on the relationship NAO-Northern Hemisphere Temperature
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Añel, J. A.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
The influence of the length of the solar cycle on the relationship North Atlantic Oscillation (NAO)-Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship is different according to the length of the solar cycle. When the sunspot cycle is 10 or 11 years long, wintertime NAO and NHT are positively correlated, being the signal more intense during 11 years period, but when the sunspot cycle is longer (12 years) correlations between wintertime NAO and NHT are not significant. In fact there are significant negative correlations between wintertime NAO and spring NHT, with predictive potential.
Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manuel, James; Kim, Miso; Fapyane, Deby
2014-10-15
Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy,more » Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.« less
Dong-Po, Xu; Di-An, Fang; Chang-Sheng, Zhao; Shu-Lun, Jiang; Hao-Yuan, Hu
2018-08-05
HSP90β1 (known as glyco-protein 96, GP96) is a vital endoplasmic reticulum (ER) depended chaperonin among the HSPs (heat shock proteins) family. Furthermore, it always processes and presents antigen of the tumor and keeps balance for the intracellular environment. In the present study, we explored the effect of tributyltin chloride (TBT-Cl) exposure on HSP90β1 expression in river pufferfish, Takifugu obscurus. The full length of To-HSP90β1 was gained with 2775 bp in length, with an ORF (open reading frame) encoding an 803 aa polypeptide. A phylogenetic tree was constructed and showed the close relationship to other fish species. The HSP90β1 mRNA transcript was expressed in all tissues investigated with higher level in the gill and liver. After the acute and chronic exposure of TBT-Cl, the To-HSP90β1 mRNA transcript significantly was up-regulated in gills. Moreover, the histology study indicated the different injury degree of TBT-Cl in liver and gill. Immunohistochemistry (IHC) staining results implied the cytoplasm reorganization after TBT-Cl stress and the function of immunoregulation for To-HSP90β1 to TBT-Cl exposure. All the results indicated that HSP90β1 may be involved in the resistance to the invasion of TBT-Cl for keeping autoimmune homeostasis. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing
2017-09-01
3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).
NASA Astrophysics Data System (ADS)
Ren, Lei; Hartnett, Michael
2017-02-01
Accurate forecasting of coastal surface currents is of great economic importance due to marine activities such as marine renewable energy and fish farms in coastal regions in recent twenty years. Advanced oceanographic observation systems such as satellites and radars can provide many parameters of interest, such as surface currents and waves, with fine spatial resolution in near real time. To enhance modelling capability, data assimilation (DA) techniques which combine the available measurements with the hydrodynamic models have been used since the 1990s in oceanography. Assimilating measurements into hydrodynamic models makes the original model background states follow the observation trajectory, then uses it to provide more accurate forecasting information. Galway Bay is an open, wind dominated water body on which two coastal radars are deployed. An efficient and easy to implement sequential DA algorithm named Optimal Interpolation (OI) was used to blend radar surface current data into a three-dimensional Environmental Fluid Dynamics Code (EFDC) model. Two empirical parameters, horizontal correlation length and DA cycle length (CL), are inherent within OI. No guidance has previously been published regarding selection of appropriate values of these parameters or how sensitive OI DA is to variations in their values. Detailed sensitivity analysis has been performed on both of these parameters and results presented. Appropriate value of DA CL was examined and determined on producing the minimum Root-Mean-Square-Error (RMSE) between radar data and model background states. Analysis was performed to evaluate assimilation index (AI) of using an OI DA algorithm in the model. AI of the half-day forecasting mean vectors' directions was over 50% in the best assimilation model. The ability of using OI to improve model forecasts was also assessed and is reported upon.
Uterine length and fertility outcomes: a cohort study in the IVF population.
Hawkins, L K; Correia, K F; Srouji, S S; Hornstein, M D; Missmer, S A
2013-11-01
What is the relationship between pre-cycle uterine length and IVF outcome (chemical pregnancy, clinical pregnancy, spontaneous abortion and live birth)? Women at extremes of uterine length (<7.0 or >9.0 cm) were less likely to achieve live birth and women with uterine lengths <6.0 cm were also more likely to experience spontaneous abortion. A prospective study of 807 women published in 2000 found that implantation and clinical pregnancy rates were highest in women with uterine lengths between 7.0 and 9.0 cm, though the difference was not significant. The relationship between pre-cycle uterine length and live birth has not been evaluated. A retrospective cohort study of all cycles performed after uterine length measurement at an academic hospital IVF clinic from 2001 to 2012. A total of 8981 fresh cycles were performed in 5120 adult women with normal uterine anatomy. Women with uterine anomalies (unicornuate, bicornuate, septate or uterus exposed to diethylstilbestrol) were excluded and women with fibroids were identified for subanalysis. Uterine length was measured by uterine sounding. Cycles were divided by uterine length into groups: <6.0 cm (very short, n = 76), 6.0-6.9 cm (short, n = 2014), 7.0-7.9 cm (referent, n = 4984), 8.0-8.9 cm (long, n = 1664) and ≥9 cm (very long, n = 243). Multivariate logistic regression (first-cycle analyses) and generalized estimating equations (all-cycle analyses) were adjusted for age, fibroids and ART treatment (assisted hatching, intracytoplasmic sperm injection) to generate relative risk (RR) of cycle outcomes by uterine length. Median uterine length in the IVF population was 7.0 cm (interquartile range 7.0-7.8) and was positively associated with BMI (P < 0.001) and fibroids (P = 0.02). Compared with the referent group, women with uterine lengths <6.0 cm were half as likely to achieve live birth (RR: 0.53; 95% confidence interval (CI): 0.35-0.81) and women with lengths of 6.0-6.9 cm were also less likely (RR: 0.91; CI: 0.85-0.98). Cubic regression spline identified a significant inverse U-shaped association whereby women with uterine lengths <7.0 or >9.0 cm were less likely to achieve live birth. Women with lengths <6.0 cm were also more likely to experience spontaneous abortion (RR: 2.16; CI: 1.23-3.78). Results remained consistent when excluding women with a uterine factor diagnosis (n = 8823), when limiting to the first cycle at our institution (n = 5120) and when further restricting to first-ever cycles (n = 3941). Optimal assessment of uterine length by ultrasound was not feasible due to time and cost limitations, though uterine sounding is a clinically relevant measurement allowing for results with practical implications. Findings from our predominantly Caucasian clinic population may not be generalizable to infertile populations with different ethnic compositions. Reproducibility of results would solidify findings and inform patient counseling in women undergoing IVF. No funding was sought for this investigation. MD declares relationships with UpToDate (royalties) and WINFertlity (consultant).
Accreditation status of U.S. military graduate medical education programs.
De Lorenzo, Robert A
2008-07-01
Military graduate medical education (GME) comprises a substantial fraction of U.S. physician training capacity. The wars in Iraq and Afghanistan have placed substantial stress on military medicine, and lay and professional press accounts have raised awareness of the effects on military GME. To date, however, objective data on military GME quality remains sparse. Determine the accreditation status of U.S. military GME programs. Additionally, military GME program data will be compared to national (U.S.) accreditation lengths. Retrospective review of Accreditation Council for Graduate Medical Education (ACGME) data. All military-sponsored core programs in specialties with at least three residencies were included. Military-affiliated but civilian-sponsored programs were excluded. The current and past cycle data were used for the study. For each specialty, the current mean accreditation length and the net change in cycle was calculated. National mean accreditation lengths by specialty for 2005 to 2006 were obtained from the ACGME. Comparison between the overall mean national and military accreditation lengths was performed with a z test. All other comparisons employed descriptive statistics. Ninety-nine military programs in 15 specialties were included in the analysis. During the study period, 1 program was newly accredited, and 6 programs had accreditation withdrawn or were closed. The mean accreditation length of the military programs was 4.0 years. The overall national mean for the same specialties is 3.5 years (p < 0.01). In previous cycles, 68% of programs had accreditation of 4 years or longer, compared to 70% in the current cycle, while 13% had accreditation of 2 years or less in the previous cycle compared to 14% in the current cycle. Ten (68%) of the military specialties had mean accreditation lengths greater than the national average, while 5 (33%) were below it. Ten (68%) specialties had stable or improving cycle lengths when compared to previous cycles. Military GME accreditation cycle lengths are, overall, longer than national averages. Trends show many military programs are experiencing either stable or slightly lengthening accreditation compared to previous cycles. A few specialties show a declining trend. There has been a modest 5% decline in the number of military core residency programs since 2000.
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
33 CFR 157.138 - Crude Oil Washing Operations and Equipment Manual.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Revolutions, number of cycles, and length of cycles of each COW machine. (iii) Pressure and flow of the... COW machines. (ii) Revolutions, number of cycles, and length of cycles of each COW machine. (iii... § 157.140. (10) The volume of water used for water rinsing recorded during COW operations when passing...
Zhang, Jisheng; Wang, Yujuan; Luo, Nengchao; Chen, Zhuqi; Wu, Kangbing; Yin, Guochuan
2015-06-07
Utilization of dioxygen as the terminal oxidant at ambient temperature is always a challenge in redox chemistry, because it is hard to oxidize a stable redox metal ion like iron(III) to its high oxidation state to initialize the catalytic cycle. Inspired by the dioxygenation and co-oxidase activity of lipoxygenases, herein, we introduce an alternative protocol to activate the sluggish iron(III) species with non-redox metal ions, which can promote its oxidizing power to facilitate substrate oxidation with dioxygen, thus initializing the catalytic cycle. In oxidations of N,N-dimethylaniline and its analogues, adding Zn(OTf)2 to the [Fe(TPA)Cl2]Cl catalyst can trigger the amine oxidation with dioxygen, whereas [Fe(TPA)Cl2]Cl alone is very sluggish. In stoichiometric oxidations, it has also been confirmed that the presence of Zn(OTf)2 can apparently improve the electron transfer capability of the [Fe(TPA)Cl2]Cl complex. Experiments using different types of substrates as trapping reagents disclosed that the iron(IV) species does not occur in the catalytic cycle, suggesting that oxidation of amines is initialized by electron transfer rather than hydrogen abstraction. Combined experiments from UV-Vis, high resolution mass spectrometry, electrochemistry, EPR and oxidation kinetics support that the improved electron transfer ability of iron(III) species originates from its interaction with added Lewis acids like Zn(2+) through a plausible chloride or OTf(-) bridge, which has promoted the redox potential of iron(III) species. The amine oxidation mechanism was also discussed based on the available data, which resembles the co-oxidase activity of lipoxygenases in oxidative dealkylation of xenobiotic metabolisms where an external electron donor is not essential for dioxygen activation.
A Three-Step Atomic Layer Deposition Process for SiN x Using Si2Cl6, CH3NH2, and N2 Plasma.
Ovanesyan, Rafaiel A; Hausmann, Dennis M; Agarwal, Sumit
2018-06-06
We report a novel three-step SiN x atomic layer deposition (ALD) process using Si 2 Cl 6 , CH 3 NH 2 , and N 2 plasma. In a two-step process, nonhydrogenated chlorosilanes such as Si 2 Cl 6 with N 2 plasmas lead to poor-quality SiN x films that oxidize rapidly. The intermediate CH 3 NH 2 step was therefore introduced in the ALD cycle to replace the NH 3 plasma step with a N 2 plasma, while using Si 2 Cl 6 as the Si precursor. This three-step process lowers the atomic H content and improves the film conformality on high-aspect-ratio nanostructures as Si-N-Si bonds are formed during a thermal CH 3 NH 2 step in addition to the N 2 plasma step. During ALD, the reactive surface sites were monitored using in situ surface infrared spectroscopy. Our infrared spectra show that, on the post-N 2 plasma-treated SiN x surface, Si 2 Cl 6 reacts primarily with the surface -NH 2 species to form surface -SiCl x ( x = 1, 2, or 3) bonds, which are the reactive sites during the CH 3 NH 2 cycle. In the N 2 plasma step, reactive -NH 2 surface species are created because of the surface H available from the -CH 3 groups. At 400 °C, the SiN x films have a growth per cycle of ∼0.9 Å with ∼12 atomic percent H. The films grown on high-aspect-ratio nanostructures have a conformality of ∼90%.
Deng, Ming-Jay; Chen, Kai-Wen; Che, Yo-Cheng; Wang, I-Ju; Lin, Chih-Ming; Chen, Jin-Ming; Lu, Kueih-Tzu; Liao, Yen-Fa; Ishii, Hirofumi
2017-01-11
Here we report a simple, scalable, and low-cost method to enhance the electrochemical properties of Mn oxide electrodes for highly efficient and flexible symmetrical supercapacitors. The method involving printing on a printer, pencil-drawing, and electrodeposition is established to fabricate Mn oxide/Ni-nanotube/graphite/paper hybrid electrodes operating with a low-cost, novel urea-LiClO 4 /PVA as gel electrolyte for flexible solid-state supercapacitor (FSSC) devices. The Mn oxide nanofiber/Ni-nanotube/graphite/paper (MNNGP) electrodes in urea-LiClO 4 /PVA gel electrolyte show specific capacitance (C sp ) 960 F/g in voltage region 0.8 V at 5 mV/s and exhibit excellent rates of capacitance retention more than 85% after 5000 cycles. Moreover, the electrochemical behavior of the MNNGP electrodes in urea-LiClO 4 /PVA at operating temperatures 27-110 °C was investigated; the results show that the MNNGP electrodes in urea-LiClO 4 /PVA exhibit outstanding performance (1100 F/g), even at 90 °C. The assembled FSSC devices based on the MNNGP electrodes in urea-LiClO 4 /PVA exhibit great C sp (380 F/g in potential region of 2.0 V at 5 mV/s, exhibiting superior energy density 211.1 W h/kg) and great cycle stability (less than 15% loss after 5000 cycles at 25 mV/s). The oxidation-state change was examined by in situ X-ray absorption spectroscopy. FSSC devices would open new opportunities in developing novel portable, wearable, and roll-up electric devices owing to the cheap, high-performance, wide range of operating temperature, and simple procedures for large-area fabrication.
Stable Cl isotope composition of the Changjiang River water
NASA Astrophysics Data System (ADS)
Lang, Y.; Liu, C. Q.; LI, S. L.; Aravena, R.; Ding, H.; WANG, B.; Benjamin, C.
2017-12-01
To understand chemical wreathing, nutrient cycling, and the impact of human activities on eco-environments of the Changjiang River (Yangtze River) Basin, we carried out a geochemical study on water chemistry and multiple isotopes (C, N, S, Sr…...) of Changjiang River water in the summer season. Some of the research results about the water chemistry, boron isotope geochemistry and suspended matter have been published (Chetelat et al., 2008; Li et al., 2010). Ten samples were selected for the measurement of δ37Cl values, among which 7 samples were collected from main stream and 3 samples from tributaries. The range of δ37Cl values varies between 0.02‰ and 0.33‰ in the main stream and between 0.16‰ and 0.71‰ in the tributary waters. The δ37Cl values in general are negatively correlated with Cl- concentrations for both main stream and tributary waters. δ37Cl value of Wujiang, which is one of the large tributaries in the upper reach of Changjiang and dominated by carbonate rocks in lithology of the watershed, has the maximum value but minimum value of Cl- concentration in this study. The lowest δ37Cl value was measured for the water collected from the estuary of Changjiang River. The variation of δ37Cl values in the waters would be attributed to mixing of different sources of chlorine, which most likely include rain water, ground water, seawater, and pollutants. Systematic characterization of different Cl sources in terms of their chlorine isotope composition is imperative for better understanding of sources and processes of chlorine cycling. Acknowledgements: This work was financially supported by NSFC through project 41073099. (Omit references)
Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.
2013-01-01
Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394
Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K
2013-11-01
Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery
NASA Astrophysics Data System (ADS)
Kan, Jinqing; Xue, Huaiguo; Mu, Shaolin
The effects of Pb 2+, sodium lauryl sulfate and Triton X-100 on inhibition of Zn-dendrite growth in Zn-polyaniline batteries were studied by scanning electron micrograph and cyclic voltammetry. The results show that Triton X-100 in the region of 0.02-500 ppm in the electrolyte containing 2.5 M ZnCl 2 and 2.0 M NH 4Cl with pH 4.40 can effectively inhibit zinc-dendrite growth during charge-discharge cycles of the battery and yield longer cycles.
USDA-ARS?s Scientific Manuscript database
Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880nt in length with 5 putative open reading frames...
Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui
2014-09-01
The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
On the relevance of the methane oxidation cycle to ozone hole chemistry
NASA Technical Reports Server (NTRS)
Mueller, Rolf; Crutzen, Paul J.
1994-01-01
High concentrations of active chlorine are clearly responsible for the observed ozone depletion during the Antarctic polar spring. However, the mechanism behind the activation of chlorine from the reservoirs species HCl and ClONO2 and the maintenance of extremely high levels of active chlorine after polar sunrise is less well understood. Here, we focus on the influence of the methane oxidation cycle on 'ozone hole' chemistry through its effect on HOx and ClOx radicals. We demonstrate the great potential importance of the heterogeneous reaction HCl + HOCl yields Cl2 + H2O and the gasphase reaction ClO + CH3O2 yields ClOO + CH3O under sunlight conditions in polar spring. Under these conditions, the heterogeneous reaction is the main sink for HOx radicals. Through this channel, the HCl reservoir may be almost completely depleted. The gas phase reaction may control the levels of the CH3O2 radical, provided that high levels of ClO exist. Otherwise this radical initiates a sequence of reactions leading to a considerable loss of active chlorine. Moreover, the production of HOx radicals is reduced, and thereby the efficiency of the heterogeneous reaction limited. The two reactions together may accomplish the complete conversion of HCl into active chlorine, thereby leading to a rapid destruction of ozone.
Synthesis and characterization of Fe3O4-SiO2-AgCl photocatalyst
NASA Astrophysics Data System (ADS)
Husni, H. N.; Mahmed, N.; Ngee, H. L.
2016-07-01
Magnetite-silica-silver chloride (Fe3O4-SiO2-AgCl) coreshell particles with AgCl crystallite size of 117 nm was prepared by a wet chemistry method at ambient temperature. The magnetite-core was synthesized by using iron (II) sulfate heptahydrate (FeSO4•7H2O) and iron (III) sulfate hydrate (Fe2(SO4)3) with ammonium hydroxide (NH4OH) as the precipitating agent. The silica-shell was synthesized by using a modified Stöber process. The silver ions (Ag+) was adsorbed onto the silica surface after Söber process, followed by the addition of Cl- and polyvinylpyrrolidone (PVP) for the formation of Fe3O4-SiO2-AgCl coreshell particles. The effectiveness of the synthesized photocatalyst was investigated by monitoring the degradation of the methylene blue (MB) under sunlight for five cycles. About 90 % of the MB solution can be degraded after 2 hours. The degradation of MB solution by the Fe3O4-SiO2-AgCl particles is highly efficient for first three cycles according to the MB concentration recorded by the UV-Visible spectroscopy (UV-Vis). Nevertheless, the synthesized particles could be a promising material for photocatalytic applications.
The effect of ultradian and orbital cycles on plant growth
NASA Technical Reports Server (NTRS)
Berry, W.; Hoshizaki, T.; Ulrich, A.
1986-01-01
In a series of experiments using sugar beets, researchers investigated the effects of varying cycles lengths on growth (0.37 hr to 48 hr). Each cycle was equally divided into a light and dark period so that each treatment regardless of cycle length received the same amount of light over the 17 weeks of the experiment. Two growth parameters were used to evaluate the effects of cycle length, total fresh weight and sucrose content of the storage root. Both parameters showed very similar responses in that under long cycles (12 hr or greater) growth was normal, whereas plants growing under shorter cycle periods were progressively inhibited. Minimum growth occurred at a cycle period of 0.75 hr. The yield at the 0.75 hr cycle, where was at a minimum, for total fresh weight was only 51 percent compared to the 24 hr cycle. The yield of sucrose was even more reduced at 41 percent of the 24 hr cycle.
Combined strategy for phytotoxicity enhancement of benzoxazinones.
Macías, Francisco A; Chinchilla, Nuria; Arroyo, Elena; Molinillo, José M G; Marín, David; Varela, Rosa M
2010-02-10
Fifteen new derivatives of D-DIBOA, including aromatic ring modifications and the addition of side chains in positions C-2 and N-4, were synthesized and their phytotoxicity, selectivity, and structure-activity relationships evaluated. The most active compounds among the derivatives at the C-2 position were 6-Cl-2-Et-D-DIBOA and 6-F-2-Et-D-DIBOA. Of the derivatives at N-4, the most active compounds were 6-Cl-4-Pr-D-DIBOA and 6-Cl-4-Val-D-DIBOA. These four compounds showed high levels of inhibition in root length at very low concentrations in all species. The most remarkable result is the 70% inhibition observed for the root length of cress at 100 nM caused by the latter two compounds. These results support our previous research and conclusions regarding the steric, electronic, and solubility requirements to achieve the maximum phytotoxic activity.
NASA Astrophysics Data System (ADS)
Green, R. T.; Luxmoore, I. J.; Lee, K. B.; Houston, P. A.; Ranalli, F.; Wang, T.; Parbrook, P. J.; Uren, M. J.; Wallis, D. J.; Martin, T.
2010-07-01
Incorporating GaN capping layers in conjunction with recessing has been identified as a means to maximize the high frequency performance of AlGaN/GaN high electron mobility transistors (HEMTs). Doping the cap heavily n-type is required in order to ensure minimal loss of carriers from the channel. Using a SiCl4/SF6 dry etch plasma recipe, 250 nm gate length HEMTs with recess lengths varying from 300 nm to 5 μm are fabricated. Heavily doped n+GaN caps enabled contact resistances of 0.3 Ω mm to be achieved. Recessing using a SiCl4/SF6 recipe does not introduce significant numbers of bulk traps. Gate recessing in conjunction with Si3N4 passivation reduces rf dispersion to negligible levels.
Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study
Davis, Stephanie I; Blanck, Heidi Michels; Hertzberg, Vicki S; Tolbert, Paige E; Rubin, Carol; Cameron, Lorraine L; Henderson, Alden K; Marcus, Michele
2005-01-01
Background Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. Methods The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. Results Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. Conclusion This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds. PMID:16091135
Yang, Bing-Yan; Huo, Xiu-Ai; Li, Peng-Fei; Wang, Cui-Xia; Duan, Hui-Jun
2014-08-01
Full-length cDNAs are very important for genome annotation and functional analysis of genes. The number of full-length cDNAs from watermelon remains limited. Here we report first the construction of a full-length enriched cDNA library from Fusarium wilt stressed watermelon (Citrullus lanatus Thunb.) cultivar PI296341 root tissues using the SMART method. The titer of primary cDNA library and amplified library was 2.21 x 10(6) and 2.0 x 10(10) pfu/ml, respectively and the rate of recombinant was above 85%. The size of insert fragment ranged from 0.3 to 2.0 kb. In this study, we first cloned a gene named ClWRKY1, which was 1981 bp long and encoded a protein consisting of 394 amino acids. It contained two characteristic WRKY domains and two zinc finger motifs. Quantitative real-time PCR showed that ClWRKY1 expression levels reached maximum level at 12 h after inoculation with Fusarium oxysporum f. sp. niveum. The full-length cDNA library of watermelon root tissues is not only essential for the cloning of genes which are known, but also an initial key for the screening and cloning of new genes that might be involved in resistance to Fusarium wilt.
Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis.
Chemineau, Philippe; Pellicer-Rubio, Maria-Theresa; Lassoued, Narjess; Khaldi, Gley; Monniaux, Danielle
2006-01-01
The existence of short ovulatory cycles (5-day duration) after the first male-induced ovulations in anovulatory ewes and goats, associated or not with the appearance of oestrous behaviour, is the origin of the two-peak abnormal distribution of parturitions after the "male effect". We propose here a working hypothesis to explain the presence of these short cycles. The male-effect is efficient during anoestrus, when follicles contain granulosa cells of lower quality than during the breeding season. They generate corpora lutea (CL) with a lower proportion of large luteal cells compared to small cells, which secrete less progesterone, compared to what is observed in the breeding season cycle. This is probably not sufficient to block prostaglandin synthesis in the endometrial cells of the uterus at the time when the responsiveness to prostaglandins of the new-formed CL is initiated and, in parallel, to centrally reduce LH pulsatility. This LH pulsatility stimulates a new wave of follicles secreting oestradiol which, in turn, stimulates prostaglandin synthesis and provokes luteolysis and new ovulation(s). The occurrence of a new follicular wave on days 3-4 of the first male-induced cycle and the initiation of the responsiveness to prostaglandins of the CL from day 3 of the oestrous cycle are probably the key elements which ensure such regularity in the duration of the short cycles. Exogenous progesterone injection suppresses short cycles, probably not by delaying ovulation time, but rather by blocking prostaglandin synthesis, thus impairing luteolysis. The existence, or not, of oestrous behaviour associated to these ovulatory events mainly varies with species: ewes, compared to does, require a more intense endogenous progesterone priming; only ovulations preceded by normal cycles are associated with oestrous behaviour. Thus, the precise and delicate mechanism underlying the existence of short ovulatory and oestrous cycles induced by the male effect appears to be dependent on the various levels of the hypothalamo-pituitary-ovario-uterine axis.
Cutaneous Leishmaniasis and Sand Fly Fluctuations Are Associated with El Niño in Panamá
Chaves, Luis Fernando; Calzada, José E.; Valderrama, Anayansí; Saldaña, Azael
2014-01-01
Background Cutaneous Leishmaniasis (CL) is a neglected tropical vector-borne disease. Sand fly vectors (SF) and Leishmania spp parasites are sensitive to changes in weather conditions, rendering disease transmission susceptible to changes in local and global scale climatic patterns. Nevertheless, it is unclear how SF abundance is impacted by El Niño Southern Oscillation (ENSO) and how these changes might relate to changes in CL transmission. Methodology and Findings We studied association patterns between monthly time series, from January 2000 to December 2010, of: CL cases, rainfall and temperature from Panamá, and an ENSO index. We employed autoregressive models and cross wavelet coherence, to quantify the seasonal and interannual impact of local climate and ENSO on CL dynamics. We employed Poisson Rate Generalized Linear Mixed Models to study SF abundance patterns across ENSO phases, seasons and eco-epidemiological settings, employing records from 640 night-trap sampling collections spanning 2000–2011. We found that ENSO, rainfall and temperature were associated with CL cycles at interannual scales, while seasonal patterns were mainly associated with rainfall and temperature. Sand fly (SF) vector abundance, on average, decreased during the hot and cold ENSO phases, when compared with the normal ENSO phase, yet variability in vector abundance was largest during the cold ENSO phase. Our results showed a three month lagged association between SF vector abundance and CL cases. Conclusion Association patterns of CL with ENSO and local climatic factors in Panamá indicate that interannual CL cycles might be driven by ENSO, while the CL seasonality was mainly associated with temperature and rainfall variability. CL cases and SF abundance were associated in a fashion suggesting that sudden extraordinary changes in vector abundance might increase the potential for CL epidemic outbreaks, given that CL epidemics occur during the cold ENSO phase, a time when SF abundance shows its highest fluctuations. PMID:25275503
Meng, Xin; Wang, Yiting; Wang, Xiaomeng; Wrennall, Joe A; Rimington, Tracy L; Li, Hongyu; Cai, Zhiwei; Ford, Robert C; Sheppard, David N
2017-03-03
Cystic fibrosis (CF) is caused by mutations that disrupt the plasma membrane expression, stability, and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl - channel. Two small molecules, the CFTR corrector lumacaftor and the potentiator ivacaftor, are now used clinically to treat CF, although some studies suggest that they have counteracting effects on CFTR stability. Here, we investigated the impact of these compounds on the instability of F508del-CFTR, the most common CF mutation. To study individual CFTR Cl - channels, we performed single-channel recording, whereas to assess entire CFTR populations, we used purified CFTR proteins and macroscopic CFTR Cl - currents. At 37 °C, low temperature-rescued F508del-CFTR more rapidly lost function in cell-free membrane patches and showed altered channel gating and current flow through open channels. Compared with purified wild-type CFTR, the full-length F508del-CFTR was about 10 °C less thermostable. Lumacaftor partially stabilized purified full-length F508del-CFTR and slightly delayed deactivation of individual F508del-CFTR Cl - channels. By contrast, ivacaftor further destabilized full-length F508del-CFTR and accelerated channel deactivation. Chronic (prolonged) co-incubation of F508del-CFTR-expressing cells with lumacaftor and ivacaftor deactivated macroscopic F508del-CFTR Cl - currents. However, at the single-channel level, chronic co-incubation greatly increased F508del-CFTR channel activity and temporal stability in most, but not all, cell-free membrane patches. We conclude that chronic lumacaftor and ivacaftor co-treatment restores stability in a small subpopulation of F508del-CFTR Cl - channels but that the majority remain destabilized. A fuller understanding of these effects and the characterization of the small F508del-CFTR subpopulation might be crucial for CF therapy development. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Dhers, Sébastien; Küp, Fatma Öztürk; Güllü, Mithat; Ng, Seikweng
2017-11-01
The synthesis of two unsymmetrical N-capped tripodal amines, 2-((4-aminobutyl)(pyridin-2-ylmethyl)amino)ethanol (3) and 3-((2-aminoethyl)(pyridin-2-ylmethyl)amino)propan-1-ol (4) is reported. They feature a longer, 3-hydroxypropyl or butylamino arm than that in the analogues previously employed. All four tripodal amines, 1-4, are equipped with a 2-methylpyridyl-arm, and either an ethylamino-arm (1 and 4), propylamino-arm (2) or butylamino-arm (3). The amines, 3 and 4, have been employed in one pot condensation reactions with salicylaldehyde and its derivatives in the presence of Ni(II) metal ion. A series of new mononuclear complexes, [NiIILaldi](ClO4) or [NiIILaldi(solvent)](ClO4) with different geometry, of Schiff base ligands were generated. X-ray crystal structure determinations of [NiIILOMe3(H2O)](ClO4)·2H2O and [NiIILOMe4](ClO4) revealed them to be mononuclear. The Ni(II) ion in [NiIILOMe4](ClO4) complex is in a distorted square-planar environment whilst this ion is in distorted octahedral environment in [NiIILOMe3(H2O)](ClO4)·2H2O complex despite the longer arm length of L3. While, in related systems in our previous work, they had led to dimeric complexes. These results clearly showed that the variation of the arm lengths of the ligands and metal ions has a remarkable impact on the formation and structure of the complexes. The cleavage of DNA by all synthesised complexes was examined using gel electrophoresis experiments. Also, the antibacterial effects of components were determined against the three Gram-positive bacteria, and against the three Gram-negative bacteria and against the three yeast Candida albicans ATCC 10231, Candida krusei ATCC 1424 and Candida tropicalis ATCC 13803.
Moon, Dohyun; Choi, Jong-Ha
2016-01-01
The asymmetric unit of the title complex salt, [Cr(C10H24N4)(NH3)2][ZnCl4]Cl·H2O, is comprised of four halves of the CrIII complex cations (the counterparts being generated by application of inversion symmetry), two tetrachloridozincate anions, two chloride anions and two water molecules. Each CrIII ion is coordinated by the four N atoms of the cyclam (1,4,8,11-tetraazacyclotetradecane) ligand in the equatorial plane and by two N atoms of ammine ligands in axial positions, displaying an overall distorted octahedral coordination environment. The Cr—N(cyclam) bond lengths range from 2.0501 (15) to 2.0615 (15) Å, while the Cr—(NH3) bond lengths range from 2.0976 (13) to 2.1062 (13) Å. The macrocyclic cyclam moieties adopt the trans-III conformation with six- and five-membered chelate rings in chair and gauche conformations. The [ZnCl4]2− anions have a slightly distorted tetrahedral shape. In the crystal, the Cl− anions link the complex cations, as well as the solvent water molecules, through N—H⋯Cl and O—H⋯Cl hydrogen-bonding interactions. The supramolecular set-up also includes N—H⋯Cl, C—H⋯Cl, N—H⋯O and O—H⋯Cl hydrogen bonding between N—H or C—H groups of cyclam, ammine N—H and water O—H donor groups, and O atoms of the water molecules, Cl− anions or Cl atoms of the [ZnCl4]2− anions as acceptors, leading to a three-dimensional network structure. PMID:27375863
Moon, Dohyun; Choi, Jong-Ha
2016-01-01
In the asymmetric unit of the title compound, [CrCl2(C10H24N4)][Cr(C2O4)(C10H24N4)](ClO4)2 (C10H24N4 = 1,4,8,11-tetraazacyclotetradecane, cyclam; C2O4 = oxalate, ox), there are two independent halves of the [CrCl2(cyclam)]+ and [Cr(ox)(cyclam)]+ cations, and one perchlorate anion. In the complex cations, which are completed by application of twofold rotation symmetry, the CrIII ions are coordinated by the four N atoms of a cyclam ligand, and by two chloride ions or one oxalate bidentate ligand in a cis arrangement, displaying an overall distorted octahedral coordination environment. The Cr—N(cyclam) bond lengths are in the range of 2.075 (5) to 2.096 (4) Å while the Cr—Cl and Cr—O(ox) bond lengths are 2.3358 (14) and 1.956 (4) Å, respectively. Both cyclam moieties adopt the cis-V conformation. The slightly distorted tetrahedral ClO4 − anion remains outside the coordination sphere. The supramolecular architecture includes N—H⋯O and N—H⋯Cl hydrogen bonding between cyclam NH donor groups, O atoms of the oxalate ligand or ClO4 − anions and one Cl ligand as acceptors, leading to a three-dimensional network structure. PMID:27746932
Liu, Tong; Wang, Jun; Wang, Jinhua; Zhu, Lusheng
2018-05-15
Imidazolium-based ionic liquids (ILs) have attracted increasing attention in recent years. The IL 1-dodecyl-3-methylimidazolium chloride ([C 12 mim]Cl) has been widely used in the chemical industry. In this study, the influence of [C 12 mim]Cl on Vicia faba seedlings, soil physicochemical properties and soil enzyme activities was investigated for the first time. Meanwhile, the variation of [C 12 mim]Cl concentrations in soil was monitored during the exposure period. The present results showed that the concentration of [C 12 mim]Cl remained stable in the tested soil with a change rate of no more than 10% during the exposure period. The 50% effective concentration (EC 50 ) values for shoot length, root length and dry weight were 188, 69 and 132 mg kg -1 , respectively. At 200 mg kg -1 and 400 mg kg -1 , [C 12 mim]Cl had significant influence on soil organic matter content, pH value and conductivity value. At 40 mg kg -1 , the reactive oxygen species (ROS) levels were obviously enhanced, resulting in oxidative stress effects in Vicia faba seedling leaves. Additionally, the soil enzyme activities changed significantly at 40 mg kg -1 . Copyright © 2018 Elsevier Inc. All rights reserved.
Modification of cervical length after cervical pessary insertion: correlation weeks of gestation.
Mendoza, Manel; Goya, Maria; Gascón, Andrea; Pratcorona, Laia; Merced, Carme; Rodó, Carlota; Valle, Leonor; Romero, Azahar; Juan, Miquel; Rodríguez, Alberto; Muñoz, Begoña; Santacruz, Bele N; Carreras, Elena; Cabero, Luis
2017-07-01
To observe the modifications in cervical length (CL) in patients with and without cervical pessary (Arabin® ASQ 65/25/32) and correlate these modifications with gestational age at delivery. Prospective study of asymptomatic singleton pregnancies (PECEP-Trial) between weeks 20 + 0 and 23 + 6 with maternal short cervix (<25 mm) randomised into two groups: expectant management and cervical pessary. This study included 380 pregnant women: 190 with pessary and 190 without pessary. Mean CL in both groups at the time of randomisation showed no statistically-significant differences (pessary group: 19.0 mm and management group: 19.0 mm; p = 0.9). Mean CL measured after randomisation was 15.4 mm in patients of the expectant management group and 21.5 mm in the pessary group. These differences were statistically significant (p < 0.0001). When means at randomisation and at the second measurement were compared, CL had decreased by 3.6 mm in the expectant management group and increased by 2.6 mm in the pessary group; this difference was statistically significant (p < 0.0001). Coefficients of correlation showed that among patients of both groups with the same CL at 20 weeks of gestation, those with a pessary gave birth later. Insertion of an Arabin cervical pessary increased CL in asymptomatic patients with a short cervix, which correlated with shorter gestational age at delivery. The cervical pessary halted the progressive decrease in CL, which correlated with longer gestational age at delivery.
Dietary Nitrate Fails to Improve 1 and 4 km Cycling Performance in Highly Trained Cyclists.
McQuillan, Joseph A; Dulson, Deborah K; Laursen, Paul B; Kilding, Andrew E
2017-06-01
We aimed to compare the effects of two different dosing durations of dietary nitrate (NO 3 - ) supplementation on 1 and 4 km cycling time-trial performance in highly trained cyclists. In a double-blind crossover-design, nine highly trained cyclists ingested 140ml of NO 3 - -rich beetroot juice containing ~8.0mmol [NO 3 - ], or placebo, for seven days. Participants completed a range of laboratory-based trials to quantify physiological and perceptual responses and cycling performance: time-trials on day 3 and 6 (4km) and on day 4 and 7 (1km) of the supplementation period. Relative to placebo, effects following 3- and 4-days of NO 3 - supplementation were unclear for 4 (-0.8; 95% CL, ± 2.8%, p = .54) and likely harmful for 1km (-1.9; ± 2.5% CL, p = .17) time-trial mean power. Effects following 6- and 7-days of NO 3 - supplementation resulted in unclear effects for 4 (0.1; ± 2.2% CL, p = .93) and 1km (-0.9; ± 2.6%CL, p = .51) time-trial mean power. Relative to placebo, effects for 40, 50, and 60% peak power output were unclear for economy at days 3 and 6 of NO 3 - supplementation (p > .05). Dietary NO 3 - supplementation appears to be detrimental to 1km time-trial performance in highly trained cyclists after 4-days. While, extending NO 3 - dosing to ≥ 6-days reduced the magnitude of harm in both distances, overall performance in short duration cycling time-trials did not improve relative to placebo.
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.
1984-01-01
Baseline burner rig hot corrosion with Udimet 700, Rene' 80; uncoated and with RT21, Codep, or NiCoCrAlY coatings were tested. Test conditions are: 900C, hourly thermal cycling, 0.5 ppm sodium as NaCl in the gas stream, velocity 0.3 Mach. The uncoated alloys exhibited substantial typical sulfidation in the range of 140 to 170 hours. The aluminide coatings show initial visual evidence of hot corrosion at about 400 hours, however, there is no such visual evidence for the NiCoCrAlY coatings. The turbine components show sulfidation. The extent of this distress appeared to be inversely related to the average length of mission which may, reflect greater percentage of operating time near ground level or greater percentage of operation time at takeoff conditions (higher temperatures). In some cases, however, the location of maximum distress did not exhibit the structural features of hot corrosion.
Fourier transform microwave spectroscopy of the SiCl+ ion
NASA Astrophysics Data System (ADS)
Tanaka, Keiichi; Harada, Kensuke; Cabezas, Carlos; Endo, Yasuki
2018-03-01
Fourier transform microwave spectra for the J = 1 ← 0 and 2 ← 1 rotational transitions of the SiCl+ ion were observed for two isotopologues (35 Cl and 37 Cl) in the ground and the first excited vibrational states of the ground 1Σ+ electronic state. Thanks to the high resolution of the FTMW spectrometer, hyperfine structures due to the quadrupole moment of the chlorine nucleus and the nuclear spin-rotation interaction were fully resolved. The observed FTMW spectra were combined with previously reported MMW and diode laser spectra in an analysis to determine the mass-independent Dunham coefficients Uk,l as well as a mass scaling parameter Δ01Cl = - 0.856 (30) . The equilibrium bond length of SiCl+ determined is re = 1.9439729 (10) Å and the nuclear quadrupole coupling constant of Si35 Cl+ is eQqe = - 11.8788 (23) MHz.
Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico.
Ulloa, Armando; Gonzalez-Cerón, Lilia; Rodríguez, Mario H
2006-12-01
The host preference, survival rates, and length of the gonotrophic cycle of Anopheles punctimacula was investigated in southern México. Mosquitoes were collected in 15-day separate experiments during the rainy and dry seasons. Daily changes in the parous-nulliparous ratio were recorded and the gonotrophic cycle length was estimated by a time series analysis. Anopheles punctimacula was most abundant during the dry season and preferred animals to humans. The daily survival rate in mosquitoes collected in animal traps was 0.96 (parity rate = 0.86; gonotrophic cycle = 4 days). The length of gonotrophic cycle of 4 days was estimated on the base of a high correlation coefficient value appearing every 4 days. The minimum time estimated for developing mature eggs after blood feeding was 72 h. The proportion of mosquitoes living enough to transmit Plasmodium vivax malaria during the dry season was 0.35.
Genomic profiling of bovine corpus luteum maturation
Wigoda, Noa; Ben-Dor, Shifra; Orr, Irit; Meidan, Rina
2018-01-01
To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures. PMID:29590145
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-10-01
To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.
Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil
2014-01-01
Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737
On the Ground Electronic States of TiF and TiCl
NASA Astrophysics Data System (ADS)
Boldyrev, Alexander I.; Simons, Jack
1998-04-01
The low-lying electronic states of TiF and TiCl have been studied using high levelab initiotechniques. Both are found to have two low-lying excited electronic states,4Σ-(0.080 eV (TiF) and 0.236 eV (TiCl)) and2Δ (0.266 eV (TiF) and 0.348 eV (TiCl)), and4Φ ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of4Φ ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data.
Advanced zinc-doped adhesives for high performance at the resin-carious dentin interface.
Toledano, Manuel; Osorio, Raquel; Osorio, Estrella; García-Godoy, Franklin; Toledano-Osorio, Manuel; Aguilera, Fátima S
2016-09-01
The purpose of this study was to evaluate the remineralization ability of an etch-and-rinse Zn-doped resin applied on caries-affected dentin (CAD). CAD surfaces were subjected to: (i) 37% phosphoric acid (PA) or (ii) 0.5M ethylenediaminetetraacetic acid (EDTA). 10wt% ZnO nanoparticles or 2wt% ZnCl2 were added into the adhesive Single Bond (SB), to create the following groups: PA+SB, PA+SB-ZnO, PA+SB-ZnCl2, EDTA+SB, EDTA+SB-ZnO, EDTA+SB-ZnCl2. Bonded interfaces were submitted to mechanical loading or stored during 24h. Remineralization of the bonded interfaces was studied by AFM nano-indentation (hardness and Young׳s modulus), Raman spectroscopy [mapping with principal component analysis (PCA), and hierarchical cluster analysis (HCA)] and Masson׳s trichrome staining technique. Dentin samples treated with PA+SB-ZnO attained the highest values of nano-mechanical properties. Load cycling increased both mineralization and crystallographic maturity at the interface; this effect was specially noticed when using ZnCl2-doped resin in EDTA-treated carious dentin. Crosslinking attained higher frequencies indicating better conformation and organization of collagen in specimens treated with PA+SB-ZnO, after load cycling. Trichrome staining technique depicted a deeper demineralized dentin fringe that became reduced after loading, and it was not observable in EDTA+SB groups. Multivariate analysis confirmed de homogenizing effect of load cycling in the percentage of variances, traces of centroids and distribution of clusters, especially in specimens treated with EDTA+SB-ZnCl2. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reduced Osmotic Potential Inhibition of Photosynthesis 1
Berkowitz, Gerald A.; Gibbs, Martin
1983-01-01
The effects of reduced reaction medium osmotic potential (0.67 molar sorbitol as compared to a control treatment with 0.33 molar sorbitol) on the enzymic steps of the photosynthetic carbon reduction cycle were investigated using isolated spinach (Spinacia oleracea L. var Longstanding Bloomsdale) chloroplasts. Reversal of reduced osmotic potential inhibition of photosynthetic rates by a stromal alkalating agent (NH4Cl) was associated with specific steps of the cycle. Low osmotic potential induced stromal acidification was found to be facilitated by osmotically induced chloroplast shrinkage. However, the action of the alkalating agent was found not to be associated with reversal of osmotically induced morphological changes of the stromal compartment. Labeled metabolite analyses indicated that the osmotic stress treatment caused the substrate for fructose 1,6-bisphosphatase (FBPase) to build up in the absence of NH4Cl, and the substrate for phosphoribulokinase to increase in the presence of NH4Cl. These data were interpreted as indicating that the most severe effect of osmotic stress on photosynthesis is at the site of FBPase, and that this inhibition is mediated by osmotically induced stromal acidification. Phosphoribulokinase activity inhibition at the low osmotic potential treatment was apparently less severe and not mediated by stromal acidification. A third site of osmotic inhibition, which was reversed by NH4Cl, and therefore was assumed to be mediated by stromal acidification, was at the step of ribulose 1,5-bisphosphate carboxylase. Additions of NH4Cl also enhanced the activity of the pH-insensitive phase of the photosynthetic carbon reduction cycle, 3-phosphoglyceric acid reduction, at the stress treatment. This effect was thought to be mediated by the removal of the block at FBPase. A model was proposed to outline the relative severity of osmotic stress effects at various sites of the photosynthetic carbon reduction cycle. Images Fig. 1 PMID:16663127
Ultrastructural changes of goat corpus luteum during the estrous cycle.
Jiang, Yi-Fan; Hsu, Meng-Chieh; Cheng, Chiung-Hsiang; Tsui, Kuan-Hao; Chiu, Chih-Hsien
2016-07-01
The present study was designed to study the ultrastructure of goat corpora lutea (CL, n=10) and structural changes as related to steroidogenic functions during the estrous cycle. The reproduction status of goats was estimated by analyzing serum progesterone concentrations. The CL at various stages was surgically collected. To characterize ultrastructural features associated with steroidogenesis, tissue and cellular structures were studied. Blood supplies were examined based on features of the endothelial cells and capillary structures in the CL. Activated endothelial cells and developing vessels were observed in the early stage, whereas mature endothelial cells, accumulating extracellular matrix fibers, and stabilized vessels were observed in the middle and late stages of assessment. In the late stage of assessment, shrunken goat luteal cells scattered around the capillaries were detected and formed circular regression areas. Features of autophagy and luteal cell apoptosis were noted. In large luteal cells, steroidogenic organelles were present, including microvillar channels, endoplasmic reticulum, and mitochondria. Conformational changes in the endoplasmic reticulum and increased mitochondria with tubular cristae were observed in the early-middle CL transitions. In contrast, mitochondria swelled and the cristae transformed to the lamellar type in the late stage, suggesting that organelle plasticity could contribute to steroidogenesis in goat CL. In conclusion, results suggest angiogenesis occurs in early developing CL and programmed cell death occurred in the late stage of CL assessment in the present study. Structures and quantiles of steroidogenic organelles are correlated with the steroidogenic functions in goats. Copyright © 2016 Elsevier B.V. All rights reserved.
Bruck, Andrea M; Yin, Jiefu; Tong, Xiao; Takeuchi, Esther S; Takeuchi, Kenneth J; Szczepura, Lisa F; Marschilok, Amy C
2018-05-07
The cluster-based material Re 6 Se 8 Cl 2 is a two-dimensional ternary material with cluster-cluster bonding across the a and b axes capable of multiple electron transfer accompanied by ion insertion across the c axis. The Li/Re 6 Se 8 Cl 2 system showed reversible electron transfer from 1 to 3 electron equivalents (ee) at high current densities (88 mA/g). Upon cycling to 4 ee, there was evidence of capacity degradation over 50 cycles associated with the formation of an organic solid-electrolyte interface (between 1.45 and 1 V vs Li/Li + ). This investigation highlights the ability of cluster-based materials with two-dimensional cluster bonding to be used in applications such as energy storage, showing structural stability and high rate capability.
Upson, Kristen; Harmon, Quaker E.; Baird, Donna D.
2016-01-01
Objective To examine the association between serum 25-hydroxyvitamin D (25(OH)D) and menstrual cycle length and regularity. Design Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women ages 23-34 reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally-adjusted 25(OH)D and the odds of each cycle category. Setting Women from the Detroit, Michigan area attended a study clinic visit. Participants 1102 African-American women ages 23-34. Intervention None Main Outcome Measure Self-reported menstrual cycle length over the previous 12 months excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were “too irregular to estimate” were classified as having irregular cycles. A typical cycle length of <27 days was considered “short,” >34 days was “long,” and 27-34 days was “normal”. Results The median 25(OH)D level was 14.7 ng/ml (interquartile range: 10.9, 19.6). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles (adjusted odds ratio (aOR) (95% Confidence interval (CI): 0.54 (0.32, 0.89)). 25(OH)D was not associated with the occurrence of short (aOR(CI): 1.03 (0.82, 1.29)) or irregular (aOR(CI): 1.46 (0.88, 2.41) menstrual cycles. Results were robust to several sensitivity analyses. Conclusions These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. PMID:26997249
Jukic, Anne Marie Z; Upson, Kristen; Harmon, Quaker E; Baird, Donna D
2016-07-01
To examine the association between serum 25-hydroxyvitamin D [25(OH)D] and menstrual cycle length and regularity. Community-based, cross-sectional study of serum 25(OH)D (adjusted for seasonal differences in timing of blood draw) and menstrual cycle length. Women aged 23-34 years reported their gynecologic history. Menstrual cycles were described with four independent categories (normal, short, long, irregular). We used polytomous logistic regression to estimate the association between a doubling of seasonally adjusted 25(OH)D and the odds of each cycle category. Not applicable. A total of 1,102 African American women. Not applicable. Self-reported menstrual cycle length over the previous 12 months, excluding women who were using cycle-regulating medications over the entire year. Women who reported that their cycles were "too irregular to estimate" were classified as having irregular cycles. A typical cycle length of <27 days was considered "short," >34 days was "long," and 27-34 days was "normal." The median 25(OH)D level was 14.7 ng/mL (interquartile range, 10.9-19.6 ng/mL). A doubling of 25(OH)D was associated with half the odds of having long menstrual cycles: adjusted odds ratio (aOR) 0.54, 95% confidence interval (CI) 0.32-0.89. 25-Hydroxyvitamin D was not associated with the occurrence of short (aOR 1.03, 95% CI 0.82-1.29) or irregular (aOR 1.46, 95% CI 0.88-2.41) menstrual cycles. Results were robust to several sensitivity analyses. These findings suggest that vitamin D status may influence the menstrual cycle and play a role in ovarian function. Further investigation of 25(OH)D and ovarian hormones, and prospective studies of 25(OH)D and cycle length, are needed. Copyright © 2016 American Society for Reproductive Medicine. All rights reserved.
Bruña, Sonia; González-Vadillo, Ana Mª; Ferrández, Marta; Perles, Josefina; Montero-Campillo, M Merced; Mó, Otilia; Cuadrado, Isabel
2017-09-12
The formation of a family of silicon- and siloxane-bridged multiferrocenyl derivatives carrying different functional groups attached to silicon, including Fc 2 (CH 3 ) 3 C(CH 2 ) 2 SiCH[double bond, length as m-dash]CH 2 (5), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)SiCH[double bond, length as m-dash]CH 2 (6), Fc 2 (OH)SiCH[double bond, length as m-dash]CH 2 (7), Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-Si(O-CH[double bond, length as m-dash]CH 2 )Fc 2 (8) and Fc 2 (CH 2 [double bond, length as m-dash]CH-O)Si-O-SiFc 3 (9) is described. Silyl vinyl ether molecules 6, 8 and 9 and the heteroleptic vinylsilane 5 resulted from the competing metathesis reaction of lithioferrocene (FcLi), CH 2 [double bond, length as m-dash]CH-OLi or (CH 3 ) 3 C(CH 2 ) 2 Li with the corresponding multifunctional chlorosilane, Cl 3 SiCH[double bond, length as m-dash]CH 2 or Cl 3 Si-O-SiCl 3 . The last two organolithium species have been likely formed in situ by fragmentation of the tetrahydrofuran solvent. Diferrocenylvinyloxyvinylsilane 6 is noteworthy since it represents a rare example of a redox-active silyl mononomer in which two different C[double bond, length as m-dash]C polymerisable groups are directly connected to silicon. The molecular structures of the silicon-containing multiferrocenyl species 5, 6, 8 and 9 have been investigated by single-crystal X-ray diffraction studies, demonstrating the capture and storage processes of two ring fragments resulting from the cleavage of cyclic THF in redox-active and stable crystalline organometallic compounds. From electrochemical studies we found that by changing the anion of the supporting electrolyte from [PF 6 ] - to [B(C 6 F 5 ) 4 ] - , the redox behaviour of tetrametallic disiloxane 8 can be switched from a poorly resolved multistep redox process to four consecutive well-separated one-electron oxidations, corresponding to the sequential oxidation of the four ferrocenyl moieties.
An Interactive Life Cycle Cost Forecasting Tool
1991-03-01
0131 print* 0132 IF (yorn .EQ. 1) THEN 0133 print 721,NYEARS 0134 721 FORMAT(’ The life cycle of this system is’,14,1 years.’) 0135 print*,’Do you wish...464 481 521 535 556 613= 626= 627 631= 633 642= 643 658= 669 = 672= 673(2) 683= 689= 692= 693(2) 705= 706(4) 715 723= 727= 728 732= 737= 738 740= 747...REGION 0129 C OF THE TRAPEZOID. 0130 0131 50 IF (Cl .EQ. 0.0) GO TO 100 0132 0133 C DISTRIBUTE COST OVER TW’ RECTANGULAR REGION. 0134 0135 X = (Z2/Cl
Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries
NASA Astrophysics Data System (ADS)
Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo
2012-12-01
The sodium-nickel chloride (ZEBRA) battery is operated at relatively high temperature (250-350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β″-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150 °C.
Tsang, Chehong; Shehata, Medhat H.; Lotfy, Abdurrahmaan
2016-01-01
The lack of a standard test method for evaluating the resistance of pervious concrete to cycles of freezing and thawing in the presence of deicing salts is the motive behind this study. Different sample size and geometry, cycle duration, and level of submersion in brine solutions were investigated to achieve an optimized test method. The optimized test method was able to produce different levels of damage when different types of deicing salts were used. The optimized duration of one cycle was found to be 24 h with twelve hours of freezing at −18 °C and twelve hours of thawing at +21 °C, with the bottom 10 mm of the sample submerged in the brine solution. Cylinder samples with a diameter of 100 mm and height of 150 mm were used and found to produce similar results to 150 mm-cubes. Based on the obtained results a mass loss of 3%–5% is proposed as a failure criterion of cylindrical samples. For the materials and within the cycles of freezing/thawing investigated here, the deicers that caused the most damage were NaCl, CaCl2 and urea, followed by MgCl2, potassium acetate, sodium acetate and calcium-magnesium acetate. More testing is needed to validate the effects of different deicers under long term exposures and different temperature ranges. PMID:28773998
Melamed, N; Hiersch, L; Gabbay-Benziv, R; Bardin, R; Meizner, I; Wiznitzer, A; Yogev, Y
2015-07-01
To assess the accuracy and determine the optimal threshold of sonographic cervical length (CL) for the prediction of preterm delivery (PTD) in women with twin pregnancies presenting with threatened preterm labor (PTL). This was a retrospective study of women with twin pregnancies who presented with threatened PTL and underwent sonographic measurement of CL in a tertiary center. The accuracy of CL in predicting PTD in women with twin pregnancies was compared with that in a control group of women with singleton pregnancies. Overall, 218 women with a twin pregnancy and 1077 women with a singleton pregnancy, who presented with PTL, were included in the study. The performance of CL as a predictive test for PTD was similar in twins and singletons, as reflected by the similar correlation between CL and the examination-to-delivery interval (r, 0.30 vs 0.29; P = 0.9), the similar association of CL with risk of PTD, and the similar areas under the receiver-operating characteristics curves for differing delivery outcomes (range, 0.653-0.724 vs 0.620-0.682, respectively; P = 0.3). The optimal threshold of CL for any given target sensitivity or specificity was lower in twin than in singleton pregnancies. However, in order to achieve a negative predictive value of 95%, a higher threshold (28-30 mm) should be used in twin pregnancies. Using this twin-specific CL threshold, women with twins who present with PTL are more likely to have a positive CL test, and therefore to require subsequent interventions, than are women with singleton pregnancies with PTL (55% vs 4.2%, respectively). In women with PTL, the performance of CL as a test for the prediction of PTD is similar in twin and singleton pregnancies. However, the optimal threshold of CL for the prediction of PTD appears to be higher in twin pregnancies, mainly owing to the higher baseline risk for PTD in these pregnancies. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Variation of the distribution of crack lengths during corrosion fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishihara, S.; Miyao, K.; Shiozawa, K.
1984-07-01
The detailed initiation and growth behaviour of distributed cracks on a specimen surface was investigated during corrosion fatigue. It can be clarified that the changes of the distribution of crack lengths with stress cycling reflect the behaviour of initiation and growth of distributed cracks. The distribution of crack lengths for certain stress cycles could be explained by a statistical calculation which takes into account both the variation of number of cracks during stress cycling and the scatter of crack growth rate.
EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.
Pacławski, K; Zajac, D A; Borowiec, M; Kapusta, Cz; Fitzner, K
2010-11-11
EXAFS and QEXAFS experiments were carried out at Hasylab laboratory in DESY center (X1 beamline, Hamburg, Germany) to monitor the course of the hydrolysis reactions of [AuCl(4)](-) complex ions as well as their reduction using glucose. As a result, changes in the spectra of [AuCl(4)](-) ions and disappearance of absorption Au-L(3) edge were registered. From the results of the experiments we have carried out, the changes in bond lengths between Au(3+) central ion and Cl(-) ligands as well as the reduction of Au(3+) to metallic form (colloidal gold was formed in the system) are evident. Good quality spectra obtained before and after the reactions gave a chance to determine the bond length characteristic of Au-Cl, Au-OH and Au-Au pairs. Additionally, the obtained results were compared with the simulated spectra of different gold (III) complex ions, possibly present in the solution. Finally, the mechanism of these reactions was suggested. Unfortunately, it was not possible to detect the changes in the structure of gold (III) complex ions within the time of reaction, because of too high rates of both processes (hydrolysis and reduction) as compared with the detection time.
Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min
2013-02-01
In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.
Accurate multireference calculations of the electronic structure of TiF 2 and TiCl 2
NASA Astrophysics Data System (ADS)
Vogel, M.; Wenzel, W.
2005-09-01
We report a systematic study of the electronic structure of two members of the transition metal dihalide family, TiF 2 and TiCl 2. Using the configuration interaction method in large basis sets we investigated the lowest 15 states of TiF 2 and TiCl 2. We report bond lengths, frequencies and dissociation energies of both molecules. For TiF 2 we found a near degeneracy of the ground and the first excited state with a possible breakdown of the Born-Oppenheimer approximation.
Influence of crank length and crank width on maximal hand cycling power and cadence.
Krämer, Christian; Hilker, Lutz; Böhm, Harald
2009-07-01
The effect of different crank lengths and crank widths on maximal hand cycling power, cadence and handle speed were determined. Crank lengths and crank widths were adapted to anthropometric data of the participants as the ratio to forward reach (FR) and shoulder breadth (SB), respectively. 25 able-bodied subjects performed maximal inertial load hand cycle ergometry using crank lengths of 19, 22.5 and 26% of FR and 72, 85 and 98% of SB. Maximum power ranged from 754 (246) W for the crank geometry short wide (crank length x crank width) to 873 (293) W for the combination long middle. Every crank length differed significantly (P < 0.05) from each other, whereas no significant effect of crank width to maximum power output was revealed. Optimal cadence decreased significantly (P < 0.001) with increasing crank length from 124.8 (0.9) rpm for the short to 107.5 (1.6) rpm for the long cranks, whereas optimal handle speed increased significantly (P < 0.001) with increasing crank length from 1.81 (0.01) m/s for the short to 2.13 (0.03) m/s for the long cranks. Crank width did neither influence optimal cadence nor optimal handle speed significantly. From the results of this study, for maximum hand cycling power, a crank length to FR ratio of 26% for a crank width to SB ratio of 85% is recommended.
Jiang, Yang; Marang, Leonie; Kleerebezem, Robbert; Muyzer, Gerard; van Loosdrecht, Mark C M
2011-05-01
The impact of temperature and cycle length on microbial competition between polyhydroxybutyrate (PHB)-producing populations enriched in feast-famine sequencing batch reactors (SBRs) was investigated at temperatures of 20 °C and 30 °C, and in a cycle length range of 1-18 h. In this study, the microbial community structure of the PHB-producing enrichments was found to be strongly dependent on temperature, but not on cycle length. Zoogloea and Plasticicumulans acidivorans dominated the SBRs operated at 20 °C and 30 °C, respectively. Both enrichments accumulated PHB more than 75% of cell dry weight. Short-term temperature change experiments revealed that P. acidivorans was more temperature sensitive as compared with Zoogloea. This is particularly true for the PHB degradation, resulting in incomplete PHB degradation in P. acidivorans at 20 °C. Incomplete PHB degradation limited biomass growth and allowed Zoogloea to outcompete P. acidivorans. The PHB content at the end of the feast phase correlated well with the cycle length at a constant solid retention time (SRT). These results suggest that to establish enrichment with the capacity to store a high fraction of PHB, the number of cycles per SRT should be minimized independent of the temperature.
Schwartz, R S; Musto, S; Fabry, M E; Nagel, R L
1998-12-15
In sickle cell anemia (SS), some red blood cells dehydrate, forming a hyperdense (HD) cell fraction (>1.114 g/mL; mean corpuscular hemoglobin concentration [MCHC], >46 g/dL) that contains many irreversibly sickled cells (ISCs), whereas other SS red blood cells dehydrate to an intermediate density (ID; 1.090 to 1.114 g/mL; MCHC, 36 to 46 g/dL). This study asks if the potassium-chloride cotransporter (K:Cl) and the calcium-dependent potassium channel [K(Ca2+)] are participants in the formation of one or both types of dense SS red blood cells. We induced sickling by exposing normal density (ND; 1.080 to 1.090 g/mL; MCHC, 32 to 36 g/dL) SS discocytes to repetitive oxygenation-deoxygenation (O-D) cycles in vitro. At physiologic Na+, K+, and Cl-, and 0.5 to 2 mmol/L Ca2+, the appearance of dense cells was time- and pH-dependent. O-D cycling at pH 7.4 in 5% CO2-equilibrated buffer generated only ID cells, whereas O-D cycling at pH 6.8 in 5% CO2-equilibrated buffer generated both ID and HD cells, the latter taking more than 8 hours to form. At 22 hours, 35% +/- 17% of the parent ND cells were recovered in the ID fraction and 18% +/- 11% in the HD fraction. Continuous deoxygenation (N2/5% CO2) at pH 6.8 generated both ID and HD cells, but many of these cells had multiple projections, clearly different from the morphology of endogenous dense cells and ISCs. Continuous oxygenation (air/5% CO2) at pH 6.8 resulted in less than 10% dense cell (ID + HD) formation. ATP depletion substantially increased HD cell formation and moderately decreased ID cell formation. HD cells formed after 22 hours of O-D cycling at pH 6.8 contained fewer F cells than did ID cells, suggesting that HD cell formation is particularly dependent on HbS polymerization. EGTA chelation of buffer Ca2+ inhibited HD but not ID cell formation, and increasing buffer Ca2+ from 0.5 to 2 mmol/L promoted HD but not ID cell formation in some SS patients. Substitution of nitrate for Cl- inhibited ID cell formation, as did inhibitors of the K:Cl cotransporter, okadaic acid, and [(dihydroindenyl) oxy]alkanoic acid (DIOA). Conversely, inhibitors of K(Ca2+), charybdotoxin and clotrimazole, inhibited HD cell formation. The combined use of K(Ca2+) and K:Cl inhibitors nearly eliminated dense cell (ID + HD cell) formation. In summary, dense cells formed by O-D cycling for 22 hours at pH 7.4 cycling are predominately the ID type, whereas dense cells formed by O-D cycling for 22 hours at pH 6.8 are both the ID and HD type, with the latter low in HbF, suggesting that HD cell formation has a greater dependency on HbS polymerization. A combination of K:Cl cotransport and the K(Ca2+) activities account for the majority of dense cells formed, and these pathways can be driven independently. We propose a model in which reversible sickling-induced K+ loss by K:Cl primarily generates ID cells and K+ loss by the K(Ca2+) channel primarily generates HD cells. These results imply that both pathways must be inhibited to completely prevent dense SS cell formation and have potential therapeutic implications.
Trapping Experiments on a Trichlorosilanide Anion: a Key Intermediate of Halogenosilane Chemistry.
Teichmann, Julian; Bursch, Markus; Köstler, Benedikt; Bolte, Michael; Lerner, Hans-Wolfram; Grimme, Stefan; Wagner, Matthias
2017-08-07
Treatment of Si 2 Cl 6 with [Et 4 N][BCl 4 ] in CH 2 Cl 2 furnished the known products of a chloride-induced disproportionation reaction of the disilane, such as SiCl 4 , [Si(SiCl 3 ) 3 ] - , and [Si 6 Cl 12 ·2Cl] 2- . No Si-B-bonded products were detectable. In contrast, the addition of Si 2 Cl 6 to [Et 4 N][BI 3 Cl] afforded the Si-B adduct [Et 4 N][I 3 SiBI 3 ]. Thus, a quantitative Cl/I exchange at the silicon atom accompanies the trihalogenosilanide formation. [Et 4 N][I 3 SiBI 3 ] was also accessible from a mixture of Si 2 I 6 , [Et 4 N]I, and BI 3 . According to X-ray crystallography, the anion [I 3 SiBI 3 ] - adopts a staggered conformation with an Si-B bond length of 1.977(6) Å. Quantum-chemical calculations revealed a polar covalent Si-B bond with significant contributions from intramolecular I···I dispersion interactions.
Lee, Hwankyu; Kim, Sun Min; Jeon, Tae-Joon
2015-09-01
Gramicidin A (gA) dimers with bilayers, which consist of phospholipids and ionic liquids (ILs) at different molar ratios, were simulated at different salt concentrations of 0.15 and 1M NaCl. Bilayer thickness is larger than the length of a gA dimer, and hence lipids around the gA dimer are significantly disordered to adapt to the gA dimer, yielding membrane curvature. As the IL concentration increases, the bilayer thickness decreases and becomes closer to the gA length, leading to less membrane curvature. Also, ILs significantly increase lateral diffusivities of the gA dimer and lipids at 0.15M NaCl, but not at 1M NaCl because strong electrostatic interactions between salt ions and lipid head groups suppress an increase in the lateral mobility of the bilayer at high salt concentration. These findings help explain the conflicting experimental results that showed the increased ion permeability in electrophysiological experiments at 1M NaCl, but the reduced ion permeability in fluorescent experiments at 0.15M NaCl. ILs disorder lipids and make bilayers thinner, which yields less membrane curvature around the gA dimer and thus stabilizes the gA dimer, leading to the increased ion permeability. This IL effect predominantly occurs at 1M NaCl, where ILs only slightly increase the bilayer dynamics because of the strong electrostatic interactions between salt ions and lipids. In contrast, at 0.15M NaCl, ILs do not only stabilize the curved bilayer but also significantly increase the lateral mobility of gA dimers and lipids, which can reduce gA-induced pore formation, leading to the decreased ion permeability. Copyright © 2015 Elsevier Inc. All rights reserved.
On the Ground Electronic States of TiF and TiCl
Boldyrev; Simons
1998-04-01
The low-lying electronic states of TiF and TiCl have been studied using high level ab initio techniques. Both are found to have two low-lying excited electronic states, 4Sigma- (0.080 eV (TiF) and 0.236 eV (TiCl)) and 2Delta (0.266 eV (TiF) and 0.348 eV (TiCl)), and 4Phi ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of 4Phi ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data. Copyright 1998 Academic Press.
Wang, Sheng; Feng, Ling
2017-10-01
To compare maternal and perinatal outcomes after emergency cerclage with those after elective cerclage. In a retrospective review, data were assessed from women with a viable singleton pregnancy who underwent elective or emergency cerclage for cervical insufficiency at the Tongji Hospital, Wuhan, China, between January 2010 and July 2015. Subgroup analyses based on cervical length (CL; ≤15, 15-25, and 25-30 mm) were also conducted among women undergoing emergency cerclage. In total, 68 women underwent elective cerclage and 53 underwent emergency cerclage. The suture-to-delivery interval was significantly longer in the elective group (19.17 ± 5.86 weeks) than in the emergency group (11.29 ± 7.27 weeks; P<0.001). There was no difference between the elective and emergency groups in mean pregnancy length at delivery, frequency of Apgar score below 7 at 5 minutes (live births only), or birth weight (live births only). An inverse trend in the degree of CL shortening with pregnancy outcomes was observed; women with a CL of 25-30 mm had the best outcomes. Pregnancy outcomes were similar after emergency and elective cerclage. There was an inverse trend in the degree of CL shortening with pregnancy outcomes in the emergency cerclage group, with better outcomes observed for women with longer CL. © 2017 International Federation of Gynecology and Obstetrics.
Sümpelmann, R; Schürholz, T; Marx, G; Ahrenshop, O; Zander, R
2003-09-01
The composition of normal saline (NaCl), the standard wash solution for cell saver autotransfusion, is considerably different from physiologic plasma values in small infants. Therefore, we investigated acid-base and electrolyte changes during massive cell saver autotransfusion with different wash solutions in young pigs. After approval by the animal protection authorities 15 young pigs (weight 10.6 +/- 1.1 kg, blood volume 848 +/- 88 ml, mean+/-SD) underwent 15 cycles of cell saver autotransfusion (Haemolite 2plus, Haemonetics). For each cycle, 100 ml arterial blood was withdrawn, washed with NaCl, physiologic multielectrolyte solution (PME, V Infusionslösung 296 mval Elektrolyte, Baxter) or physiologic erythrocyte protection solution (PEP, 3.2 % gelatine, pH 7.40, cHCO3 24 mmol/l), and then retransfused. Analyses of acid-base, electrolyte, and hematologic parameters were performed for systemic and washed blood samples. For NaCl there was a progressive decrease in systemic pH, HCO3 and base excess (BE) and an increase in chloride values (Cl) (p < 0.05). Use of PME slightly decreased pH (n. s.), whereas HCO3, BE and Cl remained stable. PEP slightly increased pH, HCO3 and BE, and decreased Cl (n. s.). Free hemoglobin increased in NaCl and PME (p < 0.05) and was below baseline in PEP (n. s.). Lactic acid course was comparable in all groups. The use of NaCl as wash solution for massive autotransfusion resulted in metabolic acidosis caused by dilution of HCO3 and increased Cl values. Fewer systemic acid-base and electrolyte changes were observed, when blood was washed with PME or PEP. The decreased hemoglobin release with PEP is possibly due to a gelatine specific electrostatic surface coating of erythrocyte membranes. For massive transfusion of washed red blood cells, physiologic multielectrolyte solution and physiologic erythrocyte protection solution should be preferred to NaCl, especially for small infants.
Ambient temperature secondary lithium cells containing inorganic electrolyte
NASA Astrophysics Data System (ADS)
Schlaikjer, Carl R.
The history and current status of rechargeable lithium cells using electrolytes based on liquid sulfur dioxide are reviewed. Three separate approaches currently under development include lithium/lithium dithionite/carbon cells with a supporting electrolyte salt; lithium/cupric chloride cells using sulfur dioxide/lithium tetrachloroaluminate; and several adaptations of a lithium/carbon cell using sulfur dioxide/lithium tetrachloroaluminate in which the discharge reaction involves the incorporation of aluminum into the positive electrode. The latter two chemistries have been studied in prototype hardware. For AA size cells with cupric chloride, 157 Whr/1 at 24 W/1 for 230 cycles was reported. For AA size cells containing 2LiCl-CaCl2-4AlCl3-12SO2, energy densities as high as 265 Whr/liter and 100 Whr/kg have been observed, but, at 26 W/1, for only 10 cycles. The advantages and remaining problems are discussed.
Ultrasonic Corrosion Fatigue Behavior of High Strength Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Ebara, R.; Yamaguchi, Y.; Kanei, D.; Yamamoto, Y.
Ultrasonic corrosion fatigue tests were conducted for high strength austenitic stainless steels such as YUS270 and SUS304N2 in 3%NaCl aqueous solution. The reduction of giga-cycle corrosion fatigue strength of YUS270 and SUS304N2 was not observed at all, while the reduction of corrosion fatigue life was observed at higher stress amplitude. Corrosion pit was observed on corrosion fatigue crack initiation area. Striation was predominantly observed on crack propagation area in air and in 3% NaCl aqueous solution. The reduction of corrosion fatigue strength of high strength austenitic stainless steels such as YUS270 and SUS304N2 is due to the corrosion pit formation at corrosion fatigue crack initiation area. It can be concluded that the higher the ultimate tensile strength of austenitic stainless steels the higher the giga-cycle corrosion fatigue strength in 3%NaCl aqueous solution is.
NASA Astrophysics Data System (ADS)
Chen, Kai; Xu, Jing; Qiu, Sheng-Chao; Wang, Yuan; Chen, Min-Dong; Zhang, Yun-Qian; Xiao, Xin; Tao, Zhu
2017-10-01
We investigated the interactions in an inverted cucurbit[6]uril (iQ[6]) with a series of 1,ω-alkyldimins and their supramolecular assemblies in the presence of the tetrachlorozincate anion ([ZnCl4]2-) structure directing agent. iQ[6] forms an outer surface interaction with [ZnCl4]2- to form different iQ[6]/[ZnCl4]2--based supramolecular assemblies with different length 1,ω-alkyldimins. Interestingly, most 1,ω-alkyldimins were not visible in crystals structures in the presence of concentrated HCl. The porous iQ[6]/[ZnCl4]2--based supramolecular assemblies could be used as materials for adsorbing volatile compounds.
Recycled tetrahedron-like CuCl from waste Cu scraps for lithium ion battery anode.
Hou, Hongying; Yao, Yuan; Liu, Song; Duan, Jixiang; Liao, Qishu; Yu, Chengyi; Li, Dongdong; Dai, Zhipeng
2017-07-01
The wide applications of metal Cu inevitably resulted in a large quantity of waste Cu materials. In order to recover the useful Cu under the mild conditions and reduce the environmental emission, waste Cu scraps were recycled in the form of CuCl powders with high economic value added (EVA) via the facile hydrothermal route. The recycled CuCl powders were characterized in terms of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results suggested that the recycled CuCl powders consisted of many regular tetrahedron-like micro-particles. Furthermore, in order to reduce the cost of lithium ion battery (LIB) anode and build the connection of waste Cu scraps and LIB, the recycled CuCl powders were evaluated as the anode active material of LIB. As expected, the reversible discharge capacity was about 171.8mAh/g at 2.0C even after 50 cycles, implying the satisfactory cycle stability. Clearly, the satisfactory results may open a new avenue to develop the circular economy and the sustainable energy industry, which would be very important in terms of both the resource recovery and the environmental protection. Copyright © 2017. Published by Elsevier Ltd.
Berisha, Bajram; Schams, Dieter; Rodler, Daniela; Sinowatz, Fred; Pfaffl, Michael W
2018-06-06
The aim of this study was to characterize certain prostaglandin family members in the bovine corpus luteum (CL) during the oestrous cycle and pregnancy. The CL tissue was assigned to the following stages of the oestrous cycle: 1-2, 3-4, 5-7, 8-12, 13-16, >18 days (after regression) and of pregnancy: 1-2, 3-4, 6-7 and >8 months. In these samples, we investigated prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE) and their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS) and PTGE synthase (PTGES). The expression of mRNA was measured by RT-qPCR, hormones by EIA and localization by immunohistochemistry. The mRNA expression of COX-2, PTGFS and PTGES in CL during the early luteal phase was high followed by a continuous and significant downregulation afterwards, as well as during all phases of pregnancy. The concentration of PTGF in CL tissue was high during the early luteal phase, decreased significantly in the mid-luteal phase, and increased again afterwards. In contrast, the concentration of PTGE increased significantly during late luteal phase followed by a decrease during regression. The PTGE level increased again during late pregnancy. Immunohistochemically, the large granulose-luteal cells show strong staining for COX-2 and PTGES during the early luteal stage followed by lower activity afterwards. During pregnancy, most of the luteal cells were only weakly positive or negative. In conclusion, our results indicate that the examined prostaglandin family members are involved in the local mechanisms that regulate luteal function, specifically during CL formation, function and regression and during pregnancy in the cow. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Higgs, Paul G
2016-06-08
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.
Higgs, Paul G.
2016-01-01
A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479
Crack Initiation and Growth Behavior at Corrosion Pit in 2024-T3 Aluminum Alloy
2014-09-01
63 Figure B.1: The crack length vs. number of cycles during fatigue testing for the 2AI-01 specimen...number of cycles during fatigue testing for the the 2AI- 02 specimen...64 Figure B.3: The crack length vs. number of cycles during fatigue testing for the 2Sl-01 specimen
Audibert, François; Fortin, Suzanne; Delvin, Edgard; Djemli, Anissa; Brunet, Suzanne; Dubé, Johanne; Fraser, William D
2010-04-01
To evaluate the contingent use of fetal fibronectin (fFN) testing and cervical length (CL) measurement to predict preterm delivery, and to validate the use of phosphorylated IGFBP-1 as a predictor of preterm delivery. We recruited 71 women with a clinical diagnosis of preterm labour between 24 and 34 weeks, and tested for the presence of fFN and IGFBP-1 in the cervicovaginal secretions of all women immediately before CL measurement. Among the 66 women with complete outcome, four were excluded from the final analysis as two had assessment for fFN but no CL measurement, and another two had CL measured but no screening for fFN. Among 62 women with complete results, the mean gestational age at recruitment was 29.4 +/- 2.5 weeks. Six women (9.6%) delivered within two weeks of assessment, and 14 (22.5%) delivered before 34 weeks. A positive fFN test resulted in a sensitivity of 83%, a specificity of 84%, a positive predictive value of 36%, and a negative predictive value of 98% for delivery within two weeks; for CL < 25 mm, these figures were 50%, 52%, 10%, and 91%, respectively, and for a positive IGFBP-1, they were 17%, 93%, 20%, and 91%, respectively. A policy of contingent use of fFN (in which the test was assumed to be positive if CL < or = 15 mm, and fFN was only measured if the CL was between 16 and 30 mm) gave sensitivity, specificity, positive and negative predictive values of 80%, 61%, 17%, and 97%, respectively for delivery within two weeks. Using this contingent use protocol, only one third of women needed fFN screening after CL measurement. In this study, IGFBP-1 screening did not predict preterm delivery and fFN screening provided the best predictive capacity. A policy of contingent use of testing for fFN after CL measurement, or contingent use of CL measurement after fFN screening (depending on available resources) is a promising approach to limit use of resources.
AM CAS - Spectral variations during the eruption cycles
NASA Astrophysics Data System (ADS)
Richter, G. A.; Notni, P.; Tiersch, H.
Spectroscopic investigations of AM Cas, the Z Camelopardalis star with the shortest known mean cycle length, were performed during quiescence and eruption. It is shown that, although the cycle length is very small, the spectral behavior of AM Cas during an eruption cycle is similar to that of other Z Camelopardalis stars and other U Geminorum stars. During an outburst, the Balmer emissions are narrower and the Balmer decrement is steeper than during quiescence.
Song, Changho; Jin, Moo-Nyun; Lee, Jung-Hee; Kim, In-Soo; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Joung, Boyoung
2015-01-01
The identification of sick sinus syndrome (SSS) in patients with atrial flutter (AFL) is difficult before the termination of AFL. This study investigated the patient characteristics used in predicting a high risk of SSS after AFL ablation. Out of 339 consecutive patients who had undergone radiofrequency ablation for AFL from 1991 to 2012, 27 (8%) had SSS (SSS group). We compared the clinical characteristics of patients with and without SSS (n=312, no-SSS group). The SSS group was more likely to have a lower body mass index (SSS: 22.5±3.2; no-SSS: 24.0±3.0 kg/m²; p=0.02), a history of atrial septal defects (ASD; SSS: 19%; no-SSS: 6%; p=0.01), a history of coronary artery bypass graft surgery (CABG; SSS: 11%; no-SSS: 2%; p=0.002), and a longer flutter cycle length (CL; SSS: 262.3±39.2; no-SSS: 243.0±40; p=0.02) than the no-SSS group. In multivariate analysis, a history of ASD [odds ratio (OR) 3.7, 95% confidence interval (CI) 1.2-11.4, p=0.02] and CABG (7.1, 95% CI 1.5-32.8, p=0.01) as well as longer flutter CL (1.1, 95% CI 1.0-1.2, p=0.04) were independent risk factors for SSS. A history of ASD and CABG as well as longer flutter CL increased the risk of SSS after AFL ablation. While half of the patients with SSS after AFL ablation experienced transient SSS, heart failure was associated with irreversible SSS.
Song, Changho; Jin, Moo-Nyun; Lee, Jung-Hee; Kim, In-Soo; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung
2015-01-01
Purpose The identification of sick sinus syndrome (SSS) in patients with atrial flutter (AFL) is difficult before the termination of AFL. This study investigated the patient characteristics used in predicting a high risk of SSS after AFL ablation. Materials and Methods Out of 339 consecutive patients who had undergone radiofrequency ablation for AFL from 1991 to 2012, 27 (8%) had SSS (SSS group). We compared the clinical characteristics of patients with and without SSS (n=312, no-SSS group). Results The SSS group was more likely to have a lower body mass index (SSS: 22.5±3.2; no-SSS: 24.0±3.0 kg/m2; p=0.02), a history of atrial septal defects (ASD; SSS: 19%; no-SSS: 6%; p=0.01), a history of coronary artery bypass graft surgery (CABG; SSS: 11%; no-SSS: 2%; p=0.002), and a longer flutter cycle length (CL; SSS: 262.3±39.2; no-SSS: 243.0±40; p=0.02) than the no-SSS group. In multivariate analysis, a history of ASD [odds ratio (OR) 3.7, 95% confidence interval (CI) 1.2-11.4, p=0.02] and CABG (7.1, 95% CI 1.5-32.8, p=0.01) as well as longer flutter CL (1.1, 95% CI 1.0-1.2, p=0.04) were independent risk factors for SSS. Conclusion A history of ASD and CABG as well as longer flutter CL increased the risk of SSS after AFL ablation. While half of the patients with SSS after AFL ablation experienced transient SSS, heart failure was associated with irreversible SSS. PMID:25510744
Turitto, Gioia; Akhrass, Philippe; Leonardi, Marino; Saponieri, Cesare; Sette, Antonella; El-Sherif, Nabil
2009-01-01
To compare patients with atrial flutter (AFl) and 1:1 atrioventricular conduction (AVC) with patients with AFl and higher AVC. The characteristics of 19 patients with AFl and 1:1 AVC (group A) were compared with those of 116 consecutive patients with AFl and 2:1 AVC or higher degree AV block (group B). Age, gender, and left ventricular function were similar in the two groups. In group A versus group B, more patients had no structural heart disease (42% vs 17%, P < 0.05) and syncope/presyncope (90% vs 12%, P < 0.05). The AFl cycle length (CL) in group A was longer than in group B (265 +/- 24 ms vs 241 +/- 26 ms, P < 0.01). The transition from AFl with 1:1 to 2:1 AVC or vice versa was associated with small but definite changes in AFl CL, which showed larger variations in response to sympathetic stimulation. In group A patients who were studied off drugs, the atrial-His interval was not different from group B, but maximal atrial pacing rate with 1:1 AVC was faster. In group A, five patients were misdiagnosed as ventricular tachyarrhythmias, and three with a defibrillator received inappropriate shocks. Four patients had ablation of AVC and six had ablation of AFl circuit. The main difference between groups A and B may be an inherent capacity of the AV node for faster conduction, especially in response to increased sympathetic tone. The latter affects not only AVC but also the AFl CL. One should be aware of the different presentations of AFl with 1:1 AVC to avoid misdiagnosis/mismanagement and to consider the diagnosis in patients with narrow or wide QRS tachycardia and rates above 220/min.
Physical and chemical microstructural damage in pressed CL-20 explosives
NASA Astrophysics Data System (ADS)
Demol, Gauthier; Sandusky, Harold W.
2000-04-01
The ultimate utility of CL-20 as an ingredient in explosive and propellant formulations will depend upon the ability to understand the factors that are responsible for batch-to-batch variability with respect to sensitivity, and also to control the sensitivity in formulations within acceptable limits. We used light microscopy of cold-mounted, polished samples to characterize CL-20 at various stages in its life cycle. The evolution of damage from the initial neat crystals of CL-20 to the ready-to-use pressed pellets shows that processing seriously damages the crystals. These crystals are very brittle, and several explanations are proposed.
Highly improved voltage efficiency of seawater battery by use of chloride ion capturing electrode
NASA Astrophysics Data System (ADS)
Kim, Kyoungho; Hwang, Soo Min; Park, Jeong-Sun; Han, Jinhyup; Kim, Junsoo; Kim, Youngsik
2016-05-01
Cost-effective and eco-friendly battery system with high energy density is highly desirable. Herein, we report a seawater battery with a high voltage efficiency, in which a chloride ion-capturing electrode (CICE) consisting of Ag foil is utilized as the cathode. The use of Ag as the cathode leads to a sharp decrease in the voltage gaps between charge and discharge curves, based on reversible redox reaction of Ag/AgCl (at ∼2.9 V vs. Na+/Na) in a seawater catholyte during cycling. The Ag/AgCl reaction proves to be highly reversible during battery cycling. The battery employing the Ag electrode shows excellent cycling performance with a high Coulombic efficiency (98.6-98.7%) and a highly improved voltage efficiency (90.3% compared to 73% for carbonaceous cathode) during 20 cycles (total 500 h). These findings demonstrate that seawater batteries using a CICE could be used as next-generation batteries for large-scale stationary energy storage plants.
Chemical Reactions in Turbulent Mixing Flows.
1987-06-01
longer in the z-t diagrams for higher fuel flow rates (consistent with longer flame lengths ) and, further, the celerity of a structure at a given axial...clocking rate synchronized with the cycle, while the slower clocking rate data corres- pond to about seven cycles. Flame lengths [61, Z,,D, for various...heat fABlLE I releases studied here are also shown in Table I Flame Lengths and Axial Measurement Stations, These flame lengths are based on 50% intermit
Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae.
Brewer, B J; Chlebowicz-Sledziewska, E; Fangman, W L
1984-11-01
During cell division in the yeast Saccharomyces cerevisiae mother cells produce buds (daughter cells) which are smaller and have longer cell cycles. We performed experiments to compare the lengths of cell cycle phases in mothers and daughters. As anticipated from earlier indirect observations, the longer cell cycle time of daughter cells is accounted for by a longer G1 interval. The S-phase and the G2-phase are of the same duration in mother and daughter cells. An analysis of five isogenic strains shows that cell cycle phase lengths are independent of cell ploidy and mating type.
Nitryl chloride (ClNO2) mixing ratios above 1 ppbv have been measured off the coast of Southeast Texas. ClNO2 formation, the result of heterogeneous N205 uptake on chloride-containing aerosols, has a significant impact on oxidant form...
Fetal development in cattle with multiple ovulations.
Echternkamp, S E
1992-08-01
Treatment of lactating and nonlactating parous cows (n = 379) with 12 mg of FSH-P to evaluate development of multiple bovine fetuses resulted in ovulation rates ranging from 1 to 27 corpora lutea (CL). Fertilization rate (i.e., ova fertilized at 6 to 8 d postmating, 80.0%) was not affected by ovulation rate. The percentage of fetuses developing normally at 51 to 53 d postmating decreased (P less than .01) as ovulation rate increased; 1 CL, 100.0%; 2 CL, 100.0%; 3 CL, 66.7%; 4 CL, 45.8%; 5 CL, 33.3%; 6 to 10 CL, 13.6%; and greater than 10 CL, 8.9%. Of the 86 cows permitted to calve, 47 produced singles, 22 twins, 9 triplets, 7 quadruplets, and 1 quintuplets. Calf birth weight and gestational length decreased (P less than .01) as the number of calves born increased from one to two to three. Smaller decreases (P less than .05) in birth weight occurred among triplets, quadruplets, and quintuplets, whereas gestational length did not differ (P greater than .1) among these groups. Systemic progesterone concentrations in the dam were proportional (P less than .01) to the number of fetuses in utero between d 126 and 266 for dams gestating one, two, or three or more fetuses; estrone sulfate was lower (P less than .01) in dams with one than in those with two or more fetuses. Placental weight (i.e., cotyledons plus intercotyledonary membranes) per fetus at 52 +/- 1 d of gestation and at term decreased as the number of fetuses increased. The chorioallantoic membranes were often fused among multiple fetuses and contained either all viable or all dead fetuses, but not both, within the same anastomosed placental unit. These results suggest that ovulation rate is the first limiting factor to increasing cow productivity for beef cattle because some bovine females had the capacity to gestate up to three fetuses per uterine horn, or a total of five fetuses, above which pregnancy was terminated.
Reconstructing the 11-year solar cycle length from cosmogenic radionuclides for the last 600 years
NASA Astrophysics Data System (ADS)
Nilsson, Emma; Adolphi, Florian; Mekhaldi, Florian; Muscheler, Raimund
2017-04-01
The cyclic behavior of the solar magnetic field has been known for centuries and the 11-year solar cycle is one of the most important features directly visible on the solar disc. Using sunspot records it is evident that the length of this cycle is variable. A hypothesis of an inverse relationship between the average solar activity level and the solar cycle length has been put forward (e.g. Friis-Christensen & Lassen, 1991), indicating longer solar cycles during periods of low solar activity and vice versa. So far, studies of the behavior of the 11-year solar cycle have largely been limited for the last 4 centuries where observational sunspot data are available. However, cosmogenic radionuclides, such as 10Be and 14C from ice cores and tree rings allow an assessment of the strength of the open solar magnetic field due to its shielding influence on galactic cosmic rays in the heliosphere. Similarly, very strong solar storms can leave their imprint in cosmogenic radionuclide records via solar proton-induced direct production of cosmogenic radionuclides in the Earth atmosphere. Here, we test the hypothesis of an inverse relationship between solar cycle length and the longer-term solar activity level by using cosmogenic radionuclide records as a proxy for solar activity. Our results for the last six centuries suggest significant solar cycle length variations that could exceed the range directly inferred from sunspot records. We discuss the occurrence of SPEs within the 11-year solar cycle from a radionuclide perspective, specifically the largest one known yet, at AD 774-5 (Mekhaldi et al., 2015). References: Friis-Christensen, E. & Lassen, K. Length of the solar-cycle - An indicator of solar activity closely associated with climate. Science 254, 698-700, doi:10.1126/science.254.5032.698 (1991). Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J., McConnell, J. R., Possnert, G., Sigl, M., Svensson, A., Synal, H. A., Welten, K. C. & Woodruff, T. E. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications 6: 8, doi:10.1038/ncomms9611 (2015).
Agarose Gel Electrophoresis Reveals Structural Fluidity of a Phage T3 DNA Packaging Intermediate
Serwer, Philip; Wright, Elena T.
2012-01-01
We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (1) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for stabilization of structure and then (2) determining of effective radius by two-dimensional agarose gel electrophoresis (2d-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2d-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging. PMID:22222979
Batema, Guido D; Lutz, Martin; Spek, Anthony L; van Walree, Cornelis A; van Klink, Gerard P M; van Koten, Gerard
2014-08-28
A series of organometallic 4,4'-substituted benzylidene aniline complexes 4-ClPt-3,5-(CH2NMe2)2C6H2CH[double bond, length as m-dash]NC6H4R'-4', abbreviated as PtCl[NCN(CH[double bond, length as m-dash]NC6H4R'-4')-4], with R' = NMe2, Me, H, Cl, CN (, respectively), was synthesized via a Schiff-base condensation reaction involving reaction of PtCl[NCN(CH[double bond, length as m-dash]O)-4] () with the appropriate 4-R'-substituted aniline derivative () in toluene. The resulting arylplatinum(ii) products were obtained in 75-88% yield. Notably, product was also obtained in 68% yield from a reaction in the solid state by grinding solid with aniline . The structures of , , and in the solid state (single crystal X-ray diffraction) showed a non-planar geometry, in particular for compound . The electronic interaction between the donor benzylidene fragment PtCl(NCN-CH) and the para-R' aniline substituent through the azomethine bridge was studied with NMR and UV/Vis spectroscopy. Linear correlations were found between the azomethine (1)H, the (195)Pt NMR and various (13)C NMR chemical shifts, and the substituent parameters σF and σR of R' at the aniline site. In common with organic benzylidene anilines, the azomethine (1)H NMR chemical shift showed anomalous substituent behavior. The (195)Pt NMR chemical shift of the platinum center can be used as a probe for the electronic properties of the delocalized π-system of the benzylidene aniline framework, to which it is connected. The dual substituent parameter treatment of the azomethine (13)C NMR shift gave important insight into the unique behaviour of the Pt-pincer group as a substituent. Inductively, it is a very strong electron-withdrawing group, whereas mesomerically it behaves like a very strong electron donating group.
Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate
Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic
2018-04-06
The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less
Bis(tetraphenylarsonium) hexachloridozirconate(IV) acetonitrile tetrasolvate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borjas, Rosendo; Mariappan Balasekaran, Samundeeswari; Poineau, Frederic
The bis(tetraphenylarsonium) hexachloridozirconate(IV) salt, (AsPh 4 ) 2 [ZrCl 6 ] (Ph = C 6 H 5 ), was prepared more than 25 years ago [Esmadi & Sutcliffe (1991). Indian J. Chem. 30 A , 99–101], but its crystal structure was never reported. By following a similar experimental procedure, the compound was synthesized and its crystal structure was investigated as a acetonitrile tetrasolvate, (As(C 6 H 5 ) 4 ) 2 [ZrCl 6 ]·4CH 3 CN, by single-crystal X –ray diffraction. The [ZrCl 6 ] 2− anion adopts a slightly distorted octahedral coordination sphere, with Zr—Cl bond lengths of 2.4586 (6), 2.4723 (6),more » and 2.4818 (5) Å, and Cl—Zr—Cl angles ranging from 89.602 (19) to 90.397 (19)°.« less
Gold, Daniel R.; Catanzaro, John N.; Makaryus, John N.; Waldman, Cory; Sauer, William H.; Sison, Cristina; Makaryus, Amgad N.; Altman, Erik; Jadonath, Ram; Beldner, Stuart
2010-01-01
Studies have shown the predictive value of inducible ventricular tachycardia and clinical arrhythmia in patients who have structural heart disease. We examined the possible predictive value of electrophysiologic study before the placement of an implantable cardioverter-defibrillator. Our retrospective study group comprised 315 patients who had ventricular tachycardia that was inducible during electrophysiologic study and who had undergone at least 1 month of follow-up (247 men; mean age, 66.9 ± 13.5 yr; mean follow-up, 24.9 ± 14.8 mo). Recorded characteristics included induced ventricular tachycardia cycle length, atrio-His and His-ventricular electrograms, PR and QT intervals, QRS duration, and drug therapy. Of the 315 patients, 97 experienced ventricular arrhythmia during the follow-up period, as registered by 184 of more than 400 interrogations. There were 187 episodes of ventricular arrhythmia (tachycardia, 178; fibrillation, 9) during 652.5 person-years of follow-up. Subjects with a cycle length ≥240 msec were more likely to have an earlier 1st arrhythmia than those with a cycle length <240 msec (P=0.032). A quarter of the subjects with a cycle length ≥240 msec had their 1st arrhythmia by 19.14 months, compared with 23.8 months for a quarter of the subjects with a cycle length <240 msec (P <0.032). Among the electrophysiologic characteristics examined, inducible ventricular tachycardia with a cycle length ≥240 msec is predictive of appropriate implantable cardioverter-defibrillator therapy at an earlier time. This may have prognostic implications that warrant implantable cardioverter-defibrillator programming to enable appropriate antitachycardia pacing in this group of patients. PMID:20548804
NASA Astrophysics Data System (ADS)
Kelly, A. P.; O'Driscoll, B.; Clay, P. L.; Burgess, R.
2017-12-01
Layered intrusions host the world's largest known concentrations of the platinum-group elements (PGE). Emphasis has been attached to the role of halogen-bearing fluids in concentrating the precious metals, but whether this occurs at the magmatic stage, or via subsequent metasomatism, is actively debated. One obstacle to progress has been the analytical difficulty of measuring low abundances of the halogens in the cumulate products of layered intrusions. To elucidate the importance of the halogens in facilitating PGE-mineralisation, as well as fingerprint halogen provenance and assess the importance of halogen cycling in mafic magma systems more generally, a suite of samples encompassing different stages of activity of the Palaeogene Rum layered intrusion was investigated. Halogen abundances were measured by neutron irradiation noble gas mass spectrometric analysis, permitting the detection of relatively low (ppm-ppb) abundances of Cl, Br and I in mg-sized samples. The samples include PGE-enriched chromite seams, various cumulates (e.g., peridotites), picrites (approximating the Rum parental magma), and pegmatites representing volatile-rich melts that circulated the intrusion at a late-stage in its solidification history. The new data reveal that PGE-bearing chromite seams contain relatively low Cl concentrations (2-3 ppm), with high molar ratios of Br/Cl and I/Cl (0.005 and 0.009, respectively). The picrites and cumulates have Br/Cl and I/Cl ratios close to sub-continental lithospheric mantle values of approximately 0.0013 and 0.00002, respectively, and thus likely reflect the Rum magma source region. A positive correlation between Cl and Br signifies comparable partitioning behaviour in all samples. However, I is more variable, displaying a positive correlation with Cl for more primitive samples (e.g. picrite and peridotite), and seemingly decoupling from Br and Cl in chromite seams and pegmatites. The relative enrichment of I over Cl in the chromite seams points to the local involvement of an organic-rich sedimentary assimilant and potentially represents an important trigger for PGE-mineralisation. Similarly high I/Cl signatures in some of the late-stage pegmatites suggest that fluids with this distinctive composition circulated the cooling Rum intrusion for a protracted period of time.
2016-01-01
tenance period to achieve planned expected service life ( ESL ), as well as the length, workload, and periodicity of a continuous maintenance...a ship’s service life but extends the length of each deployment. Figure 2.1 compares the number of deployments that can be made over the ESL of...ships in different cycle lengths. The ESL of DDG-51 Arleigh Burke–class destroyers Flight I and II is 35 years, and Flight IIA has an ESL of 40 years
Komar, Carolyn M; Curry, Thomas E
2002-05-01
Structural and functional development of the corpus luteum (CL) involves tissue remodeling, angiogenesis, lipid metabolism, and steroid production. The peroxisome proliferator-activated receptors (PPARs) have been shown to play a role in these as well as in a multitude of other cellular processes. To examine the expression of mRNA corresponding to the PPAR family members (alpha, delta, and gamma) in luteal tissue, ovaries were collected from gonadotropin-treated, immature rats on Days 1, 4, 8, and 14 of pseudopregnancy and from adult, cycling animals on each day of the estrous cycle. Ovaries were processed for in situ hybridization or RNA isolation for analysis by RNase protection assay. The expression of PPARgamma mRNA was abundant in granulosa cells of developing follicles during both pseudopregnancy and the estrous cycle and was low to undetectable in CL from pseudopregnant rats. However, luteal tissue in cycling animals, especially CL remaining from previous cycles, had high levels of PPARgamma mRNA. The PPARalpha mRNA was localized mainly in the theca and stroma, and PPARdelta mRNA was expressed throughout the ovary. Levels of mRNA for PPARgamma decreased between Days 1 and 4 of pseudopregnancy, and PPARalpha mRNA levels were lower on the day of estrus compared to pro- and metestrus (P < 0.05). The PPARdelta mRNA levels remained steady throughout the estrous cycle and pseudopregnancy. These data illustrate a difference in the luteal expression of mRNA for PPARgamma between the adult, cycling rat and the immature, gonadotropin-treated rat. This differential pattern of expression may be related to the difference in timing of the preovulatory prolactin surge, because the gonadotropin-primed animals would not experience a prolactin surge coincident with the LH surge, as occurs in adult, cycling animals. Additionally, the expression pattern of PPARdelta mRNA indicates that it may be involved in cellular functions involved with maintaining basal ovarian function, whereas PPARalpha may play a role in lipid metabolism in the theca and stroma.
Nichani, Ashish S; Ahmed, Arshia Zainab; Ranganath, V
2016-01-01
The aim of this study was to define shapes of maxillary central incisors and determine their relationship with the visual display of interdental papillae during smiling. A sample of 100 patients aged 20 to 25 years were recruited. Photographs were taken and gingival angle, crown width (CW), crown length (CL), contact surface (CS), CW/CL ratio, CS/CL ratio, gingival smile line (GSL), and interdental smile line (ISL) were measured. The data showed an increase in GA leading to an increase in CW and CS/CL ratio. Women showed a higher percentage of papillary display compared with men. This study reinforces the proposed hypothesis that the shape of the teeth and papilla affect the periodontium.
Barrett, E.S.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T.
2013-01-01
STUDY QUESTION How are ovarian steroid concentrations, gonadotrophins and menstrual cycle characteristics inter-related within normal menstrual cycles? SUMMARY ANSWER Within cycles, measures of estradiol production are highly related to one another, as are measures of progesterone production; however, the two hormones also show some independence from one another, and measures of cycle length and gonadotrophin concentrations show even greater independence, indicating minimal integration within cycles. WHAT IS KNOWN ALREADY The menstrual cycle is typically conceptualized as a cohesive unit, with hormone levels, follicular development and ovulation all closely inter-related within a single cycle. Empirical support for this idea is limited, however, and to our knowledge, no analysis has examined the relationships among all of these components simultaneously. STUDY DESIGN, SIZE, DURATION A total of 206 healthy, cycling Norwegian women participated in a prospective cohort study (EBBA-I) over the duration of a single menstrual cycle. Of these, 192 contributed hormonal and cycle data to the current analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Subjects provided daily saliva samples throughout the menstrual cycle from which estradiol and progesterone concentrations were measured. FSH and LH concentrations were measured in serum samples from three points in the same menstrual cycle and cycle length characteristics were calculated based on hormonal data and menstrual records. A factor analysis was conducted to examine the underlying relationships among 22 variables derived from the hormonal data and menstrual cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Six rotated factors emerged, explaining 80% of the variance in the data. Of these, factors representing estradiol and progesterone concentrations accounted for 37 and 13% of the variance, respectively. There was some association between measures of estradiol and progesterone production within cycles; however, cycle length characteristics and gonadotrophin concentrations showed little association with any measure of ovarian hormone concentrations. LIMITATIONS, REASONS FOR CAUTION Our summary measures of ovarian hormones may be imprecise in women with extremely long or short cycles, which could affect the patterns emerging in the factor analysis. Given that we only had data from one cycle on each woman, we cannot address how cycle characteristics may covary within individual women across multiple cycles. WIDER IMPLICATIONS OF THE FINDINGS Our findings are generalizable to other healthy populations with typical cycles, however, may not be applicable to cycles that are anovulatory, extreme in length or otherwise atypical. The results support previous findings that measures of estradiol production are highly correlated across the cycle, as are measures of progesterone production. Estradiol and progesterone concentrations are associated with one another, furthermore. However factor analysis also revealed more complex underlying patterns in the menstrual cycle, highlighting the fact that gonadotrophin concentrations and cycle length characteristics are virtually independent of ovarian hormones. These results suggest that despite integration of follicular and luteal ovarian steroid production across the cycle, cycle quality is a multi-faceted construct, rather than a single dimension. STUDY FUNDING/COMPETING INTEREST(S) The EBBA-I study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695-2000, 5754-2002) and Health Region East. The current analyses were completed under funding from the National Institutes of Health (K12 ES019852). No competing interests declared. PMID:23250924
Rizos, D; Scully, S; Kelly, A K; Ealy, A D; Moros, R; Duffy, P; Al Naib, A; Forde, N; Lonergan, P
2012-01-01
The aim of the present study was to test the hypothesis that elevated concentrations of progesterone (P4) resulting from the induction of an accessory corpus luteum (CL) by human chorionic gonadotrophin (hCG) administration on day 5 after oestrus would lead to advanced conceptus elongation on day 14 following embryo transfer on day 7. The oestrous cycles of cross-bred beef heifers were synchronised and animals were randomly assigned to receive either of two treatments: (1) intramuscular injection of 3000 IU hCG on day 5 after oestrus (n=14); or (2) intramuscular injection of saline on day 5 after oestrus (n=13). Ovaries were scanned daily by transrectal ultrasonography to assess CL development. Serum concentrations of P4 were determined from daily blood samples collected from the jugular vein. In vitro-produced bovine blastocysts were transferred to synchronised recipients on day 7 after oestrus (n=15 blastocysts per recipient). Heifers were killed on day 14 after oestrus and the uterus was flushed to recover the embryos. Injection of hCG on day 5 induced ovulation of the dominant follicle in all treated heifers and increased the total area of luteal tissue on the ovary, which was associated with a significant increase (P<0.001) in serum concentrations of P4 from day 7 to day 14. Positive associations were detected between circulating P4 with CL area (within-day correlations ranging from r=0.45 to r=0.67) and total area of luteal tissue (within-day correlations ranging from r=0.65 to r=0.86) Administration of hCG did not affect the proportion of day 14 conceptuses recovered. However, compared with the control group, hCG-treated heifers had increased conceptus length (3.91±1.23 vs. 5.57±1.02 mm, respectively; P=0.06), width (1.00±0.06 vs. 1.45±0.05 mm, respectively; P=0.002) and area (5.71±0.97 vs. 8.31±0.83, respectively; P=0.02). Although numerically greater, mean interferon-τ (IFNT) production in vitro did not differ significantly (P=0.54) between embryos recovered from hCG-treated and control heifers. In contrast, there was a strong positive correlation between individual embryo length (r=0.76; P<0.001) and individual embryo area (r=0.72; P<0.001) and IFNT production. In conclusion, administration of hCG on day 5 after oestrus resulted in the formation of an accessory CL and hypertrophy of the original CL, the result of which was an increase in P4 concentrations from day 7 onwards. These elevated P4 concentrations were associated with an increased conceptus area. Furthermore, conceptus size was highly correlated with IFNT secretion in vitro.
Structural and Computational Studies of Cp(CO)2(PCy3)MoFBF3, a Complex with a Bound BF4- Ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Tan-Yun; Szalda, David J.; Franz, James A.
2010-02-15
Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BF4 gives Cp(CO)2(PCy3)MoFBF3, and the crystal structure of this complex was determined. In the weakly bound FBF3 ligand, the B-F(bridging) bond length is 1.475(8) Å, which is 0.15 Å longer than the average length of the three B-F(terminal) bonds. The PCy3 and FBF3 ligands are cis to each other in the four-legged piano stool structure. Electronic structure (DFT) calculations predict the trans isomer of Cp(CO)2(PCy3)MoFBF3 to be 9.5 kcal/mol (in ΔGog,298)) less stable than the cis isomer that was crystallographically characterized. Hydride transfer from Cp(CO)2(PCy3)MoH to Ph3C+BAr'4 [Ar' = 3,5-bis(trifluoromethyl)phenyl] in CH2Cl2 solvent produces [Cp(CO)2(PCy3)Mo(ClCH2Cl)]+[BAr'4]more » , in which CH2Cl2 is coordinated to the metal. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
Dynamic simulation of relief line during loss of insulation vacuum of the ITER cryoline
NASA Astrophysics Data System (ADS)
Badgujar, S.; Kosek, J.; Grillot, D.; Forgeas, A.; Sarkar, B.; Shah, N.; Choukekar, K.; Chang, H.-S.
2017-12-01
The ITER cryoline (CL) system consists of 37 types of vacuum jacketed transfer lines which forms a complex structured network with a total length of about 5 km, spread inside the Tokamak building, on a dedicated plant bridge and in the Cryoplant building/area. One of them, the low pressure relief line (RL) recovers helium discharged from process safety relief valves of the different cryogenic users and is sent it back to the Cryoplant via heater and recovery system. The process pipe diameters of the RL vary from DN 50 to DN 200 and the length is more than 1500 m. Loss of insulation vacuum (LIV) of a CL is one of the worst scenarios apart from LIV in Auxiliary Cold Boxes (ACBs). The Torus and Cryostat CL is chosen to simulate the virtual LIV and to study the anticipated behavior of the RL. Both helium LIV (LIV due to leak in helium pipe) and air LIV (LIV due to air ingress in outer vacuum jacket of the cryoline) with and without fire) have been simulated during this study. After the brief description of the CL system, the paper will describe the EcosimPro® model prepared for the dynamic study. The paper will also describe the results like minimum temperature of RL, mass flow and maximum pressure in the RL which are essentially used to choose the type and location of safety relief devices to protect the CL process pipes.
Pulsed deposition of silicate films
NASA Astrophysics Data System (ADS)
He, W.; Solanki, R.; Conley, J. F.; Ono, Y.
2003-09-01
A sequential pulsed process is utilized for deposition of nonstoichiometric silicate films without employing an oxidizing agent. The metal precursors were HfCl4, AlCl3, and ZrCl4, as well as Hf(NO3)4 and the silicon source was tris(tert-butoxy)silanol. Unlike atomic layer deposition, the growth per cycle was several monolayers thick, where the enhancement in growth was due to a catalytic reaction. The bulk and electrical properties of these films are similar to those of silicon dioxide. Silicon carbide devices coated with these films show good insulating characteristics.
Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.
Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai
2014-01-01
Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Reid, M. A.
1982-01-01
The Cr(III) complexes in the NASA Redox Energy Storage System were isolated and identified as Cr(H2O)6(+3) and Cr(H2O)5Cl(+2) by ion exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles were followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations calculated using Beer's Law. During the charge mode Cr(H2O)5Cl(+2) is reduced to Cr(H2O)5Cl(+) and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(+2). Both electrode reactions occur via a chloride-bridge inner-sphere reaction pathway. Hysteresis effects can be explained by the slow attainment of equilibrium between Cr(H2O)6(+3) and Cr(H2O)5Cl(+2).
NASA Astrophysics Data System (ADS)
Halfen, D. T.; Ziurys, L. M.
2006-11-01
The pure rotational spectrum of the molecular ion TiF + in its 3Φr ground state has been measured in the range 327-542 GHz using millimeter-wave direct absorption techniques combined with velocity modulation spectroscopy. TiF + was made in an AC discharge from a mixture of TiCl 4, F 2 in He, and argon. Ten transitions of this ion were recorded. In every transition, fluorine hyperfine interactions, as well as the fine structure splittings, were resolved. The fine structure pattern was found to be regular with almost equal spacing in frequency between the three spin components, in contrast to TiCl +, which is perturbed in the ground state. The data were fit with a case ( a) Hamiltonian and rotational, fine structure, and hyperfine constants were determined. The bond length established for TiF +, r0 = 1.7775 Å, was found to be shorter than that of TiF, r0 = 1.8342 Å—also established from mm-wave data. The hyperfine parameters determined are consistent with a δ1π1 electron configuration with the electrons primarily located on the titanium nucleus. The nuclear spin-orbit constant a indicates that the unpaired electrons are closer to the fluorine nucleus in TiF + relative to TiF, as expected with the decrease in bond length for the ion. The shorter bond distance is thought to arise from increased charge on the titanium nucleus as a result of a Ti 2+F - configuration. A similar decrease in bond length was found for TiCl + relative to TiCl.
NASA Astrophysics Data System (ADS)
Jackson, W. Andrew; Böhlke, J. K.; Andraski, Brian J.; Fahlquist, Lynne; Bexfield, Laura; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta; Betancourt, Julio; Stonestrom, David; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.
2015-09-01
Natural perchlorate (ClO4-) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4- compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4- in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4- to the more well-studied atmospherically deposited anions NO3- and Cl- as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4- is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10-1 to 106 μg/kg. Generally, the ClO4- concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3- and ClO4- co-occur at molar ratios (NO3-/ClO4-) that vary between ∼104 and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4- reduction, as indicated in part by NO3- isotope data. In contrast, much larger ranges of Cl-/ClO4- and Cl-/NO3- ratios indicate Cl- varies independently from both ClO4- and NO3-. The general lack of correlation between Cl- and ClO4- or NO3- implies that Cl- is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3-/ClO4- molar ratio ∼103. The relative enrichment in ClO4- compared to Cl- or NO3- and unique isotopic composition of Atacama ClO4- may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4- reported on the surface of Mars, and its enrichment with respect to Cl- and NO3-, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3-/ClO4- in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3- pool terrestrially.
Gustavsson, Malin; Karlsson, Susanne; Oberg, Gunilla; Sandén, Per; Svensson, Teresia; Valinia, Salar; Thiry, Yves; Bastviken, David
2012-02-07
Transformation of chloride (Cl(-)) to organic chlorine (Cl(org)) occurs naturally in soil but it is poorly understood how and why transformation rates vary among environments. There are still few measurements of chlorination rates in soils, even though formation of Cl(org) has been known for two decades. In the present study, we compare organic matter (OM) chlorination rates, measured by (36)Cl tracer experiments, in soils from eleven different locations (coniferous forest soils, pasture soils and agricultural soils) and discuss how various environmental factors effect chlorination. Chlorination rates were highest in the forest soils and strong correlations were seen with environmental variables such as soil OM content and Cl(-) concentration. Data presented support the hypothesis that OM levels give the framework for the soil chlorine cycling and that chlorination in more organic soils over time leads to a larger Cl(org) pool and in turn to a high internal supply of Cl(-) upon dechlorination. This provides unexpected indications that pore water Cl(-) levels may be controlled by supply from dechlorination processes and can explain why soil Cl(-) locally can be more closely related to soil OM content and the amount organically bound chlorine than to Cl(-) deposition.
Mizoguchi, Asao; Ohshima, Yasuhiro; Endo, Yasuki
2011-08-14
Pure rotational spectra of the sodium chloride-water complexes, NaCl-(H(2)O)(n) (n = 1, 2, and 3), in the vibronic ground state have been observed by a Fourier- transform microwave spectrometer coupled with a laser ablation source. The (37)Cl-isotopic species and a few deuterated species have also been observed. From the analyses of the spectra, the rotational constants, the centrifugal distortion constants, and the nuclear quadrupole coupling constants of the Na and Cl nuclei were determined precisely for all the species. The molecular structures of NaCl-(H(2)O)(n) were determined using the rotational constants and the molecular symmetry. The charge distributions around Na and Cl nuclei in NaCl are dramatically changed by the complex formation with H(2)O. Prominent dependences of the bond lengths r(Na-Cl) on the number of H(2)O were also observed. By a comparison with results of theoretical studies, it is shown that the structure of NaCl-(H(2)O)(3) is approaching to that of the contact ion-pair, which is considered to be an intermediate species in the incipient solvation process.
Zhang, Wei; Zhou, Zhen; An, Ying; Du, Silu; Ruan, Danian; Zhao, Chengyue; Ren, Ning; Tian, Xiaoce
2017-07-01
Simultaneous zeolites regeneration and nitrogen removal were investigated by using a mixed solution of NaClO and NaCl (NaClO-NaCl solution), and effects of the regenerant on ammonium removal performance and textural properties of zeolites were analyzed by long-term adsorption and regeneration operations. Mixed NaClO-NaCl solution removed more NH 4 + exchanged on zeolites and converted more of them to nitrogen than using NaClO or NaCl solution alone. Response surface methodological analysis indicated that molar ratio of hypochlorite and nitrogen (ClO - /N), NaCl concentration and pH value all had significant effects on zeolites regeneration and NH 4 + conversion to nitrogen, and the optimum condition was obtained at ClO - /N of 1.75, NaCl concentration of 20 g/L and pH of 10.0. Zeolites regenerated by mixed NaClO-NaCl solution showed higher ammonium adsorption rate and lower capacity than unused zeolites. Zeolites and the regeneration solution were both effective even after 20 cycles of use. Composition and morphological analysis revealed that the main mineral species and surface morphology of zeolites before and after NaClO-NaCl regeneration were unchanged. Textural analysis indicated that NaClO-NaCl regeneration leads to an increased surface area of zeolites, especially the microporosity. The results indicated that NaClO-NaCl regeneration is an attractive method to achieve sustainable removal of nitrogen from wastewater through zeolite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sahu, Pooja; Ali, Sk Musharaf; Shenoy, K T; Mohan, S
2018-04-12
The Cu complex, which is the key chemical species in well-known Cu-Cl hybrid thermochemical cycles and also in numerous metal hydrometallurgical and sedimentary deposit processes, displays a wide variety of structural and dynamical characteristics that are further complicated by the presence of multiple oxidation states of Cu ions with different coordination chemistries, therefore they are difficult to explore from experiments alone. In this article, an attempt has been made to understand the coordination behavior of the Cu complex using MD simulations. The study provides compelling evidence of the experimentally observed multiple stoichiometries of Cu ions, i.e., 1:6:0, 1:5:1, and 1:4:2 for Cu + :H 2 O:Cl - and 1:6:0 for Cu 2+ :H 2 O:Cl - . The presence of the anionic Cu complex, [Cu + Cl 2 ] - ·2H 2 O, [Cu + Cl 2 ] - ·3H 2 O, [Cu 2+ Cl 3 ] - ·H 2 O, and [Cu 2+ Cl 3 ] - ·2H 2 O, was captured in the presence of excess chloride ions. Furthermore, the probability distribution profiles have been estimated to determine the most possible complex in the considered systems. The results establish structural and dynamical reformation of the Cu complex with change in the salt concentration or variation in the solvent medium in which they are dissolved. Moreover, the structure and kinetics of the Cu ions in the Cu-Cl electrolyzer have been explored over a large range of the electric field by extending the simulated systems for varied strengths of the electric fields. It has been observed that with an increase in the strength of the electric field, the water molecules lose their coordination strength with central Cu ions, which, on the other hand, results in a significant change in the structure of the captured complex. The diffusion dynamics of the ions is altered while applying the electric field, which is furthermore modified while increasing the strength of electric field beyond a critical limit. In fact, the diffusion mechanism of the ions was seen to be transformed from Brownian-like to linear motion and then to hopping diffusion with the increasing strength of the electric field. To the best of our knowledge, this is the first time when the multiple oxidation states of the Cu ion are explored using MD simulations, and the coexisting pictures of the multiple coordinations and the solvent effects have been clearly revealed. Also to date, the present article is the first one to report the insights of the structure and the dynamics of the ions in the Cu-Cl electrolyzer over a wide range of the electric field. The present studies will be very helpful in understanding the mechanism involved in numerous metal hydrometallurgical and sedimentary deposit processes and to comprehend the analogies involved in the electrode reactions of the Cu-Cl cycle for hydrogen generation.
Ćoćić, Dušan; Jovanović, Snežana; Nišavić, Marija; Baskić, Dejan; Todorović, Danijela; Popović, Suzana; Bugarčić, Živadin D; Petrović, Biljana
2017-10-01
Six new dinuclear Pd(II) complexes, [{Pd(2,2'-bipy)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd1), [{Pd(dach)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd2), [{Pd(en)Cl} 2 (μ-pz)](ClO 4 ) 2 (Pd3), [{Pd(2,2'-bipy)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd4), [{Pd(dach)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd5) and [{Pd(en)Cl} 2 (μ-4,4'-bipy)](ClO 4 ) 2 (Pd6) (where 2,2'-bipy=2,2'-bipyridyl, pz=pyrazine, dach=trans-(±)-1,2-diaminocyclohexane, en=ethylenediamine, 4,4'-bipy=4,4'-bipyridyl) have been synthesized and characterized by elemental microanalysis, IR, 1 H NMR and MALDI-TOF mass spectrometry. The pK a values of corresponding diaqua complexes were determined by spectrophotometric pH titration. Substitution reactions with thiourea (Tu), l-methionine (l-Met), l-cysteine (l-Cys), l-histidine (l-His) and guanosine-5'-monophosphate (5'-GMP) were studied under the pseudo-first order conditions at pH7.2. Reactions of Pd1 with Tu, l-Met and l-Cys were followed by decomposition of complexes, while structures of dinuclear complexes were preserved during the substitution with nitrogen donors. Interactions with calf-thymus DNA (CT-DNA) were followed by absorption spectroscopy and fluorescence quenching measurements. All complexes can bind to CT-DNA exhibiting high intrinsic binding constants (K b =10 4 -10 5 M -1 ). Competitive studies with ethidium bromide (EB) have shown that complexes can displace DNA-bound EB. High values of binding constants towards bovine serum albumin protein (BSA) indicate good binding affinity. Finally, all complexes showed moderate to high cytotoxic activity against HeLa (human cervical epithelial carcinoma cell lines) and MDA-MB-231 (human breast epithelial carcinoma cell lines) tumor cell lines inducing apoptotic type cell death, whereas normal fibroblasts were significantly less sensitive. The impact on cell cycle of these cells was distinctive, where Pd4, Pd5 and Pd6 showed the most prominent effect arresting MDA-MB-231 (human lung fibroblast cell lines) cell in G1/S phase of cell cycle. Copyright © 2017 Elsevier Inc. All rights reserved.
Single-Crystal Growth of Cl-Doped n-Type SnS Using SnCl2 Self-Flux.
Iguchi, Yuki; Inoue, Kazutoshi; Sugiyama, Taiki; Yanagi, Hiroshi
2018-06-05
SnS is a promising photovoltaic semiconductor owing to its suitable band gap energy and high optical absorption coefficient for highly efficient thin film solar cells. The most significant carnage is demonstration of n-type SnS. In this study, Cl-doped n-type single crystals were grown using SnCl 2 self-flux method. The obtained crystal was lamellar, with length and width of a few millimeters and thickness ranging between 28 and 39 μm. X-ray diffraction measurements revealed the single crystals had an orthorhombic unit cell. Since the ionic radii of S 2- and Cl - are similar, Cl doping did not result in substantial change in lattice parameter. All the elements were homogeneously distributed on a cleaved surface; the Sn/(S + Cl) ratio was 1.00. The crystal was an n-type degenerate semiconductor with a carrier concentration of ∼3 × 10 17 cm -3 . Hall mobility at 300 K was 252 cm 2 V -1 s -1 and reached 363 cm 2 V -1 s -1 at 142 K.
NASA Astrophysics Data System (ADS)
Chang, Hee Jung; Lu, Xiaochuan; Bonnett, Jeff F.; Canfield, Nathan L.; Son, Sori; Park, Yoon-Cheol; Jung, Keeyoung; Sprenkle, Vincent L.; Li, Guosheng
2017-04-01
Developing advanced and reliable electrical energy storage systems is critical to fulfill global energy demands and stimulate the growth of renewable energy resources. Sodium metal halide batteries have been under serious consideration as a low cost alternative energy storage device for stationary energy storage systems. Yet, there are number of challenges to overcome for the successful market penetration, such as high operating temperature and hermetic sealing of batteries that trigger an expensive manufacturing process. Here we demonstrate simple, economical and practical sealing technologies for Na-NiCl2 batteries operated at an intermediate temperature of 190 °C. Conventional polymers are implemented in planar Na-NiCl2 batteries after a prescreening test, and their excellent compatibilities and durability are demonstrated by a stable performance of Na-NiCl2 battery for more than 300 cycles. The sealing methods developed in this work will be highly beneficial and feasible for prolonging battery cycle life and reducing manufacturing cost for Na-based batteries at elevated temperatures (<200 °C).
Azimian-Zavareh, Vajihe; Hossein, Ghamartaj; Janzamin, Ehsan
2012-01-01
Objective: Glycogen synthase kinase-3β (GSK-3β) has been reported to be required for androgen receptor (AR) activity. This study sought to determine the usefulness of lithium chloride (LiCl) as a highly selective inhibitor of GSK-3β to increase the sensitivity of LNCap cells to doxorubicin (Dox), etoposide (Eto), and vinblastine (Vin) drugs. Materials and Methods: Thiazolyl Blue Tetrazolium Blue (MTT) assay was used to determine the cytotoxic effect to LiCl alone or in combination with low dose and IC50 doses of drugs. Subsequently, cell cycle analysis was performed by using flow cytometry. Results: LiCl showed cytotoxic effect in a dose- and time-dependent manner (P<0.001). Both Dox (100 or 280 nM) and Vin IC50 (5 nM) doses caused G2/M-phase arrest (P<0.001) compared with control. However, low dose (10 μM) or IC50 (70 μM) Eto doses showed G2/M or S-phase arrests, respectively (P<0.001). Combination of low dose or IC50 dose of Eto with LiCl showed increased apoptosis as revealed by high percent of cells in SubG1 (P<0.05, P<0.01, respectively). Moreover, Eto (10 μM) led to decreased percent of cells in G2/M phase when combined with LiCl (P<0.05). Conclusion: This study showed that LiCl increases apoptosis of (LNCap) Lymph Node Carcinoma of the Prostate cells in the presence of Eto, which is S- and G2-phase-specific drug. PMID:23248400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hua; Xiao, Liang; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn
2014-09-15
Highlights: • Preparation ofAg/AgCl microrods by reaction of Ag{sub 2}WO{sub 4} microrods with NaCl solution. • Generation of metallic Ag is induced by the ambient light in the synthesis process. • Ag/AgCl shows excellent visible light-driven photodegradation of organic dyes. - Abstract: Ag/AgCl microrods, aggregated by nanoparticles with a diameter ranging from 100 nm to 2 μm, were prepared by an ion-exchange reaction at 80 °C between Ag{sub 2}WO{sub 4} template and NaCl solution. The existence of metallic Ag species was confirmed by XRD, DRS and XPS measurements. Ag/AgCl microrods showed excellent photocatalytic activity for the degradation of rhodamine Bmore » and methylene blue under visible light irradiation. The degradation rate constants of rhodamine B and methylene blue are 0.176 and 0.114 min{sup −1}, respectively. The cycling photodegradation experiments suggest that Ag/AgCl microds could be employed as stable plasmonic photocatalysts for the degradation of organic dyes under visible light irradiation.« less
Process design and economic analysis of the zinc selenide thermochemical hydrogen cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otsuki, H.H.; Krikorian, O.H.
1978-09-06
A detailed preliminary design for a hydrogen production plant has been developed based on an improved version of the ZnSe thermochemical cycle for decomposing water. In the latest version of the cycle, ZnCl/sub 2/ is converted directly to ZnO through high temperature steam hydrolysis. This eliminates the need for first converting ZnCl/sub 2/ to ZnSO/sub 4/ and also slightly reduces the overall heat requirement. Moreover, it broadens the temperature range over which prime heat is required and improves the coupling of the cycle with a nuclear reactor heat source. The ZnSe cycle is driven by a very-high-temperature nuclear reactor (VHTR)more » proposed by Westinghouse that provides a high-temperature (1283 K) helium working gas for process heat and power. The plant is sized to produce 27.3 Mg H/sub 2//h (60,000 lb H/sub 2//h) and requires specially designed equipment to perform the critical reaction steps in the cycle. We have developed conceptual designs for several of the important process steps to make cost estimates, and have obtained a cycle efficiency of about 40% and a hydrogen production cost of about $14/GJ. We believe that the cost is high because input data on reaction rates and equipment lifetimes have been conservatively estimated and the cycle parameters have not been optimized. Nonetheless, this initial analysis serves an important function in delineating areas in the cycle where additional research is needed to increase efficiency and reduce costs in a more advanced version of the cycle.« less
Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming
1999-01-01
The structure and bonding properties of metal complexes in subcritical and supercritical fluids are still largely unknown. Conventional high pressure and temperature cell designs impose considerable limitations on the pressure, temperature, and concentration of metal salts required for measurements on solutions under supercritical conditions. In this study, we demonstrate the first application of the diamond anvil cell, specially designed for x-ray absorption studies of first-row transition metal ions in supercritical fluids. Zn K-edge XAFS spectra were measured from aqueous solutions of 1-2m ZnCl2 and up to 6m NaCl, at temperatures ranging from 25-660 ??C and pressures up to 800 MPa. Our results indicate that the ZnCl42- complex is predominant in the 1m ZnCl2/6m NaCl solution, while ZnCl2(H2O)2 is similarly predominant in the 2m ZnCl2 solution, at all temperatures and pressures. The Zn-Cl bond length of both types of chlorozinc(II) complexes was found to decrease at a rate of about 0.01 A??/100 ??C.
Cosmogenic Cl-36 production rates in meteorites and the lunar surface
NASA Technical Reports Server (NTRS)
Nishiizumi, K.; Arnold, J. R.; Kubik, P. W.; Elmore, D.; Reedy, R. C.
1989-01-01
Activity vs. depth profiles of cosmic ray produced Cl-36 were measured in metal from two cores each in the St. Severin and Jilin chondrites and in lunar core 15008. Production of Cl-36 in these samples range from high-energy reactions with Fe and Ni to low-energy reactions with Ca and K and possibly neutron-capture reactions with Cl-36. The cross sections used in the Reedy-Arnold model for neutron-induced reactions were adjusted to get production rates that fit the measured Cl-36 activities in St. Severin metal and in the lunar soil of core 15008. The Cl-36 in metal from St. Severin has a fairly flat activity-vs-depth profile, unlike most other cosmogenic nuclides in bulk samples from St. Severin, which increase in concentration with depth. In metal from Jilin, a decrease in Cl-36 was observed near its center. The length of Jilin's most recent cosmic-ray exposure was approximately 0.5 My. Lunar core 15008 has an excess in Cl-36 of about 4 dpm/kg near its surface that was produced by solar-proton-induced reactions. The calculated production rates are consistent with these measured trends in 15008.
Supply Chain Resilience: Assessing Resilience over the Life Cycle of Capital Equipment
2014-07-09
Purposes): [] CRADA (Cooperative Research and Development Agreement) exists [] Photo/ Video Opportunities [] STEM -outreach Related [] New Invention...Recovery C9 10.6 / 0.7 9.8 / -1.1 Dispersion ClO 8.4 13.4 15.3 /11.0 Collaboration Cll -0.1 I -10.5 3.6 / -9.0 Organization Cl2 6.3 / -3.2 Security C l3
NASA Astrophysics Data System (ADS)
Yurdakul, Ş.; Bilkana, M. T.
2015-10-01
The structural features such as geometric parameters, vibration frequencies and intensities of the vibrational bands of 2,2'-dipyridylamine ligand (DPA), its palladium (Pd(DPA)Cl2) and platinum (Pt(DPA)Cl2) complexes were studied by the density functional theory (DFT). The calculations were carried out by DFT / B3LYP method with 6-311++G(d,p) and LANL2DZ basis sets. All vibrational frequencies assigned in detail with the help of total energy distribution analysis (TED). Optimized geometric bond lengths and bond angles were compared with experimental X-ray data. Using DPA, K2PtCl4, and Na2PdCl4, the synthesized complex structures were characterized by the combination of elemental analysis, FT-IR (mid and far IR) and Raman spectroscopy.
Infrared line intensity measurements in the v = 0-1 band of the ClO radical
NASA Technical Reports Server (NTRS)
Burkholder, James B.; Howard, Carleton J.; Hammer, Philip D.; Goldman, Aaron
1989-01-01
Integrated line intensity measurements in the ClO-radical fundamental vibrational v = 0-1 band were carried out using a high-resolution Fourier transform spectrometer coupled to a long-path-length absorption cell. The results of a series of measurements designed to minimize systematic errors, yielded a value of the fundamental IR band intensity of the ClO-radical equal to 9.68 + or - 1.45/sq cm per atm at 296 K. This result is consistent with all the earlier published results, with the exception of measurements reported by Kostiuk et al. (1986) and Lang et al. (1988).
25-Hydroxyvitamin D and Long Menstrual Cycles in a Prospective Cohort Study.
Jukic, Anne Marie Z; Wilcox, Allen J; McConnaughey, D Robert; Weinberg, Clarice R; Steiner, Anne Z
2018-05-01
Vitamin D insufficiency is associated with subfertility and prolonged estrus cycles in animals, but humans have not been well studied. A prospective time-to-pregnancy study, Time to Conceive (2010-2015), collected up to 4 months of daily diary data. Participants were healthy, late reproductive-aged women in North Carolina who were attempting pregnancy. We examined menstrual cycle length as a continuous variable and in categories: long (35+ days) and short (≤25 days). Follicular phase length and luteal phase length were categorized as long (18+ days) or short (≤10 days). We estimated associations between those lengths and serum 25-hydroxyvitamin D (25[OH]D) using linear mixed models and marginal models. There were 1,278 menstrual cycles from 446 women of whom 5% were vitamin D deficient (25[OH]D, <20 ng/ml), 69% were between 20 and 39 ng/ml, and 26% were 40 ng/ml or higher. There was a dose-response association between vitamin D levels and cycle length. Compared with the highest 25(OH)D level (≥40 ng/ml), 25(OH)D deficiency was associated with almost three times the odds of long cycles (adjusted odds ratio [aOR] = 2.8 [95% confidence interval (CI) = 1.0, 7.5]). The aOR was 1.9 (1.1, 3.5) for 20 to <30 ng/ml. The probability of a long follicular phase and the probability of a short luteal phase both increased with decreasing 25(OH)D. Lower levels of 25(OH)D are associated with longer follicular phase and an overall longer menstrual cycle. Our results are consistent with other evidence supporting vitamin D's role in the reproductive axis, which may have broader implications for reproductive success.
Lum, Kirsten J.; Sundaram, Rajeshwari; Barr, Dana Boyd; Louis, Thomas A.; Louis, Germaine M. Buck
2016-01-01
Background Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample upon enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid-chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF]=1.03, 95% credible interval [CrI]=[1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA) (AF=0.98, 95% CrI=[0.96, 1.00]). When accounting for cycle length, relevant covariates and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of PFNA (odds ratio [OR]=0.6, 95% CrI=[0.4, 1.0]) though not when comparing the highest versus lowest (OR=0.7, 95% CrI=[0.3, 1.1]) tertile. Conclusions In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. PMID:27541842
NASA Astrophysics Data System (ADS)
Wu, Z.; Wang, A.; Ling, Z.; Li, B.; Zhang, J.; Xu, W.
2015-12-01
The directly measured high ClO4-/Cl- ratio (4.3-8.75) at Phoenix site and the implied ClO4- existences at Curiosity and Viking sites reminded Mars science community on the importance of (1) the global distribution of ClO4-/Cl- ratio; (2) the mechanisms that are responsible for Cl- to ClOy- (y=1,2,3,4) transformation; and (3) the current and historical Cl- cycle on Mars. Our goal is to study electrostatic discharge (ESD) in a Mars Chamber, as one of the four proposed mechanisms for the formation of Martian perchlorate. ESD was anticipated during dust storm/devil on Mars. A model estimated that ESD generated oxidants can be 200 times of those produced by photochemistry. Our study is conducted in three steps. Firstly, oxychlorine salts, NaClOy, Mg(ClO4)2.xH2O (x=0,6), and Ca(ClO4)2.xH2O (x=0,4), were analyzed at ambient conditions using MIR, NIR (1.4-2.6 µm), Raman spectroscopy, and in a Mars Chamber using in-situ NIR and Raman spectroscopy. Our purpose is to understand their phase transition and spectral change at Mars pressure (P) and temperature (T) conditions. We have found: (1) Under current surface/subsurface P-T conditions in mid-latitudes/equatorial regions on Mars, Mg(ClO4)2.6H2O and Ca(ClO4)2.4H2O are stable, while the hydration degree of NaClO4.H2O would increase at T<-30℃ and decrease in 5
Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters
NASA Astrophysics Data System (ADS)
Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia
2018-01-01
One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.
Clark, Thomas M; Vieira, Marcus A L; Huegel, Kara L; Flury, Dawn; Carper, Melissa
2007-12-01
The responses of larval Aedes aegypti to media of pH 4, 7 and 11 provide evidence for pH regulatory strategies. Drinking rates in pH 4 media were elevated 3- to 5-fold above those observed in pH 7 or 11. Total body water was elevated during acute exposure to acidic media. During chronic exposure, total body water was decreased and Malpighian tubule mitochondrial luminosity, quantified using Mitotracker Green FM, increased. Malpighian tubule secretion rates and energy demands thus appear to increase dramatically during acid exposure. In alkaline media, drinking rates were quite low. Larvae in pH 11 media excreted net acid (0.12 nequiv H(+) g(-1) h(-1)) and the pH indicators azolitmin and bromothymol blue revealed that the rectal lumen is acidic in vivo at all ambient pH values. The anal papillae (AP) were found to be highly permeant to acid-base equivalents. Ambient pH influenced the length, and the mass-specific length, of the AP in the presence of NaCl (59.9 mmol l(-1)). In contrast, the length and mass-specific length of AP were not influenced by ambient pH in low NaCl conditions. Mitochondrial luminosity was reduced in AP of larvae reared in acidic media, and was not elevated in alkaline media, relative to that of larvae reared in neutral media. These data suggest that the AP may compromise acid-base balance in acidic media, and may also be an important site of trade-offs between H(+) homeostasis and NaCl uptake in dilute, acidic media.
Differences in Pedaling Technique in Cycling: A Cluster Analysis.
Lanferdini, Fábio J; Bini, Rodrigo R; Figueiredo, Pedro; Diefenthaeler, Fernando; Mota, Carlos B; Arndt, Anton; Vaz, Marco A
2016-10-01
To employ cluster analysis to assess if cyclists would opt for different strategies in terms of neuromuscular patterns when pedaling at the power output of their second ventilatory threshold (PO VT2 ) compared with cycling at their maximal power output (PO MAX ). Twenty athletes performed an incremental cycling test to determine their power output (PO MAX and PO VT2 ; first session), and pedal forces, muscle activation, muscle-tendon unit length, and vastus lateralis architecture (fascicle length, pennation angle, and muscle thickness) were recorded (second session) in PO MAX and PO VT2 . Athletes were assigned to 2 clusters based on the behavior of outcome variables at PO VT2 and PO MAX using cluster analysis. Clusters 1 (n = 14) and 2 (n = 6) showed similar power output and oxygen uptake. Cluster 1 presented larger increases in pedal force and knee power than cluster 2, without differences for the index of effectiveness. Cluster 1 presented less variation in knee angle, muscle-tendon unit length, pennation angle, and tendon length than cluster 2. However, clusters 1 and 2 showed similar muscle thickness, fascicle length, and muscle activation. When cycling at PO VT2 vs PO MAX , cyclists could opt for keeping a constant knee power and pedal-force production, associated with an increase in tendon excursion and a constant fascicle length. Increases in power output lead to greater variations in knee angle, muscle-tendon unit length, tendon length, and pennation angle of vastus lateralis for a similar knee-extensor activation and smaller pedal-force changes in cyclists from cluster 2 than in cluster 1.
Corpora lutea in superovulated ewes fed different planes of nutrition.
Kraisoon, A; Redmer, D A; Bass, C S; Navanukraw, C; Dorsam, S T; Valkov, V; Reyaz, A; Grazul-Bilska, A T
2018-01-01
The corpus luteum (CL) is an ovarian structure which is critical for the maintenance of reproductive cyclicity and pregnancy support. Diet and/or diet components may affect some luteal functions. FSH is widely used to induce multiple follicle development and superovulation. We hypothesized that FSH would affect luteal function in ewes fed different nutritional planes. Therefore, the aim of this study was to determine if FSH-treatment affects (1) ovulation rate; (2) CL weight; (3) cell proliferation; (4) vascularity; (5) expression of endothelial nitric oxide (eNOS) and soluble guanylate cyclase (sGC) proteins; and (6) luteal and serum progesterone (P4) concentration in control (C), overfed (O), and underfed (U) ewes at the early- and mid-luteal phases. In addition, data generated from this study were compared to data obtained from nonsuperovulated sheep and described by Bass et al. Ewes were categorized by weight and randomly assigned into nutrition groups: C (2.14 Mcal/kg; n = 11), O (2xC; n = 12), and U (0.6xC; n = 11). Nutritional treatment was initiated 60 d prior to day 0 of the estrous cycle. Ewes were injected with FSH on day 13-15 of the first estrous cycle, and blood samples and ovaries were collected at early- and mid-luteal phases of the second estrous cycle. The number of CL/ewe was determined, and CL was dissected and weighed. CL was fixed for evaluation of expression of Ki67 (a proliferating cell marker), CD31 (an endothelial cell marker), and eNOS and sGC proteins using immunohistochemistry and image analysis. From day 0 until tissue collection, C maintained, O gained, and U lost body weight. The CL number was greater (P < 0.03) in C and O than U. Weights of CL, cell proliferation, vascularity, and eNOS but not sGC expression were greater (P < 0.001), and serum, but not luteal tissue, P4 concentrations tended to be greater (P = 0.09) at the early- than mid-luteal phase. Comparisons of CL measurements demonstrated greater (P < 0.01) cell proliferation and serum P4 concentration, but less vascularity at the early and mid-luteal phases, and less CL weight at the mid-luteal phase in superovulated than nonsuperovulated ewes; however, concentration of P4 in luteal tissues was similar in both groups. Thus, in superovulated ewes, luteal cell proliferation and vascularity, expression of eNOS, and serum P4 concentration depend on the stage of luteal development, but not diet. Comparison to control ewes demonstrated several differences and some similarities in luteal functions after FSH-induced superovulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Singer, Alison B; Whitworth, Kristina W; Haug, Line S; Sabaredzovic, Azemira; Impinen, Antti; Papadopoulou, Eleni; Longnecker, Matthew P
2018-06-04
Perfluoroalkyl substances (PFASs) are fluorinated organic compounds that have been used in a variety of industrial and consumer applications. Menstruation is implicated as a possible route of elimination for PFASs in women. The overall purpose of this study was to examine menstrual cycle characteristics as determinants of plasma PFAS concentrations in women. Our study sample consisted of 1977 pregnant women from the Norwegian Mother and Child Cohort (MoBa) study. The women were asked about menstrual cycle regularity in the year before the pregnancy and typical menstrual cycle length as well as other demographic and reproductive characteristics in a questionnaire completed during the pregnancy. Blood samples were collected around 17-18 weeks gestation and PFAS concentrations were measured in plasma. We examined the association between menstrual cycle characteristics and seven PFASs (perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonate (PFHxS), perfluoroheptane sulfonate (PFHpS), and perfluorooctane sulfonate (PFOS)) using multiple linear regression, adjusted for age, pre-pregnancy body mass index, smoking, education, income, parity, oral contraceptive use, inter-pregnancy interval, and breastfeeding duration. Irregular cycles were not associated with PFAS concentrations. Overall, we found no evidence of associations between menstrual cycle length and PFAS concentrations. In subgroup analyses we found some evidence, among parous women, of decreased PFHpS and PFOS with short menstrual cycles; we also found, among recent OC users (in the 12 months before the questionnaire) increased PFNA and PFUnDA with long cycle length. Limitations of our study include misclassification of menstrual cycle characteristics, small sample sizes in the sub-group analyses, and a lack of information on duration and volume of menses. In the entire study sample, we found little evidence of menstrual cycle characteristics as determinants of PFAS concentrations. However, we observed some associations between cycle length and PFAS concentrations with some select PFAS compounds in subgroup analyses. Copyright © 2018 Elsevier Inc. All rights reserved.
Naimi, Mohamed; Znari, Mohammed; Lovich, Jeffrey E.; Feddadi, Youssef; Baamrane, Moulay Abdeljalil Ait
2012-01-01
We examined the relationships of clutch size (CS) and egg size to female body size (straight-line carapace length, CL) in a population of the turtle Mauremys leprosa from a polluted segment of oued (river) Tensift in arid west-central Morocco. Twenty-eight adult females were collected in May–July, 2009 and all were gravid. Each was weighed, measured, humanely euthanized and then dissected. Oviductal shelled eggs were removed, weighed (egg mass, EM) and measured for length (EL) and width (EW). Clutch mass (CM) was the sum of EM for a clutch. Pelvic aperture width (PAW) was measured at the widest point between the ilia bones through which eggs must pass at oviposition. The smallest gravid female had a CL of 124.0 mm. Mean CS was relatively large (9.7±2.0 eggs, range: 3–13) and may reflect high productivity associated with polluted (eutrophic) waters. Regression analyses were conducted using log-transformed data. CM increased isometrically with maternal body size. CS, EW and EM were all significantly hypoallometric in their relationship with CL. EL did not change significantly with increases in CL. EW increased at a hypoallometric rate with increasing CL but was unconstrained by PAW since the widest egg was smaller than the narrowest PAW measurement when excluding the three smallest females. Smaller females may have EW constrained by PAW. As females increase in size they increase both clutch size and egg width in contradiction to predictions of optimal egg size theory.
Moon, Dohyun; Choi, Jong-Ha
2015-01-01
The structure of the title compound, cis-[CrCl(cycb)(H2O)][ZnCl4]·3H2O (cycb is rac-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; C16H36N4), has been determined from synchrotron data. In the complex cation, the CrIII ion is bound by four N atoms from the tetradentate cycb ligand, a chloride ion and one water molecule in a cis arrangement, displaying a distorted octahedral coordination geometry. The distorted tetrahedral [ZnCl4]2− anion and three additional water molecules remain outside the coordination sphere. The Cr—N(cycb) bond lengths are in the range of 2.0837 (14) to 2.1399 (12) Å while the Cr—Cl and Cr—(OH2) bond lengths are 2.2940 (8) and 2.0082 (13) Å, respectively. The crystal packing is stabilized by hydrogen-bonding interactions between the N—H groups of the macrocyclic ligand, the O—H groups of the water molecules and the Cl atoms of the tetrachloridozincate anion, leading to the formation of a three-dimensional network. PMID:26396846
Moon, Dohyun; Choi, Jong-Ha
2014-01-01
In the asymmetric unit of the title compound, [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O, there are two independent complex cations, one trichlorido(pyridine-κN)zincate anion and one solvent water molecule. The cations lie on inversion centers. The CrIII ions are coordinated by four pyridine (py) N atoms in the equatorial plane and two F atoms in a trans axial arrangement, displaying a slightly distorted octahedral geometry. The Cr—N(py) bond lengths are in the range 2.0873 (14) to 2.0926 (17) Å while the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å. The [ZnCl3(C5H5N)]− anion has a distorted tetrahedral geometry. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio. In the crystal, two anions and two water molecules are linked via O—H⋯Cl hydrogen bonds, forming centrosymmetric aggregates. In addition, weak C—H⋯Cl, C—H⋯π and π–π stacking interactions [centroid–centroid distances = 3.712 (2) and 3.780 (2)Å] link the components of the structure into a three-dimensional network. PMID:25484725
Electrochemical vaginal potential during the estral cycle and pregnancy in the rat.
Zipper, J; Angelo, S
1980-01-01
Potentials were measured with nonpolarizable salt electrodes (agar KCl-AgCl) during the estral cycle and pregnancy of the rat. The vaginal fundus is positive in regard to the external end of the vagina and does not present changes associated with the estral cycle. Vaginal-tongue potentials present biphasic cyclic changes associated with the estral cycle, the vagina being (-) during estro and (+) during diestro. Vaginal-abdominal skin potentials present monophasic modifications associated with the estral cycle. Vaginal-tongue potentials registered during pregnancy were (-) on the first day of pregnancy, (+) throughout pregnancy, and (-) on the first day postpartum.
Monfredi, Oliver; Maltseva, Larissa A.; Spurgeon, Harold A.; Boyett, Mark R.; Lakatta, Edward G.; Maltsev, Victor A.
2013-01-01
Spontaneous, submembrane local Ca2+ releases (LCRs) generated by the sarcoplasmic reticulum in sinoatrial nodal cells, the cells of the primary cardiac pacemaker, activate inward Na+/Ca2+-exchange current to accelerate the diastolic depolarization rate, and therefore to impact on cycle length. Since LCRs are generated by Ca2+ release channel (i.e. ryanodine receptor) openings, they exhibit a degree of stochastic behavior, manifested as notable cycle-to-cycle variations in the time of their occurrence. Aim The present study tested whether variation in LCR periodicity contributes to intrinsic (beat-to-beat) cycle length variability in single sinoatrial nodal cells. Methods We imaged single rabbit sinoatrial nodal cells using a 2D-camera to capture LCRs over the entire cell, and, in selected cells, simultaneously measured action potentials by perforated patch clamp. Results LCRs begin to occur on the descending part of the action potential-induced whole-cell Ca2+ transient, at about the time of the maximum diastolic potential. Shortly after the maximum diastolic potential (mean 54±7.7 ms, n = 14), the ensemble of waxing LCR activity converts the decay of the global Ca2+ transient into a rise, resulting in a late, whole-cell diastolic Ca2+ elevation, accompanied by a notable acceleration in diastolic depolarization rate. On average, cells (n = 9) generate 13.2±3.7 LCRs per cycle (mean±SEM), varying in size (7.1±4.2 µm) and duration (44.2±27.1 ms), with both size and duration being greater for later-occurring LCRs. While the timing of each LCR occurrence also varies, the LCR period (i.e. the time from the preceding Ca2+ transient peak to an LCR’s subsequent occurrence) averaged for all LCRs in a given cycle closely predicts the time of occurrence of the next action potential, i.e. the cycle length. Conclusion Intrinsic cycle length variability in single sinoatrial nodal cells is linked to beat-to-beat variations in the average period of individual LCRs each cycle. PMID:23826247
Decken, Andreas; Knapp, Carsten; Nikiforov, Grigori B; Passmore, Jack; Rautiainen, J Mikko; Wang, Xinping; Zeng, Xiaoqing
2009-06-22
Pushing the limits of coordination chemistry: The most weakly coordinated silver complexes of the very weakly coordinating solvents dichloromethane and liquid sulfur dioxide were prepared. Special techniques at low temperatures and the use of weakly coordinating anions allowed structural characterization of [Ag(OSO)][Al{OC(CF(3))(3)}(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(Cl(2)CH(2))(2)][SbF(6)] (see figure). An investigation of the bonding shows that these complexes are mainly stabilized by electrostatic monopole-dipole interactions.The synthetically useful solvent-free silver(I) salt Ag[Al(pftb)(4)] (pftb=--OC(CF(3))(3)) was prepared by metathesis reaction of Li[Al(pftb)(4)] with Ag[SbF(6)] in liquid SO(2). The solvated complexes [Ag(OSO)][Al(pftb)(4)], [Ag(OSO)(2/2)][SbF(6)], and [Ag(CH(2)Cl(2))(2)][SbF(6)] were prepared and isolated by special techniques at low temperatures and structurally characterized by single-crystal X-ray diffraction. The SO(2) complexes provide the first examples of coordination of the very weak Lewis base SO(2) to silver(I). The SO(2) molecule in [Ag(OSO)][Al(pftb)(4)] is eta(1)-O coordinated to Ag(+), while the SO(2) ligands in [Ag(OSO)(2/2)][SbF(6)] bridge two Ag(+) ions in an eta(2)-O,O' (trans,trans) manner. [Ag(CH(2)Cl(2))(2)][SbF(6)] contains [Ag(CH(2)Cl(2))(2)](+) ions linked through [SbF(6)](-) ions to give a polymeric structure. The solid-state silver(I) ion affinities (SIA) of SO(2) and CH(2)Cl(2), based on bond lengths and corresponding valence units in the corresponding complexes and tensimetric titrations of Ag[Al(pftb)(4)] and Ag[SbF(6)] with SO(2) vapor, show that SO(2) is a weaker ligand to Ag(+) than the commonly used weakly coordinating solvent CH(2)Cl(2) and indicated that binding strength of SO(2) to silver(I) in the silver(I) salts increases with increasing size of the corresponding counteranion ([Al(pftb)(4)](-)>[SbF(6)](-)). The experimental findings are in good agreement with theoretical gas-phase ligand-binding energies of [Ag(L)(n)](+) (L=SO(2), CH(2)Cl(2); n=1, 2) and solid-state enthalpies obtained from Born-Fajans-Haber cycles by using the volume-based thermodynamics (VBT) approach. Bonding analysis (VB, NBO, MO) of [Ag(L)(n)](+) suggests that these complexes are almost completely stabilized by electrostatic interaction, that is, monopole-dipole interaction, with almost no covalent contribution by electron donation from the ligand orbitals into the vacant 5s orbital of Ag(+). All experimental findings and theoretical considerations demonstrate that SO(2) is less covalently bound to Ag(+) than CH(2)Cl(2) and support the thesis that SO(2) is a polar but non-coordinating solvent towards Ag(+).
NASA Astrophysics Data System (ADS)
Thiry, Yves; Redon, Paul-Olivier; Gustafsson, Malin; Marang, Laura; Bastviken, David
2013-04-01
Chlorine is very soluble at a global scale with chloride (Cl-), the dominating form. Because of its high mobility, chlorine is usually perceived as a good conservative tracer in hydrological studies and by analogy as little reactive in biosphere. Since 36Cl can be considered to have the same behaviour than stable Cl, a good knowledge of chlorine distribution between compartments of terrestrial ecosystems is sufficient to calibrate a specific activity model which supposes rapid dilution of 36Cl within the large pool of stable Cl and isotopic equilibrium between compartments. By assuming 36Cl redistribution similar to that of stable Cl at steady-state, specific activity models are simplified interesting tools for regulatory purposes in environmental safety assessment, especially in case of potential long term chronic contamination of agricultural food chain (IAEA, 2010). In many other more complex scenarios (accidental acute release, intermediate time frame, and contrasted natural ecosystems), new information and tools are necessary for improving (radio-)ecological realism, which entails a non-conservative behavior of chlorine. Indeed observed dynamics of chlorine in terrestrial ecosystems is far from a simple equilibrium notably because of natural processes of organic matter (SOM) chlorination mainly occurring in surface soils (Öberg, 1998) and mediated by microbial activities on a large extent (Bastviken et al. 2007). Our recent studies have strengthened the view that an organic cycle for chlorine should now be recognized, in addition to its inorganic cycle. Major results showed that: organochlorine (Clorg) formation occurs in all type of soils and ecosystems (culture, pasture, forest), leading to an average fraction of the total Cl pool in soil of about 80 % (Redon et al., 2012), chlorination in more organic soils over time leads to a larger Clorg pool and in turn to a possible high internal supply of inorganic chlorine (Clin) upon dechlorination. (Gustafsson et al., 2012), average Cl residence time in forest soils calculated for Clin and Clorg together was 5-fold higher that the residence time estimated for Clin alone (Redon et al., 2011), locally, Cl amount taken up by certain vegetation types can be larger than annual atmospheric deposits, the Cl in excess being recycled mainly by throughfall (Thiry, 2010), root uptake and chlorine transformation rates in soils are essential to calibrate dynamic compartment models since those processes control the persistence of chlorine in the whole system but data are still deficient for different land uses (Van den Hoof & Thiry, 2012). References: Bastviken, D., Thomsen, F., Svensson, T., Karlsson, S., Sandén, P., Shaw, G., Matucha, M., and Öberg, G. (2007). Chloride retention in forest soil by microbial uptake and by natural chlorination of organic matter. Geochim. Cosmochim. Acta, 71: 3182-3192. Gustavsson, M., Karlsson, S.,Öberg, G.,Sandén, P.,Svensson, T.,Valinia, S.,Thiry, Y. and Bastviken, D. (2012). Organic matter chlorination rates in different boreal soils: the role of soil organic matter content. Environmental Science & Technology, 46 (3): 1504-1510 Thiry, Y., 2010. Contribution à l'étude du cycle biogéochimique du chlore en écosystème forestier: cas d'un peuplement de pin sylvestre. Rapport Andra n° ENV.NT.ASTR.10.0068. IAEA (2010). Handbook of parameter values for the prediction of radionuclide transfer to humans in terrestrial and freshwater environments. Technical Report Series n° 472, Vienna, Austria. Öberg, G. (1998). Chloride and organic chlorine in soil. Acta hydrochimica et hydrobiologica, 26 (3): 137-144. Redon, P-O., Abdelouas, A., Bastviken, D., Cecchini, S. Nicolas, M. and Thiry, Y. (2011). Chloride and organic chlorine in forest soils: storage, residence times, and influence of ecological conditions. Environmental Science & Technology, 45: 7202-7208. Redon, P-O., Jolivet, C., Saby, N., Abdelouas, A.and Thiry, Y. (2012). Occurrence of natural organic chlorine in soils for different land uses. Biogeochemistry (In press), doi: 10.1007/s10533-012-9771-7. Van den Hoof, C. and Thiry, Y. (2012). Modelling of the natural chlorine cycling in a coniferous stand: implications for chlorine-36 behaviour in a contaminated forest environment. Journal of Environmental Radioactivity., 107: 56-67.
Distribution of shortest cycle lengths in random networks
NASA Astrophysics Data System (ADS)
Bonneau, Haggai; Hassid, Aviv; Biham, Ofer; Kühn, Reimer; Katzav, Eytan
2017-12-01
We present analytical results for the distribution of shortest cycle lengths (DSCL) in random networks. The approach is based on the relation between the DSCL and the distribution of shortest path lengths (DSPL). We apply this approach to configuration model networks, for which analytical results for the DSPL were obtained before. We first calculate the fraction of nodes in the network which reside on at least one cycle. Conditioning on being on a cycle, we provide the DSCL over ensembles of configuration model networks with degree distributions which follow a Poisson distribution (Erdős-Rényi network), degenerate distribution (random regular graph), and a power-law distribution (scale-free network). The mean and variance of the DSCL are calculated. The analytical results are found to be in very good agreement with the results of computer simulations.
Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields.
Znakovskaya, I; von den Hoff, P; Schirmel, N; Urbasch, G; Zherebtsov, S; Bergues, B; de Vivie-Riedle, R; Weitzel, K-M; Kling, M F
2011-05-21
Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D(+) and Cl(+) fragments were recorded via velocity-map imaging. A waveform-dependent anti-correlated directional emission of D(+) and Cl(+) fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl(+) and in turn the directional emission of charged fragments upon the breakup of the molecular ion. © The Owner Societies 2011
Favaloro, Emmanuel J; Wong, Richard C W; Silvestrini, Roger; McEvoy, Robert; Jovanovich, Susan; Roberts-Thomson, Peter
2005-02-01
We evaluated the performance of anticardiolipin (aCL) and beta2-glycoprotein I (beta2-GPI) antibody assays through a large external quality assurance program. Data from the 2002 cycle of the Royal College of Pathologists of Australasia Quality Assurance Program (RCPA QAP) were analyzed for variation in reported numerical values and semiquantitative results or interpretations according to method type or group and in conjunction with available clinical data. High interlaboratory variation in numerical results and notable method-based variation, combined with a general lack of consensus in semiquantitative reporting, continues to be observed. Numerical results from cross-laboratory testing of 12 serum samples (for immunoglobulin G [IgG]-aCL, IgM-aCL, and IgG-beta2-GPI) yielded interlaboratory coefficients of variation (CVs) that were higher than 50% in six of 12 (50%) specimens for IgG-aCL, and 12 of 12 (100%) specimens for IgM-aCL and IgG-beta2-GPI. Semiquantitative reporting also varied considerably, with total (100%) consensus occurring in only four of 36 (11%) occasions. General consensus (where > 90% of participating laboratories agreed that a given serum sample gave a result of either negative or positive) was only obtained on 13 of 36 (36%) occasions. Variation in results between different method types or groups were also present, resulting in potential biasing of the RCPA QAP-defined target results by the large number of laboratories using the dominant aCL assays. Finally, laboratory findings frequently did not agree with the available clinical information. In conclusion, in a large proportion of specimens from the 2002 RCPA QAP cycle, laboratories could not agree on whether a serum sample tested was aCL-positive or aCL-negative, or beta2-GPI-positive or beta2-GPI-negative. Despite prior attempts to improve the standardization of testing and reporting practices, laboratory testing for aCL and anti-beta2-GPI still demonstrates significant interlaboratory and intermethod variation, which needs to be taken into account for the clinical interpretation of test results, especially those from different laboratories.
Travelers' Health: Cruise Ship Travel
... Motion Sickness ). PRECAUTIONS FOR CRUISE SHIP TRAVELERS Pretravel Evaluate the type and length of the planned cruise ... Peake DE, Gray CL, Ludwig MR, Hill CD. Descriptive epidemiology of injury and illness among cruise ship ...
Radiographic screen-film noise power spectrum: variation with microdensitometer slit length.
Sandrik, J M; Wagner, R F
1981-08-15
When the noise power spectrum (NPS) of a radiographic screen-film system is measured by microdensito-metrically scanning the film with a long narrow slit, sufficient slit length allows estimation of a section of the 2-D NPS from the 1-D film scans; insufficient length causes underestimation of the NPS, particularly at low frequencies ( greater, similar1 cycle/mm). Spectra of Hi-Plus, Par Speed, and Detail screens used with XRP films measured as a function of microdensitometer slit length tended to plateau at long slit lengths. The slit length was considered sufficient when NPS components at 0.4 cycle/mm were within 5% of the plateau. This occurred for slit lengths of at least 4.2, 2.6, and 2.5 mm for Hi-Plus, Par Speed, and Detail systems, respectively.
NASA Astrophysics Data System (ADS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-03-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
NASA Technical Reports Server (NTRS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-01-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
Hiersch, Liran; Yogev, Yariv; Domniz, Noam; Meizner, Israel; Bardin, Ron; Melamed, Nir
2014-11-01
To determine whether the predictive accuracy of sonographic cervical length (CL) for preterm delivery (PTD) in women with threatened preterm labor (PTL) is related to gestational age (GA) at presentation. A retrospective cohort study of all women with singleton pregnancies who presented with PTL at less than 34 + 0 weeks and underwent sonographic measurement of CL in a tertiary medical center between 2007 and 2012. The predictive accuracy of CL for PTD was stratified by GA at presentation. Overall, 1077 women who presented with PTL have had sonographic measurement of CL and met the study inclusion criteria. Of those, 223 (20.7%) presented at 24 + 0-26 + 6 weeks (group 1), 274 (25.4%) at 27 + 0-29 + 6 weeks (group 2), 283 (26.3%) at 30 + 0-31 + 6 weeks (group 3), and 297 (27.6%) at 32 + 0-33 + 6 weeks (group 4). The overall performance CL as a predictive test for PTD was similar in the 4 GA groups, as reflected by the similar degree of correlation between CL with the examination to delivery interval (r = 0.27, r = 0.26, r = 0.28, and r = 0.29, respectively, P = .8), the similar area under the receiver-operator characteristic curve (0.641-0.690, 0.631-0.698, 0.643-0.654, and 0.678-0.698, respectively, P = .7), and a similar decrease in the risk of PTD of 5-10% for each additional millimeter of CL. The optimal cutoff of CL, however, was affected by GA at presentation, so that a higher cutoff of CL was needed to achieve a target negative predictive value for delivery within 14 days from presentation for women who presented later in pregnancy. The optimal thresholds to maximize the negative predictive value for delivery within 14 days were 36 mm, 32.5 mm, 24 mm and 20.5 mm for women who presented at 32 + 0 to 33 + 6 weeks, 30 + 0 to 31 + 6 weeks, 27 + 0 to 29 + 6 weeks and 24 + 0 to 26 + 6, respectively. CL has modest predictive accuracy in women with threatened PTL, regardless of GA at presentation. However, the optimal cutoff of CL for the purpose of clinical decision making in women with PTL needs to be adjusted based on GA at presentation. Copyright © 2014 Elsevier Inc. All rights reserved.
Physical and Chemical Microstructural Damage in Pressed CL-20 explosives
NASA Astrophysics Data System (ADS)
Demol, Gauthier; Sandusky, Harold W.
1999-06-01
Based upon its molecular composition, its structure, and its heat of formation, it was expected that CL-20 (hexanitrohexaazaisowurtzitane) would be more energetic and more sensitive than RDX and HMX. Reports of batch-to-batch variations in the sensitivity of neat CL-20 have led to its sensitivity being ranked in the range between the sensitivity of RDX and that of PETN. The ultimate utility of CL-20 as an ingredient in explosive and propellant formulations will depend upon the ability to understand the factors that are responsible for this batch-to-batch variability, and to control the sensitivity in formulations within acceptable limits. This work is a characterization of CL-20 at various stages in its life cycle. The evolution of damage from the initial neat crystals of CL-20 to the ready-to-use pressed pellets will be described. This characterization includes physical documentation using light microscopy and Scanning Electron Microscopy. Spatially resolved chemical analysis is also performed using Fourier-Transform Infrared Spectroscopy.
Batteries: An Advanced Na-FeCl2 ZEBRA Battery for Stationary Energy Storage Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong
2015-06-17
Sodium-metal chloride batteries, ZEBRA, are considered as one of the most important electrochemical devices for stationary energy storage applications because of its advantages of good cycle life, safety, and reliability. However, sodium-nickel chloride (Na-NiCl2) batteries, the most promising redox chemistry in ZEBRA batteries, still face great challenges for the practical application due to its inevitable feature of using Ni cathode (high materials cost). In this work, a novel intermediate-temperature sodium-iron chloride (Na-FeCl2) battery using a molten sodium anode and Fe cathode is proposed and demonstrated. The first use of unique sulfur-based additives in Fe cathode enables Na-FeCl2 batteries can bemore » assembled in the discharged state and operated at intermediate-temperature (<200°C). The results in this work demonstrate that intermediate-temperature Na-FeCl2 battery technology could be a propitious solution for ZEBRA battery technologies by replacing the traditional Na-NiCl2 chemistry.« less
SO2 absorption in EmimCl-TEG deep eutectic solvents.
Yang, Dezhong; Zhang, Shaoze; Jiang, De-En; Dai, Sheng
2018-06-06
Deep eutectic solvents (DESs) based on 1-ethyl-3-methylimidazolium chloride (EmimCl) and triethylene glycol (TEG) with different molar ratios (from 6 : 1 to 1 : 1) were prepared. FTIR and theoretical calculation indicated that the C2-H on the imidazolium ring form hydrogen bonds with the hydroxyl group rather than the ether O atom of the TEG. The EmimCl-TEG DESs can efficiently capture SO2; in particular, EmimCl-TEG (6 : 1) can capture 0.54 g SO2 per gram of solvent at 0.10 atm and 20 °C, the highest absorption amount for DESs under the same conditions. Theoretical calculation showed that the high SO2 absorption capacity was mainly due to the strong charge-transfer interaction between SO2 and the anion Cl-. Moreover, SO2 desorption in the DESs can be controlled by tuning the interaction between EmimCl and TEG, and the DESs can be cycled many times.
NASA Technical Reports Server (NTRS)
Johnson, D. A.; Reid, M. A.
1985-01-01
The Cr(III) complexes present in the acidified chromium solutions used in the iron-chromium redox energy storage system have been isolated and identified as Cr(H2O)6(3+) and Cr(H2O)5Cl(2+) by ion-exchange chromatography and visible spectrophotometry. The cell reactions during charge-discharge cycles have been followed by means of visible spectrophotometry. The spectral bands were resolved into component peaks and concentrations of the Cr(III) species calculated using Beer's law. During the charge mode, Cr(H2O)5Cl(2+) is reduced to Cr(H2O)5Cl(+), and during the discharge mode Cr(H2O)5Cl(+) is oxidized back to Cr(H2O)5Cl(2+). Electrode potential measurements also support this interpretation. Hysteresis effects in the charge-discharge curves can be explained by the slow attainment of equilibrium between Cr(H2O)6(3+) and Cr(H2O)5Cl(2+).
A proposal for unification of fatigue crack growth law
NASA Astrophysics Data System (ADS)
Kobelev, V.
2017-05-01
In the present paper, the new fractional-differential dependences of cycles to failure for a given initial crack length upon the stress amplitude in the linear fracture approach are proposed. The anticipated unified propagation function describes the infinitesimal crack length growths per increasing number of load cycles, supposing that the load ratio remains constant over the load history. Two unification fractional-differential functions with different number of fitting parameters are proposed. An alternative, threshold formulations for the fractional-differential propagation functions are suggested. The mean stress dependence is the immediate consequence from the considered laws. The corresponding formulas for crack length over the number of cycles are derived in closed form.
Mantziaras, I D; Stamou, A; Katsiri, A
2011-06-01
This paper refers to nitrogen removal optimization of an alternating oxidation ditch system through the use of a mathematical model and pilot testing. The pilot system where measurements have been made has a total volume of 120 m(3) and consists of two ditches operating in four phases during one cycle and performs carbon oxidation, nitrification, denitrification and settling. The mathematical model consists of one-dimensional mass balance (convection-dispersion) equations based on the IAWPRC ASM 1 model. After the calibration and verification of the model, simulation system performance was made. Optimization is achieved by testing operational cycles and phases with different time lengths. The limits of EU directive 91/271 for nitrogen removal have been used for comparison. The findings show that operational cycles with smaller time lengths can achieve higher nitrogen removals and that an "equilibrium" between phase time percentages in the whole cycle, for a given inflow, must be achieved.
Acid-tolerant microaerophilic Fe(II)-oxidizing bacteria promote Fe(III)-accumulation in a fen.
Lüdecke, Claudia; Reiche, Marco; Eusterhues, Karin; Nietzsche, Sandor; Küsel, Kirsten
2010-10-01
The ecological importance of Fe(II)-oxidizing bacteria (FeOB) at circumneutral pH is often masked in the presence of O(2) where rapid chemical oxidation of Fe(II) predominates. This study addresses the abundance, diversity and activity of microaerophilic FeOB in an acidic fen (pH ∼ 5) located in northern Bavaria, Germany. Mean O(2) penetration depth reached 16 cm where the highest dissolved Fe(II) concentrations (up to 140 µM) were present in soil water. Acid-tolerant FeOB cultivated in gradient tubes were most abundant (10(6) cells g(-1) peat) at the 10-20 cm depth interval. A stable enrichment culture was active at up to 29% O(2) saturation and Fe(III) accumulated 1.6 times faster than in abiotic controls. An acid-tolerant, microaerophilic isolate (strain CL21) was obtained which was closely related to the neutrophilic, lithoautotrophic FeOB Sideroxydans lithotrophicus strain LD-1. CL21 oxidized Fe(II) between pH 4 and 6.0, and produced nanoscale-goethites with a clearly lower mean coherence length (7 nm) perpendicular to the (110) plane than those formed abiotically (10 nm). Our results suggest that an acid-tolerant population of FeOB is thriving at redox interfaces formed by diffusion-limited O(2) transport in acidic peatlands. Furthermore, this well-adapted population is successfully competing with chemical oxidation and thereby playing an important role in the microbial iron cycle. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Health impact assessment of cycling network expansions in European cities.
Mueller, Natalie; Rojas-Rueda, David; Salmon, Maëlle; Martinez, David; Ambros, Albert; Brand, Christian; de Nazelle, Audrey; Dons, Evi; Gaupp-Berghausen, Mailin; Gerike, Regine; Götschi, Thomas; Iacorossi, Francesco; Int Panis, Luc; Kahlmeier, Sonja; Raser, Elisabeth; Nieuwenhuijsen, Mark
2018-04-01
We conducted a health impact assessment (HIA) of cycling network expansions in seven European cities. We modeled the association between cycling network length and cycling mode share and estimated health impacts of the expansion of cycling networks. First, we performed a non-linear least square regression to assess the relationship between cycling network length and cycling mode share for 167 European cities. Second, we conducted a quantitative HIA for the seven cities of different scenarios (S) assessing how an expansion of the cycling network [i.e. 10% (S1); 50% (S2); 100% (S3), and all-streets (S4)] would lead to an increase in cycling mode share and estimated mortality impacts thereof. We quantified mortality impacts for changes in physical activity, air pollution and traffic incidents. Third, we conducted a cost-benefit analysis. The cycling network length was associated with a cycling mode share of up to 24.7% in European cities. The all-streets scenario (S4) produced greatest benefits through increases in cycling for London with 1,210 premature deaths (95% CI: 447-1,972) avoidable annually, followed by Rome (433; 95% CI: 170-695), Barcelona (248; 95% CI: 86-410), Vienna (146; 95% CI: 40-252), Zurich (58; 95% CI: 16-100) and Antwerp (7; 95% CI: 3-11). The largest cost-benefit ratios were found for the 10% increase in cycling networks (S1). If all 167 European cities achieved a cycling mode share of 24.7% over 10,000 premature deaths could be avoided annually. In European cities, expansions of cycling networks were associated with increases in cycling and estimated to provide health and economic benefits. Copyright © 2018 Elsevier Inc. All rights reserved.
Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
Lv, Zhanao; Zheng, Wenrui; Chen, Zhuqi; Tang, Zhiming; Mo, Wanling; Yin, Guochuan
2016-07-28
Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom transfer reaction.
Ohtani, S; Leeson, S
2000-02-01
Experiments were conducted to compare the effects of an intermittent lighting (IL) schedule with repeated cycles of 1 h light and 2 h darkness with a continuous lighting (CL) schedule on the performance, ME intake, and heat production of male broiler chickens. Body weight gain and feed intake were temporarily reduced after the changing from CL to IL; however, they were significantly higher in IL vs CL chickens during the subsequent period of 3 to 6 wk of age. The IL chickens exhibited a higher ME intake at 6 and 8 wk of age than did CL chickens. Total heat production in IL chickens was higher than for CL chickens, although heat production during the dark period was less than that during the light period for IL chickens. The higher feed intake observed in IL chickens appears to explain the superior body weight gain in IL broilers in simple terms.
Burghardt, Liana T; Metcalf, C Jessica E; Wilczek, Amity M; Schmitt, Johanna; Donohue, Kathleen
2015-02-01
Organisms develop through multiple life stages that differ in environmental tolerances. The seasonal timing, or phenology, of life-stage transitions determines the environmental conditions to which each life stage is exposed and the length of time required to complete a generation. Both environmental and genetic factors contribute to phenological variation, yet predicting their combined effect on life cycles across a geographic range remains a challenge. We linked submodels of the plasticity of individual life stages to create an integrated model that predicts life-cycle phenology in complex environments. We parameterized the model for Arabidopsis thaliana and simulated life cycles in four locations. We compared multiple "genotypes" by varying two parameters associated with natural genetic variation in phenology: seed dormancy and floral repression. The model predicted variation in life cycles across locations that qualitatively matches observed natural phenology. Seed dormancy had larger effects on life-cycle length than floral repression, and results suggest that a genetic cline in dormancy maintains a life-cycle length of 1 year across the geographic range of this species. By integrating across life stages, this approach demonstrates how genetic variation in one transition can influence subsequent transitions and the geographic distribution of life cycles more generally.
Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.
2013-01-01
SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638
On the Importance of Cycle Minimum in Sunspot Cycle Prediction
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.; Reichmann, Edwin J.
1996-01-01
The characteristics of the minima between sunspot cycles are found to provide important information for predicting the amplitude and timing of the following cycle. For example, the time of the occurrence of sunspot minimum sets the length of the previous cycle, which is correlated by the amplitude-period effect to the amplitude of the next cycle, with cycles of shorter (longer) than average length usually being followed by cycles of larger (smaller) than average size (true for 16 of 21 sunspot cycles). Likewise, the size of the minimum at cycle onset is correlated with the size of the cycle's maximum amplitude, with cycles of larger (smaller) than average size minima usually being associated with larger (smaller) than average size maxima (true for 16 of 22 sunspot cycles). Also, it was found that the size of the previous cycle's minimum and maximum relates to the size of the following cycle's minimum and maximum with an even-odd cycle number dependency. The latter effect suggests that cycle 23 will have a minimum and maximum amplitude probably larger than average in size (in particular, minimum smoothed sunspot number Rm = 12.3 +/- 7.5 and maximum smoothed sunspot number RM = 198.8 +/- 36.5, at the 95-percent level of confidence), further suggesting (by the Waldmeier effect) that it will have a faster than average rise to maximum (fast-rising cycles have ascent durations of about 41 +/- 7 months). Thus, if, as expected, onset for cycle 23 will be December 1996 +/- 3 months, based on smoothed sunspot number, then the length of cycle 22 will be about 123 +/- 3 months, inferring that it is a short-period cycle and that cycle 23 maximum amplitude probably will be larger than average in size (from the amplitude-period effect), having an RM of about 133 +/- 39 (based on the usual +/- 30 percent spread that has been seen between observed and predicted values), with maximum amplitude occurrence likely sometime between July 1999 and October 2000.
Kim, You-Na; Choi, Minkee
2014-07-01
Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.
Magnetic resonances in perovskite-type layer structures
NASA Astrophysics Data System (ADS)
Strobel, K.; Geick, R.
1981-08-01
We have studied the q=0 magnetic excitations of the perovskite-type layer structures A 2MnCl 4 with A=Rb, C nH 2n+1NH 3 (n=1,2,3), and NH 3(CH 2) mNH 3MnCl 4 (m=2,4,5) in the antiferromagnetic and in the spin flop regime by means of magnetic resonance in the mm-wave range (30-130GHz) and microwave range (9.2GHz). The length of the organic molecules determines the separation of the MnCl 6 octahedra. With increasing separation the Néel temperature and the antiferromagnetic resonance frequency decrease, which mainly originates from a decrease of the anisotropy field.
McLaughlin, Margaret; Lockhart, Ben; Jordan, Ramon; Denton, Geoff; Mollov, Dimitre
2017-05-01
Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with symptoms of yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on morphological, genomic, and phylogenetic analysis, ClCMV is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.
Correlation of doping, structure, and carrier dynamics in a single GaN nanorod
NASA Astrophysics Data System (ADS)
Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Gwo, Shangjr; Gradečak, Silvija
2013-06-01
We report the nanoscale optical investigation of a single GaN p-n junction nanorod by cathodoluminescence (CL) in a scanning transmission electron microscope. CL emission characteristic of dopant-related transitions was correlated to doping and structural defect in the nanorod, and used to determine p-n junction position and minority carrier diffusion lengths of 650 nm and 165 nm for electrons and holes, respectively. Temperature-dependent CL study reveals an activation energy of 19 meV for non-radiative recombination in Mg-doped GaN nanorods. These results directly correlate doping, structure, carrier dynamics, and optical properties of GaN nanostructure, and provide insights for device design and fabrication.
The influence of oestrous substances on cyclicity and oestrous behaviour in dairy heifers
2012-01-01
Background Declining fertility is a major concern for dairy farmers today. One explanation is shorter and weaker expression of oestrus in dairy cows making it difficult to determine optimal time for artificial insemination (AI). Chemical communication is of interest in the search for tools to detect oestrus or to synchronise or enhance oestrous periods. Pheromones, used in chemical communication within species, can influence reproduction in different ways. The aim here was to investigate whether oestrous cycle length, and duration and intensity of oestrous expression in dairy heifers could be manipulated through exposure to pheromones in oestrual substances from other females. Methods Beginning on day 16 of two consecutive control oestrous cycles, ten heifers of the Swedish Red Breed (SRB) were exposed to water. During the two following cycles the heifers were exposed to urine and vaginal mucus, obtained from cows in oestrus. Cyclicity parameters were monitored through hormone measurements, oestrus detection and ultrasonographic examination. Results We found no difference in cycle length or in duration of standing oestrus between control and treatment. We did, however, find a tendency of interaction between type of exposure (control or treatment) and cycle number within type of exposure for cycle length (p = 0.068), with the length differing less between the treatment cycles. We also found a tendency of effect of type of exposure on maximal concentration (p = 0.073) and sum of concentrations (p = 0.063) of LH during the LH surge, with values being higher for the control cycles. There were also significant differences in when the different signs of oestrus occurred and in the intensity of oestrous expression. The score for oedema and hyperaemia of external genitalia was significantly higher (p = 0.004) for the control cycles and there was also a significant interaction between type of exposure and time period for restlessness (p = 0.011), with maximum score occurring earlier for treatment cycles. Conclusions No evidence of altered oestrous cycle length or duration of oestrus after exposure of females to oestrous substances from other females was found. Expression of oestrus, and maybe also LH secretion, however, seemed influenced by the exposure, with the effect of treatment being suppressive rather than enhancing. PMID:22510614
Sandbakk, Øyvind; Leirdal, Stig; Ettema, Gertjan
2015-03-01
The current study compared differences in cycle characteristics, energy expenditure and peak speed between double poling (DP) and G3 skating. Eight world class male sprint skiers performed a 5-min submaximal test at 16 km h(-1) and an incremental test to exhaustion at a 5% incline during treadmill roller skiing with two different techniques: DP where all propulsion comes from poling, and G3 skating where leg skating is added to each double poling movement. Video analyses determined cycle characteristics; respiratory parameters and blood lactate concentration determined the physiological responses. G3 skating resulted in 16% longer cycle lengths at 16% lower cycle rates, whereas oxygen uptake was independent of technique during submaximal roller skiing. The corresponding advantages for G3 skating during maximal roller skiing were reflected in 14% higher speed, 30% longer cycle length at 16% lower cycle rate and 11% higher peak oxygen uptake (all p < 0.05). Compared to DP approximately 14% higher speed was achieved when leg push-offs were added in G3 skating. This was done by major increases in cycle lengths at slightly lower cycle rates and a higher aerobic energy delivery. However, the oxygen uptake for a given submaximal speed was not affected by technique although higher cycle rate was used in DP.
Wood, Simon; Quinn, Alison; Troupe, Stephen; Kingsland, Charles; Lewis-Jones, Iwan
2006-12-01
The effect of seasonality and daylight length on mammalian reproduction leading to spring births has been well established, and is known as photoperiodism. In assisted reproduction there is much greater uncertainty as to the effect of seasonality. This was a 4-year retrospective analysis of 2709 standardised cycles of IVF/ICSI. Data was analysed with regard to the 1642 cycles occurring during the months of extended daylight (Apr-Sept) and those 1067 cycles during winter months of restricted light length (Oct-Mar). The results showed that there was significant improvement in assisted conception outcomes in cycles performed in summer (lighter) months with more efficient ovarian stimulation 766iu v880iu/per oocyte retrieved (p=0.006). There was similarly a significantly improved implantation rate per embryo transferred 11.42% vs 9.35% (p=0.011) and greater clinical pregnancy rate 20% vs 15% (p=0.0033) during summer cycles. This study appears to demonstrate a significant benefit of increased daylight length on outcomes of IVF/ICSI cycles. Whilst the exact mechanism of this is unclear, it would seem probable that melatonin may have actions at multiple sites and on multiple levels of the reproductive tract, and may exert a more profound effect on outcomes of assisted conception cycles than has been previously considered.
Redon, Paul-Olivier; Abdelouas, Abdesselam; Bastviken, David; Cecchini, Sébastien; Nicolas, Manuel; Thiry, Yves
2011-09-01
Recent studies have shown that extensive chlorination of natural organic matter significantly affects chlorine (Cl) residence time in soils. This natural biogeochemical process must be considered when developing the conceptual models used as the basis for safety assessments regarding the potential health impacts of 36-chlorine released from present and planned radioactive waste disposal facilities. In this study, we surveyed 51 French forested areas to determine the variability in chlorine speciation and storage in soils. Concentrations of total chlorine (Cl(tot)) and organic chlorine (Cl(org)) were determined in litterfall, forest floor and mineral soil samples. Cl(org) constituted 11-100% of Cl(tot), with the highest concentrations being found in the humus layer (34-689 mg Cl(org) kg(-1)). In terms of areal storage (53 - 400 kg Cl(org) ha(-1)) the mineral soil dominated due to its greater thickness (40 cm). Cl(org) concentrations and estimated retention of organochlorine in the humus layer were correlated with Cl input, total Cl concentration, organic carbon content, soil pH and the dominant tree species. Cl(org) concentration in mineral soil was not significantly influenced by the studied environmental factors, however increasing Cl:C ratios with depth could indicate selective preservation of chlorinated organic molecules. Litterfall contributions of Cl were significant but generally minor compared to other fluxes and stocks. Assuming steady-state conditions, known annual wet deposition and measured inventories in soil, the theoretical average residence time calculated for total chlorine (inorganic (Cl(in)) and organic) was 5-fold higher than that estimated for Cl(in) alone. Consideration of the Cl(org) pool is therefore clearly important in studies of overall Cl cycling in terrestrial ecosystems.
Thermal fatigue performance of integrally cast automotive turbine wheels
NASA Technical Reports Server (NTRS)
Humphreys, V. E.; Hofer, K. E.
1980-01-01
Fluidized bed thermal fatigue testing was conducted on 16 integrally cast automotive turbine wheels for 1000-10,000 (600 sec total) thermal cycles at 935/50 C. The 16 wheels consisted of 14 IN-792 + 1% Hf and 2 gatorized AF2-1DA wheels; 6 of the IN-792 + Hf wheels contained crack arrest pockets inside the blade root flange. Temperature transients during the thermal cycling were measured in three calibration tests using either 18 or 30 thermocouples per wheel. Thermal cracking based on crack length versus accumulated cycles was greatest for unpocketed wheels developing cracks in 8-13 cycles compared to 75-250 cycles for unpocketed wheels. However, pocketed wheels survived up to 10,000 cycles with crack lengths less than 20 mm, whereas two unpocketed wheels developed 45 mm long cracks in 1000-2000 cycles.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
NASA Astrophysics Data System (ADS)
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-12-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ~0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Teng, Fei; Yao, Wenqing; Zheng, Youfei; Ma, Yutao; Xu, Tongguang; Gao, Guizhi; Liang, Shuhui; Teng, Yang; Zhu, Yongfa
2008-09-15
The hollow Co(3)O(4) microspheres (HCMs) were prepared by the carbonaceous templates, which did not need the surface pretreatment. The chemiluminescence (CL) and catalytic properties for CO oxidation over these hollow samples were evaluated. The samples were characterized by scanning electron microscopy (SEM), energy disperse spectra (EDS), transmission electron microscopy (TEM), selected area electron diffraction (ED), X-ray diffraction (XRD), temperature-programmed desorption (TPD) and N(2) adsorption. The influences of filter' band length, flow rate of gas, test temperature, and particle structure on CL intensities were mainly investigated. It was found that compared with the solid Co(3)O(4) particles (SCPs), HCMs had a stronger CL intensity, which was ascribed to its hollow structure; and that CL properties of the catalysts were well correlated with their reaction activities. Moreover, HCMs were used to fabricate a highly sensitive gas detector, which is a rapid and effective method for the selection of catalysts or the detection of environmental deleterious gases.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling.
Barratt, Paul Richard; Martin, James C; Elmer, Steve J; Korff, Thomas
2016-04-01
During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s(-1) and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system's attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians.
Conner, J Michael; Aviles-Robles, Martha J; Asdahl, Peter H; Zhang, Fang Fang; Ojha, Rohit P
2016-09-01
The prevalence of malnourishment among paediatric cancer patients undergoing chemotherapy in developing countries is poorly documented despite greater potential for malnourishment in such settings. We aimed to estimate the prevalence of malnourishment among paediatric cancer patients in Mexico City, and assess the association between malnourishment and length of hospital stay. Individuals eligible for this study were paediatric cancer patients (aged <18 years) admitted to Hospital Infantil de Mexico Federico Gomez (Mexico City) with febrile neutropaenia. Our exposure of interest, malnourishment, was defined as an age-adjusted and sex-adjusted z-score<-2 (ie, 2 SDs below the expected mean of the WHO reference population). We estimated time ratios (TRs) and 95% confidence limits (CLs) for the association between malnourishment and length of hospital stay. Our study population comprised 111 paediatric cancer patients with febrile neutropaenia, of whom 71% were aged <10 years and 52% were males. The prevalence of malnourishment was 14%, equal to a 530% (standardised morbidity ratio=6.3; 95% CL 3.7, 10) excess of malnourishment compared with the world reference population. The median length of hospital stay for malnourished patients was 15 days, which corresponded with a 50% (TR=1.5, 95% CL 1.0, 2.3) relative increase in length of stay compared with patients who were not malnourished. Patients with body mass indices equal to the mean of the world reference population had the shortest length of stay. Future studies should explore potential interventions for malnourishment to reduce the length of hospital stay or other established adverse consequences of malnourishment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Bicho, Rita C; Santos, Fátima C F; Scott-Fordsmand, Janeck J; Amorim, Mónica J B
2017-05-01
Copper oxide nanomaterials (CuONMs) have various applications in industry and enter the terrestrial environment, e.g. via sewage sludge. The effects of CuONMs and copper chloride (CuCl 2 ) were studied comparing the standard enchytraeid reproduction test (ERT) and the full life cycle test (FLCt) with Enchytraeus crypticus. CuONMs mainly affected growth or juveniles' development, whereas CuCl 2 mainly affected embryo development and/or hatching success and adults survival. Compared to the ERT, the FLCt allowed discrimination of effects between life stages and provided indication of the underlying mechanisms; further, the FLCt showed increased sensitivity, e.g. reproductive effects for CuONMs: EC 10 = 8 mg Cu/kg and EC 10 = 421 mg Cu/kg for the FLCt and the ERT respectively. The performance of the FLCt is preferred to the ERT and we recommend it as a good alternative to assess hazard of NMs. Effects of CuONMs and CuCl 2 are life stage dependent and are different between Cu forms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tuning the gas sensing performance of single PEDOT nanowire devices.
Hangarter, Carlos M; Hernandez, Sandra C; He, Xueing; Chartuprayoon, Nicha; Choa, Yong Ho; Myung, Nosang V
2011-06-07
This paper reports the synthesis and dopant dependent electrical and sensing properties of single poly(ethylenedioxythiophene) (PEDOT) nanowire sensors. Dopant type (i.e. polystyrenesulfonate (PSS(-)) and perchlorate (ClO(4)(-))) and solvent (i.e. acetonitrile and 1 : 1 water-acetonitrile mixture) were adjusted to change the conjugation length and hydrophilicity of nanowires which resulted in change of the electrical properties and sensing performance. Temperature dependent coefficient of resistance (TCR) indicated that the electrical properties are greatly dependent on dopants and electrolyte where greater disorder was found in PSS(-) doped PEDOT nanowires compared to ClO(4)(-) doped nanowires. Upon exposure to different analytes including water vapor and volatile organic compounds, these nanowire devices displayed substantially different sensing characteristics. ClO(4)(-) doped PEDOT nanowires from an acetonitrile bath show superior sensing responses toward less electronegative analytes and followed a power law dependence on the analyte concentration at high partial pressures. These tunable sensing properties were attributed to variation in the conjugation lengths, dopant type and concentration of the wires which may be attributed to two distinct sensing mechanisms: swelling within the bulk of the nanowire and work function modulation of Schottky barrier junction between nanowire and electrodes.
Isotopic tracing of perchlorate in the environment
Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark
2012-01-01
Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.
Randall S. Morin; R. Riemann
2015-01-01
This publication provides an overview of forest resources in Vermont based on inventories conducted by the U.S. Forest Service Forest Inventory and Analysis (FIA) program of the Northern Research Station. For annual inventory years 2003-2013, the cycle length was equal to 5 years. Beginning in 2014, the cycle length was changed to 7 years. For the 2014 inventory,...
USDA-ARS?s Scientific Manuscript database
Estrus is the start of an estrous cycle in cows, and triggers several precisely timed events including receptivity to the bull, ovulation, conception, formation of the corpus luteum, and recognition of pregnancy. In the absence of a pregnancy signal, the corpus luteum (CL) must regress in response ...
NASA Astrophysics Data System (ADS)
Ben Gzaiel, Malika; Oueslati, Abderrazek; Lhoste, Jérôme; Gargouri, Mohamed; Bulou, Alain
2015-06-01
The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound tri-tetrabutylammonium heptachloro-dizincate (I) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/n space group) containing ZnCl42- and ZnCl3H2O1- tetrahedra. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers stacked along the c direction. Differential scanning calorimetry (DSC) in the range 250-450 K disclosed a reversible structural phase transition of order-disorder type at 358 K, prior to the melting at 395 K. The temperature dependence of the Raman spectra of [N(C4H9)4]3Zn2Cl7H2O single crystals was studied in the spectral range 100-3500 cm-1 and for temperatures between 300 and 386 K. The most important changes are observed for the line at 261 cm-1 issued from ν1(ZnCl4). The analysis of the wavenumber, intensity and the line width based on an order-disorder model allowed to obtain information relative to the activation energy and the correlation length. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the anionic parts. The assumption of cluster fluctuations also allowed the critical exponents to be obtained for the transition δ = 0.011 and the correlation length ξ0 = 598 Å.
Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C
2015-09-01
We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.
De Monte, Gianpiero; Arampatzis, Adamantios
2008-07-19
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.
Kim, Renita S; Gupta, Simi; Lam-Rachlin, Jennifer; Saltzman, Daniel H; Rebarber, Andrei; Fox, Nathan S
2016-11-01
The objective of this study is to estimate the risk of preterm birth in patients with an ultrasound or physical exam indicated cervical cerclage based on the results of fetal fibronectin (fFN) and cervical length (CL) screening. Retrospective cohort of patients with a singleton pregnancy and an ultrasound or physical exam indicated Shirodkar cerclage placed by one maternal-fetal medicine practice from November 2005 to January 2015. Patients routinely underwent serial CL and fFN testing from 22 to 32 weeks. Based on ROC curve analysis, a short CL was defined as ≤15 mm. All fFN and CL results included are from after the cerclage placement. One hundred and four patients were included. Seventy eight (75%) patients had an ultrasound-indicated cerclage and 26 (25%) patients had a physical exam-indicated cerclage. A positive fFN was associate with preterm birth <32 weeks (15.6% versus 4.2%, p = 0.043), <35 weeks (37.5% versus 11.1%, p = 0.002), <37 weeks (65.6% versus 20.8%, p < 0.001), and earlier gestational ages at delivery (35.2 ± 3.9 versus 37.4 ± 2.9, p = 0.001). A short CL was also associated with preterm birth <35 weeks (50.0% versus 11.9%, p < 0.01), preterm birth <37 weeks (55.0% versus 29.8%, p = 0.033), and earlier gestational ages at delivery (34.8 ± 4.1 versus 37.2 ± 3.0, p = 0.004). The risk of preterm birth <32, <35, and <37 weeks increased significantly with the number of abnormal markers. In patients with an ultrasound or physical exam indicated cerclage, a positive fFN and a short CL are both associated with preterm birth. The risk of preterm birth increases with the number of abnormal biomarkers.
Kanakala, V; Borowski, D W; Agarwal, A K; Tabaqchali, M A; Garg, D K; Gill, T S
2012-12-01
Single-port access (SPA) offers cosmetic advantages in addition to the well-recognised benefits of conventional multi-port laparoscopic (CL) surgery, and can be carried out using standard straight instruments. We report the outcomes of our early experience with SPA colorectal resections in comparison with CL surgery. We compared the following data, patient characteristics, operating time, morbidity, operative mortality, length of hospital stay and tumour variables, of patients who underwent SPA right, left, sigmoid and total colon resections, as well as high anterior resections and panproctocolectomies, with that of patients who underwent equivalent conventional laparoscopic (CL) operations. The 40 SPA and 78 CL patients studied underwent surgery between February 2008 and September 2011. There was no difference between the SPA and CL operations, as regards the patient's sex (55.0 vs. 62.8% males, p = 0.411), comorbidity (ASA I 10.0 vs. 12.8%; ASA II 57.5 vs. 59.0%; ASA III 32.5 vs. 25.6%; ASA IV 0 vs. 2.6%, p = 0.722) and body mass index (26.2 vs. 28.0 kg/m(2), p = 0.073). However, SPA patients were younger (mean age 54.1 vs. 64.8 years, p = 0.001), and malignancy was a less common indication for surgery (25.0 vs. 71.8%, p < 0.001). There were no conversions to open surgery, and one death occurred in the CL group (1.3%). Mean operating time (162 vs. 170 min, p = 0.547), median post-operative hospital stay (4 vs. 4 days, p = 0.255) and morbidity (7.5 vs. 12.8%, p = 0.538) were comparable. SPA laparoscopic surgery appears safe in the hands of experienced laparoscopic surgeons, with no increase in operating time, length of stay, morbidity and mortality. Selection of patients with indications for surgery for benign disease may be of importance to ensure an oncologically safe initial uptake of SPA colorectal practice.
NASA Astrophysics Data System (ADS)
Farley, K. A.; Martin, P.; Archer, P. D.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairén, A. G.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.
2016-03-01
Cl isotope ratios measured on HCl thermally evolved from as-yet-unknown phases in sedimentary rocks and sand in Gale Crater provide unexpected insights to the Martian surficial Cl cycle. The seven samples yield δ37Cl values ranging from - 1 ± 25 ‰ to - 51 ± 5 ‰. Five analyses from two samples of the Sheepbed mudstone (Yellowknife Bay study area) are analytically indistinguishable with a mean δ37Cl of - 11 ± 7 ‰ (1 σ). In contrast, four mudstones/sandstones from the Kimberley and Pahrump study areas also yielded indistinguishable ratios, but with a mean δ37Cl of - 43 ± 6 ‰. The Rocknest sand deposit gave a highly uncertain δ37Cl value of - 7 ± 44 ‰. These light and highly variable δ37Cl values are unique among known solar system materials. Two endmember models are offered to account for these observations, and in both, perchlorate, with its extreme ability to fractionate Cl isotopes, is critical. In the first model, SAM is detecting HCl from an oxychlorine compound (e.g., perchlorate) produced from volcanic gas emissions by atmospheric chemical reactions. Similar reactions in Earth's atmosphere may be responsible for the isotopically lightest known Cl outside of this study, in perchlorate from the Atacama Desert. Some of the Gale Crater δ37Cl values are more negative than those in Atacama perchlorate, but because reaction mechanisms and associated fractionation factors are unknown, it is impossible to assess whether this difference is prohibitive. If the negative δ37Cl signal is produced in this fashion, the isotopic variability among samples could arise either from variations in the relative size of the reactant chloride and product perchlorate reservoirs, or from variations in the fraction of perchlorate reduced back to chloride after deposition. Such reduction strongly enriches 37Cl in the residual perchlorate. Perchlorate reduction alone offers an alternative endmember model that can explain the observed data if SAM measured HCl derived from chloride. In this model isotopically normal perchlorate produced by an unspecified mechanism is reduced to chloride. Depending on the relative size of the reduced reservoir, the integrated product chloride can vary in isotopic composition from - 70 ‰ in the first increment all the way to the starting composition if the perchlorate is fully reduced. Thus, variable degrees of perchlorate reduction can produce chloride with the appropriate δ37Cl range. Combination of the two endmember models, in which the perchlorate subject to post-deposition reduction is isotopically negative from atmospheric reactions, is also possible. Determination of the phase hosting the Cl measured by SAM, an oxychlorine compound or chloride, is critical for selecting between these models, and for developing implications of the results for the Mars surficial Cl cycle. At present it is not possible to conclusively establish which phase is responsible (possibly both), but limited evidence favors the conclusion that the measured Cl derives mostly from an oxychlorine compound.
Charoongchit, Pimchanok; Suksiriworapong, Jiraphong; Sripha, Kittisak; Mao, Shirui; Sapin-Minet, Anne; Maincent, Philippe; Junyaprasert, Varaporn Buraphacheep
2017-03-01
Cationic copolymers have been attractive to investigate due to their potential to complexation with anionic drugs and expected to use in the pharmaceutical application. In this study, the modified poly(ε-caprolactone) 2 -co-poly(ethylene glycol) copolymers (P(CL) 2 -PEG) were successfully synthesized by click reaction. The amount of small molecular cationic ligand, propargyltrimethyl ammonium iodide, was varied and grafted onto various mole ratios of P(CL) to PEG. The effects of P(CL) chain length and amount of the grafting cationic ligand on physicochemical properties of polymers and particles were studied. The number-average molecular weights of the copolymers grafted with cationic ligand were found ranging between 10,000 and 23,000g/mol as investigated by NMR. From DSC study, the results showed that the grafting ligand affected thermal behaviors of the copolymers by increasing the glass transition temperature and decreasing the melting temperature of the copolymers. Furthermore, these cationic copolymers could self-aggregate with their critical aggregation concentration depending on mole ratios of hydrophilic to hydrophobic portions. The particles containing higher amounts of the cationic ligand tended to aggregate in both acidic and basic pH environment and at high salt concentration. Additionally, particle size, size distribution (PdI), and morphology of self-assembling particles varied depending on P(CL) chain length and the amount of the grafting cationic ligand. The synthesized cationic copolymer showed a capability to encapsulate a high negatively charged drug, enoxaparin, with an encapsulation efficiency of 87%. After drug incorporation, the particles substantially changed in size, shape, PdI, and zeta potential to become more suitable for drug delivery. These cationic copolymers with flexible properties will be the candidate for further development as carriers for the delivery of negatively charged drugs. Copyright © 2016. Published by Elsevier B.V.
Habitat use and growth of the western painted crayfish Orconectes palmeri longimanus
Dyer, Joseph J.; Mouser, Joshua; Brewer, Shannon K.
2016-01-01
Identifying ontogenetic shifts in habitat use by aquatic organisms is necessary for improving conservation strategies; however, our ability to designate life stages based on surrogate metrics (i.e., length) is questionable without validation. This study identified growth patterns of age-0 western painted crayfish Orconectes palmeri longimanus (Faxon, 1898) reared in the laboratory, provided support for field-based designations of age-0 lengths, and identified microhabitat factors important to adult and juvenile presence from field collections. Two growth periods of a laboratory crayfish population were described using a broken line model: a rapid, early-growth period (weeks 2-20, slope = 0.81 ± 0.03SE), and a slower, late-growth period (weeks 22-50, slope = 0.13 ± 0.03SE). A smoothed curve was generated to represent the size distribution of juveniles from our laboratory population to determine the probability that an age-0 crayfish from our laboratory population had a carapace length (CL) similar to that found in previous field studies using onset of maturity (22.4 mm CL). We determined that the probability of the age-0 crayfish in our summer laboratory population exceeding 22.4 mm CL was 0.06. The threshold between the lower 0.95 and upper 0.05 probabilities was 22.9 mm CL, confirming previous field observations of onset at maturity. We used this threshold to identify juveniles and adults from our field collections, and found that both life stages were positively associated with coarse substrate and negatively associated with water depth. Adults, however, were negatively related to gravel, whereas juveniles showed a positive relationship. This result is reflective of the relationship between crayfish body size and refuge use within the interstitial spaces of substrates, whereby adult crayfish are unable to seek refuge in the small interstitial spaces of gravel.
Ahmed, Houssem Eddine; Kamoun, Slaheddine
2017-09-05
The crystal structure of (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O is built up of [NH 3 (CH 2 ) 3 NH 2 (CH 2 ) 3 NH 3 ] 3+ cations, [SbCl 5 ] 2- anions, free Cl - anions and neutral water molecules connected together by NH⋯Cl, NH⋯O and OH⋯Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C 6 H 20 N 3 )SbCl 5 ·Cl·H 2 O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ahmed, Houssem Eddine; Kamoun, Slaheddine
2017-09-01
The crystal structure of (C6H20N3)SbCl5·Cl·H2O is built up of [NH3(CH2)3NH2(CH2)3NH3]3 + cations, [SbCl5]2 - anions, free Cl- anions and neutral water molecules connected together by Nsbnd H ⋯ Cl, Nsbnd H ⋯ O and Osbnd H ⋯ Cl hydrogen bonds. The optical band gap determined by diffuse reflection spectroscopy (DRS) is 3.78 eV for a direct allowed transition. Optimized molecular geometry, atomic Mulliken charges, harmonic vibrational frequencies, HOMO-LUMO and related molecular properties of the (C6H20N3)SbCl5·Cl·H2O compound were calculated by Density functional theory (DFT) using B3LYP method with GenECP sets. The calculated structural parameters (bond lengths and angles) are in good agreement with the experimental XRD data. The vibrational unscaled wavenumbers were calculated and scaled by a proper scaling factor of 0.984. Acceptable consistency was observed between calculated and experimental results. The assignments of wavenumbers were made on the basis of potential energy distribution (PED) using Vibrational Energy Distribution Analysis (VEDA) software. The HOMO-LUMO study was extended to calculate various molecular parameters like ionization potential, electron affinity, global hardness, electro-chemical potential, electronegativity and global electrophilicity of the given molecule.
Burchard, J F; Nguyen, D H; Block, E
1998-01-01
Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 +/- 65 kg in 150.4 +/- 40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 microT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 +/- 0.17 and 2.25 +/- 0.17; and 24.5 +/- 1.9 vs. 26.4 +/- 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 +/- 0.9 vs. 25.3 +/- 1.4 days).
Fraser, H M; Lunn, S F; Kim, H; Duncan, W C; Rodger, F E; Illingworth, P J; Erickson, G F
2000-04-01
In the human menstrual cycle, extensive angiogenesis accompanies luteinization; and the process is physiologically important for corpus luteum (CL) function. During luteolysis, the vasculature collapses, and the endothelial cells die. In a conceptual cycle, the CL persists both functionally and structurally beyond the luteoplacental shift. Although luteal rescue is not associated with increased angiogenesis, endothelial survival is extended. Despite the central role of the luteal vasculature in fertility, the mechanisms regulating its development and demise are poorly understood. There is increasing evidence that insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) may be important effectors of luteal function. Here, we have found that IGFBP-3 messenger RNA is expressed in the endothelium of the human CL and that the levels of message change during luteal development and rescue by human CG. The signal was strong during the early luteal phase, but it showed significant reduction during the mid- and late luteal phases. Interestingly, administration of human CG caused a marked increase in the levels of IGFBP-3 messenger RNA in luteal endothelial cells that was comparable to that observed during the early luteal phase. We conclude that endothelial cell IGFBP-3 expression is a physiological property of the CL of menstruation and pregnancy. These observations raise the intriguing possibility that the regulated expression of endothelial IGFBP-3 may play a role in controlling angiogenesis and cell responses in the human CL by autocrine/paracrine mechanisms.
X-ray structure and inhibition of 3C-like protease from porcine epidemic diarrhea virus
St. John, Sarah E.; Anson, Brandon J.; Mesecar, Andrew D.
2016-05-13
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that infects pigs and can have mortality rates approaching 100% in piglets, causing serious economic impact. The 3C-like protease (3CL pro) is essential for the coronaviral life cycle and is an appealing target for the development of therapeutics. We report the expression, purification, crystallization and 2.10 angstrom X-ray structure of 3CL pro from PEDV. Analysis of the PEDV 3CL pro structure and comparison to other coronaviral 3CL pro's from the same alpha-coronavirus phylogeny shows that the overall structures and active site architectures across 3CL pro's are conserved, with the exception of amore » loop that comprises the protease S-2 pocket. We found a known inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL pro, (R)-16, to have inhibitor activity against PEDV 3CL pro, despite that SARS-3CL pro and PEDV 3CL pro share only 45.4% sequence identity. Structural comparison reveals that the majority of residues involved in (R)-16 binding to SARS-3CL pro are conserved in PEDV-3CL pro; however, the sequence variation and positional difference in the loop forming the S-2 pocket may account for large observed difference in IC 50 values. In conclusion, this work advances our understanding of the subtle, but important, differences in coronaviral 3CL pro architecture and contributes to the broader structural knowledge of coronaviral 3CL pro's.« less
X-ray structure and inhibition of 3C-like protease from porcine epidemic diarrhea virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. John, Sarah E.; Anson, Brandon J.; Mesecar, Andrew D.
Porcine epidemic diarrhea virus (PEDV) is a coronavirus that infects pigs and can have mortality rates approaching 100% in piglets, causing serious economic impact. The 3C-like protease (3CL pro) is essential for the coronaviral life cycle and is an appealing target for the development of therapeutics. We report the expression, purification, crystallization and 2.10 angstrom X-ray structure of 3CL pro from PEDV. Analysis of the PEDV 3CL pro structure and comparison to other coronaviral 3CL pro's from the same alpha-coronavirus phylogeny shows that the overall structures and active site architectures across 3CL pro's are conserved, with the exception of amore » loop that comprises the protease S-2 pocket. We found a known inhibitor of severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL pro, (R)-16, to have inhibitor activity against PEDV 3CL pro, despite that SARS-3CL pro and PEDV 3CL pro share only 45.4% sequence identity. Structural comparison reveals that the majority of residues involved in (R)-16 binding to SARS-3CL pro are conserved in PEDV-3CL pro; however, the sequence variation and positional difference in the loop forming the S-2 pocket may account for large observed difference in IC 50 values. In conclusion, this work advances our understanding of the subtle, but important, differences in coronaviral 3CL pro architecture and contributes to the broader structural knowledge of coronaviral 3CL pro's.« less
Pachón-M, José Carlos; Pachón-M, Enrique I; Santillana P, Tomas G; Lobo, Tasso Julio; Pachón, Carlos Thiene C; Pachón-M, Juán Carlos; Albornoz V, Remy Nelson; Zerpa A, Juán Carlos; Ortencio, Felipe; Arruda, Mauricio
2017-01-01
Catheter ablation of long-standing persistent AF (LSAF) remains challenging. Since AF-Nest (AFN) description, we have observed that a stable, protected, fast source firing, namely "Background Tachycardia"(BT), could be hidden beneath the chaotic AF. Following pulmonary vein isolation (PVI)+AFN ablation one or more BT may arise or be induced in 30-40% of patients, which could be the culprit forAF maintenance and ablation recurrences. We studied 114 patients, from 322 sequential LSAF regular ablations, having spontaneous or induced residual BT after EGM-guided PVI+AFN ablation of LSAF; 55.6±11y/o, 97males (85.1%), EF=65.5±8%, LA=42.8±6.7mm. Macroreentrant tachycardias were excluded. Pre-ablationAF 12-leads ECG Digital processing(DP) and spectral analysis(SA) was performed searching for BT before AF ablation and its correlation with BT during ablation.After PVI, 38.1±9 AFN sites/patient and 135 sustained BTs (1-3, 1.2±0.5/patient) were ablated. BT cycle length(CL) was 246.3±37.3ms. In 79 patients presenting suitable DP for SA, the BT-CL was 241.6±34.3ms with intra procedure BT-CL correlation r=0.83/p<0.01. Following BT ablation, AF could not be induced. During FU of 13→60 months(22.8±12m), AF freedom for BT RF(+) vs. BT RF(-) groups were 77.9% vs. 56.4% (p=0.009), respectively. There was no significant complication. BT ablation following PVI and AFN ablation improved long-term outcomes ofLSAF ablation. BT is likely due to sustained microreentry, protected during AF by entry block. BT can be suspected by spectral analysis of the pre-ablation ECG and is likely one important AF perpetuator by causing electrical resonance of the AFN. This ablation strategy warrants randomized, multicenter investigation.
Walters, Tomos E; Lee, Geoffrey; Morris, Gwilym; Spence, Steven; Larobina, Marco; Atkinson, Victoria; Antippa, Phillip; Goldblatt, John; Royse, Alistair; O'Keefe, Michael; Sanders, Prashanthan; Morton, Joseph B; Kistler, Peter M; Kalman, Jonathan M
This study aimed to determine the spatiotemporal stability of rotors and other atrial activation patterns over 10 min in longstanding, persistent AF, along with the relationship of rotors to short cycle-length (CL) activity. The prevalence, stability, and mechanistic importance of rotors in human atrial fibrillation (AF) remain unclear. Epicardial mapping was performed in 10 patients undergoing cardiac surgery, with bipolar electrograms recorded over 10 min using a triangular plaque (area: 6.75 cm 2 ; 117 bipoles; spacing: 2.5 mm) applied to the left atrial posterior wall (n = 9) and the right atrial free wall (n = 4). Activations were identified throughout 6 discrete 10-s segments of AF spanning 10 min, and dynamic activation mapping was performed. The distributions of 4,557 generated activation patterns within each mapped region were compared between the 6 segments. The dominant activation pattern was the simultaneous presence of multiple narrow wave fronts (26%). Twelve percent of activations represented transient rotors, seen in 85% of mapped regions with a median duration of 3 rotations. A total of 87% were centered on an area of short CL activity (<100 ms), although such activity had a positive predictive value for rotors of only 0.12. The distribution of activation patterns and wave-front directionality were highly stable over time, with a single dominant pattern within a 10-s AF segment recurring across all 6 segments in 62% of mapped regions. In patients with longstanding, persistent AF, activation patterns are spatiotemporally stable over 10 min. Transient rotors can be demonstrated in the majority of mapped regions, are spatiotemporally associated with short CL activity, and, when recurrent, demonstrate anatomical determinism. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Kang, H G; Jeong, D H; Yang, J J; Lee, B K; Kong, J K; Lee, J W; Kim, I H
2015-02-01
This study evaluated the structural changes in the reproductive tract of Asiatic black bears using serial transrectal ultrasonography. In addition, the ultrasonographic observations were compared with the results of vaginal cytology and hormonal analyses. The collection of blood for hormonal analysis, vaginal cytology and transrectal ultrasonography was performed in two bears (Bears 1 and 2) from June 2011 to August 2013 without mating and in a third bear (Bear 3) from April to December 2012, allowing natural mating. Serial ultrasonographic observations showed cyclic changes in ovarian structures (e.g. emergence of small follicles, growth and ovulation of dominant follicles and corpus luteum (CL) formation) during the reproductive cycles of the three bears. The diameter of the uterine horns remained similar throughout the reproductive cycle in Bears 1 and 2, and it remained similar from April until October, but an enlargement containing foetuses was observed in Bear 3 in December. The ultrasonographic observations were consistent with the data obtained through vaginal cytology and progesterone analysis during the reproductive cycle. An average of 4.0 (±0.4) dominant follicles was observed during the oestrous stage (May-August), during which the superficial cells accounted for >90% of the total vaginal cells. In addition, the detection of an average of 2.6 (±0.2) CL was associated with increased plasma progesterone concentrations (3.0 ± 0.4 ng/ml) between June and December (near hibernation). In conclusion, serial transrectal ultrasonography demonstrated yearly oestrous (ovulation) cycles via follicular dynamics and CL formation on ovaries, accordingly with vaginal cytology and hormonal level in the Asiatic black bear. © 2014 Blackwell Verlag GmbH.
Electrolyte composition for electrochemical cell
Vissers, Donald R.; Tomczuk, Zygmunt; Anderson, Karl E.; Roche, Michael F.
1979-01-01
A high-temperature, secondary electrochemical cell that employs FeS as the positive electrode reactant and lithium or lithium alloy as the negative electrode reactant includes an improved electrolyte composition. The electrolyte comprises about 60-70 mole percent LiCl and 30-40 percent mole percent KCl which includes LiCl in excess of the eutectic composition. The use of this electrolyte suppresses formation of the J phase and thereby improves the utilization of positive electrode active material during cell cycling.
Room temperature solvent-free reduction of SiCl4 to nano-Si for high-performance Li-ion batteries.
Liu, Zhiliang; Chang, Xinghua; Sun, Bingxue; Yang, Sungjin; Zheng, Jie; Li, Xingguo
2017-06-06
SiCl 4 can be directly reduced to nano-Si with commercial Na metal under solvent-free conditions by mechanical milling. Crystalline nano-Si with an average size of 25 nm and quite uniform size distribution can be obtained, which shows excellent lithium storage performance, for a high reversible capacity of 1600 mA h g -1 after 500 cycles at 2.1 A g -1 .
Evaluation of Rhenium Joining Methods
NASA Technical Reports Server (NTRS)
Reed, Brian D.; Morren, Sybil H.
1995-01-01
Coupons of rhenium-to-Cl03 flat plate joints, formed by explosive and diffusion bonding, were evaluated in a series of shear tests. Shear testing was conducted on as-received, thermally-cycled (100 cycles, from 21 to 1100 C), and thermally-aged (3 and 6 hrs at 1100 C) joint coupons. Shear tests were also conducted on joint coupons with rhenium and/or Cl03 electron beam welded tabs to simulate the joint's incorporation into a structure. Ultimate shear strength was used as a figure of merit to assess the effects of the thermal treatment and the electron beam welding of tabs on the joint coupons. All of the coupons survived thermal testing intact and without any visible degradation. Two different lots of as-received, explosively-bonded joint coupons had ultimate shear strengths of 281 and 310 MPa and 162 and 223 MPa, respectively. As-received, diffusion-bonded coupons had ultimate shear strengths of 199 and 348 MPa. For the most part, the thermally-treated and rhenium weld tab coupons had shear strengths slightly reduced or within the range of the as-received values. Coupons with Cl03 weld tabs experienced a significant reduction in shear strength. The degradation of strength appeared to be the result of a poor heat sink provided during the electron beam welding. The Cl03 base material could not dissipate heat as effectively as rhenium, leading to the formation of a brittle rhenium-niobium intermetallic.
Effects of Pedal Speed and Crank Length on Pedaling Mechanics during Submaximal Cycling
BARRATT, PAUL RICHARD; MARTIN, JAMES C.; ELMER, STEVE J.; KORFF, THOMAS
2016-01-01
ABSTRACT During submaximal cycling, the neuromuscular system has the freedom to select different intermuscular coordination strategies. From both a basic science and an applied perspective, it is important to understand how the central nervous system adjusts pedaling mechanics in response to changes in pedaling conditions. Purpose To determine the effect of changes in pedal speed (a marker of muscle shortening velocity) and crank length (a marker of muscle length) on pedaling mechanics during submaximal cycling. Methods Fifteen trained cyclists performed submaximal isokinetic cycling trials (90 rpm, 240 W) using pedal speeds of 1.41 to 1.61 m·s−1 and crank lengths of 150 to 190 mm. Joint powers were calculated using inverse dynamics. Results Increases in pedal speed and crank length caused large increases knee and hip angular excursions and velocities (P < 0.05), whereas ankle angular kinematics stayed relatively constant (P > 0.05). Joint moments and joint powers were less affected by changes in the independent variables, but some interesting effects and trends were observed. Most noteworthy, knee extension moments and powers tended to decrease, whereas hip extension power tended to increase with an increase in crank length. Conclusions The distribution of joint moments and powers is largely maintained across a range of pedaling conditions. The crank length induced differences in knee extension moments, and powers may represent a trade-off between the central nervous system’s attempts to simultaneously minimize muscle metabolic and mechanical stresses. These results increase our understanding of the neural and mechanical mechanisms underlying multi-joint task performance, and they have practical relevance to coaches, athletes, and clinicians. PMID:26559455
Kinematic Variables Evolution During a 200-m Maximum Test in Young Paddlers
Vaquero-Cristóbal, Raquel; Alacid, Fernando; López-Plaza, Daniel; Muyor, José María; López-Miñarro, Pedro A.
2013-01-01
The objective of this research was to determine the kinematic variables evolution in a sprint canoeing maximal test over 200 m, comparing women and men kayak paddlers and men canoeists. Speed evolution, cycle frequency, cycle length and cycle index were analysed each 50 m section in fifty-two young paddlers (20 male kayakers, 17 female kayakers and 15 male canoeists; 13–14 years-old). Recordings were taken from a boat which followed each paddler trial in order to measure the variables cited above. Kinematic evolution was similar in the three categories, the speed and cycle index decreased through the test after the first 50 m. Significant differences were observed among most of the sections in speed and the cycle index (p<0.05 and <0.01, respectively). Cycle length remained stable showing the lowest values in the first section when compared with the others (p<0.01). Cycle frequency progressively decreased along the distance. Significant differences were identified in the majority of the sections (p<0.01). Men kayakers attained higher values in all the variables than women kayakers and men canoeists, but only such variables as speed, cycle length and cycle index were observed to be significantly higher (p<0.01). Moreover, lower kinematic values were obtained from men canoeists. The study of the evolution of kinematic variables can provide valuable information for athletes and coaches while planning training sessions and competitions. PMID:24235980
Chloride imbalance is involved in the pathogenesis of optic neuritis in neuromyelitis optica.
Akaishi, Tetsuya; Takahashi, Toshiyuki; Himori, Noriko; Takeshita, Takayuki; Nakazawa, Toru; Aoki, Masashi; Nakashima, Ichiro
2018-07-15
Chloride imbalance between the serum and the cerebrospinal fluid (CSF) has been recently shown to exist in the acute phase of neuromyelitis optica (NMO). In this report, we studied the relation between the quotient of chloride (Q Cl ) and the severity of optic neuritis (ON) in NMO patients. There was a positive correlation (R = 0.67; p < 0.05) between Q Cl and the length of ON-lesion. The visual prognosis also showed a positive correlation with Q Cl in the acute phase (R = 0.58; p < 0.05). These results support the theory that chloride imbalance between serum and CSF may trigger the ON in NMO spectrum disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).
Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio
2015-01-01
In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Kim, Taeil; Zhao, Weihuan
Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermalmore » diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.« less
Thermochemical cycles for the production of hydrogen
Steinberg, M.; Dang, V.D.
Two-step processes for the preparation of hydrogen are described: CrCl/sub 3/(g) ..-->.. CrCl/sub 2/(g) + 1/2Cl/sub 2/(g) and CrCl/sub 2/(s) + HCl(g) reversible CrCl/sub 3/(s) + 1/2H/sub 2/(g); UCl/sub 4/(g) ..-->.. UCl/sub 3/(g) + 1/2Cl/sub 2/(g) and UCl/sub 3/(s) + HCl(g) ..-->.. UCl/sub 4/(s) + 1/2H/sub 2/(g); and CaSO/sub 4/(s) ..-->.. CaO(s) + SO/sub 2/(g) + 1/2O/sub 2/(g) and CaO(s) + SO/sub 2/(g) + H/sub 2/O(l) ..-->.. CaSO/sub 4/(s) + H/sub 2/(g). The high temperature available from solar collectors, high temperature gas reactors or fusion reactors is utilized in the first step in which the reaction is endothermic. The efficiency is at least 60% and with process heat recovery, the efficiency may be increased up to 74.4%. An apparatus fr carrying out the process in conjunction with a fusion reactor, is described.
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-06-01
The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.
Lueders, Imke; Hildebrandt, Thomas B; Pootoolal, Jason; Rich, Peter; Gray, Charlie S; Niemuller, Cheryl A
2009-11-01
Fecal and urinary progestin analyses have shown that giraffes express a short reproductive cycle, averaging 15 days, compared with other large ruminants. However, actual ovarian events have not been correlated with the hormonal pattern. In this study, mature cycling female Rothschild giraffes (Giraffa camelopardalis rothschildi) were repeatedly examined by transrectal ultrasonography to correlate ovarian function with changes in fecal progestin (fP4 [n(c) = 6]) and estradiol (fE2 [n(c) = 6]) and serum progestin (n(c) = 2) as measured by enzyme immunoassay. Five females became pregnant and were monitored during early gestation. In this study, we discovered that hormone values for fP4 in cycling giraffes do not correlate with the classic profile of follicular development, ovulation, and luteogenesis. The corpus luteum (CL) and the next dominant follicle were forming simultaneously. A mean +/- SD peak in fE2 of 254.92 +/- 194.76 ng/g and subsequent ovulation occurred as early as 1 day after the fall in fP4. In pregnant giraffes, the CL reached a diameter significantly larger (mean +/- SD, 41.02 +/- 2.70 mm; P = 0.0126) than that during the cycle (33.48 +/- 2.80 mm), while follicular activity and fluctuating fE2 were still present. With this research, we demonstrated that the progesterone profile typically used to characterize the ovarian cycle does not correlate with luteal development in the ovaries of this species. Furthermore, we conclude that the giraffe could have evolved a short reproductive cycle because of the almost parallel order of ovarian events.
Bruijn, Mmc; Vis, J Y; Wilms, F F; Oudijk, M A; Kwee, A; Porath, M M; Oei, G; Scheepers, Hcj; Spaanderman, Mea; Bloemenkamp, Kwm; Haak, M C; Bolte, A C; Vandenbussche, Fpha; Woiski, M D; Bax, C J; Cornette, Jmj; Duvekot, J J; Nij Bijvanck, Bwa; van Eyck, J; Franssen, Mtm; Sollie, K M; van der Post, Jam; Bossuyt, Pmm; Opmeer, B C; Kok, M; Mol, Bwj; van Baaren, G-J
2016-11-01
To evaluate whether in symptomatic women, the combination of quantitative fetal fibronectin (fFN) testing and cervical length (CL) improves the prediction of preterm delivery (PTD) within 7 days compared with qualitative fFN and CL. Post hoc analysis of frozen fFN samples of a nationwide cohort study. Ten perinatal centres in the Netherlands. Symptomatic women between 24 and 34 weeks of gestation. The risk of PTD <7 days was estimated in predefined CL and fFN strata. We used logistic regression to develop a model including quantitative fFN and CL, and one including qualitative fFN (threshold 50 ng/ml) and CL. We compared the models' capacity to identify women at low risk (<5%) for delivery within 7 days using a reclassification table. Spontaneous delivery within 7 days after study entry. We studied 350 women, of whom 69 (20%) delivered within 7 days. The risk of PTD in <7 days ranged from 2% in the lowest fFN group (<10 ng/ml) to 71% in the highest group (>500 ng/ml). Multivariable logistic regression showed an increasing risk of PTD in <7 days with rising fFN concentration [10-49 ng/ml: odds ratio (OR) 1.3, 95% confidence interval (95% CI) 0.23-7.0; 50-199 ng/ml: OR 3.2, 95% CI 0.79-13; 200-499 ng/ml: OR 9.0, 95% CI 2.3-35; >500 ng/ml: OR 39, 95% CI 9.4-164] and shortening of the CL (OR 0.86 per mm, 95% CI 0.82-0.90). Use of quantitative fFN instead of qualitative fFN resulted in reclassification of 18 (5%) women from high to low risk, of whom one (6%) woman delivered within 7 days. In symptomatic women, quantitative fFN testing does not improve the prediction of PTD within 7 days compared with qualitative fFN testing in combination with CL measurement in terms of reclassification from high to low (<5%) risk, but it adds value across the risk range. Quantitative fFN testing adds value to qualitative fFN testing with CL measurement in the prediction of PTD. © 2015 Royal College of Obstetricians and Gynaecologists.
Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.
2017-01-01
We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489
Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T
2007-11-15
Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.
Surface reaction of silicon chlorides during atomic layer deposition of silicon nitride
NASA Astrophysics Data System (ADS)
Yusup, Luchana L.; Park, Jae-Min; Mayangsari, Tirta R.; Kwon, Young-Kyun; Lee, Won-Jun
2018-02-01
The reaction of precursor with surface active site is the critical step in atomic layer deposition (ALD) process. We performed the density functional theory calculation with DFT-D correction to study the surface reaction of different silicon chloride precursors during the first half cycle of ALD process. SiCl4, SiH2Cl2, Si2Cl6 and Si3Cl8 were considered as the silicon precursors, and an NH/SiNH2*-terminated silicon nitride surface was constructed to model the thermal ALD processes using NH3 as well as the PEALD processes using NH3 plasma. The total energies of the system were calculated for the geometry-optimized structures of physisorption, chemisorption, and transition state. The order of silicon precursors in energy barrier, from lowest to highest, is Si3Cl8 (0.92 eV), Si2Cl6 (3.22 eV), SiH2Cl2 (3.93 eV) and SiCl4 (4.49 eV). Silicon precursor with lower energy barrier in DFT calculation showed lower saturation dose in literature for both thermal and plasma-enhanced ALD of silicon nitride. Therefore, DFT calculation is a promising tool in predicting the reactivity of precursor during ALD process.
Autocorrelation peaks in congruential pseudorandom number generators
NASA Technical Reports Server (NTRS)
Neuman, F.; Merrick, R. B.
1976-01-01
The complete correlation structure of several congruential pseudorandom number generators (PRNG) of the same type and small cycle length was studied to deal with the problem of congruential PRNG almost repeating themselves at intervals smaller than their cycle lengths, during simulation of bandpass filtered normal random noise. Maximum period multiplicative and mixed congruential generators were studied, with inferences drawn from examination of several tractable members of a class of random number generators, and moduli from 2 to the 5th power to 2 to the 9th power. High correlation is shown to exist in mixed and multiplicative congruential random number generators and prime moduli Lehmer generators for shifts a fraction of their cycle length. The random noise sequences in question are required when simulating electrical noise, air turbulence, or time variation of wind parameters.
Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.
Chi, Quan; Chen, Wanying; He, Zhike
2015-11-01
The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.
Recombination by grain-boundary type in CdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, John, E-mail: john.moseley@nrel.gov; Ahrenkiel, Richard K.; Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401
2015-07-14
We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB “type.” We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5–49), and general GBs (Σ > 49), which make up ∼47%–48%, ∼6%–8%, and ∼44%–47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ∼16%–18% of Σ = 3 GBs are active non-radiativemore » recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl{sub 2}-treated films were studied. The CdCl{sub 2} treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl{sub 2} treatment.« less
Supercritical Fluid Atomic Layer Deposition: Base-Catalyzed Deposition of SiO2.
Kalan, Roghi E; McCool, Benjamin A; Tripp, Carl P
2016-07-19
An in situ FTIR thin film technique was used to study the sequential atomic layer deposition (ALD) reactions of SiCl4, tetraethyl orthosilicate (TEOS) precursors, and water on nonporous silica powder using supercritical CO2 (sc-CO2) as the solvent. The IR work on nonporous powders was used to identify the reaction sequence for using a sc-CO2-based ALD to tune the pore size of a mesoporous silica. The IR studies showed that only trace adsorption of SiCl4 occurred on the silica, and this was due to the desiccating power of sc-CO2 to remove the adsorbed water from the surface. This was overcome by employing a three-step reaction scheme involving a first step of adsorption of triethylamine (TEA), followed by SiCl4 and then H2O. For TEOS, a three-step reaction sequence using TEA, TEOS, and then water offered no advantage, as the TEOS simply displaced the TEA from the silica surface. A two-step reaction involving the addition of TEOS followed by H2O in a second step did lead to silica film growth. However, higher growth rates were obtained when using a mixture of TEOS/TEA in the first step. The hydrolysis of the adsorbed TEOS was also much slower than that of the adsorbed SiCl4, and this was overcome by using a mixture of water/TEA during the second step. While the three-step process with SiCl4 showed a higher linear growth rate than obtained with two-step process using TEOS/TEA, its use was not practical, as the HCl generated led to corrosion of our sc-CO2 delivery system. However, when applying the two-step ALD reaction using TEOS on an MCM-41 powder, a 0.21 nm decrease in pore diameter was obtained after the first ALD cycle whereas further ALD cycles did not lead to further pore size reduction. This was attributed to the difficulty in removal of the H2O in the pores after the first cycle.
Royes, Luiz Fernando Freire; Gabbi, Patrícia; Ribeiro, Leandro Rodrigo; Della-Pace, Iuri Domingues; Rodrigues, Fernanda Silva; de Oliveira Ferreira, Ana Paula; da Silveira Junior, Mauro Eduardo Porto; da Silva, Luís Roberto Hart; Grisólia, Alan Barroso Araújo; Braga, Danielle Valente; Dobrachinski, Fernando; da Silva, Anderson Manoel Herculano Oliveira; Soares, Félix Alexandre Antunes; Marchesan, Sara; Furian, Ana Flavia; Oliveira, Mauro Schneider; Fighera, Michele Rechia
2016-06-01
Hyperammonemia is a common finding in children with methylmalonic acidemia. However, its contribution to methylmalonate-induced excitotoxicty is poorly understood. The aim of this study was to evaluate the mechanisms by which ammonia influences in the neurotoxicity induced by methylmalonate (MMA) in mice. The effects of ammonium chloride (NH4Cl 3, 6, and 12 mmol/kg; s.c.) on electroencephalographic (EEG) and behavioral convulsions induced by MMA (0.3, 0.66, and 1 µmol/2 µL, i.c.v.) were observed in mice. After, ammonia, TNF-α, IL1β, IL-6, nitrite/nitrate (NOx) levels, mitochondrial potential (ΔΨ), reactive oxygen species (ROS) generation, Methyl-Tetrazolium (MTT) reduction, succinate dehydrogenase (SDH), and Na(+), K(+)-ATPase activity levels were measured in the cerebral cortex. The binding of [(3)H]flunitrazepam, release of glutamate-GABA; glutamate decarboxylase (GAD) and glutamine synthetase (GS) activity and neuronal damage [opening of blood brain barrier (BBB) permeability and cellular death volume] were also measured. EEG recordings showed that an intermediate dose of NH4Cl (6 mmol/kg) increased the duration of convulsive episodes induced by MMA (0.66 μmol/2 μL i.c.v). NH4Cl (6 mmol/kg) administration also induced neuronal ammonia and NOx increase, as well as mitochondrial ROS generation throughout oxidation of 2,7-dichlorofluorescein diacetate (DCFH-DA) to DCF-RS, followed by GS and GAD inhibition. The NH4Cl plus MMA administration did not alter cytokine levels, plasma fluorescein extravasation, or neuronal damage. However, it potentiated DCF-RS levels, decreased the ΔΨ potential, reduced MTT, inhibited SDH activity, and increased Na(+), K(+)-ATPase activity. NH4Cl also altered the GABA cycle characterized by GS and GAD activity inhibition, [(3)H]flunitrazepam binding, and GABA release after MMA injection. On the basis of our findings, the changes in ROS and reactive nitrogen species (RNS) levels elicited by ammonia alter the glycine/glutamate (GABA) cycle and contribute to MMA-induced excitability.
Wang, Chunyang; Jia, Yachao; Yang, Weichao; Zhang, Cheng; Zhang, Kuihua; Chai, Yimin
2018-07-01
Silk fibroin (SF)-based nerve conduits have been widely used to bridge peripheral nerve defects. Our previous study showed that nerve regeneration in a SF-blended poly (l-lactide-co-ɛ-caprolactone) [P(LLA-CL)] nerve conduit is better than that in a P(LLA-CL) conduit. However, the involved mechanisms remain unclarified. Because angiogenesis within a nerve conduit plays an important role in nerve regeneration, vascularization of SF/P(LLA-CL) and P(LLA-CL) conduits was compared both in vitro and in vivo. In the present study, we observed that SF/P(LLA-CL) nanofibers significantly promoted fibroblast proliferation, and vascular endothelial growth factor secreted by fibroblasts seeded in SF/P(LLA-CL) nanofibers was more than seven-fold higher than that in P(LLA-CL) nanofibers. Conditioned medium of fibroblasts in the SF/P(LLA-CL) group stimulated more human umbilical vein endothelial cells (HUVEC) to form capillary-like networks and promoted faster HUVEC migration. The two kinds of nerve conduits were used to bridge 10-mm-length nerve defects in rats. At 3 weeks of reparation, the blood vessel area in the SF/P(LLA-CL) group was significantly larger than that in the P(LLA-CL) group. More regenerated axons and Schwann cells were also observed in the SF/P(LLA-CL) group, which was consistent with the results of blood vessels. Collectively, our data revealed that the SF/P(LLA-CL) nerve conduit enhances peripheral nerve regeneration by improving angiogenesis within the conduit. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2070-2077, 2018. © 2018 Wiley Periodicals, Inc.
Sarwat, Maryam; Hashem, Abeer; Ahanger, Mohammad A.; Abd_Allah, Elsayed F.; Alqarawi, A. A.; Alyemeni, Mohammed N.; Ahmad, Parvaiz; Gucel, Salih
2016-01-01
Present work was carried out to investigate the possible role of arbuscular mycorrhizal fungi (AMF) in mitigating salinity-induced alterations in Brassica juncea L. Exposure to NaCl stress altered the morphological, physio-biochemical attributes, antioxidant activity, secondary metabolites and phytohormones in the mustard seedlings. The growth and biomass yield, leaf water content, and total chlorophyll content were decreased with NaCl stress. However, AMF-inoculated plants exhibited enhanced shoot and root length, elevated relative water content, enhanced chlorophyll content, and ultimately biomass yield. Lipid peroxidation and proline content were increased by 54.53 and 63.47%, respectively with 200 mM NaCl concentration. Further increase in proline content and decrease in lipid peroxidation was observed in NaCl-treated plants inoculated with AMF. The antioxidants, superoxide dismutase, ascorbate peroxidase, glutathione reductase, and reduced glutathione were increased by 48.35, 54.86, 43.85, and 44.44%, respectively, with 200 mM NaCl concentration. Further increase in these antioxidants has been observed in AMF-colonized plants indicating the alleviating role of AMF to salinity stress through antioxidant modulation. The total phenol, flavonoids, and phytohormones increase with NaCl treatment. However, NaCl-treated plants colonized with AMF showed further increase in the above parameters except ABA, which was reduced with NaCl+AMF treatment over the plants treated with NaCl alone. Our results demonstrated that NaCl caused negative effect on B. juncea seedlings; however, colonization with AMF enhances the NaCl tolerance by reforming the physio-biochemical attributes, activities of antioxidant enzymes, and production of secondary metabolites and phytohormones. PMID:27458462
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M; Bastea, Sorin; Kalkan, Bora; Konôpková, Zuzana; Kunz, Martin
2016-08-12
Magnesium chloride (MgCl2) with the rhombohedral layered CdCl2-type structure (α-MgCl2) has been studied experimentally using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. The results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI2-type structure (β-MgCl2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. This observation is unusual, as it contradicts with the general structural behavior of highly compressed AB2 compounds.
Stavrou, Elissaios; Yao, Yansun; Zaug, Joseph M.; ...
2016-08-12
We studied magnesium chloride (MgCl 2) with the rhombohedral layered CdCl 2-type structure (α-MgCl 2), experimentally, using synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy using a diamond-anvil cell up to 100 GPa at room temperature and theoretically using first-principles density functional calculations. Our results reveal a pressure-induced second-order structural phase transition to a hexagonal layered CdI 2-type structure (β-MgCl 2) at 0.7 GPa: the stacking sequence of the Cl anions are altered resulting in a reduction of the c-axis length. Theoretical calculations confirm this phase transition sequence and the calculated transition pressure is in excellent agreement with the experiment.more » Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phase. According to our experimental results MgCl 2 remains in a 2D layered phase up to 100 GPa and further, the 6-fold coordination of Mg cations is retained. Theoretical calculations of relative enthalpy suggest that this extensive pressure stability is due to a low enthalpy of the layered structure ruling out kinetic barrier effects. Our observation is unusual, as it contradicts with the general structural behavior of highly compressed AB 2 compounds.« less
Molecular beam studies of stratospheric photochemistry
NASA Astrophysics Data System (ADS)
Moore, Teresa Anne
1998-12-01
Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm. These results substantially confirm the current assumption but decrease somewhat the efficiency of the ClOOCl ozone-depleting catalytic cycle. At 248 nm, ClOOCl photolysis exhibited novel dissociation dynamics which appeared to depend on the symmetry of the excited state.
... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...
Liu, Wei; Zhu, He-Min; Niu, Guo-Jun; Shi, En-Zhi; Chen, Jie; Sun, Bo; Chen, Wei-Qiang; Zhou, Hong-Gang; Yang, Cheng
2014-01-01
The Severe Acute Respiratory Syndrome (SARS) is a serious life-threatening and strikingly mortal respiratory illness caused by SARS-CoV. SARS-CoV which contains a chymotrypsin-like main protease analogous to that of the main picornavirus protease, 3CL(pro). 3CL(pro) plays a pivotal role in the viral replication cycle and is a potential target for SARS inhibitor development. A series of isatin derivatives as possible SARS-CoV 3CL(pro) inhibitors was designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide, in which several showed potent inhibition against the 3CL(pro). Structure-activity relationship was analyzed, and possible binding interaction modes were proposed by molecular docking studies. Among all compounds, 8k₁ showed most potent inhibitory activity against 3CL(pro) (IC₅₀=1.04 μM). These results indicated that these inhibitors could be potentially developed into anti-SARS drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Hui-Long; Dong, Jing; Jiang, Wen-Feng
2010-11-15
The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Effect of muscle length on cross-bridge kinetics in intact cardiac trabeculae at body temperature.
Milani-Nejad, Nima; Xu, Ying; Davis, Jonathan P; Campbell, Kenneth S; Janssen, Paul M L
2013-01-01
Dynamic force generation in cardiac muscle, which determines cardiac pumping activity, depends on both the number of sarcomeric cross-bridges and on their cycling kinetics. The Frank-Starling mechanism dictates that cardiac force development increases with increasing cardiac muscle length (corresponding to increased ventricular volume). It is, however, unclear to what extent this increase in cardiac muscle length affects the rate of cross-bridge cycling. Previous studies using permeabilized cardiac preparations, sub-physiological temperatures, or both have obtained conflicting results. Here, we developed a protocol that allowed us to reliably and reproducibly measure the rate of tension redevelopment (k(tr); which depends on the rate of cross-bridge cycling) in intact trabeculae at body temperature. Using K(+) contractures to induce a tonic level of force, we showed the k(tr) was slower in rabbit muscle (which contains predominantly β myosin) than in rat muscle (which contains predominantly α myosin). Analyses of k(tr) in rat muscle at optimal length (L(opt)) and 90% of optimal length (L(90)) revealed that k(tr) was significantly slower at L(opt) (27.7 ± 3.3 and 27.8 ± 3.0 s(-1) in duplicate analyses) than at L(90) (45.1 ± 7.6 and 47.5 ± 9.2 s(-1)). We therefore show that k(tr) can be measured in intact rat and rabbit cardiac trabeculae, and that the k(tr) decreases when muscles are stretched to their optimal length under near-physiological conditions, indicating that the Frank-Starling mechanism not only increases force but also affects cross-bridge cycling kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Minlin; Lan, Fei; Tao, Quan
The introduction of Cl into CH{sub 3}NH{sub 3}PbI{sub 3} precursors is reported to enhance the performance of CH{sub 3}NH{sub 3}PbI{sub 3} solar cell, which is attributed to the significantly increased diffusion lengths of carriers in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell. It has been assumed but never experimentally approved that the defect density in CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell should be reduced according to the higher carrier lifetime observed from photoluminescence (PL) measurement. We have fabricated CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell by adding a small amount of Cl source into CH{sub 3}NH{sub 3}PbI{sub 3} precursor. The performance ofmore » CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} solar cell is significantly improved from 15.39% to 18.60%. Results from scanning electron microscopy and X-ray diffraction indicate that the morphologies and crystal structures of CH{sub 3}NH{sub 3}PbI{sub 3} and CH{sub 3}NH{sub 3}Pb(I,Cl){sub 3} thin films remain unchanged. Open circuit voltage decay and admittance spectroscopy characterization jointly approve that Cl plays an extremely important role in suppressing the formation of defects in perovskite solar cells.« less
NASA Astrophysics Data System (ADS)
Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Dolgushev, V. A.; Tikhomirova, N. A.
The accumulation of solid and liquid wastes in manmade ecosystems presents a problem that has not been efficiently solved yet. Urine, containing NaCl, are part of these products. This is an obstacle to the creation of biological systems with a largely closed material cycling, because the amount of solid and liquid wastes in them must be reduced to a minimum. A possible solution to the problem is to select plant species capable of utilizing sufficiently high concentrations of NaCl, edible for humans, and featuring high productivity. Until recently, the life support systems have included the higher plants that were either sensitive to salinization (wheat, many of the legumes, carrot, potato, maize) or relatively salt-resistant (barley, sugar beet, spinach). Salicomia europaea, whose above-ground part is fully edible for humans, is one of the most promising candidates to be included in life support systems. It is reported in the literature that this plant is capable of accumulating up to 50% NaCl (dry basis). Besides, excessive accumulation of sodium ions should bring forth a decrease in the uptake of potassium ions and other biogenic elements. The aim of this work is to study the feasibility of using S. europaea plants in growth chambers to involve NaCl into material cycling. Plants were grown in vegetation chambers at the irradiance of 100 or 150 W/m 2 PAR (photosynthetically active radiation) and the air temperature 24 °C, by two methods. The first method was to grow the plants on substrate - peat. The peat was supplemented with either 3% NaCl (Variant 1) or 6% NaCl (Variant 2) of the oven-dry mass of the peat. The second method was to grow the plants in water culture, using the solution with a full complement of nutrients, which contained 0.0005% of NaCl, 1% or 2%. The study showed that the addition of NaCl to the substrate or to the solution resulted in the formation of more succulent plants, which considerably increased their biomass. The amount of NaCl uptake was the highest in the plants grown in water culture, 2.6 g per plant. As the sodium uptake increased, the consumption of potassium and the sum of the reduced N forms decreased twofold. The uptake of calcium and magnesium by plants decreased as the NaCl concentration increased; the smallest amounts were taken up by S. europaea grown in water culture. Salinity had practically no effect on the uptake of phosphorus and sulfur. Thus, S. europaea is a promising candidate to be included in life support systems; of special interest is further research on growing these plants in water culture.
NASA Astrophysics Data System (ADS)
Baksht, E. Kh; Panchenko, Aleksei N.; Tarasenko, Viktor F.
2000-06-01
An efficient electric-discharge XeCl laser is developed, which is pumped by a self-sustained discharge with a prepulse formed by a generator with an inductive energy storage device and a semiconductor current interrupter on a basis of semiconductor opening switch (SOS) diodes. An output energy up to 800 mJ, a pulse length up to 450 ns, and a total laser efficiency of 2.2% were attained by using spark UV preionisation.
Determination of carrier diffusion length in GaN
NASA Astrophysics Data System (ADS)
Hafiz, Shopan; Zhang, Fan; Monavarian, Morteza; Avrutin, Vitaliy; Morkoç, Hadis; Özgür, Ümit; Metzner, Sebastian; Bertram, Frank; Christen, Jürgen; Gil, Bernard
2015-01-01
Diffusion lengths of photo-excited carriers along the c-direction were determined from photoluminescence (PL) and cross-sectional cathodoluminescence (CL) measurements in p- and n-type GaN epitaxial layers grown on c-plane sapphire by metal-organic chemical vapor deposition. The investigated samples incorporate a 6 nm thick In0.15Ga0.85N active layer capped with either 500 nm p-GaN or 1500 nm n-GaN. The top GaN layers were etched in steps and PL from the InGaN active region and the underlying layers was monitored as a function of the top GaN thickness upon photo-generation near the surface region by above bandgap excitation. Taking into consideration the absorption in the top GaN layer as well as active and underlying layers, the diffusion lengths at 295 K and at 15 K were measured to be 93 ± 7 nm and 70 ± 7 nm for Mg-doped p-type GaN and 432 ± 30 nm and 316 ± 30 nm for unintentionally doped n-type GaN, respectively, at photogenerated carrier densities of 4.2 × 1018 cm-3 using PL spectroscopy. CL measurements of the unintentionally doped n-type GaN layer at much lower carrier densities of 1017 cm-3 revealed a longer diffusion length of 525 ± 11 nm at 6 K.
Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.
Gaustad, Kristine G; Boquest, Andrew C; Anderson, Brent E; Gerdes, A Martin; Collas, Philippe
2004-02-06
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43. Formation of binucleated and striated cells, and spontaneous beating in culture were also observed. A low proportion of intact ATSCs exposed to the extract also showed signs of alpha-actinin and connexin 43 expression. Additional evidence of differentiation was provided by induction of expression of nuclear lamin A/C, a marker of terminally differentiated cells, and a remarkable increase in cell cycle length. Together with our previous data, this study suggests that alteration of cell fate using cellular extracts may be applied to multiple cell types. Cell extracts may also prove useful for investigating the molecular mechanisms of stem cell differentiation.
Contrasting effects of progesterone on fertility of dairy and beef cows.
Stevenson, J S; Lamb, G C
2016-07-01
The role of progesterone in maintaining pregnancy is well known in the bovine. Subtle differences exist between dairy and beef cows because of differing concentrations of progesterone during recrudescence of postpartum estrous cycles, rate of follicular growth and maturation, proportions of 2- and 3-follicular wave cycles, and other effects on pregnancy outcomes per artificial insemination (P/AI). Because proportions of anovulatory cows before the onset of the artificial insemination (AI) period are greater and more variable in beef (usually ranging from 30 to 70%) than dairy (25%) cows, AI programs were developed to accommodate anovulatory and cycling beef cows enrolled therein. Incorporating a progestin as part of an AI program in beef cows improved P/AI by reducing the proportion of cows having premature luteal regression and short post-AI luteal phases. In both genotypes, prolonged dominant follicle growth in a reduced progesterone milieu resulted in increased (1) LH pulses, (2) preovulatory follicle diameter, and (3) concentrations of estradiol and a subsequently larger corpora lutea (CL). In contrast, the progesterone milieu during growth of the ovulatory follicle in an ovulation control program does not seem to affect subsequent P/AI in beef cows, whereas in dairy cows follicle development in an elevated compared with a low progesterone environment increases P/AI. Progesterone status in beef cows at the onset of ovulation synchronization is not related to P/AI in multiparous cows, whereas P/AI was suppressed in primiparous cows that began a timed AI program in a low-progesterone environment. In timed AI programs, elevated concentrations of progesterone just before PGF2α and reduced concentrations at AI are critical to maximizing subsequent P/AI in dairy cows, but seemingly much less important in beef cows. By inducing ancillary CL and increasing concentrations of progesterone, human chorionic gonadotropin may increase P/AI when administered to beef cows 7d after AI or at embryo transfer, and its success seems to depend on induction of ancillary CL, whereas in dairy cows increased fertility was detected in cows with multiple CL, human chorionic gonadotropin-enhanced progesterone from original CL, or both. Pregnancy losses after AI are less frequent in beef cows and are not associated with pre-AI progesterone or cycling status, whereas losses in dairy cows are inversely related to progesterone and adversely affected in anovular dairy cows. Genotype and nutritional management likely influence several physiological differences including circulating concentrations of progesterone and responses to supplemental progesterone. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-01
Study Objectives: By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Methods: Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Results: Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308–0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175–6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Conclusions: Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. Citation: Rey de Castro J, Liendo A, Ortiz O, Rosales-Mayor E, Liendo C. Ventilatory cycle measurements and loop gain in central apnea in mining drivers exposed to intermittent altitude. J Clin Sleep Med. 2017;13(1):27–32. PMID:27707449
NASA Astrophysics Data System (ADS)
Trifonov, Sergey V.; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia
2016-07-01
The use of processed human wastes as a source of minerals for plants in closed biotechnical life support systems (BTLSS) leads to high salt levels in the irrigation solution, as urine contains high concentrations of NaCl. It is important to develop a process that would effectively decrease NaCl concentration in the irrigation solution and return this salt to the crew's diet. The salt-tolerant plants (Salicornia europea) used to reduce NaCl concentration in the irrigation solution require higher salt concentrations than those of the solution, and this problem cannot be resolved by concentrating the solution. At the same time, NaCl extracted from mineralized wastes by physicochemical methods is not pure enough to be included in the crew's diet. This study describes an original physicochemical method of NaCl extraction from the solution, which is intended to be used in combination with the biological method of NaCl extraction by using saltwort plants. The physicochemical method produces solutions with high NaCl concentrations, and saltwort plants serve as a biological filter in the final phase, to produce table salt. The study reports the order in which physicochemical and biological methods of NaCl extraction from the irrigation solution should be used to enable rapid and effective inclusion of NaCl into the cycling of the BTLSS with humans. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).
Effect of counterion binding efficiency on structure and dynamics of wormlike micelles.
Oelschlaeger, C; Suwita, P; Willenbacher, N
2010-05-18
We have studied the effect of counterion binding efficiency on the linear viscoelastic properties of wormlike micelles formed from hexadecyltrimethylammonium bromide (CTAB) in the presence of different nonpenetrating inorganic salts: potassium bromide (KBr), sodium nitrate (NaNO(3)), and sodium chlorate (NaClO(3)). We have varied the salt/surfactant ratio R at fixed surfactant concentration of 350 mM. Results are compared to data for the system cetylpyridinium chloride (CPyCl) and the penetrating counterion sodium salicylate (NaSal) (Oelschlaeger, C.; Schopferer, M.; Scheffold, F.; Willenbacher, N. Langmuir 2009, 25, 716-723). Mechanical high-frequency rheology and diffusing wave spectroscopy (DWS) based tracer microrheology are used to determine the shear moduli G' and G'' in the frequency range from 0.1 Hz up to 1 MHz (Willenbacher, N.; Oelschlaeger, C.; Schopferer, M.; Fischer, P.; Cardinaux, F.; Scheffold, F. Phys. Rev. Lett. 2007, 99, 068302, 1-4). This enables us to determine the plateau modulus G(0), which is related to the cross-link density or mesh size of the entanglement network, the bending stiffness kappa (also expressed as persistence length l(p) = kappa/k(B)T) corresponding to the semiflexible nature of the micelles, and the scission energy E(sciss), which is related to their contour length. The viscosity maximum shifts to higher R values, and the variation of viscosity with R is less pronounced as the binding strength decreases. The plateau modulus increases with R at low ionic strength and is constant around the viscosity maximum; the increase in G(0) at high R, which is presumably due to branching, is weak compared to the system with penetrating counterion. The scission energy E(sciss) approximately = 20 k(B)T is independent of counterion binding efficiency irrespective of R and is slightly higher compared to the system CPyCl/NaSal, indicating that branching may be significant already at the viscosity maximum in this latter case. The micellar flexibility increases with increasing binding efficiency of counterions according to the Hofmeister series. The persistence length values for systems CTAB/KBr, CTAB/NaNO(3), and CTAB/NaClO(3) are 40, 34, and 29 nm, respectively, independent of R, and are significantly higher than in the case of CPyCl/NaSal.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3
Ziatdinov, M.; Banerjee, A.; Maksov, A.; Berlijn, T.; Zhou, W.; Cao, H. B.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Baddorf, A. P.; Kalinin, S. V.
2016-01-01
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface. PMID:27941761
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl3.
Ziatdinov, M; Banerjee, A; Maksov, A; Berlijn, T; Zhou, W; Cao, H B; Yan, J-Q; Bridges, C A; Mandrus, D G; Nagler, S E; Baddorf, A P; Kalinin, S V
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, α-RuCl 3 . Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of α-RuCl 3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at the nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of ≈0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual α-RuCl 3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.
Atomic-scale observation of structural and electronic orders in the layered compound α-RuCl 3
Ziatdinov, Maxim A.; Banerjee, Arnab; Maksov, Artem B.; ...
2016-12-12
A pseudospin-1/2 Mott phase on a honeycomb lattice is proposed to host the celebrated two-dimensional Kitaev model which has an elusive quantum spin liquid ground state, and fascinating physics relevant to the development of future templates towards topological quantum bits. Here we report a comprehensive, atomically resolved real-space study by scanning transmission electron and scanning tunnelling microscopies on a novel layered material displaying Kitaev physics, -RuCl3. Our local crystallography analysis reveals considerable variations in the geometry of the ligand sublattice in thin films of -RuCl3 that opens a way to realization of a spatially inhomogeneous magnetic ground state at themore » nanometre length scale. Using scanning tunnelling techniques, we observe the electronic energy gap of 0.25 eV and intra-unit cell symmetry breaking of charge distribution in individual -RuCl3 surface layer. The corresponding charge-ordered pattern has a fine structure associated with two different types of charge disproportionation at Cl-terminated surface.« less
Role of the vomeronasal organ on the estral cycle reduction by pheromones in the rat.
Mora, O A; Sánchez-Criado, J E; Guisado, S
1985-09-01
The role of he vomeronasal organ on the estral cycle reduction induced by pheromones is studied in adult female wistar rats. The animals were divided in three groups: I, intact rats; II, vomeronasalectomized rats (VNX); and III, sham operated rats (sham). Each group was submitted to another three distinct conditions from the day they were weaned (21 days old): Isolated female rats; with male odors from two adult males of tested sexual potency, and isolated rats again. The isolated intact rats show mainly 5 day length cycles. The groups I and III (intacts and sham) with male odors, show 4 day length cycles. The VNX animals show 5 day cycles in any one experimental conditions. These results support the idea that the vomeronasal organ is the receptor of the male reducing cycle pheromone in the female rat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stępnik, Maciej, E-mail: mstep@imp.lodz.pl; Arkusz, Joanna; Smok-Pieniążek, Anna
The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but notmore » to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows alterations in both cell lines with both silica NP tested. ► Buthionine sulfoximine enhances cytotoxicity of Ludox CL-X in 3T3-L1 cells.« less
length in single grains and the effect of grain boundaries in CdTe, and the effects of defects on the diffraction of CdTe thin films: Effects of CdCl2 treatment, J. Vac. Sci. Technol. A 26, 1068 (2008). H.R
I'Anson, Helen; Sundling, Lois A; Roland, Shannon M; Ritter, Sue
2003-10-01
We tested the hypothesis that hindbrain catecholamine (norepinephrine or epinephrine) neurons, in addition to their essential role in glucoprivic feeding, are responsible for suppressing estrous cycles during chronic glucoprivation. Normally cycling female rats were given bilateral injections of the retrogradely transported ribosomal toxin, saporin, conjugated to monoclonal dopamine beta-hydroxylase antibody (DSAP) into the paraventricular nucleus (PVN) of the hypothalamus to selectively destroy norepinephrine and epinephrine neurons projecting to the PVN. Controls were injected with unconjugated saporin. After recovery, we assessed the lesion effects on estrous cyclicity under basal conditions and found that DSAP did not alter estrous cycle length. Subsequently, we examined effects of chronic 2-deoxy-d-glucose-induced glucoprivation on cycle length. After two normal 4- to 5-d cycles, rats were injected with 2-deoxy-d-glucose (200 mg/kg every 6 h for 72 h) beginning 24 h after detection of estrus. Chronic glucoprivation increased cycle length in seven of eight unconjugated saporin rats but in only one of eight DSAP rats. Immunohistochemical results confirmed loss of dopamine beta-hydroxylase immunoreactivity in PVN. Thus, hindbrain catecholamine neurons with projections to the PVN are required for inhibition of reproductive function during chronic glucose deficit but are not required for normal estrous cyclicity when metabolic fuels are in abundance.
Prospective evaluation of luteal phase length and natural fertility.
Crawford, Natalie M; Pritchard, David A; Herring, Amy H; Steiner, Anne Z
2017-03-01
To evaluate the impact of a short luteal phase on fecundity. Prospective time-to-pregnancy cohort study. Not applicable. Women trying to conceive, ages 30-44 years, without known infertility. Daily diaries, ovulation prediction testing, standardized pregnancy testing. Subsequent cycle fecundity. Included in the analysis were 1,635 cycles from 284 women. A short luteal phase (≤11 days including the day of ovulation) occurred in 18% of observed cycles. Mean luteal phase length was 14 days. Significantly more women with a short luteal phase were smokers. After adjustment for age, women with a short luteal phase had 0.82 times the odds of pregnancy in the subsequent cycle immediately following the short luteal phase compared with women without a short luteal phase. Women with a short luteal length in the first observed cycle had significantly lower fertility after the first 6 months of pregnancy attempt, but at 12 months there was no significant difference in cumulative probability of pregnancy. Although an isolated cycle with a short luteal phase may negatively affect short-term fertility, incidence of infertility at 12 months was not significantly higher among these women. NCT01028365. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Tremsin, Anton S.; Makowska, Małgorzata G.; Perrodin, Didier; ...
2016-04-12
Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e.g.while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole) is studiedin situduring the melting and solidification processes with a temporal resolution of 5–7 s.more » The strong tendency of the Eu dopant to segregate during the solidification process is observed in repeated cycles, with Eu forming clusters on multiple length scales (only for clusters larger than ~50 µm, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (~0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change in concentration of one of the elements with a sufficient neutron attenuation cross section. Tomographic imaging of the BaBrCl:0.1%Eu sample reveals a strong correlation between crystal fractures and Eu-deficient clusters. The results of these experiments demonstrate the unique capabilities of neutron imaging forin situdiagnostics and the optimization of crystal-growth procedures.« less
Ligand assisted carbon dioxide activation and hydrogenation using molybdenum and tungsten amides.
Chakraborty, Subrata; Blacque, Olivier; Berke, Heinz
2015-04-14
The hepta-coordinated isomeric M(NO)Cl3(PN(H)P) complexes {M = Mo, ; W, , PN(H)P = (iPr2PCH2CH2)2NH, (HN atom of PN(H)P syn and anti to the NO ligand)} and the paramagnetic species M(NO)Cl2(PN(H)P) (M = Mo, ; W, ) could be prepared via a new synthetic pathway. The pseudo trigonal bipyramidal amides M(NO)(CO)(PNP) {M = Mo, ; W, ; [PNP](-) = [(iPr2PCH2CH2)2N](-)} were reacted with CO2 at room temperature with CO2 approaching the M[double bond, length as m-dash]N double bond in the equatorial (CO,NO,N) plane trans to the NO ligand and forming the pseudo-octahedral cyclic carbamates M(NO)(CO)(PNP)(OCO) (M = Mo, ; W = ). DFT calculations revealed that the approach to form the isomer is kinetically determined. The amine hydrides M(NO)H(CO)(PN(H)P) {M = Mo, ; W, }, obtained by H2 addition to , insert CO2 (2 bar) at room temperature into the M-H bond generating isomeric mixtures of the η(1)-formato complexes M(NO)(CO)(PN(H)P)(η(1)-OCHO), (M = Mo, ; M = W, ). Closing the stoichiometric cycles for sodium formate formation the isomeric mixtures were reacted with 1 equiv. of Na[N(SiMe3)2] regenerating . Attempts to turn the stoichiometric formate production into catalytic CO2 hydrogenation using in the presence of various types of sterically congested bases furnished yields of formate salts of up to 4%.
Sadrpour, Shervin A; Srinivasan, Deepa; Bhimani, Ashish A; Lee, Seungyup; Ryu, Kyungmoo; Cakulev, Ivan; Khrestian, Celeen M; Markowitz, Alan H; Waldo, Albert L; Sahadevan, Jayakumar
2015-12-01
Postoperative atrial fibrillation (POAF), new-onset AF after open heart surgery (OHS), is thought to be related to pericarditis. Based on AF studies in the canine sterile pericarditis model, we hypothesized that POAF in patients after OHS may be associated with a rapid, regular rhythm in the left atrium (LA), suggestive of an LA driver maintaining AF. The aim of this study was to test the hypothesis that in patients with POAF, atrial electrograms (AEGs) recorded from at least one of the two carefully selected LA sites would manifest a rapid, regular rhythm with AEGs of short cycle length (CL) and constant morphology, but a selected right atrial (RA) site would manifest AEGs with irregular CLs and variable morphology. In 44 patients undergoing OHS, AEGs recorded from the epicardial surface of the RA, the LA portion of Bachmann's bundle, and the posterior LA during sustained AF were analysed for regularity of CL and morphology. Sustained AF occurred in 15 of 44 patients. Atrial electrograms were recorded in 11 of 15 patients; 8 of 11 had rapid, regular activation with constant morphology recorded from at least one LA site; no regular AEG sites were present in 3 of 11 patients. Atrial electrograms recorded during sustained POAF frequently demonstrated rapid, regular activation in at least one LA site, consistent with a driver maintaining AF. Published by Oxford University Press on behalf of the European Society of Cardiology 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Salmaoui, Samiha; Sediri, Faouzi; Gharbi, Néji; Perruchot, Christian; Aeiyach, Salah; Rutkowska, Iwona A.; Kulesza, Pawel J.; Jouini, Mohamed
2011-07-01
Tungsten trioxide, unhydrated with hexagonal structure (h-WO 3), has been prepared by hydrothermal method at a temperature of 180 °C in acidified sodium tungstate solution. Thus prepared h-WO 3 has been characterized by X-ray diffraction (XRD) method and using electrochemical techniques. The morphology has been examined by scanning and transmission electron microscopies (SEM and TEM) and it is consistent with existence of nanorods of 50-70 nm diameter and up to 5 μm length. Cyclic voltammetric characterization of thin films of h-WO 3 nanorods has revealed reversible redox behaviour with charge-discharge cycling corresponding to the reversible lithium intercalation/deintercalation into the crystal lattice of the h-WO 3 nanorods. In propylene carbonate containing LiClO 4, two successive redox processes of hexagonal WO 3 nanorods are observed at the scan rate of 50 mV/s. Such behaviour shall be attributed to the presence of at least two W atoms of different surroundings in the lattice structure of h-WO 3 nanorods. On the other hand, in aqueous LiClO 4 solution, only one redox process is observed at the scan rate of 10 mV/s. The above observations can be explained in terms of differences in the diffusion of ions inside two types of channel cavities existing in the structure of the h-WO 3 nanorods. Moreover, the material can be applied as active support for the catalytic bi-metallic Pt-Ru nanoparticles during electrooxidation of ethanol in acid medium (0.5 mol dm -3 H 2SO 4).
Dionisi, Davide; Majone, Mauro; Vallini, Giovanni; Gregorio, Simona Di; Beccari, Mario
2007-01-01
The effect of the length of the cycle on the enrichment and selection of mixed cultures in sequencing batch reactors (SBRs) has been studied, with the aim of biodegradable polymers (namely, polyhydroxyalkanoates (PHAs)) production from organic wastes. At a fixed feed concentration (20 gCOD/L) and organic loading rate (20 gCOD/L/day), the SBR was operated at different lengths of the cycle, in the range 1-8 h. Process performance was measured by considering the rates and yields of polymer storage and of the competing phenomenon of growth. The selected biomass was enriched with microorganisms that were able to store PHAs at high rates and yields only when the length of the cycle was 2 or 4 h, even though in these conditions the process was unstable. On the other hand, when the length of the cycle was 1 or 8 h, the dynamic response of the selected microorganisms was dominated by growth. The best process performance was characterized by storage rates in the range 500-600 mgCOD/gCOD/h and storage yields of 0.45-0.55 COD/COD. The corresponding productivity of the process was in the range 0.25-0.30 gPHA/L/h, the highest values obtained until now for mixed cultures. The microbial composition of the selected biomasses was analyzed through denaturing gradient gel electrophoresis (DGGE) and reverse-transcriptase denaturing gradient gel electrophoresis (RT-DGGE). The instability of the runs characterized by high storage rate was associated with a higher microbial heterogeneity compared to the runs with a stable growth response.
Amiad Pavlov, Daria; Landesberg, Amir
2016-01-01
The cellular mechanisms underlying the Frank-Starling Law of the heart and the skeletal muscle force-length relationship are not clear. This study tested the effects of sarcomere length (SL) on the average force per cross-bridge and on the rate of cross-bridge cycling in intact rat cardiac trabeculae (n=9). SL was measured by laser diffraction and controlled with a fast servomotor to produce varying initial SLs. Tetanic contractions were induced by addition of cyclopiazonic acid, to maintain a constant activation. Stress decline and redevelopment in response to identical ramp shortenings, starting at various initial SLs, was analyzed. Both stress decline and redevelopment responses revealed two distinct kinetics: a fast and a slower phase. The duration of the rapid phases (4.2 ± 0.1 msec) was SL-independent. The second slower phase depicted a linear dependence of the rate of stress change on the instantaneous stress level. Identical slopes (70.5 ± 1.6 [1/s], p=0.33) were obtained during ramp shortening at all initial SLs, indicating that the force per cross-bridge and cross-bridge cycling kinetics are length-independent. A decrease in the slope at longer SLs was obtained during stress redevelopment, due to internal shortening. The first phase is attributed to rapid changes in the average force per cross-bridge. The second phase is ascribed to both cross-bridge cycling between its strong and weak conformations and to changes in the number of strong cross-bridges. Cross-bridge cycling kinetics and muscle economy are length-independent and the Frank-Starling Law cannot be attributed to changes in the force per cross-bridge or in the single cross-bridge cycling rates. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of helium-neon laser irradiation on hair follicle growth cycle of Swiss albino mice.
Shukla, S; Sahu, K; Verma, Y; Rao, K D; Dube, A; Gupta, P K
2010-01-01
We report the results of a study carried out to investigate the effect of helium-neon (He-Ne) laser (632.8 nm) irradiation on the hair follicle growth cycle of testosterone-treated and untreated mice. Both histology and optical coherence tomography (OCT) were used for the measurement of hair follicle length and the relative percentage of hair follicles in different growth phases. A positive correlation (R = 0.96) was observed for the lengths of hair follicles measured by both methods. Further, the ratios of the lengths of hair follicles in the anagen and catagen phases obtained by both methods were nearly the same. However, the length of the hair follicles measured by both methods differed by a factor of 1.6, with histology showing smaller lengths. He-Ne laser irradiation (at approximately 1 J/cm(2)) of the skin of both the control and the testosterone-treated mice was observed to lead to a significant increase (p < 0.05) in % anagen, indicating stimulation of hair growth. The study also demonstrates that OCT can be used to monitor the hair follicle growth cycle, and thus hair follicle disorders or treatment efficacy during alopecia. (c) 2009 S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaudino, Danila; Pasquino, Rossana, E-mail: r.pasquino@unina.it; Grizzuti, Nino
The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of themore » micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.« less
Application of gradient elasticity to benchmark problems of beam vibrations
NASA Astrophysics Data System (ADS)
Kateb, K. M.; Almitani, K. H.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Papadopoulos, P.; Askes, H.; Aifantis, E. C.
2016-04-01
The gradient approach, specifically gradient elasticity theory, is adopted to revisit certain typical configurations on mechanical vibrations. New results on size effects and scale-dependent behavior not captured by classical elasticity are derived, aiming at illustrating the usefulness of this approach to applications in advanced technologies. In particular, elastic prismatic straight beams in bending are discussed using two different governing equations: the gradient elasticity bending moment equation (fourth order) and the gradient elasticity deflection equation (sixth order). Different boundary/support conditions are examined. One problem considers the free vibrations of a cantilever beam loaded by an end force. A second problem is concerned with a simply supported beam disturbed by a concentrated force in the middle of the beam. Both problems are solved analytically. Exact free vibration frequencies and mode shapes are derived and presented. The difference between the gradient elasticity solution and its classical counterpart is revealed. The size ratio c/L (c denotes internal length and L is the length of the beam) induces significant effects on vibration frequencies. For both beam configurations, it turns out that as the ratio c/L increases, the vibration frequencies decrease, a fact which implies lower beam stiffness. Numerical examples show this behavior explicitly and recover the classical vibration behavior for vanishing size ratio c/L.
Menstrual cycle perturbation by organohalogens and elements in the Cree of James Bay, Canada.
Wainman, Bruce C; Kesner, James S; Martin, Ian D; Meadows, Juliana W; Krieg, Edward F; Nieboer, Evert; Tsuji, Leonard J
2016-04-01
Persistent organohalogens (POHs) and metals have been linked to alterations in menstrual cycle function and fertility in humans. The Cree First Nations people living near James Bay in Ontario and Quebec, Canada, have elevated levels of POHs, mercury and lead compared to other Canadians. The present study examines the interrelationships between selected POHs and elements on menstrual cycle function in these Cree women. Menstrual cycle characteristics were derived from structured daily diaries and endocrine measurements from daily urine samples collected during one cycle for 42 women age 19-42. We measured 31 POHs in blood plasma and 18 elements in whole blood, for 31 of the participants. POHs and elements detected in ≥ 70% of the participants were transformed by principal component (PC) analysis to reduce the contaminant exposure data to fewer, uncorrelated PCA variables. Multiple regression analysis revealed that, after adjusting for confounders, PC-3 values showed significant negative association with cycle length, after adjusting for confounders (p = 0.002). PC-3 accounted for 9.2% of the variance and shows positive loadings for cadmium, selenium, and PBDE congeners 47 and 153, and a negative loading for copper. Sensitivity analysis of the model to quantify likely effect sizes showed a range of menstrual cycle length from 25.3 to 28.3 days using the lower and upper 95% confidence limits of mean measured contaminant concentrations to predict cycle length. Our observations support the hypothesis that the menstrual cycle function of these women may be altered by exposure to POHs and elements from their environment. Copyright © 2015. Published by Elsevier Ltd.
Rey de Castro, Jorge; Liendo, Alicia; Ortiz, Oswaldo; Rosales-Mayor, Edmundo; Liendo, César
2017-01-15
By measuring the apnea length, ventilatory phase, respiratory cycle length, and loop gain, we can further characterize the central apneas of high altitude (CAHA). Sixty-three drivers of all-terrain vehicles, working in a Peruvian mine located at 2,020 meters above sea level (MASL), were evaluated. A respiratory polygraph was performed in the first night they slept at high altitude. None of the subjects were exposed to oxygen during the test or acetazolamide in the preceding days of the test. Sixty-three respiratory polygraphs were performed, and 59 were considered for analysis. Forty-six (78%) were normal, 6 (10%) had OSA, and 7 (12%) had CAHA. Key data from subjects include: residing altitude: 341 ± 828 MASL, Lake Louise scoring: 0.4 ± 0.8, Epworth score: 3.4 ± 2.7, apneahypopnea index: 35.7 ± 19.3, CA index: 13.4 ± 14.2, CA length: 14.4 ± 3.6 sec, ventilatory length: 13.5 ± 2.9 sec, cycle length: 26.5 ± 4.0 sec, ventilatory length/CA length ratio 0.9 ± 0.3 and circulatory delay 13.3 ± 2.9 sec. Duty ratio media [ventilatory duration/cycle duration] was 0.522 ± 0 0.128 [0.308-0.700] and loop gain was calculated from the duty ratio utilizing this formula: LG = 2π / [(2πDR-sin(2πDR)]. All subjects have a high loop gain media 2.415 ± 1.761 [1.175-6.260]. Multiple correlations were established with loop gain values, but the only significant correlation detected was between central apnea index and loop gain. Twelve percent of the studied population had CAHA. Measurements of respiratory cycle in workers with CAHA are more similar to idiopathic central apneas rather than Hunter-Cheyne-Stokes respiration. Also, there was a high degree of correlation between severity of central apnea and the degree of loop gain. The abnormal breathing patterns in those subjects could affect the sleep quality and potentially increase the risk for work accidents. © 2017 American Academy of Sleep Medicine
NASA Astrophysics Data System (ADS)
Brune, S.; Williams, S.; Müller, D.
2017-12-01
The deep carbon cycle links the carbon content of crust and mantle to Earth's surface: extensional plate boundaries and arc volcanoes release CO2 to the ocean and atmosphere while subducted lithosphere carries carbon back into the mantle. The length of extensional and convergent plate boundaries therefore exerts first-order control on solid Earth CO2 degassing rates. Here we provide a global census of plate boundary length for the last 200 million years. Focusing on rift systems, we find that the most extensive rift phase during the fragmentation of Pangea occurred in the Jurassic/Early Cretaceous with more than 50.000 km of simultaneously active continental rifts. During the Late Cretaceous, in the aftermath of this pervasive rift episode, the global rift length dropped by 60% to 20,000 km. We further find that a second pronounced rift episode with global rift lengths of up to 30,000 km started in Eocene times. A close geological link between CO2 degassing and faulting has been documented in currently active rift systems worldwide. Regional-scale CO2 flux densities at rift segments in Africa, Europe, and New Zealand feature an annual average value of 200 t of CO2 per km2. Assuming that the release of CO2 scales with rift length, we show that rift-related CO2 degassing rates during the two major Mesozoic and Cenozoic rift episodes reached more than 300% of present-day values. Most importantly, the timing of enhanced CO2 degassing from continental rifts correlates with two well-known periods of elevated atmospheric CO2 in the Mesozoic and Cenozoic as evidenced by multiple independent proxy indicators. Compiling the length of other plate boundaries (mid-ocean ridges, subduction zones, continental arcs) through time, we do not reproduce such a correlation. Finally, we conduct numerical carbon cycle models that account for key feedback-mechanisms of the long-term carbon cycle. We find that only those models that feature a strong rift degassing component reproduce the timing and amplitude of the paleo-CO2 record. We therefore suggest that rift-related degassing constitutes a key component of the deep carbon cycle.
da Silva, Camilla Vieira; Nazello, Jessica Laporta; de Freitas, Patricia Moreira
To evaluate whether increasing the frequency of its use can enhance the protective effect of AmF/NaF/SnCl2 solution against dental erosion. Sixty human enamel samples were obtained from sound human third molars, and after the formation of incipient erosive lesions (1% citric acid, pH 4.0, for 3 min), they were divided into five treatment groups (n = 12): G1 - deionised water (negative control); G2 - NaF solution (positive control) once a day; G3 - NaF solution (positive control) twice a day; G4 - AmF/NaF/SnCl2 solution once a day; G5 - AmF/NaF/SnCl2 solution twice a day. The samples were then subjected to 5 days of erosive cycling through 6 daily immersions (2 min each) in citric acid solution (0.05 M, pH 2.6). At the end of erosive cycling, surface wear was determined by means of optical profilometry. One-way ANOVA showed that the surface wear was affected by surface treatments (p < 0.001). Tukey's test showed no difference between the groups in which NaF was applied once or twice, but they showed limited reduction in wear compared to the deionised water group (G1). In the groups treated with the AmF/NaF/SnCl2 solution, there was a statistically significant difference between one and two application times (p < 0.001). Although both demonstrated statistically significantly reduced tissue loss, increasing the frequency increased its anti-erosive potential. The AmF/NaF/SnCl2 solution proved to be effective in reducing dental enamel surface loss and its use twice a day potentiated its anti-erosive effect.
Mayor, P; Bodmer, R E; Lopez-Bejar, M
2011-02-01
This study examined anatomical and histological characteristics of genital organs of 38 black agouti females in the wild in different reproductive stages, collected by rural hunters in the North-eastern Peruvian Amazon. Females in the follicular phase of the estrous cycle had greater antral follicle sizes than other females, the largest antral follicle measuring 2.34mm. Antral follicles in pregnant females and females in luteal phase of the estrous cycle had an average maximum diameter smaller than 1mm. In black agouti females in follicular phase, some antral follicles are selected to continue to growth, reaching a pre-ovulatory diameter of 2mm. Mean ovulation rate was 2.5 follicles and litter size was 2.1 embryos or fetuses per pregnant female, resulting in a rate of ovum mortality of 20.8%. Many follicles from which ovulation did not occur of 1-mm maximum diameter luteinize forming accessory CL. The constituent active luteal tissues of the ovary are functional and accessory CL. Although all females had accessory CL, transformation of follicles into accessory CL occurred especially in pregnant females, resulting in a contribution from 9% to 23% of the total luteal volume as pregnancy advances. The persistence of functional CL throughout pregnancy might reflect the importance for the maintenance of gestation and may be essential for the continuous hormonal production. The duplex uterus of the agouti female is composed by two completely independent uterine horns with correspondent separate cervices opening into the vagina. In pregnant females, most remarkable observed uterine adaptations were induced by the progressive enlargement caused by the normal pregnancy evolution. The wild black agouti showed different vaginal epithelium features in accordance with the reproductive state of the female. Copyright © 2011 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lee, Sherry
1983-01-01
High school students at the Texas School for the Deaf can participate in a horticulture class featuring both theoretical and practical knowledge of hydroponics. The course allows students to learn life cycle concepts while engaging in a new technology. (CL)
Kuu, Wei Y; Doty, Mark J; Nisipeanu, Eugen; Rebbeck, Christine L; Cho, Yong K; Smit, Mark H
2014-09-01
Gap freezing (GF) is a new concept that was developed to reduce the primary drying time using an alternative freezing process. The purpose of this investigation was to determine the gap-tray heat transfer coefficient, Kgtr , and to investigate the effect of gap lyophilization on cycle reduction of a mannitol-trehalose-NaCl (MTN) formulation. The values of Kgtr were measured using the product temperature profiles in three different configurations: (1) shelf freezing followed by shelf drying (denoted as SF-SD), (2) GF followed by SD (denoted as GF-SD), and (3) GF followed by gap drying (denoted as GF-GD). For the lyophilization cycle using shelf drying (SF-SD), 80% of the heat transferred during primary drying was from the bottom shelf to the vial, versus 20% via radiation from the top shelf. For the lyophilization cycle using gap drying (GF-GD), only 37% of the heat transferred during primary drying was from the bottom shelf to the vial versus 63% via radiation from the top shelf. Furthermore, GF in conjunction with annealing significantly reduces the dry layer resistance of the MTN formulation, which is the opposite of what was observed with a conventional freezing cycle. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Granule size control and targeting in pulsed spray fluid bed granulation.
Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko
2009-07-30
The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.
Dielectric dispersion for short double-strand DNA.
Omori, Shinji; Katsumoto, Yoichi; Yasuda, Akio; Asami, Koji
2006-05-01
A complex dielectric constant for double-strand DNA molecules with a length of not greater than 120 base pairs in an aqueous solution containing 30 mM NaCl was systematically measured as a function of chain length in such a way that experimental uncertainties associated with the molecular-weight distribution of specimens were virtually excluded. In contrast to the past experimental and theoretical studies for much longer DNA molecules, both the molar specific dielectric increment and the relaxation time are proportional to the chain length. These scaling rules cannot be accounted for by any theory so far proposed that gives analytical expressions for those two quantities in the long-chain limit.
Hellmann, Benjamin J; Kamps, Ina; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W
2010-09-21
The reaction of 2-lithio-1,3,5-trimethyl-1,3,5-triazacyclohexane with YCp(2)Cl leads to the formation of a donor-functionalised mono-anionic amide ligand, 1,3,5-trimethyl-2-(methylamidomethyl)-1,3,5-triazacyclohexane, bonded to the YCp(2) unit. The reaction involves a cleavage of the 1,3,5-triazacyclohexane ring and such a cleavage is also observed in the analogous reaction with (Me(3)C)(2)GaCl, where a MeN[double bond, length as m-dash]CH(-) fragment is formed. No such cleavage occurs in the reaction of the related dilithiated bicyclic bis(3-methyl-1,3-diazacyclohex-1-yl)methane with YCpCl(2).3thf, which affords a mixed lithium-yttrium organyl.
Jackson, W Andrew; Böhlke, John Karl; Andraski, Brian J.; Fahlquist, Lynne S.; Bexfield, Laura M.; Eckardt, Frank D.; Gates, John B.; Davila, Alfonso F.; McKay, Christopher P.; Rao, Balaji; Sevanthi, Ritesh; Rajagopalan, Srinath; Estrada, Nubia; Sturchio, Neil C.; Hatzinger, Paul B.; Anderson, Todd A.; Orris, Greta J.; Betancourt, Julio L.; Stonestrom, David A.; Latorre, Claudio; Li, Yanhe; Harvey, Gregory J.
2015-01-01
Natural perchlorate (ClO4−) is of increasing interest due to its wide-spread occurrence on Earth and Mars, yet little information exists on the relative abundance of ClO4− compared to other major anions, its stability, or long-term variations in production that may impact the observed distributions. Our objectives were to evaluate the occurrence and fate of ClO4− in groundwater and soils/caliche in arid and semi-arid environments (southwestern United States, southern Africa, United Arab Emirates, China, Antarctica, and Chile) and the relationship of ClO4− to the more well-studied atmospherically deposited anions NO3−and Cl− as a means to understand the prevalent processes that affect the accumulation of these species over various time scales. ClO4− is globally distributed in soil and groundwater in arid and semi-arid regions on Earth at concentrations ranging from 10−1to 106 μg/kg. Generally, the ClO4− concentration in these regions increases with aridity index, but also depends on the duration of arid conditions. In many arid and semi-arid areas, NO3− and ClO4− co-occur at molar ratios (NO3−/ClO4−) that vary between ∼104and 105. We hypothesize that atmospheric deposition ratios are largely preserved in hyper-arid areas that support little or no biological activity (e.g. plants or bacteria), but can be altered in areas with more active biological processes including N2 fixation, N mineralization, nitrification, denitrification, and microbial ClO4− reduction, as indicated in part by NO3− isotope data. In contrast, much larger ranges of Cl−/ClO4− and Cl−/NO3−ratios indicate Cl− varies independently from both ClO4− and NO3−. The general lack of correlation between Cl− and ClO4− or NO3− implies that Cl− is not a good indicator of co-deposition and should be used with care when interpreting oxyanion cycling in arid systems. The Atacama Desert appears to be unique compared to all other terrestrial locations having a NO3−/ClO4− molar ratio ∼103. The relative enrichment in ClO4−compared to Cl− or NO3− and unique isotopic composition of Atacama ClO4− may reflect either additional in-situ production mechanism(s) or higher relative atmospheric production rates in that specific region or in the geological past. Elevated concentrations of ClO4− reported on the surface of Mars, and its enrichment with respect to Cl− and NO3−, could reveal important clues regarding the climatic, hydrologic, and potentially biologic evolution of that planet. Given the highly conserved ratio of NO3−/ClO4− in non-biologically active areas on Earth, it may be possible to use alterations of this ratio as a biomarker on Mars and for interpreting major anion cycles and processes on both Mars and Earth, particularly with respect to the less-conserved NO3− pool terrestrially.
Firsova, Iu E; Doronina, N V; Trotsenko, Iu A
2004-01-01
The transformants of Methylobacterium dichloromethanicum DM4 (DM4-2cr-/pME8220 and DM4-2cr-/pME8221) and of Methylobacterium extorquens AM1 (AM1/pME8220 and AM1/pME8221) that express the dcm A gene of dichloromethane dehalogenase undergo lysis when incubated in the presence of dichloromethane and are sensitive to acidic shock. The lysis of the transformants was found to be related neither to the accumulation of Cl- ions, CH2O, and HCOOH, nor to the impairment of glutathione synthesis or to the maintenance of intracellular pH. The (exo-) Klenow fragment-mediated incorporation of [alpha-32P]dATP into the DNA of the transformants DM4-2cr-/pME8220 and AM1/pME8220 was considerably greater when the transformed cells were incubated with CH2Cl2 than when they were incubated with CH3OH, indicating the occurrence of a significant increase in the total length of gaps. At the same time, the strain AM1 (which lacks dichloromethane dehalogenase) and the dichloromethane-degrading strain DM4 incubated with CH2Cl2 showed an insignificant increase in the total length of the gaps. The transformed cells are likely to lyse due to the relatively inefficient repair of DNA lesions that are induced in response to the alkylating action of S-chloromethylglutathione, an intermediate product of CH2Cl2 degradation. The data obtained suggest that the bacterial mineralization of dichloromethane requires an efficient DNA repair system.
Flecainide attenuates rate adaptation of ventricular repolarization in guinea-pig heart.
Osadchii, Oleg E
2016-01-01
Flecainide is class Ic antiarrhythmic agent that was found to increase the risk of sudden cardiac death. Arrhythmic responses to flecainide could be precipitated by exercise, suggesting a role played by inappropriate rate adaptation of ventricular repolarization. This study therefore examined flecainide effect on adaptation of the QT interval and ventricular action potential duration (APD) to abrupt reductions of the cardiac cycle length. ECG and ventricular epicardial and endocardial monophasic APD were recorded in isolated, perfused guinea-pig heart preparations upon a sustained cardiac acceleration (rapid pacing for 30 s), and following a single perturbation of the cycle length evoked by extrasystolic stimulation. Sustained increase in heart rate was associated with progressive bi-exponential shortening of the QT interval and APD. Flecainide prolonged ventricular repolarization, delayed its rate adaptation, and decreased the amplitude of QT interval and APD shortening upon rapid cardiac pacing. During extrasystolic stimulation, flecainide attenuated APD shortening in premature ventricular beats, with effect being greater upon using a longer basic drive cycle length (S1-S1=550 ms versus S1-S1=300 ms). Flecainide-induced arrhythmia may be partly accounted for by attenuated adaptation of ventricular repolarization to sudden changes in cardiac cycle length provoked by transient tachycardia or ectopic beats.
Rossetti, Valentina; Filippini, Manuela; Svercel, Miroslav; Barbour, A D; Bagheri, Homayoun C
2011-12-07
Filamentous bacteria are the oldest and simplest known multicellular life forms. By using computer simulations and experiments that address cell division in a filamentous context, we investigate some of the ecological factors that can lead to the emergence of a multicellular life cycle in filamentous life forms. The model predicts that if cell division and death rates are dependent on the density of cells in a population, a predictable cycle between short and long filament lengths is produced. During exponential growth, there will be a predominance of multicellular filaments, while at carrying capacity, the population converges to a predominance of short filaments and single cells. Model predictions are experimentally tested and confirmed in cultures of heterotrophic and phototrophic bacterial species. Furthermore, by developing a formulation of generation time in bacterial populations, it is shown that changes in generation time can alter length distributions. The theory predicts that given the same population growth curve and fitness, species with longer generation times have longer filaments during comparable population growth phases. Characterization of the environmental dependence of morphological properties such as length, and the number of cells per filament, helps in understanding the pre-existing conditions for the evolution of developmental cycles in simple multicellular organisms. Moreover, the theoretical prediction that strains with the same fitness can exhibit different lengths at comparable growth phases has important implications. It demonstrates that differences in fitness attributed to morphology are not the sole explanation for the evolution of life cycles dominated by multicellularity.
NASA Astrophysics Data System (ADS)
Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan
2015-04-01
While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.
Engineering of an ultra-thin molecular superconductor by charge transfer
Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark
2016-06-07
A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.
NASA Astrophysics Data System (ADS)
Benedetti, L. C.; Tesson, J.; Perouse, E.; Puliti, I.; Fleury, J.; Rizza, M.; Billant, J.; Pace, B.
2017-12-01
The use of 36Cl cosmogenic nuclide as a paleoseismological tool for normal faults in the Mediterranean has revolutionized our understanding of their seismic cycle (Gran Mitchell et al. 2001, Benedetti et al. 2002). Here we synthetized results obtained on 13 faults in Central Italy. Those records cover a period of 8 to 45 ka. The mean recurrence time of retrieved seismic events is 5.5 ±6 ka, with a mean slip per event of 2.5 ± 1.8 m and a mean slip-rate from 0.1 to 2.4 mm/yr. Most retrieved events correspond to single events according to scaling relationships. This is also supported by the 2 m-high co-seismic slip observed on the Mt Vettore fault after the October 30, 2016 M6.5 earthquake in Central Italy (EMERGEO working group). Our results suggest that all faults have experienced one or several periods of slip acceleration with bursts of seismic activity, associated with very high slip-rate of 1.7-9 mm/yr, corresponding to 2-20 times their long-term slip-rate. The duration of those bursts is variable from a fault to another (from < 2 kyr to 4-10 kyr). Those periods of acceleration are generally separated by longer periods of quiescence with no or very few events. Those alternating periods correspond to a long-term variation of the strain level with all faults oscillating between strain maximum and minimum, the length of strain loading and release being significantly different from one fault to another, those supercycles occurring over periods of 8 to 45 ka. We found relationships between the mean slip-rate, the mean slip per event and the mean recurrence time. This might suggest that the seismic activity of those faults could be controlled by their intrinsic properties (e.g. long-term slip-rate, fault-length, state of structural maturity). Our results also show events clustering with several faults rupturing in less than 500 yrs on adjacent or distant faults within the studied area. The Norcia-Amatrice seismic sequence, ≈ 50 km north of our study area, also evidenced this clustering behaviour, with over the last 20 yrs several successive events of Mw 5 to 6.5 (from north to south: Colfiorito 1997 Mw6.0, Norcia 2016 Mw6.5, L'Aquila 2009 Mw6.3), rupturing various fault systems, over a total length of ≈100 km. This sequence will allow to better understand earthquake kinematics and spatiotemporal slip distribution during those seismic bursts.
The Electrostatic Screening Length in Concentrated Electrolytes Increases with Concentration.
Smith, Alexander M; Lee, Alpha A; Perkin, Susan
2016-06-16
According to classical electrolyte theories interactions in dilute (low ion density) electrolytes decay exponentially with distance, with the Debye screening length the characteristic length scale. This decay length decreases monotonically with increasing ion concentration due to effective screening of charges over short distances. Thus, within the Debye model no long-range forces are expected in concentrated electrolytes. Here we reveal, using experimental detection of the interaction between two planar charged surfaces across a wide range of electrolytes, that beyond the dilute (Debye-Hückel) regime the screening length increases with increasing concentration. The screening lengths for all electrolytes studied-including aqueous NaCl solutions, ionic liquids diluted with propylene carbonate, and pure ionic liquids-collapse onto a single curve when scaled by the dielectric constant. This nonmonotonic variation of the screening length with concentration, and its generality across ionic liquids and aqueous salt solutions, demonstrates an important characteristic of concentrated electrolytes of substantial relevance from biology to energy storage.
P. J Mulholland; J. L. Tanks; J. R. Webster; W. B. Bowden; W. K Dodds; S. V. Gregory; N. B Grimm; J. L. Meriam; J. L. Meyer; B. J. Peterson; H. M. Valett; W. M. Wollheim
2002-01-01
Nutrient uptake length is an important parnmeter tor quantifying nutrient cycling in streams. Although nutrient tracer additions are the preierred method for measuring uptake length under ambient nutrient concentrations, short-term nutrient addition experiments have more irequently been used to estimate uptake length in streams. Theoretical analysis of the relationship...
Electrolysis of plutonium nitride in LiCl-KCl eutectic melts
NASA Astrophysics Data System (ADS)
Shirai, O.; Iwai, T.; Shiozawa, K.; Suzuki, Y.; Sakamura, Y.; Inoue, T.
2000-01-01
The electrolysis of plutonium nitride, PuN, was investigated in the LiCl-KCl eutectic salt with 0.54 wt% PuCl 3 at 773 K in order to understand the dissolution of PuN at the anode and the deposition of metal at the cathode from the viewpoint of the application of a pyrochemical process to nitride fuel cycle. It was found from cyclic voltammetry that the electrochemical dissolution of PuN began nearly at the theoretically evaluated potential and this reaction was irreversible. Several grams of plutonium metal were successfully recovered at the molybdenum electrode as a deposit with a current efficiency of about 90%, although some fractions of the deposited plutonium often fell from the molybdenum electrode.
Ionic Liquid as an Effective Additive for Rechargeable Magnesium Batteries
Pan, Baofei; Lau, Ka -Cheong; Vaughey, John T.; ...
2017-03-02
Here, the effect of the addition of an ionic liquid DEME•TFSI to an electrolyte solution of Mg(HMDS) 2-MgCl 2 in THF was studied electrochemically and spectroscopically. Reversible magnesium deposition/dissolution was achieved with the DEME•TFSI-modified electrolyte. This electrolyte shows higher ionic conductivity, and a linear relationship was observed between the ionic conductivity and the concentration of DEME•TFSI in THF solution of Mg(HMDS) 2-MgCl 2. Mg-Mo 6S 8 coin cells have also been successfully cycled using Mg(HMDS) 2-MgCl 2 electrolyte with the addition of DEME•TFSI. Raman and NMR spectroscopy suggest that DEME•TFSI facilitates magnesium deposition/dissolution by improving ionic conductivity of the electrolyte.
Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus.
Liu, Huijun; Zhang, Xiaoqiang; Chen, Caidong; Du, Shaoting; Dong, Ying
2015-12-01
The low volatility of ionic liquids effectively eliminates a major pathway for environmental release and contamination; however, the good solubility, low degree of environmental degradation and biodegradation of ILs may pose a potential threat to the aquatic environment. The growth inhibition of the green alga Scenedesmus obliquus by five 1-alkyl-3-methylimidazolium chloride ionic liquids (ILs) ([Cnmim]Cl, n=6, 8, 10, 12, 16) was investigated, and the effect on cellular membrane permeability and the ultrastructural morphology by ILs ([Cnmim]Cl, n=8, 12, 16) were studied. The results showed that the growth inhibition rate increased with increasing IL concentration and increasing alkyl chain lengths. The relative toxicity was determined to be [C6mim]Cl<[C8mim]Cl<[C10mim]Cl<[C12mim]Cl<[C16mim]Cl. The algae were most sensitive to imidazolium chloride ILs at 48 h according to the results from the growth inhibition rate and cellular membrane permeability tests. The ultrastructural morphology showed that the ILs had negative effects on the cellular morphology and structure of the algae. The cell wall of treated algae became wavy and separated from the cell membrane. Chloroplast grana lamellae became obscure and loose, osmiophilic material was deposited in the chloroplast, and mitochondria and their cristae swelled. Additionally, electron-dense deposits were observed in the vacuoles. Copyright © 2015 Elsevier Inc. All rights reserved.
High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie
2017-01-31
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g -1 at a current density of 100 mA g -1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl 4 - , Al 2 Cl 7 - anions and [AlCl 2 ·(urea) n ] + cations in the AlCl 3 /urea electrolyte when an excess of AlCl 3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al 2 Cl 7 - anions and the other involving [AlCl 2 ·(urea) n ] + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.
Physico-chemical changes in karkade (Hibiscus sabdariffa L.) seedlings responding to salt stress.
Galal, Abdelnasser
2017-03-01
Salinity is one of the major abiotic stress factors affecting series of morphological, physiological, metabolic and molecular changes in plant growth. The effect of different concentrations (0, 25, 50, 100 and 150 mM) of NaCl on the vegetative growth and some physiological parameters of karkade (Hibiscus sabdariffa var. sabdariffa) seedling were investigated. NaCl affected the germination rate, delayed emergence and retarded vegetative growth of seedlings. The length of seedling as well as the leaf area was significantly reduced. The fresh weight remained lower in NaCl treated seedlings compared to control. NaCl at 100 and 150 mM concentrations had significant effect on the dry matter contents of the treated seedlings. The chloroplast pigments in the treated seedlings were affected, suggesting that the NaCl had a significant effect on the chlorophyll and carotenoid biosynthesis. The results showed that the salt treatments induced an increase in proline concentration of the seedlings. The osmotic potential (ψs) of NaCl treated seedlings decreased with increasing NaCl concentrations. Salt treatments resulted in dramatic quantitative reduction in the total sterol percent compared with control ones. Salt stress resulted in increase and decrease of Na + and K + ions, respectively. NaCl salinity increased lipid peroxidation. SDS-PAGE was used to evaluate protein pattern after applying salt stress. High molecular weight proteins were intensified, while low molecular weight proteins were faint. NaCl at 100 and 150 mM concentration distinguished with new protein bands. Salt stress induced a new peroxidase bands and increased the band intensity, indicating the protective role of peroxidase enzyme.
NASA Astrophysics Data System (ADS)
Junaidi, Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
Chemistry of chlorinated species in the Antarctic stratosphere
NASA Technical Reports Server (NTRS)
Molina, Mario J.; Tso, Tai-Ly; Wang, Frank C.-Y.
1988-01-01
The chemistry of Cl sub 2 O sub 2, the chlorine monoxide dimer, has been further investigated in order to better asses its potential role in catalytic ozone destruction cycles. The dimer has been generated in a flow system, in the 200 to 250 K temperature range, by using ozone and chlorine atoms as ClO precursors. The Cl-atoms are produced by a microwave discharge of either Cl sub 2, or of F sub 2 with subsequent addition of HCl. With this later scheme the dimer can be generated in the absence of Cl sub 2. The Fourier transform infrared spectra of the products clearly indicates the presence of two isomers, in agreement with earlier results (J. Phys. Shen., 91, 433, 1987). None of the observed IR bands can be attributed to a ClO-OClO adduct, since they all appear in the absence of any detectable amount of OCl. It is likely that the particles in the polar stratospheric clouds will have a relatively dilute nitric acid outer layer, even if the core is the nitric acid monohydrate, since the particles are in equilibrium with the ambient water vapor, which is present at levels of a few parts per million.
Silicon anode for rechargeable aqueous lithium-air batteries
NASA Astrophysics Data System (ADS)
Teranishi, R.; Si, Q.; Mizukoshi, F.; Kawakubo, M.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.
2015-01-01
A novel aqueous lithium-air rechargeable cell with the configuration of Si/1 M LiClO4 in ethylene carbonate-diethylene carbonate/Li1+x+yAlx(Ti,Ge)2-xP3-ySiyO12/5 M LiCl-1 M LiOH aqueous solution/carbon black, air is proposed. A silicon anode composed of mechanically milled silicon power with an average particle size of ca. 0.5 μm, vapor grown carbon fiber and a polyimide binder was examined. The open-circuit voltage at the charged state was 2.9 V at 25 °C. The discharge capacity of 700 mAh g-silicon-1 was retained for 40 cycles at 0.3 mA cm-2 with cut-off voltages of 3.5 and 1.5 V. Significant capacity fade was observed at deep charge and discharge cycling at 2000 mAh g-silicon-1.
Chodankar, Nilesh R; Dubal, Deepak P; Lokhande, Abhishek C; Lokhande, Chandrakant D
2015-12-15
The synthesis of polymer gel electrolyte having high ionic conductivity, excellent compatibility with active electrode material, mechanical tractability and long life is crucial to obtain majestic electrochemical performance for flexible solid state supercapacitors (FSS-SCs). Our present work describes effect of different polymers gel electrolytes on electrochemical properties of MnO2 based FSS-SCs device. It is revealed that, MnO2-FSS-SCs with polyvinyl alcohol (PVA)-Lithium perchlorate (LiClO4) gel electrolyte demonstrate excellent electrochemical features such as maximum operating potential window (1.2V), specific capacitance of 112Fg(-1) and energy density of 15Whkg(-1) with extended cycling stability up to 2500CV cycles. Moreover, the calendar life suggests negligible decrease in the electrochemical performance of MnO2-FSS-SCs after 20days. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Junli; Kjos, Ole Sigmund; Osen, Karen Sende; Martinez, Ana Maria; Kongstein, Ole Edvard; Haarberg, Geir Martin
2016-11-01
A new kind of membrane free liquid metal battery was developed. The battery employs liquid sodium and zinc as electrodes both in liquid state, and NaCl-CaCl2 molten salts as electrolyte. The discharge flat voltage is in the range of about 1.4 V-1.8 V, and the cycle efficiency achieved is about 90% at low discharge current densities (below 40 mA cm-2). Moreover, this battery can also be charged and discharged at high current density with good performance. The discharge flat voltage is above 1.1 V when it is discharged at 100 mA cm-2, while it is about 0.8 V with 100% cycle efficiency when it is discharged at 200 mA cm-2. Compared to other reported liquid metal battery, this battery has lower cost, which suggests broad application prospect in energy storage systems for power grid.
High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar
A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less
Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea
2017-08-01
Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent copper accumulation in the cytoplasm and the nucleus. Modulation of gene expression by CuO NP appeared to be primarily oxidative stress-related and was more pronounced in redox-sensitive BEAS-2B cells. Regarding CuCl 2 , relevant modulations of gene expression were restricted to cytotoxic concentrations provoking impaired copper homoeostasis.
Size effects on miniature Stirling cycle cryocoolers
NASA Astrophysics Data System (ADS)
Yang, Xiaoqin; Chung, J. N.
2005-08-01
Size effects on the performance of Stirling cycle cryocoolers were investigated by examining each individual loss associated with the regenerator and combining these effects. For the fixed cycle parameters and given regenerator length scale, it was found that only for a specific range of the hydrodynamic diameter the system can produce net refrigeration and there is an optimum hydraulic diameter at which the maximum net refrigeration is achieved. When the hydraulic diameter is less than the optimum value, the regenerator performance is controlled by the pressure drop loss; when the hydraulic diameter is greater than the optimum value, the system performance is controlled by the thermal losses. It was also found that there exists an optimum ratio between the hydraulic diameter and the length of the regenerator that offers the maximum net refrigeration. As the regenerator length is decreased, the optimum hydraulic diameter-to-length ratio increases; and the system performance is increased that is controlled by the pressure drop loss and heat conduction loss. Choosing appropriate regenerator characteristic sizes in small-scale systems are more critical than in large-scale ones.
NASA Astrophysics Data System (ADS)
Qin, Lifeng; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Cheng, Quanyong; Chen, Guang
2013-02-01
Growing plants can be used to clean waste water in bioregenerative life support system (BLSS). However, NaCl contained in the human urine always restricts plant growth and further reduces the degree of mass cycle closure of the system (i.e. salt stress). This work determined the effect of NaCl stress on physiological characteristics of plants for the life support system. Amaranth (Amaranthus tricolor L. var. Huahong) and leaf lettuce (Lactuca sativa L. var. Luoma) were cultivated at nutrient solutions with different NaCl contents (0, 1000, 5000 and 10,000 ppm, respectively) for 10 to 18 days after planted in the Controlled Ecological Life Support System Experimental Facility in China. Results showed that the two plants have different responses to the salt stress. The amaranth showed higher salt-tolerance with NaCl stress. If NaCl content in the solution is below 5000 ppm, the salt stress effect is insignificant on above-ground biomass output, leaf photosynthesis rate, Fv/Fm, photosynthesis pigment contents, activities of antioxidant enzymes, and inducing lipid peroxidation. On the other hand, the lettuce is sensitive to NaCl which significantly decreases those indices of growth and physiology. Notably, the lettuce remains high productivity of edible biomass in low NaCl stress, although its salt-tolerant limitation is lower than amaranth. Therefore, we recommended that amaranth could be cultivated under a higher NaCl stress condition (<5000 ppm) for NaCl recycle while lettuce should be under a lower NaCl stress (<1000 ppm) for water cleaning in future BLSS.
Xu, Tiantian; Zhang, Manke; Hu, Jiani; Li, Zihan; Wu, Taipu; Bao, Jianing; Wu, Siyu; Lei, Lili; He, Defu
2017-08-01
Rare earth elements (REEs) are widely used in industry, agriculture, medicine and daily life in recent years. However, environmental and health risks of REEs are still poorly understood. In this study, neurotoxicity of trichloride neodymium, praseodymium and scandium were evaluated using nematode Caenorhabditis elegans as the assay system. Median lethal concentrations (48 h) were 99.9, 157.2 and 106.4 mg/L for NdCl 3 , PrCl 3 and ScCl 3 , respectively. Sublethal dose (10-30 mg/L) of these trichloride salts significantly inhibited body length of nematodes. Three REEs resulted in significant declines in locomotor frequency of body bending, head thrashing and pharyngeal pumping. In addition, mean speed and wavelength of crawling movement were significantly reduced after chronic exposure. Using transgenic nematodes, we found NdCl 3 , PrCl 3 and ScCl 3 resulted in loss of dendrite and soma of neurons, and induced down-expression of dat-1::GFP and unc-47::GFP. It indicates that REEs can lead to damage of dopaminergic and GABAergic neurons. Our data suggest that exposure to REEs may cause neurotoxicity of inducing behavioral deficits and neural damage. These findings provide useful information for understanding health risk of REE materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
H{sub 2}—AgCl: A spectroscopic study of a dihydrogen complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubbs, G. S.; Obenchain, Daniel A.; Pickett, Herbert M.
2014-09-21
H{sub 2}—AgCl has been observed on a Fourier transform microwave spectrometer equipped with laser ablation source and determined to be a dihydrogen complex. Transitions up to J = 3–2 have been measured and analyzed for four isotopologues of the complex containing ortho and para H{sub 2}. The ortho and para spin states have been included in one fit, a deviation from the typical H{sub 2} complex. Rotational constants B and C, centrifugal distortion constants Δ{sub J} and Δ{sub JK}, nuclear electric quadrupole coupling constants χ{sub aa}, χ{sub bb}, and χ{sub cc} for {sup 35}Cl and {sup 37}Cl have been fitmore » for both spin states while nuclear spin-nuclear spin constants D{sub aa}, D{sub bb}, and D{sub cc}, and nuclear spin-rotation constant C{sub aa} have been reported for the ortho spin state. Quantum chemical calculations predict a strong bonding interaction and the strength of the complex has been related to reported χ{sub aa} and Δ{sub J} values amongst a host of comparable species, including the AgCl monomer itself. Bond lengths have been determined for Ag—Cl, Ag—H{sub 2} center-of-mass, and H—H and are reported.« less
NASA Technical Reports Server (NTRS)
Whitlow, J. B., Jr.
1976-01-01
Sideline noise and takeoff field length were varied for two types of Mach 2.32 cruise airplane to determine their effect on engine cycle selection. One of these airplanes was the NASA/Langley-LTV arrow wing while the other was a Boeing modified delta-plus-tail derived from the earlier 2707-300 concept. Advanced variable cycle engines were considered. A more conventional advanced low bypass turbofan engine was used as a baseline for comparison. Appropriate exhaust nozzle modifications were assumed, where needed, to allow all engines to receive either an inherent co-annular or annular jet noise suppression benefit. All the VCE's out-performed the baseline engine by substantial margins in a design range comparison, regardless of airplane choice or takeoff restrictions. The choice among the three VCE's considered, however, depends on the field length, noise level, and airplane selected.
Tilt sensor based on intermodal photonic crystal fiber interferometer
NASA Astrophysics Data System (ADS)
Zhang, Xiaotong; Ni, Kai; Zhao, Chunliu; Ye, Manping; Jin, Yongxing
2014-09-01
A tilt sensor based on an intermodal photonic crystal fiber (PCF) interferometer is demonstrated. The sensor consists of a tubular filled with NaCl aqueous solutions and an intermodal PCF interferometer, which is formed by using a short PCF with two single-mode fibers (SMFs) spliced at both ends, and the air-holes in the splice regions are fully collapsed. The intermodal PCF interferometer is fixed in a rigid glass tubular with a slant orientation, and a half of the PCF is immersed in the NaCl aqueous solutions, while the other half is exposed in air. When tilting the tubular, the length of the PCF immersed changes so that the transmission spectrum moves. Therefore, by monitoring the wavelength shift, the tilt angle can be achieved. In the experiment, a 0.8-cm-length intermodal PCF interferometer was adopted. The sensitivity of the proposed sensor was obtained from -1.5461 nm/° to -30.1244 nm/° when measuring from -35.1° to 37.05°.
Hartel, H.; Lokstein, H.; Grimm, B.; Rank, B.
1996-01-01
Xanthophyll-cycle kinetics as well as the relationship between the xanthophyll de-epoxidation state and Stern-Volmer type nonphotochemical chlorophyll (Chl) fluorescence quenching (qN) were investigated in barley (Hordeum vulgare L.) leaves comprising a stepwise reduced antenna system. For this purpose plants of the wild type (WT) and the Chl b-less mutant chlorina 3613 were cultivated under either continuous (CL) or intermittent light (IML). Violaxanthin (V) availability varied from about 70% in the WT up to 97 to 98% in the mutant and IML-grown plants. In CL-grown mutant leaves, de-epoxidation rates were strongly accelerated compared to the WT. This is ascribed to a different accessibility of V to the de-epoxidase due to the existence of two V pools: one bound to light-harvesting Chl a/b-binding complexes (LHC) and the other one not bound. Epoxidation rates (k) were decreased with reduction in LHC protein contents: kWT > kmutant >> kIML plants. This supports the idea that the epoxidase activity resides on certain LHC proteins. Irrespective of huge zeaxanthin and antheraxanthin accumulation, the capacity to develop qN was reduced stepwise with antenna size. The qN level obtained in dithiothreitol-treated CL- and IML-grown plants was almost identical with that in untreated IML-grown plants. The findings provide evidence that structural changes within the LHC proteins, mediated by xanthophyll-cycle operation, render the basis for the development of a major proportion of qN. PMID:12226199
Rao, Balaji; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.; Andraski, Brian J.; Eckardt, Frank D.; Jackson, W. Andrew
2010-01-01
A new ion chromatography electrospray tandem mass spectrometry (IC-ESI/MS/MS) method has been developed for quantification and confirmation of chlorate (ClO3−) in environmental samples. The method involves the electro-chemical generation of isotopically labeled chlorate internal standard (Cl18O3−) using 18O water (H218O). The standard was added to all samples prior to analysis thereby minimizing the matrix effects that are associated with common ions without the need for expensive sample pretreatments. The method detection limit (MDL) for ClO3− was 2 ng L−1 for a 1 mL volume sample injection. The proposed method was successfully applied to analyze ClO3− in difficult environmental samples including soil and plant leachates. The IC-ESI/MS/MS method described here was also compared to established EPA method 317.0 for ClO3− analysis. Samples collected from a variety of environments previously shown to contain natural perchlorate (ClO4−) occurrence were analyzed using the proposed method and ClO3− was found to co-occur with ClO4− at concentrations ranging from <2 ng L−1 in precipitation from Texas and Puerto Rico to >500 mg kg−1 in caliche salt deposits from the Atacama Desert in Chile. Relatively low concentrations of ClO3− in some natural groundwater samples (<0.1 μg L−1) analyzed in this work may indicate lower stability when compared to ClO4− in the subsurface. The high concentrations of ClO3− in caliches and soils (3−6 orders of magnitude greater) as compared to precipitation samples indicate that ClO3−, like ClO4−, may be atmospherically produced and deposited, then concentrated in dry soils, and is possibly a minor component in the biogeochemical cycle of chlorine.
Balaji Rao, Balaji Rao; Hatzinger, Paul B; Böhlke, John Karl; Sturchio, Neil C; Andraski, Brian J; Eckardt, Frank D; Jackson, W Andrew
2010-11-15
A new ion chromatography electrospray tandem mass spectrometry (IC-ESI/MS/MS) method has been developed for quantification and confirmation of chlorate (ClO₃⁻) in environmental samples. The method involves the electrochemical generation of isotopically labeled chlorate internal standard (Cl¹⁸O₃⁻) using ¹⁸O water (H₂¹⁸O) he standard was added to all samples prior to analysis thereby minimizing the matrix effects that are associated with common ions without the need for expensive sample pretreatments. The method detection limit (MDL) for ClO₃⁻ was 2 ng L⁻¹ for a 1 mL volume sample injection. The proposed method was successfully applied to analyze ClO₃⁻ in difficult environmental samples including soil and plant leachates. The IC-ESI/MS/MS method described here was also compared to established EPA method 317.0 for ClO₃⁻ analysis. Samples collected from a variety of environments previously shown to contain natural perchlorate (ClO₄⁻) occurrence were analyzed using the proposed method and ClO₃⁻ was found to co-occur with ClO₄⁻ at concentrations ranging from < 2 ng L⁻¹ in precipitation from Texas and Puerto Rico to >500 mg kg⁻¹ in caliche salt deposits from the Atacama Desert in Chile. Relatively low concentrations of ClO₃⁻ in some natural groundwater samples (0.1 µg L⁻¹) analyzed in this work may indicate lower stability when compared to ClO₄⁻ in the subsurface. The high concentrations ClO₃⁻ in caliches and soils (3-6 orders of magnitude greater) as compared to precipitation samples indicate that ClO₃⁻, like ClO₄⁻, may be atmospherically produced and deposited, then concentrated in dry soils, and is possibly a minor component in the biogeochemical cycle of chlorine.
NASA Astrophysics Data System (ADS)
Lan, Xin; Bai, Lu; Li, Xin; Ma, Shuang; He, Xiaozhi; Meng, Fanbao
2014-10-01
Cholesteryl-containing ionic liquid crystals (ILCs) 1-cholesteryloxycarbonylmethyl(propyl)-3-methyl(butyl)imidazolium chlorides ([Ca-Me-Im]Cl, [Ca-Bu-Im]Cl, [Cb-Me-Im]Cl and [Cb-Bu-Im]Cl) and corresponding imidazolium tetrachloroaluminates ([Ca-Me-Im]AlCl4, [Ca-Bu-Im]AlCl4, [Cb-Me-Im]AlCl4 and [Cb-Bu-Im]AlCl4) were synthesized in this work, and the chemical structure, LC behavior and ionic conductivity of all these ILCs were characterized by several technical methods. The imidazolium-based salts with Cl- ions showed chiral smectic A (SA*) phase on both heating and cooling cycles, while the tetrachloroaluminates exhibited chiral nematic (N*) phase. The mesophase was confirmed by characteristic LC textures observed by polarizing optical microscopy and typical diffractogram obtained by X-ray diffraction measurements. The samples with similar cholesteryl-linkage component showed similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than alkyl substituents on the imidazole ring. The imidazolium tetrachloroaluminates display relatively low phase transition temperature compared with the precursor chlorides. The functional difference in LC behavior and ionic conductivity were discussed by investigated the structural difference between the Cl--containing and AlCl4-containing materials. The imidazolium chlorides exhibited layer structure both in crystal and mesophase states, and should be organized with a ‘head-to-tail’ organization to form interdigitated monolayer structures due to the tight ion pairs. But the imidazolium tetrachloroaluminates displayed layer structure only in crystal phase, and should be organized in ‘head-to-head’ arrangements form bilayer structures due to loose combination of ion pairs despite of hydrogen-bond and electrostatic attraction interaction.
Synthesis and reception of prostaglandins in corpora lutea of domestic cat and lynx.
Zschockelt, Lina; Amelkina, Olga; Siemieniuch, Marta J; Kowalewski, Mariusz P; Dehnhard, Martin; Jewgenow, Katarina; Braun, Beate C
2016-08-01
Felids show different reproductive strategies related to the luteal phase. Domestic cats exhibit a seasonal polyoestrus and ovulation is followed by formation of corpora lutea (CL). Pregnant and non-pregnant cycles are reflected by diverging plasma progesterone (P4) profiles. Eurasian and Iberian lynxes show a seasonal monooestrus, in which physiologically persistent CL (perCL) support constantly elevated plasma P4 levels. Prostaglandins (PGs) represent key regulators of reproduction, and we aimed to characterise PG synthesis in feline CL to identify their contribution to the luteal lifespan. We assessed mRNA and protein expression of PG synthases (PTGS2/COX2, PTGES, PGFS/AKR1C3) and PG receptors (PTGER2, PTGER4, PTGFR), and intra-luteal levels of PGE2 and PGF2α Therefore, CL of pregnant (pre-implantation, post-implantation, regression stages) and non-pregnant (formation, development/maintenance, early regression, late regression stages) domestic cats, and prooestrous Eurasian (perCL, pre-mating) and metoestrous Iberian (perCL, freshCL, post-mating) lynxes were investigated. Expression of PTGS2/COX2, PTGES and PTGER4 was independent of the luteal stage in the investigated species. High levels of luteotrophic PGE2 in perCL might be associated with persistence of luteal function in lynxes. Signals for PGFS/AKR1C3 expression were weak in mid and late luteal stages of cats but were absent in lynxes, concomitant with low PGF2α levels in these species. Thus, regulation of CL regression by luteal PGF2α seems negligible. In contrast, expression of PTGFR was evident in nearly all investigated CL of cat and lynxes, implying that luteal regression, e.g. at the end of pregnancy, is triggered by extra-luteal PGF2α. © 2016 Society for Reproduction and Fertility.
LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery
NASA Astrophysics Data System (ADS)
Kim, Junsoo; Shin, Donghyeok; Jung, Youngjae; Hwang, Soo Min; Song, Taeseup; Kim, Youngsik; Paik, Ungyu
2018-02-01
Liquid metal batteries (LMBs) are attractive energy storage device for large-scale energy storage system (ESS) due to the simple cell configuration and their high rate capability. The high operation temperature caused by high melting temperature of both the molten salt electrolyte and metal electrodes can induce the critical issues related to the maintenance cost and degradation of electrochemical properties resulting from the thermal corrosion of materials. Here, we report a new chemistry of LiCl-LiI electrolyte and Bi-Pb positive electrode to lower the operation temperature of Li-based LMBs and achieve the long-term stability. The cell (Li|LiCl-LiI|Bi-Pb) is operated at 410 °C by employing the LiCl-LiI (LiCl:LiI = 36:64 mol %) electrolyte and Bi-Pb alloy (Bi:Pb = 55.5:44.5 mol %) positive electrode. The cell shows excellent capacity retention (86.5%) and high Coulombic efficiencies over 99.3% at a high current density of 52 mA cm-2 during 1000th cycles.
Liu, Yan; Hou, Long-Yu; Li, Qing-Mei; Jiang, Ze-Ping; Gao, Wei-Dong; Zhu, Yan; Zhang, Hai-Bo
2017-01-01
To investigate the effects of β-carboxyethyl germanium sequioxide (Ge-132) and germanium dioxide (GeO 2 ) on improving salt tolerance of evening primrose (Oenothera biennis L.), seed germination, seedling growth, antioxidase and malondialdehyde (MDA) were observed under treatments of various concentrations (0, 5, 10, 20, 30 μM) of Ge in normal condition and in 50 mM NaCl solution. The results showed that both Ge-132 and GeO 2 treatments significantly increased seed germination percentage and shoot length in dose-dependent concentrations but inhibited early root elongation growth. 5-30 μM Ge-132 and 10, 20 μM GeO 2 treatments could significantly mitigate even eliminate harmful influence of salt, representing increased percentage of seed germination, root length, ratio between length of root and shoot, and decreased shoot length. These treatments also significantly decreased peroxidase (POD) and catalase (CAT) activities and MDA content. The mechanism is likely that Ge scavenges reactive oxygen species - especially hydrogen peroxide (H 2 O 2 ) - by its electron configuration 4S 2 4P 2 so as to reduce lipid peroxidation. This is the first report about the comparison of bioactivity effect of Ge-132 and GeO 2 on seed germination and seedling growth under salt stress. We conclude that Ge-132 is better than GeO 2 on promoting salt tolerance of seed and seedling.
The detection and stabilisation of limit cycle for deterministic finite automata
NASA Astrophysics Data System (ADS)
Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing
2018-04-01
In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.
Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment
Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron
2017-01-01
Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/switch-off” increase in the average cell-cycle length maintains an active cell population in the long term, with oscillating numbers of proliferative cells and a relatively constant quiescent cell number. PMID:28913178
Record-breaking ozone loss in the Arctic winter 2010/2011: comparison with 1996/1997
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Godin-Beekmann, S.; Lefèvre, F.; Nikulin, G.; Santee, M. L.; Froidevaux, L.
2012-03-01
We present a detailed discussion of the chemical and dynamical processes in the Arctic winters 1996/1997 and 2010/2011 with high resolution chemical transport model (CTM) simulations and space-based observations. In the Arctic winter 2010/2011, the lower stratospheric minimum temperatures were below 195 K for a record period, from December to mid-April, and a strong and stable vortex was present during that period. Analyses with the Mimosa-Chim CTM simulations show that the chemical ozone loss started by early January and progressed slowly to 1 ppmv (parts per million by volume) by late February. The loss intensified by early March and reached a record maximum of ~2.4 ppmv in the late March-early April period over a broad altitude range of 450-550 K. This coincides with elevated ozone loss rates of 2-4 ppbv sh-1 (parts per billion by volume/sunlit hour) and a contribution of about 40% from the ClO-ClO cycle and about 35-40% from the ClO-BrO cycle in late February and March, and about 30-50% from the HOx cycle in April. We also estimate a loss of around 0.7-1.2 ppmv contributed (75%) by the NOx cycle at 550-700 K. The ozone loss estimated in the partial column range of 350-550 K also exhibits a record value of ~148 DU (Dobson Unit). This is the largest ozone loss ever estimated in the Arctic and is consistent with the remarkable chlorine activation and strong denitrification (40-50%) during the winter, as the modeled ClO shows ~1.8 ppbv in early January and ~1 ppbv in March at 450-550 K. These model results are in excellent agreement with those found from the Aura Microwave Limb Sounder observations. Our analyses also show that the ozone loss in 2010/2011 is close to that found in some Antarctic winters, for the first time in the observed history. Though the winter 1996/1997 was also very cold in March-April, the temperatures were higher in December-February, and, therefore, chlorine activation was moderate and ozone loss was average with about 1.2 ppmv at 475-550 K or 42 DU at 350-550 K, as diagnosed from the model simulations and measurements.
NASA Astrophysics Data System (ADS)
Watson, Z. T.; Han, W. S.; Kampman, N.; Grundl, T.; Han, K.
2014-12-01
The most well-known example of a CO2-driven geyser is Crystal geyser in Green River, Utah. In situ monitoring of pressure and temperature and analysis of the elemental and isotopic composition of the emanating fluids has provided useful proxies for determining the geysering cycle, the source of water/CO2 and furthermore the physical constraints at depth which ultimately control the surficial expressions. Crystal geyser is the first geyser in the world which has been shown to go through repeated systematic chemical variations during its eruption cycle. The eruption cycle at Crystal geyser is comprised of 4 parts which follow the order of: minor eruption period (mEP), major eruption period (MEP), aftershock eruptions (Ae) and recharge period (R). Minor eruption periods are characterized by increasing specific conductivity (19.3 to 21.2 mS/cm), Na and Cl concentrations during the first half which plateau until the MEP. The beginning of the MEP denotes a sharp drop in temperature (17.4 to 16.8 ºC) Na, Cl, specific conductivity (21.2 to 18 mS/cm), and increasing concentrations of Fe, Sr, Ca, Mg and Mn. Downhole fluid sampling of the Entrada Sandstone and Navajo Sandstone provided 1 and 4 samples from the aquifers, respectively. The Entrada Sandstone in comparison to the deeper Navajo Sandstone has elevated concentrations of Sr and Fe and has lower concentrations of Na and Cl. Inverse modeling using the chemical characteristics of the Entrada Sandstone, Navajo Sandstone and brine was executed to determine the fractional inputs which comprise Crystal geyser's fluid. Variances in the fractional contribution are dependent on the depth of the sample chosen to be representative of the Navajo Sandstone because the concentration of Na and Cl, among other elements, changes over depth. During the mEP the Navajo Sandstone, Entrada Sandstone and brine supply 50-55%, 44-48% and 1-3% of the total fluid, respectively. During the MEP the Navajo Sandstone, Entrada Sandstone and brine supply 39-43%, 56-59% and 1-2%, respectively. The results imply that the type of geysering seen at the surface is a function of the physical hydrologic characteristics of the supplying formations.
Centrifugation effects on estrous cycle, mating success and pregnancy outcome in rats
NASA Astrophysics Data System (ADS)
Ronca, April E.; Rushing, Linda; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-08-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrus cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Centrifugation Effects on Estrous Cycling, Mating Success and Pregnancy Outcome in Rats
NASA Technical Reports Server (NTRS)
Ronca, April E.; Rushing, Linda S.; Tou, Janet; Wade, Charles E.; Baer, Lisa A.
2005-01-01
We analyzed the effects of 2-g centrifugation on estrous cycling, mating success and pregnancy outcome in rats. Sexually mature female and male rats were assigned to either 2-g centrifuge or non-centrifuge conditions, and to non-breeding or breeding conditions. In non-breeding females, estrous cycles were analyzed by examining vaginal cytology before and for 35 days during centrifugation. Breeding females were time-mated following 7 days of adaptation to centrifugation. Following adaptation to centrifugation, estrous cycle duration over a five-cycle period was similar in centrifuged and non-centrifuged females. Identical numbers of centrifuged and non-centrifuged females conceived, however centrifuged females took four-times longer than controls to achieve conception. Births occurred at the normal gestational length. Pup birth weight and postnatal survival were p<0.05 reduced in centrifuged as compared to non-centrifuged groups. In conclusion, 2-g centrifugation had no effect on estrous cycle length or the probably of becoming pregnant but delayed conception and diminished pregnancy outcome.
Changes in fat distribution (WHR) and body weight across the menstrual cycle.
Kirchengast, S; Gartner, M
2002-12-01
The aim of the present study was to analyze changes of the body weight and waist-to-hip ratio during menstrual cycle, with special respect to changes around ovulation. 32 healthy young women ranging in age between 19 and 30 years (X = 23.5) were enrolled in the study. Beside a basal anthropometric investigation (stature, weight, BMI, waist circumference, hip circumference, fat percentage, waist to hip ratio) the probands were instructed to take body weight, waist and hip circumference and basal body temperature every morning by themselves over a whole cycle. Three proband groups according to cycle length (average, short and long) were defined and eight hormonal contraceptive users served as controls. It turned out that body weight increased only slightly during the second cycle half in all proband groups. A marked decrease of WHR around the time of ovulation was found in the proband group who exhibited average cycle length and a successful ovulation could be assumed. Evolutionary and physiological explanations are discussed.
Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
Hu, Bo; DeBruler, Camden; Rhodes, Zayn; Liu, T Leo
2017-01-25
Redox flow batteries (RFBs) are a viable technology to store renewable energy in the form of electricity that can be supplied to electricity grids. However, widespread implementation of traditional RFBs, such as vanadium and Zn-Br 2 RFBs, is limited due to a number of challenges related to materials, including low abundance and high costs of redox-active metals, expensive separators, active material crossover, and corrosive and hazardous electrolytes. To address these challenges, we demonstrate a neutral aqueous organic redox flow battery (AORFB) technology utilizing a newly designed cathode electrolyte containing a highly water-soluble ferrocene molecule. Specifically, water-soluble (ferrocenylmethyl)trimethylammonium chloride (FcNCl, 4.0 M in H 2 O, 107.2 Ah/L, and 3.0 M in 2.0 NaCl, 80.4 Ah/L) and N 1 -ferrocenylmethyl-N 1 ,N 1 ,N 2 ,N 2 ,N 2 -pentamethylpropane-1,2-diaminium dibromide, (FcN 2 Br 2 , 3.1 M in H 2 O, 83.1 Ah/L, and 2.0 M in 2.0 M NaCl, 53.5 Ah/L) were synthesized through structural decoration of hydrophobic ferrocene with synergetic hydrophilic functionalities including an ammonium cation group and a halide anion. When paired with methyl viologen (MV) as an anolyte, resulting FcNCl/MV and FcN 2 Br 2 /MV AORFBs were operated in noncorrosive neutral NaCl supporting electrolytes using a low-cost anion-exchange membrane. These ferrocene/MV AORFBs are characterized as having high theoretical energy density (45.5 Wh/L) and excellent cycling performance from 40 to 100 mA/cm 2 . Notably, the FcNCl/MV AORFBs (demonstrated at 7.0 and 9.9 Wh/L) exhibited unprecedented long cycling performance, 700 cycles at 60 mA/cm 2 with 99.99% capacity retention per cycle, and delivered power density up to 125 mW/cm 2 . These AORFBs are built from earth-abundant elements and are environmentally benign, thus representing a promising choice for sustainable and safe energy storage.
NASA Astrophysics Data System (ADS)
Nalle, Pallavi B.; Deshmukh, S. S.; Dorik, R. G.; Jadhav, K. M.
2016-12-01
The ultrasonic velocity (U), density (ρ), and viscosity (η) of an ethanolic extract of drug Piper nigrum with MgCl2 (metal ions) have been measured as a function of the number of moles n = (0.7009, 1.4018, 2.1027, 2.8036 and 3.5045) at 303.15, 308.15, 313.15 and 318.15 K temperature. Various thermoacoustic and their excess values such as adiabatic compressibilities (β), intermolecular free lengths (Lf), excess adiabatic compressibility (βE), excess intermolecular free length (?) have been computed using values of ultrasonic velocity (U), density (ρ), and viscosity (η). The excess values of ultrasonic velocity, specific acoustic impedance are positive, whereas isentropic compressibility and intermolecular free lengths are negative over the entire composition range of MgCl2 + P. nigrum which indicates the presence of specific interactions between unlike molecules. Molecular association is reflected by ultrasonic investigation. This may be interpreted due to the of complex formation. The chemical interaction may involve the association due to the solute-solvent and ion-solvent interaction and due to the formation of charge-transfer complexes, which is useful to understand the mechanism of their metabolism in living systems. The results obtained from these studies are helpful for pharmacological applications of drugs, transport of drugs across biological membranes.
Near-field transport imaging applied to photovoltaic materials
Xiao, Chuanxiao; Jiang, Chun -Sheng; Moseley, John; ...
2017-05-26
We developed and applied a new analytical technique - near-field transport imaging (NF-TI or simply TI) - to photovoltaic materials. Charge-carrier transport is an important factor in solar cell performance, and TI is an innovative approach that integrates a scanning electron microscope with a near-field scanning optical microscope, providing the possibility to study luminescence associated with recombination and transport with high spatial resolution. In this paper, we describe in detail the technical barriers we had to overcome to develop the technique for routine application and the data-fitting procedure used to calculate minority-carrier diffusion length values. The diffusion length measured bymore » TI agrees well with the results calculated by time-resolved photoluminescence on well-controlled gallium arsenide (GaAs) thin-film samples. We report for the first time on measurements on thin-film cadmium telluride using this technique, including the determination of effective carrier diffusion length, as well as the first near-field imaging of the effect of a single localized defect on carrier transport and recombination in a GaAs heterostructure. Furthermore, by changing the scanning setup, we were able to demonstrate near-field cathodoluminescence (CL), and correlated the results with standard CL measurements. In conclusion, the TI technique shows great potential for mapping transport properties in solar cell materials with high spatial resolution.« less
Crystal structure of fac-trichlorido[tris(pyridin-2-yl-N)amine]chromium(III)
Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio
2015-01-01
In the neutral complex molecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris(pyridin-2-yl)amine; C15H12N4], the CrIII ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octahedral coordination sphere. The average Cr—N and Cr—Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex molecule is located on a mirror plane. In the crystal, a combination of C—H⋯N and C—H⋯Cl hydrogen-bonding interactions connect the molecules into a three-dimensional network. PMID:25705455
NASA Astrophysics Data System (ADS)
Niskanen, Arto J.; Tuononen, Ari J.
2014-05-01
The tyre-road contact area was studied visually by means of a high-speed camera and three accelerometers fixed to the inner liner of the tyre carcass. Both methods show a distorted contact area in wet conditions, but interesting differences appeared. First, the contact area in full aquaplaning seems strongly distorted on a glass plate when subjected to visual inspection, while the accelerometers indicate a more even hydrodynamic aquaplaning contact length (CL) across the tyre width. Secondly, the acceleration sensors predict the clear shortening of the CL of the tyre before the critical aquaplaning speed. It can be concluded that the visual contact area and shape are heavily dependent on the transparency of the liquid and smoothness of the glass. Meanwhile, the tyre sensors can provide a CL estimate on any road surface imaginable.
Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L
2015-12-15
Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.
Dhifaoui, Selma; Harhouri, Wafa; Bujacz, Anna; Nasri, Habib
2016-01-01
In the title compound, [Fe(II)(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [Fe(II)(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinate and benzyl-amine ligands, respectively], the Fe(II) cation lies on an inversion centre and is octa-hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl-amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol-ecule per complex mol-ecule. The average Fe-Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N-H⋯Cl and C-H⋯Cl hydrogen-bonding inter-actions and by C-H⋯π inter-molecular inter-actions, leading to a three-dimensional network structure.
A Bayesian Joint Model of Menstrual Cycle Length and Fecundity
Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.
2015-01-01
Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923
Ganss, Carolina; Lussi, Adrian; Peutzfeldt, Anne; Naguib Attia, Nader; Schlueter, Nadine
2015-01-01
For preventing erosive wear in dentine, coating with adhesives has been suggested as an alternative to fluoridation. However, clinical studies have revealed limited efficacy. As there is first evidence that Sn2+ increases bond strength of the adhesive Clearfil SE (Kuraray), the aim of the present study was to investigate whether pre-treatment with different Sn2+/F− solutions improves the durability of Clearfil SE coatings. Dentine samples (eight groups, n=16/group) were freed of smear layer (0.5% citric acid, 10 s), treated (15 s) either with no solution (control), aminefluoride (AmF, 500 ppm F−, pH 4.5), SnCl2 (800/1600 ppm Sn2+; pH 1.5), SnCl2/AmF (500 ppm F−, 800 ppm Sn2+, pH 1.5/3.0/4.5), or Elmex Erosion Protection Rinse (EP, 500 ppm F−, 800 ppm Sn2+, pH 4.5; GABA International), then rinsed with water (15 s) and individually covered with Clearfil SE. Subsequently the specimens were subjected to an erosion/abrasion protocol consisting of 1320 cycles of immersion in 0.5% citric acid (5°C/55°C; 2 min) and automated brushing (15 s, 200 g, NaF-toothpaste, RDA 80). As the coatings proved stable up to 1320 cycles, 60 modified cycles (brushing time 30 min/cycle) were added. Wear was measured profilometrically. After SnCl2/AmF, pH 4.5 or EP pre-treatment all except one coating survived. In the other groups, almost all coatings were lost and there was no significant difference to the control group. Pre-treatment with a Sn2+/F− solution at pH 4.5 seems able to improve the durability of adhesive coatings, rendering these an attractive option in preventing erosive wear in dentine. PMID:26075906
Uldry, Laurent; Virag, Nathalie; Jacquemet, Vincent; Vesin, Jean-Marc; Kappenberger, Lukas
2010-12-01
While successful termination by pacing of organized atrial tachycardias has been observed in patients, rapid pacing of AF can induce a local capture of the atrial tissue but in general no termination. The purpose of this study was to perform a systematic evaluation of the ability to capture AF by rapid pacing in a biophysical model of the atria with different dynamics in terms of conduction velocity (CV) and action potential duration (APD). Rapid pacing was applied during 30 s at five locations on the atria, for pacing cycle lengths in the range 60-110% of the mean AF cycle length (AFCL(mean)). Local AF capture could be achieved using rapid pacing at pacing sites located distal to major anatomical obstacles. Optimal pacing cycle lengths were found in the range 74-80% AFCL(mean) (capture window width: 14.6 ± 3% AFCL(mean)). An increase/decrease in CV or APD led to a significant shrinking/stretching of the capture window. Capture did not depend on AFCL, but did depend on the atrial substrate as characterized by an estimate of its wavelength, a better capture being achieved at shorter wavelengths. This model-based study suggests that a proper selection of the pacing site and cycle length can influence local capture results and that atrial tissue properties (CV and APD) are determinants of the response to rapid pacing.
Effect of cycle time on polyhydroxybutyrate (PHB) production in aerobic mixed cultures.
Ozdemir, Sebnem; Akman, Dilek; Cirik, Kevser; Cinar, Ozer
2014-03-01
The aim of this study was to investigate the effect of cycle time on polyhydroxybutyrate (PHB) production under aerobic dynamic feeding system. The acetate-fed feast and famine sequencing batch reactor was used to enrich PHB accumulating microorganism. Sequencing batch reactor (SBR) was operated in four different cycle times (12, 8, 4, and 2 h) fed with a synthetic wastewater. The system performance was determined by monitoring total dissolved organic carbon, dissolved oxygen, oxidation-reduction potential, and PHB concentration. In this study, under steady-state conditions, the feast period of the SBR was found to allow the PHB storage while a certain part of stored PHB was used for continued growth in famine period. The percentage PHB storages by aerobic microorganism were at 16, 18, 42, and 55% for the 12, 8, 4, and 2-h cycle times, respectively. The PHB storage was increased as the length of the cycle time was decreased, and the ratio of the feast compared to the total cycle length was increased from around 13 to 33% for the 12 and 2-h cycle times, respectively.
Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.
Chevallier, Maguelonne; Krauth, Werner
2007-11-01
We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.
Meng, Qingfei; Ma, Qian; Wang, Tianda; Chen, Yaming
2018-05-10
The purpose of this study was to evaluate the effect of ferrule design on the fracture resistance of endodontically treated mandibular first premolars after simulated crown lengthening and orthodontic forced eruption methods restored with a fiber post-and-core system. Forty extracted and endodontically treated mandibular first premolars were decoronated to create lingual-to-buccal oblique residual root models, with a 2.0 mm height of the lingual dentine wall coronal to the cemento-enamel junction, and the height of buccal surface at the cemento-enamel junction. The roots were divided randomly into five equal groups. The control group had undergone incomplete ferrule preparation in the cervical root, with 0.0 mm buccal and 2.0 mm lingual ferrule lengths (Group F0). Simulated surgical crown lengthening method provided ferrule preparation of 1.0 mm (Group CL/F1) and 2.0 mm (Group CL/F2) on the buccal surface, with ferrule lengths of 3.0 mm and 4.0 mm on the lingual surface, respectively. Simulated orthodontic forced eruption method provided ferrule preparation of 1.0 mm (Group OE/F1) and 2.0 mm (Group OE/F2) on the buccal surface and ferrule lengths of 3.0 mm and 4.0 mm on the lingual surface, respectively. After restoration with a glass fiber post-and-core system and a cast Co-Cr alloy crown, each specimen was embedded in an acrylic resin block to a height on the root 2.0 mm from the apical surface of the crown margin and loaded to fracture at a 135° angle to its long axis in a universal testing machine. Data were analyzed statistically using two-way ANOVA with Tukey HSD tests and Fisher's test, with α = 0.05. Mean fracture loads (kN) for groups F0, CL/F1, CL/F2, OE/F1 and OE/F2 were as follows: 1.01 (S.D. = 0.26), 0.91 (0.29), 0.73 (0.19), 0.96 (0.25) and 0.76 (0.20), respectively. Two-way ANOVA revealed significant differences for the effect of ferrule lengths (P = 0.012) but no differences for the effect of cervical treatment methods (P = 0.699). The teeth with no buccal ferrule preparation in control group F0 had the highest fracture resistance. In contrast, the mean fracture loads for group CL/F2 with a 2.0-mm buccal and 4.0-mm lingual ferrule created by simulated crown lengthening method were lowest (P = 0.036). Increased apically complete ferrule preparation resulted in decreased fracture resistance of endodontically treated mandibular first premolars, regardless of whether surgical crown lengthening or orthodontic forced eruption methods been used.
Sodium Hypochlorite Treatment and Nitinol Performance for Medical Devices
NASA Astrophysics Data System (ADS)
Weaver, J. D.; Gutierrez, E. J.; Nagaraja, S.; Stafford, P. R.; Sivan, S.; Di Prima, M.
2017-09-01
Processing of nitinol medical devices has evolved over the years as manufacturers have identified methods of reducing surface defects such as inclusions. One recent method proposes to soak nitinol medical devices in a 6% sodium hypochlorite (NaClO) solution as a means of identifying surface inclusions. Devices with surface inclusions could in theory then be removed from production because inclusions would interact with NaClO to form a visible black material on the nitinol surface. To understand the effects of an NaClO soak on performance, we compared as-received and NaClO-soaked nitinol wires with two different surface finishes (black oxide and electropolished). Pitting corrosion susceptibility was equivalent between the as-received and NaClO-soaked groups for both surface finishes. Nickel ion release increased in the NaClO-soaked group for black oxide nitinol, but was equivalent for electropolished nitinol. Fatigue testing revealed a lower fatigue life for NaClO-soaked black oxide nitinol at all alternating strains. With the exception of 0.83% alternating strain, NaClO-soaked and as-received electropolished nitinol had similar average fatigue life, but the NaClO-soaked group showed higher variability. NaClO-soaked electropolished nitinol had specimens with the lowest number of cycles to fracture for all alternating strains tested with the exception of the highest alternating strain 1.2%. The NaClO treatment identified only one specimen with surface inclusions and caused readily identifiable surface damage to the black oxide nitinol. Damage from the NaClO soak to electropolished nitinol surface also appears to have occurred and is likely the cause of the increased variability of the fatigue results. Overall, the NaClO soak appears to not lead to an improvement in nitinol performance and seems to be damaging to the nitinol surface in ways that may not be detectable with a simple visual inspection for black material on the nitinol surface.
“Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.
Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less
NASA Astrophysics Data System (ADS)
Cho, Eunjoo; Oh, Ji Hye; Lee, Euna; Do, Young Rag; Kim, Eun Young
2016-11-01
Light at night disrupts the circadian clock and causes serious health problems in the modern world. Here, we show that newly developed four-package light-emitting diodes (LEDs) can provide harmless lighting at night. To quantify the effects of light on the circadian clock, we employed the concept of circadian illuminance (CIL). CIL represents the amount of light weighted toward the wavelengths to which the circadian clock is most sensitive, whereas visual illuminance (VIL) represents the total amount of visible light. Exposure to 12 h:12 h cycles of white LED light with high and low CIL values but a constant VIL value (conditions hereafter referred to as CH/CL) can entrain behavioral and molecular circadian rhythms in flies. Moreover, flies re-entrain to phase shift in the CH/CL cycle. Core-clock proteins are required for the rhythmic behaviors seen with this LED lighting scheme. Taken together, this study provides a guide for designing healthful white LED lights for use at night, and proposes the use of the CIL value for estimating the harmful effects of any light source on organismal health.
NASA Astrophysics Data System (ADS)
Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu
2002-11-01
Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.
Ammonium Assimilation Requires Mitochondrial Respiration in the Light 1
Weger, Harold G.; Birch, Douglas G.; Elrifi, Ivor R.; Turpin, David H.
1988-01-01
Mass spectrometric analysis of O2 and CO2 exchange in the green alga Selenastrum minutum (Naeg. Collins) provides evidence for the occurrence of mitochondrial respiration in light. Stimulation of amino acid synthesis by the addition of NH4Cl resulted in nearly a 250% increase in the rate of TCA cycle CO2 efflux in both light and dark. Ammonium addition caused a similar increase in cyanide sensitive O2 consumption in both light and dark. Anaerobiosis inhibited the CO2 release caused by NH4Cl. These results indicated that the cytochrome pathway of the mitochondrial electron transport chain was operative and responsible for the oxidation of a large portion of the NADH generated during the ammonium induced increase in TCA cycle activity. In the presence of DCMU, ammonium addition also stimulated net O2 consumption in the light. This implied that the Mehler reaction did not play a significant role in O2 consumption under our conditions. These results show that both the TCA cycle and the mitochondrial electron transport chain are capable of operation in the light and that an important role of mitochondrial respiration in photosynthesizing cells is the provision of carbon skeletons for biosynthetic reactions. PMID:16665971
Buffering of protons released by mineral formation during amelogenesis in mice.
Bronckers, Antonius L J J; Lyaruu, Don M; Jalali, Rozita; DenBesten, Pamela K
2016-10-01
Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl - ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl - content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation. © 2016 Eur J Oral Sci.
Moon, Dohyun; Choi, Jong-Ha
2015-01-01
The structure of the title compound, [Cr(NCS)2(C2H8N2)2]ClO4, has been determined from synchroton data. The asymmetric unit consists of one half of a centrosymmetric CrIII complex cation and half of a perchlorate anion with the Cl atom on a twofold rotation axis. The CrIII ion is coordinated by the four N atoms of two ethane-1,2-diamine (en) ligands in the equatorial plane and two N-bound thiocyanate (NCS−) anions in a trans-axial arrangement, displaying a slightly distorted octahedral geometry with crystallographic inversion symmetry. The Cr—N(en) bond lengths are in the range 2.053 (16)–2.09 (2) Å, while the Cr—N(thiocyanate) bond length is 1.983 (2) Å. The five-membered en rings are disordered over two sites, with occupancy ratios of 0.522 (16):0.478 (16). Each ClO4 − anion is disordered over two sites with equal occupancy. The crystal structure is stabilized by intermolecular hydrogen bonds involving the en NH2 groups as donors and perchlorate O and thiocyanate S atoms as acceptors. PMID:26090142
NASA Astrophysics Data System (ADS)
McDowell, Sean A. C.
2018-03-01
An MP2/6-311++G(3df,3pd) computational study of a series of hydrogen-bonded complexes X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) was undertaken to assess the trends in the relative stability and other molecular properties with variation of both the X group and the chemical hardness of the Y atom of YZ. The red- and blue-shifting propensities of the proton donor X3CH were investigated by considering the Csbnd H bond length change and its associated vibrational frequency shift. The proton donor Cl3CH, which has a positive dipole moment derivative with respect to Csbnd H bond extension, tends to form red-shifted complexes, this tendency being modified by the hardness (and dipole moment) associated with the proton acceptor. On the other hand, F3CH has a negative dipole moment derivative and tends to form blue-shifted complexes, suggesting that as X becomes more electron-withdrawing, the proton donor should have a negative dipole moment derivative and form blue-shifted complexes. Surprisingly, the most polar proton donor (NC)3CH was found to have a positive dipole moment derivative and produces red-shifted complexes. A perturbative model was found useful in rationalizing the trends for the Csbnd H bond length change and associated frequency shift.
NASA Astrophysics Data System (ADS)
Chen, Guofang; Mao, Chengde
2016-05-01
Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties.Complex and functional nanostructures are always desired. Herein, we present the synthesis of novel long conducting polymer nanonecklaces with a `beads-on-a-string' morphology by the DNA nanotube-template approach and in situ oxidative polymerization of the 3-methylthiophene monomer with FeCl3 as the oxidant/catalyst. The length of the nanonecklaces is up to 60 μm, and the polymer beads of around 20-25 nm in diameter are closely packed along the axis of the DNA nanotube template with a density of ca. 45 particles per μm. The formation of porous DNA nanotubes impregnated with FeCl3 was also demonstrated as intermediate nanostructures. The mechanisms for the formation of both the porous DNA nanotubes and the conducting polymer nanonecklaces are discussed in detail. The as-synthesized polymer/DNA nanonecklaces exhibit good electrical properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01603k
Stable Chloro- and Bromoxenate Cage Anions; [X3(XeO3)3]3- and [X4(XeO3)4]4- (X = Cl or Br).
Goettel, James T; Haensch, Veit G; Schrobilgen, Gary J
2017-06-28
The number of isolable compounds which contain different noble-gas-element bonds is limited for xenon and even more so for krypton. Examples of Xe-Cl bonds are rare, and prior to this work, no Xe-Br bonded compound had been isolated in macroscopic quantities. The syntheses, isolation, and characterization of the first compounds to contain Xe-Br bonds and their chlorine analogues are described in the present work. The reactions of XeO 3 with [N(CH 3 ) 4 ]Br and [N(C 2 H 5 ) 4 ]Br have provided two bromoxenate salts, [N(C 2 H 5 ) 4 ] 3 [Br 3 (XeO 3 ) 3 ] and [N(CH 3 ) 4 ] 4 [Br 4 (XeO 3 ) 4 ], in which the cage anions have Xe-Br bond lengths that range from 3.0838(3) to 3.3181(8) Å. The isostructural chloroxenate anions (Xe-Cl bond lengths, 2.9316(2) to 3.101(4) Å) were synthesized by analogy with their bromine analogues. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy and low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe-Br and Xe-Cl bonds are very weakly covalent and can be viewed as σ-hole interactions, similar to those encountered in halogen bonding. However, the halogen atoms in these cases are valence electron lone pair donors, and the σ* Xe-O orbitals are lone pair acceptors.
Channel Extension in Deep-Water Distributive Systems
NASA Astrophysics Data System (ADS)
Hoyal, D. C.; Sheets, B. A.
2007-12-01
The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of observing deep ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m deep tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends observed in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were observed to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.
Yamamoto, Yuki; Yuto, Natsuki; Yamamoto, Tatsuya; Kaewmanee, Saroch; Shiina, Osamu; Mouri, Yasushi; Narushima, Etsuo; Katayanagi, Masayuki; Sugimura, Keisuke; Nagaoka, Kentaro; Watanabe, Gen; Taya, Kazuyoshi
2012-01-01
The ovary of female elephants has multiple corpora lutea (CL) during the estrous cycle and gestation. The previous reports clearly demonstrated that inhibin was secreted from lutein cells as well as granulosa cells of antral follicles in cyclic Asian elephants. The aim of this study is to investigate the inhibin secretion during the pregnancy in African and Asian elephants. Two African elephants and two Asian elephants were subjected to this study. Circulating levels of immunoreactive (ir-) inhibin and progesterone were measured by radioimmunoassay. Four pregnant periods of an African elephant and three pregnant periods of an Asian elephant were analyzed in this study. Circulating levels of ir-inhibin started to increase at 1 or 2 week before the ovulation and reached the peak level 3 or 4 weeks earlier than progesterone during the estrous cycle in both African and Asian elephants. After last luteal phase, the serum levels of ir-inhibin remained low throughout pregnancy in both an African and an Asian elephant. The mean levels of ir-inhibin during the pregnancy were lower than the luteal phase in the estrous cycle despite high progesterone levels were maintained throughout the pregnancy. These results strongly suggest that CL secrete a large amount of progesterone but not inhibin during the pregnancy in elephants. © 2011 Wiley Periodicals, Inc.
STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS
The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...
Accumulation of perchlorate in aquatic and terrestrial plants at a field scale.
Tan, Kui; Anderson, Todd A; Jones, Matthew W; Smith, Philip N; Jackson, W Andrew
2004-01-01
Previous laboratory-scale studies have documented perchlorate ClO(-)(4) uptake by different plant species, but less information is available at field scale, where ClO(-)(4) uptake may be affected by environmental conditions, such as distance to streams or shallow water tables, exposure duration, and species. This study examined uptake of ClO(-)(4) in smartweed (Polygonum spp.) and watercress (Nasturtium spp.) as well as more than forty trees, including ash (Fraxinus greggii A. Gray), chinaberry (Melia azedarach L.), elm (Ulmus parvifolia Jacq.), willow (Salix nigra Marshall), mulberry [Broussonetia papyrifera (L.) Vent.], and hackberry (Celtis laevigata Willd.) from multiple streams surrounding a perchlorate-contaminated site. Results indicate a large potential for ClO(-)(4) accumulation in aquatic and terrestrial plants, with ClO(-)(4) concentration in plant tissues approximately 100 times higher than that in bulk water. Perchlorate accumulation in leaves of terrestrial plants was also dependent on species, with hackberry, willow, and elm having a strong potential to accumulate ClO(-)(4). Generally, trees located closer to the stream had a higher ClO(-)(4) accumulation than trees located farther away from the stream. Seasonal leaf sampling of terrestrial plants indicated that ClO(-)(4) accumulation also was affected by exposure duration, with highest accumulation observed in the late growing cycle, although leaf concentrations for a given tree were highly variable. Perchlorate may be re-released into the environment via leaching and rainfall as indicated by lower perchlorate concentrations in collected leaf litter. Information obtained from this study will be helpful to understand the fate of ClO(-)(4) in macrophytes and natural systems.
Dehydrogenation of formic acid catalyzed by magnesium hydride anions, HMgL2- (L = Cl and HCO2)
NASA Astrophysics Data System (ADS)
Khairallah, George N.; O'Hair, Richard A. J.
2006-08-01
A two step gas-phase catalytic cycle for the dehydrogenation of formic acid was established using a combination of experiments carried out on a quadrupole ion trap mass spectrometer and DFT calculations. The catalysts are the magnesium hydride anions HMgL2- (L = Cl and HCO2), which are formed from the formate complexes, HCO2MgL2-, via elimination of carbon dioxide under conditions of collision induced dissociation. This is followed by an ion-molecule reaction between HMgL2- and formic acid, which yields hydrogen and also reforms the formate complex, HCO2MgL2-. A kinetic isotope effect in the range 2.3-2.9 was estimated for the rate determining decarboxylation step by carrying out CID on the (HCO2)(DCO2)MgCl2- and subjecting the resultant mixture of (H)(DCO2)MgCl2- and (HCO2)(D)MgCl2- ions at m/z 106 to ion-molecule reactions. DFT calculations (at the B3LYP/6-31 + G* level of theory) were carried out on the HMgCl2- system and revealed that: (i) the decarboxylation of HCO2MgCl2- is endothermic by 47.8 kcal mol-1, consistent with the need to carry out CID to form the HMgCl2-; (ii) HMgCl2- can react with formic acid via either a four centred transition state or a six centred transition state. The former reaction is favoured by 7.8 kcal mol-1.
High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte
Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie
2017-01-01
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g−1 at a current density of 100 mA g−1 (∼1.4 C). High Coulombic efficiency over a range of charge–discharge rates and stability over ∼150–200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge–discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl4−, Al2Cl7− anions and [AlCl2·(urea)n]+ cations in the AlCl3/urea electrolyte when an excess of AlCl3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al2Cl7− anions and the other involving [AlCl2·(urea)n]+ cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device. PMID:28096353
De Sanctis, Vincenzo; Bernasconi, Sergio; Bianchin, Luigi; Bona, Gianni; Bozzola, Mauro; Buzi, Fabio; De Sanctis, Carlo; Rigon, Franco; Tatò, Luciano; Tonini, Giorgio; Perissinotto, Egle
2014-11-01
Healthcare professionals need updated information about what is the range of "normal" variation of menstrual cycle features to support young girls and their parents in managing reproductive health, and to detect diseases early. This cross-sectional study aimed to provide an updated picture of age at menarche and main menstrual cycle characteristics and complaints in an Italian population-based sample of 3,783 adolescents attending secondary school. Girls filled in a self-administered anonymous questionnaire including questions about demography, anthropometry, smoking and drinking habits, use of contraceptive, socioeconomic status, age at menarche, menstrual pattern, and physical/psychological menstrual complaints. Mean age at menarche and prevalence of polymenorrhea (cycle length < 21 days), oligomenorrhea (cycle length > 35 days), irregularity, dysmenorrhea, and of physical/psychological complaints were computed. Factors associated with age at menarche and menstrual disturbances were explored by using multiple logistic models. The girls' mean age was 17.1 years (SD 1.4 years) and the mean age at menarche was 12.4 years (SD 1.3 years); menarche occurred with two monthly peaks of frequency in July-September and in December-January (P < 0.0001). Age at menarche was significantly associated with geographic genetics (as expressed by parents' birth area), mother's menarcheal age, BMI, family size, and age at data collection. The prevalence of polymenorrhea was about 2.5%, oligomenorrhea was declared by 3.7%, irregular length by 8.3%, while long bleeding (>6 days) was shown in 19.6% of girls. Gynecological age was significantly associated with cycle length (P < 0.0001) with long cycles becoming more regular within the fourth year after menarche, while frequency of polymenorrhea stabilized after the second gynecological year. Oligomenorrhea and irregularity were both significantly associated with long menstrual bleeding (adjusted OR = 2.36; 95% CI = 1.55-3.60, and adjusted OR = 2.59; 95% CI = 1.95-3.44, respectively). The findings of the study support the levelling-off of secular trend in menarche anticipation in Italy and confirm the timing in menstrual cycle regularization. The study provides updated epidemiological data on frequency of menstrual abnormalities to help reproductive health professionals in managing adolescent gynecology.
Chao, Yu-Jen; Wu, Wen-Hsin; Balazova, Maria; Wu, Ting-Yuan; Lin, Jamie; Liu, Yi-Wen
2018-01-01
The zebrafish (Danio rerio) is an important and widely used vertebrate model organism for the study of human diseases which include disorders caused by dysfunctional mitochondria. Mitochondria play an essential role in both energy metabolism and apoptosis, which are mediated through a mitochondrial phospholipid cardiolipin (CL). In order to examine the cardiolipin profile in the zebrafish model, we developed a CL analysis platform by using liquid chromatography-mass spectrometry (LC-MS). Meanwhile, we tested whether chlorella diet would alter the CL profile in the larval fish, and in various organs of the adult fish. The results showed that chlorella diet increased the chain length of CL in larval fish. In the adult zebrafish, the distribution patterns of CL species were similar between the adult brain and eye tissues, and between the heart and muscles. Interestingly, monolyso-cardiolipin (MLCL) was not detected in brain and eyes but found in other examined tissues, indicating a different remodeling mechanism to maintain the CL integrity. While the adult zebrafish were fed with chlorella for four weeks, the CL distribution showed an increase of the species of saturated acyl chains in the brain and eyes, but a decrease in the other organs. Moreover, chlorella diet led to a decrease of MLCL percentage in organs except the non-MLCL-containing brain and eyes. The CL analysis in the zebrafish provides an important tool for studying the mechanism of mitochondria diseases, and may also be useful for testing medical regimens targeting against the Barth Syndrome. PMID:29494608
Durability of building stones against artificial salt crystallization
NASA Astrophysics Data System (ADS)
Min, K.; Park, J.; Han, D.
2005-12-01
Salts have been known as the most powerful weathering agents, especially when combined with frost action. Salt crystallization test along with freezing-thawing test and acid immersion test was carried out to assess the durability of building stones against weathering. Granite, limestone, marble and basalt were sampled from different quarries in south Korea for this study. One cycle of artificial salt crystallization test was composed of immersion of cored rock specimens in oversaturated solutions of CaCl2, KCl, NaCl and Na2SO4, respectively for 15 hours and successive drying in an oven of 105°C for 3 hours and cooling at room temperature. Tests were performed up to 30 cycles, and specific gravity and ultrasonic velocity were measured after experiencing every 10 cycles and uniaxial compressive strength was measured only after 30 cycles. During the repeated Na2SO4 salt crystallization, some rock samples were gradually deformed excessively and burst after 20 to 30 cycles of test. The variation patterns of physical properties during the salt crystallization tests are too variable to generalize the effect of salt weathering on physical properties but limestone, marble and basalt samples showed relatively greater change of physical properties than granite samples. The recrystallized salts were well observed in the cracks of rock samples through the scanning electron microscope. In the all salt crystallization tests, apparent specific gravities for all tested samples increased generally but not so significantly due to recrystallization of salts. It can be inferred that filling the pores with salt crystals cause the increase of ultrasonic velocity during the early stage of salt crystallization and then in later stages the repeated cycles of salt crystallization result in development of cracks leading decrease of ultrasonic velocity for some rock samples.
Cai, Aijun; Wang, Xiuping; Guo, Aiying; Chang, Yongfang
2016-09-01
Polydopamine-Ag-AgCl composites (PDA-Ag-AgCl) were synthesized using a mussel-inspired method at room temperature, where PDA acts as a reducing agent to obtain the noble Ag nanoparticles from a precursor. The morphologies and structures of the as-prepared PDA-Ag-AgCl were characterized by several techniques including field emission scanning electron microscopy (FESEM), transmission electron microscopy (SEM), Raman spectra, and X-Ray photoelectron spectrum (XPS). The morphological observation depicts formation of nanoparticles with various micrometer size diameters and surface XPS analysis shows presence of various elements including Ag, N, Cl, and O. The enhanced absorbance of the PDA-Ag-AgCl particles in the visible light region is confirmed through UV-Vis diffuse reflectance spectra (DRS), and the charge transfer is demonstrated by photoluminescence (PL) and photocurrent response. The synthesized PDA-Ag-AgCl composites could be used as visible-light-driven photocatalysts for the degradation of Rhodamine B. The elevated photocatalytic activity is ascribed to the effective charge transfer from plasmon-excited Ag to AgCl that can improve the efficiency of the charge separation during the photocatalytic reaction. Furthermore, differences in the photocatalytic performance among the different PDA-Ag-AgCl composites are noticed that could be attributed to the Brunauer-Emmett-Teller (BET) specific surface area, which benefits to capture the visible light efficiently. The PDA-Ag-AgCl exhibits excellent stability without a significant loss in activity after 5cycles. The proposed method is low-cost and environmentally friendly, hence a promising new way to fabricate plasmon photocatalysts. Copyright © 2016. Published by Elsevier B.V.
Lee, Jin; Lim, Kye-Taek
2012-02-01
In the developmental stages of cancer, cell transformation occurs after the promotion stage and is a marker of cancer progression. This cell transformation is related to abnormal proliferation during the cancer initiation stage. The purpose of this study was to evaluate the effect of Styrax japonica Siebold et al. Zuccarin (SJSZ) glycoprotein on cell transformation in murine embryonic liver cells (BNL CL.2) following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. To determine abnormal proliferation during the initiation stage, intracellular reactive oxygen species (ROS), phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), activities of cell cycle-related factors [cyclin D1/cyclin dependent kinase (CDK) 4], cell cycle inhibitors (p53, p21, and p27), nuclear factor (NF)-κB, and proliferating cell nuclear antigen (PCNA) were evaluated using Western blot analysis and real-time PCR. Our study demonstrated that SJSZ glycoprotein (50 μg/ml) reduces foci formation with combined treatment [MNNG and 12-O-tetradecanoyl phorbol-13-acetate] of BNL CL.2 cells. With regard to proliferation-related signals, our finding indicated that SJSZ glycoprotein (50 μg/ml) diminished the production of intracellular ROS, activity of phosphorylated ERK, p38 MAPK, NF-κB (p50 and p65), PCNA, and cyclin D1/CDK4 in MNNG-induced BNL CL.2 cells. Taken together, these results lead us to speculate that SJSZ glycoprotein can inhibit abnormal cell proliferation at the initiation stage of hepatocarcinogenesis.
Evidence for Solar-Cycle Forcing and Secular Variation in the Armagh Observatory Temperature Record
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1998-01-01
A prominent feature of previous long-term temperature studies has been the appearance of warming since the 1880s, this often being taken as evidence for anthropogenic-induced global warming. In this investigation, the long-term, annual, mean temperature record (1844-1992) of the Armagh Observatory (Armagh, North Ireland), a set of temperature data based on maximum and minimum thermometers that predates the 1880s and correlates well with northern hemispheric and global standards, is examined for evidence of systematic variation, in particular, as related to solar-cycle forcing and secular variation. Indeed, both appear to be embedded within the Armagh data. Removal of these effects, each contributing about 8% to the overall reduction in variance, yields residuals that are randomly distributed. Application of the 10-year moving average to the residuals, furthermore, strongly suggests that the behavior of the residuals is episodic, inferring that (for extended periods of time) temperatures at Armagh sometimes were warmer or cooler (than expected), while at other times they were stable. Comparison of cyclic averages of annual mean temperatures against the lengths of the associated Hale cycles (i.e., the length of two, sequentially numbered, even-odd sunspot cycle pairs) strongly suggests that the temperatures correlate inversely (r = -0.886 at less than 2% level of significance) against the length of the associated Hale cycle. Because sunspot cycle 22 ended in 1996, the present Hale cycle probably will be shorter than average, implying that temperatures at Armagh over this Hale cycle will be warmer (about 9.31 q 0.23 C at the 90% confidence level) than average (= 9.00 C).
Rapid cycling genomic selection in a multiparental tropical maize population
USDA-ARS?s Scientific Manuscript database
Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...
Visual Persistence and Information Pick-up in Learning Disabled Children.
ERIC Educational Resources Information Center
Mazer, Suzanne R.; And Others
1983-01-01
Two experiments tested possible explanations for previous research demonstrating lower span of apprehension for learning disabled students. In experiment 1, the length of visual persistence was less for LD subjects, while in experiment 2, the rate of information pick-up was slower for LD subjects. (CL)
Growth of NH4Cl Single Crystal from Vapor Phase in Vertical Furnace
NASA Astrophysics Data System (ADS)
Nigara, Yutaka; Yoshizawa, Masahito; Fujimura, Tadao
1983-02-01
A pure and internally stress-free single crystal of NH4Cl was grown successfully from the vapor phase. The crystal measured 1.6 cmφ× 2 cm and had the disordered CsCl structure, which was stable below 184°C. The crystal was grown in an ampoule in a vertical furnace, in which the vapor was efficiently transported both by diffusion and convection. In line with the growth mechanism of a single crystal, the temperature fluctuation (°C/min) on the growth interface was kept smaller than the product of the temperature gradient (°C/cm) and the growth rate (cm/min). The specific heat of the crystal was measured around -31°C (242 K) during cooling and heating cycles by AC calorimetry. The thermal hysteresis (0.4 K) obtained here was smaller than that (0.89 K) of an NH4Cl crystal grown from its aqueous solution with urea added as a habit modifier.
Jiang, Fengjing; Dai, Li; Yao, Ye
2018-05-04
Polyamide 6-LiCl (PA 6-LiCl) electrospun nanofibrous membranes (NFMs) have been successfully prepared as novel solid desiccant materials. The PA 6 NFM with 20% LiCl mass ratio had a sorption capacity of 1.8 g g -1 at 25 °C and 95% relative humidity, which was 4 times more than that of silica gels. The desorption isobars of the NFMs indicated that over 85% of sorbed water in the NFMs can be desorbed at about 50 °C, and the low regeneration temperature made it promising as an energy-saving desiccant material. The experimental results manifested that the sorption/desorption kinetics of the NFMs better fit the pseudo-second order model. According to scanning electron microscope images and the cycle experiment, the NFMs were also found to possess notably improved stability against moisture and could be recycled with little degradation of performance, which confirmed the practicability of the new desiccant membranes.
NASA Astrophysics Data System (ADS)
Jiang, Fengjing; Dai, Li; Yao, Ye
2018-05-01
Polyamide 6-LiCl (PA 6-LiCl) electrospun nanofibrous membranes (NFMs) have been successfully prepared as novel solid desiccant materials. The PA 6 NFM with 20% LiCl mass ratio had a sorption capacity of 1.8 g g-1 at 25 °C and 95% relative humidity, which was 4 times more than that of silica gels. The desorption isobars of the NFMs indicated that over 85% of sorbed water in the NFMs can be desorbed at about 50 °C, and the low regeneration temperature made it promising as an energy-saving desiccant material. The experimental results manifested that the sorption/desorption kinetics of the NFMs better fit the pseudo-second order model. According to scanning electron microscope images and the cycle experiment, the NFMs were also found to possess notably improved stability against moisture and could be recycled with little degradation of performance, which confirmed the practicability of the new desiccant membranes.
Borguet, Yannick; Sauvage, Xavier; Zaragoza, Guillermo; Demonceau, Albert
2010-01-01
Summary The tandem catalysis of ring-closing metathesis/atom transfer radical reactions was investigated with the homobimetallic ruthenium–indenylidene complex [(p-cymene)Ru(μ-Cl)3RuCl(3-phenyl-1-indenylidene)(PCy3)] (1) to generate active species in situ. The two catalytic processes were first carried out independently in a case study before the whole sequence was optimized and applied to the synthesis of several polyhalogenated bicyclic γ-lactams and lactones from α,ω-diene substrates bearing trihaloacetamide or trichloroacetate functionalities. The individual steps were carefully monitored by 1H and 31P NMR spectroscopies in order to understand the intimate details of the catalytic cycles. Polyhalogenated substrates and the ethylene released upon metathesis induced the clean transformation of catalyst precursor 1 into the Ru(II)–Ru(III) mixed-valence compound [(p-cymene)Ru(μ-Cl)3RuCl2(PCy3)], which was found to be an efficient promoter for atom transfer radical reactions under the adopted experimental conditions. PMID:21160564
NASA Astrophysics Data System (ADS)
Zhang, Ling; Cao, Wugang; Alvarez, Pedro J. J.; Qu, Xiaolei; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang
2018-05-01
Aiming to remove ionic liquid pollutants from water, an ordered mesoporous carbon CMK-3 (OMC) was prepared and modified by oxidation with nitric acid. A commercial microporous activated carbon adsorbent, Filtrasorb-300 (AC), was used as benchmark. Boehm titration showed that oxidized OMC had a substantially higher oxygen content than oxidized AC. Adsorption of the hydrophilic imidazolium-based ionic liquid 1-Butyl-3-methylimidazolium chloride ([Bmim]Cl) on OMC and AC was well-described by the Freundlich isotherm model. Surface oxidation markedly enhanced [Bmim]Cl adsorption by both OMC and AC. Nevertheless, [Bmim]Cl adsorption was much higher on oxidized OMC than on oxidized AC. Increasing pH had negligible influence on [Bmim]Cl adsorption on pristine OMC, but enhanced adsorption on oxidized OMC. Regeneration tests showed stable performance of oxidized OMC over five adsorption-desorption cycles. Thus, oxidized OMC can be a highly effective adsorbent for the removal of hydrophilic ionic liquids from water.
Pagé, Lilianne; Hattori, Keiko
2017-12-19
Serpentinites are important reservoirs of fluid-mobile elements in subduction zones, contributing to volatiles in arc magmas and their transport into the Earth's mantle. This paper reports halogen (F, Cl, Br, I) and B abundances of serpentinites from the Dominican Republic, including obducted and subducted abyssal serpentinites and forearc mantle serpentinites. Abyssal serpentinite compositions indicate the incorporation of these elements from seawater and sediments during serpentinization on the seafloor and at slab bending. During their subduction and subsequent lizardite-antigorite transition, F and B are retained in serpentinites, whilst Cl, Br and I are expelled. Forearc mantle serpentinite compositions suggest their hydration by fluids released from subducting altered oceanic crust and abyssal serpentinites, with only minor sediment contribution. This finding is consistent with the minimal subduction of sediments in the Dominican Republic. Forearc mantle serpentinites have F/Cl and B/Cl ratios similar to arc magmas, suggesting the importance of serpentinite dehydration in the generation of arc magmatism in the mantle wedge.
Space Radiation Risks for Astronauts on Multiple International Space Station Missions
Cucinotta, Francis A.
2014-01-01
Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA’s radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members’ radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate. PMID:24759903
Studying semblances of a true killer: experimental model of human ventricular fibrillation.
Nair, K; Farid, T; Masse, S; Umapathy, K; Watkins, S; Poku, K; Asta, J; Kusha, M; Sevaptsidis, E; Jacob, J; Floras, J S; Nanthakumar, K
2012-04-01
It is unknown whether ventricular fibrillation (VF) studied in experimental models represents in vivo human VF. First, we examined closed chest in vivo VF induced at defibrillation threshold testing (DFT) in four patients with ischemic cardiomyopathy pretransplantation. We examined VF in these same four hearts in an ex vivo human Langendorff posttransplantation. VF from DFT was compared with VF from the electrodes from a similar region in the right ventricular endocardium in the Langendorff using two parameters: the scale distribution width (extracted from continuous wavelet transform) and VF mean cycle length (CL). In a second substudy group where multielectrode phase mapping could be performed, we examined early VF intraoperatively (in vivo open chest condition) in three patients with left ventricular cardiomyopathy. We investigated early VF in the hearts of three patients in an ex vivo Langendorff and compared findings with intraoperative VF using two metrics: dominant frequency (DF) assessed by the Welch periodogram and the number of phase singularities (lasting >480 ms). Wavelet analysis (P = 0.9) and VF CL were similar between the Langendorff and the DFT groups (225 ± 13, 218 ± 24 ms; P = 0.9), indicating that wave characteristics and activation rate of VF was comparable between the two models. Intraoperative DF was slower but comparable with the Langendorff DF over the endocardium (4.6 ± 0.1, 5.0 ± 0.4 Hz; P = 0.9) and the epicardium (4.5 ± 0.2, 5.2 ± 0.4 Hz; P = 0.9). Endocardial phase singularity number (9.6 ± 5, 12.1 ± 1; P = 0.6) was lesser in number but comparable between in vivo and ex vivo VF. VF dynamics in the limited experimental human studies approximates human in vivo VF.
Space radiation risks for astronauts on multiple International Space Station missions.
Cucinotta, Francis A
2014-01-01
Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.
Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes.
Armitt, David J; Bruce, Michael I; Gaudio, Maryka; Zaitseva, Natasha N; Skelton, Brian W; White, Allan H; Le Guennic, Boris; Halet, Jean-François; Fox, Mark A; Roberts, Rachel L; Hartl, Frantisek; Low, Paul J
2008-12-21
Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) and RuCl(dppe)Cp' [Cp' = Cp, Cp*] in the presence of KF in MeOH give the monoruthenium complexes Ru(C[triple bond, length as m-dash]CC(6)F(5))(dppe)Cp' [Cp' = Cp (); Cp* ()], which are related to the known compound Ru(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3))(2)Cp (). Treatment of Me(3)SiC[triple bond, length as m-dash]CC(6)F(5) with Pt(2)(mu-dppm)(2)Cl(2) in the presence of NaOMe in MeOH gave the bis(alkynyl) complex Pt(2)(mu-dppm)(2)(C[triple bond, length as m-dash]CC(6)F(5))(2) (). The Pd(0)/Cu(i)-catalysed reactions between Au(C[triple bond, length as m-dash]CC(6)F(5))(PPh(3)) and Mo( identical withCBr)(CO)(2)Tp* [Tp* = hydridotris(3.5-dimethylpyrazoyl)borate], Co(3)(mu(3)-CBr)(mu-dppm)(CO)(7) or IC[triple bond, length as m-dash]CFc [Fc = (eta(5)-C(5)H(4))FeCp] afford Mo( identical withCC[triple bond, length as m-dash]CC(6)F(5))(CO)(2)Tp* (), Co(3)(mu(3)-CC[triple bond, length as m-dash]CC(6)F(5))(mu-dppm)(CO)(7) () and FcC[triple bond, length as m-dash]CC[triple bond, length as m-dash]CC(6)F(5) (), respectively. The diruthenium complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)F(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()] are prepared from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)F(4) in a manner similar to that described for the monoruthenium complexes -. The non-fluorinated complexes 1,4-{Cp'(PP)RuC[triple bond, length as m-dash]C}(2)C(6)H(4) [(PP)Cp' = (PPh(3))(2)Cp (); (dppe)Cp (); (dppe)Cp* ()], prepared for comparison, are obtained from 1,4-(Me(3)SiC[triple bond, length as m-dash]C)(2)C(6)H(4). Spectro-electrochemical studies of the ruthenium aryl and arylene alkynyl complexes - and -, together with DFT-based computational studies on suitable model systems, indicate that perfluorination of the aromatic ring has little effect on the electronic structures of these compounds, and that the frontier orbitals have appreciable diethynylphenylene character. Molecular structure determinations are reported for the fluoroaromatic complexes , , , and .
Cyclic fatigue of ProTaper instruments.
Lopes, Hélio Pereira; Moreira, Edson Jorge Lima; Elias, Carlos Nelson; de Almeida, Renata Andriola; Neves, Mônica Schultz
2007-01-01
The present work evaluated the influence of the curved segment length of artificial root canals (the arc) and the number of cycles necessary to fracture engine-driven nickel-titanium endodontic instruments. ProTaper F3 25-mm files at 250 rpm were used in two artificial canals. The artificial canals were made of stainless steel with an inner diameter of 1.04 mm, a total length of 20 mm, and arc on the ends with a radius of curvature of 6 mm. The arc length of the first tube measured 9.4 mm, and the straight part measured 10.6 mm. The second tube was 14.1 mm long, and the straight part measured 5.9 mm. We determined the fracture surface distances and the number of cycles necessary to induce fatigue fracture in the ProTaper F3 instruments. The fracture surfaces and the helical shaft of the instruments were investigated using a scanning electron microscope. The results indicated that the required number of cycles to cause a fracture was influenced by the canal arc length, the morphology of the fractured surface presented ductile characteristics, and plastic deformation in the helical shaft of the fractured instruments did not occur.
Chloromethane formation and degradation in the fern phyllosphere.
Jaeger, Nicole; Besaury, Ludovic; Röhling, Amelie Ninja; Koch, Fabien; Delort, Anne-Marie; Gasc, Cyrielle; Greule, Markus; Kolb, Steffen; Nadalig, Thierry; Peyret, Pierre; Vuilleumier, Stéphane; Amato, Pierre; Bringel, Françoise; Keppler, Frank
2018-09-01
Chloromethane (CH 3 Cl) is the most abundant halogenated trace gas in the atmosphere. It plays an important role in natural stratospheric ozone destruction. Current estimates of the global CH 3 Cl budget are approximate. The strength of the CH 3 Cl global sink by microbial degradation in soils and plants is under discussion. Some plants, particularly ferns, have been identified as substantial emitters of CH 3 Cl. Their ability to degrade CH 3 Cl remains uncertain. In this study, we investigated the potential of leaves from 3 abundant ferns (Osmunda regalis, Cyathea cooperi, Dryopteris filix-mas) to produce and degrade CH 3 Cl by measuring their production and consumption rates and their stable carbon and hydrogen isotope signatures. Investigated ferns are able to degrade CH 3 Cl at rates from 2.1 to 17 and 0.3 to 0.9μgg dw -1 day - 1 for C. cooperi and D. filix-mas respectively, depending on CH 3 Cl supplementation and temperature. The stable carbon isotope enrichment factor of remaining CH 3 Cl was -39±13‰, whereas negligible isotope fractionation was observed for hydrogen (-8±19‰). In contrast, O. regalis did not consume CH 3 Cl, but produced it at rates ranging from 0.6 to 128μgg dw -1 day - 1 , with stable isotope values of -97±8‰ for carbon and -202±10‰ for hydrogen, respectively. Even though the 3 ferns showed clearly different formation and consumption patterns, their leaf-associated bacterial diversity was not notably different. Moreover, we did not detect genes associated with the only known chloromethane utilization pathway "cmu" in the microbial phyllosphere of the investigated ferns. Our study suggests that still unknown CH 3 Cl biodegradation processes on plants play an important role in global cycling of atmospheric CH 3 Cl. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Siantar, Edwin
The demand for hydrogen as a clean energy carrier has increased greatly. The Cu-Cl cycle is a promising thermochemical cycle that is currently being developed to be the large-scale method of hydrogen production. The lifetime of materials for the pipes transporting molten CuCl is an important parameter for an economic design of a commercial thermochemical Cu-Cl hydrogen plant. This research is an examination of candidate materials following an immersion test in molten CuCl at 500 °C for 100 h. Two alloys, Ni based super-alloy (Inconel 625) and super austenitic stainless steel (AL6XN) were selected as the base metal. There were two types of coating applied to improve the corrosion resistance of the base metals during molten CuCl exposure. A metallic of Diamalloy 4006 and two ceramic of yttria stabilized zirconia and alumina coatings were applied to the base metal using thermal spray methods. An immersion apparatus was designed and constructed to perform an immersion test that has a condition similar to those in a hydrogen plant. After the immersion test, the materials were evaluated using an electrochemical method in combination with ex-situ surface analysis. The surface condition including elemental composition, film structure and resistivity of the materials were examined and compared. The majority of the coatings were damaged and fell off. Cracks were found in the original coated specimens indicating the sample geometry may have affected the integrity of the sprayed coating. When the coating cracked, it provided a pathway for the molten CuCl to go under the coating and react with the surface underneath the coating. Copper deposits and iron chloride that were found on the sample surfaces suggest that there were corrosion reactions that involved the metal dissolution and reduction of copper during immersion test. The results also suggest that Inconel 625 performed better than stainless steel AL6XN. Both Diamalloy 4006 and YSZ (ZrO2 18TiO2 10Y2O3) coatings seemed to provide better protection to the underlying base metal than alumina (Al2O3 3TiO2) coating.
Passivation effect of Cl, F and H atoms on CuIn0.75Ga0.25Se2 (1 1 2) surface
NASA Astrophysics Data System (ADS)
Qi, Rong-fei; Wang, Zhao-hui; Tang, Fu-ling; Agbonkina, Itohan C.; Xue, Hong-tao; Si, Feng-juan; Ma, Sheng-ling; Wang, Xiao-ka
2018-06-01
Using the first-principles calculations within the density functional-theory (DFT) framework, we theoretically investigated the surface reconstruction, surface states near the Fermi level and their passivation on CuIn0.75Ga0.25Se2 (1 1 2) (CIGS) surface by chlorine, fluorine and hydrogen. Surface reconstruction appears on CIG-terminated CIGS (1 1 2) surface and it is a self-passivation. For the locations of Cl, F and H atoms adsorbing on Se-terminated CIGS (1 1 2) surface, four high symmetry adsorption sites: top sites, bridge sites, hexagonal close-packed (hcp) sites and faced centered cubic (fcc) sites were studied respectively. With the coverage of 0.5 monolayer (ML), Cl, F and H adatoms energetically occupy the top sites on the CIGS (112) surface. The corresponding adsorption energies were -2.20 eV, -3.29 eV, -2.60 eV, respectively. The bond length and electronic properties were analyzed. We found that the surface state density near the Fermi level was markedly diminished for 0.5 ML Cl, F and H adsorption on Se-terminated CIGS (1 1 2) surface at top sites. It was also found that H can more efficiently passivate the surface state density than Cl and F atoms, and the effect of adsorption of Cl atoms is better than that of F.
Population pharmacokinetic model of lithium and drug compliance assessment.
Pérez-Castelló, Isabel; Mangas-Sanjuan, Víctor; González-García, Ignacio; Gonzalez-Alvarez, Isabel; Bermejo, Marival; Marco-Garbayo, Jose Luis; Trocóniz, Iñaki F
2016-12-01
Population pharmacokinetic analysis of lithium during therapeutic drug monitoring and drug compliance assessment was performed in 54 patients and 246 plasma concentrations levels were included in this study. Patients received several treatment cycles (1-9) and one plasma concentration measurement for each patient was obtained always before starting next cycle (pre-dose) at steady state. Data were analysed using the population approach with NONMEM version 7.2. Lithium measurements were described using a two-compartment model (CL/F=0.41Lh -1 , V 1 /F=15.3L, Q/F=0.61Lh -1 , and V 2 /F = 15.8L) and the most significant covariate on lithium CL was found to be creatinine clearance (reference model). Lithium compliance was analysed using inter-occasion variability or Markovian features (previous lithium measurement as ordered categorical covariate) on bioavailability parameter. Markov-type model predicted the lithium compliance in the next cycle with higher success rate (79.8%) compared to IOV model (65.2%) and reference model (43.2%). This model becomes an efficient tool, not only being able to adequately describe the observed outcome, but also to predict the individual drug compliance in the next cycle. Therefore, Bipolar disorder patients can be classified regarding their probability to become extensive or poor compliers in the next cycle and then, individual probabilities lower than 0.5 highlight the need of intensive monitoring, as well as other pharmaceutical care measurements that might be applied to enhance drug compliance for a better and safer lithium treatment. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Tao; Gulzar, Umair; Bai, Xue; Monaco, Simone; Longoni, Gianluca; Prato, Mirko; Marras, Sergio; Dang, Zhiya; Capiglia, Claudio; Proietti Zaccaria, Remo
2018-04-01
In the present study, Al2O3 is utilized for the first time as coating agent on nanostructured anatase TiO2 in order to investigate its effect on sodium-ion batteries performance. Our results show that the Al2O3 coating, introduced by a facile two-step approach, provides beneficial effects to the TiO2-based anodes. However, the coated TiO2 still suffers of capacity fading upon cycling when using 1.0 M of NaClO4 in propylene carbonate (PC) as electrolyte. To address this issue, the influence of different electrolytes (NaClO4 salt in various solvents) is further studied. It is found that the modified TiO2 exhibits significant improvements in cycling performance using binary ethylene carbonate (EC) and PC solvent mixture without the need of the commonly used fluoroethylene carbonate (FEC) additive. Under the best configuration, our battery could deliver a high reversible capacity of 188.1 mAh g-1 at 0.1C after 50 cycles, good rate capability up to 5C, and remarkable long-term cycling stability at 1C rate for 650 cycles. This excellent performance can be ascribed to the synergistic effects of surface and interface engineering enabling the formation of a stable and highly ionic conductive interface layer in EC:PC based electrolyte which combines the native SEI film and an 'artificial' SEI layer of irreversibly formed Na-Al-O.
Kuu, Wei Y; Nail, Steven L
2009-09-01
Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.
Chen, Bailian; Reynolds, Albert C.
2018-03-11
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bailian; Reynolds, Albert C.
We report that CO 2 water-alternating-gas (WAG) injection is an enhanced oil recovery method designed to improve sweep efficiency during CO 2 injection with the injected water to control the mobility of CO 2 and to stabilize the gas front. Optimization of CO 2 -WAG injection is widely regarded as a viable technique for controlling the CO 2 and oil miscible process. Poor recovery from CO 2 -WAG injection can be caused by inappropriately designed WAG parameters. In previous study (Chen and Reynolds, 2016), we proposed an algorithm to optimize the well controls which maximize the life-cycle net-present-value (NPV). However,more » the effect of injection half-cycle lengths for each injector on oil recovery or NPV has not been well investigated. In this paper, an optimization framework based on augmented Lagrangian method and the newly developed stochastic-simplex-approximate-gradient (StoSAG) algorithm is proposed to explore the possibility of simultaneous optimization of the WAG half-cycle lengths together with the well controls. Finally, the proposed framework is demonstrated with three reservoir examples.« less
Sodium chloride effects on lipase activity in germinating rape seeds.
Ben Miled, D D; Zarrouk, M; Chérif, A
2000-12-01
Seeds of rape (Brassica napus L.) were germinated at various NaCl concentrations up to 200 mM. Germinating levels, seedling growth, triacylglycerol mobilization and lipase activity were investigated. High salt concentrations resulted in retardation of seed germination. Seedling growth as measured by radicle length was severely reduced by NaCl doses higher than 50 mM. Moreover, the mobilization of storage oil in control rapeseed seedlings, started about 24 h after imbibition. As for germination and growth, elevated salt concentrations are found to delay triacylglycerol degradation. Experiments using triolein as substrate indicated clearly that lipase activity was inhibited by salt treatment.
NASA Astrophysics Data System (ADS)
Toner, J. D.; Catling, D. C.; Light, B.
2014-05-01
Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also potentially important for astrobiology because of their ability to preserve pristine cellular structures intact compared to solutions that crystallize.
NASA Astrophysics Data System (ADS)
Young, C. J.; Washenfelder, R. A.; Edwards, P. M.; Parrish, D. D.; Gilman, J. B.; Kuster, W. C.; Mielke, L. H.; Osthoff, H. D.; Tsai, C.; Pikelnaya, O.; Stutz, J.; Veres, P. R.; Roberts, J. M.; Griffith, S.; Dusanter, S.; Stevens, P. S.; Flynn, J.; Grossberg, N.; Lefer, B.; Holloway, J. S.; Peischl, J.; Ryerson, T. B.; Atlas, E. L.; Blake, D. R.; Brown, S. S.
2014-04-01
The role of chlorine atoms (Cl) in atmospheric oxidation has been traditionally thought to be limited to the marine boundary layer, where they are produced through heterogeneous reactions involving sea salt. However, recent observation of photolytic Cl precursors (ClNO2 and Cl2) formed from anthropogenic pollution has expanded the potential importance of Cl to include coastal and continental urban areas. Measurements of ClNO2 in Los Angeles during CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) showed it to be an important primary (first generation) radical source. Evolution of ratios of volatile organic compounds (VOCs) has been proposed as a method to quantify Cl oxidation, but we find no evidence from this approach for a significant role of Cl oxidation in Los Angeles. We use a box model with the Master Chemical Mechanism (MCM v3.2) chemistry scheme, constrained by observations in Los Angeles, to examine the Cl sensitivity of commonly used VOC ratios as a function of NOx and secondary radical production. Model results indicate VOC tracer ratios could not detect the influence of Cl unless the ratio of [OH] to [Cl] was less than 200 for at least a day. However, the model results also show that secondary (second generation) OH production resulting from Cl oxidation of VOCs is strongly influenced by NOx, and that this effect obscures the importance of Cl as a primary oxidant. Calculated concentrations of Cl showed a maximum in mid-morning due to a photolytic source from ClNO2 and loss primarily to reactions with VOCs. The [OH] to [Cl] ratio was below 200 for approximately 3 h in the morning, but Cl oxidation was not evident from the measured ratios of VOCs. Instead, model simulations show that secondary OH production causes VOC ratio evolution to follow that expected for OH oxidation, despite the significant input of primary Cl from ClNO2 photolysis in the morning. Even though OH is by far the dominant oxidant in Los Angeles, Cl atoms do play an important role in photochemistry there, constituting 9% of the primary radical source. Furthermore, Cl-VOC reactivity differs from that of OH, being more than an order of magnitude larger and dominated by VOCs, such as alkanes, that are less reactive toward OH. Primary Cl is also slightly more effective as a radical source than primary OH due to its greater propensity to initiate radical propagation chains via VOC reactions relative to chain termination via reaction with nitrogen oxides.
Cell-free DNA and telomere length among women undergoing in vitro fertilization treatment.
Czamanski-Cohen, J; Sarid, O; Cwikel, J; Douvdevani, A; Levitas, E; Lunenfeld, E; Har-Vardi, I
2015-11-01
The current research is aimed at finding potential non-invasive bio-markers that will help us learn more about the mechanisms at play in failed assisted reproduction treatment. This exploratory pilot study examined the relationship between cell-free DNA (CFD) in plasma and telomere length in lymphocytes among women undergoing in vitro fertilization (IVF) and compared telomere length and CFD levels to a healthy control group. Blood of 20 women undergoing IVF was collected at three time points during the IVF cycle. We assessed the relationship between CFD and telomere length as well as controlling for morning cortisol levels. We also collected blood of 10 healthy controls at two time points (luteal and follicular phases of the menstrual cycle) and compared mean telomere length, CFD, and cortisol levels between the IVF patients and healthy controls. The results revealed an inverse relationship between CFD levels and telomere lengths at several time points that remained significant even after controlling for cortisol levels. Women undergoing IVF had statistically significant higher levels of CFD and shorter telomeres compared to healthy controls. The relationship between telomere length and CFD should be further explored in larger studies in order to uncover potential mechanisms that cause both shortened telomere length and elevated CFD in women undergoing IVF.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
Fully Modulated Turbulent Diffusion Flames in Microgravity*
NASA Astrophysics Data System (ADS)
Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.
2001-11-01
Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.
NASA Astrophysics Data System (ADS)
Ku, T. C. W.; Walter, L. M.; Coleman, M. L.; Blake, R. E.; Martini, A. M.
1999-10-01
Sulfur cycling in Fe-poor, organic-rich shelf carbonates, known to have rapid rates of SO4-2 reduction, remains poorly studied despite the volumetric significance of shelf deposits in modern and ancient carbon budgets. We investigated sulfur cycling in modern carbonates of the Florida Platform from end-member depositional environments (muddy sands from the Atlantic reef tract and finer-grained mudbank and island flank deposits from Florida Bay). Relations between pore water chemistry (SO4-2, ΣCO2, Ca-2/Cl-) and oxygen and sulfur stable isotope compositions of SO4-2 require direct coupling between sulfur redox cycling and syndepositional carbonate dissolution. Oxygen isotope compositions of pore water sulfate were remarkably shifted away from the established value for marine SO4-2 (+9.5‰), despite near normal SO4-2/Cl- ratios. Chemical evolution was least in reef tract pore waters and greatest in Florida Bay. Relative to overlying seawater, mudbank sediments exhibited sulfate depletion, with δ18OSO4 and δ34SSO4 values both increasing by about 7‰. More bioturbated island flank sediments, colonized by Thalassia grass, had a 5‰ increase in δ18OSO4, variable δ34SSO4 values (+17.7 to +23.3‰) and exceptionally high Ca+2/Cl- ratios. The large excess of Ca+2 (up to 1.7 mM) requires a much larger acid source than the amounts derived from utilization of dissolved O2 (∼0.3 mM) and small degrees of net SO4-2 reduction (<0.5 mM reduced). A conceptual model was constructed using chemical and isotopic data on natural pore waters and on sulfate isotope fractionation factors obtained from sediment incubation experiments. The model outputs show that pore water compositions can be explained by a redox cycle where microbial SO4-2 reduction is followed by very efficient H2S oxidation, thus maintaining virtually invariant SO4-2/Cl- ratios. The enhanced O2 transport may be driven by associated marine grass rhizome systems and microbial communities established in bioturbated sediments. The net result of the cycle is that the rate of sulfide oxidation, which is largely balanced by the rate of microbial sulfate reduction, is stoichiometrically related to the rate of carbonate dissolution. This is consistent with previously reported rates of carbonate dissolution (∼400 μmol/cm2-yr) and average rates of sulfate reduction (∼200 μmol/cm2-yr) from the Florida Platform and a 2:1 stoichiometry.
Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J
2016-06-01
Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin
2016-08-01
Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Q.; Breider, T.; Schmidt, J.; Sherwen, T.; Evans, M. J.; Xie, Z.; Quinn, P.; Bates, T. S.; Alexander, B.
2017-12-01
The radiative forcing from marine boundary layer clouds is still highly uncertain, which partly stems from our poor understanding of cloud condensation nuclei (CCN) formation. The oxidation of dimethyl sulfide (DMS) and subsequent chemical evolution of its products (e.g. DMSO) are key processes in CCN formation, but are generally very simplified in large-scale models. Recent research has pointed out the importance of reactive halogens (e.g. BrO and Cl) and multiphase chemistry in the tropospheric sulfur cycle. In this study, we implement a series of sulfur oxidation mechanisms into the GEOS-Chem global chemical transport model, involving both gas-phase and multiphase oxidation of DMS, DMSO, MSIA and MSA, to improve our understanding of the sulfur cycle in the marine troposphere. DMS observations from six locations around the globe and MSA/nssSO42- ratio observations from two ship cruises covering a wide range of latitudes and longitudes are used to assess the model. Preliminary results reveal the important role of BrO for DMS oxidation at high latitudes (up to 50% over Southern Ocean). Oxidation of DMS by Cl radicals is small in the model (within 10% in the marine troposphere), probably due to an underrepresentation of Cl sources. Multiphase chemistry (e.g. oxidation by OH and O3 in cloud droplets) is not important for DMS oxidation but is critical for DMSO oxidation and MSA production and removal. In our model, about half of the DMSO is oxidized in clouds, leading to the formation of MSIA, which is further oxidized to form MSA. Overall, with the addition of reactive halogens and multiphase chemistry, the model is able to better reproduce observations of seasonal variations of DMS and MSA/nssSO42- ratios.
Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.
Zou, Wenli; Liu, Wenjian
2006-04-21
The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.
NASA Astrophysics Data System (ADS)
Yamataka, Hiroshi; Aida, Misako
1998-06-01
Ab initio MO calculations (HF/3-21G, HF/6-31G, HF/6-31+G* and MP2/6-31+G*) were carried out on the hydrolysis of CH 3Cl in which up to 13 water solvent molecules were explicitly considered. For n⩾3, three important stationary points ( cmp1, TS, and cmp2) were detected in the course of the reaction. The calculations for the n=13 system at the HF/6-31+G* level reproduced the experimental activation enthalpy and the secondary deuterium kinetic isotope effect. The two reacting bond lengths in the transition state are 1.975 Å (O-C) and 2.500 Å (C-Cl), and CH 3Cl is surrounded by 13 water molecules without any apparent vacant space. The proton transfer from the attacking water to the water cluster occurs after TS is reached.
Few-cycle Optical Parametric Chirped Pulse Amplification
2007-01-08
silicon - 150mm suprasi1300 Figure 10. Stretcher-compressor unit: group delay 5 -45mm TeO2 (ordinary) (GD) of 30mm silicon, 150mm suprasil300, 45mm CL 0...cycle pulse characterization: 840 -Measured raw 2DSI 20 °OA- traces for pulse (a) before 02. -and (b) after dispersion D 0 by glass plate; (c) so...fused silica plateJ19] see Fig. 15(a), along with the extracted spectral group delays. The chirp introduced by the glass plate is reflected in the
Global expression for representing cohesive-energy curves. II
NASA Technical Reports Server (NTRS)
Schlosser, Herbert; Ferrante, John
1993-01-01
Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.
NASA Astrophysics Data System (ADS)
Junaidi, Yunus, Muhammad; Triyana, Kuwat; Harsojo, Suharyadi, Edi
2016-04-01
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi; Departement of Physics, Lampung University, Bandar Lampung; Triyana, Kuwat, E-mail: triyana@ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions oncontrolling the shapes and properties of silver nanorods(AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as asalt precursor and performed at the oilbath temperature of 140 °C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorodswere characterized using UV-VIS, XRD, SEM and TEM. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were also able tomore » control the growth of multi-twinned-particles into the single crystalline silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorodsdecreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id; Department of Physics, Lampung University, Bandar Lampung; Yunus, Muhammad, E-mail: muhammad.yunus@mail.ugm.ac.id
2016-04-19
We report our investigation on the effect of chloride ions on controlling the shapes and properties of silver nanorods (AgNRs) synthesized using a polyol method. In this study, we used polyvinyl alcohol (PVA) as a capping agent and sodium chloride (NaCl) as a salt precursor and performed at the oil bath temperature of 140°C. The chloride ions originating from the NaCl serve to control the growth of the silver nanorods. Furthermore, the synthesized silver nanorods were characterized using SEM and XRD. The results showed that besides being able to control the growth of AgCl atoms, the chloride ions were alsomore » able to control the growth of multi-twinned-particles into the single crystalline of silver nanorods by micrometer-length. At an appropriate concentration of NaCl, the diameter of silver nanorods decreased significantly compared to that of without chloride ion addition. This technique may be useful since a particular diameter of silver nanorods affects a particular application in the future.« less
Extracting the respiration cycle lengths from ECG signal recorded with bed sheet electrodes
NASA Astrophysics Data System (ADS)
Vehkaoja, A.; Peltokangas, M.; Lekkala, J.
2013-09-01
A method for recognizing the respiration cycle lengths from the electrocardiographic (ECG) signal recorded with textile electrodes that are attached to a bed sheet is proposed. The method uses two features extracted from the ECG that are affected by the respiration: respiratory sinus arrhythmia and the amplitude of the R-peaks. The proposed method was tested in one hour long recordings with ten healthy young adults. A relative mean absolute error of 5.6 % was achieved when the algorithm was able to provide a result for approximately 40 % of the time. 90 % of the values were within 0.5 s and 97 % within 1 s from the reference respiration value. In addition to the instantaneous respiration cycle lengths, also the mean values during 1 and 5 minutes epochs are calculated. The effect of the ECG signal source is evaluated by calculating the result also from the simultaneously recorded reference ECG signal. The acquired respiration information can be used in the estimation of sleep quality and the detection of sleep disorders.
Coupled Sulfur and Chlorine Chemistry in Venus' Upper Cloud Layer
NASA Astrophysics Data System (ADS)
Mills, Franklin P.
2006-09-01
Venus' atmosphere likely contains a rich variety of sulfur and chlorine compounds because HCl, SO2, and OCS have all been observed. Photodissociation of CO2 and SO2 in the upper cloud layer produces oxygen which can react directly or indirectly with SO2 to form SO3 and eventually H2SO4. Photodissociation of HCl within and above the upper cloud layer produces chlorine which can react with CO and O2 to form ClCO and ClC(O)OO. These two species have been identified as potentially critical intermediaries in the production of CO2. Much less work has been done on the potential coupling between sulfur and chlorine chemistry that may occur within the upper cloud layer. Several aspects have been examined in recent modeling: (1) linkage of the CO2 and sulfur oxidation cycles (based on ideas from Yung and DeMore, 1982), (2) reaction of Cl with SO2 to form ClSO2 (based on ideas from DeMore et al., 1985), and (3) the chemistry of SmCln for m,n = 1,2 (based on preliminary work in Mills, 1998). Initial results suggest the chemistry of SmCln may provide a pathway for accelerated production of polysulfur, Sx, if the oxygen abundance in the upper cloud layer is as small as is implied by the observational limit on O2 (Trauger and Lunine, 1983). Initial results also suggest that ClSO2 can act as a buffer which helps increase the scale height of SO2 and decrease the rate of production of H2SO4. This presentation will describe the results from this modeling; discuss their potential implications for the CO2, sulfur oxidation, and polysulfur cycles; and outline key observations from Venus Express that can help resolve existing questions concerning the chemistry of Venus' upper cloud. Partial funding for this research was provided by the Australian Research Council.
NASA Astrophysics Data System (ADS)
Wang, P. P.; Zhang, Y. X.; Fan, X. Y.; Zhong, J. X.; Huang, K.
2018-03-01
Due to the shorter path length and more channels for lithium ion diffusion and insertion, the two-dimensional (2D) Si nanosheets exhibit superior electrochemical performances in the field of electrochemical energy storage and conversion. Recently, various efforts have been focused on how to synthesize 2D Si nanosheets. However, there are many difficulties to achieve the larger area, high purity of 2D Si nanosheets. Herein, we developed a facile and scalable synthesis strategy to fabricate 2D Si nanosheets, utilizing the unique combination of the water-soluble NaCl particles as the sacrificial template and the hydrolyzed tetraethyl orthosilicate as the silica source, and assisting with the magnesium reduction method. Importantly, the obtained Si nanosheets have a larger area up to 10 μm2. Through combining with reduced graphene oxides (rGO), the Si nanosheets@rGO composite electrode exhibits excellent electrochemical performances. It delivers high reversible capacity about 2500 mAh g-1 at the current density of 0.2 A g-1, as well as an excellent rate capability over 900 mAh g-1 at 2 A g-1 even after 200 cycles.
Mira-Escolano, María-Pilar; Mendiola, Jaime; Mínguez-Alarcón, Lidia; Roca, Manuela; Cutillas-Tolín, Ana; López-Espín, José J; Torres-Cantero, Alberto M
2014-02-01
Animal models suggest that anogenital distance (AGD) at birth reflects androgen concentrations during in-utero development and predicts adult AGD. Several human observational studies show an association between menstrual cycle irregularities and a hyperandrogenic environment and that may result in a potential alteration of the female reproductive tract during in-utero development. This study examined associations between AGD of young women and their mother's gynaecological characteristics before or during pregnancy. This is cross-sectional study of 100 college-age volunteers in southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. Linear regression analysis was used to examine the association between AGD measurements (anus-fourchette (AGDAF) and anus-clitoris (AGDAC)) of women and their mother's gynaecological characteristics. Longer AGDAF was associated with the presence of mother's menstrual cycle irregularities before pregnancy (P=0.03). Longer female AGD has been related to excess androgen exposure in utero in toxicological studies. The current findings may be consistent with studies in which an association between menstrual cycle irregularities and an hyperandrogenic environment has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including AGD. Rodent models suggest that perineal length at birth reflects male hormone concentrations (androgens) during in-utero development and predicts adult perineal length. Several human studies show a relationship between menstrual cycle irregularities and an excessive androgen environment. We hypothesize that androgen excess may result in a potential alteration of the female reproductive tract during in-utero development. Our aim was to examine associations between perineal length of young women and their mother's gynaecological characteristics before or during pregnancy. This is a study of 100 college-age volunteers in Southern Spain. Physical and gynaecological examinations were conducted on the young women and they and their mothers completed epidemiological questionnaires on lifestyles and gynaecological history. We used multivariate analyses to assess the association between perineal length of women and their mother's gynaecological characteristics. Longer perineal length was associated with the presence of mother's menstrual cycle irregularities before pregnancy. Longer female perineal length has been related to excess androgen exposure in utero in rodent studies. Our findings may be consistent with previous studies in which an association between menstrual cycle irregularities and an excess of androgen has been reported, which therefore may result in a potential modification of the female offspring's reproductive tract during in-utero development, including perineal length. Copyright © 2013 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Insertion of terminal alkyne into Pt-N bond of the square planar [PtI2(Me2phen)] complex.
Benedetti, Michele; De Castro, Federica; Lamacchia, Vincenza; Pacifico, Concetta; Natile, Giovanni; Fanizzi, Francesco P
2017-11-21
The reactivity of [PtX 2 (Me 2 phen)] complexes (X = Cl, Br, I; Me 2 phen = 2,9-dimethyl-1,10-phenanthroline) with terminal alkynes has been investigated. Although the dichlorido species [PtCl 2 (Me 2 phen)] exhibits negligible reactivity, the bromido and iodido derivatives lead in short time to the formation of five-coordinate Pt(ii) complexes of the type [PtX 2 (Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] (X = Br, I; R = Ph, n-Bu), in equilibrium with the starting reagents. Similar to analogous complexes with simple acetylene, the five coordinate species can also undergo dissociation of an halido ligand and formation of the transient square-planar cationic species [PtX(Me 2 phen)(η 2 -CH[triple bond, length as m-dash]CR)] + . This latter can further evolve to give an unusual, sparingly soluble square planar product where the former terminal alkyne is converted into a :C[double bond, length as m-dash]C(H)(R) moiety with the α-carbon bridging the Pt(ii) core with one of the two N-donors of coordinated Me 2 phen. The final product [PtX 2 {κ 2 -N,C-(Z)-N[combining low line]1-N10-C[combining low line][double bond, length as m-dash]C(H)(R)}] (N1-N10 = 2,9-dimethyl-1,10-phenanthroline; X = Br, I) contains a Pt-N-C-C-N-C six-membered chelate ring in a square planar Pt(ii) coordination environment.
Implications of Extended Solar Minima
NASA Technical Reports Server (NTRS)
Adams, Mitzi L.; Davis, J. M.
2009-01-01
Since the discovery of periodicity in the solar cycle, the historical record of sunspot number has been carefully examined, attempting to make predictions about the next cycle. Much emphasis has been on predicting the maximum amplitude and length of the next cycle. Because current space-based and suborbital instruments are designed to study active phenomena, there is considerable interest in estimating the length and depth of the current minimum. We have developed criteria for the definition of a minimum and applied it to the historical sunspot record starting in 1749. In doing so, we find that 1) the current minimum is not yet unusually long and 2) there is no obvious way of predicting when, using our definition, the current minimum may end. However, by grouping the data into 22- year cycles there is an interesting pattern of extended minima that recurs every fourth or fifth 22-year cycle. A preliminary comparison of this pattern with other records, suggests the possibility of a correlation between extended minima and lower levels of solar irradiance.
Sonic hedgehog controls growth of external genitalia by regulating cell cycle kinetics
Seifert, Ashley W.; Zheng, Zhengui; Ormerod, Brandi K.; Cohn, Martin J.
2010-01-01
During embryonic development, cells are instructed which position to occupy, they interpret these cues as differentiation programmes, and expand these patterns by growth. Sonic hedgehog (Shh) specifies positional identity in many organs; however, its role in growth is not well understood. In this study, we show that inactivation of Shh in external genitalia extends the cell cycle from 8.5 to 14.4 h, and genital growth is reduced by ∼75%. Transient Shh signalling establishes pattern in the genital tubercle; however, transcriptional levels of G1 cell cycle regulators are reduced. Consequently, G1 length is extended, leading to fewer progenitor cells entering S-phase. Cell cycle genes responded similarly to Shh inactivation in genitalia and limbs, suggesting that Shh may regulate growth by similar mechanisms in different organ systems. The finding that Shh regulates cell number by controlling the length of specific cell cycle phases identifies a novel mechanism by which Shh elaborates pattern during appendage development. PMID:20975695
Positive Feedback Keeps Duration of Mitosis Temporally Insulated from Upstream Cell-Cycle Events.
Araujo, Ana Rita; Gelens, Lendert; Sheriff, Rahuman S M; Santos, Silvia D M
2016-10-20
Cell division is characterized by a sequence of events by which a cell gives rise to two daughter cells. Quantitative measurements of cell-cycle dynamics in single cells showed that despite variability in G1-, S-, and G2 phases, duration of mitosis is short and remarkably constant. Surprisingly, there is no correlation between cell-cycle length and mitotic duration, suggesting that mitosis is temporally insulated from variability in earlier cell-cycle phases. By combining live cell imaging and computational modeling, we showed that positive feedback is the molecular mechanism underlying the temporal insulation of mitosis. Perturbing positive feedback gave rise to a sluggish, variable entry and progression through mitosis and uncoupled duration of mitosis from variability in cell cycle length. We show that positive feedback is important to keep mitosis short, constant, and temporally insulated and anticipate it might be a commonly used regulatory strategy to create modularity in other biological systems. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.
Roman-Liu, Danuta
2005-01-01
The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.
Perchlorate in pleistocene and holocene groundwater in North-Central New Mexico
Plummer, Niel; Böhlke, J.K.; Doughten, M.W.
2006-01-01
Groundwater from remote parts of the Middle Rio Grande Basin in north-central New Mexico has perchlorate (ClO4-) concentrations of 0.12-1.8 ??g/L Because the water samples are mostly preanthropogenic in age (0-28 000 years) and there are no industrial sources in the study area, a natural source of the ClO4- is likely. Most of the samples have Br-, Cl-, and SO42- concentrations that are similar to those of modern bulk atmospheric deposition with evapotranspiration (ET) factors of about 7-40. Most of the ET values for Pleistocene recharge were nearly twice that for Holocene recharge. The NO3-/Cl- and ClO4-/Cl- ratios are more variable than those of Br -/Cl- or SO42-/Cl-. Samples thought to have recharged under the most arid conditions in the Holocene have relatively high NO3-/Cl- ratios and low ??15N values (+1 per mil (???)) similar to those of modern bulk atmospheric N deposition. The ??18O values of the NO 3- (-4 to 0 ???) indicate that atmospheric N0 3- was not transmitted directly to the groundwater but may have been cycled in the soils before infiltrating. Samples with nearly atmospheric NO3-/Cl- ratios have relatively high ClO4- concentrations (1.0-1.8 ??g/L) with a nearly constant ClO4-/Cl- mole ratio of (1.4 ?? 0.1) ?? 10-4, which would be consistent with an average ClO 4- concentration of 0.093 ?? 0.005 ??g/L in bulk atmospheric deposition during the late Holocene in north-central NM. Samples thought to have recharged underwetter conditions have higher ??15N values (+3 to +8 ???), lower N03-/Cl- ratios, and lower ClO4-/Cl- ratios than the ones most likely to preserve an atmospheric signal. Processes in the soils that may have depleted atmospherically derived NO3- also may have depleted ClO4- to varying degrees prior to recharge. If these interpretations are correct, then ClO4- concentrations of atmospheric origin as high as 4 ??g/L are possible in preanthropogenic groundwater in parts of the Southwest where ET approaches a factor of 40. Higher ClO4- concentrations in uncontaminated groundwater could occur in recharge beneath arid areas where ET is greater than 40, where long-term accumulations of atmospheric salts are leached suddenly from dry soils, or where other (nonatmospheric) natural sources of ClO/4- exist.
Pham, Toan; Tran, Kenneth; Mellor, Kimberley M; Hickey, Anthony; Power, Amelia; Ward, Marie-Louise; Taberner, Andrew; Han, June-Chiew; Loiselle, Denis
2017-07-15
The heat of activation of cardiac muscle reflects the metabolic cost of restoring ionic homeostasis following a contraction. The accuracy of its measurement depends critically on the abolition of crossbridge cycling. We abolished crossbridge activity in isolated rat ventricular trabeculae by use of blebbistatin, an agent that selectively inhibits myosin II ATPase. We found cardiac activation heat to be muscle length independent and to account for 15-20% of total heat production at body temperature. We conclude that it can be accurately estimated at minimal muscle length. Activation heat arises from two sources during the contraction of striated muscle. It reflects the metabolic expenditure associated with Ca 2+ pumping by the sarcoplasmic reticular Ca 2+ -ATPase and Ca 2+ translocation by the Na + /Ca 2+ exchanger coupled to the Na + ,K + -ATPase. In cardiac preparations, investigators are constrained in estimating its magnitude by reducing muscle length to the point where macroscopic twitch force vanishes. But this experimental protocol has been criticised since, at zero force, the observed heat may be contaminated by residual crossbridge cycling activity. To eliminate this concern, the putative thermal contribution from crossbridge cycling activity must be abolished, at least at minimal muscle length. We achieved this using blebbistatin, a selective inhibitor of myosin II ATPase. Using a microcalorimeter, we measured the force production and heat output, as functions of muscle length, of isolated rat trabeculae from both ventricles contracting isometrically at 5 Hz and at 37°C. In the presence of blebbistatin (15 μmol l -1 ), active force was zero but heat output remained constant, at all muscle lengths. Activation heat measured in the presence of blebbistatin was not different from that estimated from the intercept of the heat-stress relation in its absence. We thus reached two conclusions. First, activation heat is independent of muscle length. Second, residual crossbridge heat is negligible at zero active force; hence, the intercept of the cardiac heat-force relation provides an estimate of activation heat uncontaminated by crossbridge cycling. Both results resolve long-standing disputes in the literature. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Li, Liu; Song, Hao; Zhong, Liang; Yang, Rong; Yang, Xiao-Qun; Jiang, Kai-Ling; Liu, Bei-Zhong
2015-01-01
Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). With the application of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), APL becomes one of best prognosis of leukemia. However, ATRA and ATO are not effective against all APLs. Therefore, a new strategy for APL treatment is necessary. Here, we investigated whether lithium chloride (LiCl), a drug used for the treatment of mental illness, could promote apoptosis in human leukemia NB4 cells. We observed that treatment with LiCl significantly accelerated apoptosis in NB4 cells and led to cell cycle arrest at G2/M phase. Moreover, LiCl significantly increased the level of Ser9-phosphorylated glycogen synthase kinase 3β(p-GSK-3β), and decreased the level of Akt1 protein in a dose-dependent manner. In addition, LiCl inhibition of c-Myc also enhanced cell death with a concomitant increase in β-catnin. Taken together, these findings demonstrated that LiCl promoted apoptosis in NB4 cells through the Akt signaling pathway and that G2/M phase arrest was induced by increase of p-GSK-3β(S9).
Pacary, Emilie; Tixier, Emmanuelle; Coulet, Florence; Roussel, Simon; Petit, Edwige; Bernaudin, Myriam
2007-07-01
This study demonstrates that the Rho-kinase (ROCK) inhibitor, Y-27632, potentiates not only the effect of cobalt chloride (CoCl(2)) but also that of deferoxamine, another HIF-1 inducer, on mesenchymal stem cell (MSC) neuronal differentiation. HIF-1 is essential for CoCl(2)+/-Y-27632-induced MSC neuronal differentiation, since agents inhibiting HIF-1 abolish the changes of morphology and cell cycle arrest-related gene or protein expressions (p21, cyclin D1) and the increase of neuronal marker expressions (Tuj1, NSE). Y-27632 potentiates the CoCl(2)-induced decrease of cyclin D1 and nestin expressions, the increase of HIF-1 activation and EPO expression, and decreases pVHL expression. Interestingly, CoCl(2) decreases RhoA expression, an effect potentiated by Y-27632, revealing crosstalk between HIF-1 and RhoA/ROCK pathways. Moreover, we demonstrate a synergistic effect of CoCl(2) and Y-27632 on neurosphere differentiation into neurons and PC12 neurite outgrowth underlining that a co-treatment targeting both HIF-1 and ROCK pathways might be relevant to differentiate stem cells into neurons.
NASA Astrophysics Data System (ADS)
Farnam, Yaghoob
Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical phase change creating cracks and damage to concrete under freezing and thawing. In a cementitious system exposed to CaCl2, the chemical phase change is mainly due to the presence of calcium hydroxide (CH) in concrete. Calcium hydroxide can react with CaCl2 solution producing calcium oxychloride. Calcium oxychloride forms at room temperature (i.e., 23 °C) for CaCl 2 salt concentrations at or above ~ 12 % by mass in the solution creating expansion and degradation in concrete. In a cementitious system exposed to MgCl2, it was observed that MgCl2 can be entirely consumed in concrete by reacting with CH and produce CaCl2. As such, it followed a response that is more similar to the concrete-CaCl2-water system than that of the MgCl2-water phase diagram. Formation of calcium/magnesium oxychloride is most likely the main source of the chemical phase change (which can cause damage) in concrete exposed to MgCl2. During the LGCC testing for CaCl2 and MgCl2 salts, it was found that the chemical reactions occur rapidly (~ 10 min) and can cause a significant decrease in subsequent fluid ingress into exposed concrete in comparison to NaCl. Isothermal calorimetry, fluid absorption, oxygen permeability, oxygen diffusivity, and X-ray fluorescence testing showed that the formation of calcium oxychloride in concrete exposed to CaCl2 and MgCl 2 can block or fill in the concrete pores on the surface of the specimen; thereby decreasing the CaCl2 and MgCl2 fluid ingress into the concrete. To mitigate the damage and degradation due to the chemical phase transition, two approaches were evaluated: (1) use of a cementitious binder that does not react with salts, and (2) use of a new practical technology to melt ice and snow, thereby decreasing the demand for deicing salt usage. For the first approach, carbonated calcium silicate based cement (CCSC) was used and the CCSC mortar showed a promising performance and resistance to salt degradation than an ordinary portland mortar does. For the second approach, phase change materials (PCM), including paraffin oil and methyl laurate, were used to store heat in concrete elements and release the stored heat during cooling to reduce ice formation and snow accumulation on the surface of concrete. PCM approach also showed a promising performance in melting ice and snow, thereby decreasing the demand for salt usage.
Resistance characterization of nickel sulfide electrodes in LiCl-containing molten salt electrolytes
NASA Astrophysics Data System (ADS)
Redey, L.; Vissers, D. R.
The electrode kinetics of a high area loading: (545.6 mAh/cm(2) for the Ni reversible NiS transition), porous nickel sulfide electrode were studied under one-dimensional current distribution in a half-cell-type test arrangement. Area-specific resistance values (ASR/sub t/) were measured under wide variety of conditions: temperature, 450 to 490(0)C; current density, 0.01 to 3A/cm(2); and mechanical stress, 0.11 to 1.68 kg/cm(2). The ASR/sub t/ values were used for quantitative characterization of the ohmic-related and electrochemical-related resistances of the electrode bed. When cycled in the Ni reversible NiS transition range, the electrode showed good utilization and excellent power characteristics in an all-lithium-cation (LiF-LiCl-LiBr) electrolyte. Capability of continuous cycling at high rates (up to 800 mA/cm(12) was demonstrated. The performance of the electrode was also found to be dependent on the mechanical stress developed in the electrode.
Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.
Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H
1997-08-01
A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.
Laranjeiro, Ricardo; Tamai, T Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-04-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles.
Tamai, T. Katherine; Letton, William; Hamilton, Noémie; Whitmore, David
2018-01-01
Studies from a number of model systems have shown that the circadian clock controls expression of key cell cycle checkpoints, thus providing permissive or inhibitory windows in which specific cell cycle events can occur. However, a major question remains: Is the clock actually regulating the cell cycle through such a gating mechanism or, alternatively, is there a coupling process that controls the speed of cell cycle progression? Using our light-responsive zebrafish cell lines, we address this issue directly by synchronizing the cell cycle in culture simply by changing the entraining light-dark (LD) cycle in the incubator without the need for pharmacological intervention. Our results show that the cell cycle rapidly reentrains to a shifted LD cycle within 36 h, with changes in p21 expression and subsequent S phase timing occurring within the first few hours of resetting. Reentrainment of mitosis appears to lag S phase resetting by 1 circadian cycle. The range of entrainment of the zebrafish clock to differing LD cycles is large, from 16 to 32 hour periods. We exploited this feature to explore cell cycle entrainment at both the population and single cell levels. At the population level, cell cycle length is shortened or lengthened under corresponding T-cycles, suggesting that a 1:1 coupling mechanism is capable of either speeding up or slowing down the cell cycle. However, analysis at the single cell level reveals that this, in fact, is not true and that a gating mechanism is the fundamental method of timed cell cycle regulation in zebrafish. Cell cycle length at the single cell level is virtually unaltered with varying T-cycles. PMID:29444612