Sample records for cycle modeling studies

  1. Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China

    NASA Astrophysics Data System (ADS)

    Hu, B. X.

    2015-12-01

    It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.

  2. Simulation of groundwater flow and evaluation of carbon sink in Lijiang Rivershed, China

    NASA Astrophysics Data System (ADS)

    Hu, Bill X.; Cao, Jianhua; Tong, Juxiu; Gao, Bing

    2016-04-01

    It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.

  3. Field Investigation and Modeling Development for Hydrological and Carbon Cycles in Southwest Karst Region of China

    NASA Astrophysics Data System (ADS)

    Hu, X. B.

    2017-12-01

    It is required to understanding water cycle and carbon cycle processes for water resource management and pollution prevention and global warming influence in southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models. Our study focus on the karst springshed in Mao village, the mechanisms coupling carbon cycle and water cycle are explored. This study provides basic theory and simulation method for water resource management and groundwater pollution prevention in China karst region.

  4. A model for hormonal control of the menstrual cycle: structural consistency but sensitivity with regard to data.

    PubMed

    Selgrade, J F; Harris, L A; Pasteur, R D

    2009-10-21

    This study presents a 13-dimensional system of delayed differential equations which predicts serum concentrations of five hormones important for regulation of the menstrual cycle. Parameters for the system are fit to two different data sets for normally cycling women. For these best fit parameter sets, model simulations agree well with the two different data sets but one model also has an abnormal stable periodic solution, which may represent polycystic ovarian syndrome. This abnormal cycle occurs for the model in which the normal cycle has estradiol levels at the high end of the normal range. Differences in model behavior are explained by studying hysteresis curves in bifurcation diagrams with respect to sensitive model parameters. For instance, one sensitive parameter is indicative of the estradiol concentration that promotes pituitary synthesis of a large amount of luteinizing hormone, which is required for ovulation. Also, it is observed that models with greater early follicular growth rates may have a greater risk of cycling abnormally.

  5. Research on Correlation between Vehicle Cycle and Engine Cycle in Heavy-duty commercial vehicle

    NASA Astrophysics Data System (ADS)

    lin, Chen; Zhong, Wang; Shuai, Liu

    2017-12-01

    In order to study the correlation between vehicle cycle and engine cycle in heavy commercial vehicles, the conversion model of vehicle cycle to engine cycle is constructed based on the vehicle power system theory and shift strategy, which considers the verification on diesel truck. The results show that the model has high rationality and reliability in engine operation. In the acceleration process of high speed, the difference of model gear selection leads to the actual deviation. Compared with the drum test, the engine speed distribution obtained by the model deviates to right, which fits to the lower grade. The grade selection has high influence on the model.

  6. Influence of Sea Surface Temperature, Tropospheric Humidity and Lapse Rate on the Annual Cycle of the Clear-Sky Greenhouse Effect

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    2000-01-01

    The implication of this work will provide modeling study a surrogate of annual cycle of the greenhouse effect. For example, the model should be able to simulate the annual cycle before it can be used for global change study.

  7. Promoting students’ mathematical problem-solving skills through 7e learning cycle and hypnoteaching model

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Suryadi, D.; Dahlan, J. A.

    2018-01-01

    The aim of this research was to find out whether 7E learning cycle under hypnoteaching model can enhance students’ mathematical problem-solving skill. This research was quasi-experimental study. The design of this study was pretest-posttest control group design. There were two groups of sample used in the study. The experimental group was given 7E learning cycle under hypnoteaching model, while the control group was given conventional model. The population of this study was the student of mathematics education program at one university in Tangerang. The statistical analysis used to test the hypothesis of this study were t-test and Mann-Whitney U. The result of this study show that: (1) The students’ achievement of mathematical problem solving skill who obtained 7E learning cycle under hypnoteaching model are higher than the students who obtained conventional model; (2) There are differences in the students’ enhancement of mathematical problem-solving skill based on students’ prior mathematical knowledge (PMK) category (high, middle, and low).

  8. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.

    PubMed

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-10-03

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.

  9. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy

    PubMed Central

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-01-01

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242

  10. Probabilistic material strength degradation model for Inconel 718 components subjected to high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    This report presents the results of both the fifth and sixth year effort of a research program conducted for NASA-LeRC by The University of Texas at San Antonio (UTSA). The research included on-going development of methodology for a probabilistic material strength degradation model. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Statistical analysis was conducted on experimental Inconel 718 data obtained from the open literature. This analysis provided regression parameters for use as the model's empirical material constants, thus calibrating the model specifically for Inconel 718. Model calibration was carried out for five variables, namely, high temperature, high-cycle and low-cycle mechanical fatigue, creep and thermal fatigue. Methodology to estimate standard deviations of these material constants for input into the probabilistic material strength model was developed. Using an updated version of PROMISS, entitled PROMISS93, a sensitivity study for the combined effects of high-cycle mechanical fatigue, creep and thermal fatigue was performed. Then using the current version of PROMISS, entitled PROMISS94, a second sensitivity study including the effect of low-cycle mechanical fatigue, as well as, the three previous effects was performed. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing a combination of high-cycle mechanical fatigue and high temperature effects by model to the combination by experiment were conducted. Thus, for Inconel 718, the basic model assumption of independence between effects was evaluated. Results from this limited verification study strongly supported this assumption.

  11. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  12. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2014-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  13. Spectral analysis and markov switching model of Indonesia business cycle

    NASA Astrophysics Data System (ADS)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  14. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for themore » discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.« less

  15. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.

    2015-06-25

    Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO 2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate-carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate-carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling effortsmore » and provide suggestions for how to move forward.« less

  16. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor

    USGS Publications Warehouse

    Reed, Sasha C.; Yang, Xiaojuan; Thornton, Peter E.

    2015-01-01

    Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate–carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate–carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward.

  17. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    PubMed Central

    D’Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J.; Pearce, Patrice; Fenton, Andre A.; MacLusky, Neil J.; Scharfman, Helen E.

    2015-01-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. PMID:25864929

  18. Towards Predicting the Response of a Solid Tumour to Chemotherapy and Radiotherapy Treatments: Clinical Insights from a Computational Model

    PubMed Central

    Powathil, Gibin G.; Adamson, Douglas J. A.; Chaplain, Mark A. J.

    2013-01-01

    In this paper we use a hybrid multiscale mathematical model that incorporates both individual cell behaviour through the cell-cycle and the effects of the changing microenvironment through oxygen dynamics to study the multiple effects of radiation therapy. The oxygenation status of the cells is considered as one of the important prognostic markers for determining radiation therapy, as hypoxic cells are less radiosensitive. Another factor that critically affects radiation sensitivity is cell-cycle regulation. The effects of radiation therapy are included in the model using a modified linear quadratic model for the radiation damage, incorporating the effects of hypoxia and cell-cycle in determining the cell-cycle phase-specific radiosensitivity. Furthermore, after irradiation, an individual cell's cell-cycle dynamics are intrinsically modified through the activation of pathways responsible for repair mechanisms, often resulting in a delay/arrest in the cell-cycle. The model is then used to study various combinations of multiple doses of cell-cycle dependent chemotherapies and radiation therapy, as radiation may work better by the partial synchronisation of cells in the most radiosensitive phase of the cell-cycle. Moreover, using this multi-scale model, we investigate the optimum sequencing and scheduling of these multi-modality treatments, and the impact of internal and external heterogeneity on the spatio-temporal patterning of the distribution of tumour cells and their response to different treatment schedules. PMID:23874170

  19. Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading

    NASA Astrophysics Data System (ADS)

    Belyaev, Fedor S.; Evard, Margarita E.; Volkov, Aleksandr E.

    2018-05-01

    A microstructural model of shape memory alloys (SMA) describing their deformation and fatigue fracture is presented. A new criterion of fracture has been developed which takes into account the effect of hydrostatic pressure, deformation defects and material damage. It is shown that the model can describe the fatigue fracture of SMA under various thermomechanical cycling regimes. Results of calculating the number of cycles to failure at thermocycling under a constant stress, at symmetric two-sided cyclic deformation, at straining-unloading cycles, at cycling in the regime of the thermodynamic cycles of a SMA working body in the hard (strain controlled) and soft (stress controlled) working cycles, is studied. Results of calculating the number of cycles to failure are presented for different parameters of these cycles.

  20. Cycling Empirical Antibiotic Therapy in Hospitals: Meta-Analysis and Models

    PubMed Central

    Abel, Sören; Viechtbauer, Wolfgang; Bonhoeffer, Sebastian

    2014-01-01

    The rise of resistance together with the shortage of new broad-spectrum antibiotics underlines the urgency of optimizing the use of available drugs to minimize disease burden. Theoretical studies suggest that coordinating empirical usage of antibiotics in a hospital ward can contain the spread of resistance. However, theoretical and clinical studies came to different conclusions regarding the usefulness of rotating first-line therapy (cycling). Here, we performed a quantitative pathogen-specific meta-analysis of clinical studies comparing cycling to standard practice. We searched PubMed and Google Scholar and identified 46 clinical studies addressing the effect of cycling on nosocomial infections, of which 11 met our selection criteria. We employed a method for multivariate meta-analysis using incidence rates as endpoints and find that cycling reduced the incidence rate/1000 patient days of both total infections by 4.95 [9.43–0.48] and resistant infections by 7.2 [14.00–0.44]. This positive effect was observed in most pathogens despite a large variance between individual species. Our findings remain robust in uni- and multivariate metaregressions. We used theoretical models that reflect various infections and hospital settings to compare cycling to random assignment to different drugs (mixing). We make the realistic assumption that therapy is changed when first line treatment is ineffective, which we call “adjustable cycling/mixing”. In concordance with earlier theoretical studies, we find that in strict regimens, cycling is detrimental. However, in adjustable regimens single resistance is suppressed and cycling is successful in most settings. Both a meta-regression and our theoretical model indicate that “adjustable cycling” is especially useful to suppress emergence of multiple resistance. While our model predicts that cycling periods of one month perform well, we expect that too long cycling periods are detrimental. Our results suggest that “adjustable cycling” suppresses multiple resistance and warrants further investigations that allow comparing various diseases and hospital settings. PMID:24968123

  1. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    NASA Technical Reports Server (NTRS)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  2. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle

    NASA Astrophysics Data System (ADS)

    Li, Fei; Subramanian, Kartik; Chen, Minghan; Tyson, John J.; Cao, Yang

    2016-06-01

    The asymmetric cell division cycle in Caulobacter crescentus is controlled by an elaborate molecular mechanism governing the production, activation and spatial localization of a host of interacting proteins. In previous work, we proposed a deterministic mathematical model for the spatiotemporal dynamics of six major regulatory proteins. In this paper, we study a stochastic version of the model, which takes into account molecular fluctuations of these regulatory proteins in space and time during early stages of the cell cycle of wild-type Caulobacter cells. We test the stochastic model with regard to experimental observations of increased variability of cycle time in cells depleted of the divJ gene product. The deterministic model predicts that overexpression of the divK gene blocks cell cycle progression in the stalked stage; however, stochastic simulations suggest that a small fraction of the mutants cells do complete the cell cycle normally.

  3. A Bayesian Joint Model of Menstrual Cycle Length and Fecundity

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Germaine M. Buck; Louis, Thomas A.

    2015-01-01

    Summary Menstrual cycle length (MCL) has been shown to play an important role in couple fecundity, which is the biologic capacity for reproduction irrespective of pregnancy intentions. However, a comprehensive assessment of its role requires a fecundity model that accounts for male and female attributes and the couple’s intercourse pattern relative to the ovulation day. To this end, we employ a Bayesian joint model for MCL and pregnancy. MCLs follow a scale multiplied (accelerated) mixture model with Gaussian and Gumbel components; the pregnancy model includes MCL as a covariate and computes the cycle-specific probability of pregnancy in a menstrual cycle conditional on the pattern of intercourse and no previous fertilization. Day-specific fertilization probability is modeled using natural, cubic splines. We analyze data from the Longitudinal Investigation of Fertility and the Environment Study (the LIFE Study), a couple based prospective pregnancy study, and find a statistically significant quadratic relation between fecundity and menstrual cycle length, after adjustment for intercourse pattern and other attributes, including male semen quality, both partner’s age, and active smoking status (determined by baseline cotinine level 100ng/mL). We compare results to those produced by a more basic model and show the advantages of a more comprehensive approach. PMID:26295923

  4. Weekly Cycles in Daily Report Data: An Overlooked Issue.

    PubMed

    Liu, Yu; West, Stephen G

    2016-10-01

    Daily diaries and other everyday experience methods are increasingly used to study relationships between two time-varying variables X and Y. Although daily data potentially often have weekly cyclical patterns (e.g., stress may be higher on weekdays and lower on weekends), the majority of daily diary studies have ignored this possibility. In this study, we investigated the effect of ignoring existing weekly cycles. We reanalyzed an empirical dataset (stress and alcohol consumption) and performed Monte Carlo simulations to investigate the impact of omitting weekly cycles. In the empirical dataset, ignoring cycles led to the inference of a significant within-person X-Y relation whereas modeling cycles suggested that this relationship did not exist. Simulation results indicated that ignoring cycles that existed in both X and Y led to bias in the estimated within-person X-Y relationship. The amount and direction of bias depended on the magnitude of the cycles, magnitude of the true within-person X-Y relation, and synchronization of the cycles. We encourage researchers conducting daily diary studies to address potential weekly cycles in their data. We provide guidelines for detecting and modeling cycles to remove their influence and discuss challenges of causal inference in daily experience studies. © 2015 Wiley Periodicals, Inc.

  5. Mathematical modeling and characteristic analysis for over-under turbine based combined cycle engine

    NASA Astrophysics Data System (ADS)

    Ma, Jingxue; Chang, Juntao; Ma, Jicheng; Bao, Wen; Yu, Daren

    2018-07-01

    The turbine based combined cycle engine has become the most promising hypersonic airbreathing propulsion system for its superiority of ground self-starting, wide flight envelop and reusability. The simulation model of the turbine based combined cycle engine plays an important role in the research of performance analysis and control system design. In this paper, a turbine based combined cycle engine mathematical model is built on the Simulink platform, including a dual-channel air intake system, a turbojet engine and a ramjet. It should be noted that the model of the air intake system is built based on computational fluid dynamics calculation, which provides valuable raw data for modeling of the turbine based combined cycle engine. The aerodynamic characteristics of turbine based combined cycle engine in turbojet mode, ramjet mode and mode transition process are studied by the mathematical model, and the influence of dominant variables on performance and safety of the turbine based combined cycle engine is analyzed. According to the stability requirement of thrust output and the safety in the working process of turbine based combined cycle engine, a control law is proposed that could guarantee the steady output of thrust by controlling the control variables of the turbine based combined cycle engine in the whole working process.

  6. A delay differential equation model of follicle waves in women.

    PubMed

    Panza, Nicole M; Wright, Andrew A; Selgrade, James F

    2016-01-01

    This article presents a mathematical model for hormonal regulation of the menstrual cycle which predicts the occurrence of follicle waves in normally cycling women. Several follicles of ovulatory size that develop sequentially during one menstrual cycle are referred to as follicle waves. The model consists of 13 nonlinear, delay differential equations with 51 parameters. Model simulations exhibit a unique stable periodic cycle and this menstrual cycle accurately approximates blood levels of ovarian and pituitary hormones found in the biological literature. Numerical experiments illustrate that the number of follicle waves corresponds to the number of rises in pituitary follicle stimulating hormone. Modifications of the model equations result in simulations which predict the possibility of two ovulations at different times during the same menstrual cycle and, hence, the occurrence of dizygotic twins via a phenomenon referred to as superfecundation. Sensitive parameters are identified and bifurcations in model behaviour with respect to parameter changes are discussed. Studying follicle waves may be helpful for improving female fertility and for understanding some aspects of female reproductive ageing.

  7. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  8. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor.

    PubMed

    Reed, Sasha C; Yang, Xiaojuan; Thornton, Peter E

    2015-10-01

    324 I. 324 II. 325 III. 326 IV. 327 328 References 328 SUMMARY: Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate-carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate-carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  9. Estimating the boundaries of a limit cycle in a 2D dynamical system using renormalization group

    NASA Astrophysics Data System (ADS)

    Dutta, Ayan; Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.

    2018-04-01

    While the plausibility of formation of limit cycle has been a well studied topic in context of the Poincare-Bendixson theorem, studies on estimates in regard to the possible size and shape of the limit cycle seem to be scanty in the literature. In this paper we present a pedagogical study of some aspects of the size of this limit cycle using perturbative renormalization group by doing detailed and explicit calculations upto second order for the Selkov model for glycolytic oscillations. This famous model is well known to lead to a limit cycle for certain ranges of values of the parameters involved in the problem. Within the tenets of the approximations made, reasonable agreement with the numerical plots can be achieved.

  10. Optimization of automotive Rankine cycle waste heat recovery under various engine operating condition

    NASA Astrophysics Data System (ADS)

    Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi

    2017-02-01

    An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.

  11. Moving forward in circles: challenges and opportunities in modelling population cycles.

    PubMed

    Barraquand, Frédéric; Louca, Stilianos; Abbott, Karen C; Cobbold, Christina A; Cordoleani, Flora; DeAngelis, Donald L; Elderd, Bret D; Fox, Jeremy W; Greenwood, Priscilla; Hilker, Frank M; Murray, Dennis L; Stieha, Christopher R; Taylor, Rachel A; Vitense, Kelsey; Wolkowicz, Gail S K; Tyson, Rebecca C

    2017-08-01

    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer-resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Moving forward in circles: Challenges and opportunities in modeling population cycles

    USGS Publications Warehouse

    Barraquand, Frederic; Louca, Stilianos; Abbott, Karen C; Cobbold, Christina A; Cordoleani, Flora; DeAngelis, Donald L.; Elderd, Bret D; Fox, Jeremy W; Greenwood, Priscilla; Hilker, Frank M; Murray, Dennis; Stieha, Christopher R; Taylor, Rachel A; Vitense, Kelsey; Wolkowicz, Gail; Tyson, Rebecca C

    2017-01-01

    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research.

  13. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    NASA Astrophysics Data System (ADS)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  14. Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.

    PubMed

    Fintelman, D M; Sterling, M; Hemida, H; Li, F-X

    2014-06-03

    The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Individualized decision-making in IVF: calculating the chances of pregnancy.

    PubMed

    van Loendersloot, L L; van Wely, M; Repping, S; Bossuyt, P M M; van der Veen, F

    2013-11-01

    Are we able to develop a model to calculate the chances of pregnancy prior to the start of the first IVF cycle as well as after one or more failed cycles? Our prediction model enables the accurate individualized calculation of the probability of an ongoing pregnancy with IVF. To improve counselling, patient selection and clinical decision-making in IVF, a number of prediction models have been developed. These models are of limited use as they were developed before current clinical and laboratory protocols were established. This was a cohort study. The development set included 2621 cycles in 1326 couples who had been treated with IVF or ICSI between January 2001 and July 2009. The validation set included additional data from 515 cycles in 440 couples treated between August 2009 and April 2011. The outcome of interest was an ongoing pregnancy after transfer of fresh or frozen-thawed embryos from the same stimulated IVF cycle. If a couple became pregnant after an IVF/ICSI cycle, the follow-up was at a gestational age of at least 11 weeks. Women treated with IVF or ICSI between January 2001 and April 2011 in a university hospital. IVF/ICSI cycles were excluded in the case of oocyte or embryo donation, surgically retrieved spermatozoa, patients positive for human immunodeficiency virus, modified natural IVF and cycles cancelled owing to poor ovarian stimulation, ovarian hyperstimulation syndrome or other unexpected medical or non-medical reasons. Thirteen variables were included in the final prediction model. For all cycles, these were female age, duration of subfertility, previous ongoing pregnancy, male subfertility, diminished ovarian reserve, endometriosis, basal FSH and number of failed IVF cycles. After the first cycle: fertilization, number of embryos, mean morphological score per Day 3 embryo, presence of 8-cell embryos on Day 3 and presence of morulae on Day 3 were also included. In validation, the model had moderate discriminative capacity (c-statistic 0.68, 95% confidence interval: 0.63-0.73) but calibrated well, with a range from 0.01 to 0.56 in calculated probabilities. In our study, the outcome of interest was ongoing pregnancy. Live birth may have been a more appropriate outcome, although only 1-2% of all ongoing pregnancies result in late miscarriage or stillbirth. The model was based on data from a single centre. The IVF model presented here is the first to calculate the chances of an ongoing pregnancy with IVF, both for the first cycle and after any number of failed cycles. The generalizability of the model to other clinics has to be evaluated more extensively in future studies (geographical validation). Centres with higher or lower success rates could use the model, after recalibration, by adjusting the intercept to reflect the IVF success rates in their centre. This project was funded by the NutsOhra foundation (Grant 1004-179). The NutsOhra foundation had no role in the development of our study, in the collection, analysis and interpretation of data; in writing of the manuscript, and in the decision to submit the manuscript for publication. There were no competing interests.

  16. Single generation cycles and delayed feedback cycles are not separate phenomena.

    PubMed

    Pfaff, T; Brechtel, A; Drossel, B; Guill, C

    2014-12-01

    We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cycling injury risk in London: A case-control study exploring the impact of cycle volumes, motor vehicle volumes, and road characteristics including speed limits.

    PubMed

    Aldred, Rachel; Goodman, Anna; Gulliver, John; Woodcock, James

    2018-08-01

    Cycling injury risk is an important topic, but few studies explore cycling risk in relation to exposure. This is largely because of a lack of exposure data, in other words how much cycling is done at different locations. This paper helps to fill this gap. It reports a case-control study of cycling injuries in London in 2013-2014, using modelled cyclist flow data alongside datasets covering some characteristics of the London route network. A multilevel binary logistic regression model is used to investigate factors associated with injury risk, comparing injury sites with control sites selected using the modelled flow data. Findings provide support for 'safety in numbers': for each increase of a natural logarithmic unit (2.71828) in cycling flows, an 18% decrease in injury odds was found. Conversely, increased motor traffic volume is associated with higher odds of cycling injury, with one logarithmic unit increase associated with a 31% increase in injury odds. Twenty-mile per hour compared with 30mph speed limits were associated with 21% lower injury odds. Residential streets were associated with reduced injury odds, and junctions with substantially higher injury odds. Bus lanes do not affect injury odds once other factors are controlled for. These data suggest that speed limits of 20 mph may reduce cycling injury risk, as may motor traffic reduction. Further, building cycle routes that generate new cycle trips should generate 'safety in numbers' benefits. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Effects of model structural uncertainty on carbon cycle projections: biological nitrogen fixation as a case study

    NASA Astrophysics Data System (ADS)

    Wieder, William R.; Cleveland, Cory C.; Lawrence, David M.; Bonan, Gordon B.

    2015-04-01

    Uncertainties in terrestrial carbon (C) cycle projections increase uncertainty of potential climate feedbacks. Efforts to improve model performance often include increased representation of biogeochemical processes, such as coupled carbon-nitrogen (N) cycles. In doing so, models are becoming more complex, generating structural uncertainties in model form that reflect incomplete knowledge of how to represent underlying processes. Here, we explore structural uncertainties associated with biological nitrogen fixation (BNF) and quantify their effects on C cycle projections. We find that alternative plausible structures to represent BNF result in nearly equivalent terrestrial C fluxes and pools through the twentieth century, but the strength of the terrestrial C sink varies by nearly a third (50 Pg C) by the end of the twenty-first century under a business-as-usual climate change scenario representative concentration pathway 8.5. These results indicate that actual uncertainty in future C cycle projections may be larger than previously estimated, and this uncertainty will limit C cycle projections until model structures can be evaluated and refined.

  19. Alternative ways of using field-based estimates to calibrate ecosystem models and their implications for ecosystem carbon cycle studies

    Treesearch

    Y. He; Q. Zhuang; A.D. McGuire; Y. Liu; M. Chen

    2013-01-01

    Model-data fusion is a process in which field observations are used to constrain model parameters. How observations are used to constrain parameters has a direct impact on the carbon cycle dynamics simulated by ecosystem models. In this study, we present an evaluation of several options for the use of observations inmodeling regional carbon dynamics and explore the...

  20. Predictors and Characteristics of Erikson's Life Cycle Model Among Men: A 32-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Westermeyer, Jerry F.

    2004-01-01

    To assess Erikson's life cycle model, 86 men, initially selected for health, were prospectively studied at age 21, and reassessed 32 years later at age 53. Using the Vaillant and Milofsky (1980) modification of Erikson's model, 48 men (56%) achieved generativity, an advanced developmental stage, at follow-up. Results generally support Erikson's…

  1. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    PubMed Central

    Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-01-01

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors. PMID:28773064

  2. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    PubMed

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  3. A comparison of major petroleum life cycle models

    EPA Science Inventory

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attemptin...

  4. The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration.

    PubMed

    Osifo, Peter O; Neomagus, Hein W J P; Everson, Raymond C; Webster, Athena; vd Gun, Marius A

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  5. Modeling 400-500-kyr Pleistocene carbon isotope cyclicity through variations in the dissolved organic carbon pool

    NASA Astrophysics Data System (ADS)

    Ma, Wentao; Wang, Pinxian; Tian, Jun

    2017-05-01

    The carbon isotope (δ13C) record from the Plio-Pleistocene shows prominent 400-kyr cycles with maximum values at eccentricity minima during the Pliocene. The period extends to 500 kyr in the Pleistocene after 1.6 Ma. Five δ13C maxima occurred at 0.2, 0.5, 1.0, 1.5 and 1.9 Ma over the last 2 Ma. Although several hypotheses have been suggested to explain why the 400-500-kyr cycles are so strong in δ13C records and how they may have originated, the mechanism is still not clear. The aim of this study was to test the dissolved organic carbon (DOC) hypothesis, which was proposed recently to explain this 400-500-kyr cycle in deeper time. We used an intermediate complexity box model that is computationally efficient for studies involving longer timescales. The model incorporates sophisticated microbial processes, dividing the oceanic carbon cycle into a rapid and a slow cycle. The model result suggests that when more nutrients enter the surface ocean, the rapid carbon cycle is more active, and less refractory DOC (RDOC) is produced. The opposite sequence occurs when fewer nutrients enter the ocean. The modeled RDOC concentration and the δ13C of dissolved inorganic carbon (DIC) are anti-correlated with riverine nutrient input. According to mass conservation, the release of isotopically lighter carbon from the RDOC pool leads to lighter DIC δ13C while an increase in the RDOC pool enriches it. The transient simulations produced a one-to-one correspondence between modeled and measured δ13C. This study supports the hypothesis that chemical weathering-induced variations in the DOC pool act as a pacemaker for δ13C changes over 400-500-kyr cycles.

  6. Effect of intra-aortic balloon pump on coronary blood flow during different balloon cycles support: A computer study.

    PubMed

    Aye, Thin Pa Pa; Htet, Zwe Lin; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    Intra-aortic balloon pump (IABP) has been used in clinical treatment as a mechanical circulatory support device for patients with heart failure. A computer model is used to study the effect on coronary blood flow (CBF) with different balloon cycles under both normal and pathological conditions. The model of cardiovascular and IABP is developed by using MATLAB SIMULINK. The effect on coronary blood flow has been studied under both normal and pathological conditions using different balloon cycles (balloon off; 1:4; 1:2; 1:1). A pathological heart is implemented by reducing the left ventricular contractility. The result of this study shows that the rate of balloon cycles is related to the level of coronary blood flow.

  7. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  8. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.

    PubMed

    Risal, Sanjiv; Adhikari, Deepak; Liu, Kui

    2016-01-01

    Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.

  9. Numerical Study of the Role of Shallow Convection in Moisture Transport and Climate

    NASA Technical Reports Server (NTRS)

    Seaman, Nelson L.; Stauffer, David R.; Munoz, Ricardo C.

    2001-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins of the Southern Great Plains (SGP) using a 3-D mesoscale model, the PSU/NCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. At the beginning of the study, it was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having high-quality parameterizations for the key physical processes controlling the water cycle. These included a detailed land-surface parameterization (the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) sub-model of Wetzel and Boone), an advanced boundary-layer parameterization (the 1.5-order turbulent kinetic energy (TKE) predictive scheme of Shafran et al.), and a more complete shallow convection parameterization (the hybrid-closure scheme of Deng et al.) than are available in most current models. PLACE is a product of researchers working at NASA's Goddard Space Flight Center in Greenbelt, MD. The TKE and shallow-convection schemes are the result of model development at Penn State. The long-range goal is to develop an integrated suite of physical sub-models that can be used for regional and perhaps global climate studies of the water budget. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the SGP. These schemes have been tested extensively through the course of this study and the latter two have been improved significantly as a consequence.

  10. The Bern Simple Climate Model (BernSCM) v1.0: an extensible and fully documented open-source re-implementation of the Bern reduced-form model for global carbon cycle-climate simulations

    NASA Astrophysics Data System (ADS)

    Strassmann, Kuno M.; Joos, Fortunat

    2018-05-01

    The Bern Simple Climate Model (BernSCM) is a free open-source re-implementation of a reduced-form carbon cycle-climate model which has been used widely in previous scientific work and IPCC assessments. BernSCM represents the carbon cycle and climate system with a small set of equations for the heat and carbon budget, the parametrization of major nonlinearities, and the substitution of complex component systems with impulse response functions (IRFs). The IRF approach allows cost-efficient yet accurate substitution of detailed parent models of climate system components with near-linear behavior. Illustrative simulations of scenarios from previous multimodel studies show that BernSCM is broadly representative of the range of the climate-carbon cycle response simulated by more complex and detailed models. Model code (in Fortran) was written from scratch with transparency and extensibility in mind, and is provided open source. BernSCM makes scientifically sound carbon cycle-climate modeling available for many applications. Supporting up to decadal time steps with high accuracy, it is suitable for studies with high computational load and for coupling with integrated assessment models (IAMs), for example. Further applications include climate risk assessment in a business, public, or educational context and the estimation of CO2 and climate benefits of emission mitigation options.

  11. On the linkages between the global carbon-nitrogen-phosphorus cycles

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Mackenzie, Fred; Bouchez, Julien; Knutti, Reto

    2013-04-01

    State-of-the-art earth system models used for long-term climate projections are becoming ever more complex in terms of not only spatial resolution but also the number of processes. Biogeochemical processes are beginning to be incorporated into these models. The motivation of this study is to quantify how climate projections are influenced by biogeochemical feedbacks. In the climate modeling community, it is virtually accepted that climate-Carbon (C) cycle feedbacks accelerate the future warming (Cox et al. 2000; Friedlingstein et al. 2006). It has been demonstrated that the Nitrogen (N) cycle suppresses climate-C cycle feedbacks (Thornton et al. 2009). On the contrary, biogeochemical studies show that the coupled C-N-Phosphorus (P) cycles are intimately interlinked via biosphere and the N-P cycles amplify C cycle feedbacks (Ver et al. 1999). The question as to whether the N-P cycles enhance or attenuate C cycle feedbacks is debated and has a significant implication for projections of future climate. We delve into this problem by using the Terrestrial-Ocean-aTmosphere Ecosystem Model 3 (TOTEM3), a globally-aggregated C-N-P cycle box model. TOTEM3 is a process-based model that describes the biogeochemical reactions and physical transports involving these elements in the four domains of the Earth system: land, atmosphere, coastal ocean, and open ocean. TOTEM3 is a successor of earlier TOTEM models (Ver et al. 1999; Mackenzie et al. 2011). In our presentation, we provide an overview of fundamental features and behaviors of TOTEM3 such as the mass balance at the steady state and the relaxation time scales to various types of perturbation. We also show preliminary results to investigate how the N-P cycles influence the behavior of the C cycle. References Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. Journal of Climate, 19, 3337-3353. Mackenzie FT, De Carlo EH, Lerman A (2011) Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Wolanski E, McLusky DS (eds) Treatise on Estuarine and Coastal Science, vol 5. Academic Press, Waltham, pp 317-342. Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque JF, Feddema JJ, Lee YH (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences, 6, 2099-2120. Ver LMB, Mackenzie FT, Lerman A (1999) Biogeochemical responses of the carbon cycle to natural and human perturbations: Past, present, and future. American Journal of Science, 299, 762-801.

  12. Pedagogical View of Model Metabolic Cycles

    ERIC Educational Resources Information Center

    García-Herrero, Victor; Sillero, Antonio

    2015-01-01

    The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the "Mathematica" Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of…

  13. Integrated urban water cycle management: the UrbanCycle model.

    PubMed

    Hardy, M J; Kuczera, G; Coombes, P J

    2005-01-01

    Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.

  14. A STUDY ON TEMPORAL DISTRIBUTION OF FREIGHT TRANSPORTATION IN CONSIDERATION OF DAILY WORK-LIFE CYCLE

    NASA Astrophysics Data System (ADS)

    Kitaoka, Daiki; Hara, Hidetaka; Oeda, Yoshinao; Sumi, Tomonori

    As advanced freight service is demanded, the time related requirements fo r freight transportation becomes more and more significant. This study, focusing on temporal distribution of freight transportation responding to the travel time, developed a shipment departure time decision model for each item, aiming at quantitatively grasping social requirement in the time domain. The model takes account of the daily work cycle of both work cy cles of shippers and carriers along with the travel time. The proposed model has a similar structure as that derived from the previous studies taking account of the daily living cycle of individuals. This model properly reproduced temporal distribution of shipment departure time that changes depending on the length of necessary lead time for each item.

  15. The Adult Life Spiral: A Critique of the Life Cycle Model.

    ERIC Educational Resources Information Center

    Stein, Peter; Etzkowitz, Henry

    We can identify and describe alternate paths of adulthood utilizing data from interviews with single adults. Our review of major models used in adulthood studies suggests that a developmental model, such as Daniel Levinson's life cycle model, is too tied to the notion of the imminent unfolding of the life course. The age-stratification theory…

  16. Nonautonomous linear system of the terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2012-12-01

    Carbon cycle has been studied by uses of observation through various networks, field and laboratory experiments, and simulation models. Much less has been done on theoretical thinking and analysis to understand fundament properties of carbon cycle and then guide observatory, experimental, and modeling research. This presentation is to explore what would be the theoretical properties of terrestrial carbon cycle and how those properties can be used to make observatory, experimental, and modeling research more effective. Thousands of published data sets from litter decomposition and soil incubation studies almost all indicate that decay processes of litter and soil organic carbon can be well described by first order differential equations with one or more pools. Carbon pool dynamics in plants and soil after disturbances (e.g., wildfire, clear-cut of forests, and plows of soil for cropping) and during natural recovery or ecosystem restoration also exhibit characteristics of first-order linear systems. Thus, numerous lines of empirical evidence indicate that the terrestrial carbon cycle can be adequately described as a nonautonomous linear system. The linearity reflects the nature of the carbon cycle that carbon, once fixed by photosynthesis, is linearly transferred among pools within an ecosystem. The linear carbon transfer, however, is modified by nonlinear functions of external forcing variables. In addition, photosynthetic carbon influx is also nonlinearly influenced by external variables. This nonautonomous linear system can be mathematically expressed by a first-order linear ordinary matrix equation. We have recently used this theoretical property of terrestrial carbon cycle to develop a semi-analytic solution of spinup. The new methods have been applied to five global land models, including NCAR's CLM and CABLE models and can computationally accelerate spinup by two orders of magnitude. We also use this theoretical property to develop an analytic framework to decompose modeled carbon cycle into a few traceable components so as to facilitate model intercompsirosn, benchmark analysis, and data assimilation of global land models.

  17. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo

    2013-09-01

    This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.

  18. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  19. Intercomparison of the capabilities of simplified climate models to project the effects of aviation CO2 on climate

    NASA Astrophysics Data System (ADS)

    Khodayari, Arezoo; Wuebbles, Donald J.; Olsen, Seth C.; Fuglestvedt, Jan S.; Berntsen, Terje; Lund, Marianne T.; Waitz, Ian; Wolfe, Philip; Forster, Piers M.; Meinshausen, Malte; Lee, David S.; Lim, Ling L.

    2013-08-01

    This study evaluates the capabilities of the carbon cycle and energy balance treatments relative to the effect of aviation CO2 emissions on climate in several existing simplified climate models (SCMs) that are either being used or could be used for evaluating the effects of aviation on climate. Since these models are used in policy-related analyses, it is important that the capabilities of such models represent the state of understanding of the science. We compare the Aviation Environmental Portfolio Management Tool (APMT) Impacts climate model, two models used at the Center for International Climate and Environmental Research-Oslo (CICERO-1 and CICERO-2), the Integrated Science Assessment Model (ISAM) model as described in Jain et al. (1994), the simple Linear Climate response model (LinClim) and the Model for the Assessment of Greenhouse-gas Induced Climate Change version 6 (MAGICC6). In this paper we select scenarios to illustrate the behavior of the carbon cycle and energy balance models in these SCMs. This study is not intended to determine the absolute and likely range of the expected climate response in these models but to highlight specific features in model representations of the carbon cycle and energy balance models that need to be carefully considered in studies of aviation effects on climate. These results suggest that carbon cycle models that use linear impulse-response-functions (IRF) in combination with separate equations describing air-sea and air-biosphere exchange of CO2 can account for the dominant nonlinearities in the climate system that would otherwise not have been captured with an IRF alone, and hence, produce a close representation of more complex carbon cycle models. Moreover, results suggest that an energy balance model with a 2-box ocean sub-model and IRF tuned to reproduce the response of coupled Earth system models produces a close representation of the globally-averaged temperature response of more complex energy balance models.

  20. Latitude Distribution of Sunspots: Analysis Using Sunspot Data and a Dynamo Model

    NASA Astrophysics Data System (ADS)

    Mandal, Sudip; Karak, Bidya Binay; Banerjee, Dipankar

    2017-12-01

    In this paper, we explore the evolution of sunspot latitude distribution and explore its relations with the cycle strength. With the progress of the solar cycle, the distributions in two hemispheres from mid-latitudes propagate toward the equator and then (before the usual solar minimum) these two distributions touch each other. By visualizing the evolution of the distributions in two hemispheres, we separate the solar cycles by excluding this hemispheric overlap. From these isolated solar cycles in two hemispheres, we generate latitude distributions for each cycle, starting from cycle 8 to cycle 23. We find that the parameters of these distributions, namely the central latitude (C), width (δ), and height (H), evolve with the cycle number, and they show some hemispheric asymmetries. Although the asymmetries in these parameters persist for a few successive cycles, they get corrected within a few cycles, and the new asymmetries appear again. In agreement with the previous study, we find that distribution parameters are correlated with the strengths of the cycles, although these correlations are significantly different in two hemispheres. The general trend features, i.e., (i) stronger cycles that begin sunspot eruptions at relatively higher latitudes, and (ii) stronger cycles that have wider bands of sunspot emergence latitudes, are confirmed when combining the data from two hemispheres. We explore these features using a flux transport dynamo model with stochastic fluctuations. We find that these features are correctly reproduced in this model. The solar cycle evolution of the distribution center is also in good agreement with observations. Possible explanations of the observed features based on this dynamo model are presented.

  1. Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Cao, Long; Jiang, Jiu

    2017-12-01

    Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.

  2. Gender differences in recreational and transport cycling: a cross-sectional mixed-methods comparison of cycling patterns, motivators, and constraints

    PubMed Central

    2012-01-01

    Background Gender differences in cycling are well-documented. However, most analyses of gender differences make broad comparisons, with few studies modeling male and female cycling patterns separately for recreational and transport cycling. This modeling is important, in order to improve our efforts to promote cycling to women and men in countries like Australia with low rates of transport cycling. The main aim of this study was to examine gender differences in cycling patterns and in motivators and constraints to cycling, separately for recreational and transport cycling. Methods Adult members of a Queensland, Australia, community bicycling organization completed an online survey about their cycling patterns; cycling purposes; and personal, social and perceived environmental motivators and constraints (47% response rate). Closed and open-end questions were completed. Using the quantitative data, multivariable linear, logistic and ordinal regression models were used to examine associations between gender and cycling patterns, motivators and constraints. The qualitative data were thematically analyzed to expand upon the quantitative findings. Results In this sample of 1862 bicyclists, men were more likely than women to cycle for recreation and for transport, and they cycled for longer. Most transport cycling was for commuting, with men more likely than women to commute by bicycle. Men were more likely to cycle on-road, and women off-road. However, most men and women did not prefer to cycle on-road without designed bicycle lanes, and qualitative data indicated a strong preference by men and women for bicycle-only off-road paths. Both genders reported personal factors (health and enjoyment related) as motivators for cycling, although women were more likely to agree that other personal, social and environmental factors were also motivating. The main constraints for both genders and both cycling purposes were perceived environmental factors related to traffic conditions, motorist aggression and safety. Women, however, reported more constraints, and were more likely to report as constraints other environmental factors and personal factors. Conclusion Differences found in men’s and women’s cycling patterns, motivators and constraints should be considered in efforts to promote cycling, particularly in efforts to increase cycling for transport. PMID:22958280

  3. Gender differences in recreational and transport cycling: a cross-sectional mixed-methods comparison of cycling patterns, motivators, and constraints.

    PubMed

    Heesch, Kristiann C; Sahlqvist, Shannon; Garrard, Jan

    2012-09-08

    Gender differences in cycling are well-documented. However, most analyses of gender differences make broad comparisons, with few studies modeling male and female cycling patterns separately for recreational and transport cycling. This modeling is important, in order to improve our efforts to promote cycling to women and men in countries like Australia with low rates of transport cycling. The main aim of this study was to examine gender differences in cycling patterns and in motivators and constraints to cycling, separately for recreational and transport cycling. Adult members of a Queensland, Australia, community bicycling organization completed an online survey about their cycling patterns; cycling purposes; and personal, social and perceived environmental motivators and constraints (47% response rate). Closed and open-end questions were completed. Using the quantitative data, multivariable linear, logistic and ordinal regression models were used to examine associations between gender and cycling patterns, motivators and constraints. The qualitative data were thematically analyzed to expand upon the quantitative findings. In this sample of 1862 bicyclists, men were more likely than women to cycle for recreation and for transport, and they cycled for longer. Most transport cycling was for commuting, with men more likely than women to commute by bicycle. Men were more likely to cycle on-road, and women off-road. However, most men and women did not prefer to cycle on-road without designed bicycle lanes, and qualitative data indicated a strong preference by men and women for bicycle-only off-road paths. Both genders reported personal factors (health and enjoyment related) as motivators for cycling, although women were more likely to agree that other personal, social and environmental factors were also motivating. The main constraints for both genders and both cycling purposes were perceived environmental factors related to traffic conditions, motorist aggression and safety. Women, however, reported more constraints, and were more likely to report as constraints other environmental factors and personal factors. Differences found in men's and women's cycling patterns, motivators and constraints should be considered in efforts to promote cycling, particularly in efforts to increase cycling for transport.

  4. The DOE water cycle pilot study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, N. L.; King, A. W.; Miller, M. A.

    In 1999, the U.S. Global Change Research Program (USGCRP) formed a Water Cycle Study Group (Hornberger et al. 2001) to organize research efforts in regional hydrologic variability, the extent to which this variability is caused by human activity, and the influence of ecosystems. The USGCRP Water Cycle Study Group was followed by a U.S. Department of Energy (DOE) Water Cycle Research Plan (Department of Energy 2002) that outlined an approach toward improving seasonal-to-interannual hydroclimate predictability and closing a regional water budget. The DOE Water Cycle Research Plan identified key research areas, including a comprehensive long-term observational database to support modelmore » development, and to develop a better understanding of the relationship between the components of local water budgets and large scale processes. In response to this plan, a multilaboratory DOE Water Cycle Pilot Study (WCPS) demonstration project began with a focus on studying the water budget and its variability at multiple spatial scales. Previous studies have highlighted the need for continued efforts to observationally close a local water budget, develop a numerical model closure scheme, and further quantify the scales in which predictive accuracy are optimal. A concerted effort within the National Oceanic and Atmospheric Administration (NOAA)-funded Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) put forth a strategy to understand various hydrometeorological processes and phenomena with an aim toward closing the water and energy budgets of regional watersheds (Lawford 1999, 2001). The GCIP focus on such regional budgets includes the measurement of all components and reduction of the error in the budgets to near zero. To approach this goal, quantification of the uncertainties in both measurements and modeling is required. Model uncertainties within regional climate models continue to be evaluated within the Program to Intercompare Regional Climate Simulations (Takle et al. 1999), and model uncertainties within land surface models are being evaluated within the Program to Intercompare Land Surface Schemes (e.g., Henderson-Sellers 1993; Wood et al. 1998; Lohmann et al. 1998). In the context of understanding the water budget at watershed scales, the following two research questions that highlight DOE's unique water isotope analysis and high-performance modeling capabilities were posed as the foci of this pilot study: (1) Can the predictability of the regional water budget be improved using high-resolution model simulations that are constrained and validated with new hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? To address these questions, numerical studies using regional atmospheric-land surface models and multiscale land surface hydrologic models were generated and, to the extent possible, the results were evaluated with observations. While the number of potential processes that may be important in the local water budget is large, several key processes were examined in detail. Most importantly, a concerted effort was made to understand water cycle processes and feedbacks at the land surface-atmosphere interface at spatial scales ranging from 30 m to hundreds of kilometers. A simple expression for the land surface water budget at the watershed scale is expressed as {Delta}S = P + G{sub in} - ET - Q - G{sub out}, where {Delta}S is the change in water storage, P is precipitation, ET is evapotranspiration, Q is streamflow, G{sub in} is groundwater entering the watershed, and G{sub out} is groundwater leaving the watershed, per unit time. The WCPS project identified data gaps and necessary model improvements that will lead to a more accurate representation of the terms in Eq. (1). Table 1 summarizes the components of this water cycle pilot study and the respective participants. The following section provides a description of the surface observation and modeling sites. This is followed by a section on model analyses, and then the summary and concluding remarks.« less

  5. Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Liao, C.; Zhuang, Q.

    2017-12-01

    Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.

  6. The Martian dust cycle: A proposed model

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1987-01-01

    Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.

  7. A VAS-numerical model impact study using the Gal-Chen variational approach

    NASA Technical Reports Server (NTRS)

    Aune, Robert M.; Tuccillo, James J.; Uccellini, Louis W.; Petersen, Ralph A.

    1987-01-01

    A numerical study based on the use of a variational assimilation technique of Gal-Chen (1983, 1986) was conducted to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) into a regional-scale numerical model. A comparison with the results of a control forecast using only conventional data indicated that the assimilation technique successfully combines actual VAS temperature observations with the dynamically balanced model fields without destabilizing the model during the assimilation cycle. Moreover, increasing the temporal frequency of VAS temperature insertions during the assimilation cycle was shown to enhance the impact on the model forecast through successively longer forecast periods. The incorporation of a nudging technique, whereby the model temperature field is constrained toward the VAS 'updated' values during the assimilation cycle, further enhances the impact of the VAS temperature data.

  8. Electrical coupled Morris-Lecar neurons: From design to pattern analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binczak, S.; Behdad, R.; Rossé, M.

    2016-06-08

    In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.

  9. Use of the 5E learning cycle model combined with problem-based learning for a fundamentals of nursing course.

    PubMed

    Jun, Won Hee; Lee, Eun Ju; Park, Han Jong; Chang, Ae Kyung; Kim, Mi Ja

    2013-12-01

    The 5E learning cycle model has shown a positive effect on student learning in science education, particularly in courses with theory and practice components. Combining problem-based learning (PBL) with the 5E learning cycle was suggested as a better option for students' learning of theory and practice. The purpose of this study was to compare the effects of the traditional learning method with the 5E learning cycle model with PBL. The control group (n = 78) was subjected to a learning method that consisted of lecture and practice. The experimental group (n = 83) learned by using the 5E learning cycle model with PBL. The results showed that the experimental group had significantly improved self-efficacy, critical thinking, learning attitude, and learning satisfaction. Such an approach could be used in other countries to enhance students' learning of fundamental nursing. Copyright 2013, SLACK Incorporated.

  10. Day/Night Cycle: Mental Models of Primary School Children

    ERIC Educational Resources Information Center

    Chiras, Andreas

    2008-01-01

    The study investigated the mental models of primary school children related to the day/night cycle. Semi-structure interviews were conducted with 40 fourth-grade and 40 sixth-grade children. Qualitative and quantitative analysis of the data indicated that the majority of the children were classified as having geocentric models. The results also…

  11. [Modeling of carbon cycling in terrestrial ecosystem: a review].

    PubMed

    Mao, Liuxi; Sun, Yanling; Yan, Xiaodong

    2006-11-01

    Terrestrial carbon cycling is one of the important issues in global change research, while carbon cycling modeling has become a necessary method and tool in understanding this cycling. This paper reviewed the research progress in terrestrial carbon cycling, with the focus on the basic framework of simulation modeling, two essential models of carbon cycling, and the classes of terrestrial carbon cycling modeling, and analyzed the present situation of terrestrial carbon cycling modeling. It was pointed out that the future research direction could be based on the biophysical modeling of dynamic vegetation, and this modeling could be an important component in the earth system modeling.

  12. Ratcheting in a nonlinear viscoelastic adhesive

    NASA Astrophysics Data System (ADS)

    Lemme, David; Smith, Lloyd

    2017-11-01

    Uniaxial time-dependent creep and cycled stress behavior of a standard and toughened film adhesive were studied experimentally. Both adhesives exhibited progressive accumulation of strain from an applied cycled stress. Creep tests were fit to a viscoelastic power law model at three different applied stresses which showed nonlinear response in both adhesives. A third order nonlinear power law model with a permanent strain component was used to describe the creep behavior of both adhesives and to predict creep recovery and the accumulation of strain due to cycled stress. Permanent strain was observed at high stress but only up to 3% of the maximum strain. Creep recovery was under predicted by the nonlinear model, while cycled stress showed less than 3% difference for the first cycle but then over predicted the response above 1000 cycles by 4-14% at high stress. The results demonstrate the complex response observed with structural adhesives, and the need for further analytical advancements to describe their behavior.

  13. A limit cycle oscillator model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2013-08-01

    We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.

  14. Variable cycle control model for intersection based on multi-source information

    NASA Astrophysics Data System (ADS)

    Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan

    2018-05-01

    In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.

  15. Upper limb load as a function of repetitive task parameters: part 1--a model of upper limb load.

    PubMed

    Roman-Liu, Danuta

    2005-01-01

    The aim of the study was to develop a theoretical indicator of upper limb musculoskeletal load based on repetitive task parameters. As such the dimensionless parameter, Integrated Cycle Load (ICL) was accepted. It expresses upper limb load which occurs during 1 cycle. The indicator is based on a model of a repetitive task, which consists of a model of the upper limb, a model of basic types of upper limb forces and a model of parameters of a repetitive task such as length of the cycle, length of periods of the cycle and external force exerted during each of the periods of the cycle. Calculations of the ICL parameter were performed for 12 different variants of external load characterised by different values of repetitive task parameters. A comparison of ICL, which expresses external load with a physiological indicator of upper limb load, is presented in Part 2 of the paper.

  16. Potential for progress in carbon cycle modeling: models as tools and representations of reality (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2013-12-01

    Some carbon cycle modelers conceive of themselves as developing a representation of reality that will serve as a general purpose tool that can be used to make a wide variety of predictions. However, models are tools used to solve particular problems. If we were to ask, 'what tool is best for fastening two pieces of wood together,' depending on the circumstances that tool could be hammer, a screw driver, or perhaps some sort of glue gun. And the best kind of screw driver might depend on whether we were thinking about Philips or flat headed screws. If there is no unique answer to the question of which type of tool is best for fastening two pieces of wood together, surely there is no unique answer to the question of which type of model is best for making carbon-cycle predictions. We must first understand what problem we are trying to solve. Some modeling studies try to make the most reliable projections, considering as many processes and predicting as many observables as possible, whereas other modeling studies try to show how general trends depend on relatively few (perhaps highly aggregated) processes. This talk will look at CMIP5 carbon-cycle model results and address the issue of the extent to which the overall global-scale trends projected by these detailed models might projected by models with many fewer degrees of freedom. It should be noted that an ocean carbon-cycle model that predicts many observables at local scale is much more easily falsified (and thus in some sense is more ';scientific') than an ocean model that predicts only global scale phenomena. Nevertheless, if all that is needed is a crude estimate of global ocean CO2 uptake (say, to permit as study of the carbon-cycle on land), a simple representation of the ocean carbon cycle may suffice. This talk will take as its jumping off point two quotes: 'All models are wrong, some are useful.' - George E.P. Box 'Models should be as simple as possible but no simpler.' - Albert Einstein (likely an erroneous attribution) Potential for progress in carbon-cycle modeling rests in being clear about the problems we seek to solve, and then developing tools to solve those problems. A global carbon cycle model that represents underlying complexity in all its detail may ultimately prove useless: 'We actually made a map of the country, on the scale of a mile to the mile!' 'Have you used it much?' I enquired. 'It has never been spread out, yet,' said Mein Herr: 'the farmers objected: they said it would cover the whole country, and shut out the sunlight! So we now use the country itself, as its own map, and I assure you it does nearly as well.' - Lewis Carroll

  17. Integration of a Physically based Distributed Hydrological Model with a Model of Carbon and Nitrogen Cycling: A Case Study at the Luquillo Critical Zone Observatory, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Arnone, E.; Noto, L. V.

    2015-12-01

    The dynamics of carbon and nitrogen cycles, increasingly influenced by human activities, are the key to the functioning of ecosystems. These cycles are influenced by the composition of the substrate, availability of nitrogen, the population of microorganisms, and by environmental factors. Therefore, land management and use, climate change, and nitrogen deposition patterns influence the dynamics of these macronutrients at the landscape scale. In this work a physically based distributed hydrological model, the tRIBS model, is coupled with a process-based multi-compartment model of the biogeochemical cycle to simulate the dynamics of carbon and nitrogen (CN) in the Mameyes River basin, Puerto Rico. The model includes a wide range of processes that influence the movement, production, alteration of nutrients in the landscape and factors that affect the CN cycling. The tRIBS integrates geomorphological and climatic factors that influence the cycling of CN in soil. Implementing the decomposition module into tRIBS makes the model a powerful complement to a biogeochemical observation system and a forecast tool able to analyze the influences of future changes on ecosystem services. The soil hydrologic parameters of the model were obtained using ranges of published parameters and observed streamflow data at the outlet. The parameters of the decomposition module are based on previously published data from studies conducted in the Luquillio CZO (budgets of soil organic matter and CN ratio for each of the dominant vegetation types across the landscape). Hydrological fluxes, wet depositon of nitrogen, litter fall and its corresponding CN ratio drive the decomposition model. The simulation results demonstrate a strong influence of soil moisture dynamics on the spatiotemporal distribution of nutrients at the landscape level. The carbon in the litter pool and the nitrate and ammonia pool respond quickly to soil moisture content. Moreover, the CN ratios of the plant litter have significant influence in the dynamics of CN cycling.

  18. Core-oscillator model of Caulobacter crescentus

    NASA Astrophysics Data System (ADS)

    Vandecan, Yves; Biondi, Emanuele; Blossey, Ralf

    2016-06-01

    The gram-negative bacterium Caulobacter crescentus is a powerful model organism for studies of bacterial cell cycle regulation. Although the major regulators and their connections in Caulobacter have been identified, it still is a challenge to properly understand the dynamics of its circuitry which accounts for both cell cycle progression and arrest. We show that the key decision module in Caulobacter is built from a limit cycle oscillator which controls the DNA replication program. The effect of an induced cell cycle arrest is demonstrated to be a key feature to classify the underlying dynamics.

  19. On the relationship between cell cycle analysis with ergodic principles and age-structured cell population models.

    PubMed

    Kuritz, K; Stöhr, D; Pollak, N; Allgöwer, F

    2017-02-07

    Cyclic processes, in particular the cell cycle, are of great importance in cell biology. Continued improvement in cell population analysis methods like fluorescence microscopy, flow cytometry, CyTOF or single-cell omics made mathematical methods based on ergodic principles a powerful tool in studying these processes. In this paper, we establish the relationship between cell cycle analysis with ergodic principles and age structured population models. To this end, we describe the progression of a single cell through the cell cycle by a stochastic differential equation on a one dimensional manifold in the high dimensional dataspace of cell cycle markers. Given the assumption that the cell population is in a steady state, we derive transformation rules which transform the number density on the manifold to the steady state number density of age structured population models. Our theory facilitates the study of cell cycle dependent processes including local molecular events, cell death and cell division from high dimensional "snapshot" data. Ergodic analysis can in general be applied to every process that exhibits a steady state distribution. By combining ergodic analysis with age structured population models we furthermore provide the theoretic basis for extensions of ergodic principles to distribution that deviate from their steady state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Development of a 3D coupled physical-biogeochemical model for the Marseille coastal area (NW Mediterranean Sea): what complexity is required in the coastal zone?

    PubMed

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007-2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model.

  1. Development of a 3D Coupled Physical-Biogeochemical Model for the Marseille Coastal Area (NW Mediterranean Sea): What Complexity Is Required in the Coastal Zone?

    PubMed Central

    Fraysse, Marion; Pinazo, Christel; Faure, Vincent Martin; Fuchs, Rosalie; Lazzari, Paolo; Raimbault, Patrick; Pairaud, Ivane

    2013-01-01

    Terrestrial inputs (natural and anthropogenic) from rivers, the atmosphere and physical processes strongly impact the functioning of coastal pelagic ecosystems. The objective of this study was to develop a tool for the examination of these impacts on the Marseille coastal area, which experiences inputs from the Rhone River and high rates of atmospheric deposition. Therefore, a new 3D coupled physical/biogeochemical model was developed. Two versions of the biogeochemical model were tested, one model considering only the carbon (C) and nitrogen (N) cycles and a second model that also considers the phosphorus (P) cycle. Realistic simulations were performed for a period of 5 years (2007–2011). The model accuracy assessment showed that both versions of the model were able of capturing the seasonal changes and spatial characteristics of the ecosystem. The model also reproduced upwelling events and the intrusion of Rhone River water into the Bay of Marseille well. Those processes appeared to greatly impact this coastal oligotrophic area because they induced strong increases in chlorophyll-a concentrations in the surface layer. The model with the C, N and P cycles better reproduced the chlorophyll-a concentrations at the surface than did the model without the P cycle, especially for the Rhone River water. Nevertheless, the chlorophyll-a concentrations at depth were better represented by the model without the P cycle. Therefore, the complexity of the biogeochemical model introduced errors into the model results, but it also improved model results during specific events. Finally, this study suggested that in coastal oligotrophic areas, improvements in the description and quantification of the hydrodynamics and the terrestrial inputs should be preferred over increasing the complexity of the biogeochemical model. PMID:24324589

  2. Simulating carbon flows in Amazonian rainforests: how intensive C-cycle data can help to reduce vegetation model uncertainty

    NASA Astrophysics Data System (ADS)

    Galbraith, D.; Levine, N. M.; Christoffersen, B. O.; Imbuzeiro, H. A.; Powell, T.; Costa, M. H.; Saleska, S. R.; Moorcroft, P. R.; Malhi, Y.

    2014-12-01

    The mathematical codes embedded within different vegetation models ultimately represent alternative hypotheses of biosphere functioning. While formulations for some processes (e.g. leaf-level photosynthesis) are often shared across vegetation models, other processes (e.g. carbon allocation) are much more variable in their representation across models. This creates the opportunity for equifinality - models can simulate similar values of key metrics such as NPP or biomass through very different underlying causal pathways. Intensive carbon cycle measurements allow for quantification of a comprehensive suite of carbon fluxes such as the productivity and respiration of leaves, roots and wood, allowing for in-depth assessment of carbon flows within ecosystems. Thus, they provide important information on poorly-constrained C-cycle processes such as allocation. We conducted an in-depth evaluation of the ability of four commonly used dynamic global vegetation models (CLM, ED2, IBIS, JULES) to simulate carbon cycle processes at ten lowland Amazonian rainforest sites where individual C-cycle components have been measured. The rigorous model-data comparison procedure allowed identification of biases which were specific to different models, providing clear avenues for model improvement and allowing determination of internal C-cycling pathways that were better supported by data. Furthermore, the intensive C-cycle data allowed for explicit testing of the validity of a number of assumptions made by specific models in the simulation of carbon allocation and plant respiration. For example, the ED2 model assumes that maintenance respiration of stems is negligible while JULES assumes equivalent allocation of NPP to fine roots and leaves. We argue that field studies focusing on simultaneous measurement of a large number of component fluxes are fundamentally important for reducing uncertainty in vegetation model simulations.

  3. Momentum and Energy Assessments with NASA and Other Model and Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Salstein, David; Nelson, Peter; Hu, Wen-Jie; Sud, Yogesh (Technical Monitor)

    2001-01-01

    Aspects of the angular momentum cycle, energetics, and related diagnostics from a number of models, including some from the Goddard Laboratory for Atmospheres, and from the Atmospheric Model Intercomparison Project (AMIP) are examined. Torques that dynamically excite changes in angular momentum, including strong torques at mountains were studied. The measure of how atmospheric mass from a strong weather signal can notably change the angular momentum is studied. For AMIP, there is a spread in the angular momentum amongst models, while the GLA model does reasonably well compared to the other models in the diagnostics examined, namely angular momentum and water vapor. Trends and interannual variability in water vapor over a lengthy period was examined. The role of the diabatic heating components, especially latent heating, in the energy cycle and the terms converting available potential energy to kinetic energy, among other parts of the energy cycle, are studied. Modes of climate of the atmosphere, especially the Arctic and North Atlantic Oscillations, are analyzed as well.

  4. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  5. The Role of Model Building in Problem Solving and Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Jonassen, David; Teo, Timothy

    2011-01-01

    This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…

  6. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  7. Animal Study on Primary Dysmenorrhoea Treatment at Different Administration Times

    PubMed Central

    Pu, Bao-Chan; Fang, Ling; Gao, Li-Na; Liu, Rui; Li, Ai-zhu

    2015-01-01

    The new methods of different administration times for the treatment of primary dysmenorrhea are more widely used clinically; however, no obvious mechanism has been reported. Therefore, an animal model which is closer to clinical evaluation is indispensable. A novel animal experiment with different administration times, based on the mice oestrous cycle, for primary dysmenorrhoea treatment was explored in this study. Mice were randomly divided into two parts (one-cycle and three-cycle part) and each part includes five groups (12 mice per group), namely, Jingqian Zhitong Fang (JQF) 6-day group, JQF last 3-day group, Yuanhu Zhitong tablet group, model control group, and normal control group. According to the one-way ANOVAs, results (writhing reaction, and PGF2α, PGE2, NO, and calcium ions analysis by ELISA) of the JQF cycle group were in accordance with those of JQF last 3-day group. Similarly, results of three-cycle continuous administration were consistent with those of one-cycle treatment. In conclusion, the consistency of the experimental results illustrated that the novel animal model based on mice oestrous cycle with different administration times is more reasonable and feasible and can be used to explore in-depth mechanism of drugs for the treatment of primary dysmenorrhoea in future. PMID:25705236

  8. The seasonal cycle of pCO2 and CO2 fluxes in the Southern Ocean: diagnosing anomalies in CMIP5 Earth system models

    NASA Astrophysics Data System (ADS)

    Precious Mongwe, N.; Vichi, Marcello; Monteiro, Pedro M. S.

    2018-05-01

    The Southern Ocean forms an important component of the Earth system as a major sink of CO2 and heat. Recent studies based on the Coupled Model Intercomparison Project version 5 (CMIP5) Earth system models (ESMs) show that CMIP5 models disagree on the phasing of the seasonal cycle of the CO2 flux (FCO2) and compare poorly with available observation products for the Southern Ocean. Because the seasonal cycle is the dominant mode of CO2 variability in the Southern Ocean, its simulation is a rigorous test for models and their long-term projections. Here we examine the competing roles of temperature and dissolved inorganic carbon (DIC) as drivers of the seasonal cycle of pCO2 in the Southern Ocean to explain the mechanistic basis for the seasonal biases in CMIP5 models. We find that despite significant differences in the spatial characteristics of the mean annual fluxes, the intra-model homogeneity in the seasonal cycle of FCO2 is greater than observational products. FCO2 biases in CMIP5 models can be grouped into two main categories, i.e., group-SST and group-DIC. Group-SST models show an exaggeration of the seasonal rates of change of sea surface temperature (SST) in autumn and spring during the cooling and warming peaks. These higher-than-observed rates of change of SST tip the control of the seasonal cycle of pCO2 and FCO2 towards SST and result in a divergence between the observed and modeled seasonal cycles, particularly in the Sub-Antarctic Zone. While almost all analyzed models (9 out of 10) show these SST-driven biases, 3 out of 10 (namely NorESM1-ME, HadGEM-ES and MPI-ESM, collectively the group-DIC models) compensate for the solubility bias because of their overly exaggerated primary production, such that biologically driven DIC changes mainly regulate the seasonal cycle of FCO2.

  9. Effects of Loading Duration and Short Rest Insertion on Cancellous and Cortical Bone Adaptation in the Mouse Tibia

    PubMed Central

    Yang, Haisheng; Embry, Rachel E.; Main, Russell P.

    2017-01-01

    The skeleton’s osteogenic response to mechanical loading can be affected by loading duration and rest insertion during a series of loading events. Prior animal loading studies have shown that the cortical bone response saturates quickly and short rest insertions between load cycles can enhance cortical bone formation. However, it remains unknown how loading duration and short rest insertion affect load-induced osteogenesis in the mouse tibial compressive loading model, and particularly in cancellous bone. To address this issue, we applied cyclic loading (-9 N peak load; 4 Hz) to the tibiae of three groups of 16 week-old female C57BL/6 mice for two weeks, with a different number of continuous load cycles applied daily to each group (36, 216 and 1200). A fourth group was loaded under 216 daily load cycles with a 10 s rest insertion after every fourth cycle. We found that as few as 36 load cycles per day were able to induce osteogenic responses in both cancellous and cortical bone. Furthermore, while cortical bone area and thickness continued to increase through 1200 cycles, the incremental increase in the osteogenic response decreased as load number increased, indicating a reduced benefit of the increasing number of load cycles. In the proximal metaphyseal cancellous bone, trabecular thickness increased with load up to 216 cycles. We also found that insertion of a 10 s rest between load cycles did not improve the osteogenic response of the cortical or cancellous tissues compared to continuous loading in this model given the age and sex of the mice and the loading parameters used here. These results suggest that relatively few load cycles (e.g. 36) are sufficient to induce osteogenic responses in both cortical and cancellous bone in the mouse tibial loading model. Mechanistic studies using the mouse tibial loading model to examine bone formation and skeletal mechanobiology could be accomplished with relatively few load cycles. PMID:28076363

  10. School Crisis Management: A Model of Dynamic Responsiveness to Crisis Life Cycle

    ERIC Educational Resources Information Center

    Liou, Yi-Hwa

    2015-01-01

    Purpose: This study aims to analyze a school's crisis management and explore emerging aspects of its response to a school crisis. Traditional linear modes of analysis often fail to address complex crisis situations. The present study applied a dynamic crisis life cycle model that draws on chaos and complexity theory to a crisis management case,…

  11. Kindergartners' Mental Models of the Day and Night Cycle: Implications for Instructional Practices in Early Childhood Classrooms

    ERIC Educational Resources Information Center

    Saçkes, Mesut

    2015-01-01

    This study aims to examine kindergarten children's mental models of the day and night cycle and provide implications for pedagogical practices targeting space science concepts in early childhood classrooms. A total of 46 kindergartners participated in the study, their age ranging from 60 to 75 months, including 22 boys and 24 girls.…

  12. Leading a New Pedagogical Approach to Australian Curriculum Mathematics: Using the Dual Mathematical Modelling Cycle Framework

    ERIC Educational Resources Information Center

    Lamb, Janeen; Kawakami, Takashi; Saeki, Akihiko; Matsuzaki, Akio

    2014-01-01

    The aim of this study was to investigate the use of the "dual mathematical modelling cycle framework" as one way to meet the espoused goals of the Australian Curriculum Mathematics. This study involved 23 Year 6 students from one Australian primary school who engaged in an "Oil Tank Task" that required them to develop two…

  13. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  14. The Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2003-01-01

    A viewgraph presentation describing the Earth System Science Pathfinder Orbiting Carbon Observatory (OCO) Mission is shown. The contents include: 1) Why CO2?; 2) What Processes Control CO2 Sinks?; 3) OCO Science Team; 4) Space-Based Measurements of CO2; 5) Driving Requirement: Precise, Bias-Free Global Measurements; 6) Making Precise CO2 Measurements from Space; 7) OCO Spatial Sampling Strategy; 8) OCO Observing Modes; 9) Implementation Approach; 10) The OCO Instrument; 11) The OCO Spacecraft; 12) OCO Will Fly in the A-Train; 13) Validation Program Ensures Accuracy and Minimizes Spatially Coherent Biases; 14) Can OCO Provide the Required Precision?; 15) O2 Column Retrievals with Ground-based FTS; 16) X(sub CO2) Retrieval Simulations; 17) Impact of Albedo and Aerosol Uncertainty on X(sub CO2) Retrievals; 18) Carbon Cycle Modeling Studies: Seasonal Cycle; 19) Carbon Cycle Modeling Studies: The North-South Gradient in CO2; 20) Carbon Cycle Modeling Studies: Effect of Diurnal Biases; 21) Project Status and Schedule; and 22) Summary.

  15. Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models

    PubMed Central

    Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.

    2013-01-01

    SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638

  16. The Effect of Talking Drawings on Five-Year-Old Turkish Children's Mental Models of the Water Cycle

    ERIC Educational Resources Information Center

    Ahi, Berat

    2017-01-01

    The purpose of the current study is to determine the effect of talking drawings on Turkish preschool children's mental models of the water cycle. The study was conducted in the city of Kastamonu, located in the north-west of Turkey. A total of 40 five-year-old preschool children participated in the study in the spring term of the 2015-2016 school…

  17. MINIGENOMES, TRANSCRIPTION AND REPLICATION COMPETENT VIRUS-LIKE PARTICLES AND BEYOND: REVERSE GENETICS SYSTEMS FOR FILOVIRUSES AND OTHER NEGATIVE STRANDED HEMORRHAGIC FEVER VIRUSES

    PubMed Central

    Hoenen, Thomas; Groseth, Allison; de Kok-Mercado, Fabian; Kuhn, Jens H.; Wahl-Jensen, Victoria

    2012-01-01

    Reverse-genetics systems are powerful tools enabling researchers to study the replication cycle of RNA viruses, including filoviruses and other hemorrhagic fever viruses, as well as to discover new antivirals. They include full-length clone systems as well as a number of life cycle modeling systems. Full-length clone systems allow for the generation of infectious, recombinant viruses, and thus are an important tool for studying the virus replication cycle in its entirety. In contrast, life cycle modeling systems such as minigenome and transcription and replication competent virus-like particle systems can be used to simulate and dissect parts of the virus life cycle outside of containment facilities. Minigenome systems are used to model viral genome replication and transcription, whereas transcription and replication competent virus-like particle systems also model morphogenesis and budding as well as infection of target cells. As such, these modeling systems have tremendous potential to further the discovery and screening of new antivirals targeting hemorrhagic fever viruses. This review provides an overview of currently established reverse genetics systems for hemorrhagic fever-causing negative-sense RNA viruses, with a particular emphasis on filoviruses, and the potential application of these systems for antiviral research. PMID:21699921

  18. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    NASA Technical Reports Server (NTRS)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  19. Numerical simulation of the hair formation -modeling of hair cycle

    NASA Astrophysics Data System (ADS)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  20. A physical and economic model of the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Schneider, Erich Alfred

    A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.

  1. A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle.

    PubMed

    Sriram, K; Bernot, G; Képès, F

    2007-11-01

    A novel topology of regulatory networks abstracted from the budding yeast cell cycle is studied by constructing a simple nonlinear model. A ternary positive feedback loop with only positive regulations is constructed with elements that activates the subsequent element in a clockwise fashion. A ternary negative feedback loop with only negative regulations is constructed with the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations. The novelty of the topology is that the corresponding elements in these two homogeneous feedback loops are linked by the binary positive feedback loops with only positive regulations. This results in the emergence of mixed feedback loops in the network that displays complex behaviour like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the arrangement of the feedback loops brings in the notion of checkpoint in the model. The model also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the events that govern the cell cycle are considered for the present study. In budding yeast, the sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback loops. The transcription factors that involve in the positive regulation in a clockwise orientation generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The mutual regulation between the corresponding elements in the transcription factors and the cyclins and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed for the whole system can be related to the different events of the cell cycle in terms of dynamical system theory. The checkpoint mechanism that plays an important role in different phases of the cell cycle are accounted for by silencing appropriate feedback loops in the model.

  2. Inheritance of Cell-Cycle Duration in the Presence of Periodic Forcing

    NASA Astrophysics Data System (ADS)

    Mosheiff, Noga; Martins, Bruno M. C.; Pearl-Mizrahi, Sivan; Grünberger, Alexander; Helfrich, Stefan; Mihalcescu, Irina; Kohlheyer, Dietrich; Locke, James C. W.; Glass, Leon; Balaban, Nathalie Q.

    2018-04-01

    Periodic forcing of nonlinear oscillators leads to a large number of dynamic behaviors. The coupling of the cell cycle to the circadian clock provides a biological realization of such forcing. A previous model of forcing leads to nontrivial relations between correlations along cell lineages. Here, we present a simplified two-dimensional nonlinear map for the periodic forcing of the cell cycle. Using high-throughput single-cell microscopy, we have studied the correlations between cell-cycle duration in discrete lineages of several different organisms, including those with known coupling to a circadian clock and those without known coupling to a circadian clock. The model reproduces the paradoxical correlations and predicts new features that can be compared with the experimental data. By fitting the model to the data, we extract the important parameters that govern the dynamics. Interestingly, the model reproduces bimodal distributions for cell-cycle duration, as well as the gating of cell division by the phase of the clock, without having been explicitly fed into the model. In addition, the model predicts that circadian coupling may increase cell-to-cell variability in a clonal population of cells. In agreement with this prediction, deletion of the circadian clock reduces variability. Our results show that simple correlations can identify systems under periodic forcing and that studies of nonlinear coupling of biological oscillators provide insight into basic cellular processes of growth.

  3. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    NASA Astrophysics Data System (ADS)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  4. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Stueber, Thomas

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10-foot by 10-foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  5. A Turbine Based Combined Cycle Engine Inlet Model and Mode Transition Simulation Based on HiTECC Tool

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Stueber, Thomas J.

    2012-01-01

    An inlet system is being tested to evaluate methodologies for a turbine based combined cycle propulsion system to perform a controlled inlet mode transition. Prior to wind tunnel based hardware testing of controlled mode transitions, simulation models are used to test, debug, and validate potential control algorithms. One candidate simulation package for this purpose is the High Mach Transient Engine Cycle Code (HiTECC). The HiTECC simulation package models the inlet system, propulsion systems, thermal energy, geometry, nozzle, and fuel systems. This paper discusses the modification and redesign of the simulation package and control system to represent the NASA large-scale inlet model for Combined Cycle Engine mode transition studies, mounted in NASA Glenn s 10- by 10-Foot Supersonic Wind Tunnel. This model will be used for designing and testing candidate control algorithms before implementation.

  6. Nutrient cycle benchmarks for earth system land model

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  7. Soil Carbon and Nitrogen Cycle Modeling

    NASA Astrophysics Data System (ADS)

    Woo, D.; Chaoka, S.; Kumar, P.; Quijano, J. C.

    2012-12-01

    Second generation bioenergy crops, such as miscanthus (Miscantus × giganteus) and switchgrass (Panicum virgatum), are regarded as clean energy sources, and are an attractive option to mitigate the human-induced climate change. However, the global climate change and the expansion of perennial grass bioenergy crops have the power to alter the biogeochemical cycles in soil, especially, soil carbon storages, over long time scales. In order to develop a predictive understanding, this study develops a coupled hydrological-soil nutrient model to simulate soil carbon responses under different climate scenarios such as: (i) current weather condition, (ii) decreased precipitation by -15%, and (iii) increased temperature up to +3C for four different crops, namely miscanthus, switchgrass, maize, and natural prairie. We use Precision Agricultural Landscape Modeling System (PALMS), version 5.4.0, to capture biophysical and hydrological components coupled with a multilayer carbon and ¬nitrogen cycle model. We apply the model at daily time scale to the Energy Biosciences Institute study site, located in the University of Illinois Research Farms, in Urbana, Illinois. The atmospheric forcing used to run the model was generated stochastically from parameters obtained using available data recorded in Bondville Ameriflux Site. The model simulations are validated with observations of drainage and nitrate and ammonium concentrations recorded in drain tiles during 2011. The results of this study show (1) total soil carbon storage of miscanthus accumulates most noticeably due to the significant amount of aboveground plant carbon, and a relatively high carbon to nitrogen ratio and lignin content, which reduce the litter decomposition rate. Also, (2) the decreased precipitation contributes to the enhancement of total soil carbon storage and soil nitrogen concentration because of the reduced microbial biomass pool. However, (3) an opposite effect on the cycle is introduced by the increased temperature. The simulation results obtained in this study show differences in the soil biogeochemistry induced by the different crops analyzed. Considering the spatial scale at which this crops are cultivated this results suggest there could be important implications in the carbon and nitrogen cycle and indirect feedbacks on climate change. This study also helps us understand the future soil mineral cycle, and ensure a sustainable transition to bioenergy crops.

  8. Global Water Cycle Agreement in the Climate Models Assessed in the IPCC AR4

    NASA Technical Reports Server (NTRS)

    Waliser, D.; Seo, K. -W.; Schubert, S.; Njoku, E.

    2007-01-01

    This study examines the fidelity of the global water cycle in the climate model simulations assessed in the IPCC Fourth Assessment Report. The results demonstrate good model agreement in quantities that have had a robust global observational basis and that are physically unambiguous. The worst agreement occurs for quantities that have both poor observational constraints and whose model representations can be physically ambiguous. In addition, components involving water vapor (frozen water) typically exhibit the best (worst) agreement, and fluxes typically exhibit better agreement than reservoirs. These results are discussed in relation to the importance of obtaining accurate model representation of the water cycle and its role in climate change. Recommendations are also given for facilitating the needed model improvements.

  9. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    NASA Astrophysics Data System (ADS)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  10. Rethinking Historical and Cultural Source of Spontaneous Mental Models of Water Cycle: In the Perspective of South Korea

    ERIC Educational Resources Information Center

    Nam, Younkyeong

    2012-01-01

    This review explores Ben-Zvi Assaraf, Eshach, Orion, and Alamour's paper titled "Cultural Differences and Students' Spontaneous Models of the Water Cycle: A Case Study of Jewish and Bedouin Children in Israel" by examining how the authors use the concept of spontaneous mental models to explain cultural knowledge source of Bedouin…

  11. Understanding The Behavior Of The Sun'S Large Scale Magnetic Field And Its Relation With The Meridional Flow

    NASA Astrophysics Data System (ADS)

    Hazra, Gopal

    2018-02-01

    In this thesis, various studies leading to better understanding of the 11-year solar cycle and its theoretical modeling with the flux transport dynamo model are performed. Although this is primarily a theoretical thesis, there is a part dealing with the analysis of observational data. The various proxies of solar activity (e.g., sunspot number, sunspot area and 10.7 cm radio flux) from various observatory including the sunspot area records of Kodaikanal Observatory have been analyzed to study the irregular aspects of solar cycles and an analysis has been carried out on the correlation between the decay rate and the next cycle amplitude. The theoretical analysis starts with explaining how the magnetic buoyancy has been treated in the flux transport dynamo models, and advantages and disadvantages of different treatments. It is found that some of the irregular properties of the solar cycle in the decaying phase can only be well explained using a particular treatment of the magnetic buoyancy. Next, the behavior of the dynamo with the different spatial structures of the meridional flow based on recent helioseismology results has been studied. A theoretical model is constructed considering the back reaction due to the Lorentz force on the meridional flows which explains the observed variation of the meridional flow with the solar cycle. Finally, some results with 3D FTD models are presented. This 3D model is developed to handle the Babcock-Leighton mechanism and magnetic buoyancy more realistically than previous 2D models and can capture some important effects connected with the subduction of the magnetic field in polar regions, which are missed in 2D surface flux transport models. This 3D model is further used to study the evolution of the magnetic fields due to a turbulent non-axisymmetric velocity field and to compare the results with the results obtained by using a simple turbulent diffusivity coefficient.

  12. A comparison of major petroleum life cycle models | Science ...

    EPA Pesticide Factsheets

    Many organizations have attempted to develop an accurate well-to-pump life cycle model of petroleum products in order to inform decision makers of the consequences of its use. Our paper studies five of these models, demonstrating the differences in their predictions and attempting to evaluate their data quality. Carbon dioxide well-to-pump emissions for gasoline showed a variation of 35 %, and other pollutants such as ammonia and particulate matter varied up to 100 %. Differences in allocation do not appear to explain differences in predictions. Effects of these deviations on well-to-wheels passenger vehicle and truck transportation life cycle models may be minimal for effects such as global warming potential (6 % spread), but for respiratory effects of criteria pollutants (41 % spread) and other impact categories, they can be significant. A data quality assessment of the models’ documentation revealed real differences between models in temporal and geographic representativeness, completeness, as well as transparency. Stakeholders may need to consider carefully the tradeoffs inherent when selecting a model to conduct life cycle assessments for systems that make heavy use of petroleum products. This is a qualitative and quantitative comparison of petroleum LCA models intended for an expert audience interested in better understanding the data quality of existing petroleum life cycle models and the quantitative differences between these models.

  13. Using Screening Level Environmental Life Cycle Assessment to Aid Decision Making: A Case Study of a College Annual Report

    ERIC Educational Resources Information Center

    Ingwersen, Wesley W.; Curran, Mary Ann; Gonzalez, Michael A.; Hawkins, Troy R.

    2012-01-01

    Purpose: The purpose of this study is to compare the life cycle environmental impacts of the University of Cincinnati College of Engineering and Applied Sciences' current printed annual report to a version distributed via the internet. Design/methodology/approach: Life cycle environmental impacts of both versions of the report are modeled using…

  14. Modeling syngas-fired gas turbine engines with two dilutants

    NASA Astrophysics Data System (ADS)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  15. Cost-effectiveness of seven IVF strategies: results of a Markov decision-analytic model.

    PubMed

    Fiddelers, Audrey A A; Dirksen, Carmen D; Dumoulin, John C M; van Montfoort, Aafke P A; Land, Jolande A; Janssen, J Marij; Evers, Johannes L H; Severens, Johan L

    2009-07-01

    A selective switch to elective single embryo transfer (eSET) in IVF has been suggested to prevent complications of fertility treatment for both mother and infants. We compared seven IVF strategies concerning their cost-effectiveness using a Markov model. The model was based on a three IVF-attempts time horizon and a societal perspective using real world strategies and data, comparing seven IVF strategies, concerning costs, live births and incremental cost-effectiveness ratios (ICERs). In order to increase pregnancy probability, one cycle of eSET + one cycle of standard treatment policy [STP, i.e. eSET in patients <38 years of age with at least one good quality embryo and double embryo transfer (DET) in the remainder of patients] + one cycle of DET have an ICER of 16,593 euro compared with three cycles of eSET. Furthermore, three STP cycles have an ICER of 17,636 euro compared with one cycle of eSET + one cycle of STP + one cycle of DET, and three DET cycles have an ICER of 26,729 euro compared with three cycles STP. Our study shows that in patients qualifying for IVF treatment, combining several transfer policies was not cost-effective. A choice has to be made between three cycles of eSET, STP or DET. It depends, however, on society's willingness to pay which strategy is to be preferred from a cost-effectiveness point of view.

  16. Helioseismology Observations of Solar Cycles and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Kosovichev, A. G.; Guerrero, G.; Pipin, V.

    2017-12-01

    Helioseismology observations from the SOHO and SDO, obtained in 1996-2017, provide unique insight into the dynamics of the Sun's deep interior for two solar cycles. The data allow us to investigate variations of the solar interior structure and dynamics, and compare these variations with dynamo models and simulations. We use results of the local and global helioseismology data processing pipelines at the SDO Joint Science Operations Center (Stanford University) to study solar-cycle variations of the differential rotation, meridional circulation, large-scale flows and global asphericity. By comparing the helioseismology results with the evolution of surface magnetic fields we identify characteristic changes associated the initiation and development of Solar Cycles 23 and 24. For the physical interpretation of observed variations, the results are compared with the current mean-field dynamo models and 3D MHD dynamo simulations. It is shown that the helioseismology inferences provide important constraints on the solar dynamo mechanism, may explain the fundamental difference between the two solar cycles, and also give information about the next solar cycle.

  17. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    ERIC Educational Resources Information Center

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  18. The Effect of Learning Cycle Models on Achievement of Students: A Meta-Analysis Study

    ERIC Educational Resources Information Center

    Sarac, Hakan

    2018-01-01

    In the study, a meta-analysis was conducted to determine the effect of the use of the learning cycle model on the achievements of the students. Doctorate and master theses, made between 2007 and 2016, were searched using the keywords in Turkish and English. As a result of the screening, a total of 123 dissertations, which used learning cycle…

  19. Serum uric acid in relation to endogenous reproductive hormones during the menstrual cycle: findings from the BioCycle study

    PubMed Central

    Mumford, Sunni L.; Dasharathy, Sonya S.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Cole, Stephen R.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2013-01-01

    STUDY QUESTION Do uric acid levels across the menstrual cycle show associations with endogenous estradiol (E2) and reproductive hormone concentrations in regularly menstruating women? SUMMARY ANSWER Mean uric acid concentrations were highest during the follicular phase, and were inversely associated with E2 and progesterone, and positively associated with FSH. WHAT IS KNOWN ALREADY E2 may decrease serum levels of uric acid in post-menopausal women; however, the interplay between endogenous reproductive hormones and uric acid levels among regularly menstruating women has not been elucidated. STUDY DESIGN, SIZE, DURATION The BioCycle study was a prospective cohort study conducted at the University at Buffalo research centre from 2005 to 2007, which followed healthy women for one (n = 9) or 2 (n = 250) menstrual cycle(s). PARTICIPANTS/MATERIALS, SETTING, METHODS Participants were healthy women aged 18–44 years. Hormones and uric acid were measured in serum eight times each cycle for up to two cycles. Marginal structural models with inverse probability of exposure weights were used to evaluate the associations between endogenous hormones and uric acid concentrations. MAIN RESULTS AND THE ROLE OF CHANCE Uric acid levels were observed to vary across the menstrual cycle, with the lowest levels observed during the luteal phase. Every log-unit increase in E2 was associated with a decrease in uric acid of 1.1% (β = −0.011; 95% confidence interval (CI): −0.019, −0.004; persistent-effects model), and for every log-unit increase in progesterone, uric acid decreased by ∼0.8% (β = −0.008; 95% CI: −0.012, −0.004; persistent-effects model). FSH was positively associated with uric acid concentrations, such that each log-unit increase was associated with a 1.6% increase in uric acid (β = 0.016; 95% CI: 0.005, 0.026; persistent-effects model). Progesterone and FSH were also associated with uric acid levels in acute-effects models. Of 509 cycles, 42 were anovulatory (8.3%). Higher uric acid levels were associated with increased odds of anovulation (odds ratio 2.39, 95% CI: 1.25, 4.56). LIMITATIONS, REASONS FOR CAUTION The change in uric acid levels among this cohort of healthy women was modest, and analysis was limited to two menstrual cycles. The women in this study were healthy and regularly menstruating, and as such there were few women with high uric acid levels and anovulatory cycles. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate the importance of taking menstrual cycle phase into account when measuring uric acid in premenopausal women, and confirm the hypothesized beneficial lowering effects of endogenous E2 on uric acid levels. These findings suggest that there could be an underlying association affecting both sporadic anovulation and high uric acid levels among young, regularly menstruating women. Further studies are needed to confirm these findings and elucidate the connection between uric acid and reproductive and later cardiovascular health. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (contract # HHSN275200403394C). No competing interests declared. PMID:23562957

  20. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  1. A comparative study of commercial lithium ion battery cycle life in electric vehicle: Capacity loss estimation

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu

    2014-12-01

    Now the lithium ion batteries are widely used in electric vehicles (EV). The cycle life is among the most important characteristics of the power battery in EV. In this report, the battery cycle life experiment is designed according to the actual working condition in EV. Five different commercial lithium ion cells are cycled alternatively under 45 °C and 5 °C and the test results are compared. Based on the cycle life experiment results and the identified battery aging mechanism, the battery cycle life models are built and fitted by the genetic algorithm. The capacity loss follows a power law relation with the cycle times and an Arrhenius law relation with the temperature. For automotive application, to save the cost and the testing time, a battery SOH (state of health) estimation method combined the on-line model based capacity estimation and regular calibration is proposed.

  2. Kinetic model of mitochondrial Krebs cycle: unraveling the mechanism of salicylate hepatotoxic effects.

    PubMed

    Mogilevskaya, Ekaterina; Demin, Oleg; Goryanin, Igor

    2006-10-01

    This paper studies the effect of salicylate on the energy metabolism of mitochondria using in silico simulations. A kinetic model of the mitochondrial Krebs cycle is constructed using information on the individual enzymes. Model parameters for the rate equations are estimated using in vitro experimental data from the literature. Enzyme concentrations are determined from data on respiration in mitochondrial suspensions containing glutamate and malate. It is shown that inhibition in succinate dehydrogenase and alpha-ketoglutarate dehydrogenase by salicylate contributes substantially to the cumulative inhibition of the Krebs cycle by salicylates. Uncoupling of oxidative phosphorylation has little effect and coenzyme A consumption in salicylates transformation processes has an insignificant effect on the rate of substrate oxidation in the Krebs cycle. It is found that the salicylate-inhibited Krebs cycle flux can be increased by flux redirection through addition of external glutamate and malate, and depletion in external alpha-ketoglutarate and glycine concentrations.

  3. Parathyroid hormone-related peptide and the hair cycle - is it the agonists or the antagonists that cause hair growth?

    PubMed

    Gensure, Robert C

    2014-12-01

    While the effects of PTHrP have been studied for almost 20 years, most of these studies have focused on effects on the termination of the anagen phase, giving an incomplete picture of the overall effect of PTHrP on the hair cycle. PTHrP was determined in several experimental models to promote transition of hair follicles from anagen to catagen phase, which by itself would suggest that PTHrP blockade might prolong the anagen phase and promote hair growth. However, clinical trials with topically applied PTHrP antagonists have been disappointing, leading to a reconsideration of this model. Additional studies performed in mouse models where hair follicles are damaged (alopecia areata, chemotherapy-induced alopecia) suggest that PTHrP has effects early in the hair cycle as well, promoting hair follicles' entry into anagen phase and initiates the hair cycle. While the mechanism of this has yet to be elucidated, it may involve activation of the Wnt pathway. Thus, the overall effect of PTHrP is to stimulate and accelerate the hair cycle, and in the more clinically relevant models of hair loss where hair follicles have been damaged or become quiescent, it is the agonists, not the antagonists, which would be expected to promote hair growth. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kandler A; Schimpe, Michael; von Kuepach, Markus Edler

    For reliable lifetime predictions of lithium-ion batteries, models for cell degradation are required. A comprehensive semi-empirical model based on a reduced set of internal cell parameters and physically justified degradation functions for the capacity loss is developed and presented for a commercial lithium iron phosphate/graphite cell. One calendar and several cycle aging effects are modeled separately. Emphasis is placed on the varying degradation at different temperatures. Degradation mechanisms for cycle aging at high and low temperatures as well as the increased cycling degradation at high state of charge are calculated separately.For parameterization, a lifetime test study is conducted including storagemore » and cycle tests. Additionally, the model is validated through a dynamic current profile based on real-world application in a stationary energy storage system revealing the accuracy. The model error for the cell capacity loss in the application-based tests is at the end of testing below 1 % of the original cell capacity.« less

  5. Unexpected Dual Task Benefits on Cycling in Parkinson Disease and Healthy Adults: A Neuro-Behavioral Model

    PubMed Central

    Altmann, Lori J. P.; Stegemöller, Elizabeth; Hazamy, Audrey A.; Wilson, Jonathan P.; Okun, Michael S.; McFarland, Nikolaus R.; Shukla, Aparna Wagle; Hass, Chris J.

    2015-01-01

    Background When performing two tasks at once, a dual task, performance on one or both tasks typically suffers. People with Parkinson’s disease (PD) usually experience larger dual task decrements on motor tasks than healthy older adults (HOA). Our objective was to investigate the decrements in cycling caused by performing cognitive tasks with a range of difficulty in people with PD and HOAs. Methods Twenty-eight participants with Parkinson’s disease and 20 healthy older adults completed a baseline cycling task with no secondary tasks and then completed dual task cycling while performing 12 tasks from six cognitive domains representing a wide range of difficulty. Results Cycling was faster during dual task conditions than at baseline, and was significantly faster for six tasks (all p<.02) across both groups. Cycling speed improved the most during the easiest cognitive tasks, and cognitive performance was largely unaffected. Cycling improvement was predicted by task difficulty (p<.001). People with Parkinson’s disease cycled slower (p<.03) and showed reduced dual task benefits (p<.01) than healthy older adults. Conclusions Unexpectedly, participants’ motor performance improved during cognitive dual tasks, which cannot be explained in current models of dual task performance. To account for these findings, we propose a model integrating dual task and acute exercise approaches which posits that cognitive arousal during dual tasks increases resources to facilitate motor and cognitive performance, which is subsequently modulated by motor and cognitive task difficulty. This model can explain both the improvement observed on dual tasks in the current study and more typical dual task findings in other studies. PMID:25970607

  6. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini

    Characterization of stratigraphic sequences (T-R cycles or sequences) included outcrop studies, well log analysis and seismic reflection interpretation. These studies were performed by researchers at the University of Alabama, Wichita State University and McGill University. The outcrop, well log and seismic characterization studies were used to develop a depositional sequence model, a T-R cycle (sequence) model, and a sequence stratigraphy predictive model. The sequence stratigraphy predictive model developed in this study is based primarily on the modified T-R cycle (sequence) model. The T-R cycle (sequence) model using transgressive and regressive systems tracts and aggrading, backstepping, and infilling intervals or sectionsmore » was found to be the most appropriate sequence stratigraphy model for the strata in the onshore interior salt basins of the Gulf of Mexico to improve petroleum stratigraphic trap and specific reservoir facies imaging, detection and delineation. The known petroleum reservoirs of the Mississippi Interior and North Louisiana Salt Basins were classified using T-R cycle (sequence) terminology. The transgressive backstepping reservoirs have been the most productive of oil, and the transgressive backstepping and regressive infilling reservoirs have been the most productive of gas. Exploration strategies were formulated using the sequence stratigraphy predictive model and the classification of the known petroleum reservoirs utilizing T-R cycle (sequence) terminology. The well log signatures and seismic reflector patterns were determined to be distinctive for the aggrading, backstepping and infilling sections of the T-R cycle (sequence) and as such, well log and seismic data are useful for recognizing and defining potential reservoir facies. The use of the sequence stratigraphy predictive model, in combination with the knowledge of how the distinctive characteristics of the T-R system tracts and their subdivisions are expressed in well log patterns and seismic reflection configurations and terminations, improves the ability to identify and define the limits of potential stratigraphic traps and the stratigraphic component of combination stratigraphic and structural traps and the associated continental, coastal plain and marine potential reservoir facies. The assessment of the underdeveloped and undiscovered reservoirs and resources in the Mississippi Interior and North Louisiana Salt Basins resulted in the confirmation of the Monroe Uplift as a feature characterized by a major regional unconformity, which serves as a combination stratigraphic and structural trap with a significant stratigraphic component, and the characterization of a developing play in southwest Alabama, which involves a stratigraphic trap, located updip near the pinchout of the potential reservoir facies. Potential undiscovered and underdeveloped reservoirs in the onshore interior salt basins are identified as Jurassic and Cretaceous aggrading continental and coastal, backstepping nearshore marine and marine shelf, and infilling fluvial, deltaic, coastal plain and marine shelf.« less

  7. The Adder Phenomenon Emerges from Independent Control of Pre- and Post-Start Phases of the Budding Yeast Cell Cycle.

    PubMed

    Chandler-Brown, Devon; Schmoller, Kurt M; Winetraub, Yonatan; Skotheim, Jan M

    2017-09-25

    Although it has long been clear that cells actively regulate their size, the molecular mechanisms underlying this regulation have remained poorly understood. In budding yeast, cell size primarily modulates the duration of the cell-division cycle by controlling the G1/S transition known as Start. We have recently shown that the rate of progression through Start increases with cell size, because cell growth dilutes the cell-cycle inhibitor Whi5 in G1. Recent phenomenological studies in yeast and bacteria have shown that these cells add an approximately constant volume during each complete cell cycle, independent of their size at birth. These results seem to be in conflict, as the phenomenological studies suggest that cells measure the amount they grow, rather than their size, and that size control acts over the whole cell cycle, rather than specifically in G1. Here, we propose an integrated model that unifies the adder phenomenology with the molecular mechanism of G1/S cell-size control. We use single-cell microscopy to parameterize a full cell-cycle model based on independent control of pre- and post-Start cell-cycle periods. We find that our model predicts the size-independent amount of cell growth during the full cell cycle. This suggests that the adder phenomenon is an emergent property of the independent regulation of pre- and post-Start cell-cycle periods rather than the consequence of an underlying molecular mechanism measuring a fixed amount of growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. High Resolution Climate Modeling of the Water Cycle over the Western United States Including Potential Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Rasmussen, R.; Liu, C.; Ikeda, K.

    2016-12-01

    The NCAR Water System program strives to improve the full representation of the water cycle in both regional and global models. Our previous high-resolution simulations using the WRF model over the Rocky Mountains revealed that proper spatial and temporal depiction of snowfall adequate for water resource and climate change purposes can be achieved with the appropriate choice of model grid spacing (< 6 km horizontal) and parameterizations. The climate sensitivity experiment consistent with expected climate change showed an altered hydrological cycle with increased fraction of rain versus snow, increased snowfall at high altitudes, earlier melting of snowpack, and decreased total runoff. In order to investigate regional differences between the Rockies and other major mountain barriers and to study climate change impacts over other regions of the contiguous U.S. (CONUS), we have expanded our prior CO Headwaters modeling study to encompass most of North America at a horizontal grid spacing of 4 km (see figure below). A domain expansion provides the opportunity to assess changes in orographic precipitation across different mountain ranges in the western USA. This study will examine the water cycle over Western U.S. seven U.S. mountain ranges, including likely changes to amount of snowpack and spring melt-off, critical to agriculture in the western U.S.

  9. Student Development of Model-Based Reasoning about Carbon Cycling and Climate Change in a Socio-Scientific Issues Unit

    ERIC Educational Resources Information Center

    Zangori, Laura; Peel, Amanda; Kinslow, Andrew; Friedrichsen, Patricia; Sadler, Troy D.

    2017-01-01

    Carbon cycling is a key natural system that requires robust science literacy to understand how and why climate change is occurring. Studies show that students tend to compartmentalize carbon movement within plants and animals and are challenged to make sense of how carbon cycles on a global scale. Studies also show that students hold faulty models…

  10. Modeling Lithium Movement over Multiple Cycles in a Lithium-Metal Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrese, A; Newman, J

    This paper builds on the work by Ferrese et al. [J. Electrochem., 159, A1615 (2012)], where a model of a lithium-metal battery with a LiyCoO2 positive electrode was created in order to predict the movement of lithium in the negative electrode along the negative electrode/separator interface during cell cycling. In this paper, the model is expanded to study the movement of lithium along the lithium-metal anode over multiple cycles. From this model, it is found that when a low percentage of lithium at the negative electrode is utilized, the movement of lithium along the negative electrode/separator interface reaches a quasimore » steady state after multiple cycles. This steady state is affected by the slope of the open-circuit-potential function in the positive electrode, the rate of charge and discharge, the depth of discharge, and the length of the rest periods. However, when a high percent of the lithium at the negative electrode is utilized during cycling, the movement does not reach a steady state and pinching can occur, where the lithium nearest the negative tab becomes progressively thinner after cycling. This is another nonlinearity that leads to a progression of the movement of lithium over multiple cycles. (C) 2014 The Electrochemical Society.« less

  11. Time is money: Rational life cycle inertia and the delegation of investment management.

    PubMed

    Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S

    2016-08-01

    Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently 'irrational' outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting.

  12. Application of a validated prediction model for in vitro fertilization: comparison of live birth rates and multiple birth rates with 1 embryo transferred over 2 cycles vs 2 embryos in 1 cycle.

    PubMed

    Luke, Barbara; Brown, Morton B; Wantman, Ethan; Stern, Judy E; Baker, Valerie L; Widra, Eric; Coddington, Charles C; Gibbons, William E; Van Voorhis, Bradley J; Ball, G David

    2015-05-01

    The purpose of this study was to use a validated prediction model to examine whether single embryo transfer (SET) over 2 cycles results in live birth rates (LBR) comparable with 2 embryos transferred (DET) in 1 cycle and reduces the probability of a multiple birth (ie, multiple birth rate [MBR]). Prediction models of LBR and MBR for a woman considering assisted reproductive technology developed from linked cycles from the Society for Assisted Reproductive Technology Clinic Outcome Reporting System for 2006-2012 were used to compare SET over 2 cycles with DET in 1 cycle. The prediction model was based on a woman's age, body mass index (BMI), gravidity, previous full-term births, infertility diagnoses, embryo state, number of embryos transferred, and number of cycles. To demonstrate the effect of the number of embryos transferred (1 or 2), the LBRs and MBRs were estimated for women with a single infertility diagnosis (male factor, ovulation disorders, diminished ovarian reserve, and unexplained); nulligravid; BMI of 20, 25, 30, and 35 kg/m2; and ages 25, 35, and 40 years old by cycle (first or second). The cumulative LBR over 2 cycles with SET was similar to or better than the LBR with DET in a single cycle (for example, for women with the diagnosis of ovulation disorders: 35 years old; BMI, 30 kg/m2; 54.4% vs 46.5%; and for women who are 40 years old: BMI, 30 kg/m(2); 31.3% vs 28.9%). The MBR with DET in 1 cycle was 32.8% for women 35 years old and 20.9% for women 40 years old; with SET, the cumulative MBR was 2.7% and 1.6%, respectively. The application of this validated predictive model demonstrated that the cumulative LBR is as good as or better with SET over 2 cycles than with DET in 1 cycle, while greatly reducing the probability of a multiple birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model

    USDA-ARS?s Scientific Manuscript database

    Studies of global hydrologic cycles, carbon cycles and climate change are greatly facilitated when global estimates of evapotranspiration (E) are available. We have developed an air-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance, and e...

  14. Preliminary study of thermomechanical fatigue of polycrystalline MAR-M 200

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Verrilli, M. J.; Mcgaw, M. A.; Halford, G. R.

    1984-01-01

    Thermomechanical fatigue (TMF) experiments were conducted on polycrystalline MAR-M 200 over a cyclic temperature range of 500 to 1000 C. Inelastic strain ranges of 0.03 to 0.2 percent were imposed on the specimens. The TMF lives were found to be significantly shorter than isothermal low-cycle-fatigue (LCF) life at the maximum cycle temperature, and in-phase cycling was more damaging than out-of-phase cycling. Extensive crack tip oxidation appeared to play a role in promoting the severity of in-phase cycling. Carbide particle - matrix interface cracking was also observed after in-phase TMF cycling. The applicability of various life prediction models to the TMF results obtained was assessed. It was concluded that current life prediction models based on isothermal data as input must be modified to be applicable to the TMF results.

  15. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    NASA Astrophysics Data System (ADS)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  16. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    NASA Astrophysics Data System (ADS)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  17. Simulations of the HDO and H2O-18 atmospheric cycles using the NASA GISS general circulation model - Sensitivity experiments for present-day conditions

    NASA Technical Reports Server (NTRS)

    Jouzel, Jean; Koster, R. D.; Suozzo, R. J.; Russell, G. L.; White, J. W. C.

    1991-01-01

    Incorporating the full geochemical cycles of stable water isotopes (HDO and H2O-18) into an atmospheric general circulation model (GCM) allows an improved understanding of global delta-D and delta-O-18 distributions and might even allow an analysis of the GCM's hydrological cycle. A detailed sensitivity analysis using the NASA/Goddard Institute for Space Studies (GISS) model II GCM is presented that examines the nature of isotope modeling. The tests indicate that delta-D and delta-O-18 values in nonpolar regions are not strongly sensitive to details in the model precipitation parameterizations. This result, while implying that isotope modeling has limited potential use in the calibration of GCM convection schemes, also suggests that certain necessarily arbitrary aspects of these schemes are adequate for many isotope studies. Deuterium excess, a second-order variable, does show some sensitivity to precipitation parameterization and thus may be more useful for GCM calibration.

  18. Cycle flux algebra for ion and water flux through the KcsA channel single-file pore links microscopic trajectories and macroscopic observables.

    PubMed

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-31

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR(w-i)) through cycle flux algebra. These calculations predicted that CR(w-i) would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables.

  19. Cycle Flux Algebra for Ion and Water Flux through the KcsA Channel Single-File Pore Links Microscopic Trajectories and Macroscopic Observables

    PubMed Central

    Oiki, Shigetoshi; Iwamoto, Masayuki; Sumikama, Takashi

    2011-01-01

    In narrow pore ion channels, ions and water molecules diffuse in a single-file manner and cannot pass each other. Under such constraints, ion and water fluxes are coupled, leading to experimentally observable phenomena such as the streaming potential. Analysis of this coupled flux would provide unprecedented insights into the mechanism of permeation. In this study, ion and water permeation through the KcsA potassium channel was the focus, for which an eight-state discrete-state Markov model has been proposed based on the crystal structure, exhibiting four ion-binding sites. Random transitions on the model lead to the generation of the net flux. Here we introduced the concept of cycle flux to derive exact solutions of experimental observables from the permeation model. There are multiple cyclic paths on the model, and random transitions complete the cycles. The rate of cycle completion is called the cycle flux. The net flux is generated by a combination of cyclic paths with their own cycle flux. T.L. Hill developed a graphical method of exact solutions for the cycle flux. This method was extended to calculate one-way cycle fluxes of the KcsA channel. By assigning the stoichiometric numbers for ion and water transfer to each cycle, we established a method to calculate the water-ion coupling ratio (CR w-i) through cycle flux algebra. These calculations predicted that CR w-i would increase at low potassium concentrations. One envisions an intuitive picture of permeation as random transitions among cyclic paths, and the relative contributions of the cycle fluxes afford experimental observables. PMID:21304994

  20. Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer's disease patients.

    PubMed

    Hradek, Alex C; Lee, Hyun-Pil; Siedlak, Sandra L; Torres, Sandy L; Jung, Wooyoung; Han, Ashley H; Lee, Hyoung-gon

    2015-01-01

    Cell cycle re-entry in Alzheimer's disease (AD) has emerged as an important pathological mechanism in the progression of the disease. This appearance of cell cycle related proteins has been linked to tau pathology in AD, but the causal and temporal relationship between the two is not completely clear. In this study, we found that hyperphosphorylated retinoblastoma protein (ppRb), a key regulator for G1/S transition, is correlated with a late marker for hyperphosphorylation of tau but not with other early markers for tau alteration in the 3xTg-AD mouse model. However, in AD brains, ppRb can colocalize with both early and later markers for tau alterations, and can often be found singly in many degenerating neurons, indicating the distinct development of pathology between the 3xTg-AD mouse model and human AD patients. The conclusions of this study are two-fold. First, our findings clearly demonstrate the pathological link between the aberrant cell cycle re-entry and tau pathology. Second, the chronological pattern of cell cycle re-entry with tau pathology in the 3xTg-AD mouse is different compared to AD patients suggesting the distinct pathogenic mechanism between the animal AD model and human AD patients.

  1. Evaluation of CLM4 Solar Radiation Partitioning Scheme Using Remote Sensing and Site Level FPAR Datasets

    DOE PAGES

    Wang, Kai; Mao, Jiafu; Dickinson, Robert; ...

    2013-06-05

    This paper examines a land surface solar radiation partitioning scheme, i.e., that of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically active radiation (FPAR) dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR ’s seasonal cycle, diurnal cycle, long-term trends and spatial patterns. These findings show that the model generally agrees with observations in the seasonal cycle, long-term trends, and spatial patterns,more » but does not reproduce the diurnal cycle. Discrepancies also exist in seasonality magnitudes, peak value months, and spatial heterogeneity. Here, we identify the discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the model. Implementation of sun angle dependence in a one-dimensional (1-D) model is proposed. The need for better relating of vegetation to climate in the model, indicated by long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation partitioning scheme using remote sensing and site level FPAR datasets provides targets for future development in its representation of this naturally complicated process.« less

  2. Endoscopic spray cryotherapy for genitourinary malignancies: safety and efficacy in a porcine model

    PubMed Central

    Power, Nicholas E.; Silberstein, Jonathan L.; Tarin, Tatum; Au, Joyce; Thorner, Daniel; Ezell, Paula; Monette, Sébastien; Fong, Yuman; Rusch, Valerie; Finley, David

    2013-01-01

    Objective: To examine the effects and safety of using endoscopic spray cryotherapy (ESC) on bladder, ureteral, and renal pelvis urothelium in a live porcine model. Subjects and methods: ESC treatments were systematically applied to urothelial sites in the bladder, ureter, and renal pelvis of eight female Yorkshire swine in a prospective trial. Freeze–thaw cycles ranged from 5 to 60 s/cycle for one to six cycles using a 7 French cryotherapy catheter. Tissue was evaluated histologically for treatment-related effects. Acute physiologic effects were evaluated with pulse oximetry, Doppler sonography, and postmortem findings. Results: In bladder, treatment depth was inconsistent regardless of dose, demonstrating urothelial necrosis in one, muscularis propria depth necrosis in two, and full thickness necrosis in all remaining samples. In ureter, full thickness necrosis was seen in all samples, even with the shortest spray duration (5 s/cycle for six cycles or 30 s/cycle for one cycle). Treatment to the renal pelvis was complicated by adiabatic gas expansion of liquid nitrogen to its gaseous state, resulting in high intraluminal pressures requiring venting to avoid organ perforation, even at the lowest treatment settings. At a planned dose of 5 s/cycle for six cycles of the first renal pelvis animal, treatment was interrupted by sudden and unrecoverable cardiopulmonary failure after three cycles. Repeated studies replicated this event. Ultrasound and immediate necropsy confirmed the creation of a large gaseous embolism and reproducible cardiopulmonary effects. Conclusion: ESC in a porcine urothelial treatment model results in full-thickness tissue necrosis in bladder, ureter, and renal pelvis at a minimal treatment settings of 5 s/cycle for six cycles. Adiabatic gas expansion may result in fatal pyelovenous gas embolism and collateral organ injury, as seen in both animals receiving treatment to the renal pelvis in this study. These results raise safety concerns for use of ESC as a treatment modality in urothelial tissues with current device settings. PMID:23730328

  3. Contemporary Model Fidelity over the Maritime Continent: Examination of the Diurnal Cycle, Synoptic, Intraseasonal and Seasonal Variability

    NASA Astrophysics Data System (ADS)

    Baranowski, D.; Waliser, D. E.; Jiang, X.

    2016-12-01

    One of the key challenges in subseasonal weather forecasting is the fidelity in representing the propagation of the Madden-Julian Oscillation (MJO) across the Maritime Continent (MC). In reality both propagating and non-propagating MJO events are observed, but in numerical forecast the latter group largely dominates. For this study, comprehensive model performances are evaluated using metrics that utilize the mean precipitation pattern and the amplitude and phase of the diurnal cycle, with a particular focus on the linkage between a model's local MC variability and its fidelity in representing propagation of the MJO and equatorial Kelvin waves across the MC. Subseasonal to seasonal variability of mean precipitation and its diurnal cycle in 20 year long climate simulations from over 20 general circulation models (GCMs) is examined to benchmark model performance. Our results show that many models struggle to represent the precipitation pattern over complex Maritime Continent terrain. Many models show negative biases of mean precipitation and amplitude of its diurnal cycle; these biases are often larger over land than over ocean. Furthermore, only a handful of models realistically represent the spatial variability of the phase of the diurnal cycle of precipitation. Models tend to correctly simulate the timing of the diurnal maximum of precipitation over ocean during local solar time morning, but fail to acknowledge influence of the land, with the timing of the maximum of precipitation there occurring, unrealistically, at the same time as over ocean. The day-to-day and seasonal variability of the mean precipitation follows observed patterns, but is often unrealistic for the diurnal cycle amplitude. The intraseasonal variability of the amplitude of the diurnal cycle of precipitation is mainly driven by model's ability (or lack of) to produce eastward propagating MJO-like signal. Our results show that many models tend to decrease apparent air-sea contrast in the mean precipitation and diurnal cycle of precipitation patterns over the Maritime Continent. As a result, the complexity of those patterns is heavily smoothed, to such an extent in some models that the Maritime Continent features and imprint is almost unrecognizable relative to the eastern Indian Ocean or Western Pacific.

  4. Characterizing diurnal and seasonal cycles in monsoon systems from TRMM and CEOP observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2deg x 2.5deg latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  5. Characterizing Diurnal and Seasonal Cycles in Monsoon Systems from TRMM and CEOP Observations

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2007-01-01

    The CEOP Inter-Monsoon Study (CIMS) is one of the two main science drivers of CEOP that aims to (a) provide better understanding of fundamental physical processes in monsoon regions around the world, and (b) demonstrate the synergy and utility of CEOP data in providing a pathway for model physics evaluation and improvement. As the data collection phase for EOP-3 and EOP-4 is being completed, two full annual cycles (2003-2004) of research-quality data sets from satellites, reference sites, and model output location time series (MOLTS) have been processed and made available for data analyses and model validation studies. This article presents preliminary results of a CIMS study aimed at the characterization and intercomparison of all major monsoon systems. The CEOP reference site data proved its value in such exercises by being a powerful tool to cross-validate the TRMM data, and to intercompare with multi-model results in ongoing work. We use 6 years (1998-2003) of pentad CEOP/TRMM data with 2 deg x 2.5 deg. latitude-longitude grid, over the domain of interests to define the monsoon climatological diurnal and annual cycles for the East Asian Monsoon (EAM), the South Asian Monsoon (SAM), the West Africa Monsoon (WAM), the North America/Mexican Monsoon (NAM), the South American Summer Monsoon (SASM) and the Australian Monsoon (AUM). As noted, the TRMM data used in the study were cross-validated using CEOP reference site data, where applicable. Results show that the observed diurnal cycle of rain peaked around late afternoon over monsoon land, and early morning over the oceans. The diurnal cycles in models tend to peak 2-3 hours earlier than observed. The seasonal cycles of the EAM and SAM show the strongest continentality, i.e, strong control by continental processes away from the ITCZ. The WAM, and the AUM shows the less continentality, i.e, strong control by the oceanic ITCZ.

  6. Quercetin ameliorates Aβ toxicity in Drosophila AD model by modulating cell cycle-related protein expression

    PubMed Central

    Kong, Yan; Li, Ke; Fu, Tingting; Wan, Chao; Zhang, Dongdong; Song, Hang; Zhang, Yao; Liu, Na; Gan, Zhenji; Yuan, Liudi

    2016-01-01

    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by β amyloid (Aβ) deposition and neurofibril tangles. It has been reported that a bioflavonoid, quercetin, could ameliorate AD phenotypes in C. elegans and mice. However, the mechanism underlying the ameliorative effect of quercetin is not fully understood yet. Drosophila models could recapitulate AD-like phenotypes, such as shortened lifespan, impaired locomotive ability as well as defects in learning and memory. So in this study, we investigated the effects of quercetin on AD in Drosophila model and explored the underlying mechanisms. We found quercetin could effectively intervene in AD pathogenesis in vivo. Mechanism study showed quercetin could restore the expression of genes perturbed by Aβ accumulation, such as those involved in cell cycle and DNA replication. Cyclin B, an important cell cycle protein, was chosen to test whether it participated in the AD ameliorative effects of quercetin. We found that cyclin B RNAi in the brain could alleviate AD phenotypes. Taken together, the current study suggested that the neuroprotective effects of quercetin were mediated at least partially by targeting cell cycle-related proteins. PMID:27626494

  7. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage.

    PubMed

    Mononen, Mika E; Jurvelin, Jukka S; Korhonen, Rami K

    2015-01-01

    Computational models can be used to evaluate the functional properties of knee joints and possible risk locations within joints. Current models with fibril-reinforced cartilage layers do not provide information about realistic human movement during walking. This study aimed to evaluate stresses and strains within a knee joint by implementing load data from a gait cycle in healthy and meniscectomised knee joint models with fibril-reinforced cartilages. A 3D finite element model of a knee joint with cartilages and menisci was created from magnetic resonance images. The gait cycle data from varying joint rotations, translations and axial forces were taken from experimental studies and implemented into the model. Cartilage layers were modelled as a fibril-reinforced poroviscoelastic material with the menisci considered as a transversely isotropic elastic material. In the normal knee joint model, relatively high maximum principal stresses were specifically predicted to occur in the medial condyle of the knee joint during the loading response. Bilateral meniscectomy increased stresses, strains and fluid pressures in cartilage on the lateral side, especially during the first 50% of the stance phase of the gait cycle. During the entire stance phase, the superficial collagen fibrils modulated stresses of cartilage, especially in the medial tibial cartilage. The present computational model with a gait cycle and fibril-reinforced biphasic cartilage revealed time- and location-dependent differences in stresses, strains and fluid pressures occurring in cartilage during walking. The lateral meniscus was observed to have a more significant role in distributing loads across the knee joint than the medial meniscus, suggesting that meniscectomy might initiate a post-traumatic process leading to osteoarthritis at the lateral compartment of the knee joint.

  8. Modeling and analysis of tritium dynamics in a DT fusion fuel cycle

    NASA Astrophysics Data System (ADS)

    Kuan, William

    1998-11-01

    A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.

  9. Spin-Up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

    NASA Technical Reports Server (NTRS)

    Aleinov, Igor; Kiang, Nancy Y.; Romanou, Anastasia

    2015-01-01

    Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model from the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean to the prognostic LAI and to the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose.

  10. The Martian Dust Cycle: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.

    2013-01-01

    The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in these models: wind-stress lifting (i.e., saltation) and dust devil lifting. Although the predicted patterns of dust lifting and atmospheric dust loading from these simulations capture some aspects of the observed dust cycle, there are many notable differences between the simulated and observed dust cycles. For example, it is common for models to predict one peak in global dust loading near northern winter solstice due to excessive dust lifting in the Hellas basin at this season. Additionally, it is difficult for models to realistically capture the observed interannual variability in global dust storms. New avenues of dust cycle modeling research include exploring the effects of finite surface dust reservoirs and the effects of coupling the dust and water cycles on the predicted dust cycle.

  11. Prolongation of Off-Cycle Interval by Finasteride Is Not Associated with Survival Improvement in Intermittent Androgen Deprivation Therapy in LNCaP Tumor Model

    PubMed Central

    Wang, Yujuan; Gupta, Shubham; Hua, Vi; Ramos-Garcia, Raquel; Shevrin, Daniel; Jovanovic, Borko D.; Nelson, Joel B

    2009-01-01

    BACKGROUND We have previously reported that finasteride administration in intermittent androgen deprivation therapy (IADT) can improve survival of nude mice bearing LNCaP xenograft tumors when the duration of off-cycle in IADT was fixed. A recent retrospective study showed that addition of finasteride doubled the duration of the off-cycle, without changing progression to castration resistance. In view of the above difference, we attempted to investigate the relationship of 5α-reductase inhibition with the off-cycle interval and overall survival in a murine model. METHODS Subcutaneous LNCaP tumors were established in nude mice (Balb/C-Nu). After the tumors reached a size of 0.5 cm in diameter, the mice were castrated and followed up for 2 weeks after which they were randomized to continuous androgen deprivation (CAD), CAD plus finasteride, IADT, and IADT plus finasteride. The off-cycle was discontinued when the tumor volume was doubled. Subsequent cycles were carried out similarly. RESULTS Use of finasteride during the off-cycle of IADT doubled the first off-cycle duration. However, prolongation of the off-cycle by finasteride did not translate into an increase in overall survival. CONCLUSIONS The survival advantage of IADT+F over IADT that we previously reported was lost when the off-cycle prolongation by finasteride was allowed. Maximum possible lengthening of the off-cycle by 5α-reductase inhibition is not associated with survival improvement in this animal model. PMID:19739129

  12. Study of the damage evolution function of tin silver copper in cycling

    NASA Astrophysics Data System (ADS)

    Qasaimeh, Awni

    The present research focused on the assessment of solder joint fatigue life in microelectronics assemblies. A general concern of any reliability engineer is whether accelerated tests are relevant to field conditions. The risk of this was minimized by developing an approach to reduce the duration of an accelerated thermal cycling test, thus allowing for the use of less accelerated test conditions. For this purpose the conventional dye and pry technique was improved and used together with artificial neural networks to measure and characterize very early stages of crack growth. The same work also demonstrated a quantitative link between thermal cycling induced recrystallization and a strong acceleration of the subsequent fatigue crack growth and failure. A new study was conducted in which different combinations of annealing and isothermal cycling provided a systematic characterization of the effects of a range of individual parameters on the recrystallization. Experiments showed the ongoing coarsening of secondary precipitates to have a clear effect on recrystallization. The rate of recrystallization was also shown not to scale with the inelastic energy deposition. This means that the most popular current thermal cycling model cannot apply to SnAgCu solder joints. Recrystallization of the Sn grains is usually not the rate limiting mechanism in isothermal cycling. The crack initiation stage often takes up a much greater fraction of the overall life, and the eventual failure of BGA joints tends to involve transgranular crack growth instead. Cycling of individual solder joints allowed for monitoring of the evolution of the solder properties and the rate of inelastic energy deposition. Both the number of cycles to crack initiation and the subsequent number of cycles to failure were shown to be determined by the inelastic energy deposition. This provides for a simple model for the extrapolation of accelerated test results to the much milder cycling amplitudes characteristic of long term service conditions based on conventional Finite Element Modeling. It also offers a critical basis for the ongoing development of a practical model to account for the often dramatic break-down of Miner's rule of linear damage accumulation under variable cycling amplitudes as expected in realistic applications.

  13. Elementary Teachers' Selection and Use of Visual Models

    NASA Astrophysics Data System (ADS)

    Lee, Tammy D.; Gail Jones, M.

    2018-02-01

    As science grows in complexity, science teachers face an increasing challenge of helping students interpret models that represent complex science systems. Little is known about how teachers select and use models when planning lessons. This mixed methods study investigated the pedagogical approaches and visual models used by elementary in-service and preservice teachers in the development of a science lesson about a complex system (e.g., water cycle). Sixty-seven elementary in-service and 69 elementary preservice teachers completed a card sort task designed to document the types of visual models (e.g., images) that teachers choose when planning science instruction. Quantitative and qualitative analyses were conducted to analyze the card sort task. Semistructured interviews were conducted with a subsample of teachers to elicit the rationale for image selection. Results from this study showed that both experienced in-service teachers and novice preservice teachers tended to select similar models and use similar rationales for images to be used in lessons. Teachers tended to select models that were aesthetically pleasing and simple in design and illustrated specific elements of the water cycle. The results also showed that teachers were not likely to select images that represented the less obvious dimensions of the water cycle. Furthermore, teachers selected visual models more as a pedagogical tool to illustrate specific elements of the water cycle and less often as a tool to promote student learning related to complex systems.

  14. Health effects of the London bicycle sharing system: health impact modelling study.

    PubMed

    Woodcock, James; Tainio, Marko; Cheshire, James; O'Brien, Oliver; Goodman, Anna

    2014-02-13

    To model the impacts of the bicycle sharing system in London on the health of its users. Health impact modelling and evaluation, using a stochastic simulation model. Central and inner London, England. Total population operational registration and usage data for the London cycle hire scheme (collected April 2011-March 2012), surveys of cycle hire users (collected 2011), and London data on travel, physical activity, road traffic collisions, and particulate air pollution (PM2.5, (collected 2005-12). 578,607 users of the London cycle hire scheme, aged 14 years and over, with an estimated 78% of travel time accounted for by users younger than 45 years. Change in lifelong disability adjusted life years (DALYs) based on one year impacts on incidence of disease and injury, modelled through medium term changes in physical activity, road traffic injuries, and exposure to air pollution. Over the year examined the users made 7.4 million cycle hire trips (estimated 71% of cycling time by men). These trips would mostly otherwise have been made on foot (31%) or by public transport (47%). To date there has been a trend towards fewer fatalities and injuries than expected on cycle hire bicycles. Using these observed injury rates, the population benefits from the cycle hire scheme substantially outweighed harms (net change -72 DALYs (95% credible interval -110 to -43) among men using cycle hire per accounting year; -15 (-42 to -6) among women; note that negative DALYs represent a health benefit). When we modelled cycle hire injury rates as being equal to background rates for all cycling in central London, these benefits were smaller and there was no evidence of a benefit among women (change -49 DALYs (-88 to -17) among men; -1 DALY (-27 to 12) among women). This sex difference largely reflected higher road collision fatality rates for female cyclists. At older ages the modelled benefits of cycling were much larger than the harms. Using background injury rates in the youngest age group (15 to 29 years), the medium term benefits and harms were both comparatively small and potentially negative. London's bicycle sharing system has positive health impacts overall, but these benefits are clearer for men than for women and for older users than for younger users. The potential benefits of cycling may not currently apply to all groups in all settings.

  15. IMPORTANCE OF MERIDIONAL CIRCULATION IN FLUX TRANSPORT DYNAMO: THE POSSIBILITY OF A MAUNDER-LIKE GRAND MINIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karak, Bidya Binay, E-mail: bidya_karak@physics.iisc.ernet.i

    2010-12-01

    Meridional circulation is an important ingredient in flux transport dynamo models. We have studied its importance on the period, the amplitude of the solar cycle, and also in producing Maunder-like grand minima in these models. First, we model the periods of the last 23 sunspot cycles by varying the meridional circulation speed. If the dynamo is in a diffusion-dominated regime, then we find that most of the cycle amplitudes also get modeled up to some extent when we model the periods. Next, we propose that at the beginning of the Maunder minimum the amplitude of meridional circulation dropped to amore » low value and then after a few years it increased again. Several independent studies also favor this assumption. With this assumption, a diffusion-dominated dynamo is able to reproduce many important features of the Maunder minimum remarkably well. If the dynamo is in a diffusion-dominated regime, then a slower meridional circulation means that the poloidal field gets more time to diffuse during its transport through the convection zone, making the dynamo weaker. This consequence helps to model both the cycle amplitudes and the Maunder-like minima. We, however, fail to reproduce these results if the dynamo is in an advection-dominated regime.« less

  16. Climate Cycles and Forecasts of Cutaneous Leishmaniasis, a Nonstationary Vector-Borne Disease

    PubMed Central

    Chaves, Luis Fernando; Pascual, Mercedes

    2006-01-01

    Background Cutaneous leishmaniasis (CL) is one of the main emergent diseases in the Americas. As in other vector-transmitted diseases, its transmission is sensitive to the physical environment, but no study has addressed the nonstationary nature of such relationships or the interannual patterns of cycling of the disease. Methods and Findings We studied monthly data, spanning from 1991 to 2001, of CL incidence in Costa Rica using several approaches for nonstationary time series analysis in order to ensure robustness in the description of CL's cycles. Interannual cycles of the disease and the association of these cycles to climate variables were described using frequency and time-frequency techniques for time series analysis. We fitted linear models to the data using climatic predictors, and tested forecasting accuracy for several intervals of time. Forecasts were evaluated using “out of fit” data (i.e., data not used to fit the models). We showed that CL has cycles of approximately 3 y that are coherent with those of temperature and El Niño Southern Oscillation indices (Sea Surface Temperature 4 and Multivariate ENSO Index). Conclusions Linear models using temperature and MEI can predict satisfactorily CL incidence dynamics up to 12 mo ahead, with an accuracy that varies from 72% to 77% depending on prediction time. They clearly outperform simpler models with no climate predictors, a finding that further supports a dynamical link between the disease and climate. PMID:16903778

  17. Paleo Data Assimilation of Pseudo-Tree-Ring-Width Chronologies in a Climate Model

    NASA Astrophysics Data System (ADS)

    Fallah Hassanabadi, B.; Acevedo, W.; Reich, S.; Cubasch, U.

    2016-12-01

    Using the Time-Averaged Ensemble Kalman Filter (EnKF) and a forward model, we assimilate the pseudo Tree-Ring-Width (TRW) chronologies into an Atmospheric Global Circulation model. This study investigates several aspects of Paleo-Data Assimilation (PDA) within a perfect-model set-up: (i) we test the performance of several forward operators in the framework of a PDA-based climate reconstruction, (ii) compare the PDA-based simulations' skill against the free ensemble runs and (iii) inverstigate the skill of the "online" (with cycling) DA and the "off-line" (no-cycling) DA. In our experiments, the "online" (with cycling) PDA approach did not outperform the "off-line" (no-cycling) one, despite its considerable additional implementation complexity. On the other hand, it was observed that the error reduction achieved by assimilating a particular pseudo-TRW chronology is modulated by the strength of the yearly internal variability of the model at the chronology site. This result might help the dendrochronology community to optimize their sampling efforts.

  18. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  19. Analysis of in vitro fertilization data with multiple outcomes using discrete time-to-event analysis

    PubMed Central

    Maity, Arnab; Williams, Paige; Ryan, Louise; Missmer, Stacey; Coull, Brent; Hauser, Russ

    2014-01-01

    In vitro fertilization (IVF) is an increasingly common method of assisted reproductive technology. Because of the careful observation and followup required as part of the procedure, IVF studies provide an ideal opportunity to identify and assess clinical and demographic factors along with environmental exposures that may impact successful reproduction. A major challenge in analyzing data from IVF studies is handling the complexity and multiplicity of outcome, resulting from both multiple opportunities for pregnancy loss within a single IVF cycle in addition to multiple IVF cycles. To date, most evaluations of IVF studies do not make use of full data due to its complex structure. In this paper, we develop statistical methodology for analysis of IVF data with multiple cycles and possibly multiple failure types observed for each individual. We develop a general analysis framework based on a generalized linear modeling formulation that allows implementation of various types of models including shared frailty models, failure specific frailty models, and transitional models, using standard software. We apply our methodology to data from an IVF study conducted at the Brigham and Women’s Hospital, Massachusetts. We also summarize the performance of our proposed methods based on a simulation study. PMID:24317880

  20. Sagittal Plane Kinematics of the Jaw and Hyolingual Apparatus During Swallowing in Macaca mulatta

    PubMed Central

    Iriarte-Diaz, Jose; Arce-McShane, Fritzie; Orsbon, Courtney P.; Brown, Kevin A.; Eastment, McKenna; Avivi-Arber, Limor; Sessle, Barry J.; Inoue, Makoto; Hatsopoulos, Nicholas G.; Ross, Callum F.

    2018-01-01

    Studies of mechanisms of feeding behavior are important in a society where aging- and disease-related feeding disorders are increasingly prevalent. It is important to evaluate the clinical relevance of animal models of the disease and the control. Our present study quantifies macaque hyolingual and jaw kinematics around swallowing cycles to determine the extent to which macaque swallowing resembles that of humans. One female and one male adult Macaca mulatta were trained to feed in a primate chair. Videofluoroscopy was used to record kinematics in a sagittal view during natural feeding on solid food, and the kinematics of the hyoid bone, thyroid cartilage, mandibular jaw, and anterior-, middle-, and posterior-tongue. Jaw gape cycles were defined by consecutive maximum gapes, and the kinematics of the swallow cycles were compared with those of the two consecutive non-swallow cycles preceding and succeeding the swallow cycles. Although there are size differences between macaques and humans, and macaques have shorter durations of jaw gape cycles and hyoid and thyroid upward movements, there are several important similarities between our macaque data and human data reported in the literature: (1) The durations of jaw gape cycles during swallow cycles are longer than those of non-swallow cycles as a result of an increased duration of the jaw-opening phase; (2) Hyoid and thyroid upward movement is linked with a posterior tongue movement and is faster during swallow than non-swallow cycles; (3) Tongue elevation propagates from anterior to posterior during swallow and non-swallow cycles. These findings suggest that macaques can be a useful experimental model for human swallowing studies. PMID:28528492

  1. Identifiability Results for Several Classes of Linear Compartment Models.

    PubMed

    Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa

    2015-08-01

    Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.

  2. Evaluation and Optimization of a Supercritical Carbon Dioxide Power Conversion Cycle for Nuclear Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwin A. Harvego; Michael G. McKellar

    2011-05-01

    There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550°C and 750°C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550°C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can be used as eithermore » a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton Cycle is the lower required operating temperature; 550°C versus 850°C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of the supercritical CO2 Brayton Recompression Cycle for different reactor outlet temperatures. The UniSim model assumed a 600 MWt reactor power source, which provides heat to the power cycle at a maximum temperature of between 550°C and 750°C. The UniSim model used realistic component parameters and operating conditions to model the complete power conversion system. CO2 properties were evaluated, and the operating range for the cycle was adjusted to take advantage of the rapidly changing conditions near the critical point. The UniSim model was then optimized to maximize the power cycle thermal efficiency at the different maximum power cycle operating temperatures. The results of the analyses showed that power cycle thermal efficiencies in the range of 40 to 50% can be achieved.« less

  3. Integrating Prospective Longitudinal Data: Modeling Personality and Health in the Terman Life Cycle and Hawaii Longitudinal Studies

    ERIC Educational Resources Information Center

    Kern, Margaret L.; Hampson, Sarah E.; Goldberg, Lewis R.; Friedman, Howard S.

    2014-01-01

    The present study used a collaborative framework to integrate 2 long-term prospective studies: the Terman Life Cycle Study and the Hawaii Personality and Health Longitudinal Study. Within a 5-factor personality-trait framework, teacher assessments of child personality were rationally and empirically aligned to establish similar factor structures…

  4. Modeling Individual Cyclic Variation in Human Behavior.

    PubMed

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-04-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets-of human menstrual cycle symptoms and physical activity tracking data-yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.

  5. Modeling Individual Cyclic Variation in Human Behavior

    PubMed Central

    Pierson, Emma; Althoff, Tim; Leskovec, Jure

    2018-01-01

    Cycles are fundamental to human health and behavior. Examples include mood cycles, circadian rhythms, and the menstrual cycle. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present Cyclic Hidden Markov Models (CyH-MMs) for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with both discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to accommodate variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets—of human menstrual cycle symptoms and physical activity tracking data—yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model. PMID:29780976

  6. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving

    ERIC Educational Resources Information Center

    Kamis, Arnold; Khan, Beverly K.

    2009-01-01

    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  7. Menstrual function among women exposed to polybrominated biphenyls: A follow-up prevalence study

    PubMed Central

    Davis, Stephanie I; Blanck, Heidi Michels; Hertzberg, Vicki S; Tolbert, Paige E; Rubin, Carol; Cameron, Lorraine L; Henderson, Alden K; Marcus, Michele

    2005-01-01

    Background Alteration in menstrual cycle function is suggested among rhesus monkeys and humans exposed to polybrominated biphenyls (PBBs) and structurally similar polychlorinated biphenyls (PCBs). The feedback system for menstrual cycle function potentially allows multiple pathways for disruption directly through the hypothalamic-pituitary-ovarian axis and indirectly through alternative neuroendocrine axes. Methods The Michigan Female Health Study was conducted during 1997–1998 among women in a cohort exposed to PBBs in 1973. This study included 337 women with self-reported menstrual cycles of 20–35 days (age range: 24–56 years). Current PBB levels were estimated by exponential decay modeling of serum PBB levels collected from 1976–1987 during enrollment in the Michigan PBB cohort. Linear regression models for menstrual cycle length and the logarithm of bleed length used estimated current PBB exposure or enrollment PBB exposure categorized in tertiles, and for the upper decile. All models were adjusted for serum PCB levels, age, body mass index, history of at least 10% weight loss in the past year, physical activity, smoking, education, and household income. Results Higher levels of physical activity were associated with shorter bleed length, and increasing age was associated with shorter cycle length. Although no overall association was found between PBB exposure and menstrual cycle characteristics, a significant interaction between PBB exposures with past year weight loss was found. Longer bleed length and shorter cycle length were associated with higher PBB exposure among women with past year weight loss. Conclusion This study suggests that PBB exposure may impact ovarian function as indicated by menstrual cycle length and bleed length. However, these associations were found among the small number of women with recent weight loss suggesting either a chance finding or that mobilization of PBBs from lipid stores may be important. These results should be replicated with larger numbers of women exposed to similar lipophilic compounds. PMID:16091135

  8. Time is money: Rational life cycle inertia and the delegation of investment management

    PubMed Central

    Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S.

    2016-01-01

    Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently ‘irrational’ outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting. PMID:28344380

  9. Simulating the nasal cycle with computational fluid dynamics

    PubMed Central

    Patel, Ruchin G.; Garcia, Guilherme J. M.; Frank-Ito, Dennis O.; Kimbell, Julia S.; Rhee, John S.

    2015-01-01

    Objectives (1) Develop a method to account for the confounding effect of the nasal cycle when comparing pre- and post-surgery objective measures of nasal patency. (2) Illustrate this method by reporting objective measures derived from computational fluid dynamics (CFD) models spanning the full range of mucosal engorgement associated with the nasal cycle in two subjects. Study Design Retrospective Setting Academic tertiary medical center. Subjects and Methods A cohort of 24 nasal airway obstruction patients was reviewed to select the two patients with the greatest reciprocal change in mucosal engorgement between pre- and post-surgery computed tomography (CT) scans. Three-dimensional anatomic models were created based on the pre- and post-operative CT scans. Nasal cycling models were also created by gradually changing the thickness of the inferior turbinate, middle turbinate, and septal swell body. CFD was used to simulate airflow and to calculate nasal resistance and average heat flux. Results Before accounting for the nasal cycle, Patient A appeared to have a paradoxical worsening nasal obstruction in the right cavity postoperatively. After accounting for the nasal cycle, Patient A had small improvements in objective measures postoperatively. The magnitude of the surgical effect also differed in Patient B after accounting for the nasal cycle. Conclusion By simulating the nasal cycle and comparing models in similar congestive states, surgical changes in nasal patency can be distinguished from physiological changes associated with the nasal cycle. This ability can lead to more precise comparisons of pre and post-surgery objective measures and potentially more accurate virtual surgery planning. PMID:25450411

  10. MISTRA mechanism development: A new mechanism focused on marine environments

    NASA Astrophysics Data System (ADS)

    Bräuer, Peter; Sommariva, Roberto; von Glasow, Roland

    2015-04-01

    The tropospheric multiphase chemistry of halogen compounds plays a key role in marine environments. Moreover, halogen compounds have an impact on the tropospheric oxidation capacity and climate. With more than two thirds of the Earth's surface covered with oceans, effects are of global importance. Various conditions are found in marine environments ranging from pristine regions to polluted regimes in the continental outflow. Furthermore, there are important sources for halogen compounds over land, such as volcanoes, salt lakes, or emissions from industrial processes. To assess the impact of halogen chemistry with numerical models under these distinct conditions, a multiphase mechanism has been developed in the last decades and applied successfully in numerous box and 1D model studies. Contributions from these model studies helped to identify important chemical cycles affecting the composition and chemistry of the troposphere. However, several discrepancies between model results and field measurements remain. Therefore, a major revision of the chemical mechanism has been performed including an update of the kinetic data and the addition of new reaction cycles. The extended mechansims have been evaluated in several model studies with the 1D model MISTRA. Current work focuses at the identification of the most important reaction cycles, which led to significant changes in the concentration-time profiles of several halogen species. Subsequently, the mechanism will be reduced to the most imporatant reactions, which are currently investigated. As regional and global model studies become more important to identify the importance of tropospheric halogen multiphase chemistry, the goal is to derive parameterisations for the most important halogen chemistry cycles, which can than be implemented in regional and global 3D models. In the reduction process, the extented MISTRA version will serve as a benchmark to assess the quality and accuracy of the reduced mechansim versions.

  11. Highly Variable Cycle Exhaust Model Test (HVC10)

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick

    2010-01-01

    Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.

  12. A drift-diffusion checkpoint model predicts a highly variable and growth-factor-sensitive portion of the cell cycle G1 phase.

    PubMed

    Jones, Zack W; Leander, Rachel; Quaranta, Vito; Harris, Leonard A; Tyson, Darren R

    2018-01-01

    Even among isogenic cells, the time to progress through the cell cycle, or the intermitotic time (IMT), is highly variable. This variability has been a topic of research for several decades and numerous mathematical models have been proposed to explain it. Previously, we developed a top-down, stochastic drift-diffusion+threshold (DDT) model of a cell cycle checkpoint and showed that it can accurately describe experimentally-derived IMT distributions [Leander R, Allen EJ, Garbett SP, Tyson DR, Quaranta V. Derivation and experimental comparison of cell-division probability densities. J. Theor. Biol. 2014;358:129-135]. Here, we use the DDT modeling approach for both descriptive and predictive data analysis. We develop a custom numerical method for the reliable maximum likelihood estimation of model parameters in the absence of a priori knowledge about the number of detectable checkpoints. We employ this method to fit different variants of the DDT model (with one, two, and three checkpoints) to IMT data from multiple cell lines under different growth conditions and drug treatments. We find that a two-checkpoint model best describes the data, consistent with the notion that the cell cycle can be broadly separated into two steps: the commitment to divide and the process of cell division. The model predicts one part of the cell cycle to be highly variable and growth factor sensitive while the other is less variable and relatively refractory to growth factor signaling. Using experimental data that separates IMT into G1 vs. S, G2, and M phases, we show that the model-predicted growth-factor-sensitive part of the cell cycle corresponds to a portion of G1, consistent with previous studies suggesting that the commitment step is the primary source of IMT variability. These results demonstrate that a simple stochastic model, with just a handful of parameters, can provide fundamental insights into the biological underpinnings of cell cycle progression.

  13. Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea

    NASA Astrophysics Data System (ADS)

    Moll, Andreas; Stegert, Christoph

    2007-01-01

    This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.

  14. Characterizing Observed Limit Cycles in the Cassini Main Engine Guidance Control System

    NASA Technical Reports Server (NTRS)

    Rizvi, Farheen; Weitl, Raquel M.

    2011-01-01

    The Cassini spacecraft dynamics-related telemetry during long Main Engine (ME) burns has indicated the presence of stable limit cycles between 0.03-0.04 Hz frequencies. These stable limit cycles cause the spacecraft to possess non-zero oscillating rates for extended periods of time. This indicates that the linear ME guidance control system does not model the complete dynamics of the spacecraft. In this study, we propose that the observed limit cycles in the spacecraft dynamics telemetry appear from a stable interaction between the unmodeled nonlinear elements in the ME guidance control system. Many nonlinearities in the control system emerge from translating the linear engine gimbal actuator (EGA) motion into a spacecraft rotation. One such nonlinearity comes from the gear backlash in the EGA system, which is the focus of this paper. The limit cycle characteristics and behavior can be predicted by modeling this gear backlash nonlinear element via a describing function and studying the interaction of this describing function with the overall dynamics of the spacecraft. The linear ME guidance controller and gear backlash nonlinearity are modeled analytically. The frequency, magnitude, and nature of the limit cycle are obtained from the frequency response of the ME guidance controller and nonlinear element. In addition, the ME guidance controller along with the nonlinearity is simulated. The simulation response contains a limit cycle with similar characterstics as predicted analytically: 0.03-0.04 Hz frequency and stable, sustained oscillations. The analytical and simulated limit cycle responses are compared to the flight telemetry for long burns such as the Saturn Orbit Insertion and Main Engine Orbit Trim Maneuvers. The analytical and simulated limit cycle characteristics compare well with the actual observed limit cycles in the flight telemetry. Both have frequencies between 0.03-0.04 Hz and stable oscillations. This work shows that the stable limit cycles occur due to the interaction between the unmodeled nonlinear elements and linear ME guidance controller.

  15. Examination of Solar Cycle Statistical Model and New Prediction of Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Wilson, John W.

    2000-01-01

    Sunspot numbers in the current solar cycle 23 were estimated by using a statistical model with the accumulating cycle sunspot data based on the odd-even behavior of historical sunspot cycles from 1 to 22. Since cycle 23 has progressed and the accurate solar minimum occurrence has been defined, the statistical model is validated by comparing the previous prediction with the new measured sunspot number; the improved sunspot projection in short range of future time is made accordingly. The current cycle is expected to have a moderate level of activity. Errors of this model are shown to be self-correcting as cycle observations become available.

  16. The software-cycle model for re-engineering and reuse

    NASA Technical Reports Server (NTRS)

    Bailey, John W.; Basili, Victor R.

    1992-01-01

    This paper reports on the progress of a study which will contribute to our ability to perform high-level, component-based programming by describing means to obtain useful components, methods for the configuration and integration of those components, and an underlying economic model of the costs and benefits associated with this approach to reuse. One goal of the study is to develop and demonstrate methods to recover reusable components from domain-specific software through a combination of tools, to perform the identification, extraction, and re-engineering of components, and domain experts, to direct the applications of those tools. A second goal of the study is to enable the reuse of those components by identifying techniques for configuring and recombining the re-engineered software. This component-recovery or software-cycle model addresses not only the selection and re-engineering of components, but also their recombination into new programs. Once a model of reuse activities has been developed, the quantification of the costs and benefits of various reuse options will enable the development of an adaptable economic model of reuse, which is the principal goal of the overall study. This paper reports on the conception of the software-cycle model and on several supporting techniques of software recovery, measurement, and reuse which will lead to the development of the desired economic model.

  17. Chaotic and stable perturbed maps: 2-cycles and spatial models

    NASA Astrophysics Data System (ADS)

    Braverman, E.; Haroutunian, J.

    2010-06-01

    As the growth rate parameter increases in the Ricker, logistic and some other maps, the models exhibit an irreversible period doubling route to chaos. If a constant positive perturbation is introduced, then the Ricker model (but not the classical logistic map) experiences period doubling reversals; the break of chaos finally gives birth to a stable two-cycle. We outline the maps which demonstrate a similar behavior and also study relevant discrete spatial models where the value in each cell at the next step is defined only by the values at the cell and its nearest neighbors. The stable 2-cycle in a scalar map does not necessarily imply 2-cyclic-type behavior in each cell for the spatial generalization of the map.

  18. Application of life cycle assessment for an evaluation of wastewater treatment and reuse project--case study of Xi'an, China.

    PubMed

    Zhang, Q H; Wang, X C; Xiong, J Q; Chen, R; Cao, B

    2010-03-01

    In order to illuminate the benefit of a wastewater treatment and reuse project, a life cycle assessment (LCA) model was proposed by combining the process-based LCA and the input-output based LCA in one framework and using energy consumption as the sole parameter for quantitative evaluation of the project. The life cycle consumption was evaluated mainly by life cycle inventory (LCI) analysis taking into account the construction phase, operation phase and demolishment phase of the project. For evaluating the life cycle benefit of treated water reuse, attention was paid to the decrease of secondary effluent discharge and water saving. As a result of comprehensive LCA analysis of a case project in Xi'an, China, it was understood that the life cycle benefit gained from treated wastewater reuse much surpassed the life cycle energy consumption. The advantage of wastewater treatment and reuse was well shown by LCA analysis using the proposed model. 2009 Elsevier Ltd. All rights reserved.

  19. Essays on oil and business cycles in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Aba Alkhail, Bandar A.

    This dissertation consists of three chapters. Chapter one presents a theoretical model using a dynamic stochastic general equilibrium (DSGE) approach to investigate the role of world oil prices in explaining the business cycle in Saudi Arabia. This model incorporates both productivity and oil revenue shocks. The results indicate that productivity shocks are relatively more important to business cycles than oil shocks. However, this model has some unfavorable features that are associated with both investment and labor hours. The second chapter presents a modified theoretical model using DSGE approach to examine the role of world oil prices versus productivity shocks in explaining the business cycles in Saudi Arabia. To overcome the unfavorable features of the baseline model, the alternative model adds friction to the model by incorporating investment portfolio adjustment cost. Thus, the alternative model produces similar dynamics to that of the baseline model but the unfavorable characteristics are eliminated. Also, this chapter conducts sensitivity analysis. The objective of the third chapter is to empirically investigate how real world oil price and productivity shocks affect output, consumption, investment, labor hours, and trade balance/output ratio for Saudi Arabia. This chapter complements the theoretical model of the previous chapters. In addition, this study builds a foundation for future studies in examining the impact of real world oil price shocks on the economies of key trade partners of Saudi Arabia. The results of the third chapter show that productivity shocks matter more for macroeconomic fluctuations than oil shocks for the Saudis' primary trade partners. Therefore, fears of oil importing countries appear to be overstated. As a whole, this research is important for the following reasons. First, the empirical model is consistent with the predictions of our theoretical model in that productivity is a driving force of business cycles in Saudi Arabia. Second, the policymakers in Saudi Arabia should be more concerned with increasing productivity through adopting new technologies that increase economic prosperity. Therefore, the policymakers should continue diversifying economic resources and reduce their reliance on oil.

  20. Parameterization of Nitrogen Limitation for a Dynamic Ecohydrological Model: a Case Study from the Luquillo Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Bras, R. L.

    2017-12-01

    Feedbacks between vegetation and the soil nutrient cycle are important in ecosystems where nitrogen limits plant growth, and consequently influences the carbon balance in the plant-soil system. However, many biosphere models do not include such feedbacks, because interactions between carbon and the nitrogen cycle can be complex, and remain poorly understood. In this study we coupled a nitrogen cycle model with an eco-hydrological model by using the concept of carbon cost economics. This concept accounts for different "costs" to the plant of acquiring nitrogen via different pathways. This study builds on tRIBS-VEGGIE, a spatially explicit hydrological model coupled with a model of photosynthesis, stomatal resistance, and energy balance, by combining it with a model of nitrogen recycling. Driven by climate and spatially explicit data of soils, vegetation and topography, the model (referred to as tRIBS-VEGGIE-CN) simulates the dynamics of carbon and nitrogen in the soil-plant system; the dynamics of vegetation; and different components of the hydrological cycle. The tRIBS-VEGGIE-CN is applied in a humid tropical watershed at the Luquillo Critical Zone Observatory (LCZO). The region is characterized by high availability and cycling of nitrogen, high soil respiration rates, and large carbon stocks.We drive the model under contemporary CO2 and hydro-climatic forcing and compare results to a simulation under doubling CO2 and a range of future climate scenarios. The results with parameterization of nitrogen limitation based on carbon cost economics show that the carbon cost of the acquisition of nitrogen is 14% of the net primary productivity (NPP) and the N uptake cost for different pathways vary over a large range depending on leaf nitrogen content, turnover rates of carbon in soil and nitrogen cycling processes. Moreover, the N fertilization simulation experiment shows that the application of N fertilizer does not significantly change the simulated NPP. Furthermore, an experiment with doubling of the CO2 concentration level shows a significant increase of the NPP and turnover of plant tissues. The simulation with future climate scenarios shows consistent decrease in NPP but the uncertainties in projected NPP arising from selection of climate model and scenario is large.

  1. The Model Life-cycle: Training Module

    EPA Pesticide Factsheets

    Model Life-Cycle includes identification of problems & the subsequent development, evaluation, & application of the model. Objectives: define ‘model life-cycle’, explore stages of model life-cycle, & strategies for development, evaluation, & applications.

  2. The Intransitivity of Educational Preferences

    ERIC Educational Resources Information Center

    Smith, Debra Candace

    2013-01-01

    This study sought to answer the question of whether the existence of cycles in education are random events, or if cycles in education are likely to be expected on a regular basis due to intransitive decision-making patterns of stakeholders. This was a quantitative study, modeled after two previously conducted studies (Davis, 1958/59; May, 1954),…

  3. Using NASA's GRACE and SMAP satellites to measure human impacts on the water cycle

    NASA Astrophysics Data System (ADS)

    Reager, J. T., II; Castle, S.; Turmon, M.; Famiglietti, J. S.; Fournier, S.

    2017-12-01

    Two satellite missions, the Gravity Recovery and Climate Experiment (GRACE) mission and the Soil Moisture Active Passive (SMAP) mission are enabling the measurement of the dynamic state of the water cycle globally, offering a unique opportunity for the study of human impacts on terrestrial hydrology and an opportunity to quantify the direct augmentation of natural cycles by human activities. While many model-data fusion studies aim to apply observations to improve model performance, we present recent studies on measuring the multi-scale impacts of human activities by differencing or contrasting model simulations and observations. Results that will be presented include studies on: the measurement of human impacts on evapotranspiration in the Colorado River Basin; the estimation of the human portion of groundwater depletion in the Southwestern U.S.; and the influence of irrigation on runoff generation in the Mississippi River basin. Each of these cases has a unique implications for the sustainable use of natural resources by humans, and indicate the relevant extent and magnitude of human influence on natural processes, suggesting their importance for inclusion in hydrology and land-surface models.

  4. Advanced measurement techniques to characterize thermo-mechanical aspects of solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Malzbender, J.; Steinbrech, R. W.

    Advanced characterization methods have been used to analyze the thermo-mechanical behaviour of solid oxide fuel cells in a model stack. The primarily experimental work included contacting studies, sealing of a model stack, thermal and re-oxidation cycling. Also an attempt was made to correlate cell fracture in the stack with pore sizes determined from computer tomography. The contacting studies were carried out using pressure sensitive foils. The load to achieve full contact on anode and cathode side of the cell was assessed and applied in the subsequent model stack test. The stack experiment permitted a detailed analysis of stack compaction during sealing. During steady state operation thermal and re-oxidation cycling the changes in open cell voltage and acoustic emissions were monitored. Significant softening of the sealant material was observed at low temperatures. Heating in the thermal cycling loop of the stack appeared to be less critical than the cooling. Re-oxidation cycling led to significant damage if a critical re-oxidation time was exceeded. Microstructural studies permitted further insight into the re-oxidation mechanism. Finally, the maximum defect size in the cell was determined by computer tomography. A limit of maximum anode stress was estimated and the result correlated this with the failure strength observed during the model stack testing.

  5. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  6. Development of the living thing transportation systems worksheet on learning cycle model to increase student understanding

    NASA Astrophysics Data System (ADS)

    Rachmawati, E.; Nurohman, S.; Widowati, A.

    2018-01-01

    This study aims to know: 1) the feasibility LKPD review of aspects of the didactic requirements, construction requirements, technical requirements and compliance with the Learning Cycle. 2) Increase understanding of learners with Learning Model Learning Cycle in SMP N 1 Wates in the form LKPD. 3) The response of learners and educators SMP N 1 Wates to quality LKPD Transportation Systems Beings. This study is an R & D with the 4D model (Define, Design, Develop and Disseminate). Data were analyzed using qualitative analysis and quantitative analysis. Qualitative analysis in the form of advice description and assessment scores from all validates that was converted to a scale of 4. While the analysis of quantitative data by calculating the percentage of materializing learning and achievement using the standard gain an increased understanding and calculation of the KKM completeness evaluation value as an indicator of the achievement of students understanding. the results of this study yield LKPD IPA model learning Cycle theme Transportation Systems Beings obtain 108.5 total scores of a maximum score of 128 including the excellent category (A). LKPD IPA developed able to demonstrate an improved understanding of learners and the response of learners was very good to this quality LKPD IPA.

  7. A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress.

    PubMed

    Abroudi, Ali; Samarasinghe, Sandhya; Kulasiri, Don

    2017-09-21

    Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc_Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB_cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, Self-Organizing Map with Correlation Coefficient Analysis (SOMCCA) is developed which shows that Growth Factor and G1-S Checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a Checkpoint Efficiency Evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The Effect of a Potentially Low Solar Cycle #24 on Orbital Lifetimes of Fengyun 1-C Debris

    NASA Technical Reports Server (NTRS)

    Whitlock, David; Johnson, Nicholas; Matney, Mark; Krisko, Paula

    2008-01-01

    The magnitude of Solar Cycle #24 will have a non-trivial impact on the lifetimes of debris pieces that resulted from the intentional hypervelocity impact of the Fengyun 1-C satellite in January 2007. Recent solar flux measurements indicate Solar Cycle #24 has begun in the last few months, and will continue until approximately 2019. While there have been differing opinions on whether the intensity of this solar cycle will be higher or lower than usual, the Space Weather Prediction Center within the National Oceanic Atmospheric Administration (NOAA/SWPC) has recently forecast unusually low solar activity, which would result in longer orbital lifetimes. Using models for both the breakup of Fengyun 1-C and the propagation of the resultant debris cloud, the Orbital Debris Program Office at NASA Johnson Space Center conducted a study to better understand the impact of the solar cycle on lifetimes for pieces as small as 1 mm. Using a modified collision breakup model and PROP3D propagation software, the orbits of nearly 2 million objects 1 mm and larger were propagated for up to 200 years. By comparing a normal solar cycle with that of the NOAA/SWPC forecast low cycle, the effect of the solar flux on the lifetimes of the debris pieces is evaluated. The modeling of the low solar cycle shows an additional debris count of 12% for pieces larger than 10 cm by 2019 when compared to the resultant debris count using a normal cycle. The difference becomes more exaggerated (over 15%) for debris count in the smaller size regimes. However, in 50 years, the models predict the differences in debris count from differing models of Solar Cycle #24 to be less than 10% for all size regimes, with less variance in the smaller sizes. Understanding the longevity of the debris cloud will affect collision probabilities for both operational spacecraft and large derelict objects over the next century and beyond.

  9. Life cycle assessment of asphalt pavement maintenance.

    DOT National Transportation Integrated Search

    2014-01-01

    This study aims at developing a life cycle assessment (LCA) model to quantify the impact of pavement preservation on energy consumption and greenhouse gas (GHG) emissions. The construction stage contains material, manufacture, transportation and plac...

  10. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations

    PubMed Central

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélica Reis; MAGALHÃES, Ana Carolina; RIOS, Daniela; HONÓRIO, Heitor Marques; DELBEM, Alberto Carlos Botazzo

    2010-01-01

    Despite a plethora of in situ studies and clinical trials evaluating the efficacy of fluoridated dentifrices on caries control, in vitro pH cycling models are still broadly used because they mimic the dynamics of mineral loss and gain involved in caries formation. This paper critically reviews the current literature on existing pH-cycling models for the in vitro evaluation of the efficacy of fluoridated dentifrices for caries control, focusing on their strengths and limitations. A search was undertaken in the MEDLINE electronic journal database using the keywords "pH-cycling", "demineralization", "remineralization", "in vitro", "fluoride", "dentifrice". The primary outcome was the decrease of demineralization or the increase of remineralization as measured by different methods (e.g.: transverse microradiography) or tooth fluoride uptake. Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. One hundred and sixteen studies were included, of which 42 addressed specifically the comparison of dentifrices using different pH-cycling models. The other studies included meta-analysis or reviews, data about the effect of different fluoride sources on de-remineralization, different methods for analysis de-remineralization and chemical variables and characteristics of dental hard tissues that might have influence on de-remineralization processes. Generally, the studies presented ability to detect known results established by clinical trials, to demonstrate dose-related responses in the fluoride content of the dentifrices, and to provide repeatability and reproducibility between tests. In order to accomplish these features satisfactorily, it is mandatory to take into account the type of substrate and baseline artificial lesion, as well as the adequate response variables and statistical approaches to be used. This critical review of literature showed that the currently available pH-cycling models are appropriate to detect dose-response and pH-response of fluoride dentifrices, and to evaluate the impact of new active principles on the effect of fluoridated dentifrices, as well as their association with other anti-caries treatments. PMID:20835565

  11. Quantifying the Global Nitrous Oxide Emissions Using a Trait-based Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Zhuang, Q.; Yu, T.

    2017-12-01

    Nitrogen is an essential element for the global biogeochemical cycle. It is a key nutrient for organisms and N compounds including nitrous oxide significantly influence the global climate. The activities of bacteria and archaea are responsible for the nitrification and denitrification in a wide variety of environments, so microbes play an important role in the nitrogen cycle in soils. To date, most existing process-based models treated nitrification and denitrification as chemical reactions driven by soil physical variables including soil temperature and moisture. In general, the effect of microbes on N cycling has not been modeled in sufficient details. Soil organic carbon also affects the N cycle because it supplies energy to microbes. In my study, a trait-based biogeochemistry model quantifying N2O emissions from the terrestrial ecosystems is developed based on an extant process-based model TEM (Terrestrial Ecosystem Model). Specifically, the improvement to TEM includes: 1) Incorporating the N fixation process to account for the inflow of N from the atmosphere to biosphere; 2) Implementing the effects of microbial dynamics on nitrification process; 3) fully considering the effects of carbon cycling on N nitrogen cycling following the principles of stoichiometry of carbon and nitrogen in soils, plants, and microbes. The difference between simulations with and without the consideration of bacterial activity lies between 5% 25% based on climate conditions and vegetation types. The trait based module allows a more detailed estimation of global N2O emissions.

  12. The Development of SCORM-Conformant Learning Content Based on the Learning Cycle Using Participatory Design

    ERIC Educational Resources Information Center

    Su, C. Y.; Chiu, C. H.; Wang, T. I.

    2010-01-01

    This study incorporates the 5E learning cycle strategy to design and develop Sharable Content Object Reference Model-conformant materials for elementary science education. The 5E learning cycle that supports the constructivist approach has been widely applied in science education. The strategy consists of five phases: engagement, exploration,…

  13. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors

    Treesearch

    Atul Jain; Xiaojuan Yang; Haroon Kheshgi; A. David McGuire; Wilfred Post; David Kicklighter

    2009-01-01

    Nitrogen cycle dynamics have the capacity to attenuate the magnitude of global terrestrial carbon sinks and sources driven by CO2 fertilization and changes in climate. In this study, two versions of the terrestrial carbon and nitrogen cycle components of the Integrated Science Assessment Model (ISAM) are used to evaluate how variation in nitrogen...

  14. TThe role of nitrogen availability in land-atmosphere interactions: a systematic evaluation of carbon-nitrogen coupling in a global land surface model using plot-level nitrogen fertilization experiments

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Goodale, C. L.; Bonan, G. B.; Mahowald, N. M.; Ricciuto, D. M.; Thornton, P. E.

    2010-12-01

    Recent research from global land surface models emphasizes the important role of nitrogen cycling on global climate, via its control on the terrestrial carbon balance. Despite the implications of nitrogen cycling on global climate predictions, the research community has not performed a systematic evaluation of nitrogen cycling in global models. Here, we present such an evaluation for one global land model, CLM-CN. In the evaluation we simulated 45 plot-scale nitrogen-fertilization experiments distributed across 33 temperate and boreal forest sites. Model predictions were evaluated against field observations by comparing the vegetation and soil carbon responses to the additional nitrogen. Aggregated across all experiments, the model predicted a larger vegetation carbon response and a smaller soil carbon response than observed; the responses partially offset each other, leading to a slightly larger total ecosystem carbon response than observed. However, the model-observation agreement improved for vegetation carbon when the sites with observed negative carbon responses to nitrogen were excluded, which may be because the model lacks mechanisms whereby nitrogen additions increase tree mortality. Among experiments, younger forests and boreal forests’ vegetation carbon responses were less than predicted and mature forests (> 40 years old) were greater than predicted. Specific to the CLM-CN, this study used a systematic evaluation to identify key areas to focus model development, especially soil carbon- nitrogen interactions and boreal forest nitrogen cycling. Applicable to the modeling community, this study demonstrates a standardized protocol for comparing carbon-nitrogen interactions among global land models.

  15. Theoretical and experimental investigation of turbulent mixing on ejector configuration and performance in a solar-driven organic-vapor ejector cycle chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucha, E.I.

    1984-01-01

    A general method was developed to calculate two dimensional (axisymmetric) mixing of a compressible jet in a variable cross-sectional area mixing channel of the ejector. The analysis considers mixing of the primary and secondary fluids at constant pressure and incorporates finite difference approximations to the conservation equations. The flow model is based on the mixing length approximations. A detailed study and modeling of the flow phenomenon determines the best (optimum) mixing channel geometry of the ejector. The detailed ejector performance characteristics are predicted by incorporating the flow model into a solar-powered ejector cycle cooling system computer model. Freon-11 is usedmore » as both the primary and secondary fluids. Performance evaluation of the cooling system is examined for its coefficient of performance (COP) under a variety of operating conditions. A study is also conducted on a modified ejector cycle in which a secondary pump is introduced at the exit of the evaporator. Results show a significant improvement in the overall performance over that of the conventional ejector cycle (without a secondary pump). Comparison between one and two-dimensional analyses indicates that the two-dimensional ejector fluid flow analysis predicts a better overall system performance. This is true for both the conventional and modified ejector cycles.« less

  16. Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    NASA Astrophysics Data System (ADS)

    Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping

    2017-12-01

    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.

  17. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-α up-regulation during mitosis.

    PubMed

    Traynard, Pauline; Feillet, Céline; Soliman, Sylvain; Delaunay, Franck; Fages, François

    2016-11-01

    Experimental observations have put in evidence autonomous self-sustained circadian oscillators in most mammalian cells, and proved the existence of molecular links between the circadian clock and the cell cycle. Some mathematical models have also been built to assess conditions of control of the cell cycle by the circadian clock. However, recent studies in individual NIH3T3 fibroblasts have shown an unexpected acceleration of the circadian clock together with the cell cycle when the culture medium is enriched with growth factors, and the absence of such acceleration in confluent cells. In order to explain these observations, we study a possible entrainment of the circadian clock by the cell cycle through a regulation of clock genes around the mitosis phase. We develop a computational model and a formal specification of the observed behavior to investigate the conditions of entrainment in period and phase. We show that either the selective activation of RevErb-α or the selective inhibition of Bmal1 transcription during the mitosis phase, allow us to fit the experimental data on both period and phase, while a uniform inhibition of transcription during mitosis seems incompatible with the phase data. We conclude on the arguments favoring the RevErb-α up-regulation hypothesis and on some further predictions of the model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Modeling transit bus fuel consumption on the basis of cycle properties.

    PubMed

    Delgado, Oscar F; Clark, Nigel N; Thompson, Gregory J

    2011-04-01

    A method exists to predict heavy-duty vehicle fuel economy and emissions over an "unseen" cycle or during unseen on-road activity on the basis of fuel consumption and emissions data from measured chassis dynamometer test cycles and properties (statistical parameters) of those cycles. No regression is required for the method, which relies solely on the linear association of vehicle performance with cycle properties. This method has been advanced and examined using previously published heavy-duty truck data gathered using the West Virginia University heavy-duty chassis dynamometer with the trucks exercised over limited test cycles. In this study, data were available from a Washington Metropolitan Area Transit Authority emission testing program conducted in 2006. Chassis dynamometer data from two conventional diesel buses, two compressed natural gas buses, and one hybrid diesel bus were evaluated using an expanded driving cycle set of 16 or 17 different driving cycles. Cycle properties and vehicle fuel consumption measurements from three baseline cycles were selected to generate a linear model and then to predict unseen fuel consumption over the remaining 13 or 14 cycles. Average velocity, average positive acceleration, and number of stops per distance were found to be the desired cycle properties for use in the model. The methodology allowed for the prediction of fuel consumption with an average error of 8.5% from vehicles operating on a diverse set of chassis dynamometer cycles on the basis of relatively few experimental measurements. It was found that the data used for prediction should be acquired from a set that must include an idle cycle along with a relatively slow transient cycle and a relatively high speed cycle. The method was also applied to oxides of nitrogen prediction and was found to have less predictive capability than for fuel consumption with an average error of 20.4%.

  19. 40 CFR 86.005-10 - Emission standards for 2005 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.005-10 Section 86.005-10 Protection of... Heavy-Duty Vehicles § 86.005-10 Emission standards for 2005 and later model year Otto-cycle heavy-duty... emissions from new 2005 and later model year Otto-cycle HDEs, except for Otto-cycle HDEs subject to the...

  20. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other threemore » as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.« less

  1. Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling.

    PubMed

    Huijbregts, Mark A J; Gilijamse, Wim; Ragas, Ad M J; Reijnders, Lucas

    2003-06-01

    The evaluation of uncertainty is relatively new in environmental life-cycle assessment (LCA). It provides useful information to assess the reliability of LCA-based decisions and to guide future research toward reducing uncertainty. Most uncertainty studies in LCA quantify only one type of uncertainty, i.e., uncertainty due to input data (parameter uncertainty). However, LCA outcomes can also be uncertain due to normative choices (scenario uncertainty) and the mathematical models involved (model uncertainty). The present paper outlines a new methodology that quantifies parameter, scenario, and model uncertainty simultaneously in environmental life-cycle assessment. The procedure is illustrated in a case study that compares two insulation options for a Dutch one-family dwelling. Parameter uncertainty was quantified by means of Monte Carlo simulation. Scenario and model uncertainty were quantified by resampling different decision scenarios and model formulations, respectively. Although scenario and model uncertainty were not quantified comprehensively, the results indicate that both types of uncertainty influence the case study outcomes. This stresses the importance of quantifying parameter, scenario, and model uncertainty simultaneously. The two insulation options studied were found to have significantly different impact scores for global warming, stratospheric ozone depletion, and eutrophication. The thickest insulation option has the lowest impact on global warming and eutrophication, and the highest impact on stratospheric ozone depletion.

  2. Seasonal thermal energy storage in aquifers: Mathematical modeling studies in 1979

    NASA Technical Reports Server (NTRS)

    Tsang, C. F.

    1980-01-01

    A numerical model of water and heat flow in geologic media was developed, verified, and tested. The hydraulic parameters (transmittivity and storativity) and the location of a linear hydrologic barrier were simulated and compared with results from field experiments involving two injection-storage-recovery cycles. For both cycles, the initial simulated and observed temperatures agree (55c).

  3. Analysis and simulation of the I C engine Otto cycle using the second law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Abdel-Rahim, Y. M.

    The present investigation is an application of the second law of thermodynamics to the spark ignition engine cycle. A comprehensive thermodynamic analysis of the air standard cycle is conducted using the first and second laws of thermodynamics, the ideal gas equation of state and the perfect gas properties for air. The study investigates the effect of the cycle parameters on the cycle performance reflected by the first and second law efficiencies, the heat added, the work done, the available energy added as well as the history of the internal, available and unavailable energies along the cycle. The study shows that the second law efficiency is a function of the compression ratio, the initial temperature, the maximum temperature as well as the dead state temperature. A non-dimensional comprehensive thermodynamic simulation model for the actual Otto cycle is developed to study the effects of the design and operating parameters of the cycle on the cycle performance. The analysis takes into account engine geometry, mixture strength, heat transfer, piston motion, engine speed, mechanical friction, spark advance and combustion duration.

  4. Quantitative imaging with Fucci and mathematics to uncover temporal dynamics of cell cycle progression.

    PubMed

    Saitou, Takashi; Imamura, Takeshi

    2016-01-01

    Cell cycle progression is strictly coordinated to ensure proper tissue growth, development, and regeneration of multicellular organisms. Spatiotemporal visualization of cell cycle phases directly helps us to obtain a deeper understanding of controlled, multicellular, cell cycle progression. The fluorescent ubiquitination-based cell cycle indicator (Fucci) system allows us to monitor, in living cells, the G1 and the S/G2/M phases of the cell cycle in red and green fluorescent colors, respectively. Since the discovery of Fucci technology, it has found numerous applications in the characterization of the timing of cell cycle phase transitions under diverse conditions and various biological processes. However, due to the complexity of cell cycle dynamics, understanding of specific patterns of cell cycle progression is still far from complete. In order to tackle this issue, quantitative approaches combined with mathematical modeling seem to be essential. Here, we review several studies that attempted to integrate Fucci technology and mathematical models to obtain quantitative information regarding cell cycle regulatory patterns. Focusing on the technological development of utilizing mathematics to retrieve meaningful information from the Fucci producing data, we discuss how the combined methods advance a quantitative understanding of cell cycle regulation. © 2015 Japanese Society of Developmental Biologists.

  5. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  6. First-cycle blood counts and subsequent neutropenia, dose reduction, or delay in early-stage breast cancer therapy.

    PubMed

    Silber, J H; Fridman, M; DiPaola, R S; Erder, M H; Pauly, M V; Fox, K R

    1998-07-01

    If patients could be ranked according to their projected need for supportive care therapy, then more efficient and less costly treatment algorithms might be developed. This work reports on the construction of a model of neutropenia, dose reduction, or delay that rank-orders patients according to their need for costly supportive care such as granulocyte growth factors. A case series and consecutive sample of patients treated for breast cancer were studied. Patients had received standard-dose adjuvant chemotherapy for early-stage nonmetastatic breast cancer and were treated by four medical oncologists. Using 95 patients and validated with 80 additional patients, development models were constructed to predict one or more of the following events: neutropenia (absolute neutrophil count [ANC] < or = 250/microL), dose reduction > or = 15% of that scheduled, or treatment delay > or = 7 days. Two approaches to modeling were attempted. The pretreatment approach used only pretreatment predictors such as chemotherapy regimen and radiation history; the conditional approach included, in addition, blood count information obtained in the first cycle of treatment. The pretreatment model was unsuccessful at predicting neutropenia, dose reduction, or delay (c-statistic = 0.63). Conditional models were good predictors of subsequent events after cycle 1 (c-statistic = 0.87 and 0.78 for development and validation samples, respectively). The depth of the first-cycle ANC was an excellent predictor of events in subsequent cycles (P = .0001 to .004). Chemotherapy plus radiation also increased the risk of subsequent events (P = .0011 to .0901). Decline in hemoglobin (HGB) level during the first cycle of therapy was a significant predictor of events in the development study (P = .0074 and .0015), and although the trend was similar in the validation study, HGB decline failed to reach statistical significance. It is possible to rank patients according to their need of supportive care based on blood counts observed in the first cycle of therapy. Such rankings may aid in the choice of appropriate supportive care for patients with early-stage breast cancer.

  7. Sensitivity of Global Terrestrial Gross Primary Production to Hydrologic States Simulated by the Community Land Model Using Two Runoff Parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Huimin; Huang, Maoyi; Leung, Lai-Yung R.

    2014-09-01

    The terrestrial water and carbon cycles interact strongly at various spatio-temporal scales. To elucidate how hydrologic processes may influence carbon cycle processes, differences in terrestrial carbon cycle simulations induced by structural differences in two runoff generation schemes were investigated using the Community Land Model 4 (CLM4). Simulations were performed with runoff generation using the default TOPMODEL-based and the Variable Infiltration Capacity (VIC) model approaches under the same experimental protocol. The comparisons showed that differences in the simulated gross primary production (GPP) are mainly attributed to differences in the simulated leaf area index (LAI) rather than soil moisture availability. More specifically,more » differences in runoff simulations can influence LAI through changes in soil moisture, soil temperature, and their seasonality that affect the onset of the growing season and the subsequent dynamic feedbacks between terrestrial water, energy, and carbon cycles. As a result of a relative difference of 36% in global mean total runoff between the two models and subsequent changes in soil moisture, soil temperature, and LAI, the simulated global mean GPP differs by 20.4%. However, the relative difference in the global mean net ecosystem exchange between the two models is small (2.1%) due to competing effects on total mean ecosystem respiration and other fluxes, although large regional differences can still be found. Our study highlights the significant interactions among the water, energy, and carbon cycles and the need for reducing uncertainty in the hydrologic parameterization of land surface models to better constrain carbon cycle modeling.« less

  8. The Multi-Scale Response of Water Quality, Biodiversity and Carbon Sequestration to Coupled Macronutrient Cycling from Source to Sea: TURF2SURF

    NASA Astrophysics Data System (ADS)

    Cosby, B. J., Jr.; Wade, A. J.; Reinsch, S.; Robins, P. E.; Emmett, B.; Jago, C. F.

    2015-12-01

    Turf2Surf is a large, multi-disciplinary project that aims to test the hypothesis that the spatial and temporal patterns of water quality, C sequestration and biodiversity are better explained through the large-scale coupling of C, N and P cycles than by single cycle, single system approaches. To achieve this, a catchment-scale study of the River Conwy (349 km2) in Wales is being done with emphasis on determining when, where and how coupled macronutrient (C, N, P) cycling occurs in the biogeochemical hot-spots of the soils, the riparian zone, instream and in the river-estuarine transition zone. A major integrated measurement programme is now largely complete. New data are being analysed to understand which soil properties have greatest influence on above and below-ground productivity including plant traits and how microbial processing is controlled by stoichiometry and nutrient priming. Within the stream network, new understanding is being produced on the in-river algal and whole ecosystem (metabolic) response to CNP additions and the factors affecting the fate and cycling of organic matter. In the estuary, initial results indicate a subsurface jet is causing stratification and a velocity anomaly has been observed. Both are important in terms of suspended matter transport and floc break-up. An integrated model is being built to describe the soil-atmosphere-vegetation processes which is linked, firstly, to flow and water quality models that describe the CNP flux transport and transformations from the headwaters to the estuary and, secondly, to biodiversity models. The purpose of the integrated model is to quantify how coupled CNP cycles may respond to environmental change and thereby affect C sequestration, water quality and biodiversity in the future. The team are now in the major phase of data synthesis and model development and are interested in linking with similar studies involving coupled CNP cycles across the atmospheric-terrestrial-freshwater-coastal continuum.

  9. The Multi-Scale Response of Water Quality, Biodiversity and Carbon Sequestration to Coupled Macronutrient Cycling from Source to Sea: TURF2SURF

    NASA Astrophysics Data System (ADS)

    Wade, Andrew; Emmett, Bridget; Jago, Colin; Stutter, Marc; Biggs, Jeremy

    2016-04-01

    Turf2Surf is a large, multi-disciplinary project that aims to test the hypothesis that the spatial and temporal patterns of water quality, C sequestration and biodiversity are better explained through the large-scale coupling of C, N and P cycles than by single cycle, single system approaches. To achieve this, a catchment-scale study of the River Conwy (349 km2) in Wales is being done with emphasis on determining when, where and how coupled macronutrient (C, N, P) cycling occurs in the biogeochemical hot-spots of the soils, the riparian zone, instream and in the river-estuarine transition zone. A major integrated measurement programme is now largely complete. New data are being analysed to understand which soil properties have greatest influence on above and below-ground productivity including plant traits and how microbial processing is controlled by stoichiometry and nutrient priming. Within the stream network, new understanding is being produced on the in-river algal and whole ecosystem (metabolic) response to CNP additions and the factors affecting the fate and cycling of organic matter. In the estuary, initial results indicate a subsurface jet is causing stratification and a velocity anomaly has been observed. Both are important in terms of suspended matter transport and floc break-up. An integrated model is being built to describe the soil-atmosphere-vegetation processes which is linked, firstly, to flow and water quality models that describe the CNP flux transport and transformations from the headwaters to the estuary and, secondly, to biodiversity models. The purpose of the integrated model is to quantify how coupled CNP cycles may respond to environmental change and thereby affect C sequestration, water quality and biodiversity in the future. The team are now in the major phase of data synthesis and model development and are interested in linking with similar studies involving coupled CNP cycles across the atmospheric-terrestrial-freshwater-coastal continuum.

  10. The impact of the diurnal cycle on the MJO over the Maritime Continent: a modeling study assimilating TRMM rain rate into global analysis

    NASA Astrophysics Data System (ADS)

    Oh, Ji-Hyun; Kim, Baek-Min; Kim, Kwang-Yul; Song, Hyo-Jong; Lim, Gyu-Ho

    2013-02-01

    In the present study, we use modeling experiments to investigate the impact of the diurnal cycle on the Madden-Julian Oscillation (MJO) during the Australian summer. Physical initialization and a nudging technique enable us to assimilate the observed Tropical Rainfall Measuring Mission (TRMM) rain rate and atmospheric variables from the National Centers for Environmental Prediction—National Center for Atmospheric Research Reanalysis 2 (R2) into the Florida State University Global Spectral Model (FSUGSM), resulting in a realistic simulation of the MJO. Model precipitation is also significantly improved by TRMM rain rate observation via the physical initialization. We assess the influence of the diurnal cycle on the MJO by modifying the diurnal component during the model integration. Model variables are nudged toward the daily averaged values from R2. Globally suppressing the diurnal cycle (NO_DIURNAL) exerts a strong impact on the Maritime Continent. The mean state of precipitation increases and intraseasonal variability becomes stronger over the region. It is well known that MJO weakens as it passes over the Maritime Continent. However, the MJO maintains its strength in the NO_DIURNAL experiment, and the diminution of diurnal signals during the integration does not change the propagating speed of the MJO. We suggest that diminishing the diurnal cycle in NO_DIURNAL consumes less moist static energy (MSE), which is required to trigger both diurnal and intraseasonal convection. Thus, the remaining MSE may play a major role along with larger convective instability and stronger lower level moisture convergence in intensifying the MJO over the Maritime Continent in the model simulation.

  11. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, David; Betzler, Ben; Hirtz, Gregory John

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less

  12. Transitions between refrigeration regions in extremely short quantum cycles

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.

  13. Mathematical modeling of urea transport in the kidney.

    PubMed

    Layton, Anita T

    2014-01-01

    Mathematical modeling techniques have been useful in providing insights into biological systems, including the kidney. This article considers some of the mathematical models that concern urea transport in the kidney. Modeling simulations have been conducted to investigate, in the context of urea cycling and urine concentration, the effects of hypothetical active urea secretion into pars recta. Simulation results suggest that active urea secretion induces a "urea-selective" improvement in urine concentrating ability. Mathematical models have also been built to study the implications of the highly structured organization of tubules and vessels in the renal medulla on urea sequestration and cycling. The goal of this article is to show how physiological problems can be formulated and studied mathematically, and how such models may provide insights into renal functions.

  14. Predictive modeling and reducing cyclic variability in autoignition engines

    DOEpatents

    Hellstrom, Erik; Stefanopoulou, Anna; Jiang, Li; Larimore, Jacob

    2016-08-30

    Methods and systems are provided for controlling a vehicle engine to reduce cycle-to-cycle combustion variation. A predictive model is applied to predict cycle-to-cycle combustion behavior of an engine based on observed engine performance variables. Conditions are identified, based on the predicted cycle-to-cycle combustion behavior, that indicate high cycle-to-cycle combustion variation. Corrective measures are then applied to prevent the predicted high cycle-to-cycle combustion variation.

  15. Diurnal Cycle of Convection and Air-Sea-Land Interaction Associated with MJO over the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Savarin, A.; Chen, S. S.

    2016-12-01

    The Madden-Julian Oscillation (MJO) is a dominant mode of intraseasonal variability in the tropics. Large-scale convection fueling the MJO is initiated over the tropical Indian Ocean and propagates eastward across the Maritime Continent (MC) and into the western Pacific as a pattern of alternating phases of active and suppressed convection. As an eastward-propagating MJO convective event encounters the MC, its nature is altered due to the complex interactions with the landmass and topography as well as the warm coastal ocean. In turn, the passage of a large-scale MJO event modulates local conditions over the MC. Previous studies have shown a strong and distinct diurnal cycle of convection over the land and nearby ocean, with an afternoon maximum over land, and a morning maximum over water. These complex interactions are still not well understood. This study aims to improve our understanding on how the resolution of distinct topographic features affects the diurnal cycle of convection in the active and suppressed MJO regimes. We use the Unified Wave Interface - a Coupled Model (UWIN-CM), a fully coupled atmosphere-ocean model to examine the effects that varying model resolution has on the representation of the MJO, the diurnal cycle of convection, and their interaction. Three model simulations of the November-December 2011 MJO event were carried out with resolutions of 12-, 4-, and 1.3-km in the fully coupled setting, and verified against TRMM and DYNAMO field campaign observations. Primary results indicate that increasing model resolution provides a better representation of the MC topography that not only improves the pattern of the diurnal cycle of convection over land. It also increases the amount of precipitation over water to values comparable to TRMM, possibly aiding the MJO's eastward propagation as shown in observational studies.

  16. Menstrual Bleeding Patterns Among Regularly Menstruating Women

    PubMed Central

    Dasharathy, Sonya S.; Mumford, Sunni L.; Pollack, Anna Z.; Perkins, Neil J.; Mattison, Donald R.; Wactawski-Wende, Jean; Schisterman, Enrique F.

    2012-01-01

    Menstrual bleeding patterns are considered relevant indicators of reproductive health, though few studies have evaluated patterns among regularly menstruating premenopausal women. The authors evaluated self-reported bleeding patterns, incidence of spotting, and associations with reproductive hormones among 201 women in the BioCycle Study (2005–2007) with 2 consecutive cycles. Bleeding patterns were assessed by using daily questionnaires and pictograms. Marginal structural models were used to evaluate associations between endogenous hormone concentrations and subsequent total reported blood loss and bleeding length by weighted linear mixed-effects models and weighted parametric survival analysis models. Women bled for a median of 5 days (standard deviation: 1.5) during menstruation, with heavier bleeding during the first 3 days. Only 4.8% of women experienced midcycle bleeding. Increased levels of follicle-stimulating hormone (β = 0.20, 95% confidence interval: 0.13, 0.27) and progesterone (β = 0.06, 95% confidence interval: 0.03, 0.09) throughout the cycle were associated with heavier menstrual bleeding, and higher follicle-stimulating hormone levels were associated with longer menses. Bleeding duration and volume were reduced after anovulatory compared with ovulatory cycles (geometric mean blood loss: 29.6 vs. 47.2 mL; P = 0.07). Study findings suggest that detailed characterizations of bleeding patterns may provide more insight than previously thought as noninvasive markers for endocrine status in a given cycle. PMID:22350580

  17. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling

    PubMed Central

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687

  18. Complex Dynamics in Nonequilibrium Economics and Chemistry

    NASA Astrophysics Data System (ADS)

    Wen, Kehong

    Complex dynamics provides a new approach in dealing with economic complexity. We study interactively the empirical and theoretical aspects of business cycles. The way of exploring complexity is similar to that in the study of an oscillatory chemical system (BZ system)--a model for modeling complex behavior. We contribute in simulating qualitatively the complex periodic patterns observed from the controlled BZ experiments to narrow the gap between modeling and experiment. The gap between theory and reality is much wider in economics, which involves studies of human expectations and decisions, the essential difference from natural sciences. Our empirical and theoretical studies make substantial progress in closing this gap. With the help from the new development in nonequilibrium physics, i.e., the complex spectral theory, we advance our technique in detecting characteristic time scales from empirical economic data. We obtain correlation resonances, which give oscillating modes with decays for correlation decomposition, from different time series including S&P 500, M2, crude oil spot prices, and GNP. The time scales found are strikingly compatible with business experiences and other studies in business cycles. They reveal the non-Markovian nature of coherent markets. The resonances enhance the evidence of economic chaos obtained by using other tests. The evolving multi-humped distributions produced by the moving-time -window technique reveal the nonequilibrium nature of economic behavior. They reproduce the American economic history of booms and busts. The studies seem to provide a way out of the debate on chaos versus noise and unify the cyclical and stochastic approaches in explaining business fluctuations. Based on these findings and new expectation formulation, we construct a business cycle model which gives qualitatively compatible patterns to those found empirically. The soft-bouncing oscillator model provides a better alternative than the harmonic oscillator or the random walk model as the building block in business cycle theory. The mathematical structure of the model (delay differential equation) is studied analytically and numerically. The research pave the way toward sensible economic forecasting.

  19. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must bemore » researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va« less

  20. Overview of the GRC Stirling Convertor System Dynamic Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Regan, Timothy F.

    2004-01-01

    A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.

  1. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimpe, Michael; von Kuepach, M. E.; Naumann, M.

    For reliable lifetime predictions of lithium-ion batteries, models for cell degradation are required. A comprehensive semi-empirical model based on a reduced set of internal cell parameters and physically justified degradation functions for the capacity loss is developed and presented for a commercial lithium iron phosphate/graphite cell. One calendar and several cycle aging effects are modeled separately. Emphasis is placed on the varying degradation at different temperatures. Degradation mechanisms for cycle aging at high and low temperatures as well as the increased cycling degradation at high state of charge are calculated separately. For parameterization, a lifetime test study is conducted includingmore » storage and cycle tests. Additionally, the model is validated through a dynamic current profile based on real-world application in a stationary energy storage system revealing the accuracy. Tests for validation are continued for up to 114 days after the longest parametrization tests. In conclusion, the model error for the cell capacity loss in the application-based tests is at the end of testing below 1% of the original cell capacity and the maximum relative model error is below 21%.« less

  2. Comprehensive Modeling of Temperature-Dependent Degradation Mechanisms in Lithium Iron Phosphate Batteries

    DOE PAGES

    Schimpe, Michael; von Kuepach, M. E.; Naumann, M.; ...

    2018-01-12

    For reliable lifetime predictions of lithium-ion batteries, models for cell degradation are required. A comprehensive semi-empirical model based on a reduced set of internal cell parameters and physically justified degradation functions for the capacity loss is developed and presented for a commercial lithium iron phosphate/graphite cell. One calendar and several cycle aging effects are modeled separately. Emphasis is placed on the varying degradation at different temperatures. Degradation mechanisms for cycle aging at high and low temperatures as well as the increased cycling degradation at high state of charge are calculated separately. For parameterization, a lifetime test study is conducted includingmore » storage and cycle tests. Additionally, the model is validated through a dynamic current profile based on real-world application in a stationary energy storage system revealing the accuracy. Tests for validation are continued for up to 114 days after the longest parametrization tests. In conclusion, the model error for the cell capacity loss in the application-based tests is at the end of testing below 1% of the original cell capacity and the maximum relative model error is below 21%.« less

  3. Altered cell cycle-related gene expression in brain and lymphocytes from a transgenic mouse model of Alzheimer's disease [amyloid precursor protein/presenilin 1 (PS1)].

    PubMed

    Esteras, Noemí; Bartolomé, Fernando; Alquézar, Carolina; Antequera, Desireé; Muñoz, Úrsula; Carro, Eva; Martín-Requero, Ángeles

    2012-09-01

    Cumulative evidence indicates that aberrant re-expression of many cell cycle-related proteins and inappropriate neuronal cell cycle control are critical events in Alzheimer's disease (AD) pathogenesis. Evidence of cell cycle activation in post-mitotic neurons has also been observed in murine models of AD, despite the fact that most of these mice do not show massive loss of neuronal bodies. Dysfunction of the cell cycle appears to affect cells other than neurons, as peripheral cells, such as lymphocytes and fibroblasts from patients with AD, show an altered response to mitogenic stimulation. We sought to determine whether cell cycle disturbances are present simultaneously in both brain and peripheral cells from the amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD, in order to validate the use of peripheral cells from patients not only to study cell cycle abnormalities as a pathogenic feature of AD, but also as a means to test novel therapeutic approaches. By using cell cycle pathway-specific RT(2)Profiler™ PCR Arrays, we detected changes in a number of cell cycle-related genes in brain as well as in lymphocytes from APP/PS1 mice. Moreover, we found enhanced 5'-bromo-2'-deoxyuridine incorporation into DNA in lymphocytes from APP/PS1 mice, and increased expression of the cell proliferation marker proliferating cell nuclear antigen (PCNA), and the cyclin-dependent kinase (CDK) inhibitor Cdkn2a, as detected by immunohistochemistry in cortical neurons of the APP/PS1 mice. Taken together, the cell cycle-related changes in brain and blood cells reported here support the mitosis failure hypothesis in AD and validate the use of peripheral cells as surrogate tissue to study the molecular basis of AD pathogenesis. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  5. A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints

    NASA Astrophysics Data System (ADS)

    Borgesen, Peter; Wentlent, Luke; Hamasha, Sa'd.; Khasawneh, Saif; Shirazi, Sam; Schmitz, Debora; Alghoul, Thaer; Greene, Chris; Yin, Liang

    2018-02-01

    The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.

  6. Evolution of resource cycling in ecosystems and individuals.

    PubMed

    Crombach, Anton; Hogeweg, Paulien

    2009-06-01

    Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned? We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves. In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.

  7. Benchmarking carbon-nitrogen interactions in Earth System Models to observations: An inter-comparison of nitrogen limitation in global land surface models with carbon and nitrogen cycles (CLM-CN and O-CN)

    NASA Astrophysics Data System (ADS)

    Thomas, R. Q.; Zaehle, S.; Templer, P. H.; Goodale, C. L.

    2011-12-01

    Predictions of climate change depend on accurately modeling the feedbacks among the carbon cycle, nitrogen cycle, and climate system. Several global land surface models have shown that nitrogen limitation determines how land carbon fluxes respond to rising CO2, nitrogen deposition, and climate change, thereby influencing predictions of climate change. However, the magnitude of the carbon-nitrogen-climate feedbacks varies considerably by model, leading to critical and timely questions of why they differ and how they compare to field observations. To address these questions, we initiated a model inter-comparison of spatial patterns and drivers of nitrogen limitation. The experiment assessed the regional consequences of sustained nitrogen additions in a set of 25-year global nitrogen fertilization simulations. The model experiments were designed to cover effects from small changes in nitrogen inputs associated with plausible increases in nitrogen deposition to large changes associated with field-based nitrogen fertilization experiments. The analyses of model simulations included assessing the geographically varying degree of nitrogen limitation on plant and soil carbon cycling and the mechanisms underlying model differences. Here, we present results from two global land-surface models (CLM-CN and O-CN) with differing approaches to modeling carbon-nitrogen interactions. The predictions from each model were compared to a set of globally distributed observational data that includes nitrogen fertilization experiments, 15N tracer studies, small catchment nitrogen input-output studies, and syntheses across nitrogen deposition gradients. Together these datasets test many aspects of carbon-nitrogen coupling and are able to differentiate between the two models. Overall, this study is the first to explicitly benchmark carbon and nitrogen interactions in Earth System Models using a range of observations and is a foundation for future inter-comparisons.

  8. Isostasy-controlled thinning-upward cycles in the Mediterranean?; a comparison with the Zechstein salt giant

    NASA Astrophysics Data System (ADS)

    Van den Belt, Frank J. G.; De Boer, Poppe L.

    2014-05-01

    The desiccated deep-basin model, originally developed for the Mediterranean salt giant, deviated significantly from existing models and it has never been satisfactorily translated into a general concept. With time, however, Mediterranean models evolved towards moderate basin depths and the view that deposition took place in a flooded basin has gained reputation. These new insights have bridged the gap with general evaporite models and open possibilities of integrating concepts developed for other salt giants into the model. Recent modelling work (Van den Belt & De Boer, 2012) based on the Zechstein salt basin has shown that the thickness and composition of subsequent evaporite cycles can be explained by a model that involves a repetition of a three-stage process of 1) progressive narrowing of an ocean corridor in response to sulphate-platform progradation, resulting in 2) brine concentration and rapid infilling of the basin with halite and potash salts, the load of which causes 3) isostatic creation of accommodation space for the next cycle. Isostatic theory predicts that each cycle has approximately half the thickness of the previous one, e.g. 1.0 > 0.50 > 0.25 > 0.125 followed by a number of (coalesced) smaller cycles with a joint thickness of 0.125. The sequence in the basin centre then adds up to 2, which is two times the original basin depth. For the Zechstein case actual cycle thickness well matches these predicted values with cycle thicknesses of about 1.06 > 0.54 > 0.18 > 0.10 and 0.12. The cycle build-up of the Mediterranean salt giant is less well known, because of limited deep drilling. There are at least two cycles, a thin upper overlying a thick lower unit, but comparison of Zechstein patterns with Mediterranean sections has shown that more cycles may be present. Typical cycle boundaries include K/Mg-salt interbeds in halite units, and halite interbeds in sulphate units. Interestingly, analysis has shown that such indicators in Mediterranean sections indicate that cycles may indeed be stacked according to the 50% thickness rule. Examples are the K-salt halfway up the Sicilian section and the regular halite interbeds in the Upper Evaporite of the Western Mediterranean. In addition, the Lago Mare clays that define the top of the Mediterranean section are reminiscent of the Zechstein claystone cap. If the proposed mechanism indeed applies to the Mediterranean it would point at an initial basin depth of about 600-700 for the Western Mediterranean. Van den Belt & De Boer (2012) Utrecht Studies in Earth Sciences, v. 21, p. 59-65.

  9. Health effects of the London bicycle sharing system: health impact modelling study

    PubMed Central

    Tainio, Marko; Cheshire, James; O’Brien, Oliver; Goodman, Anna

    2014-01-01

    Objective To model the impacts of the bicycle sharing system in London on the health of its users. Design Health impact modelling and evaluation, using a stochastic simulation model. Setting Central and inner London, England. Data sources Total population operational registration and usage data for the London cycle hire scheme (collected April 2011-March 2012), surveys of cycle hire users (collected 2011), and London data on travel, physical activity, road traffic collisions, and particulate air pollution (PM2.5, (collected 2005-12). Participants 578 607 users of the London cycle hire scheme, aged 14 years and over, with an estimated 78% of travel time accounted for by users younger than 45 years. Main outcome measures Change in lifelong disability adjusted life years (DALYs) based on one year impacts on incidence of disease and injury, modelled through medium term changes in physical activity, road traffic injuries, and exposure to air pollution. Results Over the year examined the users made 7.4 million cycle hire trips (estimated 71% of cycling time by men). These trips would mostly otherwise have been made on foot (31%) or by public transport (47%). To date there has been a trend towards fewer fatalities and injuries than expected on cycle hire bicycles. Using these observed injury rates, the population benefits from the cycle hire scheme substantially outweighed harms (net change −72 DALYs (95% credible interval −110 to −43) among men using cycle hire per accounting year; −15 (−42 to −6) among women; note that negative DALYs represent a health benefit). When we modelled cycle hire injury rates as being equal to background rates for all cycling in central London, these benefits were smaller and there was no evidence of a benefit among women (change −49 DALYs (−88 to −17) among men; −1 DALY (−27 to 12) among women). This sex difference largely reflected higher road collision fatality rates for female cyclists. At older ages the modelled benefits of cycling were much larger than the harms. Using background injury rates in the youngest age group (15 to 29 years), the medium term benefits and harms were both comparatively small and potentially negative. Conclusion London’s bicycle sharing system has positive health impacts overall, but these benefits are clearer for men than for women and for older users than for younger users. The potential benefits of cycling may not currently apply to all groups in all settings. PMID:24524928

  10. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.

    2009-12-01

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further attests to the need for remotely sensed CO2 observations from space.

  11. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling.

    PubMed

    McMillen, T S; Minami, E; Leboeuf, R C

    2013-06-24

    Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

  12. The Effect of "Rogue" Active Regions on the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Nagy, Melinda; Lemerle, Alexandre; Labonville, François; Petrovay, Kristóf; Charbonneau, Paul

    2017-11-01

    The origin of cycle-to-cycle variations in solar activity is currently the focus of much interest. It has recently been pointed out that large individual active regions with atypical properties can have a significant impact on the long-term behavior of solar activity. We investigate this possibility in more detail using a recently developed 2×2D dynamo model of the solar magnetic cycle. We find that even a single "rogue" bipolar magnetic region (BMR) in the simulations can have a major effect on the further development of solar activity cycles, boosting or suppressing the amplitude of subsequent cycles. In extreme cases, an individual BMR can completely halt the dynamo, triggering a grand minimum. Rogue BMRs also have the potential to induce significant hemispheric asymmetries in the solar cycle. To study the effect of rogue BMRs in a more systematic manner, a series of dynamo simulations were conducted, in which a large test BMR was manually introduced in the model at various phases of cycles of different amplitudes. BMRs emerging in the rising phase of a cycle can modify the amplitude of the ongoing cycle, while BMRs emerging in later phases will only affect subsequent cycles. In this model, the strongest effect on the subsequent cycle occurs when the rogue BMR emerges around cycle maximum at low latitudes, but the BMR does not need to be strictly cross-equatorial. Active regions emerging as far as 20° from the equator can still have a significant effect. We demonstrate that the combined effect of the magnetic flux, tilt angle, and polarity separation of the BMR on the dynamo is via their contribution to the dipole moment, δ D_{BMR}. Our results indicate that prediction of the amplitude, starting epoch, and duration of a cycle requires an accurate accounting of a broad range of active regions emerging in the previous cycle.

  13. Development of Advanced Eco-hydrologic and Biogeochemical Coupling Model to Constrain Missing Role of Inland Waters on Boundless Biogeochemical Cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Maksyutov, S. S.

    2016-12-01

    Inland waters including rivers, lakes, and groundwater are suggested to act as a transport pathway for water and dissolved substances, and play some role in continental biogeochemical cycling (Cole et al., 2007; Battin et al., 2009). The authors have developed process-based National Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama, 2014, 2015, etc.), which includes feedback between hydrologic-geomorphic-ecological processes. In this study, NICE was further developed to couple with various biogeochemical cycle models in biosphere, those for water quality in aquatic ecosystems, and those for carbon weathering, etc. (NICE-BGC) (Nakayama, accepted). The new model incorporates connectivity of the biogeochemical cycle accompanied by hydrologic cycle between surface water and groundwater, hillslopes and river networks, and other intermediate regions. The model also includes reaction between inorganic and organic carbons, and its relation to nitrogen and phosphorus in terrestrial-aquatic continuum. The model results of CO2 evasion to the atmosphere, sediment storage, and carbon transport to the ocean (DOC, POC, and DIC flux) were reasonably in good agreement with previous compiled data. The model also showed carbon budget in major river basins and in each continent in global scale. In order to decrease uncertainty about carbon cycle, it became clear the previous empirical estimation by compiled data should be extended to this process-oriented model and higher resolution data to further clarify mechanistic interplay between inorganic and organic carbon and its relationship to nitrogen and phosphorus in terrestrial-aquatic linkages. NICE-BGC would play important role to re-evaluate greenhouse gas budget of the biosphere, and to bridge gap between top-down and bottom-up approaches (Battin et al., 2009; Regnier et al., 2013).

  14. Reconstruction of total solar irradiance 1974-2009

    NASA Astrophysics Data System (ADS)

    Ball, W. T.; Unruh, Y. C.; Krivova, N. A.; Solanki, S.; Wenzler, T.; Mortlock, D. J.; Jaffe, A. H.

    2012-05-01

    Context. The study of variations in total solar irradiance (TSI) is important for understanding how the Sun affects the Earth's climate. Aims: Full-disk continuum images and magnetograms are now available for three full solar cycles. We investigate how modelled TSI compares with direct observations by building a consistent modelled TSI dataset. The model, based only on changes in the photospheric magnetic flux can then be tested on rotational, cyclical and secular timescales. Methods: We use Kitt Peak and SoHO/MDI continuum images and magnetograms in the SATIRE-S model to reconstruct TSI over cycles 21-23. To maximise independence from TSI composites, SORCE/TIM TSI data are used to fix the one free parameter of the model. We compare and combine the separate data sources for the model to estimate an uncertainty on the reconstruction and prevent any additional free parameters entering the model. Results: The reconstruction supports the PMOD composite as being the best historical record of TSI observations, although on timescales of the solar rotation the IRMB composite provides somewhat better agreement. Further to this, the model is able to account for 92% of TSI variations from 1978 to 2009 in the PMOD composite and over 96% during cycle 23. The reconstruction also displays an inter-cycle, secular decline of 0.20+0.12-0.09 W m-2 between cycle 23 minima, in agreement with the PMOD composite. Conclusions: SATIRE-S is able to recreate TSI observations on all timescales of a day and longer over 31 years from 1978. This is strong evidence that changes in photospheric magnetic flux alone are responsible for almost all solar irradiance variations over the last three solar cycles.

  15. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development.

    PubMed

    Palmer, N; Kaldis, P

    2016-01-01

    The preimplantation development stage of mammalian embryogenesis consists of a series of highly conserved, regulated, and predictable cell divisions. This process is essential to allow the rapid expansion and differentiation of a single-cell zygote into a multicellular blastocyst containing cells of multiple developmental lineages. This period of development, also known as the germinal stage, encompasses several important developmental transitions, which are accompanied by dramatic changes in cell cycle profiles and dynamics. These changes are driven primarily by differences in the establishment and enforcement of cell cycle checkpoints, which must be bypassed to facilitate the completion of essential cell cycle events. Much of the current knowledge in this area has been amassed through the study of knockout models in mice. These mouse models are powerful experimental tools, which have allowed us to dissect the relative dependence of the early embryonic cell cycles on various aspects of the cell cycle machinery and highlight the extent of functional redundancy between members of the same gene family. This chapter will explore the ways in which the cell cycle machinery, their accessory proteins, and their stimuli operate during mammalian preimplantation using mouse models as a reference and how this allows for the usually well-defined stages of the cell cycle to be shaped and transformed during this unique and critical stage of development. © 2016 Elsevier Inc. All rights reserved.

  16. Glutamatergic and GABAergic TCA cycle and neurotransmitter cycling fluxes in different regions of mouse brain.

    PubMed

    Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B

    2013-10-01

    The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.

  17. The components of kin competition.

    PubMed

    Van Dyken, J David

    2010-10-01

    It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that are more or less permissive of altruism. As an example, I give closed-form results for Hamilton's rule in a three-stage life cycle. Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results. Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these two phenomena. Population viscosity per se does not impede kin selection. © 2010 The Author(s). Journal compilation © 2010 The Society for the Study of Evolution.

  18. Materials constitutive models for nonlinear analysis of thermally cycled structures

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.

  19. A Darwinian approach to the origin of life cycles with group properties.

    PubMed

    Rashidi, Armin; Shelton, Deborah E; Michod, Richard E

    2015-06-01

    A selective explanation for the evolution of multicellular organisms from unicellular ones requires knowledge of both selective pressures and factors affecting the response to selection. Understanding the response to selection is particularly challenging in the case of evolutionary transitions in individuality, because these transitions involve a shift in the very units of selection. We develop a conceptual framework in which three fundamental processes (growth, division, and splitting) are the scaffold for unicellular and multicellular life cycles alike. We (i) enumerate the possible ways in which these processes can be linked to create more complex life cycles, (ii) introduce three genes based on growth, division and splitting that, acting in concert, determine the architecture of the life cycles, and finally, (iii) study the evolution of the simplest five life cycles using a heuristic model of coupled ordinary differential equations in which mutations are allowed in the three genes. We demonstrate how changes in the regulation of three fundamental aspects of colonial form (cell size, colony size, and colony cell number) could lead unicellular life cycles to evolve into primitive multicellular life cycles with group properties. One interesting prediction of the model is that selection generally favors cycles with group level properties when intermediate body size is associated with lowest mortality. That is, a universal requirement for the evolution of group cycles in the model is that the size-mortality curve be U-shaped. Furthermore, growth must decelerate with size. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Self-organizing maps based on limit cycle attractors.

    PubMed

    Huang, Di-Wei; Gentili, Rodolphe J; Reggia, James A

    2015-03-01

    Recent efforts to develop large-scale brain and neurocognitive architectures have paid relatively little attention to the use of self-organizing maps (SOMs). Part of the reason for this is that most conventional SOMs use a static encoding representation: each input pattern or sequence is effectively represented as a fixed point activation pattern in the map layer, something that is inconsistent with the rhythmic oscillatory activity observed in the brain. Here we develop and study an alternative encoding scheme that instead uses sparsely-coded limit cycles to represent external input patterns/sequences. We establish conditions under which learned limit cycle representations arise reliably and dominate the dynamics in a SOM. These limit cycles tend to be relatively unique for different inputs, robust to perturbations, and fairly insensitive to timing. In spite of the continually changing activity in the map layer when a limit cycle representation is used, map formation continues to occur reliably. In a two-SOM architecture where each SOM represents a different sensory modality, we also show that after learning, limit cycles in one SOM can correctly evoke corresponding limit cycles in the other, and thus there is the potential for multi-SOM systems using limit cycles to work effectively as hetero-associative memories. While the results presented here are only first steps, they establish the viability of SOM models based on limit cycle activity patterns, and suggest that such models merit further study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Predictability of Advection-dominated Flux-transport Solar Dynamo Models

    NASA Astrophysics Data System (ADS)

    Sanchez, Sabrina; Fournier, Alexandre; Aubert, Julien

    2014-01-01

    Space weather is a matter of practical importance in our modern society. Predictions of forecoming solar cycles mean amplitude and duration are currently being made based on flux-transport numerical models of the solar dynamo. Interested in the forecast horizon of such studies, we quantify the predictability window of a representative, advection-dominated, flux-transport dynamo model by investigating its sensitivity to initial conditions and control parameters through a perturbation analysis. We measure the rate associated with the exponential growth of an initial perturbation of the model trajectory, which yields a characteristic timescale known as the e-folding time τ e . The e-folding time is shown to decrease with the strength of the α-effect, and to increase with the magnitude of the imposed meridional circulation. Comparing the e-folding time with the solar cycle periodicity, we obtain an average estimate for τ e equal to 2.76 solar cycle durations. From a practical point of view, the perturbations analyzed in this work can be interpreted as uncertainties affecting either the observations or the physical model itself. After reviewing these, we discuss their implications for solar cycle prediction.

  2. A STUDY OF THE HEMISPHERIC ASYMMETRY OF SUNSPOT AREA DURING SOLAR CYCLES 23 AND 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Partha; Choudhary, D. P.; Gosain, Sanjay, E-mail: partha240@yahoo.co.in, E-mail: parthares@gmail.com, E-mail: debiprasad.choudhary@csun.edu, E-mail: sgosain@nso.edu

    2013-05-10

    Solar activity indices vary over the Sun's disk, and various activity parameters are not considered to be symmetric between the northern and southern hemispheres of the Sun. The north-south asymmetry of different solar indices provides an important clue to understanding subphotospheric dynamics and solar dynamo action, especially with regard to nonlinear dynamo models. In the present work, we study the statistical significance of the north-south asymmetry of sunspot areas for the complete solar cycle 23 (1996-2008) and rising branch of cycle 24 (first 45 months). The preferred hemisphere in each year of cycles 23 and 24 has been identified bymore » calculating the probability of hemispheric distribution of sunspot areas. The statistically significant intermediate-term periodicities of the north-south asymmetry of sunspot area data have also been investigated using Lomb-Scargle and wavelet techniques. A number of short- and mid-term periods including the best-known Rieger one (150-160 days) are detected in cycle 23 and near Rieger-type periods during cycle 24, and most of them are found to be time variable. We present our results and discuss their possible explanations with the help of theoretical models and observations.« less

  3. Mathematical models of tumor heterogeneity and drug resistance

    NASA Astrophysics Data System (ADS)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of transition rates as a function of global density. Finally, we extend the model of cell-cycle heterogeneity to include spatial variables. Cells are modeled as soft spheres and exhibit attraction/repulsion/random forces. A fundamental hypothesis is that cell-cycle length increases with local density, thus producing a distribution of observed division lengths. Apoptosis occurs primarily through an extended period of unsuccessful proliferation, and the explicit mechanism of the drug (Paclitaxel) is modeled as an increase in cell-cycle duration. We show that the distribution of cell-cycle lengths is highly time-dependent, with close time-averaged agreement with the distribution used in the previous work. Furthermore, survival curves are calculated and shown to qualitatively agree with experimental data in different densities and geometries, thus relating the cellular microenvironment to drug resistance.

  4. Origin of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    North, G. R.

    1984-01-01

    A climate model resolving the seasonal cycle and the two horizontal dimensions was developed and applied to several problems of current interest. Models of this type are useful when for various reasons a general circulation model experiment is not warranted or not feasible. For example, in cases where the signal to natural variability is small it may be advantageous to first consider such a statistical dynamical model because extremely long runs may be necessary in the application. In this case the simpler statistical dynamical model serves as a pilot study device. The model developed is a thermodynamic model whose solution yields the equilibrium seasonal cycle for the surface temperature field over the globe. The model is essentially a statement of the conservation of heat energy for individual columns of the earth atmosphere system. Various terms such as the infrared radiation flux to space are parameterized with earth radiation budget data from satellites such as Nimbus 6. The primary agent modulating the seasonal cycle amplitude is the heat capacity per unit area which is a strong function of surface type -- ocean surface can store 60 times more heat per unit time than land. By adjusting its few empirical parameters the model can be brought into remarkable agreement with the observed seasonal cycle. The model is then very useful for looking at the dependence of the seasonal cycle of the temperature on such externally defined variables as the Earth's orbital elements (eccentricity, tilt, precession of equinoxes) or the configuration of land-sea geography which can be changed by continental drift.

  5. Modeling carbon cycle process of soil profile in Loess Plateau of China

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Finke, P.; Guo, Z.; Wu, H.

    2011-12-01

    SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.

  6. Carbon-nitrogen-water interactions: is model parsimony fruitful?

    NASA Astrophysics Data System (ADS)

    Puertes, Cristina; González-Sanchis, María; Lidón, Antonio; Bautista, Inmaculada; Lull, Cristina; Francés, Félix

    2017-04-01

    It is well known that carbon and nitrogen cycles are highly intertwined and both should be explained through the water balance. In fact, in water-controlled ecosystems nutrient deficit is related to this water scarcity. For this reason, the present study compares the capability of three models in reproducing the interaction between the carbon and nitrogen cycles and the water cycle. The models are BIOME-BGCMuSo, LEACHM and a simple carbon-nitrogen model coupled to the hydrological model TETIS. Biome-BGCMuSo and LEACHM are two widely used models that reproduce the carbon and nitrogen cycles adequately. However, their main limitation is that these models are quite complex and can be too detailed for watershed studies. On the contrary, the TETIS nutrient sub-model is a conceptual model with a vertical tank distribution over the active soil depth, dividing it in two layers. Only the input of the added litter and the losses due to soil respiration, denitrification, leaching and plant uptake are considered as external fluxes. Other fluxes have been neglected. The three models have been implemented in an experimental plot of a semi-arid catchment (La Hunde, East of Spain), mostly covered by holm oak (Quercus ilex). Plant transpiration, soil moisture and runoff have been monitored daily during nearly two years (26/10/2012 to 30/09/2014). For the same period, soil samples were collected every two months and taken to the lab in order to obtain the concentrations of dissolved organic carbon, microbial biomass carbon, ammonium and nitrate. In addition, between field trips soil samples were placed in PVC tubes with resin traps and were left incubating (in situ buried cores). Thus, mineralization and nitrification accumulated fluxes for two months, were obtained. The ammonium and nitrate leaching accumulated for two months were measured using ion-exchange resin cores. Soil respiration was also measured every field trip. Finally, water samples deriving from runoff, were collected to obtain the concentrations of dissolved organic carbon, dissolved organic nitrogen, ammonium and nitrate. The comparison shows a better performance of the complex models reproducing carbon and nitrogen cycles. However, the TETIS nutrient sub-model, even simpler than BIOME-BGCMuSo and LEACHM, reproduces the water balance adequately and it obtains a suitable representation of the carbon and nitrogen cycles.

  7. Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC

    NASA Astrophysics Data System (ADS)

    Abdel Kader, M.; Astitha, M.; Lelieveld, J.

    2012-04-01

    This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance will be briefly discussed as it is a subject of future work.

  8. A comparison of production system life cycle models

    NASA Astrophysics Data System (ADS)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  9. Experimental Study of a Hot Structure for a Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Pride, Richard A.; Royster, Dick M.; Helms, Bobbie F.

    1960-01-01

    A large structural model of a reentry vehicle has been built incorporating design concepts applicable to a radiation-cooled vehicle. Thermal-stress alleviating features of the model are discussed. Environmental tests on the model include approximately 100 cycles of loading at room temperature and 33 cycles of combined loading and-heating up to temperatures of 1,6000 F. Measured temperatures are shown for typical parts of the model. Comparisons are made between experimental and calculated deflections and strains. The structure successfully survived the heating and loading environments.

  10. Cultural Differences and Students' Spontaneous Models of the Water Cycle: A Case Study of Jewish and Bedouin Children in Israel

    ERIC Educational Resources Information Center

    Ben-Zvi Assaraf, Orit; Eshach, Haim; Orion, Nir; Alamour, Yousif

    2012-01-01

    The present research aims at pinpointing differences in spontaneous and non-spontaneous mental models of water cycle conceptions of two 4th grade student groups: the Jewish residents of a small provincial town and a group of students from an indigenous Bedouin community. Students' conceptions were elicited using the Repertory Grid technique as…

  11. Effect of soil in nutrient cycle assessment at dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; de Boer, Imke; van Dam, Jos; van Middelaar, Corina; Stoof, Cathelijne

    2016-04-01

    Annual farm nutrient cycle assessments give valuable insight in the nutrient cycles and nutrient losses at dairy farms. It describes nutrient use efficiencies for the entire farm and for the underlying components cattle, manure, crops and soil. In many modelling studies, soil is kept as a constant factor, while soil quality is vital for soil functioning of the ecosystem. Improving soil quality will improve the nutrient cycle, and will also have positive effect on the soil functions crop production, water cycling and greenhouse gas mitigation. Spatial variation of soil properties within a farm, however, are not included in annual nutrient cycle assessments. Therefore it is impossible to identify fields where most profit can be gained by improving farm management at field level, and it is not possible to identify and to quantify nutrient flow path ways. The aim of this study is to develop a framework to improve the annual nutrient cycle assessment at Dutch dairy farms, by including soil properties and their spatial variation within farms. Soil type and soil quality will be described by visual soil assessment of soil quality characteristics. The visual observations will be linked to the nutrient cycle assessment, using soil-hydrological model SWAP. We will demonstrate how soil quality at field level can impact on crop production, eutrophication potential and greenhouse gas potential at farm level. Also, we will show how this framework can be used by farmers to improve their farm management. This new approach is focusing on annual nutrient cycle assessment, but could also be used in life cycle assessment. It will improve understanding of soil functioning and dairy farm management.

  12. A life cycle cost economics model for automation projects with uniformly varying operating costs. [applied to Deep Space Network and Air Force Systems Command

    NASA Technical Reports Server (NTRS)

    Remer, D. S.

    1977-01-01

    The described mathematical model calculates life-cycle costs for projects with operating costs increasing or decreasing linearly with time. The cost factors involved in the life-cycle cost are considered, and the errors resulting from the assumption of constant rather than uniformly varying operating costs are examined. Parameters in the study range from 2 to 30 years, for project life; 0 to 15% per year, for interest rate; and 5 to 90% of the initial operating cost, for the operating cost gradient. A numerical example is presented.

  13. The contribution of CEOP data to the understanding and modeling of monsoon systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validating models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Similar validation projects in other monsoon regions are being started. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of key components of the convective,and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variability, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on monsoon variability. I will show examples of how the study of the dynamics of aerosol-water cycle interactions in the monsoon region, can be best achieved using the CEOP data and modeling strategy.

  14. The Contribution of CEOP Data to the Understanding and Modeling of Monsoon Systems

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2005-01-01

    CEOP has contributed and will continue to provide integrated data sets from diverse platforms for better understanding of the water and energy cycles, and for validaintg models. In this talk, I will show examples of how CEOP has contributed to the formulation of a strategy for the study of the monsoon as a system. The CEOP data concept has led to the development of the CEOP Inter-Monsoon Studies (CIMS), which focuses on the identification of model bias, and improvement of model physics such as the diurnal and annual cycles. A multi-model validation project focusing on diurnal variability of the East Asian monsoon, and using CEOP reference site data, as well as CEOP integrated satellite data is now ongoing. Preliminary studies show that climate models have difficulties in simulating the diurnal signals of total rainfall, rainfall intensity and frequency of occurrence, which have different peak hours, depending on locations. Further more model diurnal cycle of rainfall in monsoon regions tend to lead the observed by about 2-3 hours. These model bias offer insight into lack of, or poor representation of, key components of the convective and stratiform rainfall. The CEOP data also stimulated studies to compare and contrasts monsoon variability in different parts of the world. It was found that seasonal wind reversal, orographic effects, monsoon depressions, meso-scale convective complexes, SST and land surface land influences are common features in all monsoon regions. Strong intraseasonal variability is present in all monsoon regions. While there is a clear demarcation of onset, breaks and withdrawal in the Asian and Australian monsoon region associated with climatological intraseasonal variabillity, it is less clear in the American and Africa monsoon regions. The examination of satellite and reference site data in monsoon has led to preliminary model experiments to study the impact of aerosol on monsoon variability. I will show examples of how the study of the dynamics of aerosol-water cycle interactions in the monsoon region, can be best achieved using the CEOP data and modeling strategy.

  15. The Formation of Tight Tumor Clusters Affects the Efficacy of Cell Cycle Inhibitors: A Hybrid Model Study

    PubMed Central

    Kim, MunJu; Reed, Damon; Rejniak, Katarzyna A.

    2014-01-01

    Cyclin-dependent kinases (CDKs) are vital in regulating cell cycle progression, and, thus, in highly proliferating tumor cells CDK inhibitors are gaining interest as potential anticancer agents. Clonogenic assay experiments are frequently used to determine drug efficacy against the survival and proliferation of cancer cells. While the anticancer mechanisms of drugs are usually described at the intracellular single-cell level, the experimental measurements are sampled from the entire cancer cell population. This approach may lead to discrepancies between the experimental observations and theoretical explanations of anticipated drug mechanisms. To determine how individual cell responses to drugs that inhibit CDKs affect the growth of cancer cell populations, we developed a spatially explicit hybrid agent-based model. In this model, each cell is equipped with internal cell cycle regulation mechanisms, but it is also able to interact physically with its neighbors. We model cell cycle progression, focusing on the G1 and G2/M cell cycle checkpoints, as well as on related essential components, such as CDK1, CDK2, cell size, and DNA damage. We present detailed studies of how the emergent properties (e.g., cluster formation) of an entire cell population depend on altered physical and physiological parameters. We analyze the effects of CDK1 and CKD2 inhibitors on population growth, time-dependent changes in cell cycle distributions, and the dynamic evolution of spatial cell patterns. We show that cell cycle inhibitors that cause cell arrest at different cell cycle phases are not necessarily synergistically super-additive. Finally, we demonstrate that the physical aspects of cell population growth, such as the formation of tight cell clusters versus dispersed colonies, alter the efficacy of cell cycle inhibitors, both in 2D and 3D simulations. This finding may have implications for interpreting the treatment efficacy results of in vitro experiments, in which treatment is applied before the cells can grow to produce clusters, especially because in vivo tumors, in contrast, form large masses before they are detected and treated. PMID:24607745

  16. The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model

    NASA Astrophysics Data System (ADS)

    Rodríguez, José M.; Milton, Sean F.; Marzin, Charline

    2017-10-01

    In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.

  17. Statistical damage constitutive model for rocks subjected to cyclic stress and cyclic temperature

    NASA Astrophysics Data System (ADS)

    Zhou, Shu-Wei; Xia, Cai-Chu; Zhao, Hai-Bin; Mei, Song-Hua; Zhou, Yu

    2017-10-01

    A constitutive model of rocks subjected to cyclic stress-temperature was proposed. Based on statistical damage theory, the damage constitutive model with Weibull distribution was extended. Influence of model parameters on the stress-strain curve for rock reloading after stress-temperature cycling was then discussed. The proposed model was initially validated by rock tests for cyclic stress-temperature and only cyclic stress. Finally, the total damage evolution induced by stress-temperature cycling and reloading after cycling was explored and discussed. The proposed constitutive model is reasonable and applicable, describing well the stress-strain relationship during stress-temperature cycles and providing a good fit to the test results. Elastic modulus in the reference state and the damage induced by cycling affect the shape of reloading stress-strain curve. Total damage induced by cycling and reloading after cycling exhibits three stages: initial slow increase, mid-term accelerated increase, and final slow increase.

  18. Neural network modeling of associative memory: Beyond the Hopfield model

    NASA Astrophysics Data System (ADS)

    Dasgupta, Chandan

    1992-07-01

    A number of neural network models, in which fixed-point and limit-cycle attractors of the underlying dynamics are used to store and associatively recall information, are described. In the first class of models, a hierarchical structure is used to store an exponentially large number of strongly correlated memories. The second class of models uses limit cycles to store and retrieve individual memories. A neurobiologically plausible network that generates low-amplitude periodic variations of activity, similar to the oscillations observed in electroencephalographic recordings, is also described. Results obtained from analytic and numerical studies of the properties of these networks are discussed.

  19. T-R Cycle Characterization and Imaging: Advanced Diagnostic Methodology for Petroleum Reservoir and Trap Detection and Delineation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; William C. Parcell; Bruce S. Hart

    The principal research effort for Year 2 of the project is on stratigraphic model assessment and development. The research focus for the first six (6) months of Year 2 is on T-R cycle model development. The emphasis for the remainder of the year is on assessing the depositional model and developing and testing a sequence stratigraphy model. The development and testing of the sequence stratigraphy model has been accomplished through integrated outcrop, well log and seismic studies of Mesozoic strata in the Gulf of Mexico, North Atlantic and Rocky Mountain areas.

  20. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  1. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline.

    PubMed

    Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping

    2018-05-11

    Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.

  2. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  3. Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of Experimental Warming

    NASA Astrophysics Data System (ADS)

    Jiang, Jiang; Huang, Yuanyuan; Ma, Shuang; Stacy, Mark; Shi, Zheng; Ricciuto, Daniel M.; Hanson, Paul J.; Luo, Yiqi

    2018-03-01

    The ability to forecast ecological carbon cycling is imperative to land management in a world where past carbon fluxes are no longer a clear guide in the Anthropocene. However, carbon-flux forecasting has not been practiced routinely like numerical weather prediction. This study explored (1) the relative contributions of model forcing data and parameters to uncertainty in forecasting flux- versus pool-based carbon cycle variables and (2) the time points when temperature and CO2 treatments may cause statistically detectable differences in those variables. We developed an online forecasting workflow (Ecological Platform for Assimilation of Data (EcoPAD)), which facilitates iterative data-model integration. EcoPAD automates data transfer from sensor networks, data assimilation, and ecological forecasting. We used the Spruce and Peatland Responses Under Changing Experiments data collected from 2011 to 2014 to constrain the parameters in the Terrestrial Ecosystem Model, forecast carbon cycle responses to elevated CO2 and a gradient of warming from 2015 to 2024, and specify uncertainties in the model output. Our results showed that data assimilation substantially reduces forecasting uncertainties. Interestingly, we found that the stochasticity of future external forcing contributed more to the uncertainty of forecasting future dynamics of C flux-related variables than model parameters. However, the parameter uncertainty primarily contributes to the uncertainty in forecasting C pool-related response variables. Given the uncertainties in forecasting carbon fluxes and pools, our analysis showed that statistically different responses of fast-turnover pools to various CO2 and warming treatments were observed sooner than slow-turnover pools. Our study has identified the sources of uncertainties in model prediction and thus leads to improve ecological carbon cycling forecasts in the future.

  4. SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL

    NASA Astrophysics Data System (ADS)

    Tsutsui, Junichi

    A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.

  5. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  6. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2013-11-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.

  7. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.

    2014-04-01

    The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.

  8. Modeling the effects of caffeine on the sleep/ wake cycle.

    PubMed

    Daniello, Allison; Fievisohn, Elizabeth; Gregory, T Stan

    2012-01-01

    Caffeine is present in many products consumed daily, including coffee, soda, and chocolate, and is known to delay the onset of sleepiness and cause sleep disturbances. It is an adenosine antagonist, inhibiting some hormones that promote sleep, and therefore promoting wakefulness. This paper proposes a model to incorporate the effects of caffeine on the sleep/wake cycle. The “flip-flop” model was used to model the sleep cycle, where switching between a sleep state and a wake state was nearly instantaneous. Sleep patterns were modeled based on the circadian rhythm and homeostatic drive, as was done by Rempe et al. (2010). The model demonstrated how the homeostatic drive and circadian rhythm interact to cause sleep and wakefulness. The effects of caffeine were incorporated to have a masking effect on the homeostatic drive, promoting wakefulness. Preliminary results showed that caffeine intake late in the evening caused the switch from wake to sleep to occur later than if no caffeine was present in the system. Additionally, the switch from wake to sleep was increasingly delayed with increased caffeine intake at the same time. This model is not yet validated, though potential studies for validation are proposed. This model presents an interesting method for incorporating the effects of caffeine on the sleep/wake cycle.

  9. The emerging role and targetability of the TCA cycle in cancer metabolism.

    PubMed

    Anderson, Nicole M; Mucka, Patrick; Kern, Joseph G; Feng, Hui

    2018-02-01

    The tricarboxylic acid (TCA) cycle is a central route for oxidative phosphorylation in cells, and fulfills their bioenergetic, biosynthetic, and redox balance requirements. Despite early dogma that cancer cells bypass the TCA cycle and primarily utilize aerobic glycolysis, emerging evidence demonstrates that certain cancer cells, especially those with deregulated oncogene and tumor suppressor expression, rely heavily on the TCA cycle for energy production and macromolecule synthesis. As the field progresses, the importance of aberrant TCA cycle function in tumorigenesis and the potentials of applying small molecule inhibitors to perturb the enhanced cycle function for cancer treatment start to evolve. In this review, we summarize current knowledge about the fuels feeding the cycle, effects of oncogenes and tumor suppressors on fuel and cycle usage, common genetic alterations and deregulation of cycle enzymes, and potential therapeutic opportunities for targeting the TCA cycle in cancer cells. With the application of advanced technology and in vivo model organism studies, it is our hope that studies of this previously overlooked biochemical hub will provide fresh insights into cancer metabolism and tumorigenesis, subsequently revealing vulnerabilities for therapeutic interventions in various cancer types.

  10. A global model of carbon-nutrient interactions

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III; Gildea, Patricia; Vorosmarty, Charles; Mellilo, Jerry M.; Peterson, Bruce J.

    1985-01-01

    The global biogeochemical model presented has two primary objectives. First, it characterizes natural elemental cycles and their linkages for the four elements significant to Earth's biota: C, N, S, and P. Second, it describes changes in these cycles due to human activity. Global nutrient cycles were studied within the drainage basins of several major world rivers on each continent. The initial study region was the Mississippi drainage basin, concentrating on carbon and nitrogen. The model first establishes the nutrient budgets of the undisturbed ecosystems in a study region. It then uses a data set of land use histories for that region to document the changes in these budgets due to land uses. Nutrient movement was followed over time (1800 to 1980) for 30 ecosystems and 10 land use categories. A geographically referenced ecological information system (GREIS) was developed to manage the digital global data bases of 0.5 x 0.5 grid cells needed to run the model: potential vegetation, drainage basins, precipitation, runoff, contemporary land cover, and FAO soil maps of the world. The results show the contributions of land use categories to river nutrient loads on a continental scale; shifts in nutrient cycling patterns from closed, steady state systems to mobile transient or open, steady state systems; soil organic matter depletion patterns in U.S. agricultural lands; changing nutrient ratios due to land use changes; and the effect of using heavy fertilizer on aquatic systems.

  11. Development and Testing of Coupled Land-surface, PBL and Shallow/Deep Convective Parameterizations within the MM5

    NASA Technical Reports Server (NTRS)

    Stauffer, David R.; Seaman, Nelson L.; Munoz, Ricardo C.

    2000-01-01

    The objective of this investigation was to study the role of shallow convection on the regional water cycle of the Mississippi and Little Washita Basins using a 3-D mesoscale model, the PSUINCAR MM5. The underlying premise of the project was that current modeling of regional-scale climate and moisture cycles over the continents is deficient without adequate treatment of shallow convection. It was hypothesized that an improved treatment of the regional water cycle can be achieved by using a 3-D mesoscale numerical model having a detailed land-surface parameterization, an advanced boundary-layer parameterization, and a more complete shallow convection parameterization than are available in most current models. The methodology was based on the application in the MM5 of new or recently improved parameterizations covering these three physical processes. Therefore, the work plan focused on integrating, improving, and testing these parameterizations in the MM5 and applying them to study water-cycle processes over the Southern Great Plains (SGP): (1) the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) described by Wetzel and Boone; (2) the 1.5-order turbulent kinetic energy (TKE)-predicting scheme of Shafran et al.; and (3) the hybrid-closure sub-grid shallow convection parameterization of Deng. Each of these schemes has been tested extensively through this study and the latter two have been improved significantly to extend their capabilities.

  12. GENERAL: Bursting Ca2+ Oscillations and Synchronization in Coupled Cells

    NASA Astrophysics Data System (ADS)

    Ji, Quan-Bao; Lu, Qi-Shao; Yang, Zhuo-Qin; Duan, Li-Xia

    2008-11-01

    A mathematical model proposed by Grubelnk et al. [Biophys. Chew,. 94 (2001) 59] is employed to study the physiological role of mitochondria and the cytosolic proteins in generating complex Ca2+ oscillations. Intracel-lular bursting calcium oscillations of point-point, point-cycle and two-folded limit cycle types are observed and explanations are given based on the fast/slow dynamical analysis, especially for point-cycle and two-folded limit cycle types, which have not been reported before. Furthermore, synchronization of coupled bursters of Ca2+ oscillations via gap junctions and the effect of bursting types on synchronization of coupled cells are studied. It is argued that bursting oscillations of point-point type may be superior to achieve synchronization than that of point-cycle type.

  13. [Prediction method of rural landscape pattern evolution based on life cycle: a case study of Jinjing Town, Hunan Province, China].

    PubMed

    Ji, Xiang; Liu, Li-Ming; Li, Hong-Qing

    2014-11-01

    Taking Jinjing Town in Dongting Lake area as a case, this paper analyzed the evolution of rural landscape patterns by means of life cycle theory, simulated the evolution cycle curve, and calculated its evolution period, then combining CA-Markov model, a complete prediction model was built based on the rule of rural landscape change. The results showed that rural settlement and paddy landscapes of Jinjing Town would change most in 2020, with the rural settlement landscape increased to 1194.01 hm2 and paddy landscape greatly reduced to 3090.24 hm2. The quantitative and spatial prediction accuracies of the model were up to 99.3% and 96.4%, respectively, being more explicit than single CA-Markov model. The prediction model of rural landscape patterns change proposed in this paper would be helpful for rural landscape planning in future.

  14. From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle

    NASA Astrophysics Data System (ADS)

    Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.

    2016-02-01

    Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.

  15. A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity.

    PubMed

    Watt, Ari; Moukambi, Felicien; Banadyga, Logan; Groseth, Allison; Callison, Julie; Herwig, Astrid; Ebihara, Hideki; Feldmann, Heinz; Hoenen, Thomas

    2014-09-01

    Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study Ebola viruses and develop countermeasures. Here we report the development of a novel reverse genetics-based system that allows the study of Ebola viruses without maximum-containment laboratories. We used this system to investigate the Ebola virus protein VP24, showing that, contrary to previous reports, it only modestly inhibits virus genome replication and transcription but is important for packaging of genomes into virus particles, which constitutes a previously unknown function of VP24 and a potential antiviral target. We further propose a comprehensive model for the function of VP24 in nucleocapsid assembly. Importantly, on the basis of this approach, it should easily be possible to develop similar experimental systems for other viruses that are currently restricted to maximum-containment laboratories. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie; Rothenberg, D.; Lindsay, Keith

    2011-02-01

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climatemore » feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.« less

  17. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.

    PubMed

    Loubet, Philippe; Roux, Philippe; Bellon-Maurel, Véronique

    2016-01-01

    The emphasis on the sustainable urban water management has increased over the last decades. In this context decision makers need tools to measure and improve the environmental performance of urban water systems (UWS) and their related scenarios. In this paper, we propose a versatile model, named WaLA (Water system Life cycle Assessment), which reduces the complexity of the UWS while ensuring a good representation of water issues and fulfilling life cycle assessment (LCA) requirements. Indeed, LCAs require building UWS models, which can be tedious if several scenarios are to be compared. The WaLA model is based on a framework that uses a "generic component" representing alternately water technology units and water users, with their associated water flows, and the associated impacts due to water deprivation, emissions, operation and infrastructure. UWS scenarios can be built by inter-operating and connecting the technologies and users components in a modular and integrated way. The model calculates life cycle impacts at a monthly temporal resolution for a set of services provided to users, as defined by the scenario. It also provides the ratio of impacts to amount of services provided and useful information for UWS diagnosis or comparison of different scenarios. The model is implemented in a Matlab/Simulink interface thanks to object-oriented programming. The applicability of the model is demonstrated using a virtual case study based on available life cycle inventory data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liese, Eric; Zitney, Stephen E.

    A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less

  19. Deciphering structural and temporal interplays during the architectural development of mango trees.

    PubMed

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Trottier, Catherine; Guédon, Yann; Normand, Frédéric

    2013-05-01

    Plant architecture is commonly defined by the adjacency of organs within the structure and their properties. Few studies consider the effect of endogenous temporal factors, namely phenological factors, on the establishment of plant architecture. This study hypothesized that, in addition to the effect of environmental factors, the observed plant architecture results from both endogenous structural and temporal components, and their interplays. Mango tree, which is characterized by strong phenological asynchronisms within and between trees and by repeated vegetative and reproductive flushes during a growing cycle, was chosen as a plant model. During two consecutive growing cycles, this study described vegetative and reproductive development of 20 trees submitted to the same environmental conditions. Four mango cultivars were considered to assess possible cultivar-specific patterns. Integrative vegetative and reproductive development models incorporating generalized linear models as components were built. These models described the occurrence, intensity, and timing of vegetative and reproductive development at the growth unit scale. This study showed significant interplays between structural and temporal components of plant architectural development at two temporal scales. Within a growing cycle, earliness of bud burst was highly and positively related to earliness of vegetative development and flowering. Between growing cycles, flowering growth units delayed vegetative development compared to growth units that did not flower. These interplays explained how vegetative and reproductive phenological asynchronisms within and between trees were generated and maintained. It is suggested that causation networks involving structural and temporal components may give rise to contrasted tree architectures.

  20. Differential gene transcription across the life cycle in Daphnia magna using a new all genome custom-made microarray.

    PubMed

    Campos, Bruno; Fletcher, Danielle; Piña, Benjamín; Tauler, Romà; Barata, Carlos

    2018-05-18

    Unravelling the link between genes and environment across the life cycle is a challenging goal that requires model organisms with well-characterized life-cycles, ecological interactions in nature, tractability in the laboratory, and available genomic tools. Very few well-studied invertebrate model species meet these requirements, being the waterflea Daphnia magna one of them. Here we report a full genome transcription profiling of D. magna during its life-cycle. The study was performed using a new microarray platform designed from the complete set of gene models representing the whole transcribed genome of D. magna. Up to 93% of the existing 41,317 D. magna gene models showed differential transcription patterns across the developmental stages of D. magna, 59% of which were functionally annotated. Embryos showed the highest number of unique transcribed genes, mainly related to DNA, RNA, and ribosome biogenesis, likely related to cellular proliferation and morphogenesis of the several body organs. Adult females showed an enrichment of transcripts for genes involved in reproductive processes. These female-specific transcripts were essentially absent in males, whose transcriptome was enriched in specific genes of male sexual differentiation genes, like doublesex. Our results define major characteristics of transcriptional programs involved in the life-cycle, differentiate males and females, and show that large scale gene-transcription data collected in whole animals can be used to identify genes involved in specific biological and biochemical processes.

  1. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  2. Modeling Leukemogenesis in the Zebrafish Using Genetic and Xenograft Models.

    PubMed

    Rajan, Vinothkumar; Dellaire, Graham; Berman, Jason N

    2016-01-01

    The zebrafish is a widely accepted model to study leukemia. The major advantage of studying leukemogenesis in zebrafish is attributed to its short life cycle and superior imaging capacity. This chapter highlights using transgenic- and xenograft-based models in zebrafish to study a specific leukemogenic mutation and analyze therapeutic responses in vivo.

  3. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  4. Development of a Feedstock-to-Product Chain Model for Densified Biomass Pellets

    NASA Astrophysics Data System (ADS)

    McPherrin, Daniel

    The Q’Pellet is a spherical, torrefied biomass pellet currently under development. It aims to improve on the shortcomings of commercially available cylindrical white and torrefied pellets. A spreadsheet-based model was developed to allow for techno-economic analysis and simplified life cycle analysis of Q’Pellets, torrefied pellets and white pellets. A case study was developed to compare the production of white, torrefied and Q’Pellet production based on their internal rates of return and life cycle greenhouse gas emissions. The case study was based on a commercial scale plant built in Williams Lake BC with product delivery in Rotterdam, Netherlands. Q’Pellets had the highest modelled internal rate of return, at 12.7%, with white pellets at 11.1% and torrefied pellets at 8.0%. The simplified life cycle analysis showed that Q’Pellets had the lowest life cycle greenhouse gas emissions of the three products, 6.96 kgCO2eq/GJ, compared to 21.50 kgCO2eq/GJ for white pellets and 10.08 kgCO2eq/GJ for torrefied pellets. At these levels of life cycle greenhouse gas emissions, white pellets are above the maximum life cycle emissions to be considered sustainable under EU regulations. Sensitivity analysis was performed on the model by modifying input variables, and showed that white pellets are more sensitive to uncontrollable market variables, especially pellet sale prices, raw biomass prices and transportation costs. Monte Carlo analysis was also performed, which showed that white pellet production is less predictable and more likely to lead to a negative internal rate of return compared to Q’Pellet production.

  5. A statistical model for combustion resonance from a DI diesel engine with applications

    NASA Astrophysics Data System (ADS)

    Bodisco, Timothy; Low Choy, Samantha; Masri, Assaad; Brown, Richard J.

    2015-08-01

    Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging-allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.

  6. Externalities in a life cycle model with endogenous survival☆

    PubMed Central

    Kuhn, Michael; Wrzaczek, Stefan; Prskawetz, Alexia; Feichtinger, Gustav

    2011-01-01

    We study socially vs individually optimal life cycle allocations of consumption and health, when individual health care curbs own mortality but also has a spillover effect on other persons’ survival. Such spillovers arise, for instance, when health care activity at aggregate level triggers improvements in treatment through learning-by-doing (positive externality) or a deterioration in the quality of care through congestion (negative externality). We combine an age-structured optimal control model at population level with a conventional life cycle model to derive the social and private value of life. We then examine how individual incentives deviate from social incentives and how they can be aligned by way of a transfer scheme. The age-patterns of socially and individually optimal health expenditures and the transfer rate are derived. Numerical analysis illustrates the working of our model. PMID:28298810

  7. Nitrogen cycling models and their application to forest harvesting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.W.; Dale, V.H.

    1986-01-01

    The characterization of forest nitrogen- (N-) cycling processes by several N-cycling models (FORCYTE, NITCOMP, FORTNITE, and LINKAGES) is briefly reviewed and evaluated against current knowledge of N cycling in forests. Some important processes (e.g., translocation within trees, N dynamics in decaying leaf litter) appear to be well characterized, whereas others (e.g., N mineralization from soil organic matter, N fixation, N dynamics in decaying wood, nitrification, and nitrate leaching) are poorly characterized, primarily because of a lack of knowledge rather than an oversight by model developers. It is remarkable how well the forest models do work in the absence of datamore » on some key processes. For those systems in which the poorly understood processes could cause major changes in N availability or productivity, the accuracy of model predictions should be examined. However, the development of N-cycling models represents a major step beyond the much simpler, classic conceptual models of forest nutrient cycling developed by early investigators. The new generation of computer models will surely improve as research reveals how key nutrient-cycling processes operate.« less

  8. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Veyrat-Durebex, Charlotte; Corcia, Philippe; Piver, Eric; Devos, David; Dangoumau, Audrey; Gouel, Flore; Vourc'h, Patrick; Emond, Patrick; Laumonnier, Frédéric; Nadal-Desbarats, Lydie; Gordon, Paul H; Andres, Christian R; Blasco, Hélène

    2016-12-01

    This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1 G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

  9. 40 CFR 86.098-10 - Emission standards for 1998 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.098-10 Section 86.098-10 Protection of... Heavy-Duty Vehicles § 86.098-10 Emission standards for 1998 and later model year Otto-cycle heavy-duty..., exhaust emissions from new 1998 and later model year Otto-cycle heavy-duty engines shall not exceed: (i...

  10. Stochastic Fluctuations in a Babcock-Leighton Model of the Solar Cycle

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul; Dikpati, Mausumi

    2000-11-01

    We investigate the effect of stochastic fluctuations on a flux transport model of the solar cycle based on the Babcock-Leighton mechanism. Specifically, we make use of our recent flux transport model (Dikpati & Charbonneau) to investigate the consequences of introducing large-amplitude stochastic fluctuations in either or both the meridional flow and poloidal source term in the model. Solar cycle-like oscillatory behavior persists even for fluctuation amplitudes as high as 300%, thus demonstrating the inherent robustness of this class of solar cycle models. We also find that high-amplitude fluctuations lead to a spread of cycle amplitude and duration showing a statistically significant anticorrelation, comparable to that observed in sunspot data. This is a feature of the solar cycle that is notoriously difficult to reproduce with dynamo models based on mean field electrodynamics and relying only on nonlinearities associated with the back-reaction of the Lorentz force to produce amplitude modulation. Another noteworthy aspect of our flux transport model is the fact that meridional circulation in the convective envelope acts as a ``clock'' regulating the tempo of the solar cycle; shorter-than-average cycles are typically soon followed by longer-than-average cycles. In other words, the oscillation exhibits good phase locking, a property that also characterizes the solar activity cycle. This shows up quite clearly in our model, but we argue that it is in fact a generic property of flux transport models based on the Babcock-Leighton mechanism, and relies on meridional circulation as the primary magnetic field transport agent.

  11. Imperfect pitch: Gabor's uncertainty principle and the pitch of extremely brief sounds.

    PubMed

    Hsieh, I-Hui; Saberi, Kourosh

    2016-02-01

    How brief must a sound be before its pitch is no longer perceived? The uncertainty tradeoff between temporal and spectral resolution (Gabor's principle) limits the minimum duration required for accurate pitch identification or discrimination. Prior studies have reported that pitch can be extracted from sinusoidal pulses as brief as half a cycle. This finding has been used in a number of classic papers to develop models of pitch encoding. We have found that phase randomization, which eliminates timbre confounds, degrades this ability to chance, raising serious concerns over the foundation on which classic pitch models have been built. The current study investigated whether subthreshold pitch cues may still exist in partial-cycle pulses revealed through statistical integration in a time series containing multiple pulses. To this end, we measured frequency-discrimination thresholds in a two-interval forced-choice task for trains of partial-cycle random-phase tone pulses. We found that residual pitch cues exist in these pulses but discriminating them requires an order of magnitude (ten times) larger frequency difference than that reported previously, necessitating a re-evaluation of pitch models built on earlier findings. We also found that as pulse duration is decreased to less than two cycles its pitch becomes biased toward higher frequencies, consistent with predictions of an auto-correlation model of pitch extraction.

  12. A case study on modeling and independent practice cycles in teaching beginning science inquiry

    NASA Astrophysics Data System (ADS)

    Sadeghpour-Kramer, Margaret Ann Plattenberger

    With increasing pressure to produce high standardized test scores, school systems will be looking for the surest ways to increase scores. Decision makers uninformed about the value of inquiry science may recommend more direct teaching methods and curricula in the hope that students will more quickly accumulate factual information for high test scores. This researcher and other proponents of inquiry science suggest that the best preparation for any test is the ability to use all available information and problem solving skills to think through to a solution. This study proposes to test the theory that inquiry problem solving skills need to be modeled and practiced in increasingly independent situations to be learned. Students tend to copy what they have been led to believe is correct, and to avoid continued copying, their skills must be applied in new situations requiring independent practice and improvement. This study follows ten sixth grade students, selected for maximum variation, as they participate in a series of five cycles of modeling and practicing inquiry science investigations as part of an ongoing unit on water quality. The cycles were designed to make the students increasingly independent in their use of inquiry. The results showed that all ten students made significant progress from copying teacher modeling in investigation #1 towards independent inquiry, with nine of the ten achieving acceptable to good beginning independent inquiry in investigation #5. Each case was analyzed independently using such case study methodology as pattern matching, case study protocols, and theoretical propositions. Constant comparison and other case study methods were used in a cross-case analysis. Eight cases confirmed a matching set of propositions and the hypothesis, in literal replication, and the other two cases confirmed a set of propositions and the hypothesis through theoretical replication. The study suggests to educators that repeated cycles of modeling and increasingly independent practice serve three purposes; first to develop independent inquiry skills by providing multiple opportunities with intermittent modeling, second to repeat the modeling initially in very similar situations and then encourage transfer to new situations, and third to provide repeated modeling for those students who do not grasp the concepts as quickly as do their classmates.

  13. Reliability of emerging bonded interface materials for large-area attachments

    DOE PAGES

    Paret, Paul P.; DeVoto, Douglas J.; Narumanchi, Sreekant

    2015-12-30

    In this study, conventional thermal interface materials (TIMs), such as greases, gels, and phase change materials, pose bottlenecks to heat removal and have long caused reliability issues in automotive power electronics packages. Bonded interface materials (BIMs) with superior thermal performance have the potential to be a replacement to the conventional TIMs. However, due to coefficient of thermal expansion mismatches between different components in a package and resultant thermomechanical stresses, fractures or delamination could occur, causing serious reliability concerns. These defects manifest themselves in increased thermal resistance in the package. In this paper, the results of reliability evaluation of emerging BIMsmore » for large-area attachments in power electronics packaging are reported. Thermoplastic (polyamide) adhesive with embedded near-vertical-aligned carbon fibers, sintered silver, and conventional lead solder (Sn 63Pb 37) materials were bonded between 50.8 mm x 50.8 mm cross-sectional footprint silicon nitride substrates and copper base plate samples, and were subjected to accelerated thermal cycling until failure or 2500 cycles. Damage in the BIMs was monitored every 100 cycles by scanning acoustic microscopy. Thermoplastic with embedded carbon fibers performed the best with no defects, whereas sintered silver and lead solder failed at 2300 and 1400 thermal cycles, respectively. Besides thermal cycling, additional lead solder samples were subjected to thermal shock and thermal cycling with extended dwell periods. A finite element method (FEM)-based model was developed to simulate the behavior of lead solder under thermomechanical loading. Strain energy density per cycle results were calculated from the FEM simulations. A predictive lifetime model was formulated for lead solder by correlating strain energy density results extracted from modeling with cycles-to-failure obtained from experimental accelerated tests. A power-law-based approach was used to formulate the - redictive lifetime model.« less

  14. Do microbial processes regulate the stability of a coral atoll's enclosed pelagic ecosystem?

    EPA Science Inventory

    Complex marine ecosystems contain multiple feedback cycles that can cause unexpected responses to perturbations. To better predict these responses, complicated models are increasingly being developed to enable the study of feedback cycles. However, the sparseness of ecological da...

  15. Perceived Neighborhood Environmental Attributes Associated with Walking and Cycling for Transport among Adult Residents of 17 Cities in 12 Countries: The IPEN Study

    PubMed Central

    Kerr, Jacqueline; Emond, Jennifer A.; Badland, Hannah; Reis, Rodrigo; Sarmiento, Olga; Carlson, Jordan; Sallis, James F.; Cerin, Ester; Cain, Kelli; Conway, Terry; Schofield, Grant; Macfarlane, Duncan J.; Christiansen, Lars B.; Van Dyck, Delfien; Davey, Rachel; Aguinaga-Ontoso, Ines; Salvo, Deborah; Sugiyama, Takemi; Owen, Neville; Mitáš, Josef; Natarajan, Loki

    2015-01-01

    Introduction Prevalence of walking and cycling for transport is low and varies greatly across countries. Few studies have examined neighborhood perceptions related to walking and cycling for transport in different countries. Therefore, it is challenging to prioritize appropriate built-environment interventions. Objectives The aim of this study was to examine the strength and shape of the relationship between adults’ neighborhood perceptions and walking and cycling for transport across diverse environments. Methods As part of the International Physical activity and Environment Network (IPEN) adult project, self-reported data were taken from 13,745 adults (18–65 years) living in physically and socially diverse neighborhoods in 17 cities across 12 countries. Neighborhood perceptions were measured using the Neighborhood Environment Walkability Scale, and walking and cycling for transport were measured using the International Physical Activity Questionnaire–Long Form. Generalized additive mixed models were used to model walking or cycling for transport during the last seven days with neighborhood perceptions. Interactions by city were explored. Results Walking-for-transport outcomes were significantly associated with perceived residential density, land use mix–access, street connectivity, aesthetics, and safety. Any cycling for transport was significantly related to perceived land use mix–access, street connectivity, infrastructure, aesthetics, safety, and perceived distance to destinations. Between-city differences existed for some attributes in relation to walking or cycling for transport. Conclusions Many perceived environmental attributes supported both cycling and walking; however, highly walkable environments may not support cycling for transport. People appear to walk for transport despite safety concerns. These findings can guide the implementation of global health strategies. Citation Kerr J, Emond JA, Badland H, Reis R, Sarmiento O, Carlson J, Sallis JF, Cerin E, Cain K, Conway T, Schofield G, Macfarlane DJ, Christiansen LB, Van Dyck D, Davey R, Aguinaga-Ontoso I, Salvo D, Sugiyama T, Owen N, Mitáš J, Natarajan L. 2016. Perceived neighborhood environmental attributes associated with walking and cycling for transport among adult residents of 17 cities in 12 countries: the IPEN study. Environ Health Perspect 124:290–298; http://dx.doi.org/10.1289/ehp.1409466 PMID:26186801

  16. OBSERVATIONS AND MODELING OF NORTH-SOUTH ASYMMETRIES USING A FLUX TRANSPORT DYNAMO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetye, Juie; Tripathi, Durgesh; Dikpati, Mausumi

    2015-02-01

    The peculiar behavior of solar cycle 23 and its prolonged minima has been one of the most studied problems over the past few years. In the present paper, we study the asymmetries in active region magnetic flux in the northern and southern hemispheres during the complete solar cycle 23 and the rising phase of solar cycle 24. During the declining phase of solar cycle 23, we find that the magnetic flux in the southern hemisphere is about 10 times stronger than that in the northern hemisphere; however, during the rising phase of cycle 24, this trend is reversed. The magnetic fluxmore » becomes about a factor of four stronger in the northern hemisphere than in the southern hemisphere. Additionally, we find that there was a significant delay (about five months) in change of the polarity in the southern hemisphere in comparison with the northern hemisphere. These results provide us with hints of how the toroidal fluxes have contributed to the solar dynamo during the prolonged minima in solar cycle 23 and in the rising phase of solar cycle 24. Using a solar flux-transport dynamo model, we demonstrate that persistently stronger sunspot cycles in one hemisphere could be caused by the effect of greater inflows into active region belts in that hemisphere. Observations indicate that greater inflows are associated with stronger activity. Some other change or difference in meridional circulation between hemispheres could cause the weaker hemisphere to become the stronger one.« less

  17. Long-term climate change and the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Marshall, Hal G.; Walker, James C. G.; Kuhn, William R.

    1988-01-01

    The response of the coupled climate-geochemical system to changes in paleography is examined in terms of the biogeochemical carbon cycle. The simple, zonally averaged energy balance climate model combined with a geochemical carbon cycle model, which was developed to study climate changes, is described. The effects of latitudinal distributions of the continents on the carbon cycle are investigated, and the global silicate weathering rate as a function of latitude is measured. It is observed that a concentration of land area at high altitudes results in a high CO2 partial pressure and a high global average temperature, and for land at low latitudes a cold globe and ice are detected. It is noted that the CO2 greenhouse feedback effect is potentially strong and has a stabilizing effect on the climate system.

  18. Engineering the lutein epoxide cycle into Arabidopsis thaliana.

    PubMed

    Leonelli, Lauriebeth; Brooks, Matthew D; Niyogi, Krishna K

    2017-08-15

    Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cycle has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle's role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.

  19. Dynamic Kinetics of Nitrogen Cycle in Groundwater-Surface Water Interaction Zone at Hanford Site

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liu, C.; Liu, Y.; Xu, F.; Yan, A.; Shi, L.; Zachara, J. M.; Gao, Y.; Qian, W.; Nelson, W.; Fredrickson, J.; Zhong, L.; Thompson, C.

    2015-12-01

    Nitrogen cycle carried out by microbes is an important geobiological process that has global implications for carbon and nitrogen cycling and climate change. This presentation describes a study of nitrogen cycle in groundwater-surface water interaction zone (GSIZ) at the US Department of Energy's Hanford Site. Groundwater at Hanford sites has long been documented with nitrate contamination. Nearby Columbia River stage changes of up to 3 m every day because of daily discharge fluctuation from upstream Priest Rapids Dam; resulting an exchange of groundwater and surface water in a short time period. Yet, nitrogen cycle in the GSIZ at Hanford Site remains unclear. Column studies have been used to identify nitrogen metabolism pathways and investigate kinetics of nitrogen cycle in groundwater saturated zone, surface water saturated zone, and GSIZ. Functional gene and protein abundances were determined by qPCR and PRISM-SRM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing for sensitive selected reaction monitoring) to identify key enzymatic reactions and metabolic pathways of nitrogen cycle. The results showed that dissimilatory nitrate reduction to ammonium (DNRA) competed with denitrification under anaerobic conditions, reducing 30% of NO3- to NH4+, a cation strongly retained on the sediments. As dissolved oxygen intruded the anaerobic zone with river water, NH4+ was oxidized to NO3-, increasing the mobility of NO3-. Multiplicative Monod models were established to describe nitrogen cycle in columns fed with O2 depleted synthetic groundwater and O2 saturated synthetic river water, respectively. The two models were then coupled to predict the dynamic kinetics of nitrogen cycle in GSIZ.

  20. The Hunt Opinion Model-An Agent Based Approach to Recurring Fashion Cycles.

    PubMed

    Apriasz, Rafał; Krueger, Tyll; Marcjasz, Grzegorz; Sznajd-Weron, Katarzyna

    2016-01-01

    We study a simple agent-based model of the recurring fashion cycles in the society that consists of two interacting communities: "snobs" and "followers" (or "opinion hunters", hence the name of the model). Followers conform to all other individuals, whereas snobs conform only to their own group and anticonform to the other. The model allows to examine the role of the social structure, i.e. the influence of the number of inter-links between the two communities, as well as the role of the stability of links. The latter is accomplished by considering two versions of the same model-quenched (parameterized by fraction L of fixed inter-links) and annealed (parameterized by probability p that a given inter-link exists). Using Monte Carlo simulations and analytical treatment (the latter only for the annealed model), we show that there is a critical fraction of inter-links, above which recurring cycles occur. For p ≤ 0.5 we derive a relation between parameters L and p that allows to compare both models and show that the critical value of inter-connections, p*, is the same for both versions of the model (annealed and quenched) but the period of a fashion cycle is shorter for the quenched model. Near the critical point, the cycles are irregular and a change of fashion is difficult to predict. For the annealed model we also provide a deeper theoretical analysis. We conjecture on topological grounds that the so-called saddle node heteroclinic bifurcation appears at p*. For p ≥ 0.5 we show analytically the existence of the second critical value of p, for which the system undergoes Hopf's bifurcation.

  1. Characterization of dependencies between growth and division in budding yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less

  2. Characterization of dependencies between growth and division in budding yeast

    DOE PAGES

    Mayhew, Michael B.; Iversen, Edwin S.; Hartemink, Alexander J.

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination betweenmore » growth and division has commonly been analyzed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyze both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (1) that S/G 2/M durations are systematically longer in daughters than in mothers, (2) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and, (3) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modelers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes.« less

  3. Characterization of dependencies between growth and division in budding yeast

    PubMed Central

    Iversen, Edwin S.; Hartemink, Alexander J.

    2017-01-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae, this coordination or ‘size control’ appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G2/M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G1. Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G2/M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G2/M and size at budding that echo the classical G1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. PMID:28228543

  4. Characterization of dependencies between growth and division in budding yeast.

    PubMed

    Mayhew, Michael B; Iversen, Edwin S; Hartemink, Alexander J

    2017-02-01

    Cell growth and division are processes vital to the proliferation and development of life. Coordination between these two processes has been recognized for decades in a variety of organisms. In the budding yeast Saccharomyces cerevisiae , this coordination or 'size control' appears as an inverse correlation between cell size and the rate of cell-cycle progression, routinely observed in G 1 prior to cell division commitment. Beyond this point, cells are presumed to complete S/G 2 /M at similar rates and in a size-independent manner. As such, studies of dependence between growth and division have focused on G 1 Moreover, in unicellular organisms, coordination between growth and division has commonly been analysed within the cycle of a single cell without accounting for correlations in growth and division characteristics between cycles of related cells. In a comprehensive analysis of three published time-lapse microscopy datasets, we analyse both intra- and inter-cycle dependencies between growth and division, revisiting assumptions about the coordination between these two processes. Interestingly, we find evidence (i) that S/G 2 /M durations are systematically longer in daughters than in mothers, (ii) of dependencies between S/G 2 /M and size at budding that echo the classical G 1 dependencies, and (iii) in contrast with recent bacterial studies, of negative dependencies between size at birth and size accumulated during the cell cycle. In addition, we develop a novel hierarchical model to uncover inter-cycle dependencies, and we find evidence for such dependencies in cells growing in sugar-poor environments. Our analysis highlights the need for experimentalists and modellers to account for new sources of cell-to-cell variation in growth and division, and our model provides a formal statistical framework for the continued study of dependencies between biological processes. © 2017 The Author(s).

  5. Cycle development and design for CO{sub 2} capture from flue gas by vacuum swing adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Zhang; Paul A. Webley

    CO{sub 2} capture and storage is an important component in the development of clean power generation processes. One CO{sub 2} capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO{sub 2} capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures non-isothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and ourmore » apparatus, we have designed and studied a large number of cycles for CO{sub 2} capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles - this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO{sub 2} capture from flue gases. 20 refs., 6 figs., 2 tabs.« less

  6. Cycle development and design for CO2 capture from flue gas by vacuum swing adsorption.

    PubMed

    Zhang, Jun; Webley, Paul A

    2008-01-15

    CO2 capture and storage is an important component in the development of clean power generation processes. One CO2 capture technology is gas-phase adsorption, specifically pressure (or vacuum) swing adsorption. The complexity of these processes makes evaluation and assessment of new adsorbents difficult and time-consuming. In this study, we have developed a simple model specifically targeted at CO2 capture by pressure swing adsorption and validated our model by comparison with data from a fully instrumented pilot-scale pressure swing adsorption process. The model captures nonisothermal effects as well as nonlinear adsorption and nitrogen coadsorption. Using the model and our apparatus, we have designed and studied a large number of cycles for CO2 capture. We demonstrate that by careful management of adsorption fronts and assembly of cycles based on understanding of the roles of individual steps, we are able to quickly assess the effect of adsorbents and process parameters on capture performance and identify optimal operating regimes and cycles. We recommend this approach in contrast to exhaustive parametric studies which tend to depend on specifics of the chosen cycle and adsorbent. We show that appropriate combinations of process steps can yield excellent process performance and demonstrate how the pressure drop, and heat loss, etc. affect process performance through their effect on adsorption fronts and profiles. Finally, cyclic temperature profiles along the adsorption column can be readily used to infer concentration profiles-this has proved to be a very useful tool in cyclic function definition. Our research reveals excellent promise for the application of pressure/vacuum swing adsorption technology in the arena of CO2 capture from flue gases.

  7. 40 CFR 86.008-10 - Emission standards for 2008 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.008-10 Section 86.008-10 Protection of... Heavy-Duty Vehicles § 86.008-10 Emission standards for 2008 and later model year Otto-cycle heavy-duty...-10.”. (a)(1) Exhaust emissions from new 2008 and later model year Otto-cycle HDEs shall not exceed...

  8. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Gelaro, Ron; Ott, Lesley; Putman, Bill; Chatterjee, Abhishek; Koster, Randy; Lee, Eunjee; Oda, Tom; Weir, Brad; Zeng, Fanwei

    2018-01-01

    The Goddard Earth Observing System (GEOS) model has been developed in the Global Modeling and Assimilation Office (GMAO) at NASA's Goddard Space Flight Center. From its roots in chemical transport and as a General Circulation Model, the GEOS model has been extended to an Earth System Model based on a modular construction using the Earth System Modeling Framework (ESMF), combining elements developed in house in the GMAO with others that are imported through collaborative research. It is used extensively for research and for product generation, both as a free-running model and as the core of the GMAO's data assimilation system. In recent years, the GMAO's modeling and assimilation efforts have been strongly supported by Piers Sellers, building on both his earlier legacy as an observationally oriented model developer and his post-astronaut career as a dynamic leader into new territory. Piers' long-standing interest in the carbon cycle and the combination of models with observations motivates this presentation, which will focus on the representation of the carbon cycle in the GEOS Earth System Model. Examples will include: (i) the progression from specified land-atmosphere surface fluxes to computations with an interactive model component (Catchment-CN), along with constraints on vegetation distributions using satellite observations; (ii) the use of high-resolution satellite observations to constrain human-generated inputs to the atmosphere; (iii) studies of the consistency of the observed atmospheric carbon dioxide concentrations with those in the model simulations. The presentation will focus on year-to-year variations in elements of the carbon cycle, specifically on how the observations can inform the representation of mechanisms in the model and lead to integrity in global carbon dioxide simulations. Further, applications of the GEOS model to the planning of new carbon-climate observations will be addressed, as an example of the work that was strongly supported by Piers in the last months of his leadership of Earth Science at NASA Goddard.

  9. Perfluoroalkyl Chemicals, Menstrual Cycle Length, and Fecundity: Findings from a Prospective Pregnancy Study

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Barr, Dana Boyd; Louis, Thomas A.; Louis, Germaine M. Buck

    2016-01-01

    Background Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample upon enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid-chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF]=1.03, 95% credible interval [CrI]=[1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA) (AF=0.98, 95% CrI=[0.96, 1.00]). When accounting for cycle length, relevant covariates and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of PFNA (odds ratio [OR]=0.6, 95% CrI=[0.4, 1.0]) though not when comparing the highest versus lowest (OR=0.7, 95% CrI=[0.3, 1.1]) tertile. Conclusions In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. PMID:27541842

  10. Hospital financial management: what is the link between revenue cycle management, profitability, and not-for-profit hospitals' ability to grow equity?

    PubMed

    Singh, Simone Rauscher; Wheeler, John

    2012-01-01

    Effective revenue cycle management--from appointment scheduling and patient registration at the front end of the revenue cycle to billing and cash collections at the back end--plays a crucial role in hospitals' efforts to improve their financial performance. Using data for 1,397 bond-issuing, not-for-profit US hospitals for 2000 to 2007, this study analyzed the relationship between hospitals' performance at managing the revenue cycle and their profitability and ability to build equity capital. Hospital-level fixed effects regression analysis was used to model four different measures of profitability and equity capital as functions of two key financial indicators of revenue cycle management--amount of patient revenue and speed of revenue collection. The results indicated that higher amounts of patient revenue in relation to a hospital's assets were associated with statistically significant increases in operating and total profit margins, free cash flow, and equity capital (p < 0.01 for all four models); that is, hospitals that generated more patient revenue per dollar of assets invested reported improved financial performance. Likewise, a statistically significant link existed between lower revenue collection periods and all four indicators of hospital financial performance (p < 0.01 for three models; p < 0.05 for one model). Hospitals that collected faster on their patient revenue reported higher profit margins and larger equity values. For revenue cycle managers, these findings represent good news: Streamlining a hospital's management of the patient revenue cycle can advance the organization's financial viability by improving profitability and enabling equity growth.

  11. Ambient groundwater flow diminishes nitrogen cycling in streams

    NASA Astrophysics Data System (ADS)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  12. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis shows that terrestrial carbon and water cycle simulations in monsoon Asia were greatly improved, and the use of multiple satellite observations with this framework is an effective way for improving terrestrial biosphere models.

  13. The origin of intermediary metabolism

    NASA Technical Reports Server (NTRS)

    Morowitz, H. J.; Kostelnik, J. D.; Yang, J.; Cody, G. D.

    2000-01-01

    The core of intermediary metabolism in autotrophs is the citric acid cycle. In a certain group of chemoautotrophs, the reductive citric acid cycle is an engine of synthesis, taking in CO(2) and synthesizing the molecules of the cycle. We have examined the chemistry of a model system of C, H, and O that starts with carbon dioxide and reductants and uses redox couples as the energy source. To inquire into the reaction networks that might emerge, we start with the largest available database of organic molecules, Beilstein on-line, and prune by a set of physical and chemical constraints applicable to the model system. From the 3.5 million entries in Beilstein we emerge with 153 molecules that contain all 11 members of the reductive citric acid cycle. A small number of selection rules generates a very constrained subset, suggesting that this is the type of reaction model that will prove useful in the study of biogenesis. The model indicates that the metabolism shown in the universal chart of pathways may be central to the origin of life, is emergent from organic chemistry, and may be unique.

  14. Understanding the Influence of Learners' Forethought on Their Use of Science Study Strategies in Postsecondary Science Learning

    NASA Astrophysics Data System (ADS)

    Dunn, Karee E.; Lo, Wen-Juo

    2015-11-01

    Understanding self-regulation in science learning is important for theorists and practitioners alike. However, very little has been done to explore and understand students' self-regulatory processes in postsecondary science courses. In this study, the influence of science efficacy, learning value, and goal orientation on the perceived use of science study strategies was explored using structural equation modeling. In addition, the study served to validate the first two stages of Zimmerman's cyclical model of self-regulation and to address the common methodological weakness in self-regulation research in which data are all collected at one point after the learning cycle is complete. Thus, data were collected across the learning cycle rather than asking students to reflect upon each construct after the learning cycle was complete. The findings supported the hypothesized model in which it was predicted that self-efficacy would significantly and positively influence students' perceived science strategy use, and the influence of students' valuation of science learning on science study strategies would be mediated by their learning goal orientation. The findings of the study are discussed and implications for undergraduate science instructors are proposed.

  15. Study on the variable cycle engine modeling techniques based on the component method

    NASA Astrophysics Data System (ADS)

    Zhang, Lihua; Xue, Hui; Bao, Yuhai; Li, Jijun; Yan, Lan

    2016-01-01

    Based on the structure platform of the gas turbine engine, the components of variable cycle engine were simulated by using the component method. The mathematical model of nonlinear equations correspondeing to each component of the gas turbine engine was established. Based on Matlab programming, the nonlinear equations were solved by using Newton-Raphson steady-state algorithm, and the performance of the components for engine was calculated. The numerical simulation results showed that the model bulit can describe the basic performance of the gas turbine engine, which verified the validity of the model.

  16. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ron

    2017-01-01

    The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar web page and are updated as new monthly observations become available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to calculate the deviation from the mean cycle of the solar index at the next future time interval. The forecasts are initiated for a given cycle after about 8 to 9 monthly observations from the start of the cycle are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.

  17. Allee effect in the selection for prime-numbered cycles in periodical cicadas.

    PubMed

    Tanaka, Yumi; Yoshimura, Jin; Simon, Chris; Cooley, John R; Tainaka, Kei-ichi

    2009-06-02

    Periodical cicadas are well known for their prime-numbered life cycles (17 and 13 years) and their mass periodical emergences. The origination and persistence of prime-numbered cycles are explained by the hybridization hypothesis on the basis of their lower likelihood of hybridization with other cycles. Recently, we showed by using an integer-based numerical model that prime-numbered cycles are indeed selected for among 10- to 20-year cycles. Here, we develop a real-number-based model to investigate the factors affecting the selection of prime-numbered cycles. We include an Allee effect in our model, such that a critical population size is set as an extinction threshold. We compare the real-number models with and without the Allee effect. The results show that in the presence of an Allee effect, prime-numbered life cycles are most likely to persist and to be selected under a wide range of extinction thresholds.

  18. Transit bus life cycle cost and year 2007 emissions estimation.

    DOT National Transportation Integrated Search

    2007-06-01

    The report presents a study of transit bus life cycle cost (LCC) analysis, and projected transit bus emissions and fuel economy for 2007 : model year buses. It covers four bus types: diesel buses using ultra low sulfur diesel (ULSD), diesel buses usi...

  19. Analysis of critical thinking ability of VII grade students based on the mathematical anxiety level through learning cycle 7E model

    NASA Astrophysics Data System (ADS)

    Widyaningsih, E.; Waluya, S. B.; Kurniasih, A. W.

    2018-03-01

    This study aims to know mastery learning of students’ critical thinking ability with learning cycle 7E, determine whether the critical thinking ability of the students with learning cycle 7E is better than students’ critical thinking ability with expository model, and describe the students’ critical thinking phases based on the mathematical anxiety level. The method is mixed method with concurrent embedded. The population is VII grade students of SMP Negeri 3 Kebumen academic year 2016/2017. Subjects are determined by purposive sampling, selected two students from each level of mathematical anxiety. Data collection techniques include test, questionnaire, interview, and documentation. Quantitative data analysis techniques include mean test, proportion test, difference test of two means, difference test of two proportions and for qualitative data used Miles and Huberman model. The results show that: (1) students’ critical thinking ability with learning cycle 7E achieve mastery learning; (2) students’ critical thinking ability with learning cycle 7E is better than students’ critical thinking ability with expository model; (3) description of students’ critical thinking phases based on the mathematical anxiety level that is the lower the mathematical anxiety level, the subjects have been able to fulfil all of the indicators of clarification, assessment, inference, and strategies phases.

  20. Shuttle operations simulation model programmers'/users' manual

    NASA Technical Reports Server (NTRS)

    Porter, D. G.

    1972-01-01

    The prospective user of the shuttle operations simulation (SOS) model is given sufficient information to enable him to perform simulation studies of the space shuttle launch-to-launch operations cycle. The procedures used for modifying the SOS model to meet user requirements are described. The various control card sequences required to execute the SOS model are given. The report is written for users with varying computer simulation experience. A description of the components of the SOS model is included that presents both an explanation of the logic involved in the simulation of the shuttle operations cycle and a description of the routines used to support the actual simulation.

  1. The application of electrochemical impedance spectroscopy for characterizing the degradation of Ni(OH)2/NiOOH electrodes

    NASA Technical Reports Server (NTRS)

    Macdonald, D. D.; Pound, B. G.; Lenhart, S. J.

    1989-01-01

    Electrochemical impedance spectra of rolled and bonded and sintered porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes for rolled and bonded electrodes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (non-porous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low. Transmission line modeling results suggest that porous rolled and bonded nickel electrodes undergo restructuring during charge/discharge cycling prior to failure.

  2. An in vitro model of infection of chicken embryos by Cryptosporidium baileyi.

    PubMed

    Huang, Lei; Zhu, Huili; Zhang, Sumei; Wang, Rongjun; Liu, Limin; Jian, Fuchun; Ning, Changshen; Zhang, Longxian

    2014-12-01

    Cryptosporidiosis is one of the most prevalent parasitic infections in domesticated, caged and wild birds. Cryptosporidium baileyi is the most common species reported in a wide range of avian hosts. Although this parasite is well investigated, there is no adequate in vitro model for its endogenous development, and therefore, knowledge of each life cycle phase is scarce. In the present study, an in vitro model for C. baileyi in chicken embryos was developed and the complete life cycle investigated by light and electron microscopy, including both the sexual and asexual reproduction stages. The complete life cycle of C. baileyi was observed during 1-96 h post inoculation (PI), and the average reproduction number of C. baileyi oocysts in allantoic fluid of each chicken embryo was greatest at 168 h PI. These results suggest that chicken embryos could adequately represent the natural host cells and support the development of all the endogenous life cycle stages of C. baileyi, and also provide a new and effective in vitro cultivation system for further studies on antigens, virulence, infectivity, metabolites, and sensitivity of drugs against parasites. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. In vitro recapitulation of the urea cycle using murine embryonic stem cell-derived in vitro liver model.

    PubMed

    Tamai, Miho; Aoki, Mami; Nishimura, Akihito; Morishita, Koji; Tagawa, Yoh-ichi

    2013-12-01

    Ammonia, a toxic metabolite, is converted to urea in hepatocytes via the urea cycle, a process necessary for cell/organismal survival. In liver, hepatocytes, polygonal and multipolar structures, have a few sides which face hepatic sinusoids and adjacent hepatocytes to form intercellular bile canaliculi connecting to the ductules. The critical nature of this three-dimensional environment should be related to the maintenance of hepatocyte function such as urea synthesis. Recently, we established an in vitro liver model derived from murine embryonic stem cells, IVL(mES), which included the hepatocyte layer and a surrounding sinusoid vascular-like network. The IVL(mES) culture, where the hepatocyte is polarized in a similar fashion to its in vivo counterpart, could successfully recapitulate in vivo results. L-Ornithine is an intermediate of the urea cycle, but supplemental L-ornithine does not activate the urea cycle in the apolar primary hepatocyte of monolayer culture. In the IVL(mES), supplemental L-ornithine could activate the urea cycle, and also protect against ammonium/alcohol-induced hepatocyte death. While the IVL(mES) displays architectural and functional properties similar to the liver, primary hepatocyte of monolayer culture fail to model critical functional aspects of liver physiology. We propose that the IVL(mES) will represent a useful, humane alternative to animal studies for drug toxicity and mechanistic studies of liver injury.

  4. The association between physical environment and cycling to school among Turkish and Moroccan adolescents in Amsterdam.

    PubMed

    Mäki-Opas, Tomi E; de Munter, Jeroen; Maas, Jolanda; den Hertog, Frank; Kunst, Anton E

    2014-08-01

    This study examined the effect of physical environment on cycling to and from school among boys and girls of Turkish and Moroccan origin living in Amsterdam. The LASER study (n = 697) was an interview study that included information on cycling to and from school and the perceived physical environment. Objective information on physical environment was gathered from Statistics Netherlands and the Department for Research and Statistics at the Municipality of Amsterdam. Structural equation modelling with latent variables was applied, taking into account age, gender, self-assessed health, education, country of origin, and distance to school. For every unit increase in the latent variable scale for bicycle-friendly infrastructure, we observed a 21% increase in the odds for cycling to and from school. The association was only borderline statistically significant and disappeared after controlling for distance to school. The enjoyable environment was not associated with cycling to and from school after controlling for all background factors. Bicycle-friendly infrastructure and an enjoyable environment were not important factors for cycling to and from school among those with no cultural cycling background.

  5. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    NASA Astrophysics Data System (ADS)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  6. Key influences on motivations for utility cycling (cycling for transport to and from places).

    PubMed

    Heesch, Kristiann C; Sahlqvist, Shannon

    2013-12-01

    Although increases in cycling in Brisbane are encouraging, bicycle mode share to work (the proportion of people travelling to work by bicycle) in the state of Queensland remains low. The aim of this qualitative study was to draw upon the lived experiences of Queensland cyclists to understand the main motivators for utility cycling (cycling as a means to get to and from places) and compare motivators between utility cyclists (those who cycle for utility as well as for recreation) and non-utility cyclists (those who cycle only for recreation). For an online survey, members of a bicycle group (831 utility cyclists and 931 non-utility cyclists, aged 18-90 years) were asked to describe, unprompted, what would motivate them to engage in utility cycling (more often). Responses were coded into themes within four levels of an ecological model. Within an ecological model, built environment influences on motivation were grouped according to whether they related to appeal (safety), convenience (accessibility) or attractiveness (more amenities) and included adequate infrastructure for short trips, bikeway connectivity, end-of-trip facilities at public locations and easy and safe bicycle access to destinations outside of cities. A key social-cultural influence related to improved interactions among different road users. The built and social-cultural environments need to be more supportive of utility cycling before even current utility and non-utility cyclists will be motivated to engage (more often) in utility cycling. SO WHAT?: Additional government strategies and more and better infrastructure that support utility cycling beyond commuter cycling may encourage a utility cycling culture.

  7. Transport of Passive Tracers in Baroclinic Wave Life Cycles

    NASA Technical Reports Server (NTRS)

    Stone, Elizabeth M.; Randel, William J.; Stanford, John L.

    1999-01-01

    The transport of passive tracers in idealized baroclinic wave life cycles is studied using output from the National Center for Atmospheric Research Community Climate Model (CCM2). Two life cycles, LCn and LCs, are simulated, starting with baroclinically unstable initial conditions similar to those used by Thorncroft et al. in their study of two life cycle paradigms. The two life cycles LCn and LCs have different initial horizontal wind shear structures that result in distinctive nonlinear development. In terms of potential vorticity-potential temperature (PV-theta) diagnostics, the LCn case is characterized by thinning troughs that are advected anti-cyclonically and equatorward, while the LCs case has broadening troughs that wrap up cyclonically and poleward. Four idealized passive tracers are included in the model to be advected by the semi-Lagrangian transport scheme of the CCM2, and their evolutions are investigated throughout the life cycles. Tracer budgets are analyzed in terms of the transformed Eulerian mean constituent transport formalism in pressure coordinates and also in isentropic coordinates. Results for both LCn and LCs show transport that is downgradient with respect to the background structure of the tracer field, but with a characteristic spatial structure that maximizes in the middle to high latitudes. For the idealized tropospheric tracers in this study, this represents a net upward and poleward transport that enhances concentrations at high latitudes. These results vary little with the initial distribution of the constituent field. The time tendency of the tracer is influenced most strongly by the eddy flux term. with the largest transport occurring during the nonlinear growth stage of the life cycle. The authors also study the transport of a lower-stratospheric tracer, to examine stratosphere-troposphere exchange for baroclinic waves.

  8. Anticipation of the landing shock phenomenon in flight simulation

    NASA Technical Reports Server (NTRS)

    Mcfarland, Richard E.

    1987-01-01

    An aircraft landing may be described as a controlled crash because a runway surface is intercepted. In a simulation model the transition from aerodynamic flight to weight on wheels involves a single computational cycle during which stiff differential equations are activated; with a significant probability these initial conditions are unrealistic. This occurs because of the finite cycle time, during which large restorative forces will accompany unrealistic initial oleo compressions. This problem was recognized a few years ago at Ames Research Center during simulation studies of a supersonic transport. The mathematical model of this vehicle severely taxed computational resources, and required a large cycle time. The ground strike problem was solved by a described technique called anticipation equations. This extensively used technique has not been previously reported. The technique of anticipating a significant event is a useful tool in the general field of discrete flight simulation. For the differential equations representing a landing gear model stiffness, rate of interception and cycle time may combine to produce an unrealistic simulation of the continuum.

  9. Health Impact Modelling of Active Travel Visions for England and Wales Using an Integrated Transport and Health Impact Modelling Tool (ITHIM)

    PubMed Central

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Background Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Methods Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. Results This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Conclusions Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research. PMID:23326315

  10. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM).

    PubMed

    Woodcock, James; Givoni, Moshe; Morgan, Andrei Scott

    2013-01-01

    Achieving health benefits while reducing greenhouse gas emissions from transport offers a potential policy win-win; the magnitude of potential benefits, however, is likely to vary. This study uses an Integrated Transport and Health Impact Modelling tool (ITHIM) to evaluate the health and environmental impacts of high walking and cycling transport scenarios for English and Welsh urban areas outside London. Three scenarios with increased walking and cycling and lower car use were generated based upon the Visions 2030 Walking and Cycling project. Changes to carbon dioxide emissions were estimated by environmental modelling. Health impact assessment modelling was used to estimate changes in Disability Adjusted Life Years (DALYs) resulting from changes in exposure to air pollution, road traffic injury risk, and physical activity. We compare the findings of the model with results generated using the World Health Organization's Health Economic Assessment of Transport (HEAT) tools. This study found considerable reductions in disease burden under all three scenarios, with the largest health benefits attributed to reductions in ischemic heart disease. The pathways that produced the largest benefits were, in order, physical activity, road traffic injuries, and air pollution. The choice of dose response relationship for physical activity had a large impact on the size of the benefits. Modelling the impact on all-cause mortality rather than through individual diseases suggested larger benefits. Using the best available evidence we found fewer road traffic injuries for all scenarios compared with baseline but alternative assumptions suggested potential increases. Methods to estimate the health impacts from transport related physical activity and injury risk are in their infancy; this study has demonstrated an integration of transport and health impact modelling approaches. The findings add to the case for a move from car transport to walking and cycling, and have implications for empirical and modelling research.

  11. Evolution of a multi-agent system in a cyclical environment.

    PubMed

    Baptista, Tiago; Costa, Ernesto

    2008-06-01

    The synchronisation phenomena in biological systems is a current and recurring subject of scientific study. This topic, namely that of circadian clocks, served as inspiration to develop an agent-based simulation that serves the main purpose of being a proof-of-concept of the model used in the BitBang framework, that implements a modern autonomous agent model. Despite having been extensively studied, circadian clocks still have much to be investigated. Rather than wanting to learn more about the internals of this biological process, we look to study the emergence of this kind of adaptation to a daily cycle. To that end we implemented a world with a day/night cycle, and analyse the ways the agents adapt to that cycle. The results show the evolution of the agents' ability to gather food. If we look at the total number of agents over the course of an experiment, we can pinpoint the time when reproductive technology emerges. We also show that the agents adapt to the daily cycle. This circadian rhythm can be shown by analysing the variation on the agents metabolic rate, which is affected by the variation of their movement patterns. In the experiments conducted we can observe that the metabolic rate of the agents varies according to the daily cycle.

  12. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  13. A hybrid model of cell cycle in mammals.

    PubMed

    Behaegel, Jonathan; Comet, Jean-Paul; Bernot, Gilles; Cornillon, Emilien; Delaunay, Franck

    2016-02-01

    Time plays an essential role in many biological systems, especially in cell cycle. Many models of biological systems rely on differential equations, but parameter identification is an obstacle to use differential frameworks. In this paper, we present a new hybrid modeling framework that extends René Thomas' discrete modeling. The core idea is to associate with each qualitative state "celerities" allowing us to compute the time spent in each state. This hybrid framework is illustrated by building a 5-variable model of the mammalian cell cycle. Its parameters are determined by applying formal methods on the underlying discrete model and by constraining parameters using timing observations on the cell cycle. This first hybrid model presents the most important known behaviors of the cell cycle, including quiescent phase and endoreplication.

  14. Stabilizing Motifs in Autonomous Boolean Networks and the Yeast Cell Cycle Oscillator

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Gong, Xinwei; Socolar, Joshua

    2009-03-01

    Synchronously updated Boolean networks are widely used to model gene regulation. Some properties of these model networks are known to be artifacts of the clocking in the update scheme. Autonomous updating is a less artificial scheme that allows one to introduce small timing perturbations and study stability of the attractors. We argue that the stabilization of a limit cycle in an autonomous Boolean network requires a combination of motifs such as feed-forward loops and auto-repressive links that can correct small fluctuations in the timing of switching events. A recently published model of the transcriptional cell-cycle oscillator in yeast contains the motifs necessary for stability under autonomous updating [1]. [1] D. A. Orlando, et al. Nature (London), 4530 (7197):0 944--947, 2008.

  15. Pedagogical view of model metabolic cycles.

    PubMed

    García-Herrero, Victor; Sillero, Antonio

    2015-01-01

    The main purpose of this study was to present a simplified view of model metabolic cycles. Although the models have been elaborated with the Mathematica Program, and using a system of differential equations, the main conclusions were presented in a rather intuitive way, easily understandable by students of general courses of Biochemistry, and without any need of mathematical support. A change in any kinetic constant (Km or Vmax) of only one enzyme affected the metabolic profile of all the substrates of the cycle. In addition, it is shown how an increase in the Km or a decrease in the Vmax values of any particular enzyme promoted an increase of its substrate; the contrary occurred decreasing the Km or increasing the Vmax values. © 2015 The International Union of Biochemistry and Molecular Biology.

  16. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  17. Issues in system boundary definition for substance flow analysis: the case of nitrogen cycle management in Catalonia.

    PubMed

    Bartrolí, J; Martin, M J; Rigola, M

    2001-10-16

    The great complexity of the nitrogen cycle, including anthropogenic contributions, makes it necessary to carry out local studies, which allow us to identify the specific cause-effect links in a particular society. Models of local societies that are based on methods such as Substance Flow Analysis (SFA), which study and characterise the performance of metabolic exchanges between human society and the environment, are a useful tools for directing local policy towards sustainable management of the nitrogen cycle. In this paper, the selection of geographical boundaries for SFA application is discussed. Data availability and accuracy, and the possibility of linking the results with instructions for decision making, are critical aspects for proper scale selection. The experience obtained in the construction of the model for Catalonia is used to draw attention to the difficulties found in regional studies.

  18. A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates.

    PubMed

    Mahajan, Aman; Shiferaw, Yohannes; Sato, Daisuke; Baher, Ali; Olcese, Riccardo; Xie, Lai-Hua; Yang, Ming-Jim; Chen, Peng-Sheng; Restrepo, Juan G; Karma, Alain; Garfinkel, Alan; Qu, Zhilin; Weiss, James N

    2008-01-15

    Mathematical modeling of the cardiac action potential has proven to be a powerful tool for illuminating various aspects of cardiac function, including cardiac arrhythmias. However, no currently available detailed action potential model accurately reproduces the dynamics of the cardiac action potential and intracellular calcium (Ca(i)) cycling at rapid heart rates relevant to ventricular tachycardia and fibrillation. The aim of this study was to develop such a model. Using an existing rabbit ventricular action potential model, we modified the L-type calcium (Ca) current (I(Ca,L)) and Ca(i) cycling formulations based on new experimental patch-clamp data obtained in isolated rabbit ventricular myocytes, using the perforated patch configuration at 35-37 degrees C. Incorporating a minimal seven-state Markovian model of I(Ca,L) that reproduced Ca- and voltage-dependent kinetics in combination with our previously published dynamic Ca(i) cycling model, the new model replicates experimentally observed action potential duration and Ca(i) transient alternans at rapid heart rates, and accurately reproduces experimental action potential duration restitution curves obtained by either dynamic or S1S2 pacing.

  19. Causal pathways linking environmental change with health behaviour change: Natural experimental study of new transport infrastructure and cycling to work.

    PubMed

    Prins, R G; Panter, J; Heinen, E; Griffin, S J; Ogilvie, D B

    2016-06-01

    Mechanisms linking changes to the environment with changes in physical activity are poorly understood. Insights into mechanisms of interventions can help strengthen causal attribution and improve understanding of divergent response patterns. We examined the causal pathways linking exposure to new transport infrastructure with changes in cycling to work. We used baseline (2009) and follow-up (2012) data (N=469) from the Commuting and Health in Cambridge natural experimental study (Cambridge, UK). Exposure to new infrastructure in the form of the Cambridgeshire Guided Busway was defined using residential proximity. Mediators studied were changes in perceptions of the route to work, theory of planned behaviour constructs and self-reported use of the new infrastructure. Outcomes were modelled as an increase, decrease or no change in weekly cycle commuting time. We used regression analyses to identify combinations of mediators forming potential pathways between exposure and outcome. We then tested these pathways in a path model and stratified analyses by baseline level of active commuting. We identified changes in perceptions of the route to work, and use of the cycle path, as potential mediators. Of these potential mediators, only use of the path significantly explained (85%) the effect of the infrastructure in increasing cycling. Path use also explained a decrease in cycling among more active commuters. The findings strengthen the causal argument that changing the environment led to changes in health-related behaviour via use of the new infrastructure, but also show how some commuters may have spent less time cycling as a result. Copyright © 2016. Published by Elsevier Inc.

  20. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  1. Detecting robust signals of interannual variability of gross primary productivity in Asia from multiple terrestrial carbon cycle models and long-term satellite-based vegetation data

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Kondo, M.; Ueyama, M.; Kato, T.; Ito, A.; Sasai, T.; Sato, H.; Kobayashi, H.; Saigusa, N.

    2014-12-01

    Long term record of satellite-based terrestrial vegetation are important to evaluate terrestrial carbon cycle models. In this study, we demonstrate how multiple satellite observation can be used for evaluating past changes in gross primary productivity (GPP) and detecting robust anomalies in terrestrial carbon cycle in Asia through our model-data synthesis analysis, Asia-MIP. We focused on the two different temporal coverages: long-term (30 years; 1982-2011) and decadal (10 years; 2001-2011; data intensive period) scales. We used a NOAA/AVHRR NDVI record for long-term analysis and multiple satellite data and products (e.g. Terra-MODIS, SPOT-VEGETATION) as historical satellite data, and multiple terrestrial carbon cycle models (e.g. BEAMS, Biome-BGC, ORCHIDEE, SEIB-DGVM, and VISIT). As a results of long-term (30 years) trend analysis, satellite-based time-series data showed that approximately 40% of the area has experienced a significant increase in the NDVI, while only a few areas have experienced a significant decreasing trend over the last 30 years. The increases in the NDVI were dominant in the sub-continental regions of Siberia, East Asia, and India. Simulations using the terrestrial biosphere models also showed significant increases in GPP, similar to the results for the NDVI, in boreal and temperate regions. A modeled sensitivity analysis showed that the increases in GPP are explained by increased temperature and precipitation in Siberia. Precipitation, solar radiation, CO2fertilization and land cover changes are important factors in the tropical regions. However, the relative contributions of each factor to GPP changes are different among the models. Year-to-year variations of terrestrial GPP were overall consistently captured by the satellite data and terrestrial carbon cycle models if the anomalies are large (e.g. 2003 summer GPP anomalies in East Asia and 2002 spring GPP anomalies in mid to high latitudes). The behind mechanisms can be consistently explained by the models if the anomalies are caused in the low temperature regions (e.g. spring in Northern Asia). However, water-driven or radiation-driven GPP anomalies lacks consistent explanation among models. Therefore, terrestrial carbon cycle models require improvement of the sensitivity of climate anomalies to carbon cycles.

  2. CMIP5 land surface models systematically underestimate inter-annual variability of net ecosystem exchange in semi-arid southwestern North America.

    NASA Astrophysics Data System (ADS)

    MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.

    2017-12-01

    Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.

  3. Stage-by-Stage and Parallel Flow Path Compressor Modeling for a Variable Cycle Engine

    NASA Technical Reports Server (NTRS)

    Kopasakis, George; Connolly, Joseph W.; Cheng, Larry

    2015-01-01

    This paper covers the development of stage-by-stage and parallel flow path compressor modeling approaches for a Variable Cycle Engine. The stage-by-stage compressor modeling approach is an extension of a technique for lumped volume dynamics and performance characteristic modeling. It was developed to improve the accuracy of axial compressor dynamics over lumped volume dynamics modeling. The stage-by-stage compressor model presented here is formulated into a parallel flow path model that includes both axial and rotational dynamics. This is done to enable the study of compressor and propulsion system dynamic performance under flow distortion conditions. The approaches utilized here are generic and should be applicable for the modeling of any axial flow compressor design.

  4. The association between commuter cycling and sickness absence.

    PubMed

    Hendriksen, Ingrid J M; Simons, Monique; Garre, Francisca Galindo; Hildebrandt, Vincent H

    2010-08-01

    To study the association between commuter cycling and all-cause sickness absence, and the possible dose-response relationship between absenteeism and the distance, frequency and speed of commuter cycling. Cross-sectional data about cycling in 1236 Dutch employees were collected using a self-report questionnaire. Company absenteeism records were checked over a one-year period (May 2007-April 2008). Propensity scores were used to make groups comparable and to adjust for confounders. Zero-inflated Poisson models were used to assess differences in absenteeism between cyclists and non-cyclists. The mean total duration of absenteeism over the study year was more than 1 day shorter in cyclists than in non-cyclists. This can be explained by the higher proportion of people with no absenteeism in the cycling group. A dose-response relationship was observed between the speed and distance of cycling and absenteeism. Compared to people who cycle a short distance (

  5. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M; Erickson III, David J; Blasing, T J

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO{sub 2} by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO{sub 2} flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO{sub 2} flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO{sub 2} seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonallymore » adjust the global annual fossil fuel CO{sub 2} emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO{sub 2} concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO{sub 2} between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO{sub 2} seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO{sub 2} concentrations depend strongly on the natural sources and sinks of CO{sub 2}, but also on the strength of local anthropogenic CO{sub 2} emissions and geographic position. This work further attests to the need for remotely sensed CO{sub 2} observations from space.« less

  6. Population pharmacokinetic model of lithium and drug compliance assessment.

    PubMed

    Pérez-Castelló, Isabel; Mangas-Sanjuan, Víctor; González-García, Ignacio; Gonzalez-Alvarez, Isabel; Bermejo, Marival; Marco-Garbayo, Jose Luis; Trocóniz, Iñaki F

    2016-12-01

    Population pharmacokinetic analysis of lithium during therapeutic drug monitoring and drug compliance assessment was performed in 54 patients and 246 plasma concentrations levels were included in this study. Patients received several treatment cycles (1-9) and one plasma concentration measurement for each patient was obtained always before starting next cycle (pre-dose) at steady state. Data were analysed using the population approach with NONMEM version 7.2. Lithium measurements were described using a two-compartment model (CL/F=0.41Lh -1 , V 1 /F=15.3L, Q/F=0.61Lh -1 , and V 2 /F = 15.8L) and the most significant covariate on lithium CL was found to be creatinine clearance (reference model). Lithium compliance was analysed using inter-occasion variability or Markovian features (previous lithium measurement as ordered categorical covariate) on bioavailability parameter. Markov-type model predicted the lithium compliance in the next cycle with higher success rate (79.8%) compared to IOV model (65.2%) and reference model (43.2%). This model becomes an efficient tool, not only being able to adequately describe the observed outcome, but also to predict the individual drug compliance in the next cycle. Therefore, Bipolar disorder patients can be classified regarding their probability to become extensive or poor compliers in the next cycle and then, individual probabilities lower than 0.5 highlight the need of intensive monitoring, as well as other pharmaceutical care measurements that might be applied to enhance drug compliance for a better and safer lithium treatment. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  7. Solar Signals in CMIP-5 Simulations: The Stratospheric Pathway

    NASA Technical Reports Server (NTRS)

    Mitchell, D.M.; Misios, S.; Gray, L. J.; Tourpali, K.; Matthes, K.; Hood, L.; Schmidt, H.; Chiodo, G.; Thieblemont, R.; Rozanov, E.; hide

    2015-01-01

    The 11 year solar-cycle component of climate variability is assessed in historical simulations of models taken from the Coupled Model Intercomparison Project, phase 5 (CMIP-5). Multiple linear regression is applied to estimate the zonal temperature, wind and annular mode responses to a typical solar cycle, with a focus on both the stratosphere and the stratospheric influence on the surface over the period approximately 1850-2005. The analysis is performed on all CMIP-5 models but focuses on the 13 CMIP-5 models that resolve the stratosphere (high-top models) and compares the simulated solar cycle signature with reanalysis data. The 11 year solar cycle component of climate variability is found to be weaker in terms of magnitude and latitudinal gradient around the stratopause in the models than in the reanalysis. The peak in temperature in the lower equatorial stratosphere (approximately 70 hPa) reported in some studies is found in the models to depend on the length of the analysis period, with the last 30 years yielding the strongest response. A modification of the Polar Jet Oscillation (PJO) in response to the 11 year solar cycle is not robust across all models, but is more apparent in models with high spectral resolution in the short-wave region. The PJO evolution is slower in these models, leading to a stronger response during February, whereas observations indicate it to be weaker. In early winter, the magnitude of the modeled response is more consistent with observations when only data from 1979-2005 are considered. The observed North Pacific high-pressure surface response during the solar maximum is only simulated in some models, for which there are no distinguishing model characteristics. The lagged North Atlantic surface response is reproduced in both high- and low-top models, but is more prevalent in the former. In both cases, the magnitude of the response is generally lower than in observations.

  8. The role of life cycle processes on phytoplankton spring bloom composition: a modelling study applied to the Gulf of Finland

    NASA Astrophysics Data System (ADS)

    Lee, Soonmi; Hofmeister, Richard; Hense, Inga

    2018-02-01

    Diatoms are typical representatives of the spring bloom worldwide. In several parts of the Baltic Sea, however, cold-water dinoflagellates such as Biecheleria baltica have become dominant during the past decades. We have investigated the mechanisms behind this trend by using an ecosystem model which includes the life cycles of three main phytoplankton groups (diatoms, dinoflagellates and cyanobacteria). Coupled to a water column model we have applied the model system for the period 1981-2010 to the Gulf of Finland. In agreement with observations, the model results show an increasing trend in the proportion of dinoflagellates in the Gulf of Finland. Temperature and life cycle-related processes explain the relative increase of dinoflagellates and corresponding decrease of diatoms. Warming over the 30 years has enabled a head start of dinoflagellates by reducing the time lag between germination and growth of vegetative cells. Although diatoms have a much higher growth rate, they cannot compete with the high dinoflagellate concentrations that result from the inoculum. Diatoms will only dominate in years when the inoculum concentrations of dinoflagellates or the temperatures are low. Overall, the model results suggest that consideration of life cycle dynamics of competing phytoplankton groups may be crucial to understand trends and shifts in community composition.

  9. The Learning Cycle and College Science Teaching.

    ERIC Educational Resources Information Center

    Barman, Charles R.; Allard, David W.

    Originally developed in an elementary science program called the Science Curriculum Improvement Study, the learning cycle (LC) teaching approach involves students in an active learning process modeled on four elements of Jean Piaget's theory of cognitive development: physical experience, referring to the biological growth of the central nervous…

  10. Anti-inflammatory properties of methylthioadenosine in experimental colitis

    USDA-ARS?s Scientific Manuscript database

    The methionine (Met) metabolic cycle is critical for normal cell functions. Met cycle disruption has been implicated in disease, such as alcoholic liver disease (ALD) and multiple sclerosis (MS). Studies in animal models of ALD and MS have shown that the Met metabolite methylthioadenosine (MTA) has ...

  11. The future of the North American carbon cycle - projections and associated climate change

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Chatterjee, A.; Cooley, S. R.; Dunne, J. P.; Hoffman, F. M.; Luo, Y.; Moore, D. J.; Ohrel, S. B.; Poulter, B.; Ricciuto, D. M.; Tzortziou, M.; Walker, A. P.; Mayes, M. A.

    2016-12-01

    Approximately half of anthropogenic emissions from the burning of fossil fuels is taken up annually by carbon sinks on the land and in the oceans. However, there are key uncertainties in how carbon uptake by terrestrial, ocean, and freshwater systems will respond to, and interact with, climate into the future. Here, we outline the current state of understanding on the future carbon budget of these major reservoirs within North America and the globe. We examine the drivers of future carbon cycle changes, including carbon-climate feedbacks, atmospheric composition, nutrient availability, and human activity and management decisions. Progress has been made at identifying vulnerabilities in carbon pools, including high-latitude permafrost, peatlands, freshwater and coastal wetlands, and ecosystems subject to disturbance events, such as insects, fire and drought. However, many of these processes/pools are not well represented in current models, and model intercomparison studies have shown a range in carbon cycle response to factors such as climate and CO2 fertilization. Furthermore, as model complexity increases, understanding the drivers of model spread becomes increasingly more difficult. As a result, uncertainties in future carbon cycle projections are large. It is also uncertain how management decisions and policies will impact future carbon stocks and flows. In order to guide policy, a better understanding of the risk and magnitude of North American carbon cycle changes is needed. This requires that future carbon cycle projections be conditioned on current observations and be reported with sufficient confidence and fully specified uncertainties.

  12. Effect of the Four-Step Learning Cycle Model on Students' Understanding of Concepts Related to Simple Harmonic Motion

    ERIC Educational Resources Information Center

    Madu, B. C.

    2012-01-01

    The study explored the efficacy of four-step (4-E) learning cycle approach on students understanding of concepts related to Simple Harmonic Motion (SHM). 124 students (63 for experimental group and 61 for control group) participated in the study. The students' views and ideas in simple Harmonic Achievement test were analyzed qualitatively. The…

  13. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    ERIC Educational Resources Information Center

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  14. Development of Hydro-Informatic Modelling System and its Application

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.

    2009-12-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  15. Investigating the impact of diurnal cycle of SST on the intraseasonal and climate variability

    NASA Astrophysics Data System (ADS)

    Tseng, W. L.; Hsu, H. H.; Chang, C. W. J.; Keenlyside, N. S.; Lan, Y. Y.; Tsuang, B. J.; Tu, C. Y.

    2016-12-01

    The diurnal cycle is a prominent feature of our climate system and the most familiar example of externally forced variability. Despite this it remains poorly simulated in state-of-the-art climate models. A particular problem is the diurnal cycle in sea surface temperature (SST), which is a key variable in air-sea heat flux exchange. In most models the diurnal cycle in SST is not well resolved, due to insufficient vertical resolution in the upper ocean mixed-layer and insufficiently frequent ocean-atmosphere coupling. Here, we coupled a 1-dimensional ocean model (SIT) to two atmospheric general circulation model (ECHAM5 and CAM5). In particular, we focus on improving the representations of the diurnal cycle in SST in a climate model, and investigate the role of the diurnal cycle in climate and intraseasonal variability.

  16. Developing teachers' models for assessing students' competence in mathematical modelling through lesson study

    NASA Astrophysics Data System (ADS)

    Aydogan Yenmez, Arzu; Erbas, Ayhan Kursat; Cakiroglu, Erdinc; Alacaci, Cengiz; Cetinkaya, Bulent

    2017-08-01

    Applications and modelling have gained a prominent role in mathematics education reform documents and curricula. Thus, there is a growing need for studies focusing on the effective use of mathematical modelling in classrooms. Assessment is an integral part of using modelling activities in classrooms, since it allows teachers to identify and manage problems that arise in various stages of the modelling process. However, teachers' difficulties in assessing student modelling work are a challenge to be considered when implementing modelling in the classroom. Thus, the purpose of this study was to investigate how teachers' knowledge on generating assessment criteria for assessing student competence in mathematical modelling evolved through a professional development programme, which is based on a lesson study approach and modelling perspective. The data was collected with four teachers from two public high schools over a five-month period. The professional development programme included a cyclical process, with each cycle consisting of an introductory meeting, the implementation of a model-eliciting activity with students, and a follow-up meeting. The results showed that the professional development programme contributed to teachers' knowledge for generating assessment criteria on the products, and the observable actions that affect the modelling cycle.

  17. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  18. Ontology for Life-Cycle Modeling of Water Distribution Systems: Model View Definition

    DTIC Science & Technology

    2013-06-01

    Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the...Laboratory (ERDC-CERL) to develop a life-cycle building model have resulted in the definition of a “core” building information model that contains...developed experimental BIM models us- ing commercial off-the-shelf (COTS) software. Those models represent three types of typical low-rise Army

  19. Evaluation of Statistical Methods for Modeling Historical Resource Production and Forecasting

    NASA Astrophysics Data System (ADS)

    Nanzad, Bolorchimeg

    This master's thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed "cycle-jumping" wherein overlap of multiple cycles is limited. The model is designed in a way that each cycle is described by the same three parameters as conventional multicyclic Hubbert model and every two cycles are connected with a transition width. Transition width indicates the shift from one cycle to the next and is described as weighted coaddition of neighboring two cycles. It is determined by three parameters: transition year, transition width, and gamma parameter for weighting. The cycle-jumping method provides superior model compared to the conventional multicyclic Hubbert model and reflects historical production behavior more reasonably and practically, by better modeling of the effects of technological transitions and socioeconomic factors that affect historical resource production behavior by explicitly considering the form of the transitions between production cycles.

  20. The Impeller Exit Flow Coefficient As a Performance Map Variable for Predicting Centrifugal Compressor Off-Design Operation Applied to a Supercritical CO 2 Working Fluid

    DOE PAGES

    Liese, Eric; Zitney, Stephen E.

    2017-06-26

    A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less

  1. Characterization and modeling of SET/RESET cycling induced read-disturb failure time degradation in a resistive switching memory

    NASA Astrophysics Data System (ADS)

    Su, Po-Cheng; Hsu, Chun-Chi; Du, Sin-I.; Wang, Tahui

    2017-12-01

    Read operation induced disturbance in SET-state in a tungsten oxide resistive switching memory is investigated. We observe that the reduction of oxygen vacancy density during read-disturb follows power-law dependence on cumulative read-disturb time. Our study shows that the SET-state read-disturb immunity progressively degrades by orders of magnitude as SET/RESET cycle number increases. To explore the cause of the read-disturb degradation, we perform a constant voltage stress to emulate high-field stress effects in SET/RESET cycling. We find that the read-disturb failure time degradation is attributed to high-field stress-generated oxide traps. Since the stress-generated traps may substitute for some of oxygen vacancies in forming conductive percolation paths in a switching dielectric, a stressed cell has a reduced oxygen vacancy density in SET-state, which in turn results in a shorter read-disturb failure time. We develop an analytical read-disturb degradation model including both cycling induced oxide trap creation and read-disturb induced oxygen vacancy reduction. Our model can well reproduce the measured read-disturb failure time degradation in a cycled cell without using fitting parameters.

  2. The Impeller Exit Flow Coefficient As a Performance Map Variable for Predicting Centrifugal Compressor Off-Design Operation Applied to a Supercritical CO 2 Working Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liese, Eric; Zitney, Stephen E.

    A multi-stage centrifugal compressor model is presented with emphasis on analyzing use of an exit flow coefficient vs. an inlet flow coefficient performance parameter to predict off-design conditions in the critical region of a supercritical carbon dioxide (CO 2) power cycle. A description of the performance parameters is given along with their implementation in a design model (number of stages, basic sizing, etc.) and a dynamic model (for use in transient studies). A design case is shown for two compressors, a bypass compressor and a main compressor, as defined in a process simulation of a 10 megawatt (MW) supercritical COmore » 2 recompression Brayton cycle. Simulation results are presented for a simple open cycle and closed cycle process with changes to the inlet temperature of the main compressor which operates near the CO 2 critical point. Results showed some difference in results using the exit vs. inlet flow coefficient correction, however, it was not significant for the range of conditions examined. Here, this paper also serves as a reference for future works, including a full process simulation of the 10 MW recompression Brayton cycle.« less

  3. Simulation Studies of Satellite Laser CO2 Mission Concepts

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan Randy; Mao, J.; Abshire, J. B.; Collatz, G. J.; Sun X.; Weaver, C. J.

    2011-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric CO2 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to ASCENDS as recommended by the US National Academy of Sciences Decadal Survey. Compared to passive sensors, active (lidar) sensing of CO2 from space has several potentially significant advantages that hold promise to advance CO2 measurement capability in the next decade. Although the precision and accuracy requirements remain at unprecedented levels of stringency, analysis of possible instrument technology indicates that such sensors are more than feasible. Radiative transfer model calculations, an instrument model with representative errors, and a simple retrieval approach complete the cycle from "nature" run to "pseudodata" CO2. Several mission and instrument configuration options are examined, and the sensitivity to key design variables is shown. Examples are also shown of how the resulting pseudo-measurements might be used to address key carbon cycle science questions.

  4. Ecosystem Model Performance at Wetlands: Results from the North American Carbon Program Site Synthesis

    NASA Astrophysics Data System (ADS)

    Sulman, B. N.; Desai, A. R.; Schroeder, N. M.; NACP Site Synthesis Participants

    2011-12-01

    Northern peatlands contain a significant fraction of the global carbon pool, and their responses to hydrological change are likely to be important factors in future carbon cycle-climate feedbacks. Global-scale carbon cycle modeling studies typically use general ecosystem models with coarse spatial resolution, often without peatland-specific processes. Here, seven ecosystem models were used to simulate CO2 fluxes at three field sites in Canada and the northern United States, including two nutrient-rich fens and one nutrient-poor, sphagnum-dominated bog, from 2002-2006. Flux residuals (simulated - observed) were positively correlated with measured water table for both gross ecosystem productivity (GEP) and ecosystem respiration (ER) at the two fen sites for all models, and were positively correlated with water table at the bog site for the majority of models. Modeled diurnal cycles at fen sites agreed well with eddy covariance measurements overall. Eddy covariance GEP and ER were higher during dry periods than during wet periods, while model results predicted either the opposite relationship or no significant difference. At the bog site, eddy covariance GEP had no significant dependence on water table, while models predicted higher GEP during wet periods. All models significantly over-estimated GEP at the bog site, and all but one over-estimated ER at the bog site. Carbon cycle models in peatland-rich regions could be improved by incorporating better models or measurements of hydrology and by inhibiting GEP and ER rates under saturated conditions. Bogs and fens likely require distinct treatments in ecosystem models due to differences in nutrients, peat properties, and plant communities.

  5. The Hunt Opinion Model—An Agent Based Approach to Recurring Fashion Cycles

    PubMed Central

    Apriasz, Rafał; Krueger, Tyll; Marcjasz, Grzegorz; Sznajd-Weron, Katarzyna

    2016-01-01

    We study a simple agent-based model of the recurring fashion cycles in the society that consists of two interacting communities: “snobs” and “followers” (or “opinion hunters”, hence the name of the model). Followers conform to all other individuals, whereas snobs conform only to their own group and anticonform to the other. The model allows to examine the role of the social structure, i.e. the influence of the number of inter-links between the two communities, as well as the role of the stability of links. The latter is accomplished by considering two versions of the same model—quenched (parameterized by fraction L of fixed inter-links) and annealed (parameterized by probability p that a given inter-link exists). Using Monte Carlo simulations and analytical treatment (the latter only for the annealed model), we show that there is a critical fraction of inter-links, above which recurring cycles occur. For p ≤ 0.5 we derive a relation between parameters L and p that allows to compare both models and show that the critical value of inter-connections, p*, is the same for both versions of the model (annealed and quenched) but the period of a fashion cycle is shorter for the quenched model. Near the critical point, the cycles are irregular and a change of fashion is difficult to predict. For the annealed model we also provide a deeper theoretical analysis. We conjecture on topological grounds that the so-called saddle node heteroclinic bifurcation appears at p*. For p ≥ 0.5 we show analytically the existence of the second critical value of p, for which the system undergoes Hopf’s bifurcation. PMID:27835679

  6. Interdisciplinary research in global biogeochemical cycling Nitrous oxide in terrestrial ecosystems

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Peterson, D. L.

    1984-01-01

    NASA has begun an interdisciplinary research program to investigate various aspects of Global Biology and Global Habitability. An important element selected for the study of global phenomena is related to biogeochemical cycling. The studies involve a collaboration with recognized scientists in the areas of plant physiology, microbiology, nutrient cycling theory, and related areas. Selected subjects of study include nitrogen cycling dynamics in terrestrial ecosystems with special attention to biosphere/atmosphere interactions, and an identification of sensitive response variables which can be used in ecosystem models based on parameters derived from remotely sensed variables. A description is provided of the progress and findings over the past two years. Attention is given to the characteristics of nitrous oxide emissions, the approach followed in the investigations, the selection of study sites, radiometric measurements, and research in Sequoia.

  7. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, J.; Cameron, R. H.; Schüssler, M., E-mail: jiejiang@nao.cas.cn

    The tilt angles of sunspot groups represent the poloidal field source in Babcock-Leighton-type models of the solar dynamo and are crucial for the build-up and reversals of the polar fields in surface flux transport (SFT) simulations. The evolution of the polar field is a consequence of Hale's polarity rules, together with the tilt angle distribution which has a systematic component (Joy's law) and a random component (tilt-angle scatter). We determine the scatter using the observed tilt angle data and study the effects of this scatter on the evolution of the solar surface field using SFT simulations with flux input basedmore » upon the recorded sunspot groups. The tilt angle scatter is described in our simulations by a random component according to the observed distributions for different ranges of sunspot group size (total umbral area). By performing simulations with a number of different realizations of the scatter we study the effect of the tilt angle scatter on the global magnetic field, especially on the evolution of the axial dipole moment. The average axial dipole moment at the end of cycle 17 (a medium-amplitude cycle) from our simulations was 2.73 G. The tilt angle scatter leads to an uncertainty of 0.78 G (standard deviation). We also considered cycle 14 (a weak cycle) and cycle 19 (a strong cycle) and show that the standard deviation of the axial dipole moment is similar for all three cycles. The uncertainty mainly results from the big sunspot groups which emerge near the equator. In the framework of Babcock-Leighton dynamo models, the tilt angle scatter therefore constitutes a significant random factor in the cycle-to-cycle amplitude variability, which strongly limits the predictability of solar activity.« less

  8. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  9. Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle.

    PubMed

    Ono, Takeshi; Tadakuma, Takushi; Rodriguez, Ana

    2007-03-01

    Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.

  10. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  11. 40 CFR 86.099-10 - Emission standards for 1999 and later model year Otto-cycle heavy-duty engines and vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... model year Otto-cycle heavy-duty engines and vehicles. 86.099-10 Section 86.099-10 Protection of... Heavy-Duty Vehicles § 86.099-10 Emission standards for 1999 and later model year Otto-cycle heavy-duty...-cycle medium-duty passenger vehicles (MDPVs) that are subject to regulation under subpart S of this part...

  12. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.).

    PubMed

    Auinger, Hans-Jürgen; Schönleben, Manfred; Lehermeier, Christina; Schmidt, Malthe; Korzun, Viktor; Geiger, Hartwig H; Piepho, Hans-Peter; Gordillo, Andres; Wilde, Peer; Bauer, Eva; Schön, Chris-Carolin

    2016-11-01

    Genomic prediction accuracy can be significantly increased by model calibration across multiple breeding cycles as long as selection cycles are connected by common ancestors. In hybrid rye breeding, application of genome-based prediction is expected to increase selection gain because of long selection cycles in population improvement and development of hybrid components. Essentially two prediction scenarios arise: (1) prediction of the genetic value of lines from the same breeding cycle in which model training is performed and (2) prediction of lines from subsequent cycles. It is the latter from which a reduction in cycle length and consequently the strongest impact on selection gain is expected. We empirically investigated genome-based prediction of grain yield, plant height and thousand kernel weight within and across four selection cycles of a hybrid rye breeding program. Prediction performance was assessed using genomic and pedigree-based best linear unbiased prediction (GBLUP and PBLUP). A total of 1040 S 2 lines were genotyped with 16 k SNPs and each year testcrosses of 260 S 2 lines were phenotyped in seven or eight locations. The performance gap between GBLUP and PBLUP increased significantly for all traits when model calibration was performed on aggregated data from several cycles. Prediction accuracies obtained from cross-validation were in the order of 0.70 for all traits when data from all cycles (N CS  = 832) were used for model training and exceeded within-cycle accuracies in all cases. As long as selection cycles are connected by a sufficient number of common ancestors and prediction accuracy has not reached a plateau when increasing sample size, aggregating data from several preceding cycles is recommended for predicting genetic values in subsequent cycles despite decreasing relatedness over time.

  13. Modeling Retirees' Life Satisfaction Levels: The Role of Recreational, Life Cycle and Socio-Environmental Elements.

    ERIC Educational Resources Information Center

    Romsa, Gerald; And Others

    1985-01-01

    This study investigated satisfaction with retirement as a function of life cycle forces, socioenvironmental influences, and the degree of fulfillment of Maslow's hierarchy of needs through participation in recreational leisure activities. The findings from interviews with 300 retirees are discussed. (Author/MT)

  14. Dietary glutamate reduces systemic but not intestinal leucine oxidation in protein malnourished piglets

    USDA-ARS?s Scientific Manuscript database

    The methionine (Met) metabolic cycle is critical for normal cell functions. Met cycle disruption has been implicated in disease, such as alcoholic liver disease (ALD) and multiple sclerosis (MS). Studies in animal models of ALD and MS have shown that the Met metabolite methylthioadenosine (MTA) has ...

  15. Organizational Growth and Change: The Life Cycle of a Community Mental Health Center.

    ERIC Educational Resources Information Center

    Messal, Judith L.

    1980-01-01

    Organizations go through life cycles that affect their behavior. Growth models often relate to leadership. In a study of one mental health center's development, growth is related to funding. If funding remains diversified and productivity is kept high, growth of a mature organization remains manageable. (JAC)

  16. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    NASA Astrophysics Data System (ADS)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  17. A model for chromosome organization during the cell cycle in live E. coli.

    PubMed

    Liu, Yuru; Xie, Ping; Wang, Pengye; Li, Ming; Li, Hui; Li, Wei; Dou, Shuoxing

    2015-11-24

    Bacterial chromosomal DNA is a highly compact nucleoid. The organization of this nucleoid is poorly understood due to limitations in the methods used to monitor the complexities of DNA organization in live bacteria. Here, we report that circular plasmid DNA is auto-packaged into a uniform dual-toroidal-spool conformation in response to mechanical stress stemming from sharp bending and un-winding by atomic force microscopic analysis. The mechanism underlying this phenomenon was deduced with basic physical principles to explain the auto-packaging behaviour of circular DNA. Based on our observations and previous studies, we propose a dynamic model of how chromosomal DNA in E. coli may be organized during a cell division cycle. Next, we test the model by monitoring the development of HNS clusters in live E. coli during a cell cycle. The results were in close agreement with the model. Furthermore, the model accommodates a majority of the thus-far-discovered remarkable features of nucleoids in vivo.

  18. A model for chromosome organization during the cell cycle in live E. coli

    PubMed Central

    Liu, Yuru; Xie, Ping; Wang, Pengye; Li, Ming; Li, Hui; Li, Wei; Dou, Shuoxing

    2015-01-01

    Bacterial chromosomal DNA is a highly compact nucleoid. The organization of this nucleoid is poorly understood due to limitations in the methods used to monitor the complexities of DNA organization in live bacteria. Here, we report that circular plasmid DNA is auto-packaged into a uniform dual-toroidal-spool conformation in response to mechanical stress stemming from sharp bending and un-winding by atomic force microscopic analysis. The mechanism underlying this phenomenon was deduced with basic physical principles to explain the auto-packaging behaviour of circular DNA. Based on our observations and previous studies, we propose a dynamic model of how chromosomal DNA in E. coli may be organized during a cell division cycle. Next, we test the model by monitoring the development of HNS clusters in live E. coli during a cell cycle. The results were in close agreement with the model. Furthermore, the model accommodates a majority of the thus-far-discovered remarkable features of nucleoids in vivo. PMID:26597953

  19. Toward Automated Inventory Modeling in Life Cycle Assessment: The Utility of Semantic Data Modeling to Predict Real-WorldChemical Production

    EPA Science Inventory

    A set of coupled semantic data models, i.e., ontologies, are presented to advance a methodology towards automated inventory modeling of chemical manufacturing in life cycle assessment. The cradle-to-gate life cycle inventory for chemical manufacturing is a detailed collection of ...

  20. Microstructure-Sensitive Modeling of High Cycle Fatigue (Preprint)

    DTIC Science & Technology

    2009-03-01

    SUBJECT TERMS microplasticity , microstructure-sensitive modeling, high cycle fatigue, fatigue variability 16. SECURITY CLASSIFICATION OF: 17...3Air Force Research Laboratory Wright Patterson Air Force Base, Ohio 45433 Keywords: Microplasticity , microstructure-sensitive modeling, high cycle...cyclic microplasticity ) plays a key role in modeling fatigue resistance. Unlike effective properties such as elastic stiffness, fatigue is

  1. Plant ecosystem responses to rising atmospheric CO2: applying a "two-timing" approach to assess alternative hypotheses for mechanisms of nutrient limitation

    NASA Astrophysics Data System (ADS)

    Medlyn, B.; Jiang, M.; Zaehle, S.

    2017-12-01

    There is now ample experimental evidence that the response of terrestrial vegetation to rising atmospheric CO2 concentration is modified by soil nutrient availability. How to represent nutrient cycling processes is thus a key consideration for vegetation models. We have previously used model intercomparison to demonstrate that models incorporating different assumptions predict very different responses at Free-Air CO2 Enrichment experiments. Careful examination of model outputs has provided some insight into the reasons for the different model outcomes, but it is difficult to attribute outcomes to specific assumptions. Here we investigate the impact of individual assumptions in a generic plant carbon-nutrient cycling model. The G'DAY (Generic Decomposition And Yield) model is modified to incorporate alternative hypotheses for nutrient cycling. We analyse the impact of these assumptions in the model using a simple analytical approach known as "two-timing". This analysis identifies the quasi-equilibrium behaviour of the model at the time scales of the component pools. The analysis provides a useful mathematical framework for probing model behaviour and identifying the most critical assumptions for experimental study.

  2. Modeling and Analysis of the Water Cycle: Seasonal and Event Variability at the Walnut River Research Watershed

    NASA Astrophysics Data System (ADS)

    Miller, M. A.; Miller, N. L.; Sale, M. J.; Springer, E. P.; Wesely, M. L.; Bashford, K. E.; Conrad, M. E.; Costigan, K. R.; Kemball-Cook, S.; King, A. W.; Klazura, G. E.; Lesht, B. M.; Machavaram, M. V.; Sultan, M.; Song, J.; Washington-Allen, R.

    2001-12-01

    A multi-laboratory Department of Energy (DOE) team (Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory) has begun an investigation of hydrometeorological processes at the Whitewater subbasin of the Walnut River Watershed in Kansas. The Whitewater sub-basin is viewed as a DOE long-term hydrologic research watershed and resides within the well-instrumented Atmospheric Radiation Measurement/Cloud Radiation Atmosphere Testbed (ARM/CART) and the proposed Arkansas-Red River regional hydrologic testbed. The focus of this study is the development and evaluation of coupled regional to watershed scale models that simulate atmospheric, land surface, and hydrologic processes as systems with linkages and feedback mechanisms. This pilot is the precursor to the proposed DOE Water Cycle Dynamics Prediction Program. An important new element is the introduction of water isotope budget equations into mesoscale and hydrologic modeling. Two overarching hypotheses are part of this pilot study: (1) Can the predictability of the regional water balance be improved using high-resolution model simulations that are constrained and validated using new water isotope and hydrospheric water measurements? (2) Can water isotopic tracers be used to segregate different pathways through the water cycle and predict a change in regional climate patterns? Initial results of the pilot will be presented along with a description and copies of the proposed DOE Water Cycle Dynamics Prediction Program.

  3. The MSFC Solar Activity Future Estimation (MSAFE) Model

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.

    2017-01-01

    The MSAFE model provides forecasts for the solar indices SSN, F10.7, and Ap. These solar indices are used as inputs to many space environment models used in orbital spacecraft operations and space mission analysis. Forecasts from the MSAFE model are provided on the MSFC Natural Environments Branch's solar webpage and are updated as new monthly observations come available. The MSAFE prediction routine employs a statistical technique that calculates deviations of past solar cycles from the mean cycle and performs a regression analysis to predict the deviation from the mean cycle of the solar index at the next future time interval. The prediction algorithm is applied recursively to produce monthly smoothed solar index values for the remaining of the cycle. The forecasts are initiated for a given cycle after about 8 to 12 months of observations are collected. A forecast made at the beginning of cycle 24 using the MSAFE program captured the cycle fairly well with some difficulty in discerning the double peak that occurred at solar cycle maximum.

  4. Changes in the carbon cycle of northern Eurasia simulated by process models

    NASA Astrophysics Data System (ADS)

    Rawlins, M. A.

    2013-12-01

    Pronounced warming across the northern high latitudes is impacting water and carbon cycles and raising concern over possible feedbacks to global climate. Recent model studied point toward a weakening of the terrestrial land carbon sink across the northern high latitudes, one notable manifestation of a warming Arctic. We explore links between regional climate and the carbon cycle using data from models participating in the Vulnerability of Permafrost Carbon Research Coordination Network (RCN). The domain of interest is the drainage basin within the Northern Eurasia Earth Science Partnership Initiative (NEESPI) region. Model outputs examined include gross primary production (GPP), heterotrophic respiration (RH), net ecosystem exchange (NEE), and total soil carbon storage. Mean flux budgets and their changes over the period 1960-2009 are calculated from the model estimates for the entire NEESPI region and for each major land cover category within the region. Use of an independent model, which captures well the spatial pattern in soil freeze/thaw dynamics, indicates that the reduction in permafrost extent over the NEESPI basin was 4-6% over recent decades. Modeled influences of permafrost thaw on the region's water and carbon cycles are evaluated in the context of recent measurements. Estimates of the flux of CO2 due to fire are also examined in order to better understand how these disturbances are altering regional carbon sink/source dynamics.

  5. The effective application of a discrete transition model to explore cell-cycle regulation in yeast

    PubMed Central

    2013-01-01

    Background Bench biologists often do not take part in the development of computational models for their systems, and therefore, they frequently employ them as “black-boxes”. Our aim was to construct and test a model that does not depend on the availability of quantitative data, and can be directly used without a need for intensive computational background. Results We present a discrete transition model. We used cell-cycle in budding yeast as a paradigm for a complex network, demonstrating phenomena such as sequential protein expression and activity, and cell-cycle oscillation. The structure of the network was validated by its response to computational perturbations such as mutations, and its response to mating-pheromone or nitrogen depletion. The model has a strong predicative capability, demonstrating how the activity of a specific transcription factor, Hcm1, is regulated, and what determines commitment of cells to enter and complete the cell-cycle. Conclusion The model presented herein is intuitive, yet is expressive enough to elucidate the intrinsic structure and qualitative behavior of large and complex regulatory networks. Moreover our model allowed us to examine multiple hypotheses in a simple and intuitive manner, giving rise to testable predictions. This methodology can be easily integrated as a useful approach for the study of networks, enriching experimental biology with computational insights. PMID:23915717

  6. User’s Guide for Naval Material Command’s Life Cycle Cost (FLEX) Model.

    DTIC Science & Technology

    1982-04-01

    MATERIAL COMMANDl’S 3 LIFE CYCLE COST (FLEX) MODEL Icc FoIuhrInomto -- -- P ea eCo tc Pleale Cona, ______ _____-Thims document rc~ ofl 5C72 -lot REPORT...Material Command’s Life Cycle Cost (FLEX) Prep. 4/82 ___ Model ______________ ______________ 7. Author(s) S. Performing Organization Rapt. No. R. Dress (ESA...WANG 1I. Abstract (Limit: 200 words) The FLEX-9E life cycle cost comp~uter model is a user-oriented methodology accommodating most cost structures and

  7. Evaluating Carbon and Climate Sensitivities of the NOAA/GFDL Earth System Model ESM2Mb to Forcing Perturbations during the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Tandy, H.; Shevliakova, E.; Keller, G.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM, 55.5 Myr) was a period of rapid warming resulting from major changes in the carbon cycle and has been cited as the closest historical analogue to anthropogenic carbon release. Up to now, modeling studies of the PETM used either a low-resolution coupled model of the ocean and atmosphere with prescribed CO2 or CH4, or coupled climate-carbon models of intermediate complexity (i.e. simplified ocean or atmosphere). In this study we carried a suit of numerical experiments with the NOAA/GFDL comprehensive atmosphere-ocean coupled model with integrated terrestrial and marine carbon cycle components, known as an Earth System Model (ESM2Mb). We analyzed the output from millennia-scale ESM2Mb simulations with different combinations of forcings from the pre-PETM and PETM, including greenhouse gas concentrations and solar intensity. In addition we explore sensitivities of climate and carbon cycling to changes in geology such as topography, continental positions, and the presence and absence of large land glaciers. Furthermore, we examine ESM2Mb climate and carbon sensitivities to PETM conditions with a focus on how alternate conditions and forcings relate to the uncertainty in the climate and carbon cycling estimates from paleo observations. We explore changes in atmosphere, land, and ocean temperatures and circulation patterns as well as vegetation distribution, permafrost, and carbon storage in terrestrial and marine ecosystems from pre-PETM to PETM conditions. We found that with the present day land/sea mask and land glaciers in ESM2Mb, changes in only greenhouse gas concentrations (CO2 and CH4) from pre-PETM to PETM conditions induce global warming of 3-5 °C, consistent with the lower range of estimates from paleo proxies. Changes in the carbon permafrost storage from warming cannot explain the rapid increase in the atmospheric CO2 concentration. Changes in the ocean circulation and carbon storage critically depend on geological conditions such as continental positions. The study illustrates how models designed for studying future climate change can capture past paleo events, such as the PETM, and how modern day geological conditions may affect climate and carbon cycle sensitivities.

  8. Longitudinal decline in lung function measurements among Saskatchewan grain workers.

    PubMed

    Pahwa, Punam; Senthilselvan, Ambikaipakan; McDuffie, Helen H; Dosman, James A

    2003-04-01

    To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period. The Grain Dust Medical Surveillance Program was started by Labour Canada in 1978 and longitudinally studied the respiratory health of Canadian grain elevator workers over a 15-year period (1978 to 1993). Data on respiratory symptoms and pulmonary function tests (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) were collected once every three years; each three-year interval was called a 'cycle'. Data from Saskatchewan were analyzed for this report. A transitional model using the generalized estimating equations approach was fitted using a SAS macro to predict the annual decline in FEV1 and FVC. Previous lung function, as one of the covariates in the transitional model, played an important role. Significant predictors of FEV1 were previous FEV1, base height, weight, years in the grain industry, current smoking status, cycle II, cycle III and cycle V. Significant predictors of FVC were previous FVC, base height, weight, years in the grain industry, cycle II, cycle III and cycle IV. The estimated annual decline in FEV1 and FVC increased according to length of time in the grain industry among nonsmoking, ex-smoking and smoking grain elevator workers. Lung function values improved after dust control, and yearly declines in FEV1 and FVC after dust control were smaller compared with yearly losses before dust control.

  9. Responses of the terrestrial carbon cycle to drought: modeling sensitivities of the interactive nitrogen and dynamic vegetation

    NASA Astrophysics Data System (ADS)

    Jia, B.; Wang, Y.; Xie, Z.

    2016-12-01

    Drought can trigger both immediate and time-lagged responses of terrestrial ecosystems and even cause sizeable positive feedbacks to climate warming. In this study, the influences of interactive nitrogen (N) and dynamic vegetation (DV) on the response of the carbon cycle in terrestrial ecosystems of China to drought were investigated using the Community Land Model version 4.5 (CLM4.5). Model simulations from three configurations of CLM4.5 (C, carbon cycle only; CN, dynamic carbon and nitrogen cycle; CNDV, dynamic carbon and nitrogen cycle as well as dynamic vegetation) between 1961 and 2010 showed that the incorporation of a prognostic N cycle and DV into CLM4.5 reduce the predicted annual means and inter-annual variability of predicted gross primary production (GPP) and net ecosystem production (NEP), except for a slight increase in NEP for CNDV compared to CN. These model improvements resulted in better agreement with observations (7.0 PgC yr-1) of annual GPP over the terrestrial ecosystems in China for CLM45-CN (7.5 PgC yr-1) and CLM45-CNDV (7.3 PgC yr-1) than for CLM45-C (10.9 PgC yr-1). Compared to the CLM45-C, the carbon-nitrogen coupling strengthened the predicted response of GPP to drought, resulting in a higher correlation with the standardized precipitation index (SPI; rC = 0.62, rCN = 0.67), but led to a weaker sensitivity of NEP to SPI (rC = 0.51, rCN = 0.45). The CLM45-CNDV had the longest lagged responses of GPP to drought among the three configurations. These results enhance our understanding of the response of the terrestrial carbon cycle to drought.

  10. Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells

    PubMed Central

    Panetta, J C; Evans, W E; Cheok, M H

    2006-01-01

    The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance. PMID:16333308

  11. Natural cycle in vitro fertilisation (IVF) for subfertile couples.

    PubMed

    Allersma, Thomas; Farquhar, Cindy; Cantineau, Astrid E P

    2013-08-30

    Subfertility affects 15% to 20% of couples trying to conceive. In vitro fertilisation (IVF) is one of the assisted reproduction techniques developed to improve chances of achieving pregnancy. In the standard IVF method with controlled ovarian hyperstimulation (COH), growth and development of multiple follicles are stimulated by using gonadotrophins, often combined with a gonadotrophin-releasing hormone (GnRH) agonist or antagonist. Although it is an established method of conception for subfertile couples, the treatment is expensive and has a high risk of adverse effects. Studies have shown that IVF in a natural cycle (NC) or a modified natural cycle (MNC) might be a promising low risk and low cost alternative to the standard stimulated IVF treatment since the available dominant follicle of each cycle is used. In this review, we included available randomised controlled studies comparing natural cycle IVF (NC and MNC) with standard IVF. To compare the efficacy and safety of natural cycle IVF (including both NC-IVF and MNC-IVF) with controlled ovarian hyperstimulation IVF (COH-IVF) in subfertile couples. An extended search including of the Menstrual Disorders and Subfertility Group (MDSG) Specialised Register, Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, ClinicalTrials.gov, conference abstracts in the Web of Knowledge, the World Health Organization International Trials Registry Platform search portal, LILACS database, PubMed and the OpenSIGLE database was conducted according to Cochrane guidelines. The last search was on 31st July 2013. All randomised controlled trials (RCTs) comparing either natural cycle IVF or modified natural cycle IVF versus standard IVF in subfertile couples were included. Data selection and extraction and risk of bias assessment were carried out independently by two authors (TA and AC). The primary outcome measures were live birth rate and ovarian hyperstimulation syndrome (OHSS) rate per randomised woman. We calculated Mantel-Haenszel odds ratios for each dichotomous outcome and either the mean difference or the standardised mean difference (SMD) for continuous outcomes, with 95% confidence intervals (CIs). A fixed effect model was used unless there was substantial heterogeneity, in which case a random effects model was used. Six randomised controlled trials with a total of 788 women were included. The largest of these trials included 396 women eligible for this review.No evidence of a statistically significant difference was found between natural cycle and standard IVF in live birth rates (OR 0.68, 95% CI 0.46 to 1.01, two studies, 425 women, I(2)= 0%, moderate quality evidence). The evidence suggests that for a woman with a 53% chance of live birth using standard IVF, the chance using natural cycle IVF would range from 34% to 53%. There was no evidence of a statistically significant difference between natural cycle and standard IVF in rates of OHSS (OR 0.19, 95% CI 0.01 to 4.06, one study, 60 women, very low quality evidence), clinical pregnancy (OR 0.52 95% CI 0.17 to 1.61, 4 studies, 351 women, I(2)=63%, low quality evidence), ongoing pregnancy (OR 0.72, 95% CI 0.50 to 1.05, three studies, 485 women, I(2)=0%, moderate quality evidence), multiple pregnancy (OR 0.76, 95% CI 0.25 to 2.31, 2 studies, 527 women, I(2)=0%, very low quality evidence), gestational abnormalities (OR 0.44 95% CI 0.03 to 5.93, 1 study, 18 women, very low quality evidence) or cycle cancellations (OR 8.98, 95% CI 0.20 to 393.66, 2 studies, 159 women, I(2)=83%, very low quality evidence). One trial reported that the oocyte retrieval rate was significantly lower in the natural cycle group (MD -4.40, 95% CI -7.87 to -0.93, 60 women, very low quality evidence). There were insufficient data to draw any conclusions about rates of treatment cancellation. Findings on treatment costs were inconsistent and more data are awaited. The evidence was limited by imprecision. Findings for pregnancy rate and for cycle cancellation were sensitive to the choice of statistical model: for these outcomes, use of a fixed effect model suggested a benefit for the standard IVF group. Moreover the largest trial has not yet completed follow up, though data have been reported for over 95% of women. Further evidence from well conducted large trials is awaited on natural cycle IVF treatment. Future trials should compare natural cycle IVF with standard IVF. Outcomes should include cumulative live birth and pregnancy rates, the number of treatment cycles necessary to reach live birth, treatment costs and adverse effects.

  12. DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov

    Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less

  13. Life cycle replacement by gene introduction under an allee effect in periodical cicadas.

    PubMed

    Nariai, Yukiko; Hayashi, Saki; Morita, Satoru; Umemura, Yoshitaka; Tainaka, Kei-ichi; Sota, Teiji; Cooley, John R; Yoshimura, Jin

    2011-04-06

    Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods") with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.

  14. CO2 Annual and Semiannual Cycles from Satellite Retrievals and Models

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Crisp, D.; Olsen, E. T.; Kulawik, S. S.; Miller, C. E.; Pagano, T. S.; Yung, Y. L.

    2014-12-01

    We have compared satellite CO2 retrievals from the Greenhouse gases Observing SATellite (GOSAT), Atmospheric Infrared Sounder (AIRS), and Tropospheric Emission Spectrometer (TES) with in-situ measurements from the Earth System Research Laboratory (NOAA-ESRL) Surface CO2 and Total Carbon Column Observing Network (TCCON), and utilized zonal means to characterize variability and distribution of CO2. In general, zonally averaged CO2 from the three satellite data sets are consistent with the surface and TCCON XCO2 data. Retrievals of CO2 from the three satellites show more (less) CO2 in the northern hemisphere than that in the southern hemisphere in the northern hemispheric winter (summer) season. The difference between the three satellite CO2 retrievals might be related to the different averaging kernels in the satellites CO2 retrievals. A multiple regression method was used to calculate the CO2 annual cycle and semiannual cycle amplitudes from different satellite CO2 retrievals. The CO2 annual cycle and semiannual cycle amplitudes are largest at the surface, as seen in the NOAA-ESRL CO2 data sets. The CO2 annual cycle and semiannual cycle amplitudes in the GOSAT XCO2, AIRS mid-tropospheric CO2, and TES mid-tropospheric CO2 are smaller compared with those from the surface CO2. Similar regression analysis was applied to the Model for OZone And Related chemical Tracers-2 (MOZART-2) and CarbonTracker model CO2. The convolved model CO2 annual cycle and semiannual cycle amplitudes are similar to those from the satellite CO2 retrievals, although the model tends to under-estimate the CO2 seasonal cycle amplitudes in the northern hemisphere mid-latitudes from the comparison with GOSAT and TES CO2 and underestimate the CO2 semi-annual cycle amplitudes in the high latitudes from the comparison with AIRS CO2. The difference between model and satellite CO2 can be used to identify possible deficiency in the model and improve the model in the future.

  15. Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.

    PubMed

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-29

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.

  16. Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging

    PubMed Central

    Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita

    2014-01-01

    This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231

  17. The cell cycle of early mammalian embryos: lessons from genetic mouse models.

    PubMed

    Artus, Jérôme; Babinet, Charles; Cohen-Tannoudji, Michel

    2006-03-01

    Genes coding for cell cycle components predicted to be essential for its regulation have been shown to be dispensable in mice, at the whole organism level. Such studies have highlighted the extraordinary plasticity of the embryonic cell cycle and suggest that many aspects of in vivo cell cycle regulation remain to be discovered. Here, we discuss the particularities of the mouse early embryonic cell cycle and review the mutations that result in cell cycle defects during mouse early embryogenesis, including deficiencies for genes of the cyclin family (cyclin A2 and B1), genes involved in cell cycle checkpoints (Mad2, Bub3, Chk1, Atr), genes involved in ubiquitin and ubiquitin-like pathways (Uba3, Ubc9, Cul1, Cul3, Apc2, Apc10, Csn2) as well as genes the function of which had not been previously ascribed to cell cycle regulation (Cdc2P1, E4F and Omcg1).

  18. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  19. Stochastic sensitivity analysis of the variability of dynamics and transition to chaos in the business cycles model

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina; Ryashko, Lev; Ryazanova, Tatyana

    2018-01-01

    A problem of mathematical modeling of complex stochastic processes in macroeconomics is discussed. For the description of dynamics of income and capital stock, the well-known Kaldor model of business cycles is used as a basic example. The aim of the paper is to give an overview of the variety of stochastic phenomena which occur in Kaldor model forced by additive and parametric random noise. We study a generation of small- and large-amplitude stochastic oscillations, and their mixed-mode intermittency. To analyze these phenomena, we suggest a constructive approach combining the study of the peculiarities of deterministic phase portrait, and stochastic sensitivity of attractors. We show how parametric noise can stabilize the unstable equilibrium and transform dynamics of Kaldor system from order to chaos.

  20. Hemispheric Coupling: Comparing Dynamo Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Charbonneau, P.; Passos, D.

    2014-12-01

    Numerical simulations that reproduce solar-like magnetic cycles can be used to generate long-term statistics. The variations in north-south hemispheric solar cycle synchronicity and amplitude produced in simulations has not been widely compared to observations. The observed limits on solar cycle amplitude and phase asymmetry show that hemispheric sunspot area production is no more than 20 % asymmetric for cycles 17-23 and that phase lags do not exceed 20 % (or two years) of the total cycle period, as determined from Royal Greenwich Observatory sunspot data. Several independent studies have found a long-term trend in phase values as one hemisphere leads the other for, on average, four cycles. Such persistence in phase is not indicative of a stochastic phenomenon. We compare these observational findings to the magnetic cycle found in a numerical simulation of solar convection recently produced with the EULAG-MHD model. This long "millennium simulation" spans more than 1600 years and generated 40 regular, sunspot-like cycles. While the simulated cycle length is too long (˜40 yrs) and the toroidal bands remain at too high of latitudes (>30°), some solar-like aspects of hemispheric asymmetry are reproduced. The model is successful at reproducing the synchrony of polarity inversions and onset of cycle as the simulated phase lags do not exceed 20 % of the cycle period. The simulated amplitude variations between the north and south hemispheres are larger than those observed in the Sun, some up to 40 %. An interesting note is that the simulations also show that one hemisphere can persistently lead the other for several successive cycles, placing an upper bound on the efficiency of transequatorial magnetic coupling mechanisms. These include magnetic diffusion, cross-equatorial mixing within latitudinally-elongated convective rolls (a.k.a. "banana cells") and transequatorial meridional flow cells. One or more of these processes may lead to magnetic flux cancellation whereby the oppositely directed fields come in close proximity and cancel each other across the magnetic equator late in the solar cycle. We discuss the discrepancies between model and observations and the constraints they pose on possible mechanisms of hemispheric coupling.

  1. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2.

    PubMed

    Wenzel, Sabrina; Cox, Peter M; Eyring, Veronika; Friedlingstein, Pierre

    2016-10-27

    Uncertainties in the response of vegetation to rising atmospheric CO 2 concentrations contribute to the large spread in projections of future climate change. Climate-carbon cycle models generally agree that elevated atmospheric CO 2 concentrations will enhance terrestrial gross primary productivity (GPP). However, the magnitude of this CO 2 fertilization effect varies from a 20 per cent to a 60 per cent increase in GPP for a doubling of atmospheric CO 2 concentrations in model studies. Here we demonstrate emergent constraints on large-scale CO 2 fertilization using observed changes in the amplitude of the atmospheric CO 2 seasonal cycle that are thought to be the result of increasing terrestrial GPP. Our comparison of atmospheric CO 2 measurements from Point Barrow in Alaska and Cape Kumukahi in Hawaii with historical simulations of the latest climate-carbon cycle models demonstrates that the increase in the amplitude of the CO 2 seasonal cycle at both measurement sites is consistent with increasing annual mean GPP, driven in part by climate warming, but with differences in CO 2 fertilization controlling the spread among the model trends. As a result, the relationship between the amplitude of the CO 2 seasonal cycle and the magnitude of CO 2 fertilization of GPP is almost linear across the entire ensemble of models. When combined with the observed trends in the seasonal CO 2 amplitude, these relationships lead to consistent emergent constraints on the CO 2 fertilization of GPP. Overall, we estimate a GPP increase of 37 ± 9 per cent for high-latitude ecosystems and 32 ± 9 per cent for extratropical ecosystems under a doubling of atmospheric CO 2 concentrations on the basis of the Point Barrow and Cape Kumukahi records, respectively.

  2. Development of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycle

    NASA Astrophysics Data System (ADS)

    Nakayama, Tadanobu

    2017-04-01

    Recent research showed that inland water including rivers, lakes, and groundwater may play some role in carbon cycling, although its contribution has remained uncertain due to limited amount of reliable data available. In this study, the author developed an advanced model coupling eco-hydrology and biogeochemical cycle (National Integrated Catchment-based Eco-hydrology (NICE)-BGC). This new model incorporates complex coupling of hydrologic-carbon cycle in terrestrial-aquatic linkages and interplay between inorganic and organic carbon during the whole process of carbon cycling. The model could simulate both horizontal transports (export from land to inland water 2.01 ± 1.98 Pg C/yr and transported to ocean 1.13 ± 0.50 Pg C/yr) and vertical fluxes (degassing 0.79 ± 0.38 Pg C/yr, and sediment storage 0.20 ± 0.09 Pg C/yr) in major rivers in good agreement with previous researches, which was an improved estimate of carbon flux from previous studies. The model results also showed global net land flux simulated by NICE-BGC (-1.05 ± 0.62 Pg C/yr) decreased carbon sink a little in comparison with revised Lund-Potsdam-Jena Wetland Hydrology and Methane (-1.79 ± 0.64 Pg C/yr) and previous materials (-2.8 to -1.4 Pg C/yr). This is attributable to CO2 evasion and lateral carbon transport explicitly included in the model, and the result suggests that most previous researches have generally overestimated the accumulation of terrestrial carbon and underestimated the potential for lateral transport. The results further implied difference between inverse techniques and budget estimates suggested can be explained to some extent by a net source from inland water. NICE-BGC would play an important role in reevaluation of greenhouse gas budget of the biosphere, quantification of hot spots, and bridging the gap between top-down and bottom-up approaches to global carbon budget.

  3. Dynamical analysis of cellular ageing by modeling of gene regulatory network based attractor landscape.

    PubMed

    Chong, Ket Hing; Zhang, Xiaomeng; Zheng, Jie

    2018-01-01

    Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.

  4. Implications of a More Comprehensive Nitrogen Cycle in a Global Biogeochemical Ocean Model

    NASA Astrophysics Data System (ADS)

    Six, K. D.; Ilyina, T.

    2016-02-01

    Nitrogen plays a crucial role for nearly all living organisms in the Earth system. Changes in the marine nitrogen cycle not only alter the marine biota, but will also have an impact on the marine carbon cycle and, in turn, on climate due to the close coupling of the carbon-nitrogen cycle. The understanding of processes and controls of the marine nitrogen cycle is therefore a prerequisite to reduce uncertainties in the prediction of future climate. Nevertheless, most ocean biogeochemical components of modern Earth system models have a rather simplistic representation of marine N-cycle mainly focusing on nitrate. Here we present results of the HAMburg Ocean Carbon Cycle model (HAMOCC) as part of the MPI-ESM which was extended by a prognostic representation of ammonium and nitrite to resolve important processes of the marine N-cycle such as nitrification and anaerobic ammonium oxidation (anammox). Additionally, we updated the production of nitrous oxide, an important greenhouse gas, allowing for two sources from oxidation of ammonium (nitrification) and from reduction of nitrite (nitrifier-denitrification) at low oxygen concentrations. Besides an extended model data comparison we discuss the following aspects of the N-cycle by model means: (1) contribution of anammox to the loss of fixed nitrogen, and (2) production and emission of marine nitrous oxide.

  5. Decoupling of Iron and Phosphate in the Global Ocean

    NASA Technical Reports Server (NTRS)

    Parekh, Payal

    2003-01-01

    Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.

  6. Three-dimensional dynamical and chemical modelling of the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Alyea, F. N.; Cunnold, D. M.

    1976-01-01

    Progress in coding a 3-D upper atmospheric model and in modeling the ozone perturbation resulting from the shuttle booster exhaust is reported. A time-dependent version of a 2-D model was studied and the sulfur cycle in the stratosphere was investigated. The role of meteorology in influencing stratospheric composition measurements was also studied.

  7. Atmospheric Dissolved Iron Depostiion to the Global Oceans: Effects of Oxalate-Promoted Fe Dissolution, Photochemical Redox Cycling, and Dust Mineralogy

    NASA Technical Reports Server (NTRS)

    Johnson, M. S.; Meskhidze, N.

    2013-01-01

    Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.

  8. Does the Current Minimum Validate (or Invalidate) Cycle Prediction Methods?

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    2010-01-01

    This deep, extended solar minimum and the slow start to Cycle 24 strongly suggest that Cycle 24 will be a small cycle. A wide array of solar cycle prediction techniques have been applied to predicting the amplitude of Cycle 24 with widely different results. Current conditions and new observations indicate that some highly regarded techniques now appear to have doubtful utility. Geomagnetic precursors have been reliable in the past and can be tested with 12 cycles of data. Of the three primary geomagnetic precursors only one (the minimum level of geomagnetic activity) suggests a small cycle. The Sun's polar field strength has also been used to successfully predict the last three cycles. The current weak polar fields are indicative of a small cycle. For the first time, dynamo models have been used to predict the size of a solar cycle but with opposite predictions depending on the model and the data assimilation. However, new measurements of the surface meridional flow indicate that the flow was substantially faster on the approach to Cycle 24 minimum than at Cycle 23 minimum. In both dynamo predictions a faster meridional flow should have given a shorter cycle 23 with stronger polar fields. This suggests that these dynamo models are not yet ready for solar cycle prediction.

  9. Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.

    PubMed

    Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar

    2016-01-01

    We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.

  10. EVA/ORU model architecture using RAMCOST

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.; Park, Eui H.; Wang, Y. M.; Bretoi, R.

    1990-01-01

    A parametrically driven simulation model is presented in order to provide a detailed insight into the effects of various input parameters in the life testing of a modular space suit. The RAMCOST model employed is a user-oriented simulation model for studying the life-cycle costs of designs under conditions of uncertainty. The results obtained from the EVA simulated model are used to assess various mission life testing parameters such as the number of joint motions per EVA cycle time, part availability, and number of inspection requirements. RAMCOST first simulates EVA completion for NASA application using a probabilistic like PERT network. With the mission time heuristically determined, RAMCOST then models different orbital replacement unit policies with special application to the astronaut's space suit functional designs.

  11. Stable cycling in discrete-time genetic models.

    PubMed

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  12. Computational Modeling and Numerical Methods for Spatiotemporal Calcium Cycling in Ventricular Myocytes

    PubMed Central

    Nivala, Michael; de Lange, Enno; Rovetti, Robert; Qu, Zhilin

    2012-01-01

    Intracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a myoplasm domain. Each CRU contains 10 L-type Ca channels and 100 ryanodine receptor channels, with individual channels simulated stochastically using a variant of Gillespie’s method, modified here to handle time-dependent transition rates. Both the SR domain and the myoplasm domain in each CRU are modeled by 5 × 5 × 5 voxels to maintain proper Ca diffusion. Advanced numerical algorithms implemented on graphical processing units were used for fast computational simulations. For a myocyte containing 100 × 20 × 10 CRUs, a 1-s heart time simulation takes about 10 min of machine time on a single NVIDIA Tesla C2050. Examples of simulated Ca cycling dynamics, such as Ca sparks, Ca waves, and Ca alternans, are shown. PMID:22586402

  13. A methodology for achieving high-speed rates for artificial conductance injection in electrically excitable biological cells.

    PubMed

    Butera, R J; Wilson, C G; Delnegro, C A; Smith, J C

    2001-12-01

    We present a novel approach to implementing the dynamic-clamp protocol (Sharp et al., 1993), commonly used in neurophysiology and cardiac electrophysiology experiments. Our approach is based on real-time extensions to the Linux operating system. Conventional PC-based approaches have typically utilized single-cycle computational rates of 10 kHz or slower. In thispaper, we demonstrate reliable cycle-to-cycle rates as fast as 50 kHz. Our system, which we call model reference current injection (MRCI); pronounced merci is also capable of episodic logging of internal state variables and interactive manipulation of model parameters. The limiting factor in achieving high speeds was not processor speed or model complexity, but cycle jitter inherent in the CPU/motherboard performance. We demonstrate these high speeds and flexibility with two examples: 1) adding action-potential ionic currents to a mammalian neuron under whole-cell patch-clamp and 2) altering a cell's intrinsic dynamics via MRCI while simultaneously coupling it via artificial synapses to an internal computational model cell. These higher rates greatly extend the applicability of this technique to the study of fast electrophysiological currents such fast a currents and fast excitatory/inhibitory synapses.

  14. Change in seasonality in the southwest tropical Pacific during the Holocene: a data -model comparison

    NASA Astrophysics Data System (ADS)

    Correge, T.; Deschamps, C.; Duprey, N.; Pujol, N.; Braconnot, P.; Charlier, K.; Lazareth, C. E.; Le Cornec, F.; Malaizé, B.

    2012-12-01

    Our ability to successfully predict future climate change relies heavily on the improvement of climate models. One way to do so is to compare model outputs with paleodata. The aim of the French ELPASO program (El Niño in the Past: Simulations and Observations) is to conduct such comparisons in the tropics to study the evolution of ENSO in the late Pleistocene, and more particularly during the Holocene, and the link to the background climate state (including the seasonal cycle). We generated multi-decadal time series of SST derived from Sr/Ca analyses of massive Porites corals from Vanuatu dating from 10 ka, 6.8 ka, 6.2 ka and 4.2 ka. For each time series, the mean seasonal cycle was calculated and compared to simulations from the IPSL-CM4 model (Braconnot et al., 2012; Luan et al., 2012). When insolation parameters (in particular precession) are taken into account for the 9.5 ka and 6 ka simulations, the model predicts that the seasonal cycle should be reduced in the southern hemisphere and enhanced in the northern hemisphere during the early and mid Holocene. In contrast, coral data from Vanuatu indicate enhanced mean seasonal cycles at 10 ka, 6.8 ka and 6.2 ka. The coral dating from 4.2 ka is the only one showing a reduced seasonal cycle compared to the present. Various scenarios will be proposed to reconcile this discrepancy. Braconnot, P. et al. Impact of Earth's orbit and freshwater fluxes on Holocene climate mean seasonal cycle and ENSO characteristics, Clim. Dynam., 38, 1081-1092, doi:10.1007/s00382-011-1029-x, 2012. Luan, Y. et al. 2012. Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation changes. Clim. Past, 8, 1093-1108 ; doi:10.5194/cp-8-1093-2012

  15. Toward a complete soil C and N cycle: incorporating the soil fauna.

    PubMed

    Osler, Graham H R; Sommerkorn, Martin

    2007-07-01

    Increasing pressures on ecosystems through global climate and other land-use changes require predictive models of their consequences for vital processes such as soil carbon and nitrogen cycling. These environmental changes will undoubtedly affect soil fauna. There is sufficient evidence that soil fauna have significant effects on all of the pools and fluxes in these cycles, and soil fauna mineralize more N than microbes in some habitats. It is therefore essential that their role in the C and N cycle be understood. Here we introduce a new framework that attempts to reconcile our current understanding of the role of soil fauna within the C and N cycle with biogeochemical models and soil food web models. Using a simple stoichiometric approach to integrate our understanding of N mineralization and immobilization with the C:N ratio of substrates and faunal life history characteristics, as used in food web studies, we consider two mechanisms through which soil fauna can directly affect N cycling. First, fauna that are efficient assimilators of C and that have prey with similar C:N ratios as themselves, are likely to contribute directly to the mineral N pool. Second, fauna that are inefficient assimilators of C and that have prey with higher C:N ratios than themselves are likely to contribute most to the dissolved organic matter (DOM) pool. Different groups of fauna are likely to contribute to these two pathways. Protists and bacteria-feeding nematodes are more likely to be important for N mineralization through grazing on microbial biomass, while the effects of enchytraeids and fungal-feeding microarthropods are most likely to be important for DOM production. The model is consistent with experimental evidence and, despite its simplicity, provides a new framework in which the effects of soil fauna on pools and fluxes can be understood. Further, the model highlights our gaps in knowledge, not only for effects of soil fauna on processes, but also for understanding of the soil C and N cycle in general.

  16. Optimization of processing parameters for the preparation of phytosterol microemulsions by the solvent displacement method.

    PubMed

    Leong, Wai Fun; Che Man, Yaakob B; Lai, Oi Ming; Long, Kamariah; Misran, Misni; Tan, Chin Ping

    2009-09-23

    The purpose of this study was to optimize the parameters involved in the production of water-soluble phytosterol microemulsions for use in the food industry. In this study, response surface methodology (RSM) was employed to model and optimize four of the processing parameters, namely, the number of cycles of high-pressure homogenization (1-9 cycles), the pressure used for high-pressure homogenization (100-500 bar), the evaporation temperature (30-70 degrees C), and the concentration ratio of microemulsions (1-5). All responses-particle size (PS), polydispersity index (PDI), and percent ethanol residual (%ER)-were well fit by a reduced cubic model obtained by multiple regression after manual elimination. The coefficient of determination (R(2)) and absolute average deviation (AAD) value for PS, PDI, and %ER were 0.9628 and 0.5398%, 0.9953 and 0.7077%, and 0.9989 and 1.0457%, respectively. The optimized processing parameters were 4.88 (approximately 5) homogenization cycles, homogenization pressure of 400 bar, evaporation temperature of 44.5 degrees C, and concentration ratio of microemulsions of 2.34 cycles (approximately 2 cycles) of high-pressure homogenization. The corresponding responses for the optimized preparation condition were a minimal particle size of 328 nm, minimal polydispersity index of 0.159, and <0.1% of ethanol residual. The chi-square test verified the model, whereby the experimental values of PS, PDI, and %ER agreed with the predicted values at a 0.05 level of significance.

  17. Predictors of treatment failure in young patients undergoing in vitro fertilization.

    PubMed

    Jacobs, Marni B; Klonoff-Cohen, Hillary; Agarwal, Sanjay; Kritz-Silverstein, Donna; Lindsay, Suzanne; Garzo, V Gabriel

    2016-08-01

    The purpose of the study was to evaluate whether routinely collected clinical factors can predict in vitro fertilization (IVF) failure among young, "good prognosis" patients predominantly with secondary infertility who are less than 35 years of age. Using de-identified clinic records, 414 women <35 years undergoing their first autologous IVF cycle were identified. Logistic regression was used to identify patient-driven clinical factors routinely collected during fertility treatment that could be used to model predicted probability of cycle failure. One hundred ninety-seven patients with both primary and secondary infertility had a failed IVF cycle, and 217 with secondary infertility had a successful live birth. None of the women with primary infertility had a successful live birth. The significant predictors for IVF cycle failure among young patients were fewer previous live births, history of biochemical pregnancies or spontaneous abortions, lower baseline antral follicle count, higher total gonadotropin dose, unknown infertility diagnosis, and lack of at least one fair to good quality embryo. The full model showed good predictive value (c = 0.885) for estimating risk of cycle failure; at ≥80 % predicted probability of failure, sensitivity = 55.4 %, specificity = 97.5 %, positive predictive value = 95.4 %, and negative predictive value = 69.8 %. If this predictive model is validated in future studies, it could be beneficial for predicting IVF failure in good prognosis women under the age of 35 years.

  18. 25-Hydroxyvitamin D and Long Menstrual Cycles in a Prospective Cohort Study.

    PubMed

    Jukic, Anne Marie Z; Wilcox, Allen J; McConnaughey, D Robert; Weinberg, Clarice R; Steiner, Anne Z

    2018-05-01

    Vitamin D insufficiency is associated with subfertility and prolonged estrus cycles in animals, but humans have not been well studied. A prospective time-to-pregnancy study, Time to Conceive (2010-2015), collected up to 4 months of daily diary data. Participants were healthy, late reproductive-aged women in North Carolina who were attempting pregnancy. We examined menstrual cycle length as a continuous variable and in categories: long (35+ days) and short (≤25 days). Follicular phase length and luteal phase length were categorized as long (18+ days) or short (≤10 days). We estimated associations between those lengths and serum 25-hydroxyvitamin D (25[OH]D) using linear mixed models and marginal models. There were 1,278 menstrual cycles from 446 women of whom 5% were vitamin D deficient (25[OH]D, <20 ng/ml), 69% were between 20 and 39 ng/ml, and 26% were 40 ng/ml or higher. There was a dose-response association between vitamin D levels and cycle length. Compared with the highest 25(OH)D level (≥40 ng/ml), 25(OH)D deficiency was associated with almost three times the odds of long cycles (adjusted odds ratio [aOR] = 2.8 [95% confidence interval (CI) = 1.0, 7.5]). The aOR was 1.9 (1.1, 3.5) for 20 to <30 ng/ml. The probability of a long follicular phase and the probability of a short luteal phase both increased with decreasing 25(OH)D. Lower levels of 25(OH)D are associated with longer follicular phase and an overall longer menstrual cycle. Our results are consistent with other evidence supporting vitamin D's role in the reproductive axis, which may have broader implications for reproductive success.

  19. Rhizosphere Processes Are Quantitatively Important Components of Terrestrial Biogeochemical Cycles: Data & Models

    NASA Astrophysics Data System (ADS)

    Finzi, A.

    2016-12-01

    The rhizosphere is a hot spot and hot moment for biogeochemical cycles. Microbial activity, extracellular enzyme activity and element cycles are greatly enhanced by root derived carbon inputs. As such the rhizosphere may be an important driver of ecosystem responses to global changes such as rising temperatures and atmospheric CO2 concentrations. Empirical research on the rhizosphere is extensive but extrapolation of rhizosphere processes to large spatial and temporal scales is largely uninterrogated. Using a combination of field studies, meta-analysis and numerical models we have found good reason to think that scaling is possible. In this talk I discuss the results of this research and focus on the results of a new modeling effort that explicitly links root distribution and architecture with a model of microbial physiology to assess the extent to which rhizosphere processes may affect ecosystem responses to global change. Results to date suggest that root inputs of C and possibly nutrients (ie, nitrogen) impact the fate of new C inputs to the soil (ie, accumulation or loss) in response to warming and enhanced productivity at elevated CO2. The model also provides qualitative guidance on incorporating the known effects of ectomycorrhizal fungi on decomposition and rates of soil C and N cycling.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heifetz, Alexander; Vilim, Richard

    Super-critical carbon dioxide (S-CO2) is a promising thermodynamic cycle for advanced nuclear reactors and solar energy conversion applications. Dynamic control of the proposed recompression S-CO2 cycle is accomplished with input from resistance temperature detector (RTD) measurements of the process fluid. One of the challenges in practical implementation of S-CO2 cycle is high corrosion rate of component and sensor materials. In this paper, we develop a mathematical model of RTD sensing using eigendecomposition model of radial heat transfer in a layered long cylinder. We show that the value of RTD time constant primarily depends on the rate of heat transfer frommore » the fluid to the outer wall of RTD. We also show that for typical material properties, RTD time constant can be calculated as the sum of reciprocal eigen-values of the heat transfer matrix. Using the computational model and a set of RTD and CO2 fluid thermophysical parameter values, we calculate the value of time constant of thermowell-mounted RTD sensor at the hot side of the precooler in the S-CO2 cycle. The eigendecomposition model of RTD will be used in future studies to model sensor degradation and its impact on control of S-CO2. (C) 2016 Elsevier B.V. All rights reserved.« less

  1. Temperature and precipitation in the context of the annual cycle over Asia: Model evaluation and future change

    NASA Astrophysics Data System (ADS)

    Moon, Suyeon; Ha, Kyung-Ja

    2017-05-01

    Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models' MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models' MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced onset. The Asian monsoon intensity becomes stronger with the passage of time. This study has important implication for assessment of CMIP5 models in terms of the prediction of time evolution and intensity of Asian monsoon based on the annual cycle of temperature and precipitation.

  2. Advanced Low-Cost O2/H2 Engines for the SSTO Application

    NASA Technical Reports Server (NTRS)

    Goracke, B. David; Levack, Daniel J. H.; Nixon, Robert F.

    1994-01-01

    The recent NASA Access to Space study examined future Earth to orbit (ETO) transportation needs and fleets out to 2030. The baseline in the option 3 assessment was a single stage to orbit (SSTO) vehicle. A study was conducted to assess the use of new advanced low cost O2/H2 engines for this SSTO application. The study defined baseline configurations and ground rules and defined six engine cycles to explore engine performance. The cycles included an open cycle, and a series of closed cycles with varying abilities to extract energy from the propellants to power he turbomachinery. The cycles thus varied in the maximum chamber pressure they could reach and in their weights at any given chamber pressure. The weight of each cycle was calculated for two technology levels versus chamber pressure up to the power limit of the cycle. The performance in the SSTO mission was then modeled using the resulting engine weights and specific impulse performance using the Access to Space option 3 vehicle. The results showed that new O2/H2 engines are viable and competitive candidates for the SSTO application using chamber pressures of 4,000 psi.

  3. Ontology for Life-Cycle Modeling of Water Distribution Systems: Application of Model View Definition Attributes

    DTIC Science & Technology

    2013-06-01

    ER D C/ CE RL C R- 13 -5 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition...2013 Ontology for Life-Cycle Modeling of Water Distribution Systems : Application of Model View Definition Attributes Kristine K. Fallon, Robert A...interior plumbing systems and the information exchange requirements for every participant in the design. The findings were used to develop an

  4. Importance of the Annual Cycles of SST and Solar Irradiance for Circulation and Rainfall: A Climate Model Simulation Study

    NASA Technical Reports Server (NTRS)

    Sud, Yogesh C.; Lau, William K. M.; Walker, G. K.; Mehta, V. M.

    2001-01-01

    Annual cycle of climate and precipitation is related to annual cycle of sunshine and sea-surface temperatures. Understanding its behavior is important for the welfare of humans worldwide. For example, failure of Asian monsoons can cause widespread famine and grave economic disaster in the subtropical regions. For centuries meteorologists have struggled to understand the importance of the summer sunshine and associated heating and the annual cycle of sea-surface temperatures (SSTs) on rainfall in the subtropics. Because the solar income is pretty steady from year to year, while SSTs depict large interannual variability as consequence of the variability of ocean dynamics, the influence of SSTs on the monsoons are better understood through observational and modeling studies whereas the relationship of annual rainfall to sunshine remains elusive. However, using NASA's state of the art climate model(s) that can generate realistic climate in a computer simulation, one can answer such questions. We asked the question: if there was no annual cycle of the sunshine (and its associated land-heating) or the SST and its associated influence on global circulation, what will happen to the annual cycle of monsoon rains? By comparing the simulation of a 4-year integration of a baseline Control case with two parallel anomaly experiments: 1) with annual mean solar and 2) with annual mean sea-surface temperatures, we were able to draw the following conclusions: (1) Tropical convergence zone and rainfall which moves with the Sun into the northern and southern hemispheres, specifically over the Indian, African, South American and Australian regions, is strongly modulated by the annual cycles of SSTs as well as solar forcings. The influence of the annual cycle of solar heating over land, however, is much stronger than the corresponding SST influence for almost all regions, particularly the subtropics; (2) The seasonal circulation patterns over the vast land-masses of the Northern Hemisphere at mid and high latitudes also get strongly influenced by the annual cycles of solar heating. The SST influence is largely limited to the oceanic regions of these latitudes; (3) The annual mode of precipitation over Amazonia has an equatorial regime revealing a maxima in the month of March associated with SST, and another maxima in the month of January associated with the solar annual cycles, respectively. The baseline simulation, which has both annual cycles, depicts both annual modes and its rainfall is virtually equal to the sum of those two modes; (4) Rainfall over Sahelian-Africa is significantly reduced (increased) in simulations lacking (invoking) solar irradiation with (without) the annual cycle. In fact, the dominant influence of solar irradiation emerges in almost all monsoonal-land regions: India, Southeast Asia, as well as Australia. The only exception is the Continental United States, where solar annual cycle shows only a relatively minor influence on the annual mode of rainfall.

  5. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Rice, C Keith; Abdelaziz, Omar

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  6. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  7. Tagging Water Sources in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Bosilovich, M.

    2003-01-01

    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  8. Cloud Formation and Water Transport on Mars after Major Outflow Events

    NASA Technical Reports Server (NTRS)

    Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.

    2012-01-01

    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?

  9. Evaluation of the sensitivity of the Amazonian diurnal cycle to convective intensity in reanalyses

    NASA Astrophysics Data System (ADS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2017-02-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics—specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  10. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.

  11. Evaluation of the Sensitivity of the Amazonian Diurnal Cycle to Convective Intensity in Reanalyses

    NASA Technical Reports Server (NTRS)

    Itterly, Kyle F.; Taylor, Patrick C.

    2016-01-01

    Model parameterizations of tropical deep convection are unable to reproduce the observed diurnal and spatial variability of convection in the Amazon, which contributes to climatological biases in the water cycle and energy budget. Convective intensity regimes are defined using percentiles of daily minimum 3-hourly averaged outgoing longwave radiation (OLR) from Clouds and the Earth's Radiant Energy System (CERES). This study compares the observed spatial variability of convective diurnal cycle statistics for each regime to MERRA-2 and ERA-Interim (ERA) reanalysis data sets. Composite diurnal cycle statistics are computed for daytime hours (06:00-21:00 local time) in the wet season (December-January-February). MERRA-2 matches observations more closely than ERA for domain averaged composite diurnal statistics-specifically precipitation. However, ERA reproduces mesoscale features of OLR and precipitation phase associated with topography and the propagation of the coastal squall line. Both reanalysis models are shown to underestimate extreme convection.

  12. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics.

  13. Cell cycle behavior of laboratory and field populations of the Florida red tide dinoflagellate, Karenia brevis

    NASA Astrophysics Data System (ADS)

    Van Dolah, Frances M.; Leighfield, Tod A.; Kamykowski, Daniel; Kirkpatrick, Gary J.

    2008-01-01

    As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12-14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates ( μmin 0.17-0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.

  14. Stochastic Technology Choice Model for Consequential Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; Bardow, André; Suh, Sangwon

    2016-12-06

    Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.

  15. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.

  16. Modeling and Analysis of Gated, Pulsed RFI and Its Effect on GPS Receivers: Analysis of Average Cycle Slip Rate and Average Bit Error Probability

    DTIC Science & Technology

    2014-04-01

    as a function of the pulse duty cycle PDC is [1]: ∆C/N0 = 20 log(1 − PDC ) (1) PDC , PW × PRF (2) where PW represents the pulse width (sec) and PRF is...corresponding degradation in C/N0 should now be modeled as ∆C/N0 = 20 log(1 − PDCLIM) (3) PDCLIM , PDC τobs TTC . (4) The degradation model of Eqn. 3 and 4...cycle that is the product of the duty cycle of the pulsed waveform ( PDC ) and the duty cycle of the of the gating waveform (τobs/TTC). While such a model

  17. The key kinematic determinants of undulatory underwater swimming at maximal velocity.

    PubMed

    Connaboy, Chris; Naemi, Roozbeh; Brown, Susan; Psycharakis, Stelios; McCabe, Carla; Coleman, Simon; Sanders, Ross

    2016-01-01

    The optimisation of undulatory underwater swimming is highly important in competitive swimming performance. Nineteen kinematic variables were identified from previous research undertaken to assess undulatory underwater swimming performance. The purpose of the present study was to determine which kinematic variables were key to the production of maximal undulatory underwater swimming velocity. Kinematic data at maximal undulatory underwater swimming velocity were collected from 17 skilled swimmers. A series of separate backward-elimination analysis of covariance models was produced with cycle frequency and cycle length as dependent variables (DVs) and participant as a fixed factor, as including cycle frequency and cycle length would explain 100% of the maximal swimming velocity variance. The covariates identified in the cycle-frequency and cycle-length models were used to form the saturated model for maximal swimming velocity. The final parsimonious model identified three covariates (maximal knee joint angular velocity, maximal ankle angular velocity and knee range of movement) as determinants of the variance in maximal swimming velocity (adjusted-r2 = 0.929). However, when participant was removed as a fixed factor there was a large reduction in explained variance (adjusted r2 = 0.397) and only maximal knee joint angular velocity continued to contribute significantly, highlighting its importance to the production of maximal swimming velocity. The reduction in explained variance suggests an emphasis on inter-individual differences in undulatory underwater swimming technique and/or anthropometry. Future research should examine the efficacy of other anthropometric, kinematic and coordination variables to better understand the production of maximal swimming velocity and consider the importance of individual undulatory underwater swimming techniques when interpreting the data.

  18. Comparison of Model and Observations of Middle Atmospheric HOx Response to Solar 27-day Cycles: Quantifying Model Uncertainties due to Photochemistry

    NASA Astrophysics Data System (ADS)

    Wang, S.; Li, K. F.; Shia, R. L.; Yung, Y. L.; Sander, S. P.

    2016-12-01

    HO2 and OH (known as odd oxygen HOx), play an important role in middle atmospheric chemistry, in particular, O3 destruction through catalytic HOx reaction cycles. Due to their photochemical production and short chemical lifetimes, HOx species response rapidly to solar UV irradiance changes during solar cycles, resulting in variability in the corresponding O3 chemistry. Observational evidences for both OH and HO2 variability due to solar cycles have been reported. However, puzzling discrepancies remain. In particular, the large discrepancy between model and observations of solar 11-year cycle signal in OH and the significantly different model results when adopting different solar spectral irradiance (SSI) [Wang et al., 2013] suggest that both uncertainties in SSI variability and uncertainties in our current understanding of HOx-O3 chemistry could contribute to the discrepancy. Since the short-term SSI variability (e.g. changes during solar 27-day cycles) has little uncertainty, investigating 27-day solar cycle signals in HOx allows us to simplify the complex problem and to focus on the uncertainties in chemistry alone. We use the Caltech-JPL photochemical model to simulate observed HOx variability during 27-day cycles. The comparison between Aura Microwave Limb Sounder (MLS) observations and our model results (using standard chemistry and "adjusted chemistry", respectively) will be discussed. A better understanding of uncertainties in chemistry will eventually help us separate the contribution of chemistry from contributions of SSI uncertainties to the complex discrepancy between model and observations of OH responses to solar 11-year cycles.

  19. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  20. A wind energy benchmark for ABL modelling of a diurnal cycle with a nocturnal low-level jet: GABLS3 revisited

    DOE PAGES

    Rodrigo, J. Sanz; Churchfield, M.; Kosović, B.

    2016-10-03

    The third GEWEX Atmospheric Boundary Layer Studies (GABLS3) model intercomparison study, around the Cabauw met tower in the Netherlands, is revisited as a benchmark for wind energy atmospheric boundary layer (ABL) models. The case was originally developed by the boundary layer meteorology community, interested in analysing the performance of single-column and large-eddy simulation atmospheric models dealing with a diurnal cycle leading to the development of a nocturnal low-level jet. The case addresses fundamental questions related to the definition of the large-scale forcing, the interaction of the ABL with the surface and the evaluation of model results with observations. The characterizationmore » of mesoscale forcing for asynchronous microscale modelling of the ABL is discussed based on momentum budget analysis of WRF simulations. Then a single-column model is used to demonstrate the added value of incorporating different forcing mechanisms in microscale models. The simulations are evaluated in terms of wind energy quantities of interest.« less

  1. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  2. Governmentally amplified output volatility

    NASA Astrophysics Data System (ADS)

    Funashima, Yoshito

    2016-11-01

    Predominant government behavior is decomposed by frequency into several periodic components: updating cycles of infrastructure, Kuznets cycles, fiscal policy over business cycles, and election cycles. Little is known, however, about the theoretical impact of such cyclical behavior in public finance on output fluctuations. Based on a standard neoclassical growth model, this study intends to examine the frequency at which public investment cycles are relevant to output fluctuations. We find an inverted U-shaped relationship between output volatility and length of cycle in public investment. This implies that periodic behavior in public investment at a certain frequency range can cause aggravated output resonance. Moreover, we present an empirical analysis to test the theoretical implication, using the U.S. data in the period from 1968 to 2015. The empirical results suggest that such resonance phenomena change from low to high frequency.

  3. Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will

    2018-05-01

    Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.

  4. The Twin-Cycle Experiential Learning Model: Reconceptualising Kolb's Theory

    ERIC Educational Resources Information Center

    Bergsteiner, Harald; Avery, Gayle C.

    2014-01-01

    Experiential learning styles remain popular despite criticisms about their validity, usefulness, fragmentation and poor definitions and categorisation. After examining four prominent models and building on Bergsteiner, Avery, and Neumann's suggestion of a dual cycle, this paper proposes a twin-cycle experiential learning model to overcome…

  5. Models of the Organizational Life Cycle: Applications to Higher Education.

    ERIC Educational Resources Information Center

    Cameron, Kim S.; Whetten, David A.

    1983-01-01

    A review of models of group and organization life cycle development is provided and the applicability of those models for institutions of higher education are discussed. An understanding of the problems and characteristics present in different life cycle stages can help institutions manage transitions more effectively. (Author/MLW)

  6. Development and Validation of a Slurry Model for Chemical Hydrogen Storage in Fuel Cell Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Pires, Richard P.; Simmons, Kevin L.

    2014-07-25

    The US Department of Energy's (DOE) Hydrogen Storage Engineering Center of Excellence (HSECoE) is developing models for hydrogen storage systems for fuel cell-based light duty vehicle applications for a variety of promising materials. These transient models simulate the performance of the storage system for comparison to the DOE’s Technical Targets and a set of four drive cycles. The purpose of this research is to describe the models developed for slurry-based chemical hydrogen storage materials. The storage systems of both a representative exothermic system based on ammonia borane and endothermic system based on alane were developed and modeled in Simulink®. Oncemore » complete the reactor and radiator components of the model were validated with experimental data. The model was then run using a highway cycle, an aggressive cycle, cold-start cycle and hot drive cycle. The system design was adjusted to meet these drive cycles. A sensitivity analysis was then performed to identify the range of material properties where these DOE targets and drive cycles could be met. Materials with a heat of reaction greater than 11 kJ/mol H2 generated and a slurry hydrogen capacity of greater than 11.4% will meet the on-board efficiency and gravimetric capacity targets, respectively.« less

  7. Modeling the degradation mechanisms of C6/LiFePO4 batteries

    NASA Astrophysics Data System (ADS)

    Li, Dongjiang; Danilov, Dmitri L.; Zwikirsch, Barbara; Fichtner, Maximilian; Yang, Yong; Eichel, Rüdiger-A.; Notten, Peter H. L.

    2018-01-01

    A fundamental electrochemical model is developed, describing the capacity fade of C6/LiFePO4 batteries as a function of calendar time and cycling conditions. At moderate temperatures the capacity losses are mainly attributed to Li immobilization in Solid-Electrolyte-Interface (SEI) layers at the anode surface. The SEI formation model presumes the availability of an outer and inner SEI layers. Electron tunneling through the inner SEI layer is regarded as the rate-determining step. The model also includes high temperature degradation. At elevated temperatures, iron dissolution from the positive electrode and the subsequent metal sedimentation on the negative electrode influence the capacity loss. The SEI formation on the metal-covered graphite surface is faster than the conventional SEI formation. The model predicts that capacity fade during storage is lower than during cycling due to the generation of SEI cracks induced by the volumetric changes during (dis)charging. The model has been validated by cycling and calendar aging experiments and shows that the capacity loss during storage depends on the storage time, the State-of-Charge (SoC), and temperature. The capacity losses during cycling depend on the cycling current, cycling time, temperature and cycle number. All these dependencies can be explained by the single model presented in this paper.

  8. Towards a community Earth System Model

    NASA Astrophysics Data System (ADS)

    Blackmon, M.

    2003-04-01

    The Community Climate System Model, version 2 (CCSM2), was released in June 2002. CCSM2 has several new components and features, which I will discuss briefly. I will also show a few results from a multi-century equilibrium run with this model, emphasizing the improvements over the earlier simulation using the original CSM. A few flaws and inadequacies in CCSM2 have been identified. I will also discuss briefly work underway to improve the model and present results, if available. CCSM2, with improvements, will be the basis for the development of a Community Earth System Model (CESM). The highest priority for expansion of the model involves incorporation of biogeosciences into the coupled model system, with emphasis given to the carbon, nitrogen and iron cycles. The overall goal of the biogeosciences project within CESM is to understand the regulation of planetary energetics, planetary ecology, and planetary metabolism through exchanges of energy, momentum, and materials among atmosphere, land, and ocean, and the response of the climate system through these processes to changes in land cover and land use. In particular, this research addresses how biogeochemical coupling of carbon, nitrogen, and iron cycles affects climate and how human perturbations of these cycles alter climate. To accomplish these goals, the Community Land Model, the land component of CCSM2, is being developed to include river routing, carbon and nitrogen cycles, emissions of mineral aerosols and biogenic volatile organic compounds, dry deposition of various gases, and vegetation dynamics. The carbon and nitrogen cycles are being implemented using parameterizations developed as part of a state-of-the-art ecosystem biogeochemistry model. The primary goal of this research is to provide an accurate net flux of CO2 between the land and the atmosphere so that CESM can be used to study the dynamics of the coupled climate-carbon system. Emissions of biogenic volatile organic compounds are also based on a state-of-the-art emissions model and depend on plant type, leaf area index, photosynthetically active radiation, and leaf temperature. Dust emissions and deposition are being developed to implement a fully coupled dust cycle in CCSM, including the radiative effects of dust and carbon feedbacks related to fertilization of ocean and terrestrial ecosystems. Dust mobilization depends on surface wind speed, soil moisture, plant cover, and soil texture. Dust dry deposition processes include sedimentation and turbulent mix-out. A major research focus is how natural and human-mediated changes in land cover and ecosystem functions alter surface energy fluxes, the hydrological cycle, and biogeochemical cycles. Human land uses include conversion of natural vegetation to cropland, soil degradation, and urbanization. Climate feedbacks associated with natural changes in land cover are being assessed by developing and implementing a model of natural vegetation dynamics for use with the Community Land Model. Development of a marine ecosystem model is also underway. The ecosystem model is based on the global, mixed-layer marine ecosystem model of Moore et al., which includes parameterizations for such things as iron limitation and scavenging, zooplankton grazing, nitrogen fixation, calcification, and ballast-based remineralization. A series of experiments is being planned to assess the coupling of the ecology to the biogeochemistry, to adequately tune some of the model parameters that are poorly constrained by data, to explore new parameterizations and processes (e.g., riverine and atmospheric inputs of nutrients), and to conduct uncoupled application studies (e.g., deliberate carbon sequestration, retrospective historical simulations, iron-dust deposition response). Longer term plans include investigating biogeochemical processes in the coastal zone and how to incorporate these processes into a global ocean model, either through subgrid-scale parameterizations or model nesting. A Whole Atmosphere Community Climate Model(WACCM) is being developed. The vertical extent of the model is 150 km at present, but extension to 500 km is eventually expected. Interactive chemistry is being incorporated. This model will be used as the atmospheric component of CESM for some experiments. One expected application is the study of solar variability and its impact on climate variability in the troposphere and at the atmosphere, ocean, land interface. Preliminary results using some of these model components will be shown. A timeline for development and use of the models will be given.

  9. Cycle Commuting and Perceptions of Barriers: Stages of Change, Gender and Occupation

    ERIC Educational Resources Information Center

    van Bekkum, Jennifer E.; Williams, Joanne M.; Morris, Paul Graham

    2011-01-01

    Purpose: The aim of this study is to investigate perceptions of cycle commuting barriers in relation to stage of change, gender and occupational role. Stage of change is a key construct of the transtheoretical model of behaviour change that defines behavioural readiness (intentions and actions) into five distinct categories.…

  10. STUDYING THE EFFECT ON SYSTEM PREFERENCE BY VARYING CO-PRODUCT ALLOCATION IN CREATING LIFE CYCLE INVENTORY

    EPA Science Inventory

    How one models the input and output data for a life cycle assessment can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, general guidance is still lacking. Current research investigated the effect of applyin...

  11. Multimodal Science Teachers' Discourse in Modeling the Water Cycle

    ERIC Educational Resources Information Center

    Marquez, Conxita; Izquierdo, Merce; Espinet, Mariona

    2006-01-01

    The paper presents an intensive study of a micro-event aiming at the characterization of teacher's discourse from a multimodal communication perspective in a secondary school science classroom dealing with the topic of "water cycle." The research addresses the following questions: (a) What communicative modes are used by the teacher?, (b) what…

  12. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    PubMed

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  13. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    PubMed Central

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  14. Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods.

    PubMed

    Eslamizadeh, Gholamhossein; Barati, Ramin

    2017-05-01

    Early recognition of heart disease plays a vital role in saving lives. Heart murmurs are one of the common heart problems. In this study, Artificial Neural Network (ANN) is trained with Modified Neighbor Annealing (MNA) to classify heart cycles into normal and murmur classes. Heart cycles are separated from heart sounds using wavelet transformer. The network inputs are features extracted from individual heart cycles, and two classification outputs. Classification accuracy of the proposed model is compared with five multilayer perceptron trained with Levenberg-Marquardt, Extreme-learning-machine, back-propagation, simulated-annealing, and neighbor-annealing algorithms. It is also compared with a Self-Organizing Map (SOM) ANN. The proposed model is trained and tested using real heart sounds available in the Pascal database to show the applicability of the proposed scheme. Also, a device to record real heart sounds has been developed and used for comparison purposes too. Based on the results of this study, MNA can be used to produce considerable results as a heart cycle classifier. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  16. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Wang, M.; Liu, J.

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel.more » The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.« less

  17. Hemispheric Differences in Tropical Lower Stratospheric Transport and Tracers Annual Cycle

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, D.; Stolarski, R.; Oman, L.

    2016-01-01

    Transport of long-lived tracers (such as O, CO, and N O) in the lower stratosphere largely determines the composition of the entire stratosphere. Stratospheric transport includes the mean residual circulation (with air rising in the tropics and sinking in the polar and middle latitudes), plus two-way isentropic (quasi-horizontal) mixing by eddies. However, the relative importance of two transport components remains uncertain. Previous studies quantified the relative role of these processes based on tropics-wide average characteristics under common assumption of well-mixed tropics. However, multiple instruments provide us with evidence that show significant differences in the seasonal cycle of ozone between the Northern (0-20N) and Southern (0-20S) tropical (NT and ST respectively) lower stratosphere. In this study we investigate these differences in tracer seasonality and quantify transport processes affecting tracers annual cycle amplitude using simulations from Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and Whole Atmosphere Community Climate Model (WACCM) and compare them to observations from the Microwave Limb Sounder (MLS) on the Aura satellite. We detect the observed contrast between the ST and NT in GEOSCCM and WACCM: annual cycle in ozone and other chemical tracers is larger in the NT than in the ST but opposite is true for the annual cycle in vertical advection. Ozone budgets in the models, analyzed based on the Transformed Eulerian Mean (TEM) framework, demonstrate a major role of quasi-horizontal mixing vertical advection in determining the NTST ozone distribution and behavior. Analysis of zonal variations in the NT and ST ozone annual cycles further suggests important role of North American and Asian Summer Monsoons (associated with strong isentropic mixing) on the lower stratospheric ozone in the NT. Furthermore, multi model comparison shows that most CCMs reproduce the observed characteristic of ozone annual cycle quite well. Thus, latitudinal variations within the tropics have to be considered in order to understand the balance between upwelling and quasi- horizontal mixing in the tropical lower stratosphere and the paradigm of well mixed tropics has to be reconsidered.

  18. Electrochemical impedance spectroscopy of lithium-titanium disulfide rechargeable cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Shen, D. H.; Surampudi, S.; Attia, A. I.; Halpert, G.

    1993-01-01

    The two-terminal alternating current impedance of Li/TiS2 rechargeable cells was studied as a function of frequency, state-of-charge, and extended cycling. Analysis based on a plausible equivalent circuit model for the Li/TiS2 cell leads to evaluation of kinetic parameters for the various physicochemical processes occurring at the electrode/electrolyte interfaces. To investigate the causes of cell degradation during extended cycling, the parameters evaluated for cells cycled 5 times were compared with the parameters of cells cycled over 600 times. The findings are that the combined ohmic resistance of the electrolyte and electrodes suffers a tenfold increase after extended cycling, while the charge-transfer resistance and diffusional impedance at the TiS2/electrolyte interface are not significantIy affected. The results reflect the morphological change and increase in area of the anode due to cycling. The study also shows that overdischarge of a cathode-limited cell causes a decrease in the diffusion coefficient of the lithium ion in the cathode.

  19. Mathematical model of the competition life cycle under limited resources conditions: Problem statement for business community

    NASA Astrophysics Data System (ADS)

    Shelomentsev, A. G.; Medvedev, M. A.; Berg, D. B.; Lapshina, S. N.; Taubayev, A. A.; Davletbaev, R. H.; Savina, D. V.

    2017-12-01

    Present study is devoted to the development of competition life cycle mathematical model in the closed business community with limited resources. Growth of each agent is determined by the balance of input and output resource flows: input (cash) flow W is covering the variable V and constant C costs and growth dA/dt of the agent's assets A. Value of V is proportional to assets A that allows us to write down a first order non-stationary differential equation of the agent growth. Model includes the number of such equations due to the number of agents. The amount of resources that is available for agents vary in time. The balances of their input and output flows are changing correspondingly to the different stages of the competition life cycle. According to the theory of systems, the most complete description of any object or process is the model of its life cycle. Such a model describes all stages of its development: from the appearance ("birth") through development ("growth") to extinction ("death"). The model of the evolution of an individual firm, not contradicting the economic meaning of events actually observed in the market, is the desired result from modern AVMs for applied use. With a correct description of the market, rules for participants' actions, restrictions, forecasts can be obtained, which modern mathematics and the economy can not give.

  20. Ovarian acyclicity in zoo African elephants (Loxodonta africana) is associated with high body condition scores and elevated serum insulin and leptin.

    PubMed

    Morfeld, Kari A; Brown, Janine L

    2016-04-01

    The purpose of the present study was to determine whether excessive body fat and altered metabolic hormone concentrations in the circulation were associated with ovarian acyclicity in the world's largest land mammal, the African elephant. We compared body condition, glucose, insulin and leptin concentrations and the glucose-to-insulin ratio (G:I) between cycling (n=23; normal 14-16 week cycles based on serum progestagens for at least 2 years) and non-cycling (n=23; consistent baseline progestagen concentrations for at least 2 years) females. A validated body condition score (BCS) index (five-point scale; 1=thinnest, 5=fattest) was used to assess the degree of fatness of the study elephants. The mean BCS of non-cycling elephants was higher than that of their cycling counterparts. There were differences in concentrations of serum metabolic biomarkers, with non-cycling elephants in the BCS 5 category having higher leptin and insulin concentrations and a lower G:I ratio than cycling BCS 5 females. Using 'non-cycling' as the outcome variable in regression models, high BCS was a strong predictor of a non-cycling status. This study provides the first evidence that ovarian acyclicity in zoo African elephants is associated with body condition indicative of obesity, as well as elevated, perturbed biomarkers of metabolic status.

  1. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2010-03-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, substantially improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites were positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget was partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicated that spring warming enhanced the carbon sink, whereas summer warming decreased it across the larch forests. The summer radiation was the most important factor that controlled the carbon fluxes in the temperate site, but the VPD and water conditions were the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between belowground and aboveground, was site-specific, and it was negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study substantially improved the model performance, the uncertainties that remained in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.

  2. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Hirata, R.; Takagi, K.; Asanuma, J.; Machimura, T.; Nakai, Y.; Ohta, T.; Saigusa, N.; Takahashi, Y.; Hirano, T.

    2009-08-01

    Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales. The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE), gross primary productivity (GPP), ecosystem respiration (RE), and evapotranspiration (ET). Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values. The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although this study significantly improves the model performance, the uncertainties that remain in terms of the sensitivity to water conditions should be examined in ongoing and long-term observations.

  3. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  4. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  5. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less

  6. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    NASA Astrophysics Data System (ADS)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the parameters of all substances in the model are based on a base "REFPROP". Numerical investigations on this model showed that the highest net efficiency will be at work on pentane. Butane and R245fa have the same net efficiency, for 0.8% lower than pentane. Ammonia has a net efficiency of 2.5% is lower than pentane. CCP net efficiency strongly depends on the condensation temperature of the substance, as for pentane at lower temperature of condensation at 10 °C it is increased by 1%.

  7. A phase I study of different doses and frequencies of pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) in patients with standard-dose chemotherapy-induced neutropenia

    PubMed Central

    Qin, Yan; Han, Xiaohong; Wang, Lin; Du, Ping; Yao, Jiarui; Wu, Di; Song, Yuanyuan; Zhang, Shuxiang; Tang, Le; Shi, Yuankai

    2017-01-01

    Objective The recommended dose of prophylactic pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) is 100 μg/kg once per cycle for patients receiving intense-dose chemotherapy. However, few data are available on the proper dose for patients receiving less-intense chemotherapy. The aim of this phase I study is to explore the proper dose and administration schedule of PEG rhG-CSF for patients receiving standard-dose chemotherapy. Methods Eligible patients received 3-cycle chemotherapy every 3 weeks. No PEG rhG-CSF was given in the first cycle. Patients experienced grade 3 or 4 neutropenia would then enter the cycle 2 and 3. In cycle 2, patients received a single subcutaneous injection of prophylactic PEG rhG-CSF on d 3, and received half-dose subcutaneous injection in cycle 3 on d 3 and d 5, respectively. Escalating doses (30, 60, 100 and 200 μg/kg) of PEG rhG-CSF were investigated. Results A total of 26 patients were enrolled and received chemotherapy, in which 24 and 18 patients entered cycle 2 and cycle 3 treatment, respectively. In cycle 2, the incidence of grade 3 or 4 neutropenia for patients receiving single-dose PEG rhG-CSF of 30, 60, 100 and 200 μg/kg was 66.67%, 33.33%, 22.22% and 0, respectively, with a median duration less than 1 (0–2) d. No grade 3 or higher neutropenia was noted in cycle 3 in all dose cohorts. Conclusions The pharmacokinetic and pharmacodynamic profiles of PEG rhG-CSF used in cancer patients were similar to those reported, as well as the safety. Double half dose administration model showed better efficacy result than a single dose model in terms of grade 3 neutropenia and above. The single dose of 60 μg/kg, 100 μg/kg and double half dose of 30 μg/kg were recommended to the phase II study, hoping to find a preferable method for neutropenia treatment. PMID:29142459

  8. A phase I study of different doses and frequencies of pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) in patients with standard-dose chemotherapy-induced neutropenia.

    PubMed

    Qin, Yan; Han, Xiaohong; Wang, Lin; Du, Ping; Yao, Jiarui; Wu, Di; Song, Yuanyuan; Zhang, Shuxiang; Tang, Le; Shi, Yuankai

    2017-10-01

    The recommended dose of prophylactic pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) is 100 μg/kg once per cycle for patients receiving intense-dose chemotherapy. However, few data are available on the proper dose for patients receiving less-intense chemotherapy. The aim of this phase I study is to explore the proper dose and administration schedule of PEG rhG-CSF for patients receiving standard-dose chemotherapy. Eligible patients received 3-cycle chemotherapy every 3 weeks. No PEG rhG-CSF was given in the first cycle. Patients experienced grade 3 or 4 neutropenia would then enter the cycle 2 and 3. In cycle 2, patients received a single subcutaneous injection of prophylactic PEG rhG-CSF on d 3, and received half-dose subcutaneous injection in cycle 3 on d 3 and d 5, respectively. Escalating doses (30, 60, 100 and 200 μg/kg) of PEG rhG-CSF were investigated. A total of 26 patients were enrolled and received chemotherapy, in which 24 and 18 patients entered cycle 2 and cycle 3 treatment, respectively. In cycle 2, the incidence of grade 3 or 4 neutropenia for patients receiving single-dose PEG rhG-CSF of 30, 60, 100 and 200 μg/kg was 66.67%, 33.33%, 22.22% and 0, respectively, with a median duration less than 1 (0-2) d. No grade 3 or higher neutropenia was noted in cycle 3 in all dose cohorts. The pharmacokinetic and pharmacodynamic profiles of PEG rhG-CSF used in cancer patients were similar to those reported, as well as the safety. Double half dose administration model showed better efficacy result than a single dose model in terms of grade 3 neutropenia and above. The single dose of 60 μg/kg, 100 μg/kg and double half dose of 30 μg/kg were recommended to the phase II study, hoping to find a preferable method for neutropenia treatment.

  9. Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

    PubMed Central

    Seaton, Daniel D; Krishnan, J

    2016-01-01

    Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131

  10. Scale-Invariant Transition Probabilities in Free Word Association Trajectories

    PubMed Central

    Costa, Martin Elias; Bonomo, Flavia; Sigman, Mariano

    2009-01-01

    Free-word association has been used as a vehicle to understand the organization of human thoughts. The original studies relied mainly on qualitative assertions, yielding the widely intuitive notion that trajectories of word associations are structured, yet considerably more random than organized linguistic text. Here we set to determine a precise characterization of this space, generating a large number of word association trajectories in a web implemented game. We embedded the trajectories in the graph of word co-occurrences from a linguistic corpus. To constrain possible transport models we measured the memory loss and the cycling probability. These two measures could not be reconciled by a bounded diffusive model since the cycling probability was very high (16% of order-2 cycles) implying a majority of short-range associations whereas the memory loss was very rapid (converging to the asymptotic value in ∼7 steps) which, in turn, forced a high fraction of long-range associations. We show that memory loss and cycling probabilities of free word association trajectories can be simultaneously accounted by a model in which transitions are determined by a scale invariant probability distribution. PMID:19826622

  11. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    NASA Astrophysics Data System (ADS)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  12. Representing perturbed dynamics in biological network models

    NASA Astrophysics Data System (ADS)

    Stoll, Gautier; Rougemont, Jacques; Naef, Felix

    2007-07-01

    We study the dynamics of gene activities in relatively small size biological networks (up to a few tens of nodes), e.g., the activities of cell-cycle proteins during the mitotic cell-cycle progression. Using the framework of deterministic discrete dynamical models, we characterize the dynamical modifications in response to structural perturbations in the network connectivities. In particular, we focus on how perturbations affect the set of fixed points and sizes of the basins of attraction. Our approach uses two analytical measures: the basin entropy H and the perturbation size Δ , a quantity that reflects the distance between the set of fixed points of the perturbed network and that of the unperturbed network. Applying our approach to the yeast-cell-cycle network introduced by Li [Proc. Natl. Acad. Sci. U.S.A. 101, 4781 (2004)] provides a low-dimensional and informative fingerprint of network behavior under large classes of perturbations. We identify interactions that are crucial for proper network function, and also pinpoint functionally redundant network connections. Selected perturbations exemplify the breadth of dynamical responses in this cell-cycle model.

  13. Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells

    PubMed Central

    Strong, Amy L.; Bowles, Annie C.; MacCrimmon, Connor P.; Lee, Stephen J.; Frazier, Trivia P.; Katz, Adam J.; Gawronska-Kozak, Barbara; Bunnell, Bruce A.

    2015-01-01

    Background: As the world’s population lives longer, the number of individuals at risk for pressure ulcers will increase considerably in the coming decades. In developed countries, up to 18% of nursing home residents suffer from pressure ulcers and the resulting hospital costs can account for up to 4% of a nation’s health care budget. Although full-thickness surgical skin wounds have been used as a model, preclinical rodent studies have demonstrated that repeated cycles of ischemia and reperfusion created by exposure to magnets most closely mimic the human pressure ulcer condition. Methods: This study uses in vivo and in vitro quantitative parameters to characterize the temporal kinetics and histology of pressure ulcers in young, female C57BL/6 mice exposed to 2 or 3 ischemia-reperfusion cycles. This pressure ulcer model was validated further in studies examining the efficacy of adipose-derived stromal/stem cell administration. Results: Optimal results were obtained with the 2-cycle model based on the wound size, histology, and gene expression profile of representative angiogenic and reparative messenger RNAs. When treated with adipose-derived stromal/stem cells, pressure ulcer wounds displayed a dose-dependent and significant acceleration in wound closure rates and improved tissue histology. Conclusion: These findings document the utility of this simplified preclinical model for the evaluation of novel tissue engineering and medical approaches to treat pressure ulcers in humans. PMID:25878945

  14. Validation of a mathematical model of the bovine estrous cycle for cows with different estrous cycle characteristics.

    PubMed

    Boer, H M T; Butler, S T; Stötzel, C; Te Pas, M F W; Veerkamp, R F; Woelders, H

    2017-11-01

    A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.

  15. The Seasonal cycle of the Tropical Lower Stratospheric Water Vapor in Chemistry-Climate Models in Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Wang, X.; Dessler, A. E.

    2017-12-01

    The seasonal cycle is one of the key features of the tropical lower stratospheric water vapor, so it is important that the climate models reproduce it. In this analysis, we evaluate how well the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) and the Whole Atmosphere Community Climate Model (WACCM) reproduce the seasonal cycle of tropical lower stratospheric water vapor. We do this by comparing the models to observations from the Microwave Limb Sounder (MLS) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim (ERAi). We also evaluate if the chemistry-climate models (CCMs) reproduce the key transport and dehydration processes that regulate the seasonal cycle using a forward, domain filling, diabatic trajectory model. Finally, we explore the changes of the seasonal cycle during the 21st century in the two CCMs. Our results show general agreement in the seasonal cycles from the MLS, the ERAi, and the CCMs. Despite this agreement, there are some clear disagreements between the models and the observations on the details of transport and dehydration in the TTL. Finally, both the CCMs predict a moister seasonal cycle by the end of the 21st century. But they disagree on the changes of the seasonal amplitude, which is predicted to increase in the GEOSCCM and decrease in the WACCM.

  16. Association between sleep duration and menstrual cycle irregularity in Korean female adolescents.

    PubMed

    Nam, Ga Eun; Han, Kyungdo; Lee, Gyungjoo

    2017-07-01

    The association between sleep and the menstrual cycle in the adolescent population has been scarcely studied. This study aimed to investigate the association between sleep duration and menstrual cycle irregularity among female adolescents using nationwide representative data from the South Korean population. This population-based, cross-sectional study used the data collected from Korea National Health and Nutrition Examination Survey 2010-2012, and the data from 801 female adolescents were analyzed. Hierarchical multivariable logistic regression analysis was performed to assess the risk of menstrual cycle irregularity in relation to sleep duration. Subjects with menstrual cycle irregularity accounted for 15% (N = 120). The mean sleep duration in subjects with menstrual cycle irregularity was significantly shorter than that in those without (p = 0.003). Menstrual cycle irregularity prevalence tended to decrease as sleep duration increased (p for trend = 0.004), which was significantly different based on sleep duration and presence of depressive mood (p = 0.011). Sleep duration ≤5 h per day was significantly associated with increased risk of menstrual cycle irregularity compared with that in the subjects whose sleep duration is ≥8 h per day even after adjusting for confounding variables. The odds ratios of menstrual cycle irregularity tended to increase for shorter sleep duration in all adjusted models. This study found a significant inverse association between sleep duration and menstrual cycle irregularity among Korean female adolescents. Increasing sleep duration is required to improve the reproductive health of female adolescents. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Real-time software failure characterization

    NASA Technical Reports Server (NTRS)

    Dunham, Janet R.; Finelli, George B.

    1990-01-01

    A series of studies aimed at characterizing the fundamentals of the software failure process has been undertaken as part of a NASA project on the modeling of a real-time aerospace vehicle software reliability. An overview of these studies is provided, and the current study, an investigation of the reliability of aerospace vehicle guidance and control software, is examined. The study approach provides for the collection of life-cycle process data, and for the retention and evaluation of interim software life-cycle products.

  18. Magnetic properties of checkerboard lattice: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Jabar, A.; Masrour, R.; Hamedoun, M.; Benyoussef, A.

    2017-12-01

    The magnetic properties of ferrimagnetic mixed-spin Ising model in the checkerboard lattice are studied using Monte Carlo simulations. The variation of total magnetization and magnetic susceptibility with the crystal field has been established. We have obtained a transition from an order to a disordered phase in some critical value of the physical variables. The reduced transition temperature is obtained for different exchange interactions. The magnetic hysteresis cycles have been established. The multiples hysteresis cycle in checkerboard lattice are obtained. The multiples hysteresis cycle have been established. The ferrimagnetic mixed-spin Ising model in checkerboard lattice is very interesting from the experimental point of view. The mixed spins system have many technological applications such as in domain opto-electronics, memory, nanomedicine and nano-biological systems. The obtained results show that that crystal field induce long-range spin-spin correlations even bellow the reduced transition temperature.

  19. The influence of the hydrologic cycle on the extent of sea ice with climatic implications

    NASA Technical Reports Server (NTRS)

    Dean, Ken; Gosink, Joan

    1991-01-01

    The role was analyzed of the hydrologic cycle on the distribution of sea ice, and its influence on forcings and fluxes between the marine environment and the atmosphere. River discharge plays a significant role in degrading the sea ice before any melting occurs elsewhere along the coast. The influence is considered of river discharge on the albedo, thermal balance, and distribution of sea ice. Quantitative atmospheric-hydrologic models are being developed to describe these processes in the coastal zone. Input for the models will come from satellite images, hydrologic data, and field observations. The resulting analysis provides a basis for the study of the significance of the hydrologic cycle throughout the Arctic Basin and its influence on the regional climate as a result of possible climatic scenarios. The area offshore from the Mackenzie River delta was selected as the study area.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonelli, Lauriebeth; Brooks, Matthew D.; Niyogi, Krishna K.

    Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cyclemore » has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle’s role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.« less

  1. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education.

    PubMed

    Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A

    2009-07-01

    Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.

  2. The tropopause inversion layer in baroclinic life cycles over the North Atlantic: a pre-WISE case study and climatology

    NASA Astrophysics Data System (ADS)

    Kaluza, Thorsten; Hoor, Peter; Kunkel, Daniel

    2017-04-01

    Studies of baroclinic life cycles recently revelead that the tropopause inversion layer (TIL) in the extratropics is significantly strengthened by diabatic processes related to moist tropospheric dynamics as well as by breaking of the baroclinic wave itself. However, these findings summarize the results from idealized model simulations and the contribution from processes related to baroclinic life cycles relative to other processes enhancing the lower stratospheric static stability (stratospheric dynamics, seasonal variation of radiative feedbacks) to the observed TIL at midlatitudes has yet to be assessed. Further the role of the TIL for stratosphere-troposphere exchange (STE) is currently still under debate. In preparation of the up-coming field campaign WISE (Wave driven isentropic exchange) we explore the state and variability of the TIL over the North Atlantic between August and October in analysis model data. We use high resolution operational analysis from the European Center for Medium Range Weather Forecast to study the mesoscale structure of the TIL. The main focus is on case studies of the TIL in real baroclinic life cycles, in particular on small scale enhancements within the baroclinic disturbances and the relation to STE. Moreover, a summary is presented about the quasi climatological state of the tropopause location and sharpness over the North Atlantic over recent years.

  3. Ideal cycle analysis of a regenerative pulse detonation engine for power production

    NASA Astrophysics Data System (ADS)

    Bellini, Rafaela

    Over the last few decades, considerable research has been focused on pulse detonation engines (PDEs) as a promising replacement for existing propulsion systems with potential applications in aircraft ranging from the subsonic to the lower hypersonic regimes. On the other hand, very little attention has been given to applying detonation for electric power production. One method for assessing the performance of a PDE is through thermodynamic cycle analysis. Earlier works have adopted a thermodynamic cycle for the PDE that was based on the assumption that the detonation process could be approximated by a constant volume process, called the Humphrey cycle. The Fickett-Jacob cycle, which uses the one--dimensional Chapman--Jouguet (CJ) theory of detonation, has also been used to model the PDE cycle. However, an ideal PDE cycle must include a detonation based compression and heat release processes with a finite chemical reaction rate that is accounted for in the Zeldovich -- von Neumann -- Doring model of detonation where the shock is considered a discontinuous jump and is followed by a finite exothermic reaction zone. This work presents a thermodynamic cycle analysis for an ideal PDE cycle for power production. A code has been written that takes only one input value, namely the heat of reaction of a fuel-oxidizer mixture, based on which the program computes all the points on the ZND cycle (both p--v and T--s plots), including the von Neumann spike and the CJ point along with all the non-dimensionalized state properties at each point. In addition, the program computes the points on the Humphrey and Brayton cycles for the same input value. Thus, the thermal efficiencies of the various cycles can be calculated and compared. The heat release of combustion is presented in a generic form to make the program usable with a wide variety of fuels and oxidizers and also allows for its use in a system for the real time monitoring and control of a PDE in which the heat of reaction can be obtained as a function of fuel-oxidizer ratio. The Humphrey and ZND cycles are studied in comparison with the Brayton cycle for different fuel-air mixtures such as methane, propane and hydrogen. The validity and limitations of the ZND and Humphrey cycles related to the detonation process are discussed and the criteria for the selection of the best model for the PDE cycle are explained. It is seen that the ZND cycle is a more appropriate representation of the PDE cycle. Next, the thermal and electrical power generation efficiencies for the PDE are compared with those of the deflagration based Brayton cycle. While the Brayton cycle shows an efficiency of 0 at a compressor pressure ratio of 1, the thermal efficiency for the ZND cycle starts out at 42% for hydrogen--air and then climbs to a peak of 66% at a compression ratio of 7 before falling slowly for higher compression ratios. The Brayton cycle efficiency rises above the PDEs for compression ratios above 23. This finding supports the theoretical advantage of PDEs over the gas turbines because PDEs only require a fan or only a few compressor stages, thereby eliminating the need for heavy compressor machinery, making the PDEs less complex and therefore more cost effective than other engines. Lastly, a regeneration study is presented to analyze how the use of exhaust gases can improve the performance of the system. The thermal efficiencies for the regenerative ZND cycle are compared with the efficiencies for the non--regenerative cycle. For a hydrogen--air mixture the thermal efficiency increases from 52%, for a cycle without regeneration, to 78%, for the regenerative cycle. The efficiency is compared with the Carnot efficiency of 84% which is the maximum possible theoretical efficiency of the cycle. When compared to the Brayton cycle thermal efficiencies, the regenerative cycle shows efficiencies that are always higher for the pressure ratio studied of 5 ≤ pic ≤ 25, where pi c the compressor pressure ratio of the cycle. This observation strengthens the idea of using regeneration on PDEs.

  4. Challenges in horizontal model integration.

    PubMed

    Kolczyk, Katrin; Conradi, Carsten

    2016-03-11

    Systems Biology has motivated dynamic models of important intracellular processes at the pathway level, for example, in signal transduction and cell cycle control. To answer important biomedical questions, however, one has to go beyond the study of isolated pathways towards the joint study of interacting signaling pathways or the joint study of signal transduction and cell cycle control. Thereby the reuse of established models is preferable, as it will generally reduce the modeling effort and increase the acceptance of the combined model in the field. Obtaining a combined model can be challenging, especially if the submodels are large and/or come from different working groups (as is generally the case, when models stored in established repositories are used). To support this task, we describe a semi-automatic workflow based on established software tools. In particular, two frequent challenges are described: identification of the overlap and subsequent (re)parameterization of the integrated model. The reparameterization step is crucial, if the goal is to obtain a model that can reproduce the data explained by the individual models. For demonstration purposes we apply our workflow to integrate two signaling pathways (EGF and NGF) from the BioModels Database.

  5. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    NASA Astrophysics Data System (ADS)

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.

  6. Accounting for length-bias and selection effects in estimating the distribution of menstrual cycle length

    PubMed Central

    Lum, Kirsten J.; Sundaram, Rajeshwari; Louis, Thomas A.

    2015-01-01

    Prospective pregnancy studies are a valuable source of longitudinal data on menstrual cycle length. However, care is needed when making inferences of such renewal processes. For example, accounting for the sampling plan is necessary for unbiased estimation of the menstrual cycle length distribution for the study population. If couples can enroll when they learn of the study as opposed to waiting for the start of a new menstrual cycle, then due to length-bias, the enrollment cycle will be stochastically larger than the general run of cycles, a typical property of prevalent cohort studies. Furthermore, the probability of enrollment can depend on the length of time since a woman’s last menstrual period (a backward recurrence time), resulting in selection effects. We focus on accounting for length-bias and selection effects in the likelihood for enrollment menstrual cycle length, using a recursive two-stage approach wherein we first estimate the probability of enrollment as a function of the backward recurrence time and then use it in a likelihood with sampling weights that account for length-bias and selection effects. To broaden the applicability of our methods, we augment our model to incorporate a couple-specific random effect and time-independent covariate. A simulation study quantifies performance for two scenarios of enrollment probability when proper account is taken of sampling plan features. In addition, we estimate the probability of enrollment and the distribution of menstrual cycle length for the study population of the Longitudinal Investigation of Fertility and the Environment Study. PMID:25027273

  7. [Female sexual response cycle].

    PubMed

    Nowosielski, Krzysztof; Skrzypulec, Violetta

    2009-06-01

    The key to understand female sexual response cycle is a multidimensional approach to sexual reactions, where emotional satisfaction (emotional intimacy with the partner) might be more important than physical satisfaction (orgasm). Such holistic approach might in fact make the diagnosis and treatment of female sexual dysfunctions, which are becoming increasingly common in clinical and gynecological practice, easier and more effective. The aim of the study is to present contemporary model of female sexual response cycle and to encourage specialists to view female sexuality in more broad and holistic perspective.

  8. A Walk (or Cycle) to the Park: Active Transit to Neighborhood Amenities, the CARDIA Study

    PubMed Central

    Boone-Heinonen, Janne; Jacobs, David R.; Sidney, Stephen; Sternfeld, Barbara; Lewis, Cora E.; Gordon-Larsen, Penny

    2009-01-01

    Background Building on known associations between active commuting and reduced cardiovascular disease (CVD) risk, this study examines active transit to neighborhood amenities and differences between walking versus cycling for transportation. Method Year 20 data from the Coronary Artery Risk Development in Young Adults (CARDIA) study (3549 black and white adults aged 38–50 years in 2005–06) were analyzed in 2008–2009. Sociodemographic correlates of transportation mode (car-only, walk-only, any cycling, other) to neighborhood amenities were examined in multivariable multinomial logistic models. Gender-stratified, multivariable linear or multinomial regression models compared CVD risk factors across transit modes. Results Active transit was most common to parks and public transit stops; walking was more common than cycling. Among those who used each amenity, active transit (walk-only and any cycling versus car-only transit) was more common in men and those with no live-in partner and less than full-time employment [significant OR's (95% CI) ranging from 1.56 (1.08, 2.27) to 4.52 (1.70, 12.14)], and less common in those with children. Active transit to any neighborhood amenity was associated with more favorable BMI, waist circumference, and fitness [largest coefficient (95% CI) −1.68 (−2.81, −0.55) for BMI, −3.41 (−5.71, −1.11) for waist circumference (cm), and 36.65 (17.99, 55.31) for treadmill test duration (sec)]. Only cycling was associated with lower lifetime CVD risk classification. Conclusion Active transit to neighborhood amenities was related to sociodemographics and CVD risk factors. Variation in health-related benefits by active transit mode, if validated in prospective studies, may have implications for transportation planning and research. PMID:19765499

  9. The Art and Science of Long-Range Space Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2006-01-01

    Long-range space weather forecasts are akin to seasonal forecasts of terrestrial weather. We don t expect to forecast individual events but we do hope to forecast the underlying level of activity important for satellite operations and mission pl&g. Forecasting space weather conditions years or decades into the future has traditionally been based on empirical models of the solar cycle. Models for the shape of the cycle as a function of its amplitude become reliable once the amplitude is well determined - usually two to three years after minimum. Forecasting the amplitude of a cycle well before that time has been more of an art than a science - usually based on cycle statistics and trends. Recent developments in dynamo theory -the theory explaining the generation of the Sun s magnetic field and the solar activity cycle - have now produced models with predictive capabilities. Testing these models with historical sunspot cycle data indicates that these predictions may be highly reliable one, or even two, cycles into the future.

  10. Terrestrial nitrogen cycling in Earth system models revisited

    USGS Publications Warehouse

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  11. Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder

    PubMed Central

    Curtin, Paul; Curtin, Austen; Gennings, Chris; Arora, Manish; Siper, Paige; Meyering, Kristin; Kolevzon, Alexander; Mollon, Josephine; Zammit, Stanley; Wright, Robert O.; Reichenberg, Abraham

    2018-01-01

    Metals are critical to neurodevelopment, and dysregulation in early life has been documented in autism spectrum disorder (ASD). However, underlying mechanisms and biochemical assays to distinguish ASD cases from controls remain elusive. In a nationwide study of twins in Sweden, we tested whether zinc-copper cycles, which regulate metal metabolism, are disrupted in ASD. Using novel tooth-matrix biomarkers that provide direct measures of fetal elemental uptake, we developed a predictive model to distinguish participants who would be diagnosed with ASD in childhood from those who did not develop the disorder. We replicated our findings in three independent studies in the United States and the UK. We show that three quantifiable characteristics of fetal and postnatal zinc-copper rhythmicity are altered in ASD: the average duration of zinc-copper cycles, regularity with which the cycles recur, and the number of complex features within a cycle. In all independent study sets and in the pooled analysis, zinc-copper rhythmicity was disrupted in ASD cases. In contrast to controls, in ASD cases, the cycle duration was shorter (F = 52.25, P < 0.001), regularity was reduced (F = 47.99, P < 0.001), and complexity diminished (F = 57.30, P < 0.001). With two distinct classification models that used metal rhythmicity data, we achieved 90% accuracy in classifying cases and controls, with sensitivity to ASD diagnosis ranging from 85 to 100% and specificity ranging from 90 to 100%. These findings suggest that altered zinc-copper rhythmicity precedes the emergence of ASD, and quantitative biochemical measures of metal rhythmicity distinguish ASD cases from controls. PMID:29854952

  12. Characteristics of utility cyclists in Queensland, Australia: an examination of the associations between individual, social, and environmental factors and utility cycling.

    PubMed

    Sahlqvist, Shannon L; Heesch, Kristiann C

    2012-08-01

    Initiatives to promote utility cycling in countries like Australia and the US, which have low rates of utility cycling, may be more effective if they first target recreational cyclists. This study aimed to describe patterns of utility cycling and examine its correlates, among cyclists in Queensland, Australia. An online survey was administered to adult members of a state-based cycling community and advocacy group (n=1813). The survey asked about demographic characteristics and cycling behavior, motivators and constraints. Utility cycling patterns were described, and logistic regression modeling was used to examine associations between utility cycling and other variables. Forty-seven percent of respondents reported utility cycling: most did so to commute (86%). Most journeys (83%) were >5 km. Being male, younger, employed full-time, or university-educated increased the likelihood of utility cycling (P<.05). Perceiving cycling to be a cheap or a convenient form of transport was associated with utility cycling (P<.05). The moderate rate of utility cycling among recreational cyclists highlights a potential to promote utility cycling among this group. To increase utility cycling, strategies should target female and older recreational cyclists and focus on making cycling a cheap and convenient mode of transport.

  13. Multivariable control of vapor compression systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.D.; Liu, S.; Asada, H.H.

    1999-07-01

    This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less

  14. Recovering Total Megathrust Slip Across the Seismic Cycle: Results from Two Decades of Study at the Nicoya Seismic Cycle Observatory (NSCO)

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Kyriakopoulos, C.

    2015-12-01

    Unlike most subduction environments that exist mostly or entirely offshore, the Nicoya Peninsula's location allows for unique land-based observations of the entire down-dip extent of coupling and failure along the seismogenic megathrust. Because of this geometry and approximately 50-year repeat cycle of mid-magnitude 7 earthquakes there, numerous geophysical studies were focused on the peninsula. Most notably of these are the dense seismic and GPS networks cooperatively operated by UC Santa Cruz, Georgia Tech, U. South Florida, and OVSICORI, collectively called the Nicoya Seismic Cycle Observatory (NSCO). The megathrust environment beneath Nicoya is additionally characterized by strong along-strike transitions in oceanic crust origin and geometries, including massive subducted seamounts, and a substantial crustal suture well documented in recent work by Kyriakopoulos et al. [JGR, 2015]. Using GPS data collected from campaign and continuous sites going back approximately 20 years, a number of studies have imaged components of the seismic cycle, including late-interseismic coupling, frequent slow-slip events, coseismic rupture of a moment magnitude 7.6 earthquake in 2012, and early postseismic response. The derived images of interface locking and slip behavior published for each of these episodes use different model geometries, different weighting schemes, and modeling algorithms limiting their use for fully characterizing the transitions between zones. Here, we report the first unified analysis of the full continuum of slip using the new locally defined 3D plate interface model. We focus on evaluating how transitions in plate geometry control observed locking, slip, and quantifying how well pre-seismic images of megathrust locking and slow-slip events dictate coseismic and postseismic behavior. Without the long-term and continuous geodetic observations made by the NSCO, this work would not have been possible.

  15. A guide to studying human hair follicle cycling in vivo

    PubMed Central

    Oh, Ji Won; Kloepper, Jennifer; Langan, Ewan A.; Kim, Yongsoo; Yeo, Joongyeub; Kim, Min Ji; Hsi, Tsai-Ching; Rose, Christian; Yoon, Ghil Suk; Lee, Seok-Jong; Seykora, John; Kim, Jung Chul; Sung, Young Kwan

    2015-01-01

    Hair follicles (HFs) undergo life-long cyclical transformations, progressing through stages of rapid growth (anagen), regression (catagen), and relative “quiescence” (telogen). Since HF cycling abnormalities underlie many human hair growth disorders, the accurate classification of individual cycle stages within skin biopsies is clinically important and essential for hair research. For preclinical human hair research purposes, human scalp skin can be xenografted onto immunocompromised mice to study human HF cycling and manipulate long-lasting anagen in vivo. While available for mice, a comprehensive guide on how to recognize different human hair cycle stages in vivo is lacking. Here, we present such a guide, which uses objective, well-defined, and reproducible criteria and integrates simple morphological indicators with advanced, (immuno)-histochemical markers. This guide also characterizes human HF cycling in xenografts and highlights the utility of this model for in vivo hair research. Detailed schematic drawings and representative micrographs provide examples of how best to identify human HF stages, even in sub-optimally sectioned tissue, and practical recommendations are given for designing human-on-mouse hair cycle experiments. Thus, this guide seeks to offer a benchmark for human hair cycle stage classification, for both hair research experts and newcomers to the field. PMID:26763421

  16. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  17. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents

    PubMed Central

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport. PMID:26784933

  18. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents.

    PubMed

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Active transport is a convenient way to incorporate physical activity in adolescents' daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17-18 years), to school and to other destinations. 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both older adolescents and their social environment in interventions promoting active transport. Walking or cycling together with siblings or friends has the potential to increase social norm, social modelling and social support towards active transport.

  19. Computational Simulation of the Activation Cycle of Gα Subunit in the G Protein Cycle Using an Elastic Network Model

    PubMed Central

    Kim, Min Hyeok; Kim, Young Jin; Kim, Hee Ryung; Jeon, Tae-Joon; Choi, Jae Boong; Chung, Ka Young; Kim, Moon Ki

    2016-01-01

    Agonist-activated G protein-coupled receptors (GPCRs) interact with GDP-bound G protein heterotrimers (Gαβγ) promoting GDP/GTP exchange, which results in dissociation of Gα from the receptor and Gβγ. The GTPase activity of Gα hydrolyzes GTP to GDP, and the GDP-bound Gα interacts with Gβγ, forming a GDP-bound G protein heterotrimer. The G protein cycle is allosterically modulated by conformational changes of the Gα subunit. Although biochemical and biophysical methods have elucidated the structure and dynamics of Gα, the precise conformational mechanisms underlying the G protein cycle are not fully understood yet. Simulation methods could help to provide additional details to gain further insight into G protein signal transduction mechanisms. In this study, using the available X-ray crystal structures of Gα, we simulated the entire G protein cycle and described not only the steric features of the Gα structure, but also conformational changes at each step. Each reference structure in the G protein cycle was modeled as an elastic network model and subjected to normal mode analysis. Our simulation data suggests that activated receptors trigger conformational changes of the Gα subunit that are thermodynamically favorable for opening of the nucleotide-binding pocket and GDP release. Furthermore, the effects of GTP binding and hydrolysis on mobility changes of the C and N termini and switch regions are elucidated. In summary, our simulation results enabled us to provide detailed descriptions of the structural and dynamic features of the G protein cycle. PMID:27483005

  20. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    PubMed

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

Top