Sample records for cycle production case

  1. Application of Pharmacokinetics and Pharmacodynamics in Product Life Cycle Management. A Case Study with a Carbidopa-Levodopa Extended-Release Formulation.

    PubMed

    Modi, Nishit B

    2017-05-01

    Increasing costs in discovering and developing new molecular entities and the continuing debate on limited company pipelines mean that pharmaceutical companies are under significant pressure to maximize the value of approved products. Life cycle management in the context of drug development comprises activities to maximize the effective life of a product. Life cycle approaches can involve new formulations, new routes of delivery, new indications or expansion of the population for whom the product is indicated, or development of combination products. Life cycle management may provide an opportunity to improve upon the current product through enhanced efficacy or reduced side effects and could expand the therapeutic market for the product. Successful life cycle management may include the potential for superior efficacy, improved tolerability, or a better prescriber or patient acceptance. Unlike generic products where bioequivalence to an innovator product may be sufficient for drug approval, life cycle management typically requires a series of studies to characterize the value of the product. This review summarizes key considerations in identifying product candidates that may be suitable for life cycle management and discusses the application of pharmacokinetics and pharmacodynamics in developing new products using a life cycle management approach. Examples and a case study to illustrate how pharmacokinetics and pharmacodynamics contributed to the selection of dosing regimens, demonstration of an improved therapeutic effect, or regulatory approval of an improved product label are presented.

  2. Life Cycle Assessment of concrete manufacturing in small isolated states: the case of Cyprus

    NASA Astrophysics Data System (ADS)

    Chrysostomou, Chrystalla; Kylili, Angeliki; Nicolaides, Demetris; Fokaides, Paris A.

    2017-10-01

    Life Cycle Assessment (LCA) is an effective and valuable methodology for identifying the holistic sustainable behaviour of materials and products. It is also useful in analysing the impact a structure has over the course of its life cycle. Currently, there is no sufficient knowhow regarding the life cycle performance of building materials used in the case of small isolated states. This study focuses on the LCA of the production of concrete for the investigation of its environmental impact in isolated island states, using the case of Cyprus as an example. Four different scenarios for the production of 1 tonne of concrete are examined: (i) manufacturing of concrete by transporting raw materials from different locations around the island, (ii) manufacturing of concrete using alternative energy resources, (iii) manufacturing of concrete with reduced transportation needs, and (iv) on-site manufacturing of concrete. The results, in terms of environmental impacts of concrete produced, indicated that the use of renewable electricity instead of fossil-fuelled electricity in isolated states can drastically improve the environmental performance of the end product. Also, the minimisation of transportation distances and the use of locally available resources can also affect, to a degree, the environmental impact of concrete production.

  3. Science and Technology in Development Environments - Industry and Department of Defense Case Studies

    DTIC Science & Technology

    2003-11-01

    an acronym for Product and Cycle Time Excellence, is designed to manage product development , business development , and business alliance processes...experiments. 3. Test Practicality—Pilot development with limited production. 4. Prove Profitability—Pilot production. 5. Manage Life Cycle —Manufacturing and...compressor, particularly in a turbofan configuration, was developed primarily under a CIP for these two engines. The TF30 and F100 experiences provide

  4. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  5. Determining system boundaries on commercial broiler chicken production system using ISO 14040/14044 guideline: A case Study

    NASA Astrophysics Data System (ADS)

    Sidek, ‘A. A.; Suffian, S. A.; Al-Hazza, M. H. F.; Yusof, H. M.

    2018-01-01

    The demand of poultry product in Malaysia market shows an escalation throughout the year and expected to increase in the future. The expansion of poultry production has led to environmental concern in relation to their operational impact to environmentAt present, assessment of waste management of poultry production in Malaysia is lacking. A case study research was conducted in a commercial broiler farm to identify and assess the system boundaries in the lifecycle supply chain of broiler chicken production using ISO 14040/44 guidelines. ISO 14040/44 standard includes Life Cycle Assessment (LCA) framework guidelines to evaluate environmental influence associated with a product/process throughout its life span. All attributes associated with broiler operation is defined and the system boundaries is determined to identify possible inputs and outputs in the case study. This paper discuss the initial stage in the LCA process, which set the context of the research and prepare for the stage of Life Cycle Inventory.

  6. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education.

    PubMed

    Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A

    2009-07-01

    Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.

  7. Development of a Feedstock-to-Product Chain Model for Densified Biomass Pellets

    NASA Astrophysics Data System (ADS)

    McPherrin, Daniel

    The Q’Pellet is a spherical, torrefied biomass pellet currently under development. It aims to improve on the shortcomings of commercially available cylindrical white and torrefied pellets. A spreadsheet-based model was developed to allow for techno-economic analysis and simplified life cycle analysis of Q’Pellets, torrefied pellets and white pellets. A case study was developed to compare the production of white, torrefied and Q’Pellet production based on their internal rates of return and life cycle greenhouse gas emissions. The case study was based on a commercial scale plant built in Williams Lake BC with product delivery in Rotterdam, Netherlands. Q’Pellets had the highest modelled internal rate of return, at 12.7%, with white pellets at 11.1% and torrefied pellets at 8.0%. The simplified life cycle analysis showed that Q’Pellets had the lowest life cycle greenhouse gas emissions of the three products, 6.96 kgCO2eq/GJ, compared to 21.50 kgCO2eq/GJ for white pellets and 10.08 kgCO2eq/GJ for torrefied pellets. At these levels of life cycle greenhouse gas emissions, white pellets are above the maximum life cycle emissions to be considered sustainable under EU regulations. Sensitivity analysis was performed on the model by modifying input variables, and showed that white pellets are more sensitive to uncontrollable market variables, especially pellet sale prices, raw biomass prices and transportation costs. Monte Carlo analysis was also performed, which showed that white pellet production is less predictable and more likely to lead to a negative internal rate of return compared to Q’Pellet production.

  8. Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.

    PubMed

    Shemfe, Mobolaji; Gadkari, Siddharth; Yu, Eileen; Rasul, Shahid; Scott, Keith; Head, Ian M; Gu, Sai; Sadhukhan, Jhuma

    2018-05-01

    A novel framework, integrating dynamic simulation (DS), life cycle assessment (LCA) and techno-economic assessment (TEA) of a bioelectrochemical system (BES), has been developed to study for the first time wastewater treatment by removal of chemical oxygen demand (COD) by oxidation in anode and thereby harvesting electron and proton for carbon dioxide reduction reaction or reuse to produce products in cathode. Increases in initial COD and applied potential increase COD removal and production (in this case formic acid) rates. DS correlations are used in LCA and TEA for holistic performance analyses. The cost of production of HCOOH is €0.015-0.005 g -1 for its production rate of 0.094-0.26 kg yr -1 and a COD removal rate of 0.038-0.106 kg yr -1 . The life cycle (LC) benefits by avoiding fossil-based formic acid production (93%) and electricity for wastewater treatment (12%) outweigh LC costs of operation and assemblage of BES (-5%), giving a net 61MJkg -1 HCOOH saving. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Assessing the environmental impacts of freshwater consumption in LCA.

    PubMed

    Pfister, Stephan; Koehler, Annette; Hellweg, Stefanie

    2009-06-01

    A method for assessing the environmental impacts of freshwater consumption was developed. This method considers damages to three areas of protection: human health, ecosystem quality, and resources. The method can be used within most existing life-cycle impact assessment (LCIA) methods. The relative importance of water consumption was analyzed by integrating the method into the Eco-indicator-99 LCIA method. The relative impact of water consumption in LCIA was analyzed with a case study on worldwide cotton production. The importance of regionalized characterization factors for water use was also examined in the case study. In arid regions, water consumption may dominate the aggregated life-cycle impacts of cotton-textile production. Therefore, the consideration of water consumption is crucial in life-cycle assessment (LCA) studies that include water-intensive products, such as agricultural goods. A regionalized assessment is necessary, since the impacts of water use vary greatly as a function of location. The presented method is useful for environmental decision-support in the production of water-intensive products as well as for environmentally responsible value-chain management.

  10. Conceptual Framework To Extend Life Cycle Assessment ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  11. Investigation of a carbon fiber/epoxy prepreg curing behavior for thick composite materials production: An industrial case-study

    NASA Astrophysics Data System (ADS)

    Giorgini, Loris; Mazzocchetti, Laura; Minak, Giangiacomo; Dolcini, Enrico

    2012-07-01

    A case-study is presented, in cooperation with RI-BA Composites srl, where the industrial production of a thick part for primary structural application is analysed. The final product is a bulk carbon fiber reinforced object characterized by great dimensions, with thickness ranging between 10mm and 35mm and obtained by Hand-Lay-Up of prepregs. The study shows that prepregs age along the time required for the process work up. Moreover, the isothermal curing investigation of the prepreg used in the production gives some useful hint for the design of a new thermal curing cycle, in order to avoid exotherm problems along the thickness of the object. The effect of the applied curing cycle on thermal properties of the object are reported.

  12. Quantifying the environmental impact of an integrated human/industrial-natural system using life cycle assessment; a case study on a forest and wood processing chain.

    PubMed

    Schaubroeck, Thomas; Alvarenga, Rodrigo A F; Verheyen, Kris; Muys, Bart; Dewulf, Jo

    2013-01-01

    Life Cycle Assessment (LCA) is a tool to assess the environmental sustainability of a product; it quantifies the environmental impact of a product's life cycle. In conventional LCAs, the boundaries of a product's life cycle are limited to the human/industrial system, the technosphere. Ecosystems, which provide resources to and take up emissions from the technosphere, are not included in those boundaries. However, similar to the technosphere, ecosystems also have an impact on their (surrounding) environment through their resource usage (e.g., nutrients) and emissions (e.g., CH4). We therefore propose a LCA framework to assess the impact of integrated Techno-Ecological Systems (TES), comprising relevant ecosystems and the technosphere. In our framework, ecosystems are accounted for in the same manner as technosphere compartments. Also, the remediating effect of uptake of pollutants, an ecosystem service, is considered. A case study was performed on a TES of sawn timber production encompassing wood growth in an intensively managed forest ecosystem and further industrial processing. Results show that the managed forest accounted for almost all resource usage and biodiversity loss through land occupation but also for a remediating effect on human health, mostly via capture of airborne fine particles. These findings illustrate the potential relevance of including ecosystems in the product's life cycle of a LCA, though further research is needed to better quantify the environmental impact of TES.

  13. Eco-efficiency in extended supply chains: a case study of furniture production.

    PubMed

    Michelsen, Ottar; Fet, Annik Magerholm; Dahlsrud, Alexander

    2006-05-01

    This paper presents a methodology about how eco-efficiency in extended supply chains (ESCs) can be understood and measured. The extended supply chain includes all processes in the life cycle of a product and the eco-efficiency is measured as the relative environmental and value performance in one ESC compared to other ESCs. The paper is based on a case study of furniture production in Norway. Nine different environmental performance indicators are identified. These are based on suggestions from the World Business Council for Sustainable Development and additional indicators that are shown to have significant impacts in the life cycle of the products. Value performance is measured as inverse life cycle costs. The eco-efficiency for six different chair models is calculated and the relative values are shown graphically in XY-diagrams. This provides information about the relative performance of the products, which is valuable in green procurement processes. The same method is also used for analysing changes in eco-efficiency when possible alterations in the ESC are introduced. Here, it is shown that a small and realistic change of end-of-life treatment significantly changes the eco-efficiency of a product.

  14. Improving Students' Argumentation Skills through a Product Life-Cycle Analysis Project in Chemistry Education

    ERIC Educational Resources Information Center

    Juntunen, M. K.; Aksela, M. K.

    2014-01-01

    The aim of the study discussed in this paper was to link existing research about the argumentation skills of students to the teaching of life-cycle analysis (LCA) in order to promote an evidence-based approach to the teaching of and learning about materials used in consumer products. This case-study is part of a larger design research project that…

  15. Dielectric barrier discharge-based plasma actuator operation in artificial atmospheres for validation of modeling and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangina, R. S.; Enloe, C. L.; Font, G. I.

    2015-11-15

    We present an experimental case study of time-resolved force production by an aerodynamic plasma actuator immersed in various mixtures of electropositive (N{sub 2}) and electronegative gases (O{sub 2} and SF{sub 6}) at atmospheric pressure using a fixed AC high-voltage input of 16 kV peak amplitude at 200 Hz frequency. We have observed distinct changes in the discharge structures during both negative- and positive-going voltage half-cycles, with corresponding variations in the actuator's force production: a ratio of 4:1 in the impulse produced by the negative-going half-cycle of the discharge among the various gas mixtures we explored, 2:1 in the impulse produced by themore » positive-going half-cycle, and cases in which the negative-going half-cycle dominates force production (by a ratio of 1.5:1), where the half-cycles produce identical force levels, and where the positive-going half cycle dominates (by a ratio of 1:5). We also present time-resolved experimental evidence for the first time that shows electrons do play a significant role in the momentum coupling to surrounding neutrals during the negative going voltage half-cycle of the N{sub 2} discharge. We show that there is sufficient macroscopic variation in the plasma that the predictions of numerical models at the microscopic level can be validated even though the plasma itself cannot be measured directly on those spatial and temporal scales.« less

  16. Effects of biotic disturbances on forest carbon cycling in the United States and Canada

    USGS Publications Warehouse

    Vogelmann, James E.; Allen, Craig D.; Hicke, Jeffrey A.; Desai, Ankur R.; Dietze, Michael C.; Hall, Ronald J.; ,

    2012-01-01

    Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.

  17. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    PubMed

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  18. Failure of engineering artifacts: a life cycle approach.

    PubMed

    Del Frate, Luca

    2013-09-01

    Failure is a central notion both in ethics of engineering and in engineering practice. Engineers devote considerable resources to assure their products will not fail and considerable progress has been made in the development of tools and methods for understanding and avoiding failure. Engineering ethics, on the other hand, is concerned with the moral and social aspects related to the causes and consequences of technological failures. But what is meant by failure, and what does it mean that a failure has occurred? The subject of this paper is how engineers use and define this notion. Although a traditional definition of failure can be identified that is shared by a large part of the engineering community, the literature shows that engineers are willing to consider as failures also events and circumstance that are at odds with this traditional definition. These cases violate one or more of three assumptions made by the traditional approach to failure. An alternative approach, inspired by the notion of product life cycle, is proposed which dispenses with these assumptions. Besides being able to address the traditional cases of failure, it can deal successfully with the problematic cases. The adoption of a life cycle perspective allows the introduction of a clearer notion of failure and allows a classification of failure phenomena that takes into account the roles of stakeholders involved in the various stages of a product life cycle.

  19. Integrating enzyme fermentation in lignocellulosic ethanol production: life-cycle assessment and techno-economic analysis.

    PubMed

    Olofsson, Johanna; Barta, Zsolt; Börjesson, Pål; Wallberg, Ola

    2017-01-01

    Cellulase enzymes have been reported to contribute with a significant share of the total costs and greenhouse gas emissions of lignocellulosic ethanol production today. A potential future alternative to purchasing enzymes from an off-site manufacturer is to integrate enzyme and ethanol production, using microorganisms and part of the lignocellulosic material as feedstock for enzymes. This study modelled two such integrated process designs for ethanol from logging residues from spruce production, and compared it to an off-site case based on existing data regarding purchased enzymes. Greenhouse gas emissions and primary energy balances were studied in a life-cycle assessment, and cost performance in a techno-economic analysis. The base case scenario suggests that greenhouse gas emissions per MJ of ethanol could be significantly lower in the integrated cases than in the off-site case. However, the difference between the integrated and off-site cases is reduced with alternative assumptions regarding enzyme dosage and the environmental impact of the purchased enzymes. The comparison of primary energy balances did not show any significant difference between the cases. The minimum ethanol selling price, to reach break-even costs, was from 0.568 to 0.622 EUR L -1 for the integrated cases, as compared to 0.581 EUR L -1 for the off-site case. An integrated process design could reduce greenhouse gas emissions from lignocellulose-based ethanol production, and the cost of an integrated process could be comparable to purchasing enzymes produced off-site. This study focused on the environmental and economic assessment of an integrated process, and in order to strengthen the comparison to the off-site case, more detailed and updated data regarding industrial off-site enzyme production are especially important.

  20. Life cycle design metrics for energy generation technologies: Method, data, and case study

    NASA Astrophysics Data System (ADS)

    Cooper, Joyce; Lee, Seung-Jin; Elter, John; Boussu, Jeff; Boman, Sarah

    A method to assist in the rapid preparation of Life Cycle Assessments of emerging energy generation technologies is presented and applied to distributed proton exchange membrane fuel cell systems. The method develops life cycle environmental design metrics and allows variations in hardware materials, transportation scenarios, assembly energy use, operating performance and consumables, and fuels and fuel production scenarios to be modeled and comparisons to competing systems to be made. Data and results are based on publicly available U.S. Life Cycle Assessment data sources and are formulated to allow the environmental impact weighting scheme to be specified. A case study evaluates improvements in efficiency and in materials recycling and compares distributed proton exchange membrane fuel cell systems to other distributed generation options. The results reveal the importance of sensitivity analysis and system efficiency in interpreting case studies.

  1. Plasma Chemistry Processes in the Closed Cycle EDL.

    DTIC Science & Technology

    1979-07-01

    chemistry. The present study is mainly concerned with plasma by-products and, to some degree, with initial impurities and their influence on laser...performance. The plasma chemistry important in the formation of these by-products has been studied in greatest detail for He/N 2 /C0 2 mixtures loaded by...cases for two closed cycle EDL devices currently under development. The study includes the effects on performance of variations in the electric field

  2. Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration

    PubMed Central

    Moreau, P.; De Vito, E.; Quazuguel, L.; Boniface, M.; Bordes, A.; Rudisch, C.; Bayle-Guillemaud, P.; Guyomard, D.

    2016-01-01

    The failure mechanism of silicon-based electrodes has been studied only in a half-cell configuration so far. Here, a combination of 7Li, 19F MAS NMR, XPS, TOF-SIMS, and STEM-EELS, provides an in-depth characterization of the solid electrolyte interphase (SEI) formation on the surface of silicon and its evolution upon aging and cycling with LiNi1/3Mn1/3Co1/3O2 as the positive electrode in a full Li-ion cell configuration. This multiprobe approach indicates that the electrolyte degradation process observed in the case of full Li-ion cells exhibits many similarities to what has been observed in the case of half-cells in previous works, in particular during the early stages of the cycling. Like in the case of Si/Li half-cells, the development of the inorganic part of the SEI mostly occurs during the early stage of cycling while an incessant degradation of the organic solvents of the electrolyte occurs upon cycling. However, for extended cycling, all the lithium available for cycling is consumed because of parasitic reactions and is either trapped in an intermediate part of the SEI or in the electrolyte. This nevertheless does not prevent the further degradation of the organic electrolyte solvents, leading to the formation of lithium-free organic degradation products at the extreme surface of the SEI. At this point, without any available lithium left, the cell cannot function properly anymore. Cycled positive and negative electrodes do not show any sign of particles disconnection or clogging of their porosity by electrolyte degradation products and can still function in half-cell configuration. The failure mechanism for full Li-ion cells appears then very different from that known for half-cells and is clearly due to a lack of cyclable lithium because of parasitic reactions occurring before the accumulation of electrolyte degradation products clogs the porosity of the composite electrode or disconnects the active material particles. PMID:27212791

  3. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas.

    PubMed

    Watkins, David W; de Moraes, Márcia M G Alcoforado; Asbjornsen, Heidi; Mayer, Alex S; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  4. Life Cycle Assessment Perspectives on Delivering an Infant in the US

    PubMed Central

    Campion, Nicole; Thiel, Cassandra L.; DeBlois, Justin; Woods, Noe C.; Landis, Amy E.; Bilec, Melissa M.

    2012-01-01

    This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures. PMID:22482785

  5. Life cycle assessment of nuclear-based hydrogen production via thermochemical water splitting using a copper-chlorine (Cu-Cl) cycle

    NASA Astrophysics Data System (ADS)

    Ozbilen, Ahmet Ziyaettin

    The energy carrier hydrogen is expected to solve some energy challenges. Since its oxidation does not emit greenhouse gases (GHGs), its use does not contribute to climate change, provided that it is derived from clean energy sources. Thermochemical water splitting using a Cu-Cl cycle, linked with a nuclear super-critical water cooled reactor (SCWR), which is being considered as a Generation IV nuclear reactor, is a promising option for hydrogen production. In this thesis, a comparative environmental study is reported of the three-, four- and five-step Cu-Cl thermochemical water splitting cycles with various other hydrogen production methods. The investigation uses life cycle assessment (LCA), which is an analytical tool to identify and quantify environmentally critical phases during the life cycle of a system or a product and/or to evaluate and decrease the overall environmental impact of the system or product. The LCA results for the hydrogen production processes indicate that the four-step Cu-Cl cycle has lower environmental impacts than the three- and five-step Cu-Cl cycles due to its lower thermal energy requirement. Parametric studies show that acidification potentials (APs) and global warming potentials (GWPs) for the four-step Cu-Cl cycle can be reduced from 0.0031 to 0.0028 kg SO2-eq and from 0.63 to 0.55 kg CO2-eq, respectively, if the lifetime of the system increases from 10 to 100 years. Moreover, the comparative study shows that the nuclear-based S-I and the four-step Cu-Cl cycles are the most environmentally benign hydrogen production methods in terms of AP and GWP. GWPs of the S-I and the four-step Cu-Cl cycles are 0.412 and 0.559 kg CO2-eq for reference case which has a lifetime of 60 years. Also, the corresponding APs of these cycles are 0.00241 and 0.00284 kg SO2-eq. It is also found that an increase in hydrogen plant efficiency from 0.36 to 0.65 decreases the GWP from 0.902 to 0.412 kg CO 2-eq and the AP from 0.00459 to 0.00209 kg SO2-eq for the four-step Cu-Cl cycle. Keywords: Hydrogen production, nuclear energy, Cu-Cl cycle, environmental impact, LCA.

  6. The economic value of innovative treatments over the product life cycle: the case of targeted trastuzumab therapy for breast cancer.

    PubMed

    Garrison, Louis P; Veenstra, David L

    2009-01-01

    Pharmacoeconomic analyses typically project the expected cost-effectiveness of a new product for a specific indication. This analysis develops a dynamic life-cycle model to conduct a multi-indication evaluation using the case of trastuzumab licensed in the United States for both early-stage and metastatic (or late-stage) human epidermal growth factor receptor 2 (HER2)-positive breast cancer therapy (early breast cancer [EBC]; metastatic breast cancer [MBC]), approved in 2006 and 1998, respectively. This dynamic model combined information on expected incremental cost-utility ratios for specific indications with an epidemiologically based projection of utilization by indication over the product life cycle-from 1998 to 2016. Net economic value was estimated as the cumulative quality-adjusted life years (QALYs) gained over the life cycle multiplied by a societal valuation of health gains ($/QALY) minus cumulative net direct treatment costs. Sensitivity analyses were performed under a range of assumptions. We projected that the annual number of EBC patients receiving trastuzumab will be more than three times that of MBC by 2016, in part because adjuvant treatment reduces the future incidence of MBC. Over this life cycle, the estimated overall incremental cost-effectiveness ratio (ICER) was $35,590/QALY with a total of 432,547 discounted QALYs gained. Under sensitivity analyses, the overall ICER varied from $21,000 to $53,000/QALY, and the projected net economic value resulting from trastuzumab treatment ranged from $6.2 billion to $49.5 billion. Average ICERs for multi-indication compounds can increase or decrease over the product life cycle. In this example, the projected overall life-cycle ICER for trastuzumab was less than one half of that in the initial indication. This dynamic perspective-versus the usual static one-highlights the interdependence of drug development decisions and investment incentives, raising important reimbursement policy issues.

  7. Using National Inventories for Estimating Environmental Impacts of Products from Industrial Sectors: A Case Study of Ethanol and Gasoline

    EPA Science Inventory

    PurposeIn order to understand the environmental outcomes associated with the life cycle of a product, to compare these outcomes across products, or to design more sustainable supply chains, it is often desirable to estimate results for a reference supply chain representative of t...

  8. Life cycle assessment of European pilchard (Sardina pilchardus) consumption. A case study for Galicia (NW Spain).

    PubMed

    Vázquez-Rowe, Ian; Villanueva-Rey, Pedro; Hospido, Almudena; Moreira, María Teresa; Feijoo, Gumersindo

    2014-03-15

    European pilchard or sardines (Sardina pilchardus) are an attractive raw material to extract from Iberian waters, since they constitute a cheap source of protein and they are a popular product among consumers. This has led to a wide range of final products available for consumers to purchase based on this single raw material. Therefore, this study presents a cross-product environmental assessment using life cycle assessment of three different final products based on sardine landings: canned sardines, fresh sardines and European hake caught by using sardine as bait. In addition, the products were followed throughout their entire life cycle, considering different cooking methods for each final product. Results showed high variability in environmental impacts, not only between the three final products, but also when one single product was cooked in different ways, highlighting the importance that the consumption phase and other post-landing stages may have on the final environmental profile of seafood. Results are then analysed regarding relevant limitations and uncertainties, as well as in terms of the consumer and policy implications. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Comprehensive Environmental Assessment and U.S. EPA Nanomaterial Case Studies

    EPA Science Inventory

    These case studies are not completed risk assessments but are structured around an approach known as comprehensive environmental assessment (CEA), which combines a product life cycle framework with the risk assessment paradigm (Davis, J.M., J. Nanosci. Nanotech. 7:402-9, 2007). ...

  10. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions.

    PubMed

    Ponnusamy, Sundaravadivelnathan; Reddy, Harvind Kumar; Muppaneni, Tapaswy; Downes, Cara Meghan; Deng, Shuguang

    2014-10-01

    A life cycle assessment study is performed for the energy requirements and greenhouse gas emissions in an algal biodiesel production system. Subcritical water (SCW) extraction was applied for extracting bio-crude oil from algae, and conventional transesterification method was used for converting the algal oil to biodiesel. 58MJ of energy is required to produce 1kg of biodiesel without any co-products management, of which 36% was spent on cultivation and 56% on lipid extraction. SCW extraction with thermal energy recovery reduces the energy consumption by 3-5 folds when compared to the traditional solvent extraction. It is estimated that 1kg of algal biodiesel fixes about 0.6kg of CO2. An optimized case considering the energy credits from co-products could further reduce the total energy demand. The energy demand for producing 1kg of biodiesel in the optimized case is 28.23MJ. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Molten salts and nuclear energy production

    NASA Astrophysics Data System (ADS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed.

  12. A Framework for Statewide Analysis of Site Suitability, Energy Estimation, Life Cycle Costs, Financial Feasibility and Environmental Assessment of Wind Farms: A Case Study of Indiana

    NASA Astrophysics Data System (ADS)

    Kumar, Indraneel

    In the last decade, Midwestern states including Indiana have experienced an unprecedented growth in utility scale wind energy farms. For example, by end of 2013, Indiana had 1.5 GW of wind turbines installed, which could provide electrical energy for as many as half-a-million homes. However, there is no statewide systematic framework available for the evaluation of wind farm impacts on endangered species, required necessary setbacks and proximity standards to infrastructure, and life cycle costs. This research is guided to fill that gap and it addresses the following questions. How much land is suitable for wind farm siting in Indiana given the constraints of environmental, ecological, cultural, settlement, physical infrastructure and wind resource parameters? How much wind energy can be obtained? What are the life cycle costs and economic and financial feasibility? Is wind energy production and development in a state an emission free undertaking? The framework developed in the study is applied to a case study of Indiana. A fuzzy logic based AHP (Analytic Hierarchy Process) spatial site suitability analysis for wind energy is formulated. The magnitude of wind energy that could be sited and installed comprises input for economic and financial feasibility analysis for 20-25 years life cycle of wind turbines in Indiana. Monte Carlo simulation is used to account for uncertainty and nonlinearity in various costs and price parameters. Impacts of incentives and cost variables such as production tax credits, costs of capital, and economies of scale are assessed. Further, an economic input-output (IO) based environmental assessment model is developed for wind energy, where costs from financial feasibility analysis constitute the final demand vectors. This customized model for Indiana is used to assess emissions for criteria air pollutants, hazardous air pollutants and greenhouse gases (GHG) across life cycle events of wind turbines. The findings of the case study include that, Indiana has adequate suitable land area available to locate wind farms with installed capacity between 11 and 51 GW if 100 meters high turbines are used. For a 1.5 MW standard wind turbine, financial feasibility analysis shows that production tax credits and property tax abatements are helpful for financial success in Indiana. Also, the wind energy is not entirely emission free if life cycle events of wind turbine manufacturing, production, installation, construction and decommissioning are considered. The research developed a replicable and integrated framework for statewide life cycle analysis of wind energy production accounting for uncertainty into the analyses. Considering the complexity of life cycle analysis and lack of state specific data on performance of wind turbines and wind farms, this study should be considered an intermediate step.

  13. Evaluating Consumer Product Life Cycle Sustainability with Integrated Metrics: A Paper Towel Case Study

    EPA Science Inventory

    Integrated sustainability metrics provide an enriched set of information to inform decision-making. However, such approaches are rarely used to assess product supply chains. In this work, four integrated metrics—presented in terms of land, resources, value added, and stability—ar...

  14. Bioenergy Development Policy and Practice Must Recognize Potential Hydrologic Impacts: Lessons from the Americas

    NASA Astrophysics Data System (ADS)

    Watkins, David W.; de Moraes, Márcia M. G. Alcoforado; Asbjornsen, Heidi; Mayer, Alex S.; Licata, Julian; Lopez, Jose Gutierrez; Pypker, Thomas G.; Molina, Vivianna Gamez; Marques, Guilherme Fernandes; Carneiro, Ana Cristina Guimaraes; Nuñez, Hector M.; Önal, Hayri; da Nobrega Germano, Bruna

    2015-12-01

    Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production—from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.

  15. Software Product Lines: Report of the 2010 US Army Software Product Line Workshop

    DTIC Science & Technology

    2010-06-01

    requirements and statement of work ( SOW ) tasks can be in- cluded in the request for proposal (RFP) and the contract. 2.2.1 Basic Product Line Acquisition... SOW tasks in Figure 1. Two additional tasks (at the third tier level) ac- count for sustaining the production capability over the life cycle and...Acquisition Strategy RFP and SOW Initial Product Line Scope Product Line Business Case Capability Description Document Teaming Product Line

  16. Modeling cumulative effects in life cycle assessment: the case of fertilizer in wheat production contributing to the global warming potential.

    PubMed

    Laratte, Bertrand; Guillaume, Bertrand; Kim, Junbeum; Birregah, Babiga

    2014-05-15

    This paper aims at presenting a dynamic indicator for life cycle assessment (LCA) measuring cumulative impacts over time of greenhouse gas (GHG) emissions from fertilizers used for wheat cultivation and production. Our approach offers a dynamic indicator of global warming potential (GWP), one of the most used indicator of environmental impacts (e.g. in the Kyoto Protocol). For a case study, the wheat production in France was selected and considered by using data from official sources about fertilizer consumption and production of wheat. We propose to assess GWP environmental impact based on LCA method. The system boundary is limited to the fertilizer production for 1 ton of wheat produced (functional unit) from 1910 to 2010. As applied to wheat production in France, traditional LCA shows a maximum GWP impact of 500 kg CO2-eq for 1 ton of wheat production, whereas the GWP impact of wheat production over time with our approach to dynamic LCA and its cumulative effects increases to 18,000 kg CO2-eq for 1 ton of wheat production. In this paper, only one substance and one impact assessment indicator are presented. However, the methodology can be generalized and improved by using different substances and indicators. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Product carbon footprints and their uncertainties in comparative decision contexts.

    PubMed

    Henriksson, Patrik J G; Heijungs, Reinout; Dao, Hai M; Phan, Lam T; de Snoo, Geert R; Guinée, Jeroen B

    2015-01-01

    In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product's lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products' environmental performance.

  18. Overview of the 1988 GCE/CASE/WATOX Studies of biogeochemical cycles in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Pszenny, Alexander A. P.; Galloway, James N.; Artz, Richard S.; Boatman, Joseph F.

    1990-06-01

    The 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) was a multifaceted research program designed to study atmospheric and oceanic processes affecting the biogeochemical cycles of carbon, nitrogen, sulfur, and trace metals in the North Atlantic Ocean region. Field work included (1) a 49-day research cruise aboard NOAA ship Mt. Mitchell (Global Change Expedition) from Norfolk, Virginia, to Bermuda, Iceland, the Azores, and Barbados, (2) eight flights of the NOAA King Air research aircraft, four off the Virginia Capes and four near Bermuda (CASE/WATOX), and (3) a research cruise aboard the yacht Fleurtie near Bermuda (WATOX). Objectives of GCE/CASE/WATOX were (1) to examine processes controlling the mesoscale distributions of productivity, chlorophyll, and phytoplankton growth rates in Atlantic surface waters, (2) to identify factors controlling the distribution of ozone in the North Atlantic marine boundary layer, and (3) to estimate the contributions of sources on surrounding continents to the biogeochemical cycles of sulfur, nitrogen, and trace metals over the North Atlantic region during the boreal summer season. The individual papers in this and the next two issues of Global Biogeochemical Cycles provide details on the results and analyses of the individual measurement efforts. This paper provides a brief overview of GCE/CASE/WATOX.

  19. Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling: Environmental Implications of Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Runze; Riddle, Matthew E.; Graziano, Diane

    Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less

  20. Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling: Environmental Implications of Additive Manufacturing

    DOE PAGES

    Huang, Runze; Riddle, Matthew E.; Graziano, Diane; ...

    2017-08-26

    Additive manufacturing (AM) holds great potentials in enabling superior engineering functionality, streamlining supply chains, and reducing life cycle impacts compared to conventional manufacturing (CM). This study estimates the net changes in supply-chain lead time, life cycle primary energy consumption, greenhouse gas (GHG) emissions, and life cycle costs (LCC) associated with AM technologies for the case of injection molding, to shed light on the environmental and economic advantages of a shift from international or onshore CM to AM in the United States. A systems modeling framework is developed, with integrations of lead-time analysis, life cycle inventory analysis, LCC model, and scenariosmore » considering design differences, supply-chain options, productions, maintenance, and AM technological developments. AM yields a reduction potential of 3% to 5% primary energy, 4% to 7% GHG emissions, 12% to 60% lead time, and 15% to 35% cost over 1 million cycles of the injection molding production depending on the AM technology advancement in future. The economic advantages indicate the significant role of AM technology in raising global manufacturing competitiveness of local producers, while the relatively small environmental benefits highlight the necessity of considering trade-offs and balance techniques between environmental and economic performances when AM is adopted in the tooling industry. The results also help pinpoint the technological innovations in AM that could lead to broader benefits in future.« less

  1. Life cycle greenhouse gas emissions of sugar cane renewable jet fuel.

    PubMed

    Moreira, Marcelo; Gurgel, Angelo C; Seabra, Joaquim E A

    2014-12-16

    This study evaluated the life cycle GHG emissions of a renewable jet fuel produced from sugar cane in Brazil under a consequential approach. The analysis included the direct and indirect emissions associated with sugar cane production and fuel processing, distribution, and use for a projected 2020 scenario. The CA-GREET model was used as the basic analytical tool, while Land Use Change (LUC) emissions were estimated employing the GTAP-BIO-ADV and AEZ-EF models. Feedstock production and LUC impacts were evaluated as the main sources of emissions, respectively estimated as 14.6 and 12 g CO2eq/MJ of biofuel in the base case. However, the renewable jet fuel would strongly benefit from bagasse and trash-based cogeneration, which would enable a net life cycle emission of 8.5 g CO2eq/MJ of biofuel in the base case, whereas Monte Carlo results indicate 21 ± 11 g CO2eq/MJ. Besides the major influence of the electricity surplus, the sensitivity analysis showed that the cropland-pasture yield elasticity and the choice of the land use factor employed to sugar cane are relevant parameters for the biofuel life cycle performance. Uncertainties about these estimations exist, especially because the study relies on projected performances, and further studies about LUC are also needed to improve the knowledge about their contribution to the renewable jet fuel life cycle.

  2. Life-cycle assessment of engineered nanomaterials: a literature review of assessment status

    NASA Astrophysics Data System (ADS)

    Miseljic, Mirko; Olsen, Stig I.

    2014-06-01

    The potential environmental impacts of engineered nanomaterials (ENMs), and their engineered nanoparticles (ENPs), have, in recent years, been a cause of concern. Life-cycle assessment (LCA) is a highly qualified tool to assess products and systems and has an increasing extent been applied to ENMs. However, still only 29 case studies on LCA of ENMs have been published in journals and this article investigates these studies. Generally, data on production of ENMs as well as the coverage of the life cycle are limited. In particular, within use and disposal stages data are scarce due to many unknowns regarding the potential release and fate of ENMs/ENPs to and in the environment. This study investigates the sensitivity of case studies with respect to ecotoxicity impacts through a quantification of the potential ecotoxicity impacts to algae, daphnia and fish as a result of direct release of Ag and TiO2 ENPs (mainly <200 nm in nominal diameter size) from various ENM products to the freshwater compartment. It was found that Ag and TiO2 release, from 1 g Ag or TiO2 ENM product, poses up to ca. 3.5 orders of magnitude higher ecotoxicity impact than the production of 1 g polymer (PP, PE and PET average) or 1 Wh of grid mix electricity from Scandinavia. ENMs from Ag had higher ecotoxic impact than those from TiO2 and there was a linear regression between Ag ENM content in the considered products and the potential ecotoxicity impacts to the freshwater species, according to release of total Ag during use (mainly washing).

  3. Toward a Survivability/Lethality Analysis Directorate (SLAD) Methodology for Conducting System of Systems Analysis (SoSA)

    DTIC Science & Technology

    2011-06-01

    alternative technologies early in the product life cycle. Use case 3 reflects SLAD’s response to changes in the way the Army acquires technical...development on the one hand, and to systems evaluated for production and deployment on the other. Together, these three use cases provide the Army...Package E x a m p le P ro b le m Mission based SLVA of networked-enabled small units subject to one or more threats. Mission based early

  4. Life cycle assessment of sustainable raw material acquisition for functional magnetite bionanoparticle production.

    PubMed

    Sadhukhan, Jhuma; Joshi, Nimisha; Shemfe, Mobolaji; Lloyd, Jonathan R

    2017-09-01

    Magnetite nanoparticles (MNPs) have several applications, including use in medical diagnostics, renewable energy production and waste remediation. However, the processes for MNP production from analytical-grade materials are resource intensive and can be environmentally damaging. This work for the first time examines the life cycle assessment (LCA) of four MNP production cases: (i) industrial MNP production system; (ii) a state-of-the-art MNP biosynthesis system; (iii) an optimal MNP biosynthesis system and (iv) an MNP biosynthesis system using raw materials sourced from wastewaters, in order to recommend a sustainable raw material acquisition pathway for MNP synthesis. The industrial production system was used as a benchmark to compare the LCA performances of the bio-based systems (cases ii-iv). A combination of appropriate life cycle impact assessment methods was employed to analyse environmental costs and benefits of the systems comprehensively. The LCA results revealed that the state-of-the-art MNP biosynthesis system, which utilises analytical grade ferric chloride and sodium hydroxide as raw materials, generated environmental costs rather than benefits compared to the industrial MNP production system. Nevertheless, decreases in environmental impacts by six-fold were achieved by reducing sodium hydroxide input from 11.28 to 1.55 in a mass ratio to MNPs and replacing ferric chloride with ferric sulphate (3.02 and 2.59, respectively, in a mass ratio to MNPs) in the optimal biosynthesis system. Thus, the potential adverse environmental impacts of MNP production via the biosynthesis system can be reduced by minimising sodium hydroxide and substituting ferric sulphate for ferric chloride. Moreover, considerable environmental benefits were exhibited in case (iv), where Fe(III) ions were sourced from metal-containing wastewaters and reduced to MNPs by electrons harvested from organic substrates. It was revealed that 14.4 kJ and 3.9 kJ of primary fossil resource savings could be achieved per g MNP and associated electricity recoveries from wastewaters, respectively. The significant environmental benefits exhibited by the wastewater-fed MNP biosynthesis system shows promise for the sustainable production of MNPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Life cycle assessment of treatment and handling options for a highly saline brine extracted from a potential CO2 storage site.

    PubMed

    Salih, Hafiz H; Li, Jiaxing; Kaplan, Ruth; Dastgheib, Seyed A

    2017-10-01

    Carbon dioxide (CO 2 ) injection in deep saline aquifers is a promising option for CO 2 geological sequestration. However, brine extraction may be necessary to control the anticipated increase in reservoir pressure resulting from CO 2 injection. The extracted brines usually have elevated concentrations of total dissolved solids (TDS) and other contaminants and require proper handling or treatment. Different options for the handling or treatment of a high-TDS brine extracted from a potential CO 2 sequestration site (Mt. Simon Sandstone, Illinois, USA) are evaluated here through a life cycle assessment (LCA) study. The objective of this LCA study is to evaluate the environmental impact (EI) of various treatment or disposal options, namely, deep well disposal (Case 1); near-zero liquid discharge (ZLD) treatment followed by disposal of salt and brine by-products (Case 2); and near-ZLD treatment assuming beneficial use of the treatment by-products (Case 3). Results indicate that energy use is the dominant factor determining the overall EI. Because of the high energy consumption, desalination of the pretreated brine (Cases 2 and 3) results in the highest EI. Consequently, the overall EI of desalination cases falls mainly into two EI categories: global warming potential and resources-fossil fuels. Deep well disposal has the least EI when the EI of brine injection into deep formations is not included. The overall freshwater consumption associated with different life cycle stages of the selected disposal or treatment options is 0.6-1.8 m 3 of freshwater for every 1.0 m 3 of brine input. The freshwater consumption balance is 0.6 m 3 for every 1.0 m 3 of brine input for Case 3 when desalination by-products are utilized for beneficial uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Evaluation of Statistical Methods for Modeling Historical Resource Production and Forecasting

    NASA Astrophysics Data System (ADS)

    Nanzad, Bolorchimeg

    This master's thesis project consists of two parts. Part I of the project compares modeling of historical resource production and forecasting of future production trends using the logit/probit transform advocated by Rutledge (2011) with conventional Hubbert curve fitting, using global coal production as a case study. The conventional Hubbert/Gaussian method fits a curve to historical production data whereas a logit/probit transform uses a linear fit to a subset of transformed production data. Within the errors and limitations inherent in this type of statistical modeling, these methods provide comparable results. That is, despite that apparent goodness-of-fit achievable using the Logit/Probit methodology, neither approach provides a significant advantage over the other in either explaining the observed data or in making future projections. For mature production regions, those that have already substantially passed peak production, results obtained by either method are closely comparable and reasonable, and estimates of ultimately recoverable resources obtained by either method are consistent with geologically estimated reserves. In contrast, for immature regions, estimates of ultimately recoverable resources generated by either of these alternative methods are unstable and thus, need to be used with caution. Although the logit/probit transform generates high quality-of-fit correspondence with historical production data, this approach provides no new information compared to conventional Gaussian or Hubbert-type models and may have the effect of masking the noise and/or instability in the data and the derived fits. In particular, production forecasts for immature or marginally mature production systems based on either method need to be regarded with considerable caution. Part II of the project investigates the utility of a novel alternative method for multicyclic Hubbert modeling tentatively termed "cycle-jumping" wherein overlap of multiple cycles is limited. The model is designed in a way that each cycle is described by the same three parameters as conventional multicyclic Hubbert model and every two cycles are connected with a transition width. Transition width indicates the shift from one cycle to the next and is described as weighted coaddition of neighboring two cycles. It is determined by three parameters: transition year, transition width, and gamma parameter for weighting. The cycle-jumping method provides superior model compared to the conventional multicyclic Hubbert model and reflects historical production behavior more reasonably and practically, by better modeling of the effects of technological transitions and socioeconomic factors that affect historical resource production behavior by explicitly considering the form of the transitions between production cycles.

  7. Enriching step-based product information models to support product life-cycle activities

    NASA Astrophysics Data System (ADS)

    Sarigecili, Mehmet Ilteris

    The representation and management of product information in its life-cycle requires standardized data exchange protocols. Standard for Exchange of Product Model Data (STEP) is such a standard that has been used widely by the industries. Even though STEP-based product models are well defined and syntactically correct, populating product data according to these models is not easy because they are too big and disorganized. Data exchange specifications (DEXs) and templates provide re-organized information models required in data exchange of specific activities for various businesses. DEXs show us it would be possible to organize STEP-based product models in order to support different engineering activities at various stages of product life-cycle. In this study, STEP-based models are enriched and organized to support two engineering activities: materials information declaration and tolerance analysis. Due to new environmental regulations, the substance and materials information in products have to be screened closely by manufacturing industries. This requires a fast, unambiguous and complete product information exchange between the members of a supply chain. Tolerance analysis activity, on the other hand, is used to verify the functional requirements of an assembly considering the worst case (i.e., maximum and minimum) conditions for the part/assembly dimensions. Another issue with STEP-based product models is that the semantics of product data are represented implicitly. Hence, it is difficult to interpret the semantics of data for different product life-cycle phases for various application domains. OntoSTEP, developed at NIST, provides semantically enriched product models in OWL. In this thesis, we would like to present how to interpret the GD & T specifications in STEP for tolerance analysis by utilizing OntoSTEP.

  8. Shelf life of fresh meat products under LED or fluorescent lighting.

    PubMed

    Steele, K S; Weber, M J; Boyle, E A E; Hunt, M C; Lobaton-Sulabo, A S; Cundith, C; Hiebert, Y H; Abrolat, K A; Attey, J M; Clark, S D; Johnson, D E; Roenbaugh, T L

    2016-07-01

    Enhanced pork loin chops, beef longissimus lumborum steaks, semimembranosus steaks (superficial and deep portions), ground beef, and ground turkey were displayed under light emitting diode (LED) and fluorescent (FLS) lighting in two multi-shelf, retail display cases with identical operating parameters. Visual and instrumental color, internal product temperature, case temperature, case cycling, thiobarbituric acid reactive substances (TBARS), and Enterobacteriaceae and aerobic plate counts were evaluated. Under LED, beef products (except the deep portion of beef semimembranosus steaks) showed less (P<0.05) visual discoloration. Pork loin chops had higher (P<0.05) L* values for LED lighting. Other than beef longissimus lumborum steaks, products displayed under LED lights had colder internal temperatures than products under FLS lights (P<0.05). Under LED, pork loin chops, ground turkey, and beef semimembranosus steaks had higher (P<0.05) values for TBARS. LED provides colder case and product temperatures, more case efficiency, and extended color life by at least 0.5d for longissimus and semimembranosus steaks; however, some LED cuts showed increased lipid oxidation. Copyright © 2016. Published by Elsevier Ltd.

  9. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  10. Understanding the life cycle surface land requirements of natural gas-fired electricity

    DOE PAGES

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; ...

    2017-10-02

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. We present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m 2 MWh -1, 95% confidence intervals +/-0.01 m 2 MWh -1) was dominated by midstream infrastructure,more » particularly pipelines (74%). These results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.« less

  11. Understanding the life cycle surface land requirements of natural gas-fired electricity

    NASA Astrophysics Data System (ADS)

    Jordaan, Sarah M.; Heath, Garvin A.; Macknick, Jordan; Bush, Brian W.; Mohammadi, Ehsan; Ben-Horin, Dan; Urrea, Victoria; Marceau, Danielle

    2017-10-01

    The surface land use of fossil fuel acquisition and utilization has not been well characterized, inhibiting consistent comparisons of different electricity generation technologies. Here we present a method for robust estimation of the life cycle land use of electricity generated from natural gas through a case study that includes inventories of infrastructure, satellite imagery and well-level production. Approximately 500 sites in the Barnett Shale of Texas were sampled across five life cycle stages (production, gathering, processing, transmission and power generation). Total land use (0.62 m2 MWh-1, 95% confidence intervals ±0.01 m2 MWh-1) was dominated by midstream infrastructure, particularly pipelines (74%). Our results were sensitive to power plant heat rate (85-190% of the base case), facility lifetime (89-169%), number of wells per site (16-100%), well lifetime (92-154%) and pipeline right of way (58-142%). When replicated for other gas-producing regions and different fuels, our approach offers a route to enable empirically grounded comparisons of the land footprint of energy choices.

  12. Product Carbon Footprints and Their Uncertainties in Comparative Decision Contexts

    PubMed Central

    Dao, Hai M.; Phan, Lam T.; de Snoo, Geert R.

    2015-01-01

    In response to growing awareness of climate change, requests to establish product carbon footprints have been increasing. Product carbon footprints are life cycle assessments restricted to just one impact category, global warming. Product carbon footprint studies generate life cycle inventory results, listing the environmental emissions of greenhouse gases from a product’s lifecycle, and characterize these by their global warming potentials, producing product carbon footprints that are commonly communicated as point values. In the present research we show that the uncertainties surrounding these point values necessitate more sophisticated ways of communicating product carbon footprints, using different sizes of catfish (Pangasius spp.) farms in Vietnam as a case study. As most product carbon footprint studies only have a comparative meaning, we used dependent sampling to produce relative results in order to increase the power for identifying environmentally superior products. We therefore argue that product carbon footprints, supported by quantitative uncertainty estimates, should be used to test hypotheses, rather than to provide point value estimates or plain confidence intervals of products’ environmental performance. PMID:25781175

  13. Using Model-Based Systems Engineering To Provide Artifacts for NASA Project Life-Cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  14. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term.

  15. Inventory Data on Commercial Broiler Chicken Production System using Life Cycle Assessment Approach: A Case Study

    NASA Astrophysics Data System (ADS)

    Suffian, S. A.; Sidek, A. A.; Yusof, H. M.; Al-Hazza, M. H. F.

    2018-01-01

    An inventory analysis of the life cycle of broiler chicken production from cradle-to-gate perspective was carried out with the aim to identify possible input and output parameters involved in the system. To do so, broiler chicken production in Myra Chicken Farm and Services was investigated in detail. Result shows the inventory data on feed consumption, transportation, physical performance parameter and other utilities that affect the product which is broilers. Broilers production in fact shows escalation year by year because of high demand from consumer. A cradle-to-gate assessment was conducted based on ISO 14040/14044 guidelines. Inventory data was gathered from farmers and available literature. Improving all the input and output system will increase the level of productivity and the cost of the production. Thus, at the end of the research, it will able to make industry player to understand and take into consideration the solutions in order to promote a green broiler chicken production.

  16. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  17. Assessment Methods for Well Integrity During the Hydraulic Fracturing Cycle, March 11, 2011

    EPA Pesticide Factsheets

    The focus of this assessment is to concentrate on well integrity during drilling & completion activities associated with running & cementing of production casing operations, completion activities including the HF process & post-frac activities.

  18. Earth system model simulations show different feedback strengths of the terrestrial carbon cycle under glacial and interglacial conditions

    NASA Astrophysics Data System (ADS)

    Adloff, Markus; Reick, Christian H.; Claussen, Martin

    2018-04-01

    In simulations with the MPI Earth System Model, we study the feedback between the terrestrial carbon cycle and atmospheric CO2 concentrations under ice age and interglacial conditions. We find different sensitivities of terrestrial carbon storage to rising CO2 concentrations in the two settings. This result is obtained by comparing the transient response of the terrestrial carbon cycle to a fast and strong atmospheric CO2 concentration increase (roughly 900 ppm) in Coupled Climate Carbon Cycle Model Intercomparison Project (C4MIP)-type simulations starting from climates representing the Last Glacial Maximum (LGM) and pre-industrial times (PI). In this set-up we disentangle terrestrial contributions to the feedback from the carbon-concentration effect, acting biogeochemically via enhanced photosynthetic productivity when CO2 concentrations increase, and the carbon-climate effect, which affects the carbon cycle via greenhouse warming. We find that the carbon-concentration effect is larger under LGM than PI conditions because photosynthetic productivity is more sensitive when starting from the lower, glacial CO2 concentration and CO2 fertilization saturates later. This leads to a larger productivity increase in the LGM experiment. Concerning the carbon-climate effect, it is the PI experiment in which land carbon responds more sensitively to the warming under rising CO2 because at the already initially higher temperatures, tropical plant productivity deteriorates more strongly and extratropical carbon is respired more effectively. Consequently, land carbon losses increase faster in the PI than in the LGM case. Separating the carbon-climate and carbon-concentration effects, we find that they are almost additive for our model set-up; i.e. their synergy is small in the global sum of carbon changes. Together, the two effects result in an overall strength of the terrestrial carbon cycle feedback that is almost twice as large in the LGM experiment as in the PI experiment. For PI, ocean and land contributions to the total feedback are of similar size, while in the LGM case the terrestrial feedback is dominant.

  19. Environmental Performance of Kettle Production: Product Life Cycle Assessment

    NASA Astrophysics Data System (ADS)

    Marcinkowski, Andrzej; Zych, Krzysztof

    2017-12-01

    The main objective of this paper is to compare the environmental impact caused by two different types of water boiling processes. The aim was achieved thanks to product life cycle assessment (LCA) conducted for stovetop and electric kettles. A literature review was carried out. A research model was worked out on the basis of data available in literature as well as additional experiments. In order to have a better opportunity to compare LCA results with reviewed literature, eco-indicator 99 assessment method was chosen. The functional unit included production, usage and waste disposal of each product (according to from cradle to grave approach) where the main function is boiling 3360 l of water during 4-year period of time. A very detailed life cycle inventory was carried out. The mass of components was determined with accuracy of three decimal places (0.001 g). The majority of environmental impact is caused by electricity or natural gas consumption during usage stage: 92% in case of the electric and kettle and 99% in case of stovetop one. Assembly stage contributed in 7% and 0.8% respectively. Uncertainty and sensitivity analyses took into consideration various waste scenario patterns as well as demand for transport. Environmental impact turned out to be strongly sensitive to a chosen pattern of energy delivery (electricity mix) which determined final comparison results. Basing on LCA results, some improvements of products were suggested. The boiling time optimization was pointed out for electric kettle's efficiency improvement. Obtained results can be used by manufacturers in order to improve their eco-effectiveness. Moreover, conclusions following the research part can influence the future choices of home appliances users.

  20. Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less

  1. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  2. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Kitao, Akio

    2013-07-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  3. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    PubMed

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  4. Energy use and climate change improvements of Li/S batteries based on life cycle assessment

    NASA Astrophysics Data System (ADS)

    Arvidsson, Rickard; Janssen, Matty; Svanström, Magdalena; Johansson, Patrik; Sandén, Björn A.

    2018-04-01

    We present a life cycle assessment (LCA) study of a lithium/sulfur (Li/S) cell regarding its energy use (in electricity equivalents, kWhel) and climate change (in kg carbon dioxide equivalents, CO2 eq) with the aim of identifying improvement potentials. Possible improvements are illustrated by departing from a base case of Li/S battery design, electricity from coal power, and heat from natural gas. In the base case, energy use is calculated at 580 kWhel kWh-1 and climate change impact at 230 kg CO2 eq kWh-1 of storage capacity. The main contribution to energy use comes from the LiTFSI electrolyte salt production and the main contribution to climate change is electricity use during the cell production stage. By (i) reducing cell production electricity requirement, (ii) sourcing electricity and heat from renewable sources, (iii) improving the specific energy of the Li/S cell, and (iv) switching to carbon black for the cathode, energy use and climate change impact can be reduced by 54 and 93%, respectively. For climate change, our best-case result of 17 kg CO2 eq kWh-1 is of similar magnitude as the best-case literature results for lithium-ion batteries (LIBs). The lithium metal requirement of Li/S batteries and LIBs are also of similar magnitude.

  5. Environmental and human health assessment of life cycle of nanoTiO2 functionalized porcelain stoneware tile.

    PubMed

    Pini, Martina; Bondioli, Federica; Montecchi, Rita; Neri, Paolo; Ferrari, Anna Maria

    2017-01-15

    Recently, there has been a rise in the interest in nanotechnology due to its enormous potential for the development of new products and applications with higher performance and new functionalities. However, while nanotechnology might revolutionize a number of industrial and consumer sectors, there are uncertainties and knowledge gaps regarding toxicological effects of this emerging science. The goal of this research concerns the implementation into Life Cycle Assessment (LCA) of preliminary frameworks developed to evaluate human toxicity and exposure factors related to the potential nanoparticle releases that could occur during the life cycle steps of a functionalized building material. The present LCA case study examines the ecodesign of nanoTiO 2 functionalized porcelain stoneware tile production. The aim of this investigation is to manufacture new eco-friendly products in order to protect human health and ecosystem quality and to offer the market, materials with higher technological properties obtained by the addition of specific nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Life cycle inventory of oil palm lumber production: A gate-to-gate case study

    NASA Astrophysics Data System (ADS)

    Shamsudin, Noor Ainna; Sahid, Ismail; Mokhtar, Anis; Muhamad, Halimah; Ahmad, Shamim

    2018-04-01

    Life Cycle Assessment (LCA) has been applied in the Malaysian oil palm industry since 2010. It is important to ensure that this main industry is ready to meet the demands and expectations of European market on the environmental performance of the oil palm industry. In addition, oil palm biomass, especially oil palm trunk (OPT) are abundantly available after replanting every year. In order to maximize the usage of OPT as a green product, it can be converted to palm lumber as a value-added product. Palm lumber act as a basis product from OPT before it is converted to panel product such as plywood, sandwich board and so on. However, the LCA study on palm lumber production is still scarce in Malaysia. Hence, this paper aims to perform and collect the inventory data for palm lumber production, which is known as Life Cycle Inventory (LCI). A gate-to-gate system boundary and the functional unit of 1 m3 of palm lumber produced have been used in this study. This inventory data was collected from three batches of the production cycle. The inputs are mainly the raw materials which are the OPT and the energy from diesel and electricity from the grid. Generally, each consumption of input such as energy and fossil fuel were different at each stage of palm lumber production. Kiln-drying represents a prominent stage in terms of energy consumption, which electrical use in the dryer represents 94% of total electrical grid consumption as compared to another stage of palm lumber production. By adding the inventory information especially in the downstream sector of biomass industry, hopefully it can improve the sustainability of oil palm industry in Malaysia.

  7. Simulation of annual plankton productivity cycle in the Black Sea by a one-dimensional physical-biological model

    NASA Astrophysics Data System (ADS)

    Oguz, Temel; Ducklow, Hugh; Malanotte-Rizzoli, Paola; Tugrul, Suleyman; Nezlin, Nikolai P.; Unluata, Umit

    1996-07-01

    The annual cycle of the plankton dynamics in the central Black Sea is studied by a one-dimensional vertically resolved physical-biological upper ocean model, coupled with the Mellor-Yamada level 2.5 turbulence closure scheme. The biological model involves interactions between the inorganic nitrogen (nitrate, ammonium), phytoplankton and herbivorous zooplankton biomasses, and detritus. Given a knowledge of physical forcing, the model simulates main observed seasonal and vertical characteristic features, in particular, formation of the cold intermediate water mass and yearly evolution of the upper layer stratification, the annual cycle of production with the fall and the spring blooms, and the subsurface phytoplankton maximum layer in summer, as well as realistic patterns of particulate organic carbon and nitrogen. The computed seasonal cycles of the chlorophyll and primary production distributions over the euphotic layer compare reasonably well with the data. Initiation of the spring bloom is shown to be critically dependent on the water column stability. It commences as soon as the convective mixing process weakens and before the seasonal stratification of surface waters begins to develop. It is followed by a weaker phytoplankton production at the time of establishment of the seasonal thermocline in April. While summer nutrient concentrations in the mixed layer are low enough to limit production, the layer between the thermocline and the base of the euphotic zone provides sufficient light and nutrient to support subsurface phytoplankton development. The autumn bloom takes place sometime between October and December depending on environmental conditions. In the case of weaker grazing pressure to control the growth rate, the autumn bloom shifts to December-January and emerges as the winter bloom, or, in some cases, is connected with the spring bloom to form one unified continuous bloom structure during the January-March period. These bloom structures are similar to the year-to-year variabilities present in the data.

  8. Indirect food web interactions mediated by predator–rodent dynamics: relative roles of lemmings and voles

    PubMed Central

    Ims, Rolf A.; Henden, John-André; Thingnes, Anders V.; Killengreen, Siw T.

    2013-01-01

    Production cycles in birds are proposed as prime cases of indirect interactions in food webs. They are thought to be driven by predators switching from rodents to bird nests in the crash phase of rodent population cycles. Although rodent cycles are geographically widespread and found in different rodent taxa, bird production cycles appear to be most profound in the high Arctic where lemmings dominate. We hypothesized that this may be due to arctic lemmings inducing stronger predator responses than boreal voles. We tested this hypothesis by estimating predation rates in dummy bird nests during a rodent cycle in low-Arctic tundra. Here, the rodent community consists of a spatially variable mix of one lemming (Lemmus lemmus) and two vole species (Myodes rufocanus and Microtus oeconomus) with similar abundances. In consistence with our hypothesis, lemming peak abundances predicted well crash-phase nest predation rates, whereas the vole abundances had no predictive ability. Corvids were found to be the most important nest predators. Lemmings appear to be accessible to the whole predator community which makes them particularly powerful drivers of food web dynamics. PMID:24173526

  9. An evidential reasoning-based AHP approach for the selection of environmentally-friendly designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NG, C.Y., E-mail: ng.cy@cityu.edu.hk

    Due to the stringent environmental regulatory requirements being imposed by cross-national bodies in recent years, manufacturers have to minimize the environmental impact of their products. Among those environmental impact evaluation tools available, Life Cycle Assessment (LCA) is often employed to quantify the product's environmental impact throughout its entire life cycle. However, owing to the requirements of expert knowledge in environmental science and vast effort for data collection in carrying out LCA, as well as the common absence of complete product information during product development processes, there is a need to develop a more suitable tool for product designers. An evidentialmore » reasoning-based approach, which aims at providing a fast-track method to perform design alternative evaluations for non-LCA experts, is therefore introduced as a new initiative to deal with the incomplete or uncertain information. The proposed approach also enables decision makers to quantitatively assess the life cycle phases and design alternatives by comparing their potential environmental impacts, thus effectively and efficiently facilitates the identification of greener designs. A case application is carried out to demonstrate the applicability of the proposed approach.« less

  10. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  11. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  12. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  13. 7 CFR 1437.504 - Notice of loss for covered tropical crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crops the obligation to harvest ends with the end of the life-cycle for the plantings that were in... acreage for the full crop year in the case of a perennial plant and for the full life of the plants for... perennial plants, all production irrespective of whether the production occurs in the same crop year. (iii...

  14. Stochastic Technology Choice Model for Consequential Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; Bardow, André; Suh, Sangwon

    2016-12-06

    Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or general equilibrium models. Such models are useful for integrating market effects into CLCA, but also have well-recognized limitations such as the poor granularity of the sectoral definition and the assumption of perfect oversight by all economic agents. Building on the Rectangular-Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to market imperfections and information asymmetry in a stochastic setting. In a case study on rice production, we demonstrate that the proposed approach allows modeling of complex production technology mixes and their expected environmental outcomes under uncertainty, at a high level of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal decisions by economic agents significantly affects technology mixes and associated greenhouse gas (GHG) emissions of the system under study. The case study also shows the model's ability to determine both the average and marginal environmental impacts of a product in response to changes in the quantity of final demand.

  15. Using project life-cycles as guide for timing the archival of scientific data and supporting documentation

    NASA Astrophysics Data System (ADS)

    Martinez, E.; Glassy, J. M.; Fowler, D. K.; Khayat, M.; Olding, S. W.

    2014-12-01

    The NASA Earth Science Data Systems Working Groups (ESDSWG) focuses on improving technologies and processes related to science discovery and preservation. One particular group, the Data Preservation Practices, is defining a set of guidelines to aid data providers in planning both what to submit for archival, and when to submit artifacts, so that the archival process can begin early in the project's life cycle. This has the benefit of leveraging knowledge within the project before staff roll off to other work. In this poster we describe various project archival use cases and identify possible archival life cycles that map closely to the pace and flow of work. To understand "archival life cycles", i.e., distinct project phases that produce archival artifacts such as instrument capabilities, calibration reports, and science data products, the workig group initially mapped the archival requirements defined in the Preservation Content Specification to the typical NASA project life cycle. As described in the poster, this work resulted in a well-defined archival life cycle, but only for some types of projects; it did not fit well for condensed project life cycles experienced within airborne and balloon campaigns. To understand the archival process for projects with compressed cycles, the working group gathered use cases from various communities. This poster will describe selected uses cases that provided insight into the unique flow of these projects, as well as proposing archival life cycles that map artifacts to projects with compressed timelines. Finally, the poster will conclude with some early recommendations for data providers, which will be captured in a formal Guidelines document - to be published in 2015.

  16. Application of 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite for in situ preparation of deoxyribonucleoside phosphoramidites and their use in polymer-supported synthesis of oligodeoxyribonucleotides.

    PubMed Central

    Nielsen, J; Taagaard, M; Marugg, J E; van Boom, J H; Dahl, O

    1986-01-01

    Deoxyribonucleoside phosphoramidites are prepared in situ from 5'-O,N-protected deoxyribonucleosides and 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite with tetrazole as catalyst, and the solutions applied directly on an automatic solid-phase DNA synthesizer. Using LCAA-CPG support and a cycle time of 12.5 min, oligonucleotides of 16-25 bases are obtained with a DMT-efficiency per cycle of 98.0-99.3%. The crude and fully deblocked products are of a purity comparable to that obtained using purified phosphoramidites. In case of d(G)16 the product was difficult to analyse and a better product was not obtained using doubly protected (O-6 diphenylcarbamoyl) guanine. PMID:3763407

  17. Influence of the impact assessment method on the conclusions of a LCA study. Application to the case of a part made with virgin and recycled HDPE.

    PubMed

    Simões, Carla L; Xará, Susana M; Bernardo, C A

    2011-10-01

    Recent legislation has stressed the need to decide the best end-of-life (EoL) option for post-consumer products considering their full life-cycle and the corresponding overall environmental impacts. The life cycle assessment (LCA) technique has become a common tool to evaluate those impacts. The present study aimed to contribute to the better understanding of the application of this technique, by evaluating the influence of the selection of the life cycle impact assessment (LCIA) method in its results and conclusions. A specific case study was chosen, using previous information related to an anti-glare lamellae (AGL) for highway use, made with virgin and recycled high-density polyethylene (HDPE). Five distinct LCIA methods were used: Eco-indicator 99, CML 2 (2000), EPS 2000, Eco-indicator 95 and EDIP 97. Consistent results between these methods were obtained for the Climate change, Ozone layer depletion, Acidification and Eutrophication environmental indicators. Conversely, the Summer smog indicator showed large discrepancies between impact assessment methods. The work sheds light on the advantages inherent in using various LCIA methods when doing the LCA study of a specific product, thus evidencing complementary analysis perspectives.

  18. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio.

  19. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    PubMed Central

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111

  20. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.

    PubMed

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-03

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .

  1. Using Model-Based Systems Engineering to Provide Artifacts for NASA Project Life-cycle and Technical Reviews

    NASA Technical Reports Server (NTRS)

    Parrott, Edith L.; Weiland, Karen J.

    2017-01-01

    This paper is for the AIAA Space Conference. The ability of systems engineers to use model-based systems engineering (MBSE) to generate self-consistent, up-to-date systems engineering products for project life-cycle and technical reviews is an important aspect for the continued and accelerated acceptance of MBSE. Currently, many review products are generated using labor-intensive, error-prone approaches based on documents, spreadsheets, and chart sets; a promised benefit of MBSE is that users will experience reductions in inconsistencies and errors. This work examines features of SysML that can be used to generate systems engineering products. Model elements, relationships, tables, and diagrams are identified for a large number of the typical systems engineering artifacts. A SysML system model can contain and generate most systems engineering products to a significant extent and this paper provides a guide on how to use MBSE to generate products for project life-cycle and technical reviews. The use of MBSE can reduce the schedule impact usually experienced for review preparation, as in many cases the review products can be auto-generated directly from the system model. These approaches are useful to systems engineers, project managers, review board members, and other key project stakeholders.

  2. Advances in life cycle assessment and emergy evaluation with case studies in gold mining and pineapple production

    NASA Astrophysics Data System (ADS)

    Ingwersen, Wesley W.

    Life cycle assessment (LCA) is an internationally standardized framework for assessing the environmental impacts of products that is rapidly evolving to improve understanding and quantification of how complex product systems depend upon and affect the environment. This dissertation contributes to that evolution through the development of new methods for measuring impacts, estimating the uncertainty of impacts, and measuring ranges of environmental performance, with a focus on product systems in non-OECD countries that have not been well characterized. The integration of a measure of total energy use, emergy, is demonstrated in an LCA of gold from the Yanacocha mine in Peru in the second chapter. A model for estimating the accuracy of emergy results is proposed in the following chapter. The fourth chapter presents a template for LCA-based quantification of the range of environmental performance for tropical agricultural products using the example of fresh pineapple production for export in Costa Rica that can be used to create product labels with environmental information. The final chapter synthesizes how each methodological contribution will together improve the science of measuring product environmental performance.

  3. Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation.

    PubMed

    Ma, Chao; Zhang, Yan-Bo; Ho, Shih-Hsin; Xing, De-Feng; Ren, Nan-Qi; Liu, Bing-Feng

    2017-01-01

    The light/dark cycle is one of the most important factors affecting the microalgal growth and lipid accumulation. Biomass concentration and lipid productivity could be enhanced by optimization of light/dark cycles, and this is considered an effective control strategy for microalgal cultivation. Currently, most research on effects of light/dark cycles on algae is carried out under autotrophic conditions and little information is about the effects under mixotrophic cultivation. At the same time, many studies related to mixotrophic cultivation of microalgal strains, even at large scale, have been performed to obtain satisfactory biomass and lipid production. Therefore, it is necessary to investigate cellular metabolism under autotrophic and mixotrophic conditions at different light/dark cycles. Even though microalgal lipid production under optimal environmental factors has been reported by some researchers, the light/dark cycle and temperature are regarded as separate parameters in their studies. In practical cases, light/dark cycling and temperature variation during the day occur simultaneously. Therefore, studies about the combined effects of light/dark cycles and temperature variation on microalgal lipid production are of practical value, potentially providing significant guidelines for large-scale microalgal cultivation under natural conditions. In this work, cell growth and lipid accumulation of an oleaginous microalgal mutant, Scenedesmus sp. Z-4, were investigated at five light/dark cycles (0 h/24 h, 8 h/16 h, 12 h/12 h, 16 h/8 h, and 24 h/0 h) in batch culture. The results showed that the optimal light/dark cycle was 12 h/12 h, when maximum lipid productivity rates of 56.8 and 182.6 mg L -1  day -1 were obtained under autotrophic and mixotrophic cultivation, respectively. Poor microalgal growth and lipid accumulation appeared in the light/dark cycles of 0 h/24 h and 24 h/0 h under autotrophic condition. Prolonging the light duration was unfavorable to the production of chlorophyll a and b, which was mainly due to photooxidation effect. Polysaccharide was converted into lipid and protein when the light irradiation time increased from 0 to 12 h; however, further increasing irradiation time had a negative effect on lipid accumulation. Due to the dependence of autotrophically cultured cells on light energy, the light/dark cycle has a more remarkable influence on cellular metabolism under autotrophic conditions. Furthermore, the combined effects of temperature variation and light/dark cycle of 12 h/12 h on cell growth and lipid accumulation of microalgal mutant Z-4 were investigated under mixotrophic cultivation, and the results showed that biomass was mainly produced at higher temperatures during the day, and a portion of biomass was converted into lipid under dark condition. The extension of irradiation time was beneficial to biomass accumulation, but not in favor of lipid production. Even though effects of light/dark cycles on autotrophic and mixotrophic cells were not exactly the same, the optimal lipid productivities of Scenedesmus sp. Z-4 under both cultivation conditions were achieved at the light/dark of 12 h/12 h. This may be attributed to its long-term acclimation in natural environment. By combining temperature variation with optimal light/dark cycle of 12 h/12 h, this study will be of great significance for practical microalgae-biodiesel production in the outdoor conditions.

  4. Algae biodiesel life cycle assessment using current commercial data.

    PubMed

    Passell, Howard; Dhaliwal, Harnoor; Reno, Marissa; Wu, Ben; Ben Amotz, Ami; Ivry, Etai; Gay, Marcus; Czartoski, Tom; Laurin, Lise; Ayer, Nathan

    2013-11-15

    Autotrophic microalgae represent a potential feedstock for transportation fuels, but life cycle assessment (LCA) studies based on laboratory-scale or theoretical data have shown mixed results. We attempt to bridge the gap between laboratory-scale and larger scale biodiesel production by using cultivation and harvesting data from a commercial algae producer with ∼1000 m(2) production area (the base case), and compare that with a hypothetical scaled up facility of 101,000 m(2) (the future case). Extraction and separation data are from Solution Recovery Services, Inc. Conversion and combustion data are from the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET). The LCA boundaries are defined as "pond-to-wheels". Environmental impacts are quantified as NER (energy in/energy out), global warming potential, photochemical oxidation potential, water depletion, particulate matter, and total NOx and SOx. The functional unit is 1 MJ of energy produced in a passenger car. Results for the base case and the future case show an NER of 33.4 and 1.37, respectively and GWP of 2.9 and 0.18 kg CO2-equivalent, respectively. In comparison, petroleum diesel and soy diesel show an NER of 0.18 and 0.80, respectively and GWP of 0.12 and 0.025, respectively. A critical feature in this work is the low algal productivity (3 g/m(2)/day) reported by the commercial producer, relative to the much higher productivities (20-30 g/m(2)/day) reported by other sources. Notable results include a sensitivity analysis showing that algae with an oil yield of 0.75 kg oil/kg dry biomass in the future case can bring the NER down to 0.64, more comparable with petroleum diesel and soy biodiesel. An important assumption in this work is that all processes are fully co-located and that no transport of intermediate or final products from processing stage to stage is required. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Carbon footprint of conventional and organic beef production systems: An Italian case study.

    PubMed

    Buratti, C; Fantozzi, F; Barbanera, M; Lascaro, E; Chiorri, M; Cecchini, L

    2017-01-15

    Beef cattle production is a widespread activity in Italy in the agricultural field and determines an important impact on environment and resources consumption. Carbon footprint evaluation is thus necessary to evaluate the contributions of the different stages and the possible improvements of the production chain. In this study, two typical Italian beef production systems, a conventional and an organic one are investigated in order to evaluate the greenhouse gas emissions from "cradle to gate farm" by a Life Cycle Assessment (LCA) approach; the carbon footprint (CF) per 1kg of live weight meat is calculated. The contributions from feed production, enteric fermentation, and manure management are taken into account, in order to compare the life cycle of the two productions; also the carbon balance in soil is evaluated, in order to verify the impact in a life cycle perspective. The results of CF calculation of the two farms show that organic system (24.62kgCO 2eq /kg live weight) produce more GHG emissions than the conventional one (18.21kgCO 2eq /kg live weight) and that the enteric fermentation is the more heavy contribution, with a range of 50-54% of the global CF value. Improvements of the production chain could be realized by accurate feeding strategies, in order to obtain reduction of methane emissions from enteric digestion of cattles. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  7. Sample preparation composite and replicate strategy case studies for assay of solid oral drug products.

    PubMed

    Nickerson, Beverly; Harrington, Brent; Li, Fasheng; Guo, Michele Xuemei

    2017-11-30

    Drug product assay is one of several tests required for new drug products to ensure the quality of the product at release and throughout the life cycle of the product. Drug product assay testing is typically performed by preparing a composite sample of multiple dosage units to obtain an assay value representative of the batch. In some cases replicate composite samples may be prepared and the reportable assay value is the average value of all the replicates. In previously published work by Harrington et al. (2014) [5], a sample preparation composite and replicate strategy for assay was developed to provide a systematic approach which accounts for variability due to the analytical method and dosage form with a standard error of the potency assay criteria based on compendia and regulatory requirements. In this work, this sample preparation composite and replicate strategy for assay is applied to several case studies to demonstrate the utility of this approach and its application at various stages of pharmaceutical drug product development. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Carbon footprint of Breton pâté production: a case study.

    PubMed

    Teixeira, Ricardo; Himeno, Anne; Gustavus, Lori

    2013-10-01

    This study targeted 9 different pork pâtés, produced with pork from different meat production systems (conventional, organic, and other quality certifications). Besides greenhouse gas (GHG) emissions, the study also included a detailed analysis of product nutrition. Results show that the GHG emissions range from 200 g CO2 e per 100 g of product for conventional pork pâtés and 330 g CO2 e per 100 g for organic pork pâtés. Results for organic pâtés are an indirect consequence of the lower productivity of swine feed ingredients. However, if the reference flow unit is nutritional indicator (e.g., calories, protein) instead of 100 g of product, results can be inverted. This fact highlights the difficulty of choosing a functional unit for studies on food products. The function of a food product is to provide quality nutrition, but because there are many different nutritional indicators, life cycle assessment practitioners normally use simple comparisons between amounts. This issue together with the choice of emissions allocation method between pork parts are the main sources of uncertainty. Also, the life cycle of pork production is the main hotspot in the C footprint, accounting for more than 80% of the total emissions. Energy spent for processing and packaging, the only life cycle step that the producer controls directly, accounts for less than 10% of the impact. © 2013 SETAC.

  9. Next-generation sequencing can reveal in vitro-generated PCR crossover products: some artifactual sequences correspond to HLA alleles in the IMGT/HLA database.

    PubMed

    Holcomb, C L; Rastrou, M; Williams, T C; Goodridge, D; Lazaro, A M; Tilanus, M; Erlich, H A

    2014-01-01

    The high-resolution human leukocyte antigen (HLA) genotyping assay that we developed using 454 sequencing and Conexio software uses generic polymerase chain reaction (PCR) primers for DRB exon 2. Occasionally, we observed low abundance DRB amplicon sequences that resulted from in vitro PCR 'crossing over' between DRB1 and DRB3/4/5. These hybrid sequences, revealed by the clonal sequencing property of the 454 system, were generally observed at a read depth of 5%-10% of the true alleles. They usually contained at least one mismatch with the IMGT/HLA database, and consequently, were easily recognizable and did not cause a problem for HLA genotyping. Sometimes, however, these artifactual sequences matched a rare allele and the automatic genotype assignment was incorrect. These observations raised two issues: (1) could PCR conditions be modified to reduce such artifacts? and (2) could some of the rare alleles listed in the IMGT/HLA database be artifacts rather than true alleles? Because PCR crossing over occurs during late cycles of PCR, we compared DRB genotypes resulting from 28 and (our standard) 35 cycles of PCR. For all 21 cell line DNAs amplified for 35 cycles, crossover products were detected. In 33% of the cases, these hybrid sequences corresponded to named alleles. With amplification for only 28 cycles, these artifactual sequences were not detectable. To investigate whether some rare alleles in the IMGT/HLA database might be due to PCR artifacts, we analyzed four samples obtained from the investigators who submitted the sequences. In three cases, the sequences were generated from true alleles. In one case, our 454 sequencing revealed an error in the previously submitted sequence. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Microwave processing of maple sap to maple syrup and maple syrup products.

    PubMed

    Favreau, D; Sosle, V; Raghavan, G S

    2001-01-01

    A study of the physical process of concentration of maple sap to maple syrup and preparation of maple syrup products by microwave heating is described. Duty cycles of 60, 75 and 100% were used for the microwave application. During the process, some of the drying kinetics are discussed, including the reduction of moisture content with time, the progress of the process in terms of increasing sugar concentration and the power absorbed. Obviously, the rate of water removal was higher in case of the higher duty cycles. The total time required for finishing the syrup was also dependent on the initial mass of the load and the initial sugar content. The products obtained were compared with commercial graded products for the quality and met the highest standards prescribed by the industry. The absence of heat damage or browning of the product was identified as a distinct advantage that could be derived from microwave processing of maple syrup.

  11. GIS-based regionalized life cycle assessment: how big is small enough? Methodology and case study of electricity generation.

    PubMed

    Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie

    2012-01-17

    We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.

  12. A method for improving reliability and relevance of LCA reviews: the case of life-cycle greenhouse gas emissions of tap and bottled water.

    PubMed

    Fantin, Valentina; Scalbi, Simona; Ottaviano, Giuseppe; Masoni, Paolo

    2014-04-01

    The purpose of this study is to propose a method for harmonising Life Cycle Assessment (LCA) literature studies on the same product or on different products fulfilling the same function for a reliable and meaningful comparison of their life-cycle environmental impacts. The method is divided in six main steps which aim to rationalize and quicken the efforts needed to carry out the comparison. The steps include: 1) a clear definition of the goal and scope of the review; 2) critical review of the references; 3) identification of significant parameters that have to be harmonised; 4) harmonisation of the parameters; 5) statistical analysis to support the comparison; 6) results and discussion. This approach was then applied to the comparative analysis of the published LCA studies on tap and bottled water production, focussing on Global Warming Potential (GWP) results, with the aim to identify the environmental preferable alternative. A statistical analysis with Wilcoxon's test confirmed that the difference between harmonised GWP values of tap and bottled water was significant. The results obtained from the comparison of the harmonised mean GWP results showed that tap water always has the best environmental performance, even in case of high energy-consuming technologies for drinking water treatments. The strength of the method is that it enables both performing a deep analysis of the LCA literature and obtaining more consistent comparisons across the published LCAs. For these reasons, it can be a valuable tool which provides useful information for both practitioners and decision makers. Finally, its application to the case study allowed both to supply a description of systems variability and to evaluate the importance of several key parameters for tap and bottled water production. The comparative review of LCA studies, with the inclusion of a statistical decision test, can validate and strengthen the final statements of the comparison. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powers, S. E.

    2005-05-01

    Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.

  14. Western Mountain Initiative - Background

    Science.gov Websites

    , and degraded water quality in mountain lakes and streams. In each case, ecosystem thresholds were dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and . Third, Western mountain ecosystems are important to society, providing water, wood products, carbon

  15. 19 CFR 207.24 - Hearing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.24 Hearing. (a) In... closed, presentations at the hearing shall not include business proprietary information. Notwithstanding... the Secretary no later than three (3) business days before the hearing. In the case of testimony to be...

  16. Optimum performance of explosives in a quasistatic detonation cycle

    NASA Astrophysics Data System (ADS)

    Baker, Ernest L.; Stiel, Leonard I.

    2017-01-01

    Analyses were conducted on the behavior of explosives in a quasistatic detonation cycle. This type of cycle has been proposed for the determination of the maximum work that can be performed by the explosive. The Jaguar thermochemical equilibrium program enabled the direct analyses of explosive performance at the various steps in the detonation cycle. In all cases the explosive is initially detonated to a point on the Hugoniot curve for the reaction products. The maximum useful work that can be obtained from the explosive is equal to the P-V work on the isentrope for expansion after detonation to atmospheric pressure, minus one-half the square of the particle velocity at the detonation point. This quantity is calculated form the internal energy of the explosive at the initial and final atmospheric temperatures. Cycle efficiencies (net work/ heat added) are also calculated with these procedures. For several explosives including TNT, RDX, and aluminized compositions, maximum work effects were established through the Jaguar calculations for Hugoniot points corresponding to C-J, overdriven, underdriven and constant volume detonations. Detonation to the C-J point is found to result in the maximum net work in all cases.

  17. Life cycle water use for electricity generation: a review and harmonization of literature estimates

    NASA Astrophysics Data System (ADS)

    Meldrum, J.; Nettles-Anderson, S.; Heath, G.; Macknick, J.

    2013-03-01

    This article provides consolidated estimates of water withdrawal and water consumption for the full life cycle of selected electricity generating technologies, which includes component manufacturing, fuel acquisition, processing, and transport, and power plant operation and decommissioning. Estimates were gathered through a broad search of publicly available sources, screened for quality and relevance, and harmonized for methodological differences. Published estimates vary substantially, due in part to differences in production pathways, in defined boundaries, and in performance parameters. Despite limitations to available data, we find that: water used for cooling of thermoelectric power plants dominates the life cycle water use in most cases; the coal, natural gas, and nuclear fuel cycles require substantial water per megawatt-hour in most cases; and, a substantial proportion of life cycle water use per megawatt-hour is required for the manufacturing and construction of concentrating solar, geothermal, photovoltaic, and wind power facilities. On the basis of the best available evidence for the evaluated technologies, total life cycle water use appears lowest for electricity generated by photovoltaics and wind, and highest for thermoelectric generation technologies. This report provides the foundation for conducting water use impact assessments of the power sector while also identifying gaps in data that could guide future research.

  18. Life cycle assessment of fuel ethanol produced from soluble sugar in sweet sorghum stalks in North China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning; Yang, Yang; Cai, Hao

    This paper describes the results of a life cycle assessment of sweet sorghum stalk (SSS)-based ethanol in North China. We determined the environmental performance of SSS-based ethanol and examined its advantages and disadvantages, as compared to gasoline, focusing on the life cycle of feedstock production, transportation, ethanol production and distribution, and use. The GREET transportation model and the method developed by the Centre of Environmental Sciences at Leiden University (CML method) were used to compile a life cycle inventory and to assess environmental impacts. Results indicate that SSS-based ethanol has advantages in terms of energy consumption, with a well tomore » wheel decrease of 85% fossil energy and 44% global warming potential, as compared with gasoline. Abiotic depletion potential, acidification potential, and photochemical ozone creation potential were also 50–90% lower than in the case of gasoline, while human health toxic potential was 36% lower. However, SSS-based sorghum did not have advantages over gasoline in terms of life cycle cost, land use, and water consumption. Results indicate that such an evaluation cannot just consider a few types of environmental impacts, researchers should promote systematic and comprehensive life cycle assessment of ethanol to guide the development of an energy strategy for China.« less

  19. Trends in liability affecting technical writers

    NASA Technical Reports Server (NTRS)

    Driskill, L. P.

    1981-01-01

    Liability of technical writers for defective products is explored. Documents generated during a product's life cycle (including design memos, design tests, clinical trials, trial use reports, letters, and proposals) become relevant because they are likely to become the only available means of showing that the product was not defectively designed. These documents become the evidence that the product underwent balanced and well considered planning, development, testing, quality control, and field testing. The predicted increased involvement of technical writers in the prevention and defense of product liability claims is cited in view of a greater number of cases turning on "failure to warn".

  20. Deliquification (SIC) of gas wells. Liberal District-Amoco Production Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, R. Jr.

    Various solutions are presented to the problem of deliquefying gas wells to achieve maximum ultimate recovery and avoid premature abandonment. Advantages and disadvantages of each method of deliquefication are discussed. The methods described include blowing up the casing, siphon strings (gas and liquids up tubing, or gas up casing-tubing annulus, and liquids up tubing), gas cycling, compression, bottomhole separators, plunger lift, and sucker rod pumping.

  1. An optimization methodology for heterogeneous minor actinides transmutation

    NASA Astrophysics Data System (ADS)

    Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald

    2018-04-01

    In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.

  2. Product vs corporate carbon footprint: Some methodological issues. A case study and review on the wine sector.

    PubMed

    Navarro, Alejandra; Puig, Rita; Fullana-I-Palmer, Pere

    2017-03-01

    Carbon footprint (CF) is nowadays one of the most widely used environmental indicators. The scope of the CF assessment could be corporate (when all production processes of a company are evaluated, together with upstream and downstream processes following a life cycle approach) or product (when one of the products is evaluated throughout its life cycle). Our hypothesis was that usually product CF studies (PCF) collect corporate data, because it is easier for companies to obtain them than product data. Six main methodological issues to take into account when collecting corporate data to be used for PCF studies were postulated and discussed in the present paper: fugitive emissions, credits from waste recycling, use of "equivalent factors", reference flow definition, accumulation and allocation of corporate values to minor products. A big project with 18 wineries, being wine one of the most important agri-food products assessed through CF methodologies, was used to study and to exemplify these 6 methodological issues. One of the main conclusions was that indeed, it is possible to collect corporate inventory data in a per year basis to perform a PCF, but having in mind the 6 methodological issues described here. In the literature, most of the papers are presenting their results as a PCF, while they collected company data and obtained, in fact, a "key performance indicator" (ie., CO 2 eq emissions per unit of product produced), which is then used as a product environmental impact figure. The methodology discussed in this paper for the wine case study is widely applicable to any other product or industrial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Two-step sensitivity testing of parametrized and regionalized life cycle assessments: methodology and case study.

    PubMed

    Mutel, Christopher L; de Baan, Laura; Hellweg, Stefanie

    2013-06-04

    Comprehensive sensitivity analysis is a significant tool to interpret and improve life cycle assessment (LCA) models, but is rarely performed. Sensitivity analysis will increase in importance as inventory databases become regionalized, increasing the number of system parameters, and parametrized, adding complexity through variables and nonlinear formulas. We propose and implement a new two-step approach to sensitivity analysis. First, we identify parameters with high global sensitivities for further examination and analysis with a screening step, the method of elementary effects. Second, the more computationally intensive contribution to variance test is used to quantify the relative importance of these parameters. The two-step sensitivity test is illustrated on a regionalized, nonlinear case study of the biodiversity impacts from land use of cocoa production, including a worldwide cocoa products trade model. Our simplified trade model can be used for transformable commodities where one is assessing market shares that vary over time. In the case study, the highly uncertain characterization factors for the Ivory Coast and Ghana contributed more than 50% of variance for almost all countries and years examined. The two-step sensitivity test allows for the interpretation, understanding, and improvement of large, complex, and nonlinear LCA systems.

  4. Techno-economic and life-cycle assessment of an attached growth algal biorefinery.

    PubMed

    Barlow, Jay; Sims, Ronald C; Quinn, Jason C

    2016-11-01

    This study examined the sustainability of generating renewable diesel via hydrothermal liquefaction (HTL) of biomass from a rotating algal biofilm reactor. Pilot-scale growth studies and laboratory-scale HTL experiments were used to validate an engineering system model. The engineering system model served as the foundation to evaluate the economic feasibility and environmental impact of the system at full scale. Techno-economic results indicate that biomass feedstock costs dominated the minimum fuel selling price (MFSP), with a base case of $104.31per gallon. Life-cycle assessment results show a base-case global warming potential (GWP) of 80gCO2-eMJ(-1) and net energy ratio (NER) of 1.65 based on a well-to-product system boundary. Optimization of the system reduces MFSP, GWP and NER to $11.90Gal(-1), -44gCO2-eMJ(-1), and 0.33, respectively. The systems-level impacts of integrating algae cultivation with wastewater treatment were found to significantly reduce environmental impact. Sensitivity analysis showed that algal productivity most significantly affected fuel selling price, emphasizing the importance of optimizing biomass productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Life cycle assessment of EPS and CPB inserts: design considerations and end of life scenarios.

    PubMed

    Tan, Reginald B H; Khoo, Hsien H

    2005-02-01

    Expanded polystyrene (EPS) and corrugated paperboard (CPB) are used in many industrial applications, such as containers, shock absorbers or simply as inserts. Both materials pose two different types of environmental problems. The first is the pollution and resource consumption that occur during the production of these materials; the second is the growing landfills that arise out of the excessive disposal of these packaging materials. Life cycle assessment or LCA will be introduced in this paper as a useful tool to compare the environmental performance of both EPS and CPB throughout their life cycle stages. This paper is divided into two main parts. The first part investigates the environmental impacts of the production of EPS and CPB from 'cradle-to-gate', comparing two inserts--both the original and proposed new designs. In the second part, LCA is applied to investigate various end-of-life cases for the same materials. The study will evaluate the environmental impacts of the present waste management practices in Singapore. Several 'what-if' cases are also discussed, including various percentages of landfilling and incineration. The SimaPro LCA Version 5.0 software's Eco-indicator 99 method is used to investigate the following five environmental impact categories: climate change, acidification/eutrophication, ecotoxicity, fossil fuels and respiratory inorganics.

  6. Gravity wave initiated convection

    NASA Astrophysics Data System (ADS)

    Hung, R. J.

    1990-09-01

    The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.

  7. Integration of sustainability into process simulaton of a dairy process

    USDA-ARS?s Scientific Manuscript database

    Life cycle analysis, a method used to quantify the energy and environmental flows of a process or product on the environment, is increasingly utilized by food processors to develop strategies to lessen the carbon footprint of their operations. In the case of the milk supply chain, the method requir...

  8. The importance of user centered design methods applied to the design of a new workstation: a case study.

    PubMed

    Duschenes, Ronaldo; Mendes, Andressa; Betiol, Adriana; Barreto, Suzana

    2012-01-01

    This paper presents a case study of the application of user centered design methodologies in the product development for a line of ergonomic office furniture. The study aimed to analyze the experience of using a workstation from the perspective of two groups of users, installers and end users. The observation of users in their natural context of use not only allowed the development team to identify key needs and strategies of the users, transforming them into design solutions, but mainly it warned them of the importance and impact of user involvement in the product development cycle.

  9. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    NASA Astrophysics Data System (ADS)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  10. Including exposure variability in the life cycle impact assessment of indoor chemical emissions: the case of metal degreasing.

    PubMed

    Golsteijn, Laura; Huizer, Daan; Hauck, Mara; van Zelm, Rosalie; Huijbregts, Mark A J

    2014-10-01

    The present paper describes a method that accounts for variation in indoor chemical exposure settings and accompanying human toxicity in life cycle assessment (LCA). Metal degreasing with dichloromethane was used as a case study to show method in practice. We compared the human toxicity related to the degreasing of 1m(2) of metal surface in different exposure scenarios for industrial workers, professional users outside industrial settings, and home consumers. The fraction of the chemical emission that is taken in by exposed individuals (i.e. the intake fraction) was estimated on the basis of operational conditions (e.g. exposure duration), and protective measures (e.g. local exhaust ventilation). The introduction of a time-dependency and a correction for protective measures resulted in reductions in the intake fraction of up to 1.5 orders of magnitude, compared to application of existing, less advanced models. In every exposure scenario, the life cycle impacts for human toxicity were mainly caused by indoor exposure to metal degreaser (>60%). Emissions released outdoors contributed up to 22% of the life cycle impacts for human toxicity, and the production of metal degreaser contributed up to 19%. These findings illustrate that human toxicity from indoor chemical exposure should not be disregarded in LCA case studies. Particularly when protective measures are taken or in the case of a short duration (1h or less), we recommend the use of our exposure scenario-specific approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A comparison of production system life cycle models

    NASA Astrophysics Data System (ADS)

    Attri, Rajesh; Grover, Sandeep

    2012-09-01

    Companies today need to keep up with the rapidly changing market conditions to stay competitive. The main issues in this paper are related to a company's market and its competitors. The prediction of market behavior is helpful for a manufacturing enterprise to build efficient production systems. However, these predictions are usually not reliable. A production system is required to adapt to changing markets, but such requirement entails higher cost. Hence, analyzing different life cycle models of the production system is necessary. In this paper, different life cycle models of the production system are compared to evaluate the distinctive features and the limitations of each model. Furthermore, the difference between product life cycle and production life cycle is summarized, and the effect of product life cycle on production life cycle is explained. Finally, a production system life cycle model, along with key activities to be performed in each stage, is proposed specifically for the manufacturing sector.

  12. An economic production model for deteriorating items and time dependent demand with rework and multiple production setups

    NASA Astrophysics Data System (ADS)

    Uthayakumar, R.; Tharani, S.

    2017-12-01

    Recently, much emphasis has given to study the control and maintenance of production inventories of the deteriorating items. Rework is one of the main issues in reverse logistic and green supply chain, since it can reduce production cost and the environmental problem. Many researchers have focused on developing rework model, but few of them have developed model for deteriorating items. Due to this fact, we take up productivity and rework with deterioration as the major concern in this paper. In this paper, a production-inventory model with deteriorative items in which one cycle has n production setups and one rework setup (n, 1) policy is considered for deteriorating items with stock-dependent demand in case 1 and exponential demand in case 2. An effective iterative solution procedure is developed to achieve optimal time, so that the total cost of the system is minimized. Numerical and sensitivity analyses are discussed to examine the outcome of the proposed solution procedure presented in this research.

  13. The cleanroom case study in the Software Engineering Laboratory: Project description and early analysis

    NASA Technical Reports Server (NTRS)

    Green, Scott; Kouchakdjian, Ara; Basili, Victor; Weidow, David

    1990-01-01

    This case study analyzes the application of the cleanroom software development methodology to the development of production software at the NASA/Goddard Space Flight Center. The cleanroom methodology emphasizes human discipline in program verification to produce reliable software products that are right the first time. Preliminary analysis of the cleanroom case study shows that the method can be applied successfully in the FDD environment and may increase staff productivity and product quality. Compared to typical Software Engineering Laboratory (SEL) activities, there is evidence of lower failure rates, a more complete and consistent set of inline code documentation, a different distribution of phase effort activity, and a different growth profile in terms of lines of code developed. The major goals of the study were to: (1) assess the process used in the SEL cleanroom model with respect to team structure, team activities, and effort distribution; (2) analyze the products of the SEL cleanroom model and determine the impact on measures of interest, including reliability, productivity, overall life-cycle cost, and software quality; and (3) analyze the residual products in the application of the SEL cleanroom model, such as fault distribution, error characteristics, system growth, and computer usage.

  14. Comparative Human Health Impact Assessment of Engineered Nanomaterials in the Framework of Life Cycle Assessment.

    PubMed

    Fransman, Wouter; Buist, Harrie; Kuijpers, Eelco; Walser, Tobias; Meyer, David; Zondervan-van den Beuken, Esther; Westerhout, Joost; Klein Entink, Rinke H; Brouwer, Derk H

    2017-07-01

    For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO 2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available. © 2016 Society for Risk Analysis.

  15. Comparison of the Environment, Health, And Safety Characteristics of Advanced Thorium- Uranium and Uranium-Plutonium Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Ault, Timothy M.

    The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.

  16. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  17. Nanomaterial Case Study: A Comparison of Multiwalled ...

    EPA Pesticide Factsheets

    The draft document is intended to be used as part of a process to identify what is known and, more importantly, what is not yet known that could be of value in assessing the broad implications of specific nanomaterials. Like previous case studies (see History/ Chronology below), this draft case study on multiwalled carbon nanotubes (MWCNTs) is based on the comprehensive environmental assessment (CEA) approach, which consists of both a framework and a process. Unlike previous case studies this case study incorporates information about a traditional (i.e., “non-nano-enabled”) product, against which the MWCNT flame-retardant coating applied to upholstery textiles (i.e., the “nano-enabled” product) can be compared. The comparative element serves dual-purposes: 1) to provide a more robust database that facilitates identification of data gaps related to the nano-enabled product and 2) to provide a context for identifying key factors and data gaps for future efforts to evaluate risk-related trade-offs between a nano-enabled and non-nano-enabled product. This draft case study does not represent a completed or even a preliminary assessment of MWCNTs; rather, it uses the CEA framework to structure information from available literature and other resources (e.g., government reports) on the product life cycle, fate and transport processes in various environmental media, exposure-dose characterization, and impacts in human, ecological, and environmental receptors.

  18. Lean manufacturing analysis to reduce waste on production process of fan products

    NASA Astrophysics Data System (ADS)

    Siregar, I.; Nasution, A. A.; Andayani, U.; Sari, R. M.; Syahputri, K.; Anizar

    2018-02-01

    This research is based on case study that being on electrical company. One of the products that will be researched is the fan, which when running the production process there is a time that is not value-added, among others, the removal of material which is not efficient in the raw materials and component molding fan. This study aims to reduce waste or non-value added activities and shorten the total lead time by using the tools Value Stream Mapping. Lean manufacturing methods used to analyze and reduce the non-value added activities, namely the value stream mapping analysis tools, process mapping activity with 5W1H, and tools 5 whys. Based on the research note that no value-added activities in the production process of a fan of 647.94 minutes of total lead time of 725.68 minutes. Process cycle efficiency in the production process indicates that the fan is still very low at 11%. While estimates of the repair showed a decrease in total lead time became 340.9 minutes and the process cycle efficiency is greater by 24%, which indicates that the production process has been better.

  19. Tools and Strategies for Product Life Cycle Management ñ A Case Study in Foundry

    NASA Astrophysics Data System (ADS)

    Patil, Rajashekar; Kumar, S. Mohan; Abhilash, E.

    2012-08-01

    Advances in information and communication technology (ICT) have opened new possibilities of collaborations among the customers, suppliers, manufactures and partners to effectively tackle various business challenges. Product Life Cycle Management(PLM) has been a proven approach for Original Equipment Manufacturers (OEMs) to increase their productivity, improve their product quality, speed up delivery, and increase their profit and to become more efficient. However, their Tier 2 and Tier 3 suppliers like foundry industries are still in their infancy without adopting PLM. Hence to enhance their understanding, the basic concepts, the tools and strategies for PLM are presented is this paper. By selecting and implementing appropriate PLM strategies in a small foundry, an attempt was also made to understand the immediate benefits of using PLM tools (commercial PLM software and digital manufacturing tools). This study indicated a reduction in lead time and improved utilization of organizational resources in the production of automobile impeller. These observations may be further extrapolated to other multiproduct, multi-discipline and multi-customer companies to realize the advantages of using PLM technology

  20. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Brayard, Philippe; Chouvenc, Pierre; Woinet, Bertrand

    2013-02-01

    This paper shows how to optimize the primary drying phase, for both product quality and drying time, of a parenteral formulation via design space. A non-steady state model, parameterized with experimentally determined heat and mass transfer coefficients, is used to define the design space when the heat transfer coefficient varies with the position of the vial in the array. The calculations recognize both equipment and product constraints, and also take into account model parameter uncertainty. Examples are given of cycles designed for the same formulation, but varying the freezing conditions and the freeze-dryer scale. These are then compared in terms of drying time. Furthermore, the impact of inter-vial variability on design space, and therefore on the optimized cycle, is addressed. With this regard, a simplified method is presented for the cycle design, which reduces the experimental effort required for the system qualification. The use of mathematical modeling is demonstrated to be very effective not only for cycle development, but also for solving problem of process transfer. This study showed that inter-vial variability remains significant when vials are loaded on plastic trays, and how inter-vial variability can be taken into account during process design.

  1. Life-Cycle Costing of Food Waste Management in Denmark: Importance of Indirect Effects.

    PubMed

    Martinez-Sanchez, Veronica; Tonini, Davide; Møller, Flemming; Astrup, Thomas Fruergaard

    2016-04-19

    Prevention has been suggested as the preferred food waste management solution compared to alternatives such as conversion to animal fodder or to energy. In this study we used societal life-cycle costing, as a welfare economic assessment, and environmental life-cycle costing, as a financial assessment combined with life-cycle assessment, to evaluate food waste management. Both life-cycle costing assessments included direct and indirect effects. The latter are related to income effects, accounting for the marginal consumption induced when alternative scenarios lead to different household expenses, and the land-use-changes effect, associated with food production. The results highlighted that prevention, while providing the highest welfare gains as more services/goods could be consumed with the same income, could also incur the highest environmental impacts if the monetary savings from unpurchased food commodities were spent on goods/services with a more environmentally damaging production than that of the (prevented) food. This was not the case when savings were used, e.g., for health care, education, and insurances. This study demonstrates that income effects, although uncertain, should be included whenever alternative scenarios incur different financial costs. Furthermore, it highlights that food prevention measures should not only demote the purchase of unconsumed food but also promote a low-impact use of the savings generated.

  2. Beyond the throwaway society: A life cycle-based assessment of the environmental benefit of reuse.

    PubMed

    Castellani, Valentina; Sala, Serenella; Mirabella, Nadia

    2015-07-01

    In the context of a circular economy, sustainable consumption is often seen as the antithesis of current consumption patterns, which have led to the definition of the so-called throwaway society. Reuse may provide a preferred alternative to other waste management options, because it promotes resource efficiency and may significantly reduce environmental impacts. To appraise the environmental benefits related to reuse of goods, a methodology adopting life cycle assessment (LCA) has been developed. A standardized procedure has been developed, identifying reference products within product category subject to reuse, and collecting reliable inventory data as a basis for calculating environmental impact through LCA. A case study on a second-hand shop is presented, and the avoided impacts are quantified. Inventory data were taken both from the literature and directly from sales and surveys submitted to customers. The results are presented, highlighting: 1) for each product category, the average avoided impacts for 1 unit of reused product considered; and 2) for the overall activities of the second-hand shop, the cumulative avoided impacts in 1 yr. In the case study, the higher contribution to avoided impacts comes from the apparel sector, due to the high amount of items sold, followed by the furniture sector, because of the high amount of environmental impacts avoided by the reuse of each single item. © 2015 SETAC.

  3. Optimizing product life cycle processes in design phase

    NASA Astrophysics Data System (ADS)

    Faneye, Ola. B.; Anderl, Reiner

    2002-02-01

    Life cycle concepts do not only serve as basis in assisting product developers understand the dependencies between products and their life cycles, they also help in identifying potential opportunities for improvement in products. Common traditional concepts focus mainly on energy and material flow across life phases, necessitating the availability of metrics derived from a reference product. Knowledge of life cycle processes won from an existing product is directly reused in its redesign. Depending on sales volume nevertheless, the environmental impact before product optimization can be substantial. With modern information technologies today, computer-aided life cycle methodologies can be applied well before product use. On the basis of a virtual prototype, life cycle processes are analyzed and optimized, using simulation techniques. This preventive approach does not only help in minimizing (or even eliminating) environmental burdens caused by product, costs incurred due to changes in real product can also be avoided. The paper highlights the relationship between product and life cycle and presents a computer-based methodology for optimizing the product life cycle during design, as presented by SFB 392: Design for Environment - Methods and Tools at Technical University, Darmstadt.

  4. Life cycle assessment of lignocellulosic ethanol: a review of key factors and methods affecting calculated GHG emissions and energy use.

    PubMed

    Gerbrandt, Kelsey; Chu, Pei Lin; Simmonds, Allison; Mullins, Kimberley A; MacLean, Heather L; Griffin, W Michael; Saville, Bradley A

    2016-04-01

    Lignocellulosic ethanol has potential for lower life cycle greenhouse gas emissions compared to gasoline and conventional grain-based ethanol. Ethanol production 'pathways' need to meet economic and environmental goals. Numerous life cycle assessments of lignocellulosic ethanol have been published over the last 15 years, but gaps remain in understanding life cycle performance due to insufficient data, and model and methodological issues. We highlight key aspects of these issues, drawing on literature and a case study of corn stover ethanol. Challenges include the complexity of feedstock/ecosystems and market-mediated aspects and the short history of commercial lignocellulosic ethanol facilities, which collectively have led to uncertainty in GHG emissions estimates, and to debates on LCA methods and the role of uncertainty in decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Proposal of a framework for scale-up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications.

    PubMed

    Simon, Bálint; Bachtin, Krystyna; Kiliç, Ali; Amor, Ben; Weil, Marcel

    2016-07-01

    Environmental assessments are crucial for the management of the environmental impacts of a product in a rapidly developing world. The design phase creates opportunities for acting on the environmental issues of products using life cycle assessment (LCA). However, the LCA is hampered by a lack of information originating from distinct scales along the product or technology value chain. Many studies have been undertaken to handle similar problems, but these studies are case-specific and do not analyze the development options in the initial design phase. Thus, systematic studies are needed to determine the possible scaling. Knowledge from such screening studies would open the door for developing new methods that can tackle a given scaling problem. The present article proposes a scale-up procedure that aims to generate a new life cycle inventory (LCI) on a theoretical industrial scale, based on information from laboratory experiments. Three techniques are described to obtain the new LCI. Investigation of a laboratory-scale procedure is discussed to find similar industrial processes as a benchmark for describing a theoretical large-scale production process. Furthermore, LCA was performed on a model system of nanofiber electrospinning for Li-ion battery cathode applications. The LCA results support material developers in identifying promising development pathways. For example, the present study pointed out the significant impacts of dimethylformamide on suspension preparation and the power requirements of distinct electrospinning subprocesses. Nanofiber-containing battery cells had greater environmental impacts than did the reference cell, although they had better electrochemical performance, such as better wettability of the electrode, improving the electrode's electrosorption capacity, and longer expected lifetime. Furthermore, material and energy recovery throughout the production chain could decrease the environmental impacts by 40% to 70%, making the nanofiber a promising battery cathode. Integr Environ Assess Manag 2016;12:465-477. © 2016 SETAC. © 2016 SETAC.

  6. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  7. The Nasal Geometry of the Reindeer Gives Energy-Efficient Respiration

    NASA Astrophysics Data System (ADS)

    Magnanelli, Elisa; Wilhelmsen, Øivind; Acquarone, Mario; Folkow, Lars P.; Kjelstrup, Signe

    2017-01-01

    Reindeer in the arctic region live under very harsh conditions and may face temperatures below 233 K. Therefore, efficient conservation of body heat and water is important for their survival. Alongside their insulating fur, the reindeer nasal mechanism for heat and mass exchange during respiration plays a fundamental role. We present a dynamic model to describe the heat and mass transport that takes place inside the reindeer nose, where we account for the complicated geometrical structure of the subsystems that are part of the nose. The model correctly captures the trend in experimental data for the temperature, heat and water recovery in the reindeer nose during respiration. As a reference case, we model a nose with a simple cylindrical-like geometry, where the total volume and contact area are the same as those determined in the reindeer nose. A comparison of the reindeer nose with the reference case shows that the nose geometry has a large influence on the velocity, temperature and water content of the air inside the nose. For all investigated cases, we find that the total entropy production during a breathing cycle is lower for the reindeer nose than for the reference case. The same trend is observed for the total energy consumption. The reduction in the total entropy production caused by the complicated geometry is higher (up to -20 %) at more extreme ambient conditions, when energy efficiency is presumably more important for the maintenance of energy balance in the animal. In the literature, a hypothesis has been proposed, which states that the most energy-efficient design of a system is characterized by equipartition of the entropy production. In agreement with this hypothesis, we find that the local entropy production during a breathing cycle is significantly more uniform for the reindeer nose than for the reference case. This suggests that natural selection has favored designs that give uniform entropy production when energy efficiency is an issue. Animals living in the harsh arctic climate, such as the reindeer, can therefore serve as inspiration for a novel industrial design with increased efficiency.

  8. Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer

    PubMed Central

    2012-01-01

    Food production and consumption is known to have significant environmental impacts. In the present work, the life cycle assessment methodology is used for the environmental assessment of an assortment of 34 fruits and vegetables of a large Swiss retailer, with the aim of providing environmental decision-support to the retailer and establishing life cycle inventories (LCI) also applicable to other case studies. The LCI includes, among others, seedling production, farm machinery use, fuels for the heating of greenhouses, irrigation, fertilizers, pesticides, storage and transport to and within Switzerland. The results show that the largest reduction of environmental impacts can be achieved by consuming seasonal fruits and vegetables, followed by reduction of transport by airplane. Sourcing fruits and vegetables locally is only a good strategy to reduce the carbon footprint if no greenhouse heating with fossil fuels is involved. The impact of water consumption depends on the location of agricultural production. For some crops a trade-off between the carbon footprint and the induced water stress is observed. The results were used by the retailer to support the purchasing decisions and improve the supply chain management. PMID:22309056

  9. Life cycle inventory and carbon and water FoodPrint of fruits and vegetables: application to a Swiss retailer.

    PubMed

    Stoessel, Franziska; Juraske, Ronnie; Pfister, Stephan; Hellweg, Stefanie

    2012-03-20

    Food production and consumption is known to have significant environmental impacts. In the present work, the life cycle assessment methodology is used for the environmental assessment of an assortment of 34 fruits and vegetables of a large Swiss retailer, with the aim of providing environmental decision-support to the retailer and establishing life cycle inventories (LCI) also applicable to other case studies. The LCI includes, among others, seedling production, farm machinery use, fuels for the heating of greenhouses, irrigation, fertilizers, pesticides, storage and transport to and within Switzerland. The results show that the largest reduction of environmental impacts can be achieved by consuming seasonal fruits and vegetables, followed by reduction of transport by airplane. Sourcing fruits and vegetables locally is only a good strategy to reduce the carbon footprint if no greenhouse heating with fossil fuels is involved. The impact of water consumption depends on the location of agricultural production. For some crops a trade-off between the carbon footprint and the induced water stress is observed. The results were used by the retailer to support the purchasing decisions and improve the supply chain management.

  10. Usability Testing with Online Research Panels: A Case Study from the Field of Instructional Design

    ERIC Educational Resources Information Center

    Williams Van Rooij, Shahron

    2013-01-01

    One of the challenges experienced by students of instructional design is eliciting user participation when designing and developing products for course or program projects, particularly over multiple cycles of evaluation. Student projects do not normally have budgets to engage recruitment companies or provide participant incentives. This paper…

  11. A Case Study in CAD Design Automation

    ERIC Educational Resources Information Center

    Lowe, Andrew G.; Hartman, Nathan W.

    2011-01-01

    Computer-aided design (CAD) software and other product life-cycle management (PLM) tools have become ubiquitous in industry during the past 20 years. Over this time they have continuously evolved, becoming programs with enormous capabilities, but the companies that use them have not evolved their design practices at the same rate. Due to the…

  12. In the eye of the cyclops: The classic case of cospeciation and why paradigms are important

    USDA-ARS?s Scientific Manuscript database

    Scientific disagreements due to empirical problems - not enough data, not enough of the critical type of data, problems in analyzing the data - are generally short-lived and resolved in the next cycle of data production. Those disagreements are thus transitory. Persistent scientific conflicts do n...

  13. Indoor exposure to toluene from printed matter matters: complementary views from life cycle assessment and risk assessment.

    PubMed

    Walser, Tobias; Juraske, Ronnie; Demou, Evangelia; Hellweg, Stefanie

    2014-01-01

    A pronounced presence of toluene from rotogravure printed matter has been frequently observed indoors. However, its consequences to human health in the life cycle of magazines are poorly known. Therefore, we quantified human-health risks in indoor environments with Risk Assessment (RA) and impacts relative to the total impact of toxic releases occurring in the life cycle of a magazine with Life Cycle Assessment (LCA). We used a one-box indoor model to estimate toluene concentrations in printing facilities, newsstands, and residences in a best, average, and worst-case scenario. The modeled concentrations are in the range of the values measured in on-site campaigns. Toluene concentrations can be close or even surpass the occupational legal thresholds in printing facilities in realistic worst-case scenarios. The concentrations in homes can surpass the US EPA reference dose (69 μg/kg/day) in worst-case scenarios, but are still at least 1 order of magnitude lower than in press rooms or newsstands. However, toluene inhaled at home becomes the dominant contribution to the total potential human toxicity impacts of toluene from printed matter when assessed with LCA, using the USEtox method complemented with indoor characterization factors for toluene. The significant contribution (44%) of toluene exposure in production, retail, and use in households, to the total life cycle impact of a magazine in the category of human toxicity, demonstrates that the indoor compartment requires particular attention in LCA. While RA works with threshold levels, LCA assumes that every toxic emission causes an incremental change to the total impact. Here, the combination of the two paradigms provides valuable information on the life cycle stages of printed matter.

  14. Electrons, life and the evolution of Earth's oxygen cycle.

    PubMed

    Falkowski, Paul G; Godfrey, Linda V

    2008-08-27

    The biogeochemical cycles of H, C, N, O and S are coupled via biologically catalysed electron transfer (redox) reactions. The metabolic processes responsible for maintaining these cycles evolved over the first ca 2.3 Ga of Earth's history in prokaryotes and, through a sequence of events, led to the production of oxygen via the photobiologically catalysed oxidation of water. However, geochemical evidence suggests that there was a delay of several hundred million years before oxygen accumulated in Earth's atmosphere related to changes in the burial efficiency of organic matter and fundamental alterations in the nitrogen cycle. In the latter case, the presence of free molecular oxygen allowed ammonium to be oxidized to nitrate and subsequently denitrified. The interaction between the oxygen and nitrogen cycles in particular led to a negative feedback, in which increased production of oxygen led to decreased fixed inorganic nitrogen in the oceans. This feedback, which is supported by isotopic analyses of fixed nitrogen in sedimentary rocks from the Late Archaean, continues to the present. However, once sufficient oxygen accumulated in Earth's atmosphere to allow nitrification to out-compete denitrification, a new stable electron 'market' emerged in which oxygenic photosynthesis and aerobic respiration ultimately spread via endosymbiotic events and massive lateral gene transfer to eukaryotic host cells, allowing the evolution of complex (i.e. animal) life forms. The resulting network of electron transfers led a gas composition of Earth's atmosphere that is far from thermodynamic equilibrium (i.e. it is an emergent property), yet is relatively stable on geological time scales. The early coevolution of the C, N and O cycles, and the resulting non-equilibrium gaseous by-products can be used as a guide to search for the presence of life on terrestrial planets outside of our Solar System.

  15. Environmental sustainability assessment of hydropower plant in Europe using life cycle assessment

    NASA Astrophysics Data System (ADS)

    Mahmud, M. A. P.; Huda, N.; Farjana, S. H.; Lang, C.

    2018-05-01

    Hydropower is the oldest and most common type of renewable source of electricity available on this planet. The end of life process of hydropower plant have significant environmental impacts, which needs to be identified and minimized to ensure an environment friendly power generation. However, identifying the environmental impacts and health hazards are very little explored in the hydropower processing routes despite a significant quantity of production worldwide. This paper highlight the life-cycle environmental impact assessment of the reservoir based hydropower generation system located in alpine and non-alpine region of Europe, addressing their ecological effects by the ReCiPe and CML methods under several impact-assessment categories such as human health, ecosystems, global warming potential, acidification potential, etc. The Australasian life-cycle inventory database and SimaPro software are utilized to accumulate life-cycle inventory dataset and to evaluate the impacts. The results reveal that plants of alpine region offer superior environmental performance for couple of considered categories: global warming and photochemical oxidation, whilst in the other cases the outcomes are almost similar. Results obtained from this study will take part an important role in promoting sustainable generation of hydropower, and thus towards environment friendly energy production.

  16. Life cycle of medical product rules issued by the US Food and Drug Administration.

    PubMed

    Hwang, Thomas J; Avorn, Jerry; Kesselheim, Aaron S

    2014-08-01

    The US Food and Drug Administration (FDA) uses rulemaking as one of its primary tools to protect the public health and implement laws enacted by Congress and the president. Because of the many effects that these rules have on social welfare and the economy, the FDA and other executive agencies receive input from the executive branch, the public, and in some cases, the courts, during the process of rulemaking. In this article, we examine the life cycle of FDA regulations concerning medical products and review notable features of the rulemaking process. The current system grants substantial opportunities for diverse stakeholders to participate in and influence how rules are written and implemented. However, the duration, complexity, and adversarial qualities of the rulemaking process can hinder the FDA's ability to achieve its policy and public health goals. There is considerable variation in the level of transparency at different stages in the process, ranging from freely accessible public comments to undisclosed internal agency deliberations. In addition, significant medical product rules are associated with lengthy times to finalization, in some cases for unclear reasons. We conclude by identifying potential areas for reform on the basis of transparency and efficiency. Copyright © 2014 by Duke University Press.

  17. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demori, R.; Mauler, R. S., E-mail: raquel.mauler@ufrgs.br; Ashton, E.

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT andmore » PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle.« less

  18. Improving ethanol productivity through self-cycling fermentation of yeast: a proof of concept.

    PubMed

    Wang, Jie; Chae, Michael; Sauvageau, Dominic; Bressler, David C

    2017-01-01

    The cellulosic ethanol industry has developed efficient strategies for converting sugars obtained from various cellulosic feedstocks to bioethanol. However, any further major improvements in ethanol productivity will require development of novel and innovative fermentation strategies that enhance incumbent technologies in a cost-effective manner. The present study investigates the feasibility of applying self-cycling fermentation (SCF) to cellulosic ethanol production to elevate productivity. SCF is a semi-continuous cycling process that employs the following strategy: once the onset of stationary phase is detected, half of the broth volume is automatically harvested and replaced with fresh medium to initiate the next cycle. SCF has been shown to increase product yield and/or productivity in many types of microbial cultivation. To test whether this cycling process could increase productivity during ethanol fermentations, we mimicked the process by manually cycling the fermentation for five cycles in shake flasks, and then compared the results to batch operation. Mimicking SCF for five cycles resulted in regular patterns with regards to glucose consumption, ethanol titer, pH, and biomass production. Compared to batch fermentation, our cycling strategy displayed improved ethanol volumetric productivity (the titer of ethanol produced in a given cycle per corresponding cycle time) and specific productivity (the amount of ethanol produced per cellular biomass) by 43.1 ± 11.6 and 42.7 ± 9.8%, respectively. Five successive cycles contributed to an improvement of overall productivity (the aggregate amount of ethanol produced at the end of a given cycle per total processing time) and the estimated annual ethanol productivity (the amount of ethanol produced per year) by 64.4 ± 3.3 and 33.1 ± 7.2%, respectively. This study provides proof of concept that applying SCF to ethanol production could significantly increase productivities, which will help strengthen the cellulosic ethanol industry.

  19. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  20. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  1. Choice of mineral fertilizer substitution principle strongly influences LCA environmental benefits of nutrient cycling in the agri-food system.

    PubMed

    Hanserud, Ola Stedje; Cherubini, Francesco; Øgaard, Anne Falk; Müller, Daniel B; Brattebø, Helge

    2018-02-15

    Increased nutrient cycling in the agri-food system is a way to achieve a healthier nutrient stewardship and more sustainable food production. In life cycle assessment (LCA) studies, use of recycled fertilizer products is often credited by the substitution method, which subtracts the environmental burdens associated with avoided production of mineral fertilizer from the system under study. The environmental benefits from avoided fertilizer production can make an important contribution to the results, but different calculation principles and often implicit assumptions are used to estimate the amount of avoided mineral fertilizer. This may hinder comparisons between studies. The present study therefore examines how the choice of substitution principles influences LCA results. Three different substitution principles, called one-to-one, maintenance, and adjusted maintenance, are identified, and we test the importance of these in a case study on cattle slurry management. We show that the inventory of avoided mineral fertilizer varies greatly when the different principles are applied, with strong influences on two-thirds of LCA impact categories. With the one-to-one principle, there is a risk of systematically over-estimating the environmental benefits from nutrient cycling. In a sensitivity analysis we show that the difference between the principles is closely related to the application rate and levels of residual nutrients in the soil. We recommend that LCA practitioners first and foremost state and justify the substitution method they use, in order to increase transparency and comparability with other studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Formation of Polyhydroxyalkanoate in Aerobic Anoxygenic Phototrophic Bacteria and Its Relationship to Carbon Source and Light Availability▿

    PubMed Central

    Xiao, Na; Jiao, Nianzhi

    2011-01-01

    Aerobic anoxygenic phototrophic bacteria (AAPB) are unique players in carbon cycling in the ocean. Cellular carbon storage is an important mechanism regulating the nutrition status of AAPB but is not yet well understood. In this paper, six AAPB species (Dinoroseobacter sp. JL1447, Roseobacter denitrificans OCh 114, Roseobacter litoralis OCh 149, Dinoroseobacter shibae DFL 12T, Labrenzia alexandrii DFL 11T, and Erythrobacter longus DSMZ 6997) were examined, and all of them demonstrated the ability to form the carbon polymer polyhydroxyalkanoate (PHA) in the cell. The PHA in Dinoroseobacter sp. JL1447 was identified as poly-beta-hydroxybutyrate (PHB) according to evidence from Fourier transform infrared spectroscopy, differential scanning calorimetry, and 1H nuclear magnetic resonance spectroscopy examinations. Carbon sources turned out to be critical for PHA production in AAPB. Among the eight media tested with Dinoroseobacter sp. JL1447, sodium acetate, giving a PHA production rate of 72%, was the most productive carbon source, followed by glucose, with a 68% PHA production rate. Such PHA production rates are among the highest recorded for all bacteria. The C/N ratio of substrates was verified by the experiments as another key factor in PHA production. In the case of R. denitrificans OCh 114, PHA was not detected when the organism was cultured at C/N ratios of <2 but became apparent at C/N ratios of >3. Light is also important for the formation of PHA in AAPB. In the case of Dinoroseobacter sp. JL1447, up to a one-quarter increase in PHB production was observed when the culture underwent growth in a light-dark cycle compared to growth completely in the dark. PMID:21908634

  3. Evaluation of the environmental impact of portion bag for food packaging: a case study of Thailand

    NASA Astrophysics Data System (ADS)

    Ruangrit, Chaniporn; Usapein, Parnuwat; Limphitakphong, Nantamol; Chavalparit, Orathai

    2017-05-01

    This study applied life cycle assessment methodology in evaluating environmental impact of portion bag. The objective of this study was to identify the hotspot of environmental impact through life cycle of portion bag. The options were proposed for improving environmental performance of the product. The system boundary was defined as cradle-to-grave which included the ethylene production, LDPE and LLDPE resins production, portion bag production, disposal, and transportation. All materials and emissions were calculated based on 1 piece of portion bag which weighed 2.49 g. IMPACT 2002+ was used for assessing environmental impact on SimaPro V8.2 software. The result found that the most of environmental impact was generated from LDPE and LLDPE resins which was used as raw material for producing portion bag. After normalization, non-renewable energy showed the highest potential to concern. This impact related directly to the natural gas drilling, ethane production, ethylene production, resin productions, and energy in all process. In conclusion, it should be suggested that the selection of bio-material for producing portion bag can play an important role to reduce the environmental impact. The research demonstrates the possible way and benefits in improving cleaner raw material and suitable way of product's end-of-life for producing green portion bag in the future.

  4. The Life Cycle Evaluation Model of External Diseconomy of Open-loop Supply Chain

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Hu, Tianjun

    2017-08-01

    In recent years, with the continuous deterioration of pollution, resource space is gradually narrowed, the number of waste items increased, people began to use the method of recycling on waste products to ease the pressure on the environment. This paper adopted the external diseconomy of open-loop supply chain as the research object and constructed the model by the life cycle evaluation method, comparative analysis through the case. This paper also concludes that the key to solving the problem is to realize the closed-loop supply chain and building reverse logistics system is of great significance.

  5. Life cycle thinking and assessment tools on environmentally-benign electronics: Convergent optimization of materials use, end-of-life strategy and environmental policies

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoying

    The purpose of this study is to integrate the quantitative environmental performance assessment tools and the theory of multi-objective optimization within the boundary of electronic product systems to support the selection among design alternatives in terms of environmental impact, technical criteria, and economic feasibility. To meet with the requirements that result from emerging environmental legislation targeting electronics products, the research addresses an important analytical methodological approach to facilitate environmentally conscious design and end-of-life management with a life cycle viewpoint. A synthesis of diverse assessment tools is applied on a set of case studies: lead-free solder materials selection, cellular phone design, and desktop display technology assessment. In the first part of this work, an in-depth industrial survey of the status and concerns of the U.S. electronics industry on the elimination of lead (Pb) in solders is described. The results show that the trade-offs among environmental consequences, technology challenges, business risks, legislative compliance and stakeholders' preferences must be explicitly, simultaneously, and systematically addressed in the decision-making process used to guide multi-faceted planning of environmental solutions. In the second part of this work, the convergent optimization of the technical cycle, economic cycle and environmental cycle is addressed in a coherent and systematic way using the application of environmentally conscious design of cellular phones. The technical understanding of product structure, components analysis, and materials flow facilitates the development of "Design for Disassembly" guidelines. A bottom-up disassembly analysis on a "bill of materials" based structure at a micro-operational level is utilized to select optimal end-of-life strategies on the basis of economic feasibility. A macro-operational level life cycle model is used to investigate the environmental consequences linking environmental impact with the cellular phone production activities focusing on the upstream manufacturing and end-of-life life cycle stages. The last part of this work, the quantitative elicitation of weighting factors facilitates the comparison of trade-offs in the context of a multi-attribute problem. An integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), is proposed to assess alternatives at the design phase of a product system and is validated with the assessment of desktop display technologies and lead-free solder alternatives.

  6. Towards 250 m mapping of terrestrial primary productivity over Canada

    NASA Astrophysics Data System (ADS)

    Gonsamo, A.; Chen, J. M.

    2011-12-01

    Terrestrial ecosystems are an important part of the climate and global change systems. Their role in climate change and in the global carbon cycle is yet to be well understood. Dataset from satellite earth observation, coupled with numerical models provide the unique tools for monitoring the spatial and temporal dynamics of territorial carbon cycle. The Boreal Ecosystems Productivity Simulator (BEPS) is a remote sensing based approach to quantifying the terrestrial carbon cycle by that gross and net primary productivity (GPP and NPP) and terrestrial carbon sinks and sources expressed as net ecosystem productivity (NEP). We have currently implemented a scheme to map the GPP, NPP and NEP at 250 m for first time over Canada using BEPS model. This is supplemented by improved mapping of land cover and leaf area index (LAI) at 250 m over Canada from MODIS satellite dataset. The results from BEPS are compared with MODIS GPP product and further evaluated with estimated LAI from various sources to evaluate if the results capture the trend in amount of photosynthetic biomass distributions. Final evaluation will be to validate both BEPS and MODIS primary productivity estimates over the Fluxnet sites over Canada. The primary evaluation indicate that BEPS GPP estimates capture the over storey LAI variations over Canada very well compared to MODIS GPP estimates. There is a large offset of MODIS GPP, over-estimating the lower GPP value compared to BEPS GPP estimates. These variations will further be validated based on the measured values from the Fluxnet tower measurements over Canadian. The high resolution GPP (NPP) products at 250 m will further be used to scale the outputs between different ecosystem productivity models, in our case the Canadian carbon budget model of Canadian forest sector CBM-CFS) and the Integrated Terrestrial Ecosystem Carbon model (InTEC).

  7. System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle

    Treesearch

    Janice K. Wiedenbeck; D. Earl Kline

    1994-01-01

    Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...

  8. Demonstrating an Approach for Including Pesticide Use in Life Cycle Assessment: Estimating Human and Ecosystem Toxicity of Pesticide Use in Midwest Corn Farming

    EPA Science Inventory

    Purpose This study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Meth...

  9. Demonstrating an approach for including pesticide use in life-cycle assessment: Estimating human and ecosystem toxicity of pesticide use in Midwest corn farming

    EPA Science Inventory

    PurposeThis study demonstrates an approach to assess human health and ecotoxicity impacts of pesticide use by including multiple environmental pathways and various exposure routes using the case of corn grown for bio-based fuel or chemical production in US Midwestern states.Metho...

  10. Land use and land cover dynamics in the Brazilian Amazon: an overview

    Treesearch

    Robert Walker; Alfredo Kingo Oyama Homma

    1996-01-01

    This paper presents a theoretical discussion of processes linking land use decisions and land cover outcomes at household level, with an emphasis on small proceduers. Evidence from the literature substantiating the existence of domestic cycle phenomena is brought forward and interpreted for the Brazilian case. Also considered are the relative disposition of production...

  11. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...

  12. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.

    PubMed

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-10-01

    This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Caed Interactions During A Product Life Cycle Oriented Towards the Decision-Making in the Design of Polymeric Elements

    NASA Astrophysics Data System (ADS)

    Suffo, M.

    2017-08-01

    In this work, we present the real case of an industrial product was placed prematurely on the market without having checked the different stages of its life cycle. This type of products must be validated by numerical methods and by mechanical tests to verify their rheological behavior. In particular, the product consists of two small pieces in contact, one made of HDPE and the other one corresponding to a stainless steel. The polymeric piece supports the metal pressure under a constant static load over time. As a result of normal operation, the polymer experienced a “crazing” breakdown, which caused the failure to occur. In the study, design methods and computer assisted analysis software (CAED) have been used. These methods were complemented by scanning electron microscopy that confirmed the initial failure hypothesis. Using the finite element method (FEM), a series of load scenarios were carried out, where the different load hypothesis the product must go through prior to its placing on the market were simulated. It is shown that the failure was initiated by stress concentration on one of the edges of the polymeric piece. The proposed solution of the problem based on the analysis focuses on a simple redesign of the piece, which should have been round, or to the reduction of the thickness of the metal piece. As a result of the alteration of its natural life cycle, the company assumed both monetary costs and the definitive loss of customer confidence.

  14. A complete life cycle assessment of high density polyethylene plastic bottle

    NASA Astrophysics Data System (ADS)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  15. Life cycle assessment of energy from waste via anaerobic digestion: a UK case study.

    PubMed

    Evangelisti, Sara; Lettieri, Paola; Borello, Domenico; Clift, Roland

    2014-01-01

    Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system.

    PubMed

    Adesanya, Victoria O; Cadena, Erasmo; Scott, Stuart A; Smith, Alison G

    2014-07-01

    A life cycle assessment (LCA) was performed on a putative biodiesel production plant in which the freshwater alga Chlorella vulgaris, was grown using an existing system similar to a published commercial-scale hybrid cultivation. The hybrid system couples airlift tubular photobioreactors with raceway ponds in a two-stage process for high biomass growth and lipid accumulation. The results show that microalgal biodiesel production would have a significantly lower environmental impact than fossil-derived diesel. Based on the functional unit of 1 ton of biodiesel produced, the hybrid cultivation system and hypothetical downstream process (base case) would have 42% and 38% savings in global warming potential (GWP) and fossil-energy requirements (FER) when compared to fossil-derived diesel, respectively. Sensitivity analysis was performed to identify the most influential process parameters on the LCA results. The maximum reduction in GWP and FER was observed under mixotrophic growth conditions with savings of 76% and 75% when compared to conventional diesel, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. When product diversification influences life cycle impact assessment: A case study of canned anchovy.

    PubMed

    Laso, Jara; Margallo, María; Fullana, Pére; Bala, Alba; Gazulla, Cristina; Irabien, Ángel; Aldaco, Rubén

    2017-03-01

    The anchovy canning industry is one of the most important economic resources of the Cantabria region in Spain. However, environmental, economic and social problems over the past years have forced companies to apply marketing strategies, develop product diversification, create new products and introduce them in new "green markets". Launching Cantabrian canned anchovies into more sustainable markets requires measuring the environmental performance using Product Category Rules (PCRs) and Environmental Product Declarations (EPDs). EPDs and PCRS include the environmental profile of a range of similar products, such as all of the available canned anchovy products. The great variety of anchovy canned products depends on three process variables: the origin of the anchovy (Cantabria, Argentina and Chile or Peru), the type of oil (refined olive oil, extra virgin olive oil and sunflower oil) and the packaging (aluminum, tinplate, glass and plastic). This work aims to assess the environmental impact from cradle to grave of canned anchovies in oil using the life cycle assessment methodology (LCA). Moreover, the paper evaluates the influence of the above-mentioned three product variables in the LCA results. The results show that out of all of the alternatives, Chilean and Peruvian anchovies have the highest environmental burdens due to the transportation by ship. The production of anchovies in sunflower oil is a less environmentally friendly oil process due to the low yield per hectare of sunflower cultivation. Finally, the use of aluminum as the packaging material has the largest environmental impact out of almost all of the impact categories. Moreover, because the LCA results can be significantly affected by the allocation procedure, a sensitivity analysis comparing system expansion, mass and economic allocation is performed. In this case, the system expansion approach presents the highest environmental impacts followed by the mass allocation. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    PubMed

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  19. Ignoring correlation in uncertainty and sensitivity analysis in life cycle assessment: what is the risk?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groen, E.A., E-mail: Evelyne.Groen@gmail.com; Heijungs, R.; Leiden University, Einsteinweg 2, Leiden 2333 CC

    Life cycle assessment (LCA) is an established tool to quantify the environmental impact of a product. A good assessment of uncertainty is important for making well-informed decisions in comparative LCA, as well as for correctly prioritising data collection efforts. Under- or overestimation of output uncertainty (e.g. output variance) will lead to incorrect decisions in such matters. The presence of correlations between input parameters during uncertainty propagation, can increase or decrease the the output variance. However, most LCA studies that include uncertainty analysis, ignore correlations between input parameters during uncertainty propagation, which may lead to incorrect conclusions. Two approaches to include correlationsmore » between input parameters during uncertainty propagation and global sensitivity analysis were studied: an analytical approach and a sampling approach. The use of both approaches is illustrated for an artificial case study of electricity production. Results demonstrate that both approaches yield approximately the same output variance and sensitivity indices for this specific case study. Furthermore, we demonstrate that the analytical approach can be used to quantify the risk of ignoring correlations between input parameters during uncertainty propagation in LCA. We demonstrate that: (1) we can predict if including correlations among input parameters in uncertainty propagation will increase or decrease output variance; (2) we can quantify the risk of ignoring correlations on the output variance and the global sensitivity indices. Moreover, this procedure requires only little data. - Highlights: • Ignoring correlation leads to under- or overestimation of the output variance. • We demonstrated that the risk of ignoring correlation can be quantified. • The procedure proposed is generally applicable in life cycle assessment. • In some cases, ignoring correlation has a minimal effect on decision-making tools.« less

  20. Evaluation of operational, economic, and environmental performance of mixed and selective collection of municipal solid waste: Porto case study.

    PubMed

    Teixeira, Carlos A; Russo, Mário; Matos, Cristina; Bentes, Isabel

    2014-12-01

    This article describes an accurate methodology for an operational, economic, and environmental assessment of municipal solid waste collection. The proposed methodological tool uses key performance indicators to evaluate independent operational and economic efficiency and performance of municipal solid waste collection practices. These key performance indicators are then used in life cycle inventories and life cycle impact assessment. Finally, the life cycle assessment environmental profiles provide the environmental assessment. We also report a successful application of this tool through a case study in the Portuguese city of Porto. Preliminary results demonstrate the applicability of the methodological tool to real cases. Some of the findings focus a significant difference between average mixed and selective collection effective distance (2.14 km t(-1); 16.12 km t(-1)), fuel consumption (3.96 L t(-1); 15.37 L t(-1)), crew productivity (0.98 t h(-1) worker(-1); 0.23 t h(-1) worker(-1)), cost (45.90 € t(-1); 241.20 € t(-1)), and global warming impact (19.95 kg CO2eq t(-1); 57.47 kg CO2eq t(-1)). Preliminary results consistently indicate: (a) higher global performance of mixed collection as compared with selective collection; (b) dependency of collection performance, even in urban areas, on the waste generation rate and density; (c) the decline of selective collection performances with decreasing source-separated material density and recycling collection rate; and (d) that the main threats to collection route efficiency are the extensive collection distances, high fuel consumption vehicles, and reduced crew productivity. © The Author(s) 2014.

  1. Sensitivity analysis in a life cycle assessment of an aged red wine production from Catalonia, Spain.

    PubMed

    Meneses, M; Torres, C M; Castells, F

    2016-08-15

    Sustainability in agriculture and food processing is an issue with a clear growing interest; especially in products were consumers have particular awareness regarding its environmental profile. This is the case of wine industry depending on grape production, winemaking and bottling. Also viticulture and generally agricultural production is significantly affected by climate variations. The aim of this article is to determine the environmental load of an aged red wine from a winery in Catalonia, Spain, over its entire life cycle, including sensitivity analysis of the main parameters related to the cultivation, vinification and bottling. The life cycle assessment (LCA) methodology is used for the environmental analysis. In a first step, life cycle inventory (LCI) data were collected by questionnaires and interviews with the winemaker, all data are actual operating data and all the stages involved in the production have been taken into account (viticulture, vinification, bottling and the disposal subsystem). Data were then used to determine the environmental profile by a life cycle impact assessment using the ReCiPe method. Annual variability in environmental performance, stresses the importance of including timeline analysis in the wine sector. Because of that this study is accompanied with a sensitivity analysis carried out by a Monte Carlo simulation that takes into account the uncertainty and variability of the parameters used. In this manner, the results are presented with confidence intervals to provide a wider view of the environmental issues derived from the activities of the studied wine estate regardless of the eventualities of a specific harvesting year. Since the beverage packaging has an important influence in this case, a dataset for the production of green glass was adapted to reflect the actual recycling situation in Spain. Furthermore, a hypothetical variation of the glass-recycling rate in the glass production completes this article, as a key variable of sensitivity analysis, in order… in order to show the potential reduction of total greenhouse gas emissions. It was found that in almost all categories the production of the glass bottles has the highest environmental impact (10%-80% depending on the impact category) followed by the viticulture stage, i.e. the agricultural activities (17%-84% depending on the impact category). The vinification step, i.e. the winemaking itself, has an almost negligible effect on the overall load (1%-5%). The sensitivity analysis showed that the results do not differ by more than ±4% from the expected values except for the water depletion indicator. With the variation of the recycling rate, it could be shown that an increase in the rate from 60% to 85% allows for a reduction of 102gCO2eq. per bottle (-11.1%). The results show that glass production causes the highest environmental load. The key parameters that determine the impact are the recycling rate and the bottle weight. A glass container deposit legislation might be a promising way to enhance the glass recycling. Lightweight bottles and alternative packaging should also be considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The carbon footprint of integrated milk production and renewable energy systems - A case study.

    PubMed

    Vida, Elisabetta; Tedesco, Doriana Eurosia Angela

    2017-12-31

    Dairy farms have been widely acknowledged as a source of greenhouse gas (GHG) emissions. The need for a more environmentally friendly milk production system will likely be important going forward. Whereas methane (CH 4 ) enteric emissions can only be reduced to a limited extent, CH 4 manure emissions can be reduced by implementing mitigation strategies, such as the use of an anaerobic digestion (AD). Furthermore, implementing a photovoltaic (PV) electricity generation system could mitigate the fossil fuels used to cover the electrical needs of farms. In the present study to detect the main environmental hotspots of milk production, a Life Cycle Assessment was adopted to build the Life Cycle Inventory according to ISO 14040 and 14044 in a conventional dairy farm (1368 animals) provided by AD and PV systems. The Intergovernmental Panel on Climate Change tiered approach was adopted to associate the level of emission with each item in the life cycle inventory. The functional unit refers to 1kg of fat-and-protein-corrected-milk (FPCM). In addition to milk products, other important co-products need to be considered: meat and renewable energy production from AD and PV systems. A physical allocation was applied to attribute GHG emissions among milk and meat products. Renewable energy production from AD and PV systems was considered, discounting carbon credits due to lower CH 4 manure emissions and to the minor exploitation of fossil energy. The CF of this farm scenario was 1.11kg CO 2 eq/kg FPCM. The inclusion of AD allowed for the reduction of GHG emissions from milk production by 0.26kg CO 2 eq/kg FPCM. The PV system contribution was negligible due to the small dimensions of the technology. The results obtained in this study confirm that integrating milk production with other co-products, originated from more efficient manure management, is a successful strategy to mitigate the environmental impact of dairy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. ADS Model in the TIRELIRE-STRATEGIE Fuel Cycle Simulation Code Application to Minor Actinides Transmutation Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzenne, Claude; Massara, Simone; Tetart, Philippe

    2006-07-01

    Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less

  4. Producing (in) Europe and Asia, 1750-1850.

    PubMed

    Roberts, Lissa

    2015-12-01

    This essay argues for understanding and investigating the history of production, not primarily as a quantifiable economic phenomenon, but as a history of practice that involves the human senses, culture, governance, and material engagement. The vehicle it uses to make its case focuses on a brief examination of production cycles involving salts in various parts of Eurasia during the century that runs from approximately 1750 to 1850. The essay's approach suggests a history of production in Eurasia that was both locally variegated and transregionally networked. It further involved the interaction between people and their sociomaterial environments, the latter understood as the evolving outcome of interplay between material elements and processes; culturally rooted tastes and values; and variously organized efforts to stimulate, manage, and pursue cycles of production and use. This essay further reflects on how contemporary commentators and present-day historians have (re)configured the geography of these practices in a way that emphasizes divergence between Europe and Asia. Part of this reflection involves looking at what can happen when the historical investigation of production is based on economic analysis. So too does it involve thinking about the potential pitfalls of framing comparative histories.

  5. Impact of variability in coastal fog on photosynthesis and dissolved oxygen levels in shallow water habitats: Salmon Creek estuary case study

    NASA Astrophysics Data System (ADS)

    Largier, J. L.

    2013-12-01

    Coastal fog reduces available light levels that in turn reduce rates of photosynthesis and oxygen production. This effect can be seen in perturbations of the day-night production-respiration cycle that leads to increase and decrease in dissolved oxygen in shallow-water habitats. In well stratified coastal lagoons, a lower layer may be isolated from the atmosphere so that small changes in photosynthetically active radiation (PAR) are evident in perturbations of the typical day-night cycle of oxygen concentration. This effect is observed in the summertime, mouth-closed Salmon Creek Estuary, located in Sonoma County (California). Sub-diurnal fluctuations in dissolved oxygen in Salmon Creek Estuary correlate with deviations from the clear-sky diurnal cycle in PAR. Similar effects are observed in other estuaries and the process by which fog controls photosynthesis can be expected to occur throughout coastal California, although the effect may not be easily observable in data collected from open waters where mixing and bloom dynamics are likely to dominate temporal variability in biogenic properties like dissolved oxygen.

  6. A Design of Product Collaborative Online Configuration Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguo; Zheng, Jin; Zeng, Qian

    According to the actual needs of mass customization, the personalization of product and its collaborative design, the paper analyzes and studies the working mechanism of modular-based product configuration technology and puts forward an information model of modular product family. Combined with case-based reasoning techniques (CBR) and the constraint satisfaction problem solving techniques (CSP), we design and study the algorithm for product configuration, and analyze its time complexity. A car chassis is made as the application object, we provide a prototype system of online configuration. Taking advantage of this system, designers can make appropriate changes on the existing programs in accordance with the demand. This will accelerate all aspects of product development and shorten the product cycle. Also the system will provide a strong technical support for enterprises to improve their market competitiveness.

  7. Longitudinal study on morbidity and mortality in white veal calves in Belgium

    PubMed Central

    2012-01-01

    Background Mortality and morbidity are hardly documented in the white veal industry, despite high levels of antimicrobial drug use and resistance. The objective of the present study was to determine the causes and epidemiology of morbidity and mortality in dairy, beef and crossbred white veal production. A total of 5853 calves, housed in 15 production cohorts, were followed during one production cycle. Causes of mortality were determined by necropsy. Morbidity was daily recorded by the producers. Results The total mortality risk was 5,3% and was significantly higher in beef veal production compared to dairy or crossbreds. The main causes of mortality were pneumonia (1.3% of the calves at risk), ruminal disorders (0.7%), idiopathic peritonitis (0.5%), enterotoxaemia (0.5%) and enteritis (0.4%). Belgian Blue beef calves were more likely to die from pneumonia, enterotoxaemia and arthritis. Detection of bovine viral diarrhea virus at necropsy was associated with chronic pneumonia and pleuritis. Of the calves, 25.4% was treated individually and the morbidity rate was 1.66 cases per 1000 calf days at risk. The incidence rate of respiratory disease, diarrhea, arthritis and otitis was 0.95, 0.30, 0.11 and 0.07 cases per 1000 calf days at risk respectively. Morbidity peaked in the first three weeks after arrival and gradually declined towards the end of the production cycle. Conclusions The present study provided insights into the causes and epidemiology of morbidity and mortality in white veal calves in Belgium, housed in the most frequent housing system in Europe. The necropsy findings, identified risk periods and differences between production systems can guide both veterinarians and producers towards the most profitable and ethical preventive and therapeutic protocols. PMID:22414223

  8. From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy.

    PubMed

    Cellura, Maurizio; Ardente, Fulvio; Longo, Sonia

    2012-01-01

    In the present study, Life Cycle Assessment (LCA) methodology was applied to evaluate the energy consumption and environmental burdens associated with the production of protected crops in an agricultural district in the Mediterranean region. In this study, LCA was used as a 'support tool', to address local policies for sustainable production and consumption patterns, and to create a 'knowledge base' for environmental assessment of an extended agricultural production area. The proposed approach combines organisation-specific tools, such as Environmental Management Systems and Environmental Product Declarations, with the environmental management of the district. Questionnaires were distributed to producers to determine the life cycle of different protected crops (tomatoes, cherry tomatoes, peppers, melons and zucchinis), and obtain information on greenhouse usage (e.g. tunnel vs. pavilion). Ecoprofiles of products in the district were also estimated, to identify supply chain elements with the highest impact in terms of global energy requirements, greenhouse gas emissions, eutrophication, water consumption and waste production. These results of this study enable selection of the 'best practices' and ecodesign solutions, to reduce the environmental impact of these products. Finally, sensitivity analysis of key LCA issues was performed, to assess the variability associated with different parameters: vegetable production; water usage; fertiliser and pesticide usage; shared greenhouse use; substitution of plastics coverings; and waste recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Waste management under a life cycle approach as a tool for a circular economy in the canned anchovy industry.

    PubMed

    Laso, J; Margallo, M; Celaya, J; Fullana, P; Bala, A; Gazulla, C; Irabien, A; Aldaco, R

    2016-08-01

    The anchovy canning industry has high importance in the Cantabria Region (North Spain) from economic, social and touristic points of view. The Cantabrian canned anchovy is world-renowned owing to its handmade and traditional manufacture. The canning process generates huge amounts of several food wastes, whose suitable management can contribute to benefits for both the environment and the economy, closing the loop of the product life cycle. Life cycle assessment methodology was used in this work to assess the environmental performance of two waste management alternatives: Head and spine valorisation to produce fishmeal and fish oil; and anchovy meat valorisation to produce anchovy paste. Fuel oil production has been a hotspot of the valorisation of heads and spines, so several improvements should be applied. With respect to anchovy meat valorisation, the production of polypropylene and glass for packaging was the least environmentally friendly aspect of the process. Furthermore, the environmental characterisation of anchovy waste valorisation was compared with incineration and landfilling alternatives. In both cases, the valorisation management options were the best owing to the avoided burdens associated with the processes. Therefore, it is possible to contribute to the circular economy in the Cantabrian canned anchovy industry. © The Author(s) 2016.

  10. Storing Renewable Energy in the Hydrogen Cycle.

    PubMed

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  11. Environmental Life Cycle Analysis of Water and CO2-Based Fracturing Fluids Used in Unconventional Gas Production.

    PubMed

    Wilkins, Rodney; Menefee, Anne H; Clarens, Andres F

    2016-12-06

    Many of the environmental impacts associated with hydraulic fracturing of unconventional gas wells are tied to the large volumes of water that such operations require. Efforts to develop nonaqueous alternatives have focused on carbon dioxide as a tunable working fluid even though the full environmental and production impacts of a switch away from water have yet to be quantified. Here we report on a life cycle analysis of using either water or CO 2 for gas production in the Marcellus shale. The results show that CO 2 -based fluids, as currently conceived, could reduce greenhouse gas emissions by 400% (with sequestration credit) and water consumption by 80% when compared to conventional water-based fluids. These benefits are offset by a 44% increase in net energy use when compared to slickwater fracturing as well as logistical barriers resulting from the need to move and store large volumes of CO 2 . Scenario analyses explore the outlook for CO 2 , which under best-case conditions could eventually reduce life cycle energy, water, and greenhouse gas (GHG) burdens associated with fracturing. To achieve these benefits, it will be necessary to reduce CO 2 sourcing and transport burdens and to realize opportunities for improved energy recovery, averted water quality impacts, and carbon storage.

  12. Nutrient cycles in agricultural systems at sub-catchment scale within the UK and China

    NASA Astrophysics Data System (ADS)

    Bellarby, Jessica; Surridge, Ben; Haygarth, Philip M.; Lai, Xin; Zhang, Guilong; Song, Xiaolong; Zhou, Jianbin; Meng, Fanqiao; Shen, Jianbo; Rahn, Clive; Smith, Laurence; Burke, Sean

    2015-04-01

    Diffuse water pollution from agriculture (DWPA) represents a significant challenge in both the UK and China. The UK has developed policies and practices which seek to mitigate DWPA, yet the risks and adverse impacts of DWPA remain widespread. In contrast, China's past priorities have largely focussed on food security, with an emphasis on increasing food production through high fertiliser application rates with little attention being paid to enhanced nutrient export from land to water and to air. This has contributed to severe environmental problems which are only now beginning to be recognised and addressed. We have prepared nutrient balances (phosphorus and nitrogen) in contrasting agricultural production systems at sub-catchment scale within China and the UK. These draw from a variety of sources ranging from general yearly statistics collected by the respective government to farm surveys. Our aim is to use the resulting nutrient balances to underpin the sharing of knowledge and innovation to mitigate DWPA in both nations. In the UK, the case studies focus on the three Demonstration Test Catchment locations, covering a range of livestock and arable production systems across England. Here, the high frequency monitoring of phosphorus river loads enables the cross-validation of the simple nutrient budget approaches applied in this study. In China, our case studies span kiwi orchard, fruit and vegetable solar greenhouse systems, double cropped rice-wheat and wheat-maize production systems. Substantial differences in nutrient stocks and flows exist between individual production systems both across and within the two countries. These differences will be expressed along the source-mobilisation-delivery-impact continuum that underpins our budgets for both phosphorus and nitrogen. We will present the phosphorus cycles of some case studies and highlight their challenges and relevance at sub-catchment scale. Based on our nutrient budgets, general recommendations can be formulated to mitigate DWPA from farm to policy levels.

  13. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-10-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand models to simulate pastoral agriculture and to make land-use change, intensification of agricultural activity and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3 and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasise that CO2 fertilisation and N-cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of decoupled land-use change scenarios: the Biome-BGC data products at a national or regional level can be re-sampled quickly and cost-effectively for specific land-use change scenarios and future projections.

  14. Grassland production under global change scenarios for New Zealand pastoral agriculture

    NASA Astrophysics Data System (ADS)

    Keller, E. D.; Baisden, W. T.; Timar, L.; Mullan, B.; Clark, A.

    2014-05-01

    We adapt and integrate the Biome-BGC and Land Use in Rural New Zealand (LURNZ) models to simulate pastoral agriculture and to make land-use change, intensification and climate change scenario projections of New Zealand's pasture production at time slices centred on 2020, 2050 and 2100, with comparison to a present-day baseline. Biome-BGC model parameters are optimised for pasture production in both dairy and sheep/beef farm systems, representing a new application of the Biome-BGC model. Results show up to a 10% increase in New Zealand's national pasture production in 2020 under intensification and a 1-2% increase by 2050 from economic factors driving land-use change. Climate change scenarios using statistically downscaled global climate models (GCMs) from the IPCC Fourth Assessment Report (AR4) also show national increases of 1-2% in 2050, with significant regional variations. Projected out to 2100, however, these scenarios are more sensitive to the type of pasture system and the severity of warming: dairy systems show an increase in production of 4% under mild change but a decline of 1% under a more extreme case, whereas sheep/beef production declines in both cases by 3% and 13%, respectively. Our results suggest that high-fertility systems such as dairying could be more resilient under future change, with dairy production increasing or only slightly declining in all of our scenarios. These are the first national-scale estimates using a model to evaluate the joint effects of climate change, CO2 fertilisation and N-cycle feedbacks on New Zealand's unique pastoral production systems that dominate the nation's agriculture and economy. Model results emphasize that CO2 fertilisation and N cycle feedback effects are responsible for meaningful differences in agricultural systems. More broadly, we demonstrate that our model output enables analysis of Decoupled Land-Use Change Scenarios (DLUCS): the Biome-BGC data products at a national or regional level can be re-sampled quickly and cost-effectively for specific land-use change scenarios and future projections.

  15. Computational tool for simulation of power and refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Córdoba Tuta, E.; Reyes Orozco, M.

    2016-07-01

    Small improvement in thermal efficiency of power cycles brings huge cost savings in the production of electricity, for that reason have a tool for simulation of power cycles allows modeling the optimal changes for a best performance. There is also a big boom in research Organic Rankine Cycle (ORC), which aims to get electricity at low power through cogeneration, in which the working fluid is usually a refrigerant. A tool to design the elements of an ORC cycle and the selection of the working fluid would be helpful, because sources of heat from cogeneration are very different and in each case would be a custom design. In this work the development of a multiplatform software for the simulation of power cycles and refrigeration, which was implemented in the C ++ language and includes a graphical interface which was developed using multiplatform environment Qt and runs on operating systems Windows and Linux. The tool allows the design of custom power cycles, selection the type of fluid (thermodynamic properties are calculated through CoolProp library), calculate the plant efficiency, identify the fractions of flow in each branch and finally generates a report very educational in pdf format via the LaTeX tool.

  16. Recent Productivity Improvements to the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Popernack, Thomas G., Jr.; Sydnor, George H.

    1998-01-01

    Productivity gains have recently been made at the National Transonic Facility wind tunnel at NASA Langley Research Center. A team was assigned to assess and set productivity goals to achieve the desired operating cost and output of the facility. Simulations have been developed to show the sensitivity of selected process productivity improvements in critical areas to reduce overall test cycle times. The improvements consist of an expanded liquid nitrogen storage system, a new fan drive, a new tunnel vent stack heater, replacement of programmable logic controllers, an increased data communications speed, automated test sequencing, and a faster model changeout system. Where possible, quantifiable results of these improvements are presented. Results show that in most cases, improvements meet the productivity gains predicted by the simulations.

  17. Functional unit, technological dynamics, and scaling properties for the life cycle energy of residences.

    PubMed

    Frijia, Stephane; Guhathakurta, Subhrajit; Williams, Eric

    2012-02-07

    Prior LCA studies take the operational phase to include all energy use within a residence, implying a functional unit of all household activities, but then exclude related supply chains such as production of food, appliances, and household chemicals. We argue that bounding the functional unit to provision of a climate controlled space better focuses the LCA on the building, rather than activities that occur within a building. The second issue explored in this article is how technological change in the operational phase affects life cycle energy. Heating and cooling equipment is replaced at least several times over the lifetime of a residence; improved efficiency of newer equipment affects life cycle energy use. The third objective is to construct parametric models to describe LCA results for a family of related products. We explore these three issues through a case study of energy use of residences: one-story and two-story detached homes, 1,500-3,500 square feet in area, located in Phoenix, Arizona, built in 2002 and retired in 2051. With a restricted functional unit and accounting for technological progress, approximately 30% of a building's life cycle energy can be attributed to materials and construction, compared to 0.4-11% in previous studies.

  18. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    PubMed

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  19. Assessing food security in water scarce regions by Life Cycle Analysis: a case study in the Gaza strip

    NASA Astrophysics Data System (ADS)

    Recanati, Francesca; Castelletti, Andrea; Melià, Paco; Dotelli, Giovanni

    2013-04-01

    Food security is a major issue in Palestine for both political and physical reasons, with direct effects on the local population living conditions: the nutritional level of people in Gaza is classified by FAO as "insecure". As most of the protein supply comes from irrigated agricultural production and aquaculture, freshwater availability is a limiting factor to food security, and the primary reason for frequent conflicts among food production processes (e.g. aquaculture, land livestock or different types of crops). In this study we use Life Cycle Analysis to assess the environmental impacts associated to all the stages of water-based protein production (from agriculture and aquaculture) in the Gaza strip under different agricultural scenarios and hydroclimatic variability. As reported in several recent studies, LCA seems to be an appropriate methodology to analyze agricultural systems and assess associated food security in different socio-economic contexts. However, we argue that the inherently linear and static nature of LCA might prove inadequate to tackle with the complex interaction between water cycle variability and the food production system in water-scarce regions of underdeveloped countries. Lack of sufficient and reliable data to characterize the water cycle is a further source of uncertainty affecting the robustness of the analysis. We investigate pros and cons of LCA and LCA-based option planning in an average size farm in Gaza strip, where farming and aquaculture are family-based and integrated by reuse of fish breeding water for irrigation. Different technological solutions (drip irrigation system, greenhouses etc.) are evaluated to improve protein supply and reduce the pressure on freshwater, particularly during droughts. But this use of technology represent also a contribution in increasing sustainability in agricultural processes, and therefore in economy, of Gaza Strip (reduction in chemical fertilizers and pesticides etc.).

  20. Portuguese agriculture and the evolution of greenhouse gas emissions-can vegetables control livestock emissions?

    PubMed

    Mourao, Paulo Reis; Domingues Martinho, Vítor

    2017-07-01

    One of the most serious externalities of agricultural activity relates to greenhouse gas emissions. This work tests this relationship for the Portuguese case by examining data compiled since 1961. Employing cointegration techniques and vector error correction models (VECMs), we conclude that the evolution of the most representative vegetables and fruits in Portuguese production are associated with higher controls on the evolution of greenhouse gas emissions. Reversely, the evolution of the output levels of livestock and the most representative animal production have significantly increased the level of CO 2 (carbon dioxide) reported in Portugal. We also analyze the cycle length of the long-term relationship between agricultural activity and greenhouse gas emissions. In particular, we highlight the case of synthetic fertilizers, whose values of CO 2 have quickly risen due to changes in Portuguese vegetables, fruit, and animal production levels.

  1. The effect of CO2 regulations on the cost of corn ethanol production

    NASA Astrophysics Data System (ADS)

    Plevin, R. J.; Mueller, S.

    2008-04-01

    To explore the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates financial and emissions accounting for dry-mill corn ethanol plants. Three policy options are modeled: (1) a charge per unit of life cycle CO2 emissions, (2) a charge per unit of direct biorefinery emissions only, and (3) a low carbon fuel standard (LCFS). A CO2 charge on life cycle emissions increases production costs by between 0.005 and 0.008 l-1 per 10 Mg-1 CO2 price increment, across all modeled plant energy systems, with increases under direct emissions somewhat lower in all cases. In contrast, a LCFS increases the cost of production for selected plant energy systems only: a LCFS requiring reductions in average fuel global warming intensity (GWI) with a target of 10% below the 2005 baseline increases the production costs for coal-fired plants only. For all other plant types, the LCFS operates as a subsidy. The findings depend strongly on the magnitude of a land use change adder. Some land use change adders currently discussed in the literature will push the GWI of all modeled production systems above the LCFS target, flipping the CO2 price from a subsidy to a tax.

  2. The new portfolio of global precipitation data products of the Global Precipitation Climatology Centre suitable to assess and quantify the global water cycle and resources

    NASA Astrophysics Data System (ADS)

    Schneider, Udo; Ziese, Markus; Meyer-Christoffer, Anja; Finger, Peter; Rustemeier, Elke; Becker, Andreas

    2016-10-01

    Precipitation plays an important role in the global energy and water cycle. Accurate knowledge of precipitation amounts reaching the land surface is of special importance for fresh water assessment and management related to land use, agriculture and hydrology, incl. risk reduction of flood and drought. High interest in long-term precipitation analyses arises from the needs to assess climate change and its impacts on all spatial scales. In this framework, the Global Precipitation Climatology Centre (GPCC) has been established in 1989 on request of the World Meteorological Organization (WMO). It is operated by Deutscher Wetterdienst (DWD, National Meteorological Service of Germany) as a German contribution to the World Climate Research Programme (WCRP). This paper provides information on the most recent update of GPCC's gridded data product portfolio including example use cases.

  3. Regulation of pyruvate metabolism and human disease.

    PubMed

    Gray, Lawrence R; Tompkins, Sean C; Taylor, Eric B

    2014-07-01

    Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.

  4. Life cycle analysis within pharmaceutical process optimization and intensification: case study of active pharmaceutical ingredient production.

    PubMed

    Ott, Denise; Kralisch, Dana; Denčić, Ivana; Hessel, Volker; Laribi, Yosra; Perrichon, Philippe D; Berguerand, Charline; Kiwi-Minsker, Lioubov; Loeb, Patrick

    2014-12-01

    As the demand for new drugs is rising, the pharmaceutical industry faces the quest of shortening development time, and thus, reducing the time to market. Environmental aspects typically still play a minor role within the early phase of process development. Nevertheless, it is highly promising to rethink, redesign, and optimize process strategies as early as possible in active pharmaceutical ingredient (API) process development, rather than later at the stage of already established processes. The study presented herein deals with a holistic life-cycle-based process optimization and intensification of a pharmaceutical production process targeting a low-volume, high-value API. Striving for process intensification by transfer from batch to continuous processing, as well as an alternative catalytic system, different process options are evaluated with regard to their environmental impact to identify bottlenecks and improvement potentials for further process development activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Self-perceived sensory responses to soap and synthetic detergent bars correlate with clinical signs of irritation.

    PubMed

    Simion, F A; Rhein, L D; Morrison, B M; Scala, D D; Salko, D M; Kligman, A M; Grove, G L

    1995-02-01

    Epidemiologic studies indicate that after using soaps and other personal care products, many consumers experience irritation. In 50% of the cases the feelings of skin dryness, itching, and stinging occur in the absence of visible signs of irritation. We sought to determine the relation between self-perceived sensory responses of panelists to cleansing products and clinical signs of irritation. A combination of exaggerated arm-washing methods was designed to induce clinical signs of irritation with psychometric techniques developed to quantify sensations. Two studies demonstrated that panelists could reproducibly differentiate between products on the basis of the sensations they felt and that there was a significant correlation (frequently r > 0.80) between these and the observable signs. In the case of skin dryness panelists differentiated products several washing cycles before observable differences were detected. Sensory evaluations of irritation yield additional information on soap and detergent irritancy beyond clinical observations and expand understanding of the irritation process.

  6. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    PubMed

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless, we believe that the development of this approach will help guide the optimization of the production of storage compounds as valuable by-products of wastewater treatment.

  7. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study.

    PubMed

    Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip

    2017-12-01

    Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. [Adaptability of Brazilian strains of Agaricus subrufescens Peck to fruiting on various casing materials in commercial crops].

    PubMed

    Pardo-Giménez, Arturo; Pardo González, José Emilio; de Figueirêdo, Vinícius Reis; Zied, Diego Cunha

    2014-01-01

    Agaricus subrufescens Peck is a mushroom whose cultivation has aroused great interest worldwide in recent years, and is becoming increasingly popular. A rapid expansion of culture throughout the world is foreseen because of its medicinal and culinary properties. This work assesses the effect of 5 different casing layers on the production of 3 strains of Agaricus subrufescens. A growth cycle of Agaricus subrufescens under controlled conditions has been carried out. The main production parameters were evaluated. The best results were provided by the ABL 99/30 strain. Peat-based casings have a better yield than those based on mineral soil. The highest yield (6.75kg/m(2), biological efficiency 27.57kg/dt) was provided by the combination ABL 99/30-Euroveen. Our results suggest that the combination of the strain ABL 99/30 using a peat-based casing layer (Euroveen) offers a high potential for use on a commercial scale by the edible mushroom production sector. The availability of alternatives to the usually cultivated species can make better use of resources, and increase the profitability of this activity. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  9. Evolutionary model of an anonymous consumer durable market

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2011-07-01

    An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.

  10. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 3 2013-04-01 2013-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...

  11. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 3 2014-04-01 2014-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...

  12. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 3 2012-04-01 2012-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...

  13. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...

  14. 19 CFR 207.27 - Short life cycle products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 3 2011-04-01 2011-04-01 false Short life cycle products. 207.27 Section 207.27... SUBSIDIZED EXPORTS TO THE UNITED STATES Final Determinations, Short Life Cycle Products § 207.27 Short life... short life cycle merchandise which has been the subject of two or more affirmative dumping...

  15. Extending the scope of eco-labelling in the food industry to drive change beyond sustainable agriculture practices.

    PubMed

    Miranda-Ackerman, Marco A; Azzaro-Pantel, Catherine

    2017-12-15

    New consumer awareness is shifting industry towards more sustainable practices, creating a virtuous cycle between producers and consumers enabled by eco-labelling. Eco-labelling informs consumers of specific characteristics of products and has been used to market greener products. Eco-labelling in the food industry has yet been mostly focused on promoting organic farming, limiting the scope to the agricultural stage of the supply chain, while carbon labelling informs on the carbon footprint throughout the life cycle of the product. These labelling strategies help value products in the eyes of the consumer. Because of this, decision makers are motivated to adopt more sustainable models. In the food industry, this has led to important environmental impact improvements at the agricultural stage, while most other stages in the Food Supply Chain (FSC) have continued to be designed inefficiently. The objective of this work is to define a framework showing how carbon labelling can be integrated into the design process of the FSC. For this purpose, the concept of Green Supply Chain Network Design (GSCND) focusing on the strategic decision making for location and allocation of resources and production capacity is developed considering operational, financial and environmental (CO 2 emissions) issues along key stages in the product life cycle. A multi-objective optimization strategy implemented by use of a genetic algorithm is applied to a case study on orange juice production. The results show that the consideration of CO 2 emission minimization as an objective function during the GSCND process together with techno-economic criteria produces improved FSC environmental performance compared to both organic and conventional orange juice production. Typical results thus highlight the importance that carbon emissions optimization and labelling may have to improve FSC beyond organic labelling. Finally, CO 2 emission-oriented labelling could be an important tool to improve the effects eco-labelling has on food product environmental impact going forward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Product environmental footprint of strawberries: Case studies in Estonia and Germany.

    PubMed

    Soode-Schimonsky, Eveli; Richter, Klaus; Weber-Blaschke, Gabriele

    2017-12-01

    The environmental impacts of strawberries have been assessed in several studies. However, these studies either present dissimilar results or only focus on single impact categories without offering a comprehensive overview of environmental impacts. We applied the product environmental footprint (PEF) methodology to broadly indicate the environmental impacts of various strawberry production systems in Germany and Estonia by 15 impact categories. Data for the 7 case studies were gathered from two farms with organic and two farms with conventional open field production systems in Estonia and from one farm with conventional open field and one farm with a polytunnel and greenhouse production system in Germany. The greenhouse production system had the highest environmental impact with a PEF of 0.0040. In the field organic production systems, the PEF was 0.0029 and 0.0028. The field conventional production systems resulted in a PEF of 0.0008, 0.0009 and 0.0002. Polytunnel PEF was 0.0006. Human toxicity cancer effects, particulate matter and human toxicity non-cancer effects resulted in the highest impact across all analysed production systems. The main contributors were electricity for cooling, heating the greenhouse and the use of agricultural machinery including fuel burning. While production stage contributed 85% of the total impact in the greenhouse, also other life cycle stages were important contributors: pre-chain resulted in 71% and 90% of impact in conventional and polytunnels, respectively, and cooling was 47% in one organic system. Environmental impact from strawberry cooling can be reduced by more efficient use of the cooling room, increasing the strawberry yield or switching from oil shale electricity to other energy sources. Greenhouse heating is the overall impact hotspot even if it based on renewable resources. A ranking of production systems based on the environmental impact is possible only if all relevant impacts are included. Future studies should aim for detailed results across a variety of impact categories and follow product category rules in defining the life cycle stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An Overview of Nitrogen Cycling in a Semiarid Savanna: Some Implications for Management and Conservation in a Large African Park

    NASA Astrophysics Data System (ADS)

    Coetsee, Corli; Jacobs, Shayne; Govender, Navashni

    2012-02-01

    Nitrogen (N) is a major control on primary productivity and hence on the productivity and diversity of secondary producers and consumers. As such, ecosystem structure and function cannot be understood without a comprehensive understanding of N cycling and dynamics. This overview describes the factors that govern N distribution and dynamics and the consequences that variable N dynamics have for structure, function and thresholds of potential concern (TPCs) for management of a semiarid southern African savanna. We focus on the Kruger National Park (KNP), a relatively intact savanna, noted for its wide array of animal and plant species and a prized tourist destination. KNP's large size ensures integrity of most ecosystem processes and much can be learned about drivers of ecosystem structure and function using this park as a baseline. Our overview shows that large scale variability in substrates exists, but do not necessarily have predictable consequences for N cycling. The impact of major drivers such as fire is complex; at a landscape scale little differences in stocks and cycling were found, though at a smaller scale changes in woody cover can lead to concomitant changes in total N. Contrasting impacts of browsers and grazers on N turnover has been recorded. Due to the complexity of this ecosystem, we conclude that it will be complicated to draw up TPCs for most transformations and pools involved with the N cycle. However, we highlight in which cases the development of TPCs will be possible.

  18. Comparative environmental assessment of natural and recycled aggregate concrete.

    PubMed

    Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I

    2010-11-01

    Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Addressing Counterfeit Parts in the DoD Supply Chain

    DTIC Science & Technology

    2014-03-01

    components are genuine, given this industry’s relatively quick innovation cycles. Many active military systems were built using now-obsolete...reviews, and other activities that can delay acquisitions and increase acquisition costs. The QSLD program also enables the DSCC to use automated...case of semiconductors, many active military systems were built using now-obsolete semiconductors, the production of which was halted years, even

  20. Software life cycle methodologies and environments

    NASA Technical Reports Server (NTRS)

    Fridge, Ernest

    1991-01-01

    Products of this project will significantly improve the quality and productivity of Space Station Freedom Program software processes by: improving software reliability and safety; and broadening the range of problems that can be solved with computational solutions. Projects brings in Computer Aided Software Engineering (CASE) technology for: Environments such as Engineering Script Language/Parts Composition System (ESL/PCS) application generator, Intelligent User Interface for cost avoidance in setting up operational computer runs, Framework programmable platform for defining process and software development work flow control, Process for bringing CASE technology into an organization's culture, and CLIPS/CLIPS Ada language for developing expert systems; and methodologies such as Method for developing fault tolerant, distributed systems and a method for developing systems for common sense reasoning and for solving expert systems problems when only approximate truths are known.

  1. Integrating health economics into the product development cycle: a case study of absorbable pins for treating hallux valgus.

    PubMed

    Vallejo-Torres, Laura; Steuten, Lotte; Parkinson, Bonny; Girling, Alan J; Buxton, Martin J

    2011-01-01

    The probability of reimbursement is a key factor in determining whether to proceed with or abandon a product during its development. The purpose of this article is to illustrate how the methods of iterative Bayesian economic evaluation proposed in the literature can be incorporated into the development process of new medical devices, adapting them to face the relative scarcity of data and time that characterizes the process. A 3-stage economic evaluation was applied: an early phase in which simple methods allow for a quick prioritization of competing products; a mid-stage in which developers synthesize the data into a decision model, identify the parameters for which more information is most valuable, and explore uncertainty; and a late stage, in which all relevant information is synthesized. A retrospective analysis was conducted of the case study of absorbable pins, compared with metallic fixation, in osteotomy to treat hallux valgus. The results from the early analysis suggest absorbable pins to be cost-effective under the beliefs and assumptions applied. The outputs from the models at the mid-stage analyses show the device to be cost-effective with a high probability. Late-stage analysis synthesizes evidence from a randomized controlled trial and informative priors, which are based on previous evidence. It also suggests that absorbable pins are the most cost-effective strategy, although the uncertainty in the model output increased considerably. This example illustrates how the method proposed allows decisions in the product development cycle to be based on the best knowledge that is available at each stage.

  2. Cleanroom certification model

    NASA Technical Reports Server (NTRS)

    Currit, P. A.

    1983-01-01

    The Cleanroom software development methodology is designed to take the gamble out of product releases for both suppliers and receivers of the software. The ingredients of this procedure are a life cycle of executable product increments, representative statistical testing, and a standard estimate of the MTTF (Mean Time To Failure) of the product at the time of its release. A statistical approach to software product testing using randomly selected samples of test cases is considered. A statistical model is defined for the certification process which uses the timing data recorded during test. A reasonableness argument for this model is provided that uses previously published data on software product execution. Also included is a derivation of the certification model estimators and a comparison of the proposed least squares technique with the more commonly used maximum likelihood estimators.

  3. Electricity production from municipal solid waste in Brazil.

    PubMed

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  4. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  5. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  6. Environmental impact of thermal insulations: How do natural insulation products differ from synthetic ones?

    NASA Astrophysics Data System (ADS)

    Dovjak, M.; Košir, M.; Pajek, L.; Iglič, N.; Božiček, D.; Kunič, R.

    2017-10-01

    As the environmental awareness of the public is rising and at the same time contemporary buildings are becoming more and more energy efficient, the focus is shifting towards the usage of environmentally friendly building products. Human decisions are often driven by emotions and perceptions. Consequently, there exists a strong tendency towards preferring “natural” constructional products to the synthetic ones, especially in the case of thermal insulations. Life cycle assessment (LCA) has enabled an opportunity to widen the meaning of the word “environmentally friendly”, giving researchers and building designers an objective decision making tool to determine the environmental impact of building products, building components and buildings as a whole. The purpose of this study was to compare the environmental impact of various thermal insulations for the cradle to gate life cycle stages, based on a unified functional unit. Overall, 15 most commonly used thermal insulation products were analysed and classified into natural and synthetic groups. Based on the differentiation, we compared the impact in the selected environmental categories and identified the most influential environmental drivers. The results show that in some environmental categoriesnatural thermal insulations perform better (i.e. global warming potential), whilein others (i.e. eutrophication potential) they underperform. However, environmental impact trends can be identified, specifically for the natural and the synthetic materials.

  7. Cradle to Gate Life Cycle Assessment of Softwood Lumber Production from the Northeast-North Central

    Treesearch

    Maureen Puettmann; Elaine Oneil; Richard Bergman

    2013-01-01

    CORRIM, the Consortium for Research on Renewable Industrial Materials, has derived life cycle inventory (LCI) data for major wood products and wood production regions in the United States. The life cycle inventory data cover from forest regeneration through to final product at the mill gate. Research has covered nine major forest products including both structural and...

  8. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.

    PubMed

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the analyzed system provides further input to the choice of impact categories.

  9. Comparative life cycle assessment of alternative strategies for energy recovery from used cooking oil.

    PubMed

    Lombardi, Lidia; Mendecka, Barbara; Carnevale, Ennio

    2018-06-15

    The separate collection of Used Cooking Oil (UCO) is gaining popularity through several countries in Europe. An appropriate management of UCO waste stream leads to substantial benefits. In this study, we analyse two different possibilities of UCO energy reuse: the direct feed to a reciprocating internal combustion engine (ICE) for cogeneration purpose, and the processing to generate biodiesel. Concerning biodiesel production, we analyse four among conventional and innovative technologies, characterised by different type and amount of used chemicals, heat and electricity consumptions and yields. We perform a systematic evaluation of environmental benefits and drawbacks by applying life cycle assessment (LCA) analysis to compare the alternatives. For the impact assessment, two methods are selected: the Global Warming Potential (GWP) and Cumulative Exergy Consumption (CExC). Results related only to the processing phases (i.e. not including yet the avoided effects) show that the recovery of UCO in cogeneration plant has in general lower values in terms of environmental impacts than its employment in biodiesel production. When products and co-products substitution are included, the savings obtained by the substitution of conventional diesel production, in the biodiesel cases, are significantly higher than the avoided effects for electricity and heat in the cogeneration case. In particular, by using the UCO in the biodiesel production processes, the savings vary from 41.6 to 54.6 GJ ex per tUCO, and from 2270 to 2860 kg CO 2eq per tUCO for CExC and GWP, respectively. A particular focus is put on sensitivity and uncertainty analyses. Overall, high uncertainty of final results for process impacts is observed, especially for the supercritical methanol process. Low uncertainty values are evaluated for the avoided effects. Including the uncertain character of the impacts, cogeneration scenario and NaOH catalysed process of biodiesel production result to be the most suitable solutions from the process impacts and avoided effects perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modeling new production in upwelling centers - A case study of modeling new production from remotely sensed temperature and color

    NASA Technical Reports Server (NTRS)

    Dugdale, Richard C.; Wilkerson, Frances P.; Morel, Andre; Bricaud, Annick

    1989-01-01

    A method has been developed for estimating new production in upwelling systems from remotely sensed surface temperatures. A shift-up model predicts the rate of adaptation of nitrate uptake. The time base for the production cycle is obtained from a knowledge of surface heating rates and differences in temperature between the point of upwelling and each pixel. Nitrate concentrations are obtained from temperature-nitrate regression equations. The model was developed for the northwest Africa upwelling region, where shipboard measurements of new production were available. It can be employed in two modes, the first using only surface temperatures, and the second in which CZCS color data are incorporated. The major advance offered by this method is the capability to estimate new production on spatial and time scales inaccessible with shipboard approaches.

  11. Evaluation of Terrestrial Carbon Cycle with the Land Use Harmonization Dataset

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Nemani, R. R.

    2017-12-01

    CO2 emission by land use and land use change (LULUC) has still had a large uncertainty (±50%). We need to more accurately reveal a role of each LULUC process on terrestrial carbon cycle, and to develop more complicated land cover change model, leading to improve our understanding of the mechanism of global warming. The existing biosphere model studies do not necessarily have enough major LULUC process in the model description (e.g., clear cutting and residual soil carbon). The issue has the potential for causing an underestimation of the effect of LULUC on the global carbon exchange. In this study, the terrestrial biosphere model was modified with several LULUC processes according to the land use harmonization data set. The global mean LULUC emission from the year 1850 to 2000 was 137.2 (PgC 151year-1), and we found the noticeable trend in tropical region. As with the case of primary production in the existing studies, our results emphasized the role of tropical forest on wood productization and residual soil organic carbon by cutting. Global mean NEP was decreased by LULUC. NEP is largely affected by decreasing leaf biomass (photosynthesis) by deforestation process and increasing plant growth rate by regrowth process. We suggested that the model description related to deforestation, residual soil decomposition, wood productization and plant regrowth is important to develop a biosphere model for estimating long-term global carbon cycle.

  12. Development of chemiluminescent probe hybridization, RT-PCR and nucleic acid cycle sequencing assays of Sabin type 3 isolates to identify base pair 472 Sabin type 3 mutants associated with vaccine associated paralytic poliomyelitis.

    PubMed

    Old, M O; Logan, L H; Maldonado, Y A

    1997-11-01

    Sabin type 3 polio vaccine virus is the most common cause of poliovaccine associated paralytic poliomyelitis. Vaccine associated paralytic poliomyelitis cases have been associated with Sabin type 3 revertants containing a single U to C substitution at bp 472 of Sabin type 3. A rapid method of identification of Sabin type 3 bp 472 mutants is described. An enterovirus group-specific probe for use in a chemiluminescent dot blot hybridization assay was developed to identify enterovirus positive viral lysates. A reverse transcription-polymerase chain reaction (RT-PCR) assay producing a 319 bp PCR product containing the Sabin type 3 bp 472 mutation site was then employed to identify Sabin type 3 isolates. Chemiluminescent nucleic acid cycle sequencing of the purified 319 bp PCR product was then employed to identify nucleic acid sequences at bp 472. The enterovirus group probe hybridization procedure and isolation of the Sabin type 3 PCR product were highly sensitive and specific; nucleic acid cycle sequencing corresponded to the known sequence of stock Sabin type 3 isolates. These methods will be used to identify the Sabin type 3 reversion rate from sequential stool samples of infants obtained after the first and second doses of oral poliovirus vaccine.

  13. Internal cycle modeling and environmental assessment of multiple cycle consumer products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsiliyannis, C.A., E-mail: anion@otenet.gr

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Dynamic flow models are presented for remanufactured, reused or recycled products. Black-Right-Pointing-Pointer Early loss and stochastic return are included for fast and slow cycling products. Black-Right-Pointing-Pointer The reuse-to-input flow ratio (Internal Cycle Factor, ICF) is determined. Black-Right-Pointing-Pointer The cycle rate, which is increasing with the ICF, monitors eco-performance. Black-Right-Pointing-Pointer Early internal cycle losses diminish the ICF, the cycle rate and performance. - Abstract: Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast andmore » slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand.« less

  14. Parameter assessment for virtual Stackelberg game in aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Xie, Fangfang; Zheng, Yao; Zhang, Jifa

    2018-05-01

    In this paper, parametric studies of virtual Stackelberg game (VSG) are conducted to assess the impact of critical parameters on aerodynamic shape optimization, including design cycle, split of design variables and role assignment. Typical numerical cases, including the inverse design and drag reduction design of airfoil, have been carried out. The numerical results confirm the effectiveness and efficiency of VSG. Furthermore, the most significant parameters are identified, e.g. the increase of design cycle can improve the optimization results but it will also add computational burden. These studies will maximize the productivity of the effort in aerodynamic optimization for more complicated engineering problems, such as the multi-element airfoil and wing-body configurations.

  15. Bridging the gap between life cycle inventory and impact assessment for toxicological assessments of pesticides used in crop production.

    PubMed

    van Zelm, Rosalie; Larrey-Lassalle, Pyrène; Roux, Philippe

    2014-04-01

    In Life Cycle Assessment (LCA), the Life Cycle Inventory (LCI) provides emission data to the various environmental compartments and Life Cycle Impact Assessment (LCIA) determines the final distribution, fate and effects. Due to the overlap between the Technosphere (anthropogenic system) and Ecosphere (environment) in agricultural case studies, it is, however, complicated to establish what LCI needs to capture and where LCIA takes over. This paper aims to provide guidance and improvements of LCI/LCIA boundary definitions, in the dimensions of space and time. For this, a literature review was conducted to provide a clear overview of available methods and models for both LCI and LCIA regarding toxicological assessments of pesticides used in crop production. Guidelines are provided to overcome the gaps between LCI and LCIA modeling, and prevent the overlaps in their respective operational spheres. The proposed framework provides a starting point for LCA practitioners to gather the right data and use the proper models to include all relevant emission and exposure routes where possible. It is also able to predict a clear distinction between efficient and inefficient management practices (e.g. using different application rates, washing and rinsing management, etc.). By applying this framework for toxicological assessments of pesticides, LCI and LCIA can be directly linked, removing any overlaps or gaps in between the two distinct LCA steps. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells▿

    PubMed Central

    Gruffat, Henri; Lupo, Julien; Morand, Patrice; Boyer, Véronique; Manet, Evelyne

    2011-01-01

    The Epstein-Barr Virus (EBV) productive cycle is initiated by the expression of the viral trans-activator EB1 (also called Zebra, Zta, or BZLF1), which belongs to the basic leucine zipper transcription factor family. We have previously identified the cellular NACos (nuclear and adherent junction complex components) protein ubinuclein (Ubn-1) as a partner for EB1, but the function of this complex has never been studied. Here, we have evaluated the consequences of this interaction on the EBV productive cycle and find that Ubn-1 overexpression represses the EBV productive cycle whereas Ubn-1 downregulation by short hairpin RNA (shRNA) increases virus production. By a chromatin immunoprecipitation (ChIP) assay, we show that Ubn-1 blocks EB1-DNA interaction. We also show that in epithelial cells, relocalization and sequestration of Ubn-1 to the tight junctions of nondividing cells allow increased activation of the productive cycle. We propose a model in which Ubn-1 is a modulator of the EBV productive cycle: in proliferating epithelial cells, Ubn-1 is nuclear and inhibits activation of the productive cycle, whereas in differentiated cells, Ubn-1 is sequestrated to tight junctions, thereby allowing EB1 to fully function in the nucleus. PMID:21084479

  17. USING LIFE CYCLE ASSESSMENT TOOLS FOR INTEGRATED PRODUCT POLICY

    EPA Science Inventory

    The European Union's new Integrated Product Policy directs governments and companies to consider the entire product life cycle, from cradle to grave, in their environmental decision-making process. A life-cycle based approach is intended to lead toward true environmental improvem...

  18. A mathematical formulation for interface-based modular product design with geometric and weight constraints

    NASA Astrophysics Data System (ADS)

    Jung-Woon Yoo, John

    2016-06-01

    Since customer preferences change rapidly, there is a need for design processes with shorter product development cycles. Modularization plays a key role in achieving mass customization, which is crucial in today's competitive global market environments. Standardized interfaces among modularized parts have facilitated computational product design. To incorporate product size and weight constraints during computational design procedures, a mixed integer programming formulation is presented in this article. Product size and weight are two of the most important design parameters, as evidenced by recent smart-phone products. This article focuses on the integration of geometric, weight and interface constraints into the proposed mathematical formulation. The formulation generates the optimal selection of components for a target product, which satisfies geometric, weight and interface constraints. The formulation is verified through a case study and experiments are performed to demonstrate the performance of the formulation.

  19. Long-term effects of antibiotics, norfloxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): effects on growth, development, and reproduction.

    PubMed

    Yan, Zhenhua; Lu, Guanghua; Ye, Qiuxia; Liu, Jianchao

    2016-09-01

    A partial life-cycle study with zebrafish (Danio rerio) was conducted to evaluate the long-term effects of antibiotics, norfloxacin (NOR) and sulfamethoxazole (SMX). A series of bio-endpoints correlated to the growth, development, and reproduction was assessed. The results showed that the body weight and the condition factor were depressed by SMX at 200 μg/L during the growth period. Meanwhile, the activities of metabolic enzyme (ethoxyresorufin O-deethylase, EROD) and antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT) were stimulated in all cases. The consequences of parental exposure to antibiotics for the next generation were also examined. The egg production of parents were depressed by the 200 μg/L NOR and SMX alone or in combination. Similarly, decreased hatching, survival, and enhanced development abnormality of the next generation also occurred after parental exposure to SMX at the highest concentration. The heartbeat however was not altered in all cases. Furthermore, there was no significant difference in the bio-endpoints between the combined and individual treatment in most cases, with the exception of lower EROD activity and egg production in the co-treatment. The results suggest that long-term exposure to NOR and SMX at environmentally relevant concentrations, individually and in a mixture, may not significantly pose a threat to the growth, development, and reproduction of zebrafish, and an adverse effect may be expected at high concentration.

  20. Technology Solutions for Existing Homes Case Study: Trade-Friendly Retrofit Insulated Panels for Existing Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    For this project with the U.S. Department of Energy Building America team Home Innovation Research Labs, the retrofit insulated panels relied on an enhanced expanded polystyrene (EPS) for thermal resistance of R-4.5/inch, which is an improvement of 10% over conventional (white-colored) EPS. EPS, measured by its life cycle, is an alternative to commonly used extruded polystyrene and spray polyurethane foam. It is a closed-cell product made up of 90% air, and it requires about 85% fewer petroleum products for processing than other rigid foams.

  1. Life cycle toxicity assessment of pesticides used in integrated and organic production of oranges in the Comunidad Valenciana, Spain.

    PubMed

    Juraske, Ronnie; Sanjuán, Neus

    2011-02-01

    The relative impacts of 25 pesticides including acaricides, fungicides, herbicides, insecticides, and post-harvest fungicides, used in the production of oranges in Spain were assessed with current life cycle impact assessment (LCIA) tools. Chemical specific concentrations were combined with pesticide emission data and information on chemical toxicity to assess human toxicity and freshwater ecotoxicity impacts. As a case study, the relative impacts of two orange production systems in the region of Valencia, integrated pest management (IP) and organic production (OP), were assessed. The evaluation of active ingredients showed that on average acaricides have the highest human toxicity impact scores, while for freshwater ecotoxicity insecticides show the highest impact. In both impact categories the lowest impact scores were calculated for herbicides. In the production of 1 kg of orange fruits, where several kinds of pesticides are combined, results show that post-harvest fungicides can contribute more than 95% to the aggregate human toxicity impacts. More than 85% of aquatic ecotoxicity is generated by fungicides applied before harvest. The potential to reduce impacts on freshwater ecosystems is seven orders of magnitude, while impacts on human health can be reduced by two orders of magnitude. Hence, this stresses the importance of a careful pre-selection of active ingredients. In both impact categories, organic production represents the least toxic pest-control method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Polylactic acid trays for fresh-food packaging: A Carbon Footprint assessment.

    PubMed

    Ingrao, Carlo; Tricase, Caterina; Cholewa-Wójcik, Agnieszka; Kawecka, Agnieszka; Rana, Roberto; Siracusa, Valentina

    2015-12-15

    This paper discusses application of Carbon Footprint (CF) for quantification of the 100-year Global Warming Potential (GWP100) associated with the life cycle of polylactic acid (PLA) trays for packaging of fresh foods. A comparison with polystyrene (PS)-based trays was done considering two different transport system scenarios for PLA-granule supply to the tray production firm: a transoceanic freight vessel and an intercontinental freight aircraft. Doing so enabled estimation of the influence of the transportation phase on the GHG-emission rate associated with the PLA-trays' life cycle. From the assessment, the GWP100 resulted to be mainly due to PLA-granulate production and to its transportation to the tray manufacturing facility. Also, the study documented that, depending upon the transport system considered, the CF associated with the life cycle of the PLA trays can worsen so much that the latter are no longer GHG-emission saving as they are expected to be compared to the PS ones. Therefore, based upon the findings of the study, it was possible for the authors to understand the importance and the need of accounting for the transport-related issues in the design of PLA-based products, thus preserving their environmental soundness compared to traditional petroleum-based products. In this context, the study could be used as the base to reconsider the merits of PLA usage for product manufacturing, especially when high distances are implied, as in this analysed case. So, the authors believe that new research and policy frameworks should be designed and implemented for both development and promotion of more globally sustainable options. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Use of Life Cycle Assessment in Environmental Management

    NASA Astrophysics Data System (ADS)

    Ross, Stuart; Evans, David

    2002-01-01

    The aim of this paper is to demonstrate how life cycle assessment (LCA) can be used to develop strategic policies that can lead to a minimization of the environmental burden resulting from the provision of services or the manufacture, use, and disposal of products within the economy. We accomplish this aim by presenting a case study that evaluates the greenhouse gas contributions of each stage in the life cycle of containerboard packaging and the potential impact on emissions of various policy options available to decision-makers. Our analysis showed that, in general, the most useful strategy was to recycle the used packaging. However, our analysis also indicated that when measures are taken to eliminate sources of methane emissions, then recycling is no longer beneficial from a greenhouse perspective. This is because the process energy required in the form of gas and electricity is substantially greater for containerboard manufactured from recycled material than it is for virgin fiber.

  4. Sustainability evaluation of pasteurized milk production with a life cycle assessment approach: An Iranian case study.

    PubMed

    Rafiee, Shahin; Khoshnevisan, Benyamin; Mohammadi, Issa; Aghbashlo, Mortaza; Mousazadeh, Hossein; Clark, Sean

    2016-08-15

    Agro-food systems play a significant role in the economies of all nations due to energy use and the resulting environmental consequences. The sustainability of these systems is determined by a multitude of interacting economic, social and environmental factors. Dairy production presents a relevant example of the sustainability trade-offs that occur within such systems. On the one hand, dairy production constitutes an important part of the human diet, but it is also responsible for significant emissions of potent greenhouse gases and other pollutants. In this study, the environmental aspects of pasteurized milk production in Iran were investigated using a life-cycle approach. Three sub-systems, namely feed production, dairy farm and dairy factory, were taken into account to determine how and where Iranian pasteurized milk production might be made more environmentally friendly and energy efficient. The results clearly demonstrate that the feed production stage was the hot spot in pasteurized milk production in terms of energy consumption, environmental burdens and economic costs. The largest share of the total production costs belonged to animal feeds (43%), which were part of the feed production stage. The largest consumers of energy in the production of raw milk were alfalfa (30.3%), concentrate (24%), straw (17.8%) and maize (10.9%) for cows, followed by diesel fuel (6.6%) and electricity (5.6%). The global warming potential for the production of 1000kg of raw milk at the dairy-farm gate was estimated at 457kg CO2,eq. Thus, more than 69% of the total impact at the milk-processing gate resulted from the previous two sub-systems (feed production and dairy farm), with the feed-production stage accounting for the largest fractions of the environmental burdens. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Integrated Metrics for Improving the Life Cycle Approach to Assessing Product System Sustainability

    EPA Science Inventory

    Life cycle approaches are critical for identifying and managing to reduce burdens in the sustainability of product systems. While these methods can indicate potential environmental impacts of a product, current Life Cycle Assessment (LCA) methods fail to integrate the multiple im...

  6. Coastal barium cycling at the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Pyle, K. M.; Hendry, K. R.; Sherrell, R. M.; Meredith, M. P.; Venables, H.; Lagerström, M.; Morte-Ródenas, A.

    2017-05-01

    Barium cycling in the ocean is associated with a number of processes, including the production and recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully understood, particularly in cases where multiple processes may be interacting simultaneously with the dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, and salinity measurements, to determine the relative control of various coastal processes on the barium cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper samples, but nevertheless persists significantly in surface waters. This indicates that the link between biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-siliceous productivity that acts as a Bad sink. Meteoric water input, conversely, exerts little or no control on local barium levels, indicating that glacial meltwater is not a significant coastal source of barium to the West Antarctic Peninsula shelf waters.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbentmore » samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.« less

  8. Life Cycle Evolution and Systematics of Campanulariid Hydrozoans

    DTIC Science & Technology

    2004-09-01

    kit according to manufacturer’s protocol. Purified PCR product was cycle-sequenced using either Big Dye 2 or 3 sequencing chemistry (ABI), following...ethidium bromide and purified with PCR purification kits (Qiagen). Purified products were cycle- sequenced with either Big Dye 2 or 3 sequencing chemistry...PCR purification kit (Qiagen). The purified product was cycle-sequenced using Big Dye 2 sequencing chemistry (ABI) following the manufacturer’s

  9. Comparing the environmental footprints of home-care and personal-hygiene products: the relevance of different life-cycle phases.

    PubMed

    Koehler, Annette; Wildbolz, Caroline

    2009-11-15

    An in-depth life-cycle assessment of nine home-care and personal-hygiene products was conducted to determine the ecological relevance of different life-cycle phases and compare the environmental profiles of products serving equal applications. Using detailed data from industry and consumer-behavior studies a broad range of environmental impacts were analyzed to identify the main drivers in each life-cycle stage and potentials for improving the environmental footprints. Although chemical production significantly adds to environmental burdens, substantial impacts are caused in the consumer-use phase. As such, this research provides recommendations for product development, supply chain management, product policies, and consumer use. To reduce environmental burdens products should, for instance, be produced in concentrated form, while consumers should apply correct product dosages and low water temperatures during product application.

  10. New processable modified polyimide resins for adhesive and matrix applications

    NASA Technical Reports Server (NTRS)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  11. Life cycle assessment of gasoline production and use in Chile.

    PubMed

    Morales, Marjorie; Gonzalez-García, Sara; Aroca, Germán; Moreira, María Teresa

    2015-02-01

    Gasoline is the second most consumed fuel in Chile, accounting for 34% of the total fuel consumption in transportation related activities in 2012. Chilean refineries process more than 97% of the total gasoline commercialized in the national market. When it comes to evaluating the environmental profile of a Chilean process or product, the analysis should consider the characteristics of the Chilean scenario for fuel production and use. Therefore, the identification of the environmental impacts of gasoline production turns to be very relevant for the determination of the associated environmental impacts. For this purpose, Life Cycle Assessment has been selected as a useful methodology to assess the ecological burdens derived from fuel-based systems. In this case study, five subsystems were considered under a "well-to-wheel" analysis: crude oil extraction, gasoline importation, refinery, gasoline storage and distribution/use. The distance of 1 km driven by a middle size passenger car was chosen as functional unit. Moreover, volume, economic and energy-based allocations were also considered in a further sensitivity analysis. According to the results, the main hotspots were the refining activities as well as the tailpipe emissions from car use. When detailing by impact category, climate change was mainly affected by the combustion emissions derived from the gasoline use and refining activities. Refinery was also remarkable in toxicity related categories due to heavy metals emissions. In ozone layer and mineral depletion, transport activities played an important role. Refinery was also predominant in photochemical oxidation and water depletion. In terms of terrestrial acidification and marine eutrophication, the combustion emissions from gasoline use accounted for large contributions. This study provides real inventory data for the Chilean case study and the environmental results give insight into their influence of the assessment of products and processes in the country. Moreover, they could be compared with production and distribution schemes in other regions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. 76 FR 34271 - Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,671] Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including Teleworkers Reporting to... Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston...

  13. 78 FR 16676 - Agency Information Collection Activities; Proposed Collection; Comment Request; Draft Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... Industry and FDA Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k... for Industry and FDA Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k... Staff; Total Product Life Cycle: Infusion Pump--Premarket Notification [510(k)] Submissions--0910-NEW...

  14. An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry

    2014-03-01

    Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feedmore » a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.« less

  15. A simulation based approach to optimize inventory replenishment with RAND algorithm: An extended study of corrected demand using Holt's method for textile industry

    NASA Astrophysics Data System (ADS)

    Morshed, Mohammad Sarwar; Kamal, Mostafa Mashnoon; Khan, Somaiya Islam

    2016-07-01

    Inventory has been a major concern in supply chain and numerous researches have been done lately on inventory control which brought forth a number of methods that efficiently manage inventory and related overheads by reducing cost of replenishment. This research is aimed towards providing a better replenishment policy in case of multi-product, single supplier situations for chemical raw materials of textile industries in Bangladesh. It is assumed that industries currently pursue individual replenishment system. The purpose is to find out the optimum ideal cycle time and individual replenishment cycle time of each product for replenishment that will cause lowest annual holding and ordering cost, and also find the optimum ordering quantity. In this paper indirect grouping strategy has been used. It is suggested that indirect grouping Strategy outperforms direct grouping strategy when major cost is high. An algorithm by Kaspi and Rosenblatt (1991) called RAND is exercised for its simplicity and ease of application. RAND provides an ideal cycle time (T) for replenishment and integer multiplier (ki) for individual items. Thus the replenishment cycle time for each product is found as T×ki. Firstly, based on data, a comparison between currently prevailing (individual) process and RAND is provided that uses the actual demands which presents 49% improvement in total cost of replenishment. Secondly, discrepancies in demand is corrected by using Holt's method. However, demands can only be forecasted one or two months into the future because of the demand pattern of the industry under consideration. Evidently, application of RAND with corrected demand display even greater improvement. The results of this study demonstrates that cost of replenishment can be significantly reduced by applying RAND algorithm and exponential smoothing models.

  16. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production

    PubMed Central

    Kleidon, A.

    2010-01-01

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248

  17. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production.

    PubMed

    Kleidon, A

    2010-05-12

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.

  18. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE PAGES

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    2015-09-25

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  19. The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Amy; Feingold, G.; Shupe, M. D.

    This study investigates the maintenance of cloud ice production in Arctic mixed-phase stratocumulus in large eddy simulations that include a prognostic ice nuclei (IN) formulation and a diurnal cycle. Balances derived from a mixed-layer model and phase analyses are used to provide insight into buffering mechanisms that maintain ice in these cloud systems. We find that, for the case under investigation, IN recycling through subcloud sublimation considerably prolongs ice production over a multi-day integration. This effective source of IN to the cloud dominates over mixing sources from above or below the cloud-driven mixed layer. Competing feedbacks between dynamical mixing andmore » recycling are found to slow the rate of ice lost from the mixed layer when a diurnal cycle is simulated. Furthermore, the results of this study have important implications for maintaining phase partitioning of cloud ice and liquid that determine the radiative forcing of Arctic mixed-phase clouds.« less

  20. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations.

    PubMed

    Wang, Dan; Fan, Jiazhi; Jing, Panpan; Cheng, Yong; Ruan, Honghua

    2016-01-01

    It is crucial to investigate how climate and management factors impact poplar plantation production and soil carbon sequestration interactively. We extracted above-ground net primary production (ANPP), climate and management factors from peer-reviewed journal articles and analyzed impact of management factor and climate on the mean annual increment (MAI) of poplar ANPP statistically. Previously validated mechanistic model (ED) is used to perform case simulations for managed poplar plantations under different harvesting rotations. The meta-analysis indicate that the dry matter MAI was 6.3 Mg ha(-1) yr(-1) (n=641, sd=4.9) globally, and 5.1 (n=292, sd=4.0), 8.1 (n=224, sd=4.7) and 4.4 Mg ha(-1) yr(-1) (n=125, sd=3.2) in Europe, the US and China, respectively. Poplar MAI showed a significant response to GDD, precipitation and planting density and formed a quadratic relationship with stand age. The low annual production for poplar globally was probably caused by suboptimal water availability, rotation length and planting density. SEM attributes the variance of poplar growth rate more to climate than to management effects. Case simulations indicated that longer rotation cycle significantly increased soil carbon storage. Findings of this work suggests that management factor of rotation cycle alone could have dramatic impact on the above ground growth, as well as on the soil carbon sequestration of poplar plantations and will be helpful to quantify the long-term carbon sequestration through short rotation plantation. The findings of this study are useful in guiding further research, policy and management decisions towards sustainable poplar plantations. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Phosphorus, carbon- and nitrogen interactions in productive and degraded tropical pastures

    NASA Astrophysics Data System (ADS)

    Oberson, A.; Hegglin, D. D.; Nesper, M.; Rao, I.; Fonte, S.; Ramirez, B.; Velasquez, J.; Tamburini, F.; Bünemann, E. K.; Frossard, E.

    2011-12-01

    Pastures are the main land use in deforested areas of tropical South America. The highly weathered soils of these regions usually have low total and available phosphorus (P) contents. Low P availability can strongly limit plant and animal productivity and other soil ecosystem functions. Most introduced pastures of Brachiaria spp. are grass-alone (GA) while some are grass-legume (GL) pastures. The majority of the introduced pastures, particularly the grass-alone are at some state of degradation (GD). Pasture degradation induces severe loss of plant biomass production, with drastic ecological and economic implications. Although the importance of P deficiency in pasture degradation has been recognized, the knowledge generated on stoichiometry of carbon (C), nitrogen (N) and P along pathways of the nutrient cycles of pastures, with different botanical composition and productivity, has been very limited. We will present results of a case study realized during 2010 to 2011 in the forest margins agro-ecosystem of the department of Caquetá, Colombia. Our objectives were to determine: i) whether P availability is lower in degraded compared to productive pastures, and ii) whether the introduction of legumes in the pasture increases P availability through enhanced biological P cycling through plant growth, plant litter decomposition and the soil microbial biomass; and iii) whether pasture types (GA vs GL) and the state of pasture degradation affect the C:N:P ratios in nutrient pools of the soil-plant system. An on-farm study was conducted on nine farms in the department of Caquetá, Colombia. On every farm three different pasture types were studied: degraded grass alone pastures (GD), productive grass-alone pastures (GA) and productive grass-legume pastures (GL). Basic soil characteristics and indicators on soil P status, microbial P cycling, plant biomass production, plant litter deposition and nutrient concentrations in plant tissue were determined. Analysis of P, C and N in the microbial biomass, particulate organic matter and soil aggregates is in progress. Results showed that plant biomass production, litter deposition, soil organic P and basal soil respiration rate were significantly lower in GD than GA pastures. Moreover, clear trends towards lower total C, N, total P and microbial P per unit soil mass and higher Al saturation were observed in soils of GD compared to GA pastures while available soil P content and P concentration in plant biomass did not differ. No significant differences were found in any of the measured soil parameters between the two productive pasture types, GA and GL, but legume biomass has significantly higher N concentration and tends to have higher P concentration than grasses. 15-N natural abundance data indicated that legume N was largely derived from symbiotic N2 fixation. Biological P cycling was clearly reduced in GD compared to productive GA and GL pastures. This work highlights the importance of biological P cycling for developing sustainable pastoral systems and provides new knowledge on interactions of P with C and N.

  2. Stable cycling in discrete-time genetic models.

    PubMed

    Hastings, A

    1981-11-01

    Examples of stable cycling are discussed for two-locus, two-allele, deterministic, discrete-time models with constant fitnesses. The cases that cycle were found by using numerical techniques to search for stable Hopf bifurcations. One consequence of the results is that apparent cases of directional selection may be due to stable cycling.

  3. Evaluation de l'effet des concepts de la production allegee dans une entreprise aeronautique

    NASA Astrophysics Data System (ADS)

    Moknine, Myriam

    This research focuses on a project to implement a Lean approach in Quebec's aerospace business, that of Bombardier Aerospace. Developed for the automobile industry since the 1950s, the Lean has expanded its practices to various industry sectors, including the international aircraft industry, and more specifically the Quebec aircraft industry. Today, numerous companies turn more and more to the Lean Manufacturing approach to improve their competitiveness and their performance levels. The review of the literature on the Lean has allowed us to further understand the topic and more specifically its application in the aerospace sector. The Lean approach allows the improvement of operational performance indicators such as the reduction of production costs, cycle times, travel and inventories, as well as the improvement of the versatility of employees. The Lean has succeeded where many other organisational models have failed. Several success factors such as employee involvement, leadership commitment, proper integration of all tools and many others must be used in the implementation of such production practice. However, this approach is sometimes criticized by some authors who suggest that the improvements made by the Lean result in an increase in the workload of employees and a deterioration of their stress levels. Our research on the Lean has revealed gaps in available and existing research and data on the subject, particularly in the aerospace sector. This research has helped to fill this important gap, by documenting the context and highlighting the impact of the Lean on a production system in the Quebec aerospace components. A machining center having deployed a Lean approach was chosen to conduct a case study in post-implantation. Tools for data collection such as observations on the production floor, semi-structured interviews, as well as the Lean checklist, were used to perform this case study. The case study has confirmed the positive impact of Lean on operational performance indicators of the company. The results of this case study showed a reduction of cycle time of 49%, a reduction of unnecessary employee travels of 50% and a reduction of production costs by about 50%. In addition to these positive discoveries, our study has highlighted an important human benefit in the business such as an improvement in the versatility of employees by 25%. In addition, the study also demonstrated that the integration and assimilation of the Lean concepts is made with a proven success. Indeed, analysis on results from the checklist showed that the level of Lean concepts maturity progressed favorably in the period from pre-project until that in post-project. This research brings an added value to the scientific literature. It thus helps to disseminate data in a Lean implementation in a production area of Quebec aerospace products.

  4. 75 FR 21632 - Draft Guidance for Industry and Food and Drug Administration Staff; Total Product Life Cycle...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ...] Draft Guidance for Industry and Food and Drug Administration Staff; Total Product Life Cycle: Infusion... the draft guidance document entitled ``Total Product Life Cycle: Infusion Pump--Premarket Notification... this issue of the Federal Register, FDA is announcing a public meeting regarding external infusion...

  5. Toward Eco Product Development with Qualitative and CAE Design Process - Case Study of Flame Guiding Module

    NASA Astrophysics Data System (ADS)

    Chen, W. L.; Chao, F. L.

    2018-04-01

    Sustainable products become increasingly important for company in addressing eco-performance to satisfy global environmental regulations. Case study of flame guiding module reviewed design process and concerns related to the torch design. For enhancing flame height, the torch was embedded with an airflow guidance structure. The design process and design methodologies were investigated as an eco-design case study. Combine qualitative and CAE simulation were proposed to fulfil its main and auxiliary functions including reduction of impact during use. The design guidelines help prevent mistake arrangements, CAE helps understand combustion phenomenon. The flow field simulation enables fine tune of geometric design. Functional test and measurement are carried out to confirm the product features. On Eco-performance, we choose 5 items for evaluation the status of previous and redesign module, namely function need, low impact material, few manufacturing steps, low energy consumption, and safety. The radar diagram indicates that eco-performance of redesign module is better. Life cycle assessment calculated the carbon footprint of the manufacturing and processing stage with Eco-it. By using recycled steel in the flame module, it reduces raw material stage carbon footprint significantly.

  6. Zoonoses As Ecological Entities: A Case Review of Plague

    PubMed Central

    de Almeida, Alzira Maria Paiva; Cordeiro-Estrela, Pedro

    2016-01-01

    As a zoonosis, Plague is also an ecological entity, a complex system of ecological interactions between the pathogen, the hosts, and the spatiotemporal variations of its ecosystems. Five reservoir system models have been proposed: (i) assemblages of small mammals with different levels of susceptibility and roles in the maintenance and amplification of the cycle; (ii) species-specific chronic infection models; (ii) flea vectors as the true reservoirs; (iii) Telluric Plague, and (iv) a metapopulation arrangement for species with a discrete spatial organization, following a source-sink dynamic of extinction and recolonization with naïve potential hosts. The diversity of the community that harbors the reservoir system affects the transmission cycle by predation, competition, and dilution effect. Plague has notable environmental constraints, depending on altitude (500+ meters), warm and dry climates, and conditions for high productivity events for expansion of the transmission cycle. Human impacts are altering Plague dynamics by altering landscape and the faunal composition of the foci and adjacent areas, usually increasing the presence and number of human cases and outbreaks. Climatic change is also affecting the range of its occurrence. In the current transitional state of zoonosis as a whole, Plague is at risk of becoming a public health problem in poor countries where ecosystem erosion, anthropic invasion of new areas, and climate change increase the contact of the population with reservoir systems, giving new urgency for ecologic research that further details its maintenance in the wild, the spillover events, and how it links to human cases. PMID:27711205

  7. Zoonoses As Ecological Entities: A Case Review of Plague.

    PubMed

    Zeppelini, Caio Graco; de Almeida, Alzira Maria Paiva; Cordeiro-Estrela, Pedro

    2016-10-01

    As a zoonosis, Plague is also an ecological entity, a complex system of ecological interactions between the pathogen, the hosts, and the spatiotemporal variations of its ecosystems. Five reservoir system models have been proposed: (i) assemblages of small mammals with different levels of susceptibility and roles in the maintenance and amplification of the cycle; (ii) species-specific chronic infection models; (ii) flea vectors as the true reservoirs; (iii) Telluric Plague, and (iv) a metapopulation arrangement for species with a discrete spatial organization, following a source-sink dynamic of extinction and recolonization with naïve potential hosts. The diversity of the community that harbors the reservoir system affects the transmission cycle by predation, competition, and dilution effect. Plague has notable environmental constraints, depending on altitude (500+ meters), warm and dry climates, and conditions for high productivity events for expansion of the transmission cycle. Human impacts are altering Plague dynamics by altering landscape and the faunal composition of the foci and adjacent areas, usually increasing the presence and number of human cases and outbreaks. Climatic change is also affecting the range of its occurrence. In the current transitional state of zoonosis as a whole, Plague is at risk of becoming a public health problem in poor countries where ecosystem erosion, anthropic invasion of new areas, and climate change increase the contact of the population with reservoir systems, giving new urgency for ecologic research that further details its maintenance in the wild, the spillover events, and how it links to human cases.

  8. Occupational safety data and casualty rates for the uranium fuel cycle. [Glossaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10/supmore » 12/ Btu of energy output, and per other appropriate units of output.« less

  9. Life Cycle Assessment of Bio-diesel Production—A Comparative Analysis

    NASA Astrophysics Data System (ADS)

    Chatterjee, R.; Sharma, V.; Mukherjee, S.; Kumar, S.

    2014-04-01

    This work deals with the comparative analysis of environmental impacts of bio-diesel produced from Jatropha curcas, Rapeseed and Palm oil by applying the life cycle assessment and eco-efficiency concepts. The environmental impact indicators considered in the present paper include global warming potential (GWP, CO2 equivalent), acidification potential (AP, SO2 equivalent) and eutrophication potential (EP, NO3 equivalent). Different weighting techniques have been used to present and evaluate the environmental characteristics of bio-diesel. With the assistance of normalization values, the eco-efficiency was demonstrated in this work. The results indicate that the energy consumption of bio-diesel production is lowest in Jatropha while AP and EP are more in case of Jatropha than that of Rapeseed and Palm oil.

  10. Concepts for laser beam parameter monitoring during industrial mass production

    NASA Astrophysics Data System (ADS)

    Harrop, Nicholas J.; Maerten, Otto; Wolf, Stefan; Kramer, Reinhard

    2017-02-01

    In today's industrial mass production, lasers have become an established tool for a variety of processes. As with any other tool, mechanical or otherwise, the laser and its ancillary components are prone to wear and ageing. Monitoring of these ageing processes at full operating power of an industrial laser is challenging for a range of reasons. Not only the damage threshold of the measurement device itself, but also cycle time constraints in industrial processing are just two of these challenges. Power measurement, focus spot size or full beam caustic measurements are being implemented in industrial laser systems. The scope of the measurement and the amount of data collected is limited by the above mentioned cycle time, which in some cases can only be a few seconds. For successful integration of these measurement systems into automated production lines, the devices must be equipped with standardized communication interfaces, enabling a feedback loop from the measurement device to the laser processing systems. If necessary these measurements can be performed before each cycle. Power is determined with either static or dynamic calorimetry while camera and scanning systems are used for beam profile analysis. Power levels can be measured from 25W up to 20 kW, with focus spot sizes between 10μm and several millimeters. We will show, backed by relevant statistical data, that defects or contamination of the laser beam path can be detected with applied measurement systems, enabling a quality control chain to prevent process defects.

  11. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  12. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.

    PubMed

    Siede, W; Friedberg, A S; Friedberg, E C

    1993-09-01

    Exposure of the yeast Saccharomyces cerevisiae to ultraviolet (UV) light, the UV-mimetic chemical 4-nitroquinoline-1-oxide (4NQO), or gamma radiation after release from G1 arrest induced by alpha factor results in delayed resumption of the cell cycle. As is the case with G2 arrest following ionizing radiation damage [Weinert, T. A. & Hartwell, L. H. (1988) Science 241, 317-322], the normal execution of DNA damage-induced G1 arrest depends on a functional yeast RAD9 gene. We suggest that the RAD9 gene product may interact with cellular components common to the G1/S and G2/M transition points in the cell cycle of this yeast. These observations define a checkpoint in the eukaryotic cell cycle that may facilitate the repair of lesions that are otherwise processed to lethal and/or mutagenic damage during DNA replication. This checkpoint apparently operates after the mating pheromone-induced G1 arrest point but prior to replicative DNA synthesis, S phase-associated maximal induction of histone H2A mRNA, and bud emergence.

  13. Epidemic of Isothiazolinone Allergy in North America: Prevalence Data From the North American Contact Dermatitis Group, 2013-2014.

    PubMed

    Zirwas, Matthew J; Hamann, Dathan; Warshaw, Erin M; Maibach, Howard I; Taylor, James S; Sasseville, Denis; DeKoven, Joel G; Fransway, Anthony F; Mathias, C G Toby; Zug, Kathryn A; DeLeo, Vincent A; Fowler, Joseph F; Marks, James G; Pratt, Melanie D; Belsito, Donald V

    Preservative sensitivity patterns evolve with changing use patterns in products. During the last decade, the use of methylisothiazolinone (MI) at higher concentrations in both leave-on and rinse-off products has significantly increased. This is the first North American Contact Dermatitis Group reporting cycle that includes both methylchloroisothiazolinone (MCI)/MI and MI data. The aim of this study was to report the prevalence of isothiazolinone allergy (MCI/MI and MI) in the North American Contact Dermatitis Group patch-test population from January 1, 2013, to December 31, 2014. At 13 centers in North America, 4860 patients were patch tested in a standardized manner with a series of 70 allergens, including MCI/MI 0.01% aqueous (aq) and MI 0.2% aq. Three hundred five patients (6.3%) had a positive reaction to MCI/MI; this is a significant increase from the previous cycle (5.0%, 2011-2012; P = 0.011). Five hundred twenty-one patients (10.7%) had a positive reaction to MI. These 2 isothiazolinones were among the most common preservative allergens in the 2013 to 2014 cycle; 11.9% of patch-tested individuals were allergic to 1 or both isothiazolinones. Individuals with MCI/MI and MI allergy were significantly more likely to have occupationally related skin disease (P < 0.0001) and hand dermatitis (P < 0.0001, P = 0.0474). The epidemic of isothiazolinone sensitivity documented in Europe is now in North America. Patch testing with only MCI/MI 0.01% aq will miss approximately half of isothiazolinone allergy cases, whereas testing with only MI 0.2% aq will miss approximately 10% of isothiazolinone allergy cases.

  14. Managing Large Scale Project Analysis Teams through a Web Accessible Database

    NASA Technical Reports Server (NTRS)

    O'Neil, Daniel A.

    2008-01-01

    Large scale space programs analyze thousands of requirements while mitigating safety, performance, schedule, and cost risks. These efforts involve a variety of roles with interdependent use cases and goals. For example, study managers and facilitators identify ground-rules and assumptions for a collection of studies required for a program or project milestone. Task leaders derive product requirements from the ground rules and assumptions and describe activities to produce needed analytical products. Disciplined specialists produce the specified products and load results into a file management system. Organizational and project managers provide the personnel and funds to conduct the tasks. Each role has responsibilities to establish information linkages and provide status reports to management. Projects conduct design and analysis cycles to refine designs to meet the requirements and implement risk mitigation plans. At the program level, integrated design and analysis cycles studies are conducted to eliminate every 'to-be-determined' and develop plans to mitigate every risk. At the agency level, strategic studies analyze different approaches to exploration architectures and campaigns. This paper describes a web-accessible database developed by NASA to coordinate and manage tasks at three organizational levels. Other topics in this paper cover integration technologies and techniques for process modeling and enterprise architectures.

  15. Contributions of basic nuclear physics to the nuclear waste management

    NASA Astrophysics Data System (ADS)

    Flocard, Hubert

    2002-04-01

    Nuclear fission is presently a contested method of electricity production. The issue of nuclear waste management stands out among the reasons why. On the other hand, the nuclear industry has demonstrated its capacity to reliably generate cheap electricity while producing negligible amounts of greenhouse gases. These assets explain why this form of energy is still considered among the options for the long term production of electricity at least in developed countries. However, in order to tackle the still not adequately answered question of the waste, new schemes may have to be considered. Among those which have been advanced recently, the less polluting cycles such as those based on Thorium rather than Uranium and/or the transmutation of the minor actinides and some long lived fission products of the present cycle have been actively investigated. In both cases, it turns that the basic knowledge underlying these methods is either missing or incomplete. This situation opens a window of opportunity for useful contributions from basic nuclear physicists. This article describes some of them and presents the ongoing activities as well as some of the projects put forth for the short or medium term. .

  16. High-resolution assessment of land use impacts on biodiversity in life cycle assessment using species habitat suitability models.

    PubMed

    de Baan, Laura; Curran, Michael; Rondinini, Carlo; Visconti, Piero; Hellweg, Stefanie; Koellner, Thomas

    2015-02-17

    Agricultural land use is a main driver of global biodiversity loss. The assessment of land use impacts in decision-support tools such as life cycle assessment (LCA) requires spatially explicit models, but existing approaches are either not spatially differentiated or modeled at very coarse scales (e.g., biomes or ecoregions). In this paper, we develop a high-resolution (900 m) assessment method for land use impacts on biodiversity based on habitat suitability models (HSM) of mammal species. This method considers potential land use effects on individual species, and impacts are weighted by the species' conservation status and global rarity. We illustrate the method using a case study of crop production in East Africa, but the underlying HSMs developed by the Global Mammals Assessment are available globally. We calculate impacts of three major export crops and compare the results to two previously developed methods (focusing on local and regional impacts, respectively) to assess the relevance of the methodological innovations proposed in this paper. The results highlight hotspots of product-related biodiversity impacts that help characterize the links among agricultural production, consumption, and biodiversity loss.

  17. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  18. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  19. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  20. 10 CFR 436.42 - Evaluation of Life-Cycle Cost Effectiveness.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Evaluation of Life-Cycle Cost Effectiveness. 436.42... PROGRAMS Agency Procurement of Energy Efficient Products § 436.42 Evaluation of Life-Cycle Cost...) ENERGY STAR qualified and FEMP designated products may be assumed to be life-cycle cost-effective. (b) In...

  1. Bias in benefit-risk appraisal in older products: the case of buflomedil for intermittent claudication.

    PubMed

    De Backer, Tine L M; Vander Stichele, Robert H; Van Bortel, Luc M

    2009-01-01

    Benefit-risk assessment should be ongoing during the life cycle of a pharmaceutical agent. New products are subjected to rigorous registration laws and rules, which attempt to assure the availability and validity of evidence. For older products, bias in benefit-risk assessment is more likely, as a number of safeguards were not in place at the time these products were registered. This issue of bias in benefit-risk assessment of older products is illustrated here with an example: buflomedil in intermittent claudication. Data on efficacy were retrieved from a Cochrane systematic review. Data on safety were obtained by comparing the number of reports of serious adverse events and fatalities published in the literature with those reported in postmarketing surveillance databases. In the case of efficacy, the slim basis of evidence for the benefit of buflomedil is undermined by documented publication bias. In the case of safety, bias in reporting to international safety databases is illustrated by the discrepancy between the number of drug-related deaths published in the literature (20), the potentially drug-related deaths in the WHO database (20) and deaths attributed to buflomedil in the database of the international marketing authorization holder (11). In older products, efficacy cannot be evaluated without a thorough search for publication bias. For safety, case reporting of drug-related serious events and deaths in the literature remains a necessary instrument for risk appraisal of older medicines, despite the existence of postmarketing safety databases. The enforcement of efficient communication between healthcare workers, drug companies, national centres of pharmacovigilance, national poison centers and the WHO is necessary to ensure the validity of postmarketing surveillance reporting systems. Drugs considered obsolete because of unfavourable benefit-risk assessment should not be allowed to stay on the market.

  2. Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in the United States

    PubMed Central

    2015-01-01

    The healthcare sector is a driver of economic growth in the U.S., with spending on healthcare in 2012 reaching $2.8 trillion, or 17% of the U.S. gross domestic product, but it is also a significant source of emissions that adversely impact environmental and public health. The current state of the healthcare industry offers significant opportunities for environmental efficiency improvements, potentially leading to reductions in costs, resource use, and waste without compromising patient care. However, limited research exists that can provide quantitative, sustainable solutions. The operating room is the most resource-intensive area of a hospital, and surgery is therefore an important focal point to understand healthcare-related emissions. Hybrid life cycle assessment (LCA) was used to quantify environmental emissions from four different surgical approaches (abdominal, vaginal, laparoscopic, and robotic) used in the second most common major procedure for women in the U.S., the hysterectomy. Data were collected from 62 cases of hysterectomy. Life cycle assessment results show that major sources of environmental emissions include the production of disposable materials and single-use surgical devices, energy used for heating, ventilation, and air conditioning, and anesthetic gases. By scientifically evaluating emissions, the healthcare industry can strategically optimize its transition to a more sustainable system. PMID:25517602

  3. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  4. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    PubMed

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  5. Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steel

    NASA Astrophysics Data System (ADS)

    Nyamekye, Patricia; Piili, Heidi; Leino, Maija; Salminen, Antti

    Manufacturing of work pieces from stainless steel with laser additive manufacturing, known also as laser sintering or 3D printing may increase energy and material efficiency. The use of powder bed fusion offers advantages to make parts for dynamic applications of light weight and near-net-shape products. Due to these advantages among others, PBF may also reduce emissions and operational cost in various applications. However, there are only few life cycle assessment studies examining this subject despite its prospect to business opportunity. The application of Life Cycle Inventory (LCI) in Powder Bed Fusion (PBF) provides a distinct evaluation of material and energy consumption. LCI offers a possibility to improve knowledge of process efficiency. This study investigates effect of process sustainability in terms of raw material, energy and time consumption with PBF and CNC machining. The results of the experimental study indicated lower energy efficiency in the production process with PBF. This study revealed that specific energy consumption in PBF decreased when several components are built simultaneously than if they would be built individually. This is due to fact that energy consumption per part is lower. On the contrary, amount of energy needed to machine on part in case of CNC machining is lower when parts are done separately.

  6. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem.

    PubMed

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality.

  7. Application of a Hybrid Forest Growth Model to Evaluate Climate Change Impacts on Productivity, Nutrient Cycling and Mortality in a Montane Forest Ecosystem

    PubMed Central

    Seely, Brad; Welham, Clive; Scoullar, Kim

    2015-01-01

    Climate change introduces considerable uncertainty in forest management planning and outcomes, potentially undermining efforts at achieving sustainable practices. Here, we describe the development and application of the FORECAST Climate model. Constructed using a hybrid simulation approach, the model includes an explicit representation of the effect of temperature and moisture availability on tree growth and survival, litter decomposition, and nutrient cycling. The model also includes a representation of the impact of increasing atmospheric CO2 on water use efficiency, but no direct CO2 fertilization effect. FORECAST Climate was evaluated for its ability to reproduce the effects of historical climate on Douglas-fir and lodgepole pine growth in a montane forest in southern British Columbia, Canada, as measured using tree ring analysis. The model was subsequently used to project the long-term impacts of alternative future climate change scenarios on forest productivity in young and established stands. There was a close association between predicted sapwood production and measured tree ring chronologies, providing confidence that model is able to predict the relative impact of annual climate variability on tree productivity. Simulations of future climate change suggest a modest increase in productivity in young stands of both species related to an increase in growing season length. In contrast, results showed a negative impact on stemwood biomass production (particularly in the case of lodgepole pine) for established stands due to increased moisture stress mortality. PMID:26267446

  8. Case definition for clinical and subclinical bacterial kidney disease (BKD) in Atlantic Salmon (Salmo salar L.) in New Brunswick, Canada.

    PubMed

    Boerlage, A S; Stryhn, H; Sanchez, J; Hammell, K L

    2017-03-01

    Bacterial kidney disease (BKD) is considered an important cause of loss in salmon aquaculture in Atlantic Canada. Causative agent of BKD is the Gram-positive bacteria Renibacterium salmoninarum. Infected salmon are often asymptomatic (subclinical infection), and the disease is considered chronic. One of the challenges in quantifying information from farm production and health records is the application of a standardized case definition. Case definitions for farm-level and cage-level clinical and subclinical BKD were developed using retrospective longitudinal data from aquaculture practices in New Brunswick, Canada, combining (i) industry records of weekly production data including mortalities, (ii) field observations for BKD using reports of veterinarians and/or fish health technicians, (iii) diagnostic submissions and test results and (iv) treatments used to control BKD. Case definitions were evaluated using veterinarians' expert judgements as reference standard. Eighty-nine and 66% of sites and fish groups, respectively, were associated with BKD at least once. For BKD present (subclinical or clinical), sensitivity and specificity of the case definition were 75-100% varying between event, fish group, site cycle and level (site pen). For clinical BKD, sensitivities were 29-64% and specificities 91-100%. Industry data can be used to develop sensitive case definitions. © 2016 John Wiley & Sons Ltd.

  9. Monitoring Quality of Biotherapeutic Products Using Multivariate Data Analysis.

    PubMed

    Rathore, Anurag S; Pathak, Mili; Jain, Renu; Jadaun, Gaurav Pratap Singh

    2016-07-01

    Monitoring the quality of pharmaceutical products is a global challenge, heightened by the implications of letting subquality drugs come to the market on public safety. Regulatory agencies do their due diligence at the time of approval as per their prescribed regulations. However, product quality needs to be monitored post-approval as well to ensure patient safety throughout the product life cycle. This is particularly complicated for biotechnology-based therapeutics where seemingly minor changes in process and/or raw material attributes have been shown to have a significant effect on clinical safety and efficacy of the product. This article provides a perspective on the topic of monitoring the quality of biotech therapeutics. In the backdrop of challenges faced by the regulatory agencies, the potential use of multivariate data analysis as a tool for effective monitoring has been proposed. Case studies using data from several insulin biosimilars have been used to illustrate the key concepts.

  10. POEMS: A Case Study of an Italian Wine-Producing Firm

    NASA Astrophysics Data System (ADS)

    Ardente, Fulvio; Beccali, Giorgio; Cellura, Maurizio; Marvuglia, Antonino

    2006-09-01

    Over the last decade, researchers paid much attention to concepts such as Design for Environment, Extended Producer Responsibility, Responsible Chain Management, and Eco-design. Many management tools and standards (such as EMAS, ISO 14001, LCA, EPD, Ecolabel) have been developed to support companies in the evaluation and management of their environmental performance and to pursue continual environmental improvement. The more recent development of the aforesaid fields looks at interorganizational environmental management. Such an approach can complement the more traditional intraorganizational corporate environmental management approaches and tools. A typical example of this new trend is the Product Oriented Environmental Management System (POEMS), which represents the natural evolution of the above-mentioned tools, combining the features of EMS, EPD and Ecolabel. Although the structure of the POEMS is still not standardized, many experimental applications have yet been carried out in Europe. In developing a POEMS, a company needs to determine all of the environmental impacts caused at all life-cycle stages of the product and, ideally, to reduce all of them through a continual commitment. The aim of the present study was to perform a survey of the developed POEMS models and to analyze their peculiarities and drawbacks in the application to Small and Medium Enterprises. A case study regarding an Italian winery company is presented. The study analyzes the structure and the activities of the examined firm, in order to estimate direct and indirect environmental impacts following a life-cycle approach. The chosen functional unit is a 0.75-L bottle of red wine. The article also suggests some solutions to improve the environmental performances of the firm’s products.

  11. POEMS: a case study of an Italian wine-producing firm.

    PubMed

    Ardente, Fulvio; Beccali, Giorgio; Cellura, Maurizio; Marvuglia, Antonino

    2006-09-01

    Over the last decade, researchers paid much attention to concepts such as Design for Environment, Extended Producer Responsibility, Responsible Chain Management, and Eco-design. Many management tools and standards (such as EMAS, ISO 14001, LCA, EPD, Ecolabel) have been developed to support companies in the evaluation and management of their environmental performance and to pursue continual environmental improvement. The more recent development of the aforesaid fields looks at interorganizational environmental management. Such an approach can complement the more traditional intraorganizational corporate environmental management approaches and tools. A typical example of this new trend is the Product Oriented Environmental Management System (POEMS), which represents the natural evolution of the above-mentioned tools, combining the features of EMS, EPD and Ecolabel. Although the structure of the POEMS is still not standardized, many experimental applications have yet been carried out in Europe. In developing a POEMS, a company needs to determine all of the environmental impacts caused at all life-cycle stages of the product and, ideally, to reduce all of them through a continual commitment. The aim of the present study was to perform a survey of the developed POEMS models and to analyze their peculiarities and drawbacks in the application to Small and Medium Enterprises. A case study regarding an Italian winery company is presented. The study analyzes the structure and the activities of the examined firm, in order to estimate direct and indirect environmental impacts following a life-cycle approach. The chosen functional unit is a 0.75-L bottle of red wine. The article also suggests some solutions to improve the environmental performances of the firm's products.

  12. Internal cycle modeling and environmental assessment of multiple cycle consumer products.

    PubMed

    Tsiliyannis, C A

    2012-01-01

    Dynamic annual flow models incorporating consumer discard and usage loss and featuring deterministic and stochastic end-of-cycle (EOC) return by the consumer are developed for reused or remanufactured products (multiple cycle products, MCPs), including fast and slow cycling, short and long-lived products. It is shown that internal flows (reuse and overall consumption) increase proportionally to the dimensionless internal cycle factor (ICF) which is related to environmental impact reduction factors. The combined reuse/recycle (or cycle) rate is shown capable for shortcut, albeit effective, monitoring of environmental performance in terms of waste production, virgin material extraction and manufacturing impacts of all MCPs, a task, which physical variables (lifetime, cycling frequency, mean or total number of return trips) and conventional rates, via which environmental policy has been officially implemented (e.g. recycling rate) cannot accomplish. The cycle rate is shown to be an increasing (hyperbolic) function of ICF. The impact of the stochastic EOC return characteristics on total reuse and consumption flows, as well as on eco-performance, is assessed: symmetric EOC return has a small, positive effect on performance compared to deterministic, while early shifted EOC return is more beneficial. In order to be efficient, environmental policy should set higher minimum reuse targets for higher trippage MCPs. The results may serve for monitoring, flow accounting and comparative eco-assessment of MCPs. They may be useful in identifying reachable and efficient reuse/recycle targets for consumer products and in planning return via appropriate labelling and digital coding for enhancing environmental performance, while satisfying consumer demand. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing.

    PubMed

    Cashman, Sarah A; Meyer, David E; Edelen, Ashley N; Ingwersen, Wesley W; Abraham, John P; Barrett, William M; Gonzalez, Michael A; Randall, Paul M; Ruiz-Mercado, Gerardo; Smith, Raymond L

    2016-09-06

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfully automate the method using semantic technology. Benefits of the method are that the openly available data can be compiled in a standardized and transparent approach that supports potential automation with flexibility to incorporate new data sources as needed.

  14. Benefit-Risk Assessment, Communication, and Evaluation (BRACE) throughout the life cycle of therapeutic products: overall perspective and role of the pharmacoepidemiologist.

    PubMed

    Radawski, Christine; Morrato, Elaine; Hornbuckle, Kenneth; Bahri, Priya; Smith, Meredith; Juhaeri, Juhaeri; Mol, Peter; Levitan, Bennett; Huang, Han-Yao; Coplan, Paul; Li, Hu

    2015-12-01

    Optimizing a therapeutic product's benefit-risk profile is an on-going process throughout the product's life cycle. Different, yet related, benefit-risk assessment strategies and frameworks are being developed by various regulatory agencies, industry groups, and stakeholders. This paper summarizes current best practices and discusses the role of the pharmacoepidemiologist in these activities, taking a life-cycle approach to integrated Benefit-Risk Assessment, Communication, and Evaluation (BRACE). A review of the medical and regulatory literature was performed for the following steps involved in therapeutic benefit-risk optimization: benefit-risk evidence generation; data integration and analysis; decision making; regulatory and policy decision making; benefit-risk communication and risk minimization; and evaluation. Feedback from International Society for Pharmacoepidemiology members was solicited on the role of the pharmacoepidemiologist. The case example of natalizumab is provided to illustrate the cyclic nature of the benefit-risk optimization process. No single, globally adopted benefit-risk assessment process exists. The BRACE heuristic offers a way to clarify research needs and to promote best practices in a cyclic and integrated manner and highlight the critical importance of cross-disciplinary input. Its approach focuses on the integration of BRACE activities for risk minimization and optimization of the benefit-risk profile. The activities defined in the BRACE heuristic contribute to the optimization of the benefit-risk profile of therapeutic products in the clinical world at both the patient and population health level. With interdisciplinary collaboration, pharmacoepidemiologists are well suited for bringing in methodology expertise, relevant research, and public health perspectives into the BRACE process. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Evaluation de l'eco-efficience des processus de mise a niveau d'helicopteres en tant qu'alternative a la fin de vie

    NASA Astrophysics Data System (ADS)

    Rancher, Alexandre

    Classic industrial production methods generate significant pressures on natural resources as well as environmental constraints related to product end-of-life management. Closed-loop supply chains are often seen as more eco-efficient alternatives, well known to provide substantial economic and environmental benefits at the scale of the product life cycle. This is notably achieved through important reductions in the overall cost of production, in the needs for new materials and energies, and in the proportion of end-of-life components going to landfill. Due to their modular designs and the particular dynamics of helicopter service life, light nonpressurized helicopters have proven to be highly receptive to partial or total remanufacture and upgrade, extending their service life, enhancing their performance and modernizing their equipment, often for only a fraction of the cost of a new aircraft. However, little environmental data is available in order to assess the overall eco-efficiency of helicopter upgrade processes. This study resulted in the creation of a method for the systemic characterization of the processes encountered during the helicopter service life. The arrangement of these processes over time has enabled the construction of helicopter operation cycles, representative of the helicopter service life. These operation cycles have then been characterized, following various criteria based on helicopter designs and usage profiles, in order to study and compare their respective eco-efficiency. A case study is provided to illustrate the application of the method, based on a currently operating industrial business model of helicopter upgrade. This case study intends to provide a first-level assessment of the potential economic, technical and environmental benefits from remanufacturing and upgrading a helicopter, as an alternative production channel. The study found that compared to its replacement, upgrading a former airframe to a more recent design is generally a more eco-efficient decision. Important reductions were found in most of the profiles assessed, notably, reductions of up to 51 % in terms of production costs, 77.5 % in waste going to landfill, and up to 54 % in energy consumption. The method developed can be seen as a decision-helping tool intended for both operators and manufacturers. The method takes into account Design-for-Environment (DfE) guidelines and Material Recovery Opportunities (MRO), providing better understanding of the adaptability of a given design to fulfill the requirements of optimized reverse supply chains.

  16. The silica cycle in a Northeast Pacific fjord; the role of biological resuspension

    NASA Astrophysics Data System (ADS)

    Katz, Timor; Yahel, Gitai; Tunnicliffe, Verena; Herut, Barak; Whitney, Frank; Snelgrove, Paul V. R.; Lazar, Boaz

    2016-09-01

    This study is a quantitative assessment of the role fish-induced bio-resuspension plays in the silica cycle of coastal waters. We used new, published and archived oceanographic data to construct a comprehensive silica budget for Saanich Inlet (Vancouver Island, Canada), a highly productive Northeast Pacific fjord, where siliceous diatoms dominate primary productivity. Anoxia in the deep water of the inlet persists during most of the year, precluding animal life, whereas abundant groundfish continuously rework and resuspend bottom sediments in the shallower, oxygenated margins. This resuspension transfers settled biogenic silica fragments from the sediment, where they are immersed in porewater that is rich with dissolved silica, to the overlying water, where the much lower concentrations accelerate their dissolution rate. The budget shows that Saanich Inlet sediments constitute a sink for approximately 250 × 106 mol Si y-1. Most of this Si enters the inlet in advected, siliceous phytoplankton. Sediment resuspension by groundfish in the oxygenated margins of Saanich Inlet generates about 50% of the total flux of dissolved silica from the inlet seafloor. This resuspension also facilitates a massive transport of biogenic silica from the margins to the anoxic basin, where approximately 90% of all the biogenic silica is buried. The excess dissolution caused by fish activity reduces the burial efficiency of biogenic silica in the entire inlet sediments by about 20%. This case study emphasizes the link between the silica cycle and groundfish activity. Based on this study and because biological resuspension occurs in most regions of the ocean, we recommend that it will be taken into account when budgeting the silica cycle, and potentially other geochemical cycles, in marine environments.

  17. Modern Writing: The Effect of Process on Product and Perception

    DTIC Science & Technology

    2009-04-01

    news cycles and reality telcvision. Thcse have contributed to the dilemma of blogs versus books, or in some cases, blogs as books. Although these two...mirror today, and in the tradition of these tails , people expect us to maintain these Knightly virtues. ll Sir Gawain and the Green Knight may best...illusions of courage and noble sacrifice - had all been lost for them that first time and long since replaced by cynicism and a conviction of the

  18. Application of life-cycle assessment (LCA) methodology for valorization of building demolition materials and products

    NASA Astrophysics Data System (ADS)

    Sara, Balazs; Antonini, Ernesto; Tarantini, Mario

    2001-02-01

    The VAMP project (VAlorization of building demolition Materials and Products, LIFE 98/ENV/IT/33) aims to build an effective and innovative information system to support decision making in selective demolition activity and to manage the valorization (recovery-reuse-recycling) of waste flows produced by the construction and demolition (C&D) sector. The VAMP information system will be tested it in Italy in some case studies of selective demolition. In this paper the proposed demolition-valorization system will be compared to the traditional one in a life cycle perspective, applying LCA methodology to highlight the advantages of VAMP system from an eco-sustainability point of view. Within the system boundaries demolition processes, transport of demolition wastes and its recovery/treatment or disposal in landfill were included. Processes avoided due to reuse-recycling activities, such as extraction of natural resources and manufacture of building materials and components, were considered too. In this paper data collection procedure applied in inventory and impact assessment phases and a general overview about data availability for LCA studies in this sector are presented. Results of application of VAMP methodology to a case study are discussed and compared with a simulated traditional demolition of the same building. Environmental advantages of VAMP demolition-valorization system are demonstrated quantitatively emphasizing the special importance of reuse of building components with high demand of energy for manufacture.

  19. Life cycle assessment part 2: current impact assessment practice.

    PubMed

    Pennington, D W; Potting, J; Finnveden, G; Lindeijer, E; Jolliet, O; Rydberg, T; Rebitzer, G

    2004-07-01

    Providing our society with goods and services contributes to a wide range of environmental impacts. Waste generation, emissions and the consumption of resources occur at many stages in a product's life cycle-from raw material extraction, energy acquisition, production and manufacturing, use, reuse, recycling, through to ultimate disposal. These all contribute to impacts such as climate change, stratospheric ozone depletion, photooxidant formation (smog), eutrophication, acidification, toxicological stress on human health and ecosystems, the depletion of resources and noise-among others. The need exists to address these product-related contributions more holistically and in an integrated manner, providing complimentary insights to those of regulatory/process-oriented methodologies. A previous article (Part 1, Rebitzer et al., 2004) outlined how to define and model a product's life cycle in current practice, as well as the methods and tools that are available for compiling the associated waste, emissions and resource consumption data into a life cycle inventory. This article highlights how practitioners and researchers from many domains have come together to provide indicators for the different impacts attributable to products in the life cycle impact assessment (LCIA) phase of life cycle assessment (LCA).

  20. Comparative life cycle assessments: The case of paper and digital media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bull, Justin G., E-mail: jgbull@gmail.com; Kozak, Robert A., E-mail: rob.kozak@ubc.ca

    The consumption of the written word is changing, as media transitions from paper products to digital alternatives. We reviewed the life cycle assessment (LCA) research literature that compared the environmental footprint of digital and paper media. To validate the role of context in influencing LCA results, we assessed LCAs that did not compare paper and print, but focused on a product or component that is part of the Information and Communication Technology (ICT) sector. Using a framework that identifies problems in LCA conduct, we assessed whether the comparative LCAs were accurate expressions of the environmental footprints of paper and print.more » We hypothesized that the differences between the product systems that produce paper and digital media weaken LCA's ability to compare environmental footprints. We also hypothesized that the characteristics of ICT as an industrial sector weaken LCA as an environmental assessment methodology. We found that existing comparative LCAs offered problematic comparisons of paper and digital media for two reasons — the stark material differences between ICT products and paper products, and the unique characteristics of the ICT sector. We suggested that the context of the ICT sector, best captured by the concept of “Moore's Law”, will continuously impede the ability of the LCA methodology to measure ICT products. -- Highlights: • We review the LCA research that compares paper and digital media. • We contrast the comparative LCAs with LCAs that examine only digital products. • Stark differences between paper and digital media weakens LCA findings. • Digital products in general challenge the LCA method's reliability. • Continuous innovation and global nature of digital products impedes LCA methodology.« less

  1. EPD--environmental product declarations for wood products : an application of life cycle information about forest products

    Treesearch

    Richard Bergman; Adam Taylor

    2011-01-01

    Transparent and credible environmental labeling of products is vital for a sustainable future. Ecolabeling shows information on the environmental performance of products, processes, and services. This article focuses on one type of ecolabeling referred to as environmental product declarations (EPDs) that provide environmental impact information based on life cycle...

  2. LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS - PROFILES OF AT&T AND ALLIED SIGNAL

    EPA Science Inventory

    This document offers guidance and practical experience for integrating environmental considerations into product system development. Life cycle design seeks to minimize the environmental burden associated with a product's life cycle from raw materials acquisition through manufact...

  3. A Life-Cycle Assessment of Biofuels: Tracing Energy and Carbon through a Fuel-Production System

    ERIC Educational Resources Information Center

    Krauskopf, Sara

    2010-01-01

    A life-cycle assessment (LCA) is a tool used by engineers to make measurements of net energy, greenhouse gas production, water consumption, and other items of concern. This article describes an activity designed to walk students through the qualitative part of an LCA. It asks them to consider the life-cycle costs of ethanol production, in terms of…

  4. Best practices: Product category rule creation and use

    EPA Science Inventory

    Benefits of life cycle-based claims For most products, the majority of impact occurs upstream or downstream of product use . Single-stage claims for products (e.g., recycled content; energy efficient) don’t capture the relevance of that attribute in life-cycle environmental per...

  5. Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations.

    PubMed

    Brandt, Adam R

    2015-11-03

    Environmental impacts embodied in oilfield capital equipment have not been thoroughly studied. In this paper, we present the first open-source model which computes the embodied energy and greenhouse gas (GHG) emissions associated with materials consumed in constructing oil and gas wells and associated infrastructure. The model includes well casing, wellbore cement, drilling mud, processing equipment, gas compression, and transport infrastructure. Default case results show that consumption of materials in constructing oilfield equipment consumes ∼0.014 MJ of primary energy per MJ of oil produced, and results in ∼1.3 gCO2-eq GHG emissions per MJ (lower heating value) of crude oil produced, an increase of 15% relative to upstream emissions assessed in earlier OPGEE model versions, and an increase of 1-1.5% of full life cycle emissions. A case study of a hydraulically fractured well in the Bakken formation of North Dakota suggests lower energy intensity (0.011 MJ/MJ) and emissions intensity (1.03 gCO2-eq/MJ) due to the high productivity of hydraulically fractured wells. Results are sensitive to per-well productivity, the complexity of wellbore casing design, and the energy and emissions intensity per kg of material consumed.

  6. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  7. Engineering Information Infrastructure for Product Lifecycle Managment

    NASA Astrophysics Data System (ADS)

    Kimura, Fumihiko

    For proper management of total product life cycle, it is fundamentally important to systematize design and engineering information about product systems. For example, maintenance operation could be more efficiently performed, if appropriate parts design information is available at the maintenance site. Such information shall be available as an information infrastructure for various kinds of engineering operations, and it should be easily accessible during the whole product life cycle, such as transportation, marketing, usage, repair/upgrade, take-back and recycling/disposal. Different from the traditional engineering database, life cycle support information has several characteristic requirements, such as flexible extensibility, distributed architecture, multiple viewpoints, long-time archiving, and product usage information, etc. Basic approaches for managing engineering information infrastructure are investigated, and various information contents and associated life cycle applications are discussed.

  8. Changes in thrombin-stimulated platelet malondialdehyde production during the menstrual cycle.

    PubMed Central

    Tindall, H; Zuzel, M; Paton, R C; McNicol, G P

    1981-01-01

    Forty normal women had thrombin-stimulated platelet malondialdehyde (MDA) production measured during their menstrual cycle. Twenty women in this group were taking the combined oral contraceptive pill (OCP). Platelet MDA production was found to fall by 30% during normal menstruation and the week when the subjects were not taking a combined OCP, but it remained constant throughout the remainder of the cycle. No significant change in initial platelet aggregation response to stimulation by thrombin, change in plasma thrombin clotting time, plasma heparin neutralising activity (HNA), or plasma antithrombin III (AT-III) activity was seen when the platelet MDA production was reduced. The bleeding time results showed some variation throughout the menstrual cycle but these did not appear to be related to the variation in platelet MDA production. PMID:7251901

  9. PRODUCT LIFE-CYCLE ASSESSMENT: INVENTORY GUIDELINES AND PRINCIPLES

    EPA Science Inventory

    The Life Cycle Assessment (LCA) can be used as an objective technical tool to evaluate the environmental consequences of a product, process, or activity holistically, across its entire life cycle. omplete LCA can be viewed as consisting of three complementary components (1) the i...

  10. Quantifying pretreatment degradation compounds in solution and accumulated by cells during solids and yeast recycling in the Rapid Bioconversion with Integrated recycling Technology process using AFEX™ corn stover.

    PubMed

    Sarks, Cory; Higbee, Alan; Piotrowski, Jeff; Xue, Saisi; Coon, Joshua J; Sato, Trey K; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2016-04-01

    Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Metastatic renal cell carcinoma: CT-guided immunotherapy as a technically feasible and safe approach to delivery of gene therapy for treatment.

    PubMed

    Suh, Robert D; Goldin, Jonathan G; Wallace, Amanda B; Sheehan, Ramon E; Heinze, Stefan B; Gitlitz, Barbara J; Figlin, Robert A

    2004-05-01

    To assess the technical feasibility and safety of weekly outpatient percutaneous computed tomographic (CT)-guided intratumoral injections of interleukin-2 (IL-2) plasmid DNA in a wide variety of superficial and deep tumor sites. Twenty-nine patients with metastatic renal cell carcinoma and a total of 30 lesions measuring 1.0 cm(2) or greater in accessible thoracic (n = 15) or abdominal (n = 15) locations underwent up to three cycles of six weekly intratumoral IL-2 plasmid DNA injections. CT was used to guide needle placement and injection. After injection cycle 1, patients whose tumors demonstrated stable (< or =25% increase and < or =50% decrease in product of lesion diameters) or decreased size (>50% decrease in product of lesion diameters) advanced to injection cycle 2. Patients whose lesions decreased in size by more than 50% over the course of injection cycle 2 were eligible to begin injection cycle 3. An acceptable safety and technical feasibility profile for this technique was deemed to be (a) a safety and feasibility profile similar to that of single-needle biopsy and (b) an absence of serious adverse events (as defined in Title 21 of the Code of Federal Regulations) and/or unacceptable toxicities (as graded according to the National Cancer Institute Common Toxicity Criteria). A total of 284 intratumoral injections were performed, with a mean of 9.8 injections (range, 6-18 injections) received by each patient. Technical success (needle placement and injection of gene therapy agent) was achieved in all cases. Complications were experienced after 42 (14.8%) of the 284 injections. The most common complication was pneumothorax (at 32 [28.6%] of 112 intrathoracic injections), for which only one patient required catheter drainage. Complications occurred randomly throughout injection cycles and did not appear to increase as patients received more injections (P =.532). No patient experienced serious adverse events or unacceptable toxicities. Percutaneous CT-guided intratumoral immunotherapy injections are technically feasible and can be safely performed.

  12. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    NASA Technical Reports Server (NTRS)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.

  13. Rotational molding of pultruded profiles reinforced polyethylene

    NASA Astrophysics Data System (ADS)

    Greco, Antonio; Maffezzoli, Alfonso; Romano, Giorgio

    2014-05-01

    The aim of this paper is the production of fiber reinforced LLDPE components by rotational molding. To this purpose, a process upgrade was developed, for the incorporation of pultruded tapes in the rotational molding cycle. Pultruded tapes, made of 50% by weight of glass fibers dispersed in a high density polyethylene(HDPE) matrix, were glued on the internal surface of a cubic mold, and rotational molding process was run using the same processing conditions used for conventional LLDPE processing. During processing, melting of LLDPE powders and of HDPE allowed to incorporate the tapes inside rotational molded LLDPE. The glass fiber reinforced prototypes were characterized in terms of mechanical properties. Plate bending tests were performed on the square faces extracted from the rotational molded product. The rotational molding products were also subjected to internal hydrostatic pressure tests up to 10 bar. In any case, no failure of the cubic samples was observed. In both cases, it was found that addition of a single pultruded strips, which corresponds to addition of about 0.6% by weight of glass fibers, involved an increase of the stiffness of the faces by about 25%.

  14. Design for life-cycle profit with simultaneous consideration of initial manufacturing and end-of-life remanufacturing

    NASA Astrophysics Data System (ADS)

    Kwak, Minjung; Kim, Harrison

    2015-01-01

    Remanufacturing is emerging as a promising solution for achieving green, profitable businesses. This article considers a manufacturer that produces new products and also remanufactured versions of the new products that become available at the end of their life cycle. For such a manufacturer, design decisions at the initial design stage determine both the current profit from manufacturing and future profit from remanufacturing. To maximize the total profit, design decisions must carefully consider both ends of product life cycle, i.e. manufacturing and end-of-life stages. This article proposes a decision-support model for the life-cycle design using mixed-integer nonlinear programming. With an aim to maximize the total life-cycle profit, the proposed model searches for an (at least locally) optimal product design (i.e. design specifications and the selling price) for the new and remanufactured products. It optimizes both the initial design and design upgrades at the end-of-life stage and also provides corresponding production strategies, including production quantities and take-back rate. The model is extended to a multi-objective model that maximizes both economic profit and environmental-impact saving. To illustrate, the developed model is demonstrated with an example of a desktop computer.

  15. Mining Available Data from the United States Environmental ...

    EPA Pesticide Factsheets

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically applied to LCIs on a case-by-case basis. As linked open data becomes more prevalent, it may be possible to automate LCI using data mining by establishing a reproducible approach for identifying, extracting, and processing the data. This work proposes a method for standardizing and eventually automating the discovery and use of publicly available data at the United States Environmental Protection Agency for chemical-manufacturing LCI. The method is developed using a case study of acetic acid. The data quality and gap analyses for the generated inventory found that the selected data sources can provide information with equal or better reliability and representativeness on air, water, hazardous waste, on-site energy usage, and production volumes but with key data gaps including material inputs, water usage, purchased electricity, and transportation requirements. A comparison of the generated LCI with existing data revealed that the data mining inventory is in reasonable agreement with existing data and may provide a more-comprehensive inventory of air emissions and water discharges. The case study highlighted challenges for current data management practices that must be overcome to successfu

  16. Status of the DOE (STOR)-sponsored national program on hydrogen production from water via thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Baker, C. E.

    1977-01-01

    The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed.

  17. A Roadmap for the Implementation of Continued Process Verification.

    PubMed

    Boyer, Marcus; Gampfer, Joerg; Zamamiri, Abdel; Payne, Robin

    2016-01-01

    In 2014, the members of the BioPhorum Operations Group (BPOG) produced a 100-page continued process verification case study, entitled "Continued Process Verification: An Industry Position Paper with Example Protocol". This case study captures the thought processes involved in creating a continued process verification plan for a new product in response to the U.S. Food and Drug Administration's guidance on the subject introduced in 2011. In so doing, it provided the specific example of a plan developed for a new molecular antibody product based on the "A MAb Case Study" that preceded it in 2009.This document provides a roadmap that draws on the content of the continued process verification case study to provide a step-by-step guide in a more accessible form, with reference to a process map of the product life cycle. It could be used as a basis for continued process verification implementation in a number of different scenarios: For a single product and process;For a single site;To assist in the sharing of data monitoring responsibilities among sites;To assist in establishing data monitoring agreements between a customer company and a contract manufacturing organization. The U.S. Food and Drug Administration issued guidance on the management of manufacturing processes designed to improve quality and control of drug products. This involved increased focus on regular monitoring of manufacturing processes, reporting of the results, and the taking of opportunities to improve. The guidance and practice associated with it is known as continued process verification This paper summarizes good practice in responding to continued process verification guidance, gathered from subject matter experts in the biopharmaceutical industry. © PDA, Inc. 2016.

  18. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun

    2017-03-01

    With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reversal of β-oxidative pathways for the microbial production of chemicals and polymer building blocks.

    PubMed

    Kallscheuer, Nicolai; Polen, Tino; Bott, Michael; Marienhagen, Jan

    2017-07-01

    β-Oxidation is the ubiquitous metabolic strategy to break down fatty acids. In the course of this four-step process, two carbon atoms are liberated per cycle from the fatty acid chain in the form of acetyl-CoA. However, typical β-oxidative strategies are not restricted to monocarboxylic (fatty) acid degradation only, but can also be involved in the utilization of aromatic compounds, amino acids and dicarboxylic acids. Each enzymatic step of a typical β-oxidation cycle is reversible, offering the possibility to also take advantage of reversed metabolic pathways for applied purposes. In such cases, 3-oxoacyl-CoA thiolases, which catalyze the final chain-shortening step in the catabolic direction, mediate the condensation of an acyl-CoA starter molecule with acetyl-CoA in the anabolic direction. Subsequently, the carbonyl-group at C3 is stepwise reduced and dehydrated yielding a chain-elongated product. In the last years, several β-oxidation pathways have been studied in detail and reversal of these pathways already proved to be a promising strategy for the production of chemicals and polymer building blocks in several industrially relevant microorganisms. This review covers recent advancements in this field and discusses constraints and bottlenecks of this metabolic strategy in comparison to alternative production pathways. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  20. A prediction model to forecast the cost impact from a break in the production schedule

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1977-01-01

    The losses which are experienced after a break or stoppage in sequence of a production cycle portends an extremely complex situation and involves numerous variables, some of uncertain quantity and quality. There are no discrete formulas to define the losses during a gap in production. The techniques which are employed are therefore related to a prediction or forecast of the losses that take place, based on the conditions which exist in the production environment. Such parameters as learning curve slope, number of predecessor units, and length of time the production sequence is halted are utilized in formulating a prediction model. The pertinent current publications related to this subject are few in number, but are reviewed to provide an understanding of the problem. Example problems are illustrated together with appropriate trend curves to show the approach. Solved problems are also given to show the application of the models to actual cases or production breaks in the real world.

  1. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  2. Impact of minor actinide recycling on sustainable fuel cycle options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled whilemore » in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve the repository performance. On the other hand, recycling minor actinides also results in an increase of the recycled fuel characteristics and therefore of the charged fuel. The radioactivity is slightly increased while the decay heat and radiotoxicities are very significantly increased. Despite these differences, the characteristics of the fuel at time of discharge remain similar whether minor actinides are recycled or not, with the exception of the inhalation radiotoxicity which is significantly larger with minor actinide recycling. After some cooling the characteristics of the discharged fuel become larger when minor actinides are recycled, potentially affecting the reprocessing plant requirements. Recycling minor actinides has a negative impact on the characteristics of the fresh fuel and will make it more challenging to fabricate fuel containing minor actinides.« less

  3. Tackling the Relevance of Packaging in Life Cycle Assessment of Virgin Olive Oil and the Environmental Consequences of Regulation.

    PubMed

    Navarro, Alejandra; Puig, Rita; Martí, Elena; Bala, Alba; Fullana-I-Palmer, Pere

    2018-04-12

    Production and consumption of olive oil is very important in Europe, being this product a basic element in the Mediterranean diet since long ago. The project objective is two-fold: a study of the contribution of virgin olive oils (VOOs) usual packaging to the whole life cycle of the product and a study of the environmental consequences of the Spanish Government regulation on VOO packaging. A life cycle assessment (LCA) according to ISO 14044 has been performed using the CML methodology for the impact assessment. The results show that the packaging influence varies from 2 to 300%, depending on the impact category and type of packaging (glass, tin or polyethylene terephtalate). Glass, which is related to higher quality perception by consumers, was found to be the most influencing material (due to its weight); however, this impact may be fairly reduced by applying ecodesign strategies (such as weight reduction and recycled-glass percentage increase). A new Spanish regulation on the mandatory use of non-refillable oilers in HORECA establishments (hotels, restaurants and caterings) aims to provide more quality assurance and better information to consumers; however, it was also found to mean a 74% increase in greenhouse gases emissions. This regulation was deeply discussed at European level and its application was withdraw due to consumers rejection, except for Spain. The findings of the present case study show that LCA and ecodesign should be important tools to be promoted and applied in policy making to reduce non-desirable consequences of regulation.

  4. Time-dependent Variation in Life Cycle Assessment of Microalgal Biorefinery Co-products

    NASA Astrophysics Data System (ADS)

    Montazeri, Mahdokht

    Microalgae can serve as a highly productive biological feedstock for fuels and chemicals. The lipid fraction of algal seeds has been the primary target of research for biofuel production. However, numerous assessments have found that valorization of co-products is essential to achieve economic and environmental goals. The relative proportion of co-products depends on the biomolecular composition of algae at the time of harvesting. In the present study the productivity of lipid, starch, and protein fractions were shown through growth experiments to vary widely with species, feeding regime, and harvesting time. Four algae species were cultivated under nitrogen-replete and -deplete conditions and analyzed at regular harvesting intervals. Dynamic growth results were then used for life cycle assessment using the U.S. Department of Energy's GREET model to determine optimal growth scenarios that minimize life cycle greenhouse gas (GHG) emissions, eutrophication, and cumulative energy demand (CED), while aiming for an energy return on investment (EROI) greater than unity. Per kg of biodiesel produced, C. sorokiniana in N-replete conditions harvested at 12 days was most favorable for GHG emissions and CED, despite having a lipid content of <20%. N. oculata under the same conditions had the lowest life cycle eutrophication impacts, driven by efficient nutrient cycling and valorization of microalgal protein and anaerobic digester residue co-products. The results indicate that growth cycle times that maximize a single fraction do not necessarily result in the most favorable environmental performance on a life cycle basis, underscoring the importance of designing biorefinery systems that simultaneously optimize for lipid and non-lipid fractions.

  5. Integrated underground gas storage of CO2 and CH4 for renewable energy storage for a test case in China

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Li, Qi; Nakaten, Natalie, Christine; Kempka, Thomas

    2017-04-01

    Integration and further development of the energy supply system in China is a major challenge for the years to come. Part of the strategy is the implementation of a low carbon energy system based on carbon dioxide capture and storage (CCS). The innovative idea presented here is based on an extension of the power-to-gas-to-power (PGP) technology by establishing a closed carbon dioxide cycle [1]. Thereto, hydrogen generated from excess renewable energy is transformed into methane for combustion in a combined cycle gas power plant. To comply with the fluctuating energy demand, carbon dioxide produced during methane combustion and required for the methanation process as well as excess methane are temporarily stored in two underground reservoirs located close to each other [2]. Consequently, renewable energy generation units can be operated even if energy demand is below consumption, while stored energy can be fed into the grid as energy demand exceeds production [3]. We studied a show case for Xinjiang in China [4] to determine the energy demand of the entire process chain based on numerical computer simulations for the operation of the CO2 and CH4 storage reservoirs, and to ascertain the pressure regimes present in the storage formations during the injection and production phases of the annual cycle. [1] Streibel M., Nakaten N., Kempka T., Kühn M. (2013) Analysis of an integrated carbon cycle for storage of renewables. Energy Procedia 40, 202-211. doi: 10.1016/j.egypro.2013.08.024. [2] Kühn M., Streibel M., Nakaten N.C., Kempka T. (2014) Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the "Power-to-gas-to-gas-to-power" Technology. Energy Procedia 59, 9-15. doi: 10.1016/j.egypro.2014.10.342 [3] Kühn M., Nakaten N.C., Streibel M., Kempka T. (2014) CO2 Geological Storage and Utilization for a Carbon Neutral "Power-to-gas-to-power" Cycle to Even Out Fluctuations of Renewable Energy Provision. Energy Procedia 63, 8044-8049. doi: 10.1016/j.egypro.2014.11.841 [4] Li Q., Chen Z.A., Zhang J.T., Liu L.C., Li X.C., Jia L. (2016) Positioning and Revision of CCUS Technology Development in China. International Journal of Greenhouse Gas Control 46, 282-293. doi: 10.1016/j.ijggc.2015.02.024

  6. Structured Problem Solving and the Basic Graphic Methods within a Total Quality Leadership Setting: Case Study

    DTIC Science & Technology

    1992-02-01

    develop,, and maintains computer programs for the Department of the Navy. It provides life cycle support for over 50 computer programs installed at over...the computer programs . Table 4 presents a list of possible product or output measures of functionality for ACDS Block 0 programs . Examples of output...were identified as important "causes" of process performance. Functionality of the computer programs was the result or "effect" of the combination of

  7. A Study of Enabling Factors for Rapid Fielding: Combined Practices to Balance Speed and Stability

    DTIC Science & Technology

    2013-05-01

    as contributors to the success of Agile projects, such as Scrum status meetings, continuous integration, test-driven development, etc. A second...Management Approach Type Product Size Team Size Sprint length / Prod Release Cycle A-P1 Pre- release Scrum Case management system ᝺M...SLOC 10-20 2 weeks/ TBD B-P1 12 years Scrum Analysis support system ᝺M SLOC 10-20 2 weeks/ 6 months – 1 year C-P1 3 years Scrum Training

  8. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan.

    PubMed

    Harigane, K; Sumi, A; Mise, K; Kobayashi, N

    2015-09-01

    Annual periodicities of reported chickenpox cases have been observed in several countries. Of these, Japan has reported a two-peaked, bimodal annual cycle of reported chickenpox cases. This study investigated the possible underlying association of the bimodal cycle observed in the surveillance data of reported chickenpox cases with the meteorological factors of temperature, relative humidity and rainfall. A time-series analysis consisting of the maximum entropy method spectral analysis and the least squares method was applied to the chickenpox data and meteorological data of 47 prefectures in Japan. In all of the power spectral densities for the 47 prefectures, the spectral lines were observed at the frequency positions corresponding to the 1-year and 6-month cycles. The optimum least squares fitting (LSF) curves calculated with the 1-year and 6-month cycles explained the underlying variation of the chickenpox data. The LSF curves reproduced the bimodal and unimodal cycles that were clearly observed in northern and southern Japan, respectively. The data suggest that the second peaks in the bimodal cycles in the reported chickenpox cases in Japan occurred at a temperature of approximately 8·5 °C.

  9. Contrails and their impact on shortwave radiation and photovoltaic power production - a regional model study

    NASA Astrophysics Data System (ADS)

    Gruber, Simon; Unterstrasser, Simon; Bechtold, Jan; Vogel, Heike; Jung, Martin; Pak, Henry; Vogel, Bernhard

    2018-05-01

    A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  10. The Knowledge-Based Software Assistant: Beyond CASE

    NASA Technical Reports Server (NTRS)

    Carozzoni, Joseph A.

    1993-01-01

    This paper will outline the similarities and differences between two paradigms of software development. Both support the whole software life cycle and provide automation for most of the software development process, but have different approaches. The CASE approach is based on a set of tools linked by a central data repository. This tool-based approach is data driven and views software development as a series of sequential steps, each resulting in a product. The Knowledge-Based Software Assistant (KBSA) approach, a radical departure from existing software development practices, is knowledge driven and centers around a formalized software development process. KBSA views software development as an incremental, iterative, and evolutionary process with development occurring at the specification level.

  11. A factor analysis approach to examining relationships among ovarian steroid concentrations, gonadotrophin concentrations and menstrual cycle length characteristics in healthy, cycling women

    PubMed Central

    Barrett, E.S.; Thune, I.; Lipson, S.F.; Furberg, A.-S.; Ellison, P.T.

    2013-01-01

    STUDY QUESTION How are ovarian steroid concentrations, gonadotrophins and menstrual cycle characteristics inter-related within normal menstrual cycles? SUMMARY ANSWER Within cycles, measures of estradiol production are highly related to one another, as are measures of progesterone production; however, the two hormones also show some independence from one another, and measures of cycle length and gonadotrophin concentrations show even greater independence, indicating minimal integration within cycles. WHAT IS KNOWN ALREADY The menstrual cycle is typically conceptualized as a cohesive unit, with hormone levels, follicular development and ovulation all closely inter-related within a single cycle. Empirical support for this idea is limited, however, and to our knowledge, no analysis has examined the relationships among all of these components simultaneously. STUDY DESIGN, SIZE, DURATION A total of 206 healthy, cycling Norwegian women participated in a prospective cohort study (EBBA-I) over the duration of a single menstrual cycle. Of these, 192 contributed hormonal and cycle data to the current analysis. PARTICIPANTS/MATERIALS, SETTING, METHODS Subjects provided daily saliva samples throughout the menstrual cycle from which estradiol and progesterone concentrations were measured. FSH and LH concentrations were measured in serum samples from three points in the same menstrual cycle and cycle length characteristics were calculated based on hormonal data and menstrual records. A factor analysis was conducted to examine the underlying relationships among 22 variables derived from the hormonal data and menstrual cycle characteristics. MAIN RESULTS AND THE ROLE OF CHANCE Six rotated factors emerged, explaining 80% of the variance in the data. Of these, factors representing estradiol and progesterone concentrations accounted for 37 and 13% of the variance, respectively. There was some association between measures of estradiol and progesterone production within cycles; however, cycle length characteristics and gonadotrophin concentrations showed little association with any measure of ovarian hormone concentrations. LIMITATIONS, REASONS FOR CAUTION Our summary measures of ovarian hormones may be imprecise in women with extremely long or short cycles, which could affect the patterns emerging in the factor analysis. Given that we only had data from one cycle on each woman, we cannot address how cycle characteristics may covary within individual women across multiple cycles. WIDER IMPLICATIONS OF THE FINDINGS Our findings are generalizable to other healthy populations with typical cycles, however, may not be applicable to cycles that are anovulatory, extreme in length or otherwise atypical. The results support previous findings that measures of estradiol production are highly correlated across the cycle, as are measures of progesterone production. Estradiol and progesterone concentrations are associated with one another, furthermore. However factor analysis also revealed more complex underlying patterns in the menstrual cycle, highlighting the fact that gonadotrophin concentrations and cycle length characteristics are virtually independent of ovarian hormones. These results suggest that despite integration of follicular and luteal ovarian steroid production across the cycle, cycle quality is a multi-faceted construct, rather than a single dimension. STUDY FUNDING/COMPETING INTEREST(S) The EBBA-I study was supported by a grant from the Norwegian Cancer Society (49 258, 05087); Foundation for the Norwegian Health and Rehabilitation Organizations (59010-2000/2001/2002); Aakre Foundation (5695-2000, 5754-2002) and Health Region East. The current analyses were completed under funding from the National Institutes of Health (K12 ES019852). No competing interests declared. PMID:23250924

  12. Fashion garment manufacturing - FGM and cyclability theory

    NASA Astrophysics Data System (ADS)

    Mendes, F. D.; Dos Santos, M. C. L.

    2017-10-01

    This article, derived from an ongoing research, presents the possibilities of reducing the inappropriate disposal of textile residues generated by the fabric cutting sector of the Fashion Garment Manufacturing (FGM). The raw material used is very varied, resulting in a large number of productive processes. FGM produces clothing that has as its main features a short life cycle, a high rate of diversification and differentiation, and small production batches, resulting in few similar parts. The production process is differentiated according to the characteristics of the fabric and the look of the garment. During the production process, at least 10% of textile waste is generated during the cutting process, which is constantly discarded in an inadequate way. The Cyclability theory is researched aiming at the possibility of reduction in the generation of waste and elimination of inappropriate disposal. The case study presents the action research carried out in three small Brazilian companies to study the applicability of the Cyclability theory.

  13. Resource Consumption and Environmental Impacts of the Agrofood Sector: Life Cycle Assessment of Italian Citrus-Based Products

    NASA Astrophysics Data System (ADS)

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  14. Resource consumption and environmental impacts of the agrofood sector: life cycle assessment of italian citrus-based products.

    PubMed

    Beccali, Marco; Cellura, Maurizio; Iudicello, Maria; Mistretta, Marina

    2009-04-01

    Food production and consumption cause significant environmental burdens during the product life cycles. As a result of intensive development and the changing social attitudes and behaviors in the last century, the agrofood sector is the highest resource consumer after housing in the EU. This paper is part of an effort to estimate environmental impacts associated with life cycles of the agrofood chain, such as primary energy consumption, water exploitation, and global warming. Life cycle assessment is used to investigate the production of the following citrus-based products in Italy: essential oil, natural juice, and concentrated juice from oranges and lemons. The related process flowcharts, the relevant mass and energy flows, and the key environmental issues are identified for each product. This paper represents one of the first studies on the environmental impacts from cradle to gate for citrus products in order to suggest feasible strategies and actions to improve their environmental performance.

  15. Product-related research: how research can contribute to successful life-cycle management.

    PubMed

    Sandner, Peter; Ziegelbauer, Karl

    2008-05-01

    Declining productivity with decreasing new molecular entity output combined with increased R&D spending is one of the key challenges for the entire pharmaceutical industry. In order to offset decreasing new molecular entity output, life-cycle management activities for established drugs become more and more important to maintain or even expand clinical indication and market opportunities. Life-cycle management covers a whole range of activities from strategic pricing to a next generation product launch. In this communication, we review how research organizations can contribute to successful life-cycle management strategies using phosphodiesterase 5 inhibitors as an example.

  16. North south asymmetry in the coronal and photospheric magnetic fields

    NASA Astrophysics Data System (ADS)

    Virtanen, I.; Mursula, K.

    2013-12-01

    Several recent studies have shown that the Heliospheric current sheet (HCS) is southward shifted during about three years in the solar declining phase (the so-called bashful ballerina phenomenon). We study the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO) measurements of the photospheric magnetic field since 1976 and the potential field source surface (PFSS) model. Multipole analysis of the photospheric magnetic field shows that during the late declining phase of solar cycles since 1970s, bashful ballerina phenomenon is a consequence of g02 quadrupole term, signed oppositely to the dipole moment. Surges of new flux transport magnetic field from low latitudes to the poles, thus leading to a systematically varying contribution to the g02-term from different latitudes. In the case of a north-south asymmetric flux production this is seen as a quadrupole contribution traveling towards higher latitudes. When the quadrupole term is largest the main contribution comes from the polar latitudes. At least during the four recent solar cycles the g02-term arises because the magnitude of the southern polar field is larger than in the north in the declining phase of the cycle. Magnetic flux is transported polewards by the meridional flow and it is most likely that besides the north-south asymmetric production of the magnetic flux, also the asymmetric transportation may significantly contribute to the observed asymmetry of polar field intensities. The overall activity during solar cycle is not significantly different in the northern and southern hemispheres, but hemispheres tend to develop in a different phase.

  17. A life cycle greenhouse gas inventory of a tree production system

    Treesearch

    Alissa Kendall; E. Gregory McPherson

    2012-01-01

    PurposeThis study provides a detailed, process-based life cycle greenhouse gas (GHG) inventory of an ornamental tree production system for urban forestry. The success of large-scale tree planting initiatives for climate protection depends on projects being net sinks for CO2 over their entire life cycle....

  18. THE INTERNATIONAL WORKSHOP ON ELECTRICITY DATA FOR LIFE CYCLE INVENTORIES

    EPA Science Inventory

    A three day workshop was held in October 2001 to discuss life cycle inventory data for electricity production. Electricity was selected as the topic for discussion since it features very prominently in the LCA results for most product life cycles, yet there is no consistency in h...

  19. Identification of HNRNPK as Regulator of Hepatitis C Virus Particle Production

    PubMed Central

    Poenisch, Marion; Metz, Philippe; Blankenburg, Hagen; Ruggieri, Alessia; Lee, Ji-Young; Rupp, Daniel; Rebhan, Ilka; Diederich, Kathrin; Kaderali, Lars; Domingues, Francisco S.; Albrecht, Mario; Lohmann, Volker; Erfle, Holger; Bartenschlager, Ralf

    2015-01-01

    Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses. PMID:25569684

  20. An Analysis of the President’s Budgetary Proposals for Fiscal Year 2006

    DTIC Science & Technology

    2005-03-01

    Domestic Product (Average percentage change from CBO’s baseline) Source: Congressional Budget Office. Notes: The “textbook” growth model is an...Global Insight Closed-Economy Life-Cycle Model Open-Economy Life-Cycle Model Textbook Model Memorandum: Gross National Product Open-Economy Life-Cycle...domestic product in the models . 2. Over time, however, increased investment will enlarge the capital stock, in turn reducing the pretax rate of return and

  1. Validation of satellite-based CI detection of convective storms via backward trajectories

    NASA Astrophysics Data System (ADS)

    Dietzsch, Felix; Senf, Fabian; Deneke, Hartwig

    2013-04-01

    Within this study, the rapid development and evolution of several severe convective events is investigated based on geostationary satellite images, and is related to previous findings on suitable detection thresholds for convective initiation. Nine severe events have been selected that occurred over Central Europe in summer 2012, and have been classified into the categories supercell, mesoscale convective system, frontal system and orographic convection. The cases are traced backward starting from the fully developed convective systems to its very beginning initial state using ECMWF data with 0.5 degree spatial resolution and 3h temporal resolution. For every case the storm life cycle was quantified through the storm's infrared (IR) brightness temperatures obtained from Meteosat Second Generation SEVIRI with 5 min temporal resolution and 4.5 km spatial resolution. In addition, cloud products including cloud optical thickness, cloud phase and effective droplet radius have been taken into account. A semi-automatic adjustment of the tracks within a search box was necessary to improve the tracking accuracy and thus the quality of the derived life-cycles. The combination of IR brightness temperatures, IR temperature time trends and satellite-based cloud products revealed different stages of storm development such as updraft intensification and glaciation well in most casesconfirming previously developed CI criteria from other studies. The vertical temperature gradient between 850 and 500 hPa, the Total-Totals-Index and the storm-relative helicity have been derived from ECMWF data and were used to characterize the storm synoptic environment. The results suggest that the storm-relative helicity also influences the life time of convective storms over Central Europe confirming previous studies. Tracking accuracy has shown to be a crucial issue in our study and a fully automated approach is required to enlarge the number of cases for significant statistics.

  2. Integrating a process-based ecosystem model with Landsat imagery to assess impacts of forest disturbance on terrestrial carbon dynamics: Case studies in Alabama and Mississippi

    DOE PAGES

    Chen, Guangsheng; Tian, Hanqin; Huang, Chengquan; ...

    2013-07-01

    Forest ecosystems in the southern United States are dramatically altered by three major disturbances: timber harvesting, hurricane, and permanent land conversion. Understanding and quantifying effects of disturbance on forest carbon, nitrogen, and water cycles is critical for sustainable forest management in this region. In this study, we introduced a process-based ecosystem model for simulating forest disturbance impacts on ecosystem carbon, nitrogen, and water cycles. Based on forest mortality data classified from Landsat TM/ETM + images, this model was then applied to estimate changes in carbon storage using Mississippi and Alabama as a case study. Mean annual forest mortality rate formore » these states was 2.37%. Due to frequent disturbance, over 50% of the forest land in the study region was less than 30 years old. Forest disturbance events caused a large carbon source (138.92 Tg C, 6.04 Tg C yr -1; 1 Tg = 10 12 g) for both states during 1984–2007, accounting for 2.89% (4.81% if disregard carbon storage changes in wood products) of the total forest carbon storage in this region. Large decreases and slow recovery of forest biomass were the main causes for carbon release. Forest disturbance could result in a carbon sink in few areas if wood product carbon was considered as a local carbon pool, indicating the importance of accounting for wood product carbon when assessing forest disturbance effects. The legacy effects of forest disturbance on ecosystem carbon storage could last over 50 years. Lastly, this study implies that understanding forest disturbance impacts on carbon dynamics is of critical importance for assessing regional carbon budgets.« less

  3. [Use of epsilon aminocaproic acid in abnormal hemorrhage using intrauterine contraceptive devices].

    PubMed

    Rueda González, R

    1969-01-01

    Epsilon-aminocaproic acid was tested in 50 women suffering from excessive bleeding as a result of the use of IUDs. The drug was administered daily in 500 mg tablets, in doses of 1-2 g, during the first 5 days of menstruation. All cases were kept under observation for 10 months. Results were good in 38 cases (76 percent) (bleeding returned to normal levels), average in 7 cases (14 percent) (considerably reduced bleeding but still above normal), and without effe ct in 5 cases (10 percent), using a dose of 1 g daily. In these 5 cases, the dose was doubled during the next cycle: results were acceptable in 3 cases (60 percent), while in the other 2 bleeding persisted and the IUD had to be removed. 28 cases (56 percent) required treatment for only 1 cycle, the remaining 9 cycles observed being normal. Treatment during all 10 cycles was necessary in only 5 cases (10 percent). It is concluded that the drug is highly effective, and the small doses used rule out the risk of toxicity or thromboembolic com plications.

  4. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    USGS Publications Warehouse

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  5. Life Cycle Assessment of Biofertilizer Production and Use Compared with Conventional Liquid Digestate Management.

    PubMed

    Styles, David; Adams, Paul; Thelin, Gunnar; Vaneeckhaute, Céline; Chadwick, David; Withers, Paul J A

    2018-06-12

    Handling of digestate produced by anaerobic digestion impacts the environment through emission of greenhouse gases, reactive nitrogen, and phosphorus. Previous life cycle assessments (LCA) evaluating the extraction of nutrients from digestate using struvite precipitation and ammonia stripping did not relate synthetic fertilizer substitution (SFS) to nutrient use efficiency consequences. We applied an expanded LCA to compare the conventional management of 1 m 3 of liquid digestate (LD) from food waste against the production and use of digestate biofertilizer (DBF) extracted from LD, accounting for SFS efficacy. Avoidance of CH 4 , N 2 O, and NH 3 emissions from LD handling and enhanced SFS via more targeted use of nutrients in the versatile DBF product could generate environmental savings of up to 0.129 kg Sb eq, 4.16 kg SO 2 eq, 1.22 kg PO 4 eq, 33 kg CO 2 eq, and 20.6 MJ eq per m 3 LD, for abiotic resource depletion, acidification, eutrophication, global warming, and cumulative energy demand burdens, respectively. However, under worst-case assumptions, DBF extraction could increase global warming and cumulative energy demand by 7.5 kg CO 2 e and 251 MJ eq per m 3 LD owing to processing inputs. Normalizing these results against per capita environmental loadings, we conclude that DBF extraction is environmentally beneficial.

  6. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-04

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.

  7. Studying the effect on system preference by varying coproduct allocation in creating life-cycle inventory.

    PubMed

    Curran, Mary Ann

    2007-10-15

    How one models the input and output data for a life-cycle assessment (LCA) can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, specific guidance is still lacking: Earlier research focused on the effects of applying various allocation schemes to industrial processes when creating life-cycle inventories. To determine the impact of different allocation approaches upon product choice, this study evaluated the gas- and water-phase emissions during the production, distribution, and use of three hypothetical fuel systems (data that represent conventional gasoline and gasoline with 8.7 and 85% ethanol were used as the basis for modeling). This paper presents an explanation of the allocation issue and the results from testing various allocation schemes (weight, volume, market value, energy, and demand-based) when viewed across the entire system. Impact indicators for global warming, ozone depletion, and human health noncancer (water impact) were lower for the ethanol-containing fuels, while impact indicators for acidification, ecotoxicity, eutrophication, human health criteria, and photochemical smog were lower for conventional gasoline (impacts for the water-related human health cancer category showed mixed results). The relative ranking of conventional gasoline in relation to the ethanol-containing fuels was consistent in all instances, suggesting that, in this case study, the choice of allocation methodology had no impact on indicating which fuel has lower environmental impacts.

  8. An Analytic Network Process approach for the environmental aspect selection problem — A case study for a hand blender

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bereketli Zafeirakopoulos, Ilke, E-mail: ibereketli@gsu.edu.tr; Erol Genevois, Mujde, E-mail: merol@gsu.edu.tr

    Life Cycle Assessment is a tool to assess, in a systematic way, the environmental aspects and its potential environmental impacts and resources used throughout a product's life cycle. It is widely accepted and considered as one of the most powerful tools to support decision-making processes used in ecodesign and sustainable production in order to learn about the most problematic parts and life cycle phases of a product and to have a projection for future improvements. However, since Life Cycle Assessment is a cost and time intensive method, companies do not intend to carry out a full version of it, exceptmore » for large corporate ones. Especially for small and medium sized enterprises, which do not have enough budget for and knowledge on sustainable production and ecodesign approaches, focusing only on the most important possible environmental aspect is unavoidable. In this direction, finding the right environmental aspect to work on is crucial for the companies. In this study, a multi-criteria decision-making methodology, Analytic Network Process is proposed to select the most relevant environmental aspect. The proposed methodology aims at providing a simplified environmental assessment to producers. It is applied for a hand blender, which is a member of the Electrical and Electronic Equipment family. The decision criteria for the environmental aspects and relations of dependence are defined. The evaluation is made by the Analytic Network Process in order to create a realistic approach to inter-dependencies among the criteria. The results are computed via the Super Decisions software. Finally, it is observed that the procedure is completed in less time, with less data, with less cost and in a less subjective way than conventional approaches. - Highlights: • We present a simplified environmental assessment methodology to support LCA. • ANP is proposed to select the most relevant environmental aspect. • ANP deals well with the interdependencies between aspects and impacts. • The methodology is less subjective, less complicated, and less time–money consuming. • The proposed methodology is suitable for use by SMEs.« less

  9. [Doping in sports. Cases reported to the Poison Control Center of Marseille from 1992 to 2000].

    PubMed

    Spadari, M; Coja, C; Rodor, F; Monnier, B; Affaton, M F; Arditti, J; Hayek-Lanthois, M; David, J M; Valli, M

    2001-11-24

    To study the doping substances used in sport and their toxicity. Retrospective analysis from January 1992 to December 2000 of the cases of use of doping substances in sport reported by telephone to the anti-poison center in Marseilles. Fifty-one cases were reported concerning 48 men and 3 women with a mean age of 30, ranging from 10 to 55 years. Sixty-three percent of cases were reported over the last four years. The sport practiced was bodybuilding, except in 2 cases (cycling in one case and running in the other). The products used were mainly anabolizing hormones (15 times), clenbuterol (14 times) and creatine (7 times). A third of cases concerned associations of substances and 19 cases presented with symptomatology. The diversity in nature and status of the substances mentioned and their association requires enhanced vigilance with regard to the use of drugs in sport. The recent measures voted within the framework of the anti-doping law dated 23/3/99 are aimed at increasing surveillance with the development of anti-doping antennae.

  10. Life-Cycle Inventory Analysis of I-joist Production in the United States

    Treesearch

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Creating environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one approach to provide scientific documentation of the products’ environmental performance. Many U.S. structural wood products have LCA-based “eco-labels” developed under the ISO...

  11. Ceria-based electrospun fibers for renewable fuel production via two-step thermal redox cycles for carbon dioxide splitting.

    PubMed

    Gibbons, William T; Venstrom, Luke J; De Smith, Robert M; Davidson, Jane H; Jackson, Gregory S

    2014-07-21

    Zirconium-doped ceria (Ce(1-x)Zr(x)O2) was synthesized through a controlled electrospinning process as a promising approach to cost-effective, sinter-resistant material structures for high-temperature, solar-driven thermochemical redox cycles. To approximate a two-step redox cycle for solar fuel production, fibrous Ce(1-x)Zr(x)O2 with relatively low levels of Zr-doping (0 < x < 0.1) were cycled in an infrared-imaging furnace with high-temperature (up to 1500 °C) partial reduction and lower-temperature (∼800 °C) reoxidation via CO2 splitting to produce CO. Increases in Zr content improve reducibility and sintering resistance, and, for x≤ 0.05, do not significantly slow reoxidation kinetics for CO production. Cycle stability of the fibrous Ce(1-x)Zr(x)O2 (with x = 0.025) was assessed for a range of conditions by measuring rates of O2 release during reduction and CO production during reoxidation and by assessing post-cycling fiber crystallite sizes and surface areas. Sintering increases with reduction temperature but occurs primarily along the fiber axes. Even after 108 redox cycles with reduction at 1400 °C and oxidation with CO2 at 800 °C, the fibers maintain their structure with surface areas of ∼0.3 m(2) g(-1), higher than those observed in the literature for other ceria-based structures operating at similarly high temperature conditions. Total CO production and peak production rate stabilize above 3.0 mL g(-1) and 13.0 mL min(-1) g(-1), respectively. The results show the potential for electrospun oxides as sinter-resistant material structures with adequate surface area to support rapid CO2 splitting in solar thermochemical redox cycles.

  12. External And Internal Work Of A T-6 Paraplegic Propelling A Wheelchair And Arm Cranking A Cycle Ergometer: Case Study

    NASA Astrophysics Data System (ADS)

    Novak, Charles W.

    1982-02-01

    In this, the International Year of the Disabled, attention is directed among other areas toward rehabilitation and sports participation of wheelchair users. As an application of movement analysis in medicine and rehabilitation and as an application of sports research using biomechanics, this investigation was performed to compare the results of two methods of gathering data on the stress of wheelchair propelling at equivalent work loads and to account for differences in physiological responses with a mechanical analysis of wheelchair propelling. Physiological data collected were heart rate, systolic blood pressure, and rate-pressure product. A biomechanical cinematography analysis was used to determine external work in wheelchair propelling and to determine the extent to which modifications in segment actionsoccurred during increasing magnitude of work. A cycle ergometer was adjusted to replicate external work loads performed during wheelchair propelling. A t-test of equivalent external work loads indicated that heart rate was not different between the two exercise modes at the .05 level of significance. The t-test did indicate a significant difference in systolic blood pressure and rate-pressure product at the .05 level of significance. The biomechanical analysis of wheelchair propelling established that an increase in external work was accomplished by a decrease in the range of motion and an increase in the speed of movement. During cycle ergometry the range and speed of movement remained the same while resistance was increased. Results of the study established that while heart rate for equivalent external work loads was the same for wheelchair propelling and arm cranking cycle ergometry, systolic blood pressure and rate-pressure product were not the same. The suggestion was that some means of propelling a wheelchair other than that which is con-sidered "standard" might be considered which produces less stressful responses in wheelchair users.

  13. Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueppers, L.; Harte, J.

    2005-08-23

    Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxesmore » were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.« less

  14. Stationary Cycling and Children with Cerebral Palsy: Case Reports for Two Participants

    ERIC Educational Resources Information Center

    Siebert, Kara L.; DeMuth, Sharon K.; Knutson, Loretta M.; Fowler, Eileen G.

    2010-01-01

    These case reports describe a stationary cycling intervention and outcomes for two child participants (P1 and P2) with spastic diplegic cerebral palsy. Each child completed a 12-week, 30-session cycling intervention consisting of strengthening and cardiorespiratory fitness phases. P1 exhibited higher training intensities, particularly during the…

  15. Abrupt shifts in ecosystem function and intensification of global biogeochemical cycle driven by hydroclimatic extremes

    NASA Astrophysics Data System (ADS)

    Ma, Xuanlong; Huete, Alfredo; Ponce-Campos, Guillermo; Zhang, Yongguang; Xie, Zunyi; Giovannini, Leandro; Cleverly, James; Eamus, Derek

    2016-04-01

    Amplification of the hydrologic cycle as a consequence of global warming is increasing the frequency, intensity, and spatial extent of extreme climate events globally. The potential influences resulting from amplification of the hydro-climatic cycle, coupled with an accelerating warming trend, pose great concerns on the sustainability of terrestrial ecosystems to sequester carbon, maintain biodiversity, provide ecosystem services, food security, and support human livelihood. Despite the great implications, the magnitude, direction, and carry-over effect of these extreme climate events on ecosystem function, remain largely uncertain. To address these pressing issues, we conducted an observational, interdisciplinary study using satellite retrievals of atmospheric CO2 and photosynthesis (chlorophyll fluorescence), and in-situ flux tower measures of ecosystem-atmosphere carbon exchange, to reveal the shifts in ecosystem function across extreme drought and wet periods. We further determine the factors that govern ecosystem sensitivity to hydroclimatic extremes. We focus on Australia but extended our analyses to other global dryland regions due to their significant role in global biogeochemical cycles. Our results revealed dramatic impacts of drought and wet hydroclimatic extremes on ecosystem function, with abrupt changes in vegetation productivity, carbon uptake, and water-use-efficiency between years. Drought resulted in widespread reductions or collapse in the normal patterns of vegetation growth seasonality such that in many cases there was no detectable phenological cycle during extreme drought years. We further identified a significant increasing trend (p < 0.001) in extreme wet year precipitation amounts over Australia and many other global regions, resulting in an increasing trend in magnitude of the episodic carbon sink pulses coupled to each La Niña-induced wet years. This finding is of global biogeochemical significance, with the consequence of amplifying the global carbon cycle. Lastly, we use landscape measurements of carbon and water fluxes from eddy-covariance towers and field sampling of aboveground net primary productivity from long-term ecological networks to verify the patterns observed by top-down approaches. Our results demonstrate the intensification of hydroclimatic extremes due to global warming is exerting important impacts on ecosystem function, which further have significant implications on global biogeochemical cycles as well as local ecosystem processes.

  16. Endometrioid endometrial carcinoma indirectly caused by pituitary prolactinoma: a case report.

    PubMed

    Nishino, Kimihiro; Niwa, Yuri; Mizutani, Teruyuki; Shimizu, Ken; Hayashi, Kazumasa; Chaya, Jyunya; Kato, Noriko; Yamamuro, Osamu

    2013-01-01

    We present the case of a 44-year-old nulliparous woman who experienced irregular menstrual cycles for about 10 years and developed both pituitary prolactinoma and endometrioid endometrial carcinoma. In premenopausal women, hyperprolactinemia causes hypogonadism by inhibiting secretion of gonadotropin-releasing hormone and thus suppressing luteinizing hormone levels, which can cause menstrual disorders ranging from amenorrhea, oligomenorrhea and chronic anovulatory cycle to short luteal phase of the menstrual cycle. A chronic anovulatory menstrual cycle is the most common cause of long-term exposure of the endometrium to endogenous estrogen without adequate opposition from progestins, which can lead to endometrioid endometrial carcinoma. In this case, pituitary prolactinoma may have caused the chronic anovulatory cycle and indirectly led to the endometrioid endometrial carcinoma. In patients for whom the cause of irregular menstruation and chronic anovulatory cycle is suspected to be hyperprolactinemia, explorations of both the hypophysis and endometrium are essential.

  17. Endometrioid Endometrial Carcinoma Indirectly Caused by Pituitary Prolactinoma: A Case Report

    PubMed Central

    Nishino, Kimihiro; Niwa, Yuri; Mizutani, Teruyuki; Shimizu, Ken; Hayashi, Kazumasa; Chaya, Jyunya; Kato, Noriko; Yamamuro, Osamu

    2013-01-01

    We present the case of a 44-year-old nulliparous woman who experienced irregular menstrual cycles for about 10 years and developed both pituitary prolactinoma and endometrioid endometrial carcinoma. In premenopausal women, hyperprolactinemia causes hypogonadism by inhibiting secretion of gonadotropin-releasing hormone and thus suppressing luteinizing hormone levels, which can cause menstrual disorders ranging from amenorrhea, oligomenorrhea and chronic anovulatory cycle to short luteal phase of the menstrual cycle. A chronic anovulatory menstrual cycle is the most common cause of long-term exposure of the endometrium to endogenous estrogen without adequate opposition from progestins, which can lead to endometrioid endometrial carcinoma. In this case, pituitary prolactinoma may have caused the chronic anovulatory cycle and indirectly led to the endometrioid endometrial carcinoma. In patients for whom the cause of irregular menstruation and chronic anovulatory cycle is suspected to be hyperprolactinemia, explorations of both the hypophysis and endometrium are essential. PMID:23467393

  18. Incorporating exposure science into life-cycle assessment

    EPA Science Inventory

    Life-cycle assessment (LCA) is used to estimate the potential for environmental damage that may be caused by a product or process, ideally before the product or process begins. LCA includes all of the steps from extracting natural resources through manufacturing through product u...

  19. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  20. 77 FR 52745 - Leveraging Registries With Medical Device Data for Postmarket Surveillance and Evidence Appraisal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... the Total Product Life Cycle AGENCY: Food and Drug Administration, HHS. ACTION: Notice of public... Evidence Appraisal Throughout the Total Product Life Cycle.'' The topic to be discussed is best practices...-cycle. For these reasons, FDA's Center for Devices and Radiological Health (CDRH) uses registries to...

  1. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE PAGES

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo; ...

    2017-04-27

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  2. Life-cycle analysis of fuels from post-use non-recycled plastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benavides, Pahola Thathiana; Sun, Pingping; Han, Jeongwoo

    Plastic-to-fuel (PTF) technology uses pyrolysis to convert plastic waste—especially non-recycled plastics (NRP)—into ultra-low sulfur diesel (ULSD) fuel. To assess the potential energy and environmental benefits associated with PTF technology, we calculated the energy, water consumption, and greenhouse gas emissions of NRP-derived ULSD and compared the results to those metrics for conventional ULSD fuel. For these analyses, we used the Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET®) model. Five companies provided pyrolysis process product yields and material and energy consumption data. Co-products of the process included char and fuel gas. Char can be landfilled, which, per the companymore » responses, is the most common practice for this co-product, or it may be sold as an energy product. Fuel gas can be combusted to internally generate process heat and electricity. Sensitivity analyses investigated the influence of co-product handling methodology, product yield, electric grid composition, and assumed efficiency of char combustion technology on life-cycle greenhouse gas emissions. The sensitivity analysis indicates that the GHG emissions would likely be reduced up to 14% when it is compared to conventional ULSD, depending on the co-product treatment method used. NRP-derived ULSD fuel could therefore be considered at a minimum carbon neutral with the potential to offer a modest GHG reduction. Moreover, this waste-derived fuel had 58% lower water consumption and up to 96% lower fossil fuel consumption than conventional ULSD fuel in the base case. In addition to the comparison of PTF fuels with conventional transportation fuels, we also compare the results with alternative scenarios for managing NRP including power generation and landfilling in the United States.« less

  3. Failures in Hybrid Microcircuits During Environmental Testing. History Cases

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2008-01-01

    This purpose of this viewgraph presentation is to discuss failures in hermetic hybrids observed at the GSFC PA Lab during environmental stress testing. The cases discussed are: Case I. Substrate metallization failures during Thermal cycling (TC). Case II. Flex lid-induced failure. Case Ill. Hermeticity failures during TC. Case IV. Die metallization cracking during TC. and how many test cycles and parts is necessary? Case V. Wire Bond failures after life test. Case VI. Failures caused by Au/In IMC growth.

  4. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  5. Design of Composite Structures Using Knowledge-Based and Case Based Reasoning

    NASA Technical Reports Server (NTRS)

    Lambright, Jonathan Paul

    1996-01-01

    A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of limited well defined rules. The findings indicated that the technique is most effective when used as a design aid and not as a tool to totally automate the composites design process. Other areas of application and implications for future research are discussed.

  6. Quantitative RT-PCR Comparison of the Urea and Nitric Oxide Cycle Gene Transcripts in Adult Human Tissues

    PubMed Central

    Neill, Meaghan Anne; Aschner, Judy; Barr, Frederick; Summar, Marshall L.

    2009-01-01

    The urea cycle and nitric oxide cycle play significant roles in complex biochemical and physiologic reactions. These cycles have distinct biochemical goals including the clearance of waste nitrogen; the production of the intermediates ornithine, citrulline, and arginine for the urea cycle; and the production of nitric oxide for the nitric oxide pathway. Despite their disparate functions, the two pathways share two enzymes, argininosuccinic acid synthase and argininosuccinic acid lyase, and a transporter, citrin. Studying the gene expression of these enzymes is paramount in understanding these complex biochemical pathways. Here, we examine the expression of genes involved in the urea cycle and the nitric oxide cycle in a panel of eleven different tissue samples obtained from individual adults without known inborn errors of metabolism. In this study, the pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Our results show that these transcripts are differentially expressed in different tissues. The pattern of co-expressed enzymes provides a global view of the metabolic activity of the urea and nitric oxide cycles in human tissues. Using the co-expression profiles, we discovered that the combination of expression of enzyme transcripts as detected in our study, might serve to fulfill specific physiologic function(s) in tissue including urea production/nitrogen removal, arginine/citrulline production, nitric oxide production, and ornithine production. Our study reveals the importance of studying not only the expression profile of an enzyme of interest, but also studying the expression profiles of the other enzymes involved in a particular pathway so as to better understand the context of expression. The tissue patterns we observed highlight the variety of important functions they conduct and provide insight into many of the clinical observations from their disruption. PMID:19345634

  7. Including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production.

    PubMed

    Veltman, Karin; Huijbregts, Mark A J; Rye, Henrik; Hertwich, Edgar G

    2011-10-01

    Life cycle assessment is increasingly used to assess the environmental performance of fossil energy systems. Two of the dominant emissions of offshore oil and gas production to the marine environment are the discharge of produced water and drilling waste. Although environmental impacts of produced water are predominantly due to chemical stressors, a major concern regarding drilling waste discharge is the potential physical impact due to particles. At present, impact indicators for particulate emissions are not yet available in life cycle assessment. Here, we develop characterization factors for 2 distinct impacts of particulate emissions: an increased turbidity zone in the water column and physical burial of benthic communities. The characterization factor for turbidity is developed analogous to characterization factors for toxic impacts, and ranges from 1.4 PAF (potentially affected fraction) · m(3) /d/kg(p) (kilogram particulate) to 7.0 x 10³ [corrected] for drilling mud particles discharged from the rig. The characterization factor for burial describes the volume of sediment that is impacted by particle deposition on the seafloor and equals 2.0 × 10(-1) PAF · m(3) /d/kg(p) for cutting particles. This characterization factor is quantified on the basis of initial deposition layer characteristics, such as height and surface area, the initial benthic response, and the recovery rate. We assessed the relevance of including particulate emissions in an impact assessment of offshore oil and gas production. Accordingly, the total impact on the water column and on the sediment was quantified based on emission data of produced water and drilling waste for all oil and gas fields on the Norwegian continental shelf in 2008. Our results show that cutting particles contribute substantially to the total impact of offshore oil and gas production on marine sediments, with a relative contribution of 55% and 31% on the regional and global scale, respectively. In contrast, the contribution of particulate emissions to the total impact on the marine water column is of minor importance. We conclude that particles are an important stressor in marine ecosystems, particularly for marine sediment, and particulate emissions should therefore be included in a (life cycle) impact assessment of offshore oil and gas production. Copyright © 2011 SETAC.

  8. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.

    PubMed

    Pisano, Roberto; Fissore, Davide; Barresi, Antonello A; Rastelli, Massimo

    2013-09-01

    This paper shows the application of mathematical modeling to scale-up a cycle developed with lab-scale equipment on two different production units. The above method is based on a simplified model of the process parameterized with experimentally determined heat and mass transfer coefficients. In this study, the overall heat transfer coefficient between product and shelf was determined by using the gravimetric procedure, while the dried product resistance to vapor flow was determined through the pressure rise test technique. Once model parameters were determined, the freeze-drying cycle of a parenteral product was developed via dynamic design space for a lab-scale unit. Then, mathematical modeling was used to scale-up the above cycle in the production equipment. In this way, appropriate values were determined for processing conditions, which allow the replication, in the industrial unit, of the product dynamics observed in the small scale freeze-dryer. This study also showed how inter-vial variability, as well as model parameter uncertainty, can be taken into account during scale-up calculations.

  9. Virtual prototyping of drop test using explicit analysis

    NASA Astrophysics Data System (ADS)

    Todorov, Georgi; Kamberov, Konstantin

    2017-12-01

    Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.

  10. Disassembly factories for electrical and electronic products to recover resources in product and material cycles.

    PubMed

    Basdere, Bahadir; Seliger, Guenther

    2003-12-01

    Cycle economy as a paradigm for industry in the 21st century depends on the economical and ecological treatment of limited resources. The objective is to achieve more use with fewer resources to increase the use-productivity of these resources. The European Union, aware of the adverse environmental impacts associated with electrical and electronic consumer goods in particular, has passed legislation regulating their appropriate end-of-life treatment. Adaptation processes, including essential disassembly and re-assembly operations, contribute significantly toward the economical fulfillment of these new legal requirements. Typically, the disassembly of used products is characterized by a high rate of manual operations, wide variety of product types, and unknown product properties. To cope with such demands, life cycle units or product accompanying information systems, are being developed and used for acquiring data about a specific product throughout its life cycle to aid in determining the level of product deterioration. Modular disassembly processes and tools have been developed and realized to enable the handling of multiple productvariants. They are being implemented in prototypical hybrid disassembly systemsfor large- and small-size electrical and electronic consumer goods.

  11. Exploratory study on the effect of discount pricing strategies for new product introduction

    NASA Astrophysics Data System (ADS)

    Mat Zaib, Nurul Afiqah; Bazin, Nor Erne Nazira; Mustaffa, Noorfa Haszlinna

    2013-04-01

    Rapid introduction of new product into the market has resulted in growing competition between retailers. Nowadays, retailers compete with one another in order to increase revenue and to maintain their position in the marketplace. This situation has forced the retailers to enhance their strategic management as well as creating competitive advantages. Generally, this situation can be observed in highly demanded product such as fashion goods and high technology electronic devices (smart phone, notebook). The consequence from the intense competition and new product introduction is difficulties in retailers pricing management. Retailers are now facing with complexity in making decisions on suitable pricing strategies and discount level for new product in association with the product life cycle. Thus, this research aims to investigate the suitable discount pricing strategies that can be integrated in every phase of product life cycle. This paper presents relationships between the discount pricing and the stages in the product life cycle in the form of conceptual diagram and mathematical expression. A system dynamic approach is used for developing the conceptual diagram and formulating the mathematical expression for the discount pricing strategies to visualize the relationship between discount pricing and product life cycle.

  12. Updating of U.S. Wood Product Life-Cycle Assessment Data for Environmental Product Declarations

    Treesearch

    Richard Bergman; Elaine Oneil; Maureen Puettmann; Ivan Eastin; Indroneil Ganguly

    2014-01-01

    The marketplace has an increasing desire for credible and transparent product eco-labels based on life-cycle assessment (LCA) data, especially involving international trade. Over the past several years, stakeholders in the U.S. wood products industry have developed many such “eco-labels” under the ISO standard of LCA-based environmental product declarations (EPDs). The...

  13. Sustainability and economic evaluation of microalgae grown in brewery wastewater.

    PubMed

    Mata, Teresa M; Mendes, Adélio M; Caetano, Nídia S; Martins, António A

    2014-09-01

    This article evaluates the sustainability and economic potential of microalgae grown in brewery wastewater for biodiesel and biomass production. Three sustainability and two economic indicators were considered in the evaluation within a life cycle perspective. For the production system the most efficient process units were selected. Results show that harvesting and oil separation are the main process bottlenecks. Microalgae with higher lipid content and productivity are desirable for biodiesel production, although comparable to other biofuel's feedstock concerning sustainability. However, improvements are still needed to reach the performance level of fossil diesel. Profitability reaches a limit for larger cultivation areas, being higher when extracted biomass is sold together with microalgae oil, in which case the influence of lipid content and areal productivity is smaller. The values of oil and/or biomass prices calculated to ensure that the process is economically sound are still very high compared with other fuel options, especially biodiesel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Short communication: The water footprint of dairy products: case study involving skim milk powder.

    PubMed

    Ridoutt, B G; Williams, S R O; Baud, S; Fraval, S; Marks, N

    2010-11-01

    In the context of global water scarcity and food security concerns, water footprints are emerging as an important sustainability indicator in the agriculture and food sectors. Using a recently developed life cycle assessment-based methodology that takes into account local water stress where operations occur, the normalized water footprints of milk products from South Gippsland, one of Australia's major dairy regions, were 14.4 L/kg of total milk solids in whole milk (at farm gate) and 15.8 L/kg of total milk solids in skim milk powder (delivered to export destination). These results demonstrate that dairy products can be produced with minimal potential to contribute to freshwater scarcity. However, not all dairy production systems are alike and the variability in water footprints between systems and products should be explored to obtain strategic insights that will enable the dairy sector to minimize its burden on freshwater systems from consumptive water use. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Seasonal cycles of pelagic production and consumption

    NASA Astrophysics Data System (ADS)

    Longhurst, Alan

    Comprehensive seasonal cycles of production and consumption in the pelagial require the ocean to be partitioned. This can be done rationally at two levels: into four primary ecological domains (three oceanic and one coastal), or about fifty biogeochemical provinces. The domains differ in their characteristic seasonal cycles of stability, nutrient supply and illumination, while provinces are defined by ocean currents, fronts, topography and recurrent features in the sea surface chlorophyll field. For each of these compartments, seasonal cycles of photic depth, primary production and accumulation (or loss) of algal biomass were obtained from the climatological CZCS chlorophyll field and other data and these, together with mixed layer depths, rendered characteristic seasonal cycles of production and consumption, which can be grouped into eight models: i - polar irradiance-mediated production peak; ii - nutrient-limited spring production peak; iii - winter-spring production with nutrient limitation; iv - small amplitude response to trade wind seasonality; v - large amplitude response to monsoon reversal; vi - canonical spring-fall blooms of mid-latitude continental shelves; vii - topography-forced summer production; viii - intermittent production at coastal divergences. For higher latitudes, these models suggest that the observed late-summer ‘blooms’ result not from a renewal of primary production rate, but from a relaxation of grazing pressure; in mid-latitudes, the observed ‘winter’ bloom represents chlorophyll accumulation at a season when loss terms are apparently smaller than during the period of peak primary production rate which occurs later, in spring. Where an episodic seasonal increase in rate of primary production occurs, as in the Arabian Sea, algal biomass accumulation may brief, lasting only until consumption is fully re-established. Only in the low latitude oligotrophic ocean are production and consumption perennially and closely coupled.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.W.

    The nation`s rural electric cooperatives own a high proportion of coal-fired generation, in excess of 80 percent of their generating capacity. As the electric utility industry moves toward a competitive electricity market, the generation mix for electric cooperatives is expected to change. Distributed generation will likely serve more customer loads than is now the case, and that will lead to an increase in gas-fired generation capacity. But, clean low-cost central station coal-fired capacity is expected to continue to be the primary source of power for growing rural electric cooperatives. Gasification combined cycle could be the lowest cost coal based generationmore » option in this new competitive market if both capital cost and electricity production costs can be further reduced. This paper presents anticipated utility business scenarios for the deregulated future and identifies combined cycle power plant configurations that might prove most competitive.« less

  17. Engineering Changes in Product Design - A Review

    NASA Astrophysics Data System (ADS)

    Karthik, K.; Janardhan Reddy, K., Dr

    2016-09-01

    Changes are fundamental to product development. Engineering changes are unavoidable and can arise at any phase of the product life cycle. The consideration of market requirements, customer/user feedbacks, manufacturing constraints, design innovations etc., turning them into viable products can be accomplished when product change is managed properly. In the early design cycle, informal changes are accepted. However, changes become formal when its complexity and cost increases, and as product matures. To maximize the market shares, manufacturers have to effectively and efficiently manage engineering changes by means of Configuration Control. The paper gives a broad overview about ‘Engineering Change Management’ (ECM) through configuration management and its implications in product design. The aim is to give an idea and understanding about the engineering changes in product design scenario to the new researchers. This paper elaborates the significant aspect of managing the engineering changes and the importance of ECM in a product life cycle.

  18. Human exposure modeling in a life cycle framework for chemicals and products

    EPA Science Inventory

    A chemical enters into commerce to serve a specific function in a product or process. This decision triggers both the manufacture of the chemical and its potential release over the life cycle of the product. Efficiently evaluating chemical safety and sustainability requires combi...

  19. Gate-to-gate Life-Cycle Inventory of Hardboard Production in North America

    Treesearch

    Richard Bergman

    2014-01-01

    Whole-building life-cycle assessments (LCAs) populated by life-cycle inventory (LCI) data are incorporated into environmental footprint software tools for establishing green building certification by building professionals and code. However, LCI data on some wood building products are still needed to help fill gaps in the data and thus provide a more complete picture...

  20. Effect of repeated cycled crystallization on digestibility and molecular structure of glutinous Bora rice starch.

    PubMed

    Borah, Pallab Kumar; Deka, Sankar Chandra; Duary, Raj Kumar

    2017-05-15

    The effects of repeated cycled crystallization on the digestibility and molecular structure of glutinous Bora rice starch were investigated. Temperature cycle 4/45°C; cycle duration 5d; time interval of cycles 24h; and starch to water ratio 1:2 were found to be optimum for SDS (slow digestible starch) product development. The SDS content increased from 18.01±2.11% to 82.81±2.34%. An increase in the resistance to digestion, crystallinity, molecular weight, polydispersity and molecular order was observed in the optimal SDS product. Notably, the FT-IR peak at 947cm -1 and XRD peaks at 2θ≈13° and 20° in the optimal SDS product indicated the formation of V-type complexes even without the presence of co-polymers. Birefringence studies showed a loss of typical Maltese cross in the SDS product and revealed a reorientation of crystalline structures within starch granules, suggestive of imperfect crystallite development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. In vivo monitoring of urea cycle activity with (13)C-acetate as a tracer of ureagenesis.

    PubMed

    Opladen, Thomas; Lindner, Martin; Das, Anibh M; Marquardt, Thorsten; Khan, Aneal; Emre, Sukru H; Burton, Barbara K; Barshop, Bruce A; Böhm, Thea; Meyburg, Jochen; Zangerl, Kathrin; Mayorandan, Sebene; Burgard, Peter; Dürr, Ulrich H N; Rosenkranz, Bernd; Rennecke, Jörg; Derbinski, Jens; Yudkoff, Marc; Hoffmann, Georg F

    2016-01-01

    The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme. A reliable method to estimate urea cycle activity in-vivo does not exist yet. The aim of this study was to evaluate a practical method to quantify (13)C-urea production as a marker for urea cycle function in healthy subjects, patients with confirmed urea cycle defect (UCD) and asymptomatic carriers of UCD mutations. (13)C-labeled sodium acetate was applied orally in a single dose to 47 subjects (10 healthy subjects, 28 symptomatic patients, 9 asymptomatic carriers). The oral (13)C-ureagenesis assay is a safe method. While healthy subjects and asymptomatic carriers did not differ with regards to kinetic variables for urea cycle flux, symptomatic patients had lower (13)C-plasma urea levels. Although the (13)C-ureagenesis assay revealed no significant differences between individual urea cycle enzyme defects, it reflected the heterogeneity between different clinical subgroups, including male neonatal onset ornithine carbamoyltransferase deficiency. Applying the (13)C-urea area under the curve can differentiate between severe from more mildly affected neonates. Late onset patients differ significantly from neonates, carriers and healthy subjects. This study evaluated the oral (13)C-ureagenesis assay as a sensitive in-vivo measure for ureagenesis capacity. The assay has the potential to become a reliable tool to differentiate UCD patient subgroups, follow changes in ureagenesis capacity and could be helpful in monitoring novel therapies of UCD. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.

    2014-12-01

    For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified by LAI do not contribute significantly to the increasing trend in carbon sink over the last 32 years. The increases in atmospheric CO2 concentration and nitrogen deposition are found to be the major causes for the increases in plant productivity and carbon sink over the last 32 years.

  3. Life Cycle Assessment as a Tool to Enhance the Environmental Performanceof Carbon Nanotube Products: A Review

    EPA Science Inventory

    The importance of evaluating the environmental performance of emerging carbon nanotube (CNT) products from a life cycle perspective is emphasized in this work. Design, development and deployment of CNT products offer many potential benefits to society, but not without negative im...

  4. Life Cycle Assessment Software for Product and Process Sustainability Analysis

    ERIC Educational Resources Information Center

    Vervaeke, Marina

    2012-01-01

    In recent years, life cycle assessment (LCA), a methodology for assessment of environmental impacts of products and services, has become increasingly important. This methodology is applied by decision makers in industry and policy, product developers, environmental managers, and other non-LCA specialists working on environmental issues in a wide…

  5. Frequency of rate of body temperature chart at mid cycle in pregnant women and the subsequent effect on pregnancy.

    PubMed

    Kawamura, M; Ezawa, M; Onodera, T; Nagashima, T; Toyooka, R; Yagishita, M

    2008-01-01

    To determine if changes in basal body temperature (BBT) during the ovuratory phase are related to subsequent effects on pregnancy. BBT records from 216 pregnant women in a spontaneous cycle or a clomiphene citrate cycle during a recent 6-year period were studied. The last day of low phase (LDLP) and the number of days until high phase (NDHP) were determined for all subjects. In the spontaneous cycle group, medium-cycle cases were most frequent and long-cycle cases were most frequent in the clomiphene cycle group. The NDHP ranged between one and three days in 82.8% of the subjects in the spontaneous cycle group and in 86.1% of the subjects in the clomiphene cycle group. Our findings demonstrate the importance of properly evaluating an NDPH of two or even three days in a BBT-based assessment of ovarian function in the ovulatory phase.

  6. Comparison of Quantity Versus Quality Using Performance, Reliability, and Life Cycle Cost Data. A Case Study of the F-15, F-16, and A-10 Aircraft.

    DTIC Science & Technology

    1985-09-01

    CoC S~04 COMPARISON OF QUANTITY VERSUS QUALITY USING PERFORMANCE, RELIABILITY, AND LIFE CYCLE COST DATA. A CASE STUDY OF THE F-15, F-16, AND A-10...CYCLE COSTIATU.AT CAE AIR ORE HEO OG .- jAITR UIVERSITY W right.,Patterson Air Force Base, Ohio .! 5ൔ ,6 198 C.IT. U AF’IT/GSL,4/L3Q/65:S Ŗ J...COMPARISON OF QUANTITY VERSUS QUALITY USING PERFORMANCE, RELIABILITY, AND LIFE CYCLE COST DATA. A CASE STUDY OF THE F-15, F-16, AND A-10 AIRCRAFT THESIS David

  7. Crank case scavenging of two-stroke-cycle engines

    NASA Technical Reports Server (NTRS)

    List, Hans

    1929-01-01

    This report presents the results of tests on two-stroke-cycle Diesel engines to determine the efficiency of the crank case scavenging pump. It was determined that efficiencies were between 95 and 100%.

  8. The Role of Evapotranspiration on Soil Moisture Depletion in a Small Alaskan Subarctic Farm

    NASA Astrophysics Data System (ADS)

    Ruairuen, W.; Fochesatto, G. J.; Sparrow, E. B.; Schnabel, W.; Zhang, M.

    2013-12-01

    At high latitudes the period for agriculture production is very short (110 frost-free days) and strongly depends on the availability of soil water content for vegetables to grow. In this context the evapotranspiration (ET) cycle is key variable underpinning mass and energy balance modulating therefore moisture gradients and soil dryness. Evapotranspiration (ET) from field-grown crops water stress is virtually unknown in the subarctic region. Understanding ET cycles in high latitude agricultural ecosystem is essential in terms of water management and sustainability and projection of agricultural activity. To investigate the ET cycle in farming soils a field experiment was conducted in the summer of 2012 and 2013 at the University of Alaska Fairbanks Agricultural and Forestry Experiment Station combining micrometeorological and hydrological measurements. In this case experimental plots of lettuce (Lactuca sativa) plants were grown. The experiment evaluated several components of the ET cycle such as actual evapotranspiration, reference evaporation, pan evaporation as well as soil water content and temperature profiles to link them to the vegetable growing functions. We investigated the relationship of soil moisture content and crop water use across the growing season as a function of the ET cycle. Soil water depletion was compared to daily estimates of water loss by ET during dry and wet periods. We also investigated the dependence of ET on the atmospheric boundary layer flow patterns set by the synoptic large scale weather patterns.

  9. Life-Cycle Inventory Analysis of Laminated Veneer Lumber Production in the United States

    Treesearch

    Richard D. Bergman

    2015-01-01

    Documenting the environmental performance of building products is becoming increasingly common. Developing environmental product declarations (EPDs) based on life-cycle assessment (LCA) data is one way to provide scientific documentation. Many U.S. structural wood products have LCA-based “eco-labels” using the ISO standard. However, the standard requires underlying...

  10. OML: optical maskless lithography for economic design prototyping and small-volume production

    NASA Astrophysics Data System (ADS)

    Sandstrom, Tor; Bleeker, Arno; Hintersteiner, Jason; Troost, Kars; Freyer, Jorge; van der Mast, Karel

    2004-05-01

    The business case for Maskless Lithography is more compelling than ever before, due to more critical processes, rising mask costs and shorter product cycles. The economics of Maskless Lithography gives a crossover volume from Maskless to mask-based lithography at surprisingly many wafers per mask for surprisingly few wafers per hour throughput. Also, small-volume production will in many cases be more economical with Maskless Lithography, even when compared to "shuttle" schemes, reticles with multiple layers, etc. The full benefit of Maskless Lithography is only achievable by duplicating processes that are compatible with volume production processes on conventional scanners. This can be accomplished by the integration of pattern generators based on spatial light modulator technology with state-of-the-art optical scanner systems. This paper reports on the system design of an Optical Maskless Scanner in development by ASML and Micronic: small-field optics with high demagnification, variable NA and illumination schemes, spatial light modulators with millions of MEMS mirrors on CMOS drivers, a data path with a sustained data flow of more than 250 GPixels per second, stitching of sub-fields to scanner fields, and rasterization and writing strategies for throughput and good image fidelity. Predicted lithographic performance based on image simulations is also shown.

  11. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China

    PubMed Central

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-01-01

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase. PMID:27011196

  12. Greenhouse Gas Emissions from Asphalt Pavement Construction: A Case Study in China.

    PubMed

    Ma, Feng; Sha, Aimin; Lin, Ruiyu; Huang, Yue; Wang, Chao

    2016-03-22

    In China, the construction of asphalt pavement has a significant impact on the environment, and energy use and greenhouse gas (GHG) emissions from asphalt pavement construction have been receiving increasing attention in recent years. At present, there is no universal criterion for the evaluation of GHG emissions in asphalt pavement construction. This paper proposes to define the system boundaries for GHG emissions from asphalt pavement by using a process-based life cycle assessment method. A method for evaluating GHG emissions from asphalt pavement construction is suggested. The paper reports a case study of GHG emissions from a typical asphalt pavement construction project in China. The results show that the greenhouse gas emissions from the mixture mixing phase are the highest, and account for about 54% of the total amount. The second highest GHG emission phase is the production of raw materials. For GHG emissions of cement stabilized base/subbase, the production of raw materials emits the most, about 98%. The GHG emission for cement production alone is about 92%. The results indicate that any measures to reduce GHG emissions from asphalt pavement construction should be focused on the raw materials manufacturing stage. If the raw materials production phase is excluded, the measures to reduce GHG emissions should be aimed at the mixture mixing phase.

  13. Trends in nitrogen and phosphorus cycling are consistent and constrained during tropical secondary forest succession: is secondary forest young primary forest from a nutrient perspective?

    NASA Astrophysics Data System (ADS)

    Sullivan, B. W.; Nasto, M.; Alvarez-Clare, S.; Cole, R. J.; Reed, S.; Chazdon, R.; Davidson, E. A.; Cleveland, C. C.

    2015-12-01

    Extensive deforestation of tropical rainforest often leads to agricultural abandonment and secondary forest regeneration. The land area of secondary rainforest is soon likely to exceed that of primary forest, highlighting the importance of secondary tropical rainforest in the global carbon (C) cycle. Secondary forests often grow rapidly, but the role soil nutrients play in regulating secondary forest productivity remains unsettled. Consistent with biogeochemical theory, a landmark study from a set of sites in the Amazon Basin showed that secondary forests had low nitrogen (N) availability and relatively higher phosphorus (P) availability immediately after abandonment, but that as succession proceeded, N availability "recuperated" and there was relatively less P available. To address whether such changes in N and P availability during secondary forest growth are common, we reviewed 38 studies in lowland tropical rainforest that reported changes in 23 different metrics of N and P cycling during secondary succession. We calculated slopes (rates of change) during secondary succession for each metric in each study, and analyzed patterns in these rates of change. Significant trends during secondary succession were more evident in soils than in plants, but in most cases, the variability among studies was surprisingly low. Both soil N and P availability increased through succession, at least in surface soil. Such consistent changes imply substantial biogeochemical resilience of tropical forest soils in spite of differing land use histories and species compositions among studies. In most cases, slopes were similar whether primary forest was included in, or excluded from, our analysis, suggesting that secondary succession eventually leads to similar biogeochemical conditions as those found in primary forest. Our results suggesting consistent changes in N and P availability during succession provide a biogeochemical rationale for the conservation and restoration value of tropical secondary forests, and may be of utility to coupled C-nutrient models projecting primary productivity in a dynamic tropical biome.

  14. Culture in cycles: considering H.T. Odum's 'information cycle'

    NASA Astrophysics Data System (ADS)

    Abel, Thomas

    2014-01-01

    'Culture' remains a conundrum in anthropology. When recast in the mold of 'information cycles,' culture is transformed. New fault lines appear. Information is splintered into parallel or nested forms. Dynamics becomes cycling. Energy is essential. And culture has function in a directional universe. The 'information cycle' is the crowning component of H.T. Odum's theory of general systems. What follows is an application of the information cycle to the cultural domains of discourse, social media, ritual, education, journalism, technology, academia, and law, which were never attempted by Odum. In information cycles, cultural information is perpetuated - maintained against Second Law depreciation. Conclusions are that culture is in fact a nested hierarchy of cultural forms. Each scale of information production is semi-autonomous, with its own evolutionary dynamics of production and selection in an information cycle. Simultaneously, each information cycle is channeled or entrained by its larger scale of information and ultimately human-ecosystem structuring.

  15. Product-oriented Software Certification Process for Software Synthesis

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy; Fischer, Bernd; Denney, Ewen; Schumann, Johann; Richardson, Julian; Oh, Phil

    2004-01-01

    The purpose of this document is to propose a product-oriented software certification process to facilitate use of software synthesis and formal methods. Why is such a process needed? Currently, software is tested until deemed bug-free rather than proving that certain software properties exist. This approach has worked well in most cases, but unfortunately, deaths still occur due to software failure. Using formal methods (techniques from logic and discrete mathematics like set theory, automata theory and formal logic as opposed to continuous mathematics like calculus) and software synthesis, it is possible to reduce this risk by proving certain software properties. Additionally, software synthesis makes it possible to automate some phases of the traditional software development life cycle resulting in a more streamlined and accurate development process.

  16. An numerical analysis of high-temperature helium reactor power plant for co-production of hydrogen and electricity

    NASA Astrophysics Data System (ADS)

    Dudek, M.; Podsadna, J.; Jaszczur, M.

    2016-09-01

    In the present work, the feasibility of using a high temperature gas cooled nuclear reactor (HTR) for electricity generation and hydrogen production are analysed. The HTR is combined with a steam and a gas turbine, as well as with the system for heat delivery for medium temperature hydrogen production. Industrial-scale hydrogen production using copper-chlorine (Cu-Cl) thermochemical cycle is considered and compared with high temperature electrolysis. Presented cycle shows a very promising route for continuous, efficient, large-scale and environmentally benign hydrogen production without CO2 emissions. The results show that the integration of a high temperature helium reactor, with a combined cycle for electric power generation and hydrogen production, may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  17. Maximizing efficiency of rumen microbial protein production

    PubMed Central

    Hackmann, Timothy J.; Firkins, Jeffrey L.

    2015-01-01

    Rumen microbes produce cellular protein inefficiently partly because they do not direct all ATP toward growth. They direct some ATP toward maintenance functions, as long-recognized, but they also direct ATP toward reserve carbohydrate synthesis and energy spilling (futile cycles that dissipate heat). Rumen microbes expend ATP by vacillating between (1) accumulation of reserve carbohydrate after feeding (during carbohydrate excess) and (2) mobilization of that carbohydrate thereafter (during carbohydrate limitation). Protozoa account for most accumulation of reserve carbohydrate, and in competition experiments, protozoa accumulated nearly 35-fold more reserve carbohydrate than bacteria. Some pure cultures of bacteria spill energy, but only recently have mixed rumen communities been recognized as capable of the same. When these communities were dosed glucose in vitro, energy spilling could account for nearly 40% of heat production. We suspect that cycling of glycogen (a major reserve carbohydrate) is a major mechanism of spilling; such cycling has already been observed in single-species cultures of protozoa and bacteria. Interconversions of short-chain fatty acids (SCFA) may also expend ATP and depress efficiency of microbial protein production. These interconversions may involve extensive cycling of intermediates, such as cycling of acetate during butyrate production in certain butyrivibrios. We speculate this cycling may expend ATP directly or indirectly. By further quantifying the impact of reserve carbohydrate accumulation, energy spilling, and SCFA interconversions on growth efficiency, we can improve prediction of microbial protein production and guide efforts to improve efficiency of microbial protein production in the rumen. PMID:26029197

  18. Environmental and economic analysis of end of life management options for an HDPE product using a life cycle thinking approach.

    PubMed

    Simões, Carla L; Pinto, Lígia M Costa; Bernardo, C A

    2014-05-01

    Manufacturers have been increasingly considering the implication of materials used in commercial products and the management of such products at the end of their useful lives (as waste or as post-consumer secondary materials). The present work describes the application of the life cycle thinking approach to a plastic product, specifically an anti-glare lamellae (used for road safety applications) made with high-density polyethylene (HDPE). This study shows that optimal environmental and economic outcomes associated with this product can be realized by recovering the material at the end of its useful life (end of life, EoL) and by using the recycled HDPE as a raw material in the production of new similar products. The study confirmed the applicability of the life cycle thinking approach by industry in sustainable products development, supporting the development of robust environmental and economic guidelines.

  19. A retrospective study on the unseen epidemic of road traffic injuries and deaths due to accidents in Mwanza City - Tanzania.

    PubMed

    Ngallaba, S E; Majinge, C; Gilyoma, J; Makerere, D J; Charles, E

    2013-06-01

    Sixty percent of the global deaths and injuries occur in the developing world and mostly are due to Road traffic accidents (RTAs. looking at the etiological related factors which include, carelessness of the driver, condition of the vehicle or motorcycle, poor condition of roads, risky behavior of the driver, most of these factors can be prevented to some extent. This study therefore, determined the pattern of cases and deaths due to traffic road accidents in Mwanza City Tanzania. In this retrospective study, records, registers and case notes In the surgical ward and causality, medical records and central police station from 2008 to 2011 were used. The study focused on the two referral hospitals (Sekouture regional hospital and Bugando Medical Center). There were 3450 cases due to accidents reported at both centers (Sekouture regional hospital and Bugando Medical Center of which 3224 (93.4%) had complete information for analysis.2225 (69%) were male and 999 (31%) were female, and the most affected group were male. Among the RTAs2809 cases (87%) were due to motor cycle accidents which were the leading cause of RTAs with case fatality rate of 5% while motor vehicle has case fatality rate of 24% which is 5 times that of motor cycle. Among all RTAs the leading cause of injuries is Motor cycle traffic accidents followed by motor vehicle. RTAs are on increase particularly the motor cycle traffic accidents and has claimed a good number of innocent people's lives however most of them are preventable, therefore driving course to be introduced to motor cycle drivers with emphasize on the road posters signal, rules and regular checkup of their motor cycles especially commercial motor cycle.

  20. Antimicrobial use in Belgian broiler production.

    PubMed

    Persoons, Davy; Dewulf, Jeroen; Smet, Annemieke; Herman, Lieve; Heyndrickx, Marc; Martel, An; Catry, Boudewijn; Butaye, Patrick; Haesebrouck, Freddy

    2012-08-01

    The use of antimicrobials in production animals has become a worldwide concern in the face of rising resistance levels in commensal, pathogenic and zoonotic bacteria. In the years 2007 and 2008 antimicrobial consumption records were collected during two non consecutive production cycles in 32 randomly selected Belgian broiler farms. Antimicrobials were used in 48 of the 64 monitored production cycles, 7 farms did not use any antimicrobials in both production cycles, 2 farms only administered antimicrobials in one of the two production cycles, the other 23 farms applied antimicrobial treatment in both production cycles. For the quantification of antimicrobial drug use, the treatment incidences (TI) based on the defined daily doses (the dose as it should be applied: DDD) and used daily doses (the actual dose applied: UDD) were calculated. A mean antimicrobial treatment incidence per 1000 animals of 131.8 (standard deviation 126.8) animals treated daily with one DDD and 121.4 (SD 106.7) animals treated daily with one UDD was found. The most frequently used compounds were amoxicillin, tylosin and trimethoprim-sulphonamide with a mean TI(UDD) of 37.9, 34.8, and 21.7, respectively. The ratio of the UDD/DDD gives an estimate on correctness of dosing. Tylosin was underdosed in most of the administrations whereas amoxicillin and trimethoprim-sulphonamide were slightly overdosed in the average flock. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Uncommon but devastating event: total fertilisation failure following intracytoplasmic sperm injection.

    PubMed

    Goksan Pabuccu, E; Sinem Caglar, G; Dogus Demirkiran, O; Pabuccu, R

    2016-03-01

    Fertilisation with intracytoplasmic sperm injection (ICSI) is a consequence of complex molecular interactions between spermatozoon and oocyte. Disruption of the process obviously prompts a frustrating event called total fertilisation failure (TFF). Up to 3% of ICSI cycles may result in TFF, and brief counselling for subsequent cycle management is indispensable. Within this perspective, ICSI cycles of a centre over a 10-year period were analysed to document TFF cases. Initial TFF after ICSI and subsequent ICSI cycle of the same cases were documented to clarify predictive factors of successful outcomes after initial TFF. In subsequent cycles, assisted oocyte activation (AOA) with calcium ionophore and Hypo-osmotic swelling test (HOST)/pentoxifilline for sperm selection was used. In the current analysis, successful fertilisation was achieved in 85% of the cases with previous TFF. The significant contributing factors for successful fertilisation in the latter cycle were: improved oocyte quantity and better sperm morphology. In conclusion, sporadic TFF event in the first and only cycle is usually a technically modifiable condition, but repeated TFF could indicate possible gamete defects, which might not be overcomed in the next modified ICSI cycle. © 2015 Blackwell Verlag GmbH.

  2. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications.

    PubMed

    Cao, Yucheng; Pawłowski, Artur

    2013-01-01

    A "cradle-to-grave" life cycle assessment was conducted to examine the energy and greenhouse gas (GHG) emission footprints of two emerging sludge-to-energy systems. One system employs a combination of anaerobic digestion (AD) and fast pyrolysis for bioenergy conversion, while the other excludes AD. Each system was divided into five process phases: plant construction, sludge pretreatment, sludge-to-bioenergy conversion, bioenergy utilizations and biochar management. Both systems achieved energy and GHG emission benefits, and the AD-involving system performed better than the AD-excluding system (5.30 vs. 0.63 GJ/t sludge in net energy gain and 0.63 vs. 0.47 t CO(2)eq/t sludge in emission credit for base case). Detailed contribution and sensitivity analyses were conducted to identify how and to what degree the different life-cycle phases are responsible for the energy and emission impacts. The energy and emission performances were significantly affected by variations in bioenergy production, energy requirement for sludge drying and end use of bioenergy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Toxic Heavy Metals: Materials Cycle Optimization

    NASA Astrophysics Data System (ADS)

    Ayres, Robert U.

    1992-02-01

    Long-term ecological sustainability is incompatible with an open materials cycle. The toxic heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, silver, uranium/plutonium, zinc) exemplify the problem. These metals are being mobilized and dispersed into the environment by industrial activity at a rate far higher than by natural processes. Apart from losses to the environment resulting from mine wastes and primary processing, many of these metals are utilized in products that are inherently dissipative. Examples of such uses include fuels, lubricants, solvents, fire retardants, stabilizers, flocculants, pigments, biocides, and preservatives. To close the materials cycle, it will be necessary to accomplish two things. The first is to ban or otherwise discourage (e.g., by means of high severance taxes on virgin materials) dissipative uses of the above type. The second is to increase the efficiency of recycling of those materials that are not replaceable in principle. Here, also, economic instruments (such as returnable deposits) can be effective in some cases. A systems view of the problem is essential to assess the cost and effectiveness of alternative strategies.

  4. Identification, measurement, and assessment of water cycle of unhusked rice agricultural phases: Case study at Tangerang paddy field, Indonesia

    NASA Astrophysics Data System (ADS)

    Hartono, N.; Laurence; Johannes, H. P.

    2017-11-01

    According to one of UN reports, water scarcity has happened all around the world, including Indonesia. Irrigation sector takes up 70% of world water consumption and potentially increases 20% due to the population explosion. Rice is accounted for 69% of agricultural products contributions in Indonesia’s water footprint. Therefore, evaluation of water cycle was essential to raise awareness among practitioners. Data collections were conducted in the functional unit of one-hectare rice field located in Tangerang. This study used CropWat 8.0 and SimaPro software. Identification involved data such as climate, crop, and soil. Nursery became the highest water consumed phase, requiring 419 mm in height. Measurement through water footprint resulted in consumption of green water footprint for 8,183,618.5 liters (62.9%), followed by grey for 4,805,733.2 liters (36.9%) and blue for 23,902.36 liters (0.2%). The grey consumption was exceeding the average, which indicated high doses of pesticides. Life Cycle Assessment showed negative impacts of fertilizers that caused damages like fossil depletion, respiratory health, and eutrophication.

  5. Life cycle assessment of TV sets in China: a case study of the impacts of CRT monitors.

    PubMed

    Song, Qingbin; Wang, Zhishi; Li, Jinhui; Zeng, Xianlai

    2012-10-01

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Fast "Feast/Famine" Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae.

    PubMed

    Suarez-Mendez, Camilo A; Sousa, Andre; Heijnen, Joseph J; Wahl, Aljoscha

    2014-05-15

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism's physiology under dynamic conditions. We found that the biomass yield was slightly reduced (-5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments).

  7. Fast “Feast/Famine” Cycles for Studying Microbial Physiology Under Dynamic Conditions: A Case Study with Saccharomyces cerevisiae

    PubMed Central

    Suarez-Mendez, Camilo A.; Sousa, Andre; Heijnen, Joseph J.; Wahl, Aljoscha

    2014-01-01

    Microorganisms are constantly exposed to rapidly changing conditions, under natural as well as industrial production scale environments, especially due to large-scale substrate mixing limitations. In this work, we present an experimental approach based on a dynamic feast/famine regime (400 s) that leads to repetitive cycles with moderate changes in substrate availability in an aerobic glucose cultivation of Saccharomyces cerevisiae. After a few cycles, the feast/famine produced a stable and repetitive pattern with a reproducible metabolic response in time, thus providing a robust platform for studying the microorganism’s physiology under dynamic conditions. We found that the biomass yield was slightly reduced (−5%) under the feast/famine regime, while the averaged substrate and oxygen consumption as well as the carbon dioxide production rates were comparable. The dynamic response of the intracellular metabolites showed specific differences in comparison to other dynamic experiments (especially stimulus-response experiments, SRE). Remarkably, the frequently reported ATP paradox observed in single pulse experiments was not present during the repetitive perturbations applied here. We found that intracellular dynamic accumulations led to an uncoupling of the substrate uptake rate (up to 9-fold change at 20 s.) Moreover, the dynamic profiles of the intracellular metabolites obtained with the feast/famine suggest the presence of regulatory mechanisms that resulted in a delayed response. With the feast famine setup many cellular states can be measured at high frequency given the feature of reproducible cycles. The feast/famine regime is thus a versatile platform for systems biology approaches, which can help us to identify and investigate metabolite regulations under realistic conditions (e.g., large-scale bioreactors or natural environments). PMID:24957030

  8. Effect of Cyclic Loading on Micromotion at the Implant-Abutment Interface.

    PubMed

    Karl, Matthias; Taylor, Thomas D

    2016-01-01

    Cyclic loading may cause settling of abutments mounted on dental implants, potentially affecting screw joint stability and implant-abutment micromotion. It was the goal of this in vitro study to compare micromotion of implant-abutment assemblies before and after masticatory simulation. Six groups of abutments (n = 5) for a specific tissue-level implant system with an internal octagon were subject to micromotion measurements. The implant-abutment assemblies were loaded in a universal testing machine, and an apparatus and extensometers were used to record displacement. This was done twice, in the condition in which they were received from the abutment manufacturer and after simulated loading (100,000 cycles; 100 N). Statistical analysis was based on analysis of variance, two-sample t tests (Welch tests), and Pearson product moment correlation (α = .05). The mean values for micromotion ranged from 33.15 to 63.41 μm and from 30.03 to 42.40 μm before and after load cycling. The general trend toward reduced micromotion following load cycling was statistically significant only for CAD/CAM zirconia abutments (P = .036) and for one type of clone abutment (P = .012), with no significant correlation between values measured before and after cyclic loading (Pearson product moment correlation; P = .104). While significant differences in micromotion were found prior to load cycling, no significant difference among any of the abutment types tested could be observed afterward (P > .05 in all cases). A quantifiable settling effect at the implant-abutment interface seems to result from cyclic loading, leading to a decrease in micromotion. This effect seems to be more pronounced in low-quality abutments. For the implant system tested in this study, retightening of abutment screws is recommended after an initial period of clinical use.

  9. Life cycle assessment of TV sets in China: A case study of the impacts of CRT monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song Qingbin; Wang Zhishi, E-mail: zswang@umac.mo; Li Jinhui

    2012-10-15

    Along with the rapid increase in both production and use of TV sets in China, there is an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of these sets. This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of Chinese TV sets. An assessment of the TV set device (focusing on the Cathode Ray Tube (CRT) monitor) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software versionmore » 7.2 and expressed with the Eco-indicator' 99 life cycle impact assessment method. For a sensitivity analysis of the overall LCA results, the CML method was used in order to estimate the influence of the choice of the assessment method on the results. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations on the current Chinese situation. The established LCA study shows that the use stage of such devices has the highest environmental impact, followed by the manufacturing stage. In the manufacturing stage, the CRT and the Printed Circuit Board (PCB) are those components contributing the most environmental impacts. During the use phase, the environmental impacts are due entirely to the methods of electricity generation used to run them, since no other aspects were taken into account for this phase. The final processing step-the end-of-life stage-can lead to a clear environmental benefit when the TV sets are processed through the formal dismantling enterprises in China.« less

  10. Impacts of global warming on boreal larch forest in East Siberia: simulations with a coupled carbon cycle and fire regime model

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2005-12-01

    Boreal forest is one of the focal areas in the study of global warming and carbon cycle. In this study, a coupled carbon cycle and fire regime model was developed and applied to a larch forest in East Siberia, near Yakutsk. Fire regime is simulated with a cellular automaton (20 km x 20 km), in which fire ignition, propagation, and extinction are parameterized in a stochastic manner, including the effects of fuel accumulation and weather condition. For each grid, carbon cycle is simulated with a 10-box scheme, in which net biome production by photosynthesis, respiration, decomposition, and biomass burning are calculated explicitly. Model parameters were calibrated with field data of biomass, litter stock, and fire statistics; the carbon cycle scheme was examined with flux measurement data. As a result, the model successfully captured average carbon stocks, productivity, fire frequency, and biomass burning. To assess the effects of global warming, a series of simulations were performed using climatic projections based on the IPCC-SRES emission scenarios from 1990 to 2100. The range of uncertainty among the different climate models and emission scenarios was assessed by using multi-model projection data by CCCma, CCSR/NIES, GFDL, and HCCPR corresponding to the SRES A2 and B2 scenarios. The model simulations showed that global warming in the 21st century would considerably enhance the fire regime (e.g., cumulative burnt area increased by 80 to 120 percent), leading to larger carbon emission by biomass burning. The effect was so strong that growth enhancement by elevated atmospheric CO2 concentration and elongated growing period was cancelled out at landscape scale. In many cases, the larch forest was estimated to act as net carbon sources of 2 to 5 kg C m_|2 by the end of the 21st century, underscoring the importance of forest fire monitoring and management in this region.

  11. Environmental evaluation of high-value agricultural produce with diverse water sources: case study from Southern California

    NASA Astrophysics Data System (ADS)

    Bell, Eric M.; Stokes-Draut, Jennifer R.; Horvath, Arpad

    2018-02-01

    Meeting agricultural demand in the face of a changing climate will be one of the major challenges of the 21st century. California is the single largest agricultural producer in the United States but is prone to extreme hydrologic events, including multi-year droughts. Ventura County is one of California’s most productive growing regions but faces water shortages and deteriorating water quality. The future of California’s agriculture is dependent on our ability to identify and implement alternative irrigation water sources and technologies. Two such alternative water sources are recycled and desalinated water. The proximity of high-value crops in Ventura County to both dense population centers and the Pacific Ocean makes it a prime candidate for alternative water sources. This study uses highly localized spatial and temporal data to assess life-cycle energy use, life-cycle greenhouse gas emissions, operational costs, applied water demand, and on-farm labor requirements for four high-value crops. A complete switch from conventional irrigation with groundwater and surface water to recycled water would increase the life-cycle greenhouse gas emissions associated with strawberry, lemon, celery, and avocado production by approximately 14%, 7%, 59%, and 9%, respectively. Switching from groundwater and surface water to desalinated water would increase life-cycle greenhouse gas emissions by 33%, 210%, 140%, and 270%, respectively. The use of recycled or desalinated water for irrigation is most financially tenable for strawberries due to their relatively high value and close proximity to water treatment facilities. However, changing strawberry packaging has a greater potential impact on life-cycle energy use and greenhouse gas emissions than switching the water source. While this analysis does not consider the impact of water quality on crop yields, previous studies suggest that switching to recycled water could result in significant yield increases due to its lower salinity.

  12. Life Cycle Costing.

    ERIC Educational Resources Information Center

    McCraley, Thomas L.

    1985-01-01

    Life cycle costing establishes a realistic comparison of the cost of owning and operating products. The formula of initial cost plus maintenance plus operation divided by useful life identifies the best price over the lifetime of the product purchased. (MLF)

  13. Economic and environmental optimization of waste treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Münster, M.; Ravn, H.; Hedegaard, K.

    2015-04-15

    Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less

  14. Eco-Balance analysis of the disused lead-acid-batteries recycling technology

    NASA Astrophysics Data System (ADS)

    Kamińska, Ewa; Kamiński, Tomasz

    2017-10-01

    The article presents the results of the eco-balance analysis of the disused lead-acid batteries recycling process. Test-dedicated technology offers the possibility to recover other elements, for example, polypropylene of the battery case or to obtain crystalline sodium sulphate. The life cycle assessment was made using ReCiPe and IMPACT2002 + methods. The results are shown as environmental points [Pt]. The results are shown in the environmental categories, specific for each of the methods grouped in the impact categories. 1 Mg of the processed srap was a dopted as the functional unit. The results of the analyses indicate that recycling processes may provide the environmental impact of recycling technology less harmful. Repeated use of lead causes that its original sources are not explored. Similarly, the use of granule production-dedicated polypropylene extracted from battery casings that are used in the plastics industry, has environmental benefits. Due to the widespread use of lead-acid batteries, the attention should be paid to their proper utilization, especially in terms of heavy metals, especially lead. According to the calculations, the highest level of environmental benefits from the use of lead from secondary sources in the production of new products, was observed in the refining process.

  15. An examination of silver nanoparticles in socks using screening-level life cycle assessment

    NASA Astrophysics Data System (ADS)

    Meyer, David E.; Curran, Mary Ann; Gonzalez, Michael A.

    2011-01-01

    Screening-level life cycle assessment (LCA) can provide a quick tool to identify the life cycle hot spots and focus research efforts to help to minimize the burdens of a technology while maximizing its benefits. The use of nanoscale silver in consumer products has exploded in popularity. Although its use is considered beneficial because of antimicrobial effects, some attention must be given to the potential environmental impacts it could impart on the life cycle of these nanoproducts as production demands escalate. This work examines the environmental impact of including silver nanoparticles in commercially available socks using screening-level LCA. Initial results suggest washing during the use phase contributes substantially more than the manufacturing phase to the product life cycle impacts. Comparison of nanoparticles prepared by either chemical reduction, liquid flame spray (LFS), or plasma arc demonstrate how the type of manufacturing process used for the nanoscale silver can change the resulting life cycle impact of the sock product. The magnitude of this impact will depend on the type of process used to manufacture the nanoscale silver, with LFS having the most impact because of the need for large quantities of hydrogen and oxygen. Although the increased impacts for a single nanoproduct may be relatively small, the added environmental load can actually be a significant quantity when considered at the regional or global production level.

  16. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    NASA Astrophysics Data System (ADS)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the DayCent model provide an increased understanding of expected ranges in fluxes attributable to climate variability. DayCent results for soil carbon change from the developed input datasets indicate that SOC is more strongly influenced by management practices than by variability in local climate even though the magnitude of this impact could depend on the local soil characteristics. Unlike carbon fluxes, soil N2O emissions are more sensitive to local climate variability than management practices suggesting that the difference in N2O emissions from the two management cases is not statistically significant. Therefore application of the high lignin byproduct material to land is a more efficient strategy in reducing soil carbon loss. However, although soil nitrogen fluxes might not be very sensitive to local climate when comparing synthetic to bio-based fertilizer applications, implementing the latter will eliminate the fertilizer production emissions on a biofuel production life cycle basis. Reference Pourhashem, G.; Adler, P., R.; McAloon, A. J.; Spatari, S., Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol. Env. Res. Let. 2013, 8, 025021

  17. Exploring the relevance of spatial scale to life cycle inventory results using environmentally-extended input-output models of the United States

    EPA Science Inventory

    The accuracy of direct and indirect resource use and emissions of products as quantified in life cycle models depends in part upon the geographical and technological representativeness of the production models. Production conditions vary not just between nations, but also within ...

  18. 76 FR 72423 - Bridging the Idea Development Evaluation Assessment and Long-Term Initiative and Total Product...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0780] Bridging the Idea Development Evaluation Assessment and Long-Term Initiative and Total Product Life Cycle... Idea Development Evaluation Assessment and Long-Term Initiative and Total Product Life Cycle Approaches...

  19. R&D in Vaccines Targeting Neglected Diseases: An Exploratory Case Study Considering Funding for Preventive Tuberculosis Vaccine Development from 2007 to 2014

    PubMed Central

    Costa Barbosa Bessa, Theolis; Santos de Aragão, Erika; Medeiros Guimarães, Jane Mary

    2017-01-01

    Based on an exploratory case study regarding the types of institutions funding the research and development to obtain new tuberculosis vaccines, this article intends to provoke discussion regarding the provision of new vaccines targeting neglected disease. Although our findings and discussion are mainly relevant to the case presented here, some aspects are more generally applicable, especially regarding the dynamics of development in vaccines to prevent neglected diseases. Taking into account the dynamics of innovation currently seen at work in the vaccine sector, a highly concentrated market dominated by few multinational pharmaceutical companies, we feel that global PDP models can play an important role throughout the vaccine development cycle. In addition, the authors call attention to issues surrounding the coordination of actors and resources in the research, development, manufacturing, and distribution processes of vaccine products arising from PDP involvement. PMID:28133608

  20. Functional electrical stimulation cycling strategies tested during preparation for the First Cybathlon Competition – a practical report from team ENS de Lyon

    PubMed Central

    Metani, Amine; Popović-Maneski, Lana; Mateo, Sebastien; Lemahieu, Laura; Bergeron, Vance

    2017-01-01

    Whether it is from the patient’s or the physical therapist’s point of view, FES cycling can be considered either as a recreational activity, or an engaging rehabilitation tool. In both cases, it keeps patients with lower-limb paralysis motivated to sustain a regular physical activity. Thus, it is not surprising that it was selected as one of the six disciplines of the first Cybathlon competition held on October 8, 2016. However, many unresolved issues prevent FES cycling from being an activity practiced outdoors on a daily basis; such as, low power production, rapid muscle fatigue, precise electrode positioning, lack of systematic procedures to determine stimulation patterns, and the difficulty of transferring disabled riders from their wheelchair to the tricycle. This article documents the challenges we faced during preparation for the Cybathlon 2016 FES cycling race, and provides results obtained during different phases of the process. A particular specificity of our team was that, unlike most other teams where pilots were mainly paraplegic, both the primary and backup pilots for team ENS de Lyon are C6/C7 tetraplegics, with neither voluntary control of their abdominal muscles nor hand grip, and only partial use of their arms. PMID:29299222

  1. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions.

    PubMed

    Zaimes, George G; Soratana, Kullapa; Harden, Cheyenne L; Landis, Amy E; Khanna, Vikas

    2015-08-18

    A well-to-wheel (WTW) life cycle assessment (LCA) model is developed to evaluate the environmental profile of producing liquid transportation fuels via fast pyrolysis of perennial grasses: switchgrass and miscanthus. The framework established in this study consists of (1) an agricultural model used to determine biomass growth rates, agrochemical application rates, and other key parameters in the production of miscanthus and switchgrass biofeedstock; (2) an ASPEN model utilized to simulate thermochemical conversion via fast pyrolysis and catalytic upgrading of bio-oil to renewable transportation fuel. Monte Carlo analysis is performed to determine statistical bounds for key sustainability and performance measures including life cycle greenhouse gas (GHG) emissions and Energy Return on Investment (EROI). The results of this work reveal that the EROI and GHG emissions (gCO2e/MJ-fuel) for fast pyrolysis derived fuels range from 1.52 to 2.56 and 22.5 to 61.0 respectively, over the host of scenarios evaluated. Further analysis reveals that the energetic performance and GHG reduction potential of fast pyrolysis-derived fuels are highly sensitive to the choice of coproduct scenario and LCA allocation scheme, and in select cases can change the life cycle carbon balance from meeting to exceeding the renewable fuel standard emissions reduction threshold for cellulosic biofuels.

  2. LIFE CYCLE INVENTORY ANALYSIS IN THE PRODUCTION OF METALS USED IN PHOTOVOLTAICS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FTHENAKIS,V.M.; KIM, H.C.; WANG, W.

    2007-03-30

    Material flows and emissions in all the stages of production of zinc, copper, aluminum, cadmium, indium, germanium, gallium, selenium, tellurium, and molybdenum were investigated. These metals are used selectively in the manufacture of solar cells, and emission and energy factors in their production are used in the Life Cycle Analysis (LCA) of photovoltaics. Significant changes have occurred in the production and associated emissions for these metals over the last 10 years, which are not described in the LCA databases. Furthermore, emission and energy factors for several of the by-products of the base metal production were lacking. This report aims inmore » updating the life-cycle inventories associated with the production of the base metals (Zn, Cu, Al, Mo) and in defining the emission and energy allocations for the minor metals (Cd, In, Ge, Se, Te and Ga) used in photovoltaics.« less

  3. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    PubMed

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  4. Optimization of the Technological Synthesis of Refractory Compounds

    NASA Astrophysics Data System (ADS)

    Gaidar, S. M.; Karelina, M. Yu.; Prikhod'ko, V. M.; Volkov, A. A.

    2017-12-01

    The results of experimental studies, which are related to the regulation of the fractional composition of refractory compounds by roll milling in using controlled roll opening and unbalanced peripheral speeds of rollers, are reported. The content of prepared fine, middle, and coarse fractions is within 50-80%; in this case, the milling time of synthesis products is less than the time of ball milling by an order of magnitude. The application of roll milling for refining the products of self-propagating high-temperature synthesis can be most efficient in using together with heat-generating reactor to solve the main problem of self-propagating synthesis (SHS), which is a problem for recent several decades (the problem is the creation of intense automated production of refractory compounds in using continuous manufacturing cycle within a energotechnological system with the recovery of a great quantity of heat released during SHS).

  5. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  6. Application of stochastic approach based on Monte Carlo (MC) simulation for life cycle inventory (LCI) of the rare earth elements (REEs) in beneficiation rare earth waste from the gold processing: case study

    NASA Astrophysics Data System (ADS)

    Bieda, Bogusław; Grzesik, Katarzyna

    2017-11-01

    The study proposes an stochastic approach based on Monte Carlo (MC) simulation for life cycle assessment (LCA) method limited to life cycle inventory (LCI) study for rare earth elements (REEs) recovery from the secondary materials processes production applied to the New Krankberg Mine in Sweden. The MC method is recognizes as an important tool in science and can be considered the most effective quantification approach for uncertainties. The use of stochastic approach helps to characterize the uncertainties better than deterministic method. Uncertainty of data can be expressed through a definition of probability distribution of that data (e.g. through standard deviation or variance). The data used in this study are obtained from: (i) site-specific measured or calculated data, (ii) values based on literature, (iii) the ecoinvent process "rare earth concentrate, 70% REO, from bastnäsite, at beneficiation". Environmental emissions (e.g, particulates, uranium-238, thorium-232), energy and REE (La, Ce, Nd, Pr, Sm, Dy, Eu, Tb, Y, Sc, Yb, Lu, Tm, Y, Gd) have been inventoried. The study is based on a reference case for the year 2016. The combination of MC analysis with sensitivity analysis is the best solution for quantified the uncertainty in the LCI/LCA. The reliability of LCA results may be uncertain, to a certain degree, but this uncertainty can be noticed with the help of MC method.

  7. Life cycle assessment framework of traffic systems based on microscopic simulation.

    DOT National Transportation Integrated Search

    2014-03-01

    Transportation is an important infrastructure process needed in many steps of the supply chain of any product. Transportation-associated global impacts are therefore important factor influencing the sustainability of any product cycle. Moreover, traf...

  8. Waste management through life cycle assessment of products

    NASA Astrophysics Data System (ADS)

    Borodin, Yu V.; Aliferova, T. E.; Ncube, A.

    2015-04-01

    The rapid growth of a population in a country can contribute to high production of waste. Municipal waste and industrial waste can bring unhealthy and unpleasant environment or even diseases to human beings if the wastes are not managed properly.With increasing concerns over waste and the need for ‘greener’ products, it is necessary to carry out Life Cycle Assessments of products and this will help manufacturers take the first steps towards greener designs by assessing their product's carbon output. Life Cycle Assessment (LCA) is a process to evaluate the environmental burdens associated with a product, process or activity by identifying and quantifying energy and materials used and wastes released to the environment, and to assess the impact of those energy and material used and released to the environment. The aim of the study was to use a life cycle assessment approach to determine which waste disposal options that will substantially reduce the environmental burdens posed by the Polyethylene Terephthalate (PET) bottle. Several important observations can be made. 1) Recycling of the PET bottle waste can significantly reduce the energy required across the life cycle because the high energy inputs needed to process the requisite virgin materials greatly exceeds the energy needs of the recycling process steps. 2) Greenhouse gases can be reduced by opting for recycling instead of landfilling and incineration. 3) Quantity of waste emissions released from different disposal options was identified. 4) Recycling is the environmentally preferable disposal method for the PET bottle. Industry can use the tools and data in this study to evaluate the health, environmental, and energy implications of the PET bottle. LCA intends to aid decision-makers in this respect, provided that the scientific underpinning is available. Strategic incentives for product development and life cycle management can then be developed.

  9. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.

    PubMed

    Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G

    2006-11-01

    For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.

  10. Holistic energy system modeling combining multi-objective optimization and life cycle assessment

    NASA Astrophysics Data System (ADS)

    Rauner, Sebastian; Budzinski, Maik

    2017-12-01

    Making the global energy system more sustainable has emerged as a major societal concern and policy objective. This transition comes with various challenges and opportunities for a sustainable evolution affecting most of the UN’s Sustainable Development Goals. We therefore propose broadening the current metrics for sustainability in the energy system modeling field by using industrial ecology techniques to account for a conclusive set of indicators. This is pursued by including a life cycle based sustainability assessment into an energy system model considering all relevant products and processes of the global supply chain. We identify three pronounced features: (i) the low-hanging fruit of impact mitigation requiring manageable economic effort; (ii) embodied emissions of renewables cause increasing spatial redistribution of impact from direct emissions, the place of burning fuel, to indirect emissions, the location of the energy infrastructure production; (iii) certain impact categories, in which more overall sustainable systems perform worse than the cost minimal system, require a closer look. In essence, this study makes the case for future energy system modeling to include the increasingly important global supply chain and broaden the metrics of sustainability further than cost and climate change relevant emissions.

  11. Life cycle assessment of wood wastes: A case study of ephemeral architecture.

    PubMed

    Rivela, Beatriz; Moreira, María Teresa; Muñoz, Iván; Rieradevall, Joan; Feijoo, Gumersindo

    2006-03-15

    One of the most commonly used elements in ephemeral architecture is a particleboard panel. These types of wood products are produced from wood wastes and they are used in temporary constructions such as trade fairs. Once the event is over, they are usually disposed into landfills. This paper intends to assess the environmental effects related to the use of these wood wastes in the end-of-life stage. The Life Cycle Assessment (LCA) of two scenarios was performed, considering the recycling of wood waste for particleboard manufacture and energy generation from non-renewable resources (Scenario 1) versus the production of energy from the combustion of wood waste and particleboard manufacture with conventional wooden resources (Scenario 2). A sensitive analysis was carried out taking into account the influence of the percentage of recycled material and the emissions data from wood combustion. According to Ecoindicator 99 methodology, Damage to Human Health and Ecosystem Quality are more significant in Scenario 2 whereas Scenario 1 presents the largest contribution to Damage to Resources. Between the two proposed alternatives, the recycling of wood waste for particleboard manufacture seems to be more favorable under an environmental perspective.

  12. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

    NASA Astrophysics Data System (ADS)

    Shonnard, David R.; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P.

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  13. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    PubMed

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  14. Multi-hazard risk analysis using the FP7 RASOR Platform

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifamè N.; Duro, Javier; Rossi, Lauro; Rudari, Roberto; Eddy, Andrew

    2014-10-01

    Climate change challenges our understanding of risk by modifying hazards and their interactions. Sudden increases in population and rapid urbanization are changing exposure to risk around the globe, making impacts harder to predict. Despite the availability of operational mapping products, there is no single tool to integrate diverse data and products across hazards, update exposure data quickly and make scenario-based predictions to support both short and long-term risk-related decisions. RASOR (Rapid Analysis and Spatialization Of Risk) will develop a platform to perform multi-hazard risk analysis for the full cycle of disaster management, including targeted support to critical infrastructure monitoring and climate change impact assessment. A scenario-driven query system simulates future scenarios based on existing or assumed conditions and compares them with historical scenarios. RASOR will thus offer a single work environment that generates new risk information across hazards, across data types (satellite EO, in-situ), across user communities (global, local, climate, civil protection, insurance, etc.) and across the world. Five case study areas are considered within the project, located in Haiti, Indonesia, Netherlands, Italy and Greece. Initially available over those demonstration areas, RASOR will ultimately offer global services to support in-depth risk assessment and full-cycle risk management.

  15. A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe.

    PubMed

    Evangelisti, Sara; Clift, Roland; Tagliaferri, Carla; Lettieri, Paola

    2017-06-01

    By means of the life cycle assessment methodology, the purpose of this study is to assess the environmental impact when biomethane from organic waste produced at residential level is used to supply energy to a group of dwellings in the distributed generation paradigm. Three different Combined Heat and Power systems, such as fuel cells, Stirling engine and micro gas turbine, installed at household level are assessed in two different settings: one in Northern Europe (UK) and one in Southern Europe (Italy). Different operating strategies are investigated for each technology. Moreover, marginal electricity production technologies are analysed to assess their influence on the results. This study has demonstrated that the type of bio-methane fed micro-CHP technology employed has a significantly different environmental impact: fuel cells are the most environmentally friendly solution in every category analysed; Stirling engines, although can supply heat to the largest number of dwellings are the least environmentally friendly technology. However, key factors investigated in the model presented in this paper influence the decision making on the type of technology adopted and the operating strategy to be implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region.

    PubMed

    Shonnard, David R; Klemetsrud, Bethany; Sacramento-Rivero, Julio; Navarro-Pineda, Freddy; Hilbert, Jorge; Handler, Robert; Suppen, Nydia; Donovan, Richard P

    2015-12-01

    Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.

  17. Analysis of the Diurnal Cycle of Precipitation and its Relation to Cloud Radiative Forcing Using TRMM Products

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Fowler, Laura D.; Lin, Xin

    1998-01-01

    In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.

  18. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: a case study from China.

    PubMed

    Murray, Ashley; Horvath, Arpad; Nelson, Kara L

    2008-05-01

    Sewage sludge management poses environmental, economic, and political challenges for wastewater treatment plants and municipalities around the globe. To facilitate more informed and sustainable decision making, this study used life-cycle inventory (LCI) to expand upon previous process-based LCIs of sewage sludge treatmenttechnologies. Additionally, the study evaluated an array of productive end-use options for treated sewage sludge, such as fertilizer and as an input into construction materials, to determine how the sustainability of traditional manufacturing processes changes with sludge as a replacement for other raw inputs. The inclusion of the life-cycle of necessary inputs (such as lime) used in sludge treatment significantly impacts the sustainability profiles of different treatment and end-use schemes. Overall, anaerobic digestion is generally the optimal treatment technology whereas incineration, particularly if coal-fired, is the most environmentally and economically costly. With respect to sludge end use, offsets are greatest for the use of sludge as fertilizer, but all of the productive uses of sludge can improve the sustainability of conventional manufacturing practices. The results are intended to help inform and guide decisions about sludge handling for existing wastewater treatment plants and those that are still in the planning phase in cities around the world. Although additional factors must be considered when selecting a sludge treatment and end-use scheme, this study highlights how a systems approach to planning can contribute significantly to improving overall environmental sustainability.

  19. Natural cycles and agricultural inputs: a farm gate Ecological Footprint analysis

    NASA Astrophysics Data System (ADS)

    Passeri, Nicolo; Blasi, Emanuele; Borucke, Michael; Galli, Alessandro; Franco, Silvio

    2014-05-01

    Land suitability for different crops depends on soil, water and climate conditions, as well as farmers' cultivation choices. Moreover, the use of agricultural inputs affects the natural cycles of crops and impacts their production. By assessing the ecological performance of farms as influenced by crop types, cultivation choices and land suitability one can therefore evaluate the effectiveness of agricultural practices and governance's options. Ecological Footprint accounts can be used to measure such ecological performance. These accounts track human demand for natural resources and ecological services and compare this demand with nature ability to regenerate these resource and services. This regenerative capacity is called biocapacity. Both demand (Footprint) and supply (biocapacity) are expressed in global hectares. Farming different from most other human activities, not only uses natural resources, but also enhances or erodes ecological supply. It therefore affects all factors that determine both Footprint and biocapacity. Climate, farmers' skills and choices (fertilizers, pesticides, machines) determine crop productivity, and to what extent crops preserve or compromise soils. The aim of this work is to evaluate how farmer's choices affect resources overexploitation. The study analysed how the use of inputs influences natural cycles within farm boundaries. This result from a pilot case study will show how particular farming practices affect both the farm's biocapacity and Ecological Footprint. Such analysis is relevant for informing involved stakeholders, namely the farmers on more sustainable agricultural practices and the policy makers on more suitable agricultural policies.

  20. Models for nutrition education to increase consumption of calcium and dairy products among African Americans.

    PubMed

    Bronner, Yvonne L; Hawkins, Anita S; Holt, Mckessa L; Hossain, Mian B; Rowel, Randolph H; Sydnor, Kim L; Divers, Shaquana P

    2006-04-01

    Calcium and dairy consumption are documented to be low among African Americans and have demonstrated benefits to bone growth, overall nutritional status, and health throughout the life cycle. There is also an emerging relationship to the prevention of obesity. This low consumption has been attributed to both cultural and community/environmental barriers. Using a life course construct and an ecological model of health behavior, this paper will illustrate why nutrition education and food consumption behavior at one stage of the life cycle may influence health status at that stage as well as influence health and consumption of calcium and dairy products at subsequent stages. The life course construct recognizes that both past and present behavior and experiences (in this case food and nutrient intake) are shaped by the wider social, economic, and cultural context and therefore may provide clues to current patterns of health and disease. The ecological model, concerned with constructs of environmental change, behavior, and policies that may help people make choices in their daily life, complements the life course approach when examining the potential influence of nutrition education provided by federally funded food and nutrition programs on calcium and dairy consumption behavior across the life cycle. The "critical period model" within the life course construct is operative for calcium, a nutrient for which adequate intake is critically important during adolescence when peak bone density development, necessary for later protection against osteoporosis, is important.

  1. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    PubMed

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Business cycles' correlation and systemic risk of the Japanese supplier-customer network.

    PubMed

    Krichene, Hazem; Chakraborty, Abhijit; Inoue, Hiroyasu; Fujiwara, Yoshi

    2017-01-01

    This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms' attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network.

  3. Status of the DOE /STOR/-sponsored national program on hydrogen production from water via thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Baker, C. E.

    1977-01-01

    A pure thermochemical cycle is a system of linked regenerative chemical reactions which accepts only water and heat and produces hydrogen. Thermochemical cycles are potentially a more efficient and cheaper means of producing hydrogen from water than is the generation of electricity followed by electrolysis. The Energy Storage Systems Division of the Department of Energy is currently funding a national program on thermochemical hydrogen production. The National Aeronautics and Space Administration is responsible for the technical management of this program. The goal is to develop a cycle which can potentially operate with an efficiency greater than 40% using a heat source providing a maximum available temperature of 1150 K. A closed bench-scale demonstration of such a cycle would follow. This cycle would be labeled a 'reference cycle' and would serve as a baseline against which future cycles would be compared.

  4. A graphic approach to include dissipative-like effects in reversible thermal cycles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ayala, Julian; Arias-Hernandez, Luis Antonio; Angulo-Brown, Fernando

    2017-05-01

    Since the decade of 1980's, a connection between a family of maximum-work reversible thermal cycles and maximum-power finite-time endoreversible cycles has been established. The endoreversible cycles produce entropy at their couplings with the external heat baths. Thus, this kind of cycles can be optimized under criteria of merit that involve entropy production terms. Meanwhile the relation between the concept of work and power is quite direct, apparently, the finite-time objective functions involving entropy production have not reversible counterparts. In the present paper we show that it is also possible to establish a connection between irreversible cycle models and reversible ones by means of the concept of "geometric dissipation", which has to do with the equivalent role of a deficit of areas between some reversible cycles and the Carnot cycle and actual dissipative terms in a Curzon-Ahlborn engine.

  5. Influence of Thickness and Angle of Attack on the Dynamics of Rectangular Cylinder Wakes

    NASA Astrophysics Data System (ADS)

    Mohebi, Meraj

    Stereoscopic Particle Image Velocimetry measurements were taken in the turbulent wake of two-dimensional rectangular cylinders. The influence of post-stall angles of attack and Reynolds number on the flow behind a thin at plate, and for the normal case, the effect of thickness to chord (t=d) ratio over a family of rectangular cylinders were investigated. At all cases, quasi-periodic vortex shedding is observed, the normal direction Reynolds stress becomes very large just downstream of the mean recirculation zone, and the spanwise motions were uncorrelated to the main vortex shedding process. The data were processed to obtain the mean velocities, Reynolds stresses, and forces on the body. All terms in the turbulent kinetic energy equations were measured with the exception of dissipation which was found by difference. The pressure-related terms were estimated from the numerical solution of the Poisson equation for the instantaneous velocity field. Proper Orthogonal Decomposition modes are related via mean-field theory to construct generalized phase-averaging and low-order models capturing coherent cycle-to-cycle variations. The advection, production and pressure diffusion were all significant and mostly coherent. It is shown that high, average, and low amplitude vortex shedding cycles are different in terms of vortex street dimensions, vortex topology, circulation, and decay rate. It is also shown that these flows experience irregular significant decreases in the shedding amplitude associated with shedding of disorganized vortices in a large wake. Reynolds number was found to have imperceptible effects on the wake of a normal thin plate. A reduction in the angle of attack caused the wake to decrease in size and increase in shedding frequency but the global characteristics vary non-linearly. An increase in thickness from thin plate (t=d=0.05), caused the wake to shrink, low cycles to diminish, and local turbulence increase to a peak at t=d=1.0, identified as a critical thickness. At t=d=1.9, however, turbulent quantities decrease, the wake grows larger and significant cycle-to-cycle variations in the ow reports of a new vortex formation process.

  6. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  7. The comparison of composite aircraft field repair method (cafrm) with traditional aircraft repair technologies

    NASA Astrophysics Data System (ADS)

    Whelan, Mary Elizabeth

    The sulfur biogeochemical cycle includes biotic and abiotic processes important to global climate, atmospheric chemistry, food security, and the study of related cycles. The largest flux of sulfur on Earth is weathering from the continents into the sulfate-rich oceans; one way in which sulfur can be returned to land is through transport of reduced sulfur gases via the atmosphere. Here I developed a method for quantifying low-level environmental fluxes of several sulfur-containing gases, H2S, COS, CH3SCH 3 (DMS), and HSCH3, between terrestrial ecosystems and the atmosphere. COS is the most prevalent reduced sulfur gas in the atmosphere, considered to be inert in the troposphere except for its uptake in plant leaves and to a smaller extent aerobic soils. This dissertation reports two surprising cases that go against conventional thinking about the sulfur cycle. We found that the common salt marsh plant Batis maritima can mediate net COS production to the atmosphere. We also found that an aerobic wheat field soil produces COS abiotically when incubated in the dark at > 25 °C and at lower temperatures under light conditions. We then sought to separately quantify plant and soil sulfur gas fluxes by undertaking a year-long field campaign in a grassland with a Mediterranean climate, where green plants were present only half of the year. We measured in situ soil fluxes of COS and DMS during the non- growing dry season, using water additions to simulate soil fluxes of the growing, wet season. COS and CO2 are consumed in a predictable ratio by enzymes involved in photosynthetic pathways; however, while CO2 is released by back diffusion and autorespiration, COS is usually not generated by plants. Using measurements during the growing season, we were then able to calculate gross primary production by using the special relationship between CO2 and COS. This dissertation has developed a greater understanding of the vagaries of the atmospheric-terrestrial sulfur cycle and explored using that cycle as a tool for studying the carbon cycle.

  8. Marquardt's Mach 4.5 Supercharged Ejector Ramjet (SERJ) High-Performance Aircraft Engine Project: Unfulfilled Aspirations Ca.1970

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Roddy, Jordan E.; Hyde, Eric H.

    2000-01-01

    The Supercharged Ejector Ramjet (SERJ) engine developments of the 1960s, as pursued by The Marquardt Corporation and its associated industry team members, are described. In just three years, engineering work on this combined-cycle powerplant type evolved, from its initial NASA-sponsored reusable space transportation system study status, into a U.S. Air Force/Navy-supported exploratory development program as a candidate 4.5 high-performance military aircraft engine. Bridging a productive transition from the spaceflight to the aviation arena, this case history supports the expectation that fully-integrated airbreathing/rocket propulsion systems hold high promise toward meeting the demanding propulsion requirements of tomorrow's aircraft-like Spaceliner class transportation systems. Lessons to be learned from this "SERJ Story" are offered for consideration by today's advanced space transportation and combined-cycle propulsion researchers and forward-planning communities.

  9. Framework for adaptive interoperability of manufacturing enterprises (FAIME): a case study

    NASA Astrophysics Data System (ADS)

    Sims, John E.; Chu, Bei Tseng B.; Long, Junshen; Matthews, Mike; Barnes, Johnny G.; Jones, Chris H.; Anderson, Rayne A.; Lambert, Russ; Drake, Doug C.; Hamilton, Mark A.; Connard, Mark

    1997-01-01

    In todays global economy, manufacturing industries require to connect disparate applications seamlessly. They require not only to exchange data and transactions, but present a single business process image to their employees in the office, headquarters, and on the plant floor. Also, it is imperative that small and medium size manufacturing companies deploy manufacturing execution systems applications in conjunction with modern enterprise resource programs for cycle time reduction and better quality. This paper presents the experiences and reflections on a project that created a tool set to assist the above be accomplished not only in a shorter cycle time, with a better predictable quality, and with an object oriented framework, but also a tool set that allows the manufacturer to still use legacy applications. This framework has the capability of plug-and- play so that future migrations and re-engineering of processes are more productive.

  10. SbnG, a Citrate Synthase in Staphylococcus aureus

    PubMed Central

    Kobylarz, Marek J.; Grigg, Jason C.; Sheldon, Jessica R.; Heinrichs, David E.; Murphy, Michael E. P.

    2014-01-01

    In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production. PMID:25336653

  11. Life-Cycle Cost and Environmental Assessment of Decentralized Nitrogen Recovery Using Ion Exchange from Source-Separated Urine through Spatial Modeling.

    PubMed

    Kavvada, Olga; Tarpeh, William A; Horvath, Arpad; Nelson, Kara L

    2017-11-07

    Nitrogen standards for discharge of wastewater effluent into aquatic bodies are becoming more stringent, requiring some treatment plants to reduce effluent nitrogen concentrations. This study aimed to assess, from a life-cycle perspective, an innovative decentralized approach to nitrogen recovery: ion exchange of source-separated urine. We modeled an approach in which nitrogen from urine at individual buildings is sorbed onto resins, then transported by truck to regeneration and fertilizer production facilities. To provide insight into impacts from transportation, we enhanced the traditional economic and environmental assessment approach by combining spatial analysis, system-scale evaluation, and detailed last-mile logistics modeling using the city of San Francisco as an illustrative case study. The major contributor to energy intensity and greenhouse gas (GHG) emissions was the production of sulfuric acid to regenerate resins, rather than transportation. Energy and GHG emissions were not significantly sensitive to the number of regeneration facilities. Cost, however, increased with decentralization as rental costs per unit area are higher for smaller areas. The metrics assessed (unit energy, GHG emissions, and cost) were not significantly influenced by facility location in this high-density urban area. We determined that this decentralized approach has lower cost, unit energy, and GHG emissions than centralized nitrogen management via nitrification-denitrification if fertilizer production offsets are taken into account.

  12. [In vitro fertilization in France: economic aspects and influence of the gonadotropin choice (urinary vs. recombinant) on cost].

    PubMed

    de Mouzon, J; Allavena, E; Schmitt, C; Frappé, M

    2004-06-01

    The objective of the study was to make an economic evaluation of in vitro fertilization and to determine the impact of some factors on its cost, particularly the choice between recombinant follicle stimulating hormone (r-FSH) and urinary FSH (u-FSH) for ovarian stimulation. Costs were calculated in a Public Health view, by studying two phases: the stimulation cycle (including down-regulation) and the pregnancy (including the neonatal period). The calculation has included the side effects and the frozen embryos transfers. Economic data came from various sources: the French nomenclature on medical treatments (NGAP), the French drugs dictionary (Vidal) and the French Information system medical plan (PMSI). FSH costs were computed according to the currently marketed products, i.e., Fostimon (Laboratoires Genévrier, Sophia-Antipolis, France) for urinary FSH, and Gonal-F (Laboratoires Serono, Boulogne-Billancourt, France) and Puregon (Laboratoires Organon, Puteaux, France) for recombinant FSH. Two different ways of efficacy between u-FSH and r-FSH were considered for the calculations, those reported in Daya's meta-analysis (3.7% in favour of r-FSH for the clinical pregnancy rate per initiated cycle) and in the only double-blind study (Frydman et al., no difference). The annual cost of ART reaches approximately 130 million Euros in France, for the cycles only, and 170 million Euros when including the pregnancy costs. Urinary FSH is much cheaper than recombinant FSH. Whereas the number of administered FSH units was higher in u-FSH, this results in a mean lower cost of 500 Euros per cycle (2422 Euros for u-FSH and 2959 Euros for r-FSH). For one complete year, in France, the potential over cost of recombinant products reaches 24 million Euros when considering only the cycles (128.4 vs. 104.0 million Euros) and 24-31 million Euros when pregnancies and babies (neonatal period) are considered (171.4 vs 140.7 and 147.0 million Euros, respectively). The IVF per baby cost can be estimated at 16 463 Euros for r-FSH and at 14 116 Euros (in case of equivalence between the two drugs) to 15 805 Euros (in case of a difference of 3.7% pregnancy per oocyte recovery) for u-FSH. This gives Public Health lighting to the choices in the matter of ovulation stimulation. It shows the economic impact of the choice in the FSH type.

  13. Defining Product Intake Fraction to Quantify and Compare Exposure to Consumer Products.

    PubMed

    Jolliet, Olivier; Ernstoff, Alexi S; Csiszar, Susan A; Fantke, Peter

    2015-08-04

    There is a growing consciousness that exposure studies need to better cover near-field exposure associated with products use. To consistently and quantitatively compare human exposure to chemicals in consumer products, we introduce the concept of product intake fraction, as the fraction of a chemical within a product that is eventually taken in by the human population. This metric enables consistent comparison of exposures during consumer product use for different product-chemical combinations, exposure duration, exposure routes and pathways and for other life cycle stages. We present example applications of the product intake fraction concept, for two chemicals in two personal care products and two chemicals encapsulated in two articles, showing how intakes of these chemicals can primarily occur during product use. We demonstrate the utility of the product intake fraction and its application modalities within life cycle assessment and risk assessment contexts. The product intake fraction helps to provide a clear interface between the life cycle inventory and impact assessment phases, to identify best suited sentinel products and to calculate overall exposure to chemicals in consumer products, or back-calculate maximum allowable concentrations of substances inside products.

  14. Nanomaterial Case Study: A Comparison of Multiwalled ...

    EPA Pesticide Factsheets

    This Independent Peer Review Draft document presents a case study of multiwalled carbon nanotubes (MWCNTs); it focuses on the specific example of MWCNTs as used in flame-retardant coatings applied to upholstery textiles. This case study is organized around the comprehensive environmental assessment (CEA) framework, which structures available information pertaining to the product life cycle, environmental transport and fate, exposure-dose in receptors (i.e., humans, ecological populations, and the environment), and potential impacts in these receptors. The document does not draw conclusions about potential risks, or present an exhaustive review of the literature. Rather, it was used in an independent peer review to provide feedback on revisions that EPA made to the external review draft of the document based on public comments and the CEA process to identify research gaps for MWCNTs. This document seeks to identify what is known and unknown related to assessing the health and environmental implications of a nanomaterial; in this case multiwalled carbon nanotubes (MWCNTs) used in flame-retardant coatings applied to textiles.

  15. Nanomaterial Case Study: Nanoscale Silver in Disinfectant ...

    EPA Pesticide Factsheets

    This draft document presents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant sprays. This case study is organized around a comprehensive environmental assessment (CEA) framework, which combines a product life-cycle perspective with the risk assessment paradigm. The document does not draw conclusions about potential risks. Instead, it is intended to be used as part of a process to identify what is known and unknown about nano-Ag in a selected application and can be used as a starting point to identify and prioritize possible research directions to support future assessments of nanomaterials. The information presented in the case study and the questions raised in this document are a foundation for a process to determine priorities among various research topics and directions. After that process has been completed, a final chapter will be added to this document to summarize highlights from preceding chapters and the major research issues that have emerged.

  16. Sustainability of meat production beyond carbon footprint: a synthesis of case studies from grazing systems in Uruguay.

    PubMed

    Picasso, Valentín D; Modernel, Pablo D; Becoña, Gonzalo; Salvo, Lucía; Gutiérrez, Lucía; Astigarraga, Laura

    2014-11-01

    Livestock production has been challenged as a large contributor to climate change, and carbon footprint has become a widely used measure of cattle environmental impact. This analysis of fifteen beef grazing systems in Uruguay quantifies the range of variation of carbon footprint, and the trade-offs with other relevant environmental variables, using a partial life cycle assessment (LCA) methodology. Using carbon footprint as the primary environmental indicator has several limitations: different metrics (GWP vs. GTP) may lead to different conclusions, carbon sequestration from soils may drastically affect the results, and systems with lower carbon footprint may have higher energy use, soil erosion, nutrient imbalance, pesticide ecotoxicity, and impact on biodiversity. A multidimensional assessment of sustainability of meat production is therefore needed to inform decision makers. There is great potential to improve grazing livestock systems productivity while reducing carbon footprint and other environmental impacts, and conserving biodiversity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hot Runner Mold Design of Fan Diverter Parts

    NASA Astrophysics Data System (ADS)

    Juan, D. J.; Cheng, Y. L.

    2017-09-01

    In this study, we discuss the case of plastic parts for the production of fan steering gear shaft parts injection molding, and use POM plastic steel to produce plastic parts from traditional cold runners. Because of the parts have a hole, which need side slide. The runner produce more waste after plastic parts injection make the runner waste account for the cost is relatively high, the cost of stock preparation is relatively increased when the product quantity demanded is great. After the crushing treatment of the waste, the backfill will affect the quality, and in the crushing process, the volume generated will make the operator to withstand up to 130 dB of noise. The actual test results show that the production cycle reduce 6.25%, while the production yield increase by about 5% and material costs reduced by 2% . It can be recovered within a year, not to mention the increase of the quality and reduction the noise on the staff of the benefit is impossible to estimate.

  18. Understanding the impact of crop and food production on the water environment--using sugar as a model.

    PubMed

    Hess, Tim; Aldaya, Maite; Fawell, John; Franceschini, Helen; Ober, Eric; Schaub, Ruediger; Schulze-Aurich, Jochen

    2014-01-15

    The availability of fresh water and the quality of aquatic ecosystems are important global concerns, and agriculture plays a major role. Consumers and manufacturers are increasingly sensitive to sustainability issues related to processed food products and drinks. The present study examines the production of sugar from the growing cycle through to processing to the factory gate, and identifies the potential impacts on water scarcity and quality and the ways in which the impact of water use can be minimised. We have reviewed the production phases and processing steps, and how calculations of water use can be complicated, or in some cases how assessments can be relatively straightforward. Finally, we outline several ways that growers and sugar processors are improving the efficiency of water use and reducing environmental impact, and where further advances can be made. This provides a template for the assessment of other crops. © 2013 Society of Chemical Industry.

  19. Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain

    NASA Astrophysics Data System (ADS)

    Mo, Xingguo; Chen, Xuejuan; Hu, Shi; Liu, Suxia; Xia, Jun

    2017-01-01

    Attributing changes in evapotranspiration (ET) and gross primary productivity (GPP) is crucial for impact and adaptation assessment of the agro-ecosystems to climate change. Simulations with the VIP model revealed that annual ET and GPP slightly increased from 1981 to 2013 over the North China Plain. The tendencies of both ET and GPP were upward in the spring season, while they were weak and downward in the summer season. A complete factor analysis illustrated that the relative contributions of climatic change, CO2 fertilization, and management to the ET (GPP) trend were 56 (-32) %, -28 (25) %, and 68 (108) %, respectively. The decline of global radiation resulted from deteriorated aerosol and air pollution was the principal cause of GPP decline in summer, while air warming intensified the water cycle and advanced the plant productivity in the spring season. Generally, agronomic improvements were the principal drivers of crop productivity enhancement.

  20. Challenges to achievement of metal sustainability in our high-tech society

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izatt, Reed M.; Izatt, Steven R.; Bruening, Ronald L.

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling and improved processing of metals. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low metal recycling rates coupled with increasing demand for products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challengesmore » to achieving metal sustainability in present high-tech society are presented; health, environmental, and economic incentives for various stakeholders to improve metal sustainability are discussed; a case for technical improvements in separations technology, especially employing molecular recognition, is given; and global consequences of continuing on the present path are examined.« less

  1. Development of parametric material, energy, and emission inventories for wafer fabrication in the semiconductor industry.

    PubMed

    Murphy, Cynthia F; Kenig, George A; Allen, David T; Laurent, Jean-Philippe; Dyer, David E

    2003-12-01

    Currently available data suggest that most of the energy and material consumption related to the production of an integrated circuit is due to the wafer fabrication process. The complexity of wafer manufacturing, requiring hundreds of steps that vary from product to product and from facility to facility and which change every few years, has discouraged the development of material, energy, and emission inventory modules for the purpose of insertion into life cycle assessments. To address this difficulty, a flexible, process-based system for estimating material requirements, energy requirements, and emissions in wafer fabrication has been developed. The method accounts for mass and energy use atthe unit operation level. Parametric unit operation modules have been developed that can be used to predict changes in inventory as the result of changes in product design, equipment selection, or process flow. A case study of the application of the modules is given for energy consumption, but a similar methodology can be used for materials, individually or aggregated.

  2. Defense AT and L. Volume 44, Number 3

    DTIC Science & Technology

    2015-06-01

    CommunityBrowser.aspx?id=527436 Product Support Key References https://acc.dau.mil/productsupport CLL 011 Performance-Based Life Cycle Product Support (PBL...http://icatalog.dau.mil/onlinecatalog/courses.aspx?crs_id=269 CLL 031 PBL Contracting Strategies http://icatalog.dau.mil/onlinecatalog/courses.aspx...CommunityBrowser.aspx?id=527436 Product Support Key References https://acc.dau.mil/productsupport CLL 011 Performance-Based Life Cycle Product Support (PBL) http

  3. Cradle-To-Gate Life Cycle Assessment of North American Hardboard and Engineered Wood Siding and Trim Production

    Treesearch

    Maureen Puettmann; Richard Bergman; Elaine Oneil

    2016-01-01

    CORRIM, the Consortium for Research on Renewable Industrial Materials (www.corrim.org), has derived life-cycle inventory (LCI) data for nine major wood products and four wood production regions in the United States (US). The LCI data cover forest regeneration through to final product at the mill gate. CORRIM’s LCI studies have included both structural and nonstructural...

  4. Debranching and temperature-cycled crystallization of waxy rice starch and their digestibility.

    PubMed

    Zeng, Feng; Ma, Fei; Gao, Qunyu; Yu, Shujuan; Kong, Fansheng; Zhu, Siming

    2014-11-26

    Slowly digestible starch (SDS) was obtained through debranched waxy rice starch and subsequent crystallization under isothermal and temperature-cycled conditions. Temperature-cycled crystallization of dual 4/-20 °C produced a higher yield of SDS product than isotherm crystallization. Crystal structure of SDS products changed from A-type to a mixture of B and V-type X-ray diffraction patterns. The relative crystallinity was higher in the temperature-cycled samples than that of isotherm. Attenuated total reflectance Fourier transform infrared spectroscopy suggested that the peripheral regions of isothermal storage starch were better organized than temperature-cycles. Temperature cycling induced higher onset temperature for melting of crystals than isothermal storage under a differential scanning calorimeter. The cycled temperature storage induced a greater amount of SDS than the isothermal storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Maximum cycle work output optimization for generalized radiative law Otto cycle engines

    NASA Astrophysics Data System (ADS)

    Xia, Shaojun; Chen, Lingen; Sun, Fengrui

    2016-11-01

    An Otto cycle internal combustion engine which includes thermal and friction losses is investigated by finite-time thermodynamics, and the optimization objective is the maximum cycle work output. The thermal energy transfer from the working substance to the cylinder inner wall follows the generalized radiative law (q∝Δ (Tn)). Under the condition that all of the fuel consumption, the compression ratio and the cycle period are given, the optimal piston trajectories for both the examples with unlimited and limited accelerations on every stroke are determined, and the cycle-period distribution among all strokes is also optimized. Numerical calculation results for the case of radiative law are provided and compared with those obtained for the cases of Newtonian law and linear phenomenological law. The results indicate that the optimal piston trajectory on each stroke contains three sections, which consist of an original maximum-acceleration and a terminal maximum-deceleration parts; for the case of radiative law, optimizing the piston motion path can achieve an improvement of more than 20% in both the cycle-work output and the second-law efficiency of the Otto cycle compared with the conventional near-sinusoidal operation, and heat transfer mechanisms have both qualitative and quantitative influences on the optimal paths of piston movements.

  6. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.

    PubMed

    Pittmann, T; Steinmetz, H

    2014-09-01

    This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. [Nitrogen and water cycling of typical cropland in the North China Plain].

    PubMed

    Pei, Hong-wei; Shen, Yan-jun; Liu, Chang-ming

    2015-01-01

    Intensive fertilization and irrigation associated increasing grain production has led to serious groundwater depletion and soil/water pollution in the North China Plain (NCP). Intensive agriculture changes the initial mass and energy balance, and also results in huge risks to the water/soil resources and food security regionally. Based on the research reports on the nitrogen cycle and water cycle in typical cropland (winter wheat and summer corn) in the NCP during the past 20 years, and the meteorological data, field experiments and surveys, we calculated the nitrogen cycle and water-cycle for this typical cropland. Annual total nitrogen input were 632 kg N . hm-2, including 523 kg N . hm-2 from commercial fertilizer, 74 kg N . hm-2 from manure, 23 kg N . hm-2 from atmosphere, and 12 kg N . hm-2 from irrigation. All of annual outputs summed to 532 kg N . hm-2 including 289 kg N . hm-2 for crop, 77 kg N . hm-2 staying in soil profile, leaching 104 kg N . hm-2, 52 kg N . hm-2 for ammonia volatilization, 10 kg N . hm-2 loss in nitrification and denitrification. Uncertainties of the individual cases and the summary process lead to the unbalance of nitrogen. For the dominant parts of the field water cycle, annual precipitation was 557 mm, irrigation was 340 mm, while 762 mm was for evapotranspiration and 135 mm was for deep percolation. Considering uncertainties in the nitrogen and water cycles, coupled experiments based on multi-disciplines would be useful for understanding mechanisms for nitrogen and water transfer processes in the soil-plant-atmosphere-continuum (SPAC) , and the interaction between nitrogen and water, as well as determining the critical threshold values for sustainability of soil and water resources in the NCP.

  8. Secular pattern of aneurismal rupture with the lunar cycle and season.

    PubMed

    Banfield, Jillian C; Abdolell, Mohamed; Shankar, Jai S

    2017-02-01

    Background The lunar cycle and seasons may be associated with rates of rupture of intracranial aneurysms, but the literature is mixed. Studies of the association between the lunar cycle and rates of aneurysm rupture used the eight qualitative moon phases. The purpose of this study was to assess any association of aneurysm rupture with the lunar cycle and with the season. Materials and methods We retrospectively reviewed all cases of subarachnoid haemorrhage secondary to ruptured intracranial aneurysm treated with endovascular coiling in our institution over a 10-year period. We included only cases with a known rupture date. We used the degree of illumination of the moon to quantitatively code the lunar cycle. Results A total of 212 cases were included in our analyses. The odds of aneurysm rupture were significantly greater ( p < 0.001) when the moon was least (new moon) and most (full moon) illuminated, as compared to the middle of the lunar cycle. The odds of rupture tended to be higher ( p = 0.059) in the summer, compared to autumn. Conclusions The odds of aneurysm rupture were greater when the moon was least illuminated (new moon) and most illuminated (full moon), compared to the middle of the lunar cycle.

  9. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  10. SHIMMER (1.0): a novel mathematical model for microbial and biogeochemical dynamics in glacier forefield ecosystems

    NASA Astrophysics Data System (ADS)

    Bradley, J. A.; Anesio, A. M.; Singarayer, J. S.; Heath, M. R.; Arndt, S.

    2015-10-01

    SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.

  11. Life Cycle Assessment (ISO 14040) implementation in foods of animal and plant origin: review.

    PubMed

    Arvanitoyannis, Ioannis S; Kotsanopoulos, Konstantinos V; Veikou, Agapi

    2014-01-01

    The importance of environmental protection has been recently upgraded due to the continuously increasing environmental pollution load. Life Cycle Assessment (LCA), wellknown as ISO 14040, has been repeatedly shown to be a useful and powerful tool for assessing the environmental performance of industrial processes, both in the European and American continents as well as in many Asian countries (such as Japan and China). To the best of our knowledge, almost no information is provided in relation to LCA implementation in Africa apart from an article related to Egypt. Although food industries are not considered to be among the most heavily polluting ones, for some like olive oil, wine, dairy, and meat processing, their impact on the environment is a heavy burden. The introduction of LCA aimed at identifying both inputs and outputs to find out which are the most detrimental to the environment in terms of water/energy consumption and solid/liquid and gas releases. In this review, a thorough coverage of literature was made in an attempt to compare the implementation of LCA to a variety of products of both plant and animal origin. It was concluded that there is a high number of subsystems suggested for the same product, thereby, occasionally leading to confusion. An idea toward solving the problem is to proceed to some sort of standardization by means of several generic case studies of LCA implementation, similarly to what had happened in the case of Hazard Analysis and Critical Control Points (HACCP) implementation in the United States, Canada, Australia, United Kingdom, and other countries.

  12. Reuse and recycle--considering the soil below constructions.

    PubMed

    Suer, Pascal; Wik, Ola; Erlandsson, Martin

    2014-07-01

    The European Construction Products Regulation provides a life cycle based framework for the environmental assessment of construction products. Harmonised European standards for the assessment of the release of dangerous substances and for declaration of environmental performance are in progress. Risk based limit values for the protection of soil and groundwater below construction works will still bet set nationally. In this paper we review the possibilities to expand the ongoing harmonisation to include risk assessment and life cycle assessment (LCA). Based on reviews of national European limit value models (LMVs) for assessment of release to soil and groundwater, two areas for harmonisation emerge: 1- The toxicological criteria. Toxicological endpoints to protect human health and environment are similar, and data from the same toxicological data sets are used to establish acceptance criteria. 2- The emission part of LMVs. We extracted six generic construction works for granular materials. These encompass the most common choices and span the different release scenarios applied. Harmonised emission models would also facilitate LCA and environmental product declaration (EPD). The immission or transport part of the LVMs is less promising for harmonisation. Locating the acceptance criteria point of compliance close to the construction works is advantageous from many aspects and would facilitate harmonisation of assessments. We have identified two different strategies to include recycling in the assessments: 1- Tiered procedure where assessment and declaration of performance are made for the intended primary use of the product only and renewed assessments are made whenever the construction works are demolished and the product is recovered. 2- Scenario based procedure where future recycling scenarios, into new products and construction works, are forecasted. In this case the initial assessment and declaration of environmental performance of a construction product is performed both for the intended primary use of the product and for the recycling scenarios. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  14. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  15. Regulatory aspects of total product life cycle.

    PubMed

    Hausman, Ethan D; Altaie, Sousan S

    2004-12-01

    Total Product Life Cycle (TPLC) is a conceptual framework for assessing any product or service (medical or otherwise). This article will address how the Center for Devices and Radiological Health of the U.S. Food and Drug Administration utilizes TPLC in a regulatory paradigm. TPLC will help guide the regulation of market-driven evolution of medical devices and radiation-emitting products from conception, through pre-market development, to widespread market use, and finally to obsolescence and replacement by subsequent generations of products.

  16. Alberta Carpenter | NREL

    Science.gov Websites

    cycle assessment in industrial by-product management, waste management, biofuels and manufacturing technologies Life cycle inventory database management Research Interests Life cycle assessment Life cycle inventory management Biofuels Advanced manufacturing Supply chain analysis Education Ph.D in environmental

  17. USER'S GUIDE FOR THE MUNICIPAL SOLID WASTE LIFE-CYCLE DATABASE

    EPA Science Inventory

    The report describes how to use the municipal solid waste (MSW) life cycle database, a software application with Microsoft Access interfaces, that provides environmental data for energy production, materials production, and MSW management activities and equipment. The basic datab...

  18. U.S. EPA'S RESEARCH ON LIFE-CYCLE ANALYSIS

    EPA Science Inventory

    Life-cycle analysis (LCA) consists of looking at a product, process or activity from its inception through its completion. or consumer products, this includes the stages of raw material acquisition, manufacturing and fabrication, distribution, consumer use/reuse and final disposa...

  19. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review

    PubMed Central

    Laanbroek, Hendrikus J.

    2010-01-01

    Background According to the Intergovernmental Panel on Climate Change (IPCC) 2007, natural wetlands contribute 20–39 % to the global emission of methane. The range in the estimated percentage of the contribution of these systems to the total release of this greenhouse gas is large due to differences in the nature of the emitting vegetation including the soil microbiota that interfere with the production and consumption of methane. Scope Methane is a dominant end-product of anaerobic mineralization processes. When all electron acceptors except carbon dioxide are used by the microbial community, methanogenesis is the ultimate pathway to mineralize organic carbon compounds. Emergent wetland plants play an important role in the emission of methane to the atmosphere. They produce the carbon necessary for the production of methane, but also facilitate the release of methane by the possession of a system of interconnected internal gas lacunas. Aquatic macrophytes are commonly adapted to oxygen-limited conditions as they prevail in flooded or waterlogged soils. By this system, oxygen is transported to the underground parts of the plants. Part of the oxygen transported downwards is released in the root zone, where it sustains a number of beneficial oxidation processes. Through the pores from which oxygen escapes from the plant into the root zone, methane can enter the plant aerenchyma system and subsequently be emitted into the atmosphere. Part of the oxygen released into the root zone can be used to oxidize methane before it enters the atmosphere. However, the oxygen can also be used to regenerate alternative electron acceptors. The continuous supply of alternative electron acceptors will diminish the role of methanogenesis in the anaerobic mineralization processes in the root zone and therefore repress the production and emission of methane. The role of alternative element cycles in the inhibition of methanogenesis is discussed. Conclusions The role of the nitrogen cycle in repression of methane production is probably low. In contrast to wetlands particularly created for the purification of nitrogen-rich waste waters, concentrations of inorganic nitrogen compounds are low in the root zones in the growing season due to the nitrogen-consuming behaviour of the plant. Therefore, nitrate hardly competes with other electron acceptors for reduced organic compounds, and repression of methane oxidation by the presence of higher levels of ammonium will not be the case. The role of the iron cycle is likely to be important with respect to the repression of methane production and oxidation. Iron-reducing and iron-oxidizing bacteria are ubiquitous in the rhizosphere of wetland plants. The cycling of iron will be largely dependent on the size of the oxygen release in the root zone, which is likely to be different between different wetland plant species. The role of the sulfur cycle in repression of methane production is important in marine, sulfate-rich ecosystems, but might also play a role in freshwater systems where sufficient sulfate is available. Sulfate-reducing bacteria are omnipresent in freshwater ecosystems, but do not always react immediately to the supply of fresh sulfate. Hence, their role in the repression of methanogenesis is still to be proven in freshwater marshes. PMID:19689973

  20. Risk of Sjögren's syndrome in Taiwanese female adults with irregular menstrual cycles: a population-based case-control study.

    PubMed

    Lu, Ming-Chi; Hsieh, Min-Chih; Koo, Malcolm; Lai, Ning-Sheng

    2016-01-01

    Primary Sjögren's syndrome (pSS) is a progressive systemic autoimmune disorder with a strong female predominance. Hormonal influences are thought to play a role in the development of pSS. However, no studies have specifically evaluated the association between irregular menstrual cycles and pSS. Therefore, using a health claims database, this study investigated the risk of pSS in women with irregular menstrual cycles. We conducted a case-control study using the Taiwan's National Health Insurance Research Database. A total of 360 patients diagnosed with pSS (International Classification of Diseases, ninth revision, clinical modification, ICD-9-CM code 710.2) between 2001 and 2012 were identified. Controls were frequency-matched at a rate of 5:1 to the cases by five-year age interval and index year. Both cases and controls were retrospectively traced back until 2001 for the diagnosis of irregular menstrual cycles (ICD-9-CM code 626.4). The risk of pSS was assessed using multivariate logistic regression analyses. Irregular menstrual cycles were significantly associated with pSS [adjusted odds ratio, (AOR) = 1.38, p = 0.027], after adjusted for insured amount, urbanization level, and thyroid disorder. In addition, when the data were stratified by three age categories, only the patients in the age category of 45-55 years showed significant association between irregular menstrual cycles and pSS (AOR = 1.74, p = 0.005). In this nationwide, population-based case-control study, we found a significant increased risk of pSS in female patients with irregular menstrual cycles, particularly those in their mid-forties to mid-fifties.

  1. Standardized verification of fuel cycle modeling

    DOE PAGES

    Feng, B.; Dixon, B.; Sunny, E.; ...

    2016-04-05

    A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less

  2. Chemical footprint: a methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution.

    PubMed

    Sala, Serenella; Goralczyk, Malgorzata

    2013-10-01

    The development and use of footprint methodologies for environmental assessment are increasingly important for both the scientific and political communities. Starting from the ecological footprint, developed at the beginning of the 1990s, several other footprints were defined, e.g., carbon and water footprint. These footprints-even though based on a different meaning of "footprint"-integrate life cycle thinking, and focus on some challenging environmental impacts including resource consumption, CO2 emission leading to climate change, and water consumption. However, they usually neglect relevant sources of impacts, as those related to the production and use of chemicals. This article presents and discusses the need and relevance of developing a methodology for assessing the chemical footprint, coupling a life cycle-based approach with methodologies developed in other contexts, such as ERA and sustainability science. Furthermore, different concepts underpin existing footprint and this could be the case also of chemical footprint. At least 2 different approaches and steps to chemical footprint could be envisaged, applicable at the micro- as well as at the meso- and macroscale. The first step (step 1) is related to the account of chemicals use and emissions along the life cycle of a product, sector, or entire economy, to assess potential impacts on ecosystems and human health. The second step (step 2) aims at assessing to which extent actual emission of chemicals harm the ecosystems above their capability to recover (carrying capacity of the system). The latter step might contribute to the wide discussion on planetary boundaries for chemical pollution: the thresholds that should not be surpassed to guarantee a sustainable use of chemicals from an environmental safety perspective. The definition of what the planetary boundaries for chemical pollution are and how the boundaries should be identified is an on-going scientific challenge for ecotoxicology and ecology. In this article, we present a case study at the macroscale for the European Union, in which the chemical footprint according to step 1 is calculated for the year 2005. A proposal for extending this approach toward step 2 is presented and discussed, complemented by a discussion on the challenges and the use of appropriate methodologies for assessing chemical footprints to stimulate further research and discussion on the topic. © 2013 SETAC.

  3. Life cycle of the corn-soybean agroecosystem for biobased production.

    PubMed

    Landis, Amy E; Miller, Shelie A; Theis, Thomas L

    2007-02-15

    Biobased product life cycle assessments (LCAs) have focused largely on energy (fossil fuel) usage and greenhouse gas emissions during the agriculture and production stages. This paper compiles a more comprehensive life cycle inventory (LCI) for use in future bioproduct LCAs that rely on corn or soybean crops as feedstocks. The inventory includes energy, C, N, P, major pesticides, and U.S. EPA criteria air pollutants that result from processes such as fertilizer production, energy production, and on-farm chemical and equipment use. Agroecosystem material flows were modeled using a combination of GREET (the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation model), a linear fractionation model that describes P biogeochemical cycling, and Monte Carlo Analysis. Results show that the dominant air emissions resulted from crop farming, fertilizers, and on-farm nitrogen flows (e.g., N20 and NO). Seed production and irrigation provided no more than 0.002% to any of the inventory emissions or energy flows and may be neglected in future LCAs of corn or soybeans as feedstocks from the U.S. Corn Belt. Lime contributes significantly (17% of total emissions) to air emissions and should not be neglected in bioproduct LCAs.

  4. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    EPA Pesticide Factsheets

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  5. Productive HIV-1 Infection of Human Cervical Tissue Ex Vivo is Associated with the Secretory Phase of the Menstrual Cycle

    PubMed Central

    Saba, Elisa; Origoni, Massimo; Taccagni, Gianluca; Ferrari, Davide; Doglioni, Claudio; Nava, Alice; Lisco, Andrea; Grivel, Jean-Charles; Margolis, Leonid; Poli, Guido

    2013-01-01

    Cervical tissue explants (CTE) from 22 HIV-1 seronegative women were exposed to R5 HIV-1 ex vivo. Eight CTE were productively infected in terms of HIV-1 p24Gag release in culture supernatants whereas 14 were not. Nonetheless, both accumulation of HIV-1gag DNA and of p24Gag+ CD4+ T cells and macrophages occurred in both productive and, at lower levels, in nonproductive CTE. Nonproductive CTE differed from productive CTE for higher secretion of CCL3 and CCL5. A post-hoc analysis revealed that all productive CTE were established from women in their secretory phase of the menstrual cycle, whereas nonproductive CTE derived from women either in their secretory (28%) or proliferative (36%) menstrual cycle phases or with an atrophic endometrium (36%). Thus, our results support the epidemiological observation that sexual HIV-1 transmission from males to women as well as from women to men is more efficient during their secretory phase of the menstrual cycle. PMID:23385427

  6. Developing a Model to Estimate Freshwater Gross Primary Production Using MODIS Surface Temperature Observations

    NASA Astrophysics Data System (ADS)

    Saberi, S. J.; Weathers, K. C.; Norouzi, H.; Prakash, S.; Solomon, C.; Boucher, J. M.

    2016-12-01

    Lakes contribute to local and regional climate conditions, cycle nutrients, and are viable indicators of climate change due to their sensitivity to disturbances in their water and airsheds. Utilizing spaceborne remote sensing (RS) techniques has considerable potential in studying lake dynamics because it allows for coherent and consistent spatial and temporal observations as well as estimates of lake functions without in situ measurements. However, in order for RS products to be useful, algorithms that relate in situ measurements to RS data must be developed. Estimates of lake metabolic rates are of particular scientific interest since they are indicative of lakes' roles in carbon cycling and ecological function. Currently, there are few existing algorithms relating remote sensing products to in-lake estimates of metabolic rates and more in-depth studies are still required. Here we use satellite surface temperature observations from Moderate Resolution Imaging Spectroradiometer (MODIS) product (MYD11A2) and published in-lake gross primary production (GPP) estimates for eleven globally distributed lakes during a one-year period to produce a univariate quadratic equation model. The general model was validated using other lakes during an equivalent one-year time period (R2=0.76). The statistical analyses reveal significant positive relationships between MODIS temperature data and the previously modeled in-lake GPP. Lake-specific models for Lake Mendota (USA), Rotorua (New Zealand), and Taihu (China) showed stronger relationships than the general combined model, pointing to local influences such as watershed characteristics on in-lake GPP in some cases. These validation data suggest that the developed algorithm has a potential to predict lake GPP on a global scale.

  7. Reverse logistics system and recycling potential at a landfill: A case study from Kampala City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinobe, J.R., E-mail: joel.kinobe@slu.se; Department of Civil and Environmental Engineering, Makerere University College of Engineering, Design, Art and Technology; Gebresenbet, G.

    Highlights: • Quantifies the different waste streams delivered at the landfill. • Evaluates the amount of potential waste products that enters into the reverse cycle. • Drawing out the reverse logistics activities from Kampala City to Kiteezi landfill. • Identify the storage, collection and transportation mechanisms of products to the various destinations; and finally. • The study suggests efficient measures to improve reverse logistics system. - Abstract: The rapid growing population and high urbanisation rates in Sub-Saharan Africa has caused enormous pressure on collection services of the generated waste in the urban areas. This has put a burden on landfilling,more » which is the major waste disposal method. Waste reduction, re-use and recycling opportunities exist but are not fully utilized. The common items that are re-used and re-cycled are plastics, paper, aluminum, glass, steel, cardboard, and yard waste. This paper develops an overview of reverse logistics at Kiteezi landfill, the only officially recognised waste disposal facility for Kampala City. The paper analyses, in details the collection, re-processing, re-distribution and final markets of these products into a reversed supply chain network. Only 14% of the products at Kiteezi landfill are channeled into the reverse chain while 63% could be included in the distribution chain but are left out and disposed of while the remaining 23% is buried. This is because of the low processing power available, lack of market value, lack of knowledge and limited value addition activities to the products. This paper proposes possible strategies of efficient and effective reverse logistics development, applicable to Kampala City and other similar cities.« less

  8. Back to the roots: the integration of a constructed wetland into a recirculating hatchery - a case study.

    PubMed

    Buřič, Miloš; Bláhovec, Josef; Kouřil, Jan

    2015-01-01

    Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations.

  9. Back to the Roots: The Integration of a Constructed Wetland into a Recirculating Hatchery - A Case Study

    PubMed Central

    Buřič, Miloš; Bláhovec, Josef; Kouřil, Jan

    2015-01-01

    Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world's food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations. PMID:25853416

  10. SHORTER MENSTRUAL CYCLES ASSOCIATED WITH CHLORINATION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Shorter Menstrual Cycles Associated with Chlorination by-Products in Drinking Water.
    Gayle Windham, Kirsten Waller, Meredith Anderson, Laura Fenster, Pauline Mendola, Shanna Swan. California Department of Health Services.

    In previous studies of tap water consumption we...

  11. Correlation of laboratory and production freeze drying cycles.

    PubMed

    Kuu, Wei Y; Hardwick, Lisa M; Akers, Michael J

    2005-09-30

    The purpose of this study was to develop the correlation of cycle parameters between a laboratory and a production freeze-dryer. With the established correlation, key cycle parameters obtained using a laboratory dryer may be converted to those for a production dryer with minimal experimental efforts. In order to develop the correlation, it was important to consider the contributions from the following freeze-drying components: (1) the dryer, (2) the vial, and (3) the formulation. The critical parameters for the dryer are the shelf heat transfer coefficient and shelf surface radiation emissivity. The critical parameters for the vial are the vial bottom heat transfer coefficients (the contact parameter Kcs and separation distance lv), and vial top heat transfer coefficient. The critical parameter of the formulation is the dry layer mass transfer coefficient. The above heat and mass transfer coefficients were determined by freeze-drying experiments in conjunction with mathematical modeling. With the obtained heat and mass transfer coefficients, the maximum product temperature, Tbmax, during primary drying was simulated using a primary drying subroutine as a function of the shelf temperature and chamber pressure. The required shelf temperature and chamber pressure, in order to perform a successful cycle run without product collapse, were then simulated based on the resulting values of Tbmax. The established correlation approach was demonstrated by the primary drying of the model formulation 5% mannitol solution. The cycle runs were performed using a LyoStar dryer as the laboratory dryer and a BOC Edwards dryer as the production dryer. The determined normalized dried layer mass transfer resistance for 5% mannitol is expressed as RpN=0.7313+17.19l, where l is the receding dry layer thickness. After demonstrating the correlation approach using the model formulation 5% mannitol, a practical comparison study was performed for the actual product, the lactate dehydrogenase (LDH) formulation. The determined normalized dried layer mass transfer resistance for the LDH formulation is expressed as RpN=4.344+10.85l. The operational templates Tbmax and primary drying time were also generated by simulation. The cycle run for the LDH formulation using the Edwards production dryer verified that the cycle developed in a laboratory freeze-dryer was transferable at the production scale.

  12. HEADROOM APPROACH TO DEVICE DEVELOPMENT: CURRENT AND FUTURE DIRECTIONS.

    PubMed

    Girling, Alan; Lilford, Richard; Cole, Amanda; Young, Terry

    2015-01-01

    The headroom approach to medical device development relies on the estimation of a value-based price ceiling at different stages of the development cycle. Such price-ceilings delineate the commercial opportunities for new products in many healthcare systems. We apply a simple model to obtain critical business information as the product proceeds along a development pathway, and indicate some future directions for the development of the approach. Health economic modelling in the supply-side development cycle for new products. The headroom can be used: initially as a 'reality check' on the viability of the device in the healthcare market; to support product development decisions using a real options approach; and to contribute to a pricing policy which respects uncertainties in the reimbursement outlook. The headroom provides a unifying thread for business decisions along the development cycle for a new product. Over the course of the cycle attitudes to uncertainty will evolve, based on the timing and manner in which new information accrues. Within this framework the developmental value of new information can justify the costs of clinical trials and other evidence-gathering activities. Headroom can function as a simple shared tool to parties in commercial negotiations around individual products or groups of products. The development of similar approaches in other contexts holds promise for more rational planning of service provision.

  13. Optimization of Primary Drying in Lyophilization during Early Phase Drug Development using a Definitive Screening Design with Formulation and Process Factors.

    PubMed

    Goldman, Johnathan M; More, Haresh T; Yee, Olga; Borgeson, Elizabeth; Remy, Brenda; Rowe, Jasmine; Sadineni, Vikram

    2018-06-08

    Development of optimal drug product lyophilization cycles is typically accomplished via multiple engineering runs to determine appropriate process parameters. These runs require significant time and product investments, which are especially costly during early phase development when the drug product formulation and lyophilization process are often defined simultaneously. Even small changes in the formulation may require a new set of engineering runs to define lyophilization process parameters. In order to overcome these development difficulties, an eight factor definitive screening design (DSD), including both formulation and process parameters, was executed on a fully human monoclonal antibody (mAb) drug product. The DSD enables evaluation of several interdependent factors to define critical parameters that affect primary drying time and product temperature. From these parameters, a lyophilization development model is defined where near optimal process parameters can be derived for many different drug product formulations. This concept is demonstrated on a mAb drug product where statistically predicted cycle responses agree well with those measured experimentally. This design of experiments (DoE) approach for early phase lyophilization cycle development offers a workflow that significantly decreases the development time of clinically and potentially commercially viable lyophilization cycles for a platform formulation that still has variable range of compositions. Copyright © 2018. Published by Elsevier Inc.

  14. Cradle-to-gate life-cycle assessment of laminated veneer lumber produced in the southeast region of the United States

    Treesearch

    Richard D. Bergman; Sevda Alanya-Rosenbaum

    2017-01-01

    The goal of the present study was to develop life-cycle impact assessment (LCIA) data associated with gate-to-gate laminated veneer lumber (LVL) production in the southeast (SE) region of the U.S. with the ultimate aim of constructing an updated cradle-to-gate mill output life-cycle assessment (LCA). The authors collected primary (survey) mill data from LVL production...

  15. Teamed for Success: The Imperative for Aligning Systems Engineering and Life Cycle Logistics

    DTIC Science & Technology

    2013-02-01

    January-February 2013 Kobren is director of the DAU Logistics & Sustainment Center, and the DoD Product Support Assessment Human Capital IPT lead...engineering colleagues, here are 10 key life-cycle logistics, product support, and system sustainment tenets to be cognizant of: Decisions You Make Will...and updates to the Life Cycle Sustainment Plan (LCSP). A vast majority of a weapon systems’ total ownership costs are determined by decisions made

  16. Molluscs production associated to lunar-tide cycle: a case study in Paraíba State under ethnoecology viewpoint

    PubMed Central

    Nishida, Alberto K; Nordi, Nivaldo; Alves, Rômulo RN

    2006-01-01

    Molluscs have been for a long time a very important food resource for humans. Therefore, oysters, clams, and mussels are highly required at seafood markets. Like any commercial food, it is necessary that molluscs present good quality standards, concerning some criteria such as amount of meat and appearance. In bivalves, condition index or fattening index is considered a satisfactory method for estimating the amount of meat related to the shell cavity. Molluscs gatherers of Paraíba State coast, northeastern Brazil, state that molluscan meat production increases during spring tide (designated by them as maré de lançamento) in opposition to the meat decrease which happens during neap tide (maré de quebramento) (they are designated technically in Portuguese as maré de sizígia and maré de quadratura, respectively). Weperformed a survey on the production of unha-de-velho or 'oldman'snail' (Tagelus plebeius) caught by molluscs gatherers in the estuary of River Paraíba do Norte, by observing locally their work, applying questionnaires, searching for a possible scientific relation of that molluscs condition to the gatherers empirical statement. Thus, we estimatedthe molluscs condition index through the method of solids percentage determination. We studied their work and the molluscs condition index during a full lunar-tide cycle. Determinations were carried out between 2nd September and 20th October, 1998, through 20 catches performed to obtain condition index from 400 bivalves. We observed that several biotic and abiotic ecological factors, namely reproduction cycle, biochemical components variations, animal size, and even parasitism, may affect the animal condition index. Despite this aspect, our present results confirmed a high overlapping (80%) of the condition index curve with lunar-tide cycle, in agreement with the gatherers statement. Although we recognize the need for formulating and testing other hypotheses, we consider a priori that the gatherers empirical assertion a unha tá gorda de acordocom a maré ('the "oldman's nail" is fat according to the tide', roughly translating) is justified by the observations here performed when the condition index increased during spring tide and decreased during neap tide. PMID:16784528

  17. Assessment of Greenhouse Gas Control Technology Options within the Energy, Water and Food Nexus

    NASA Astrophysics Data System (ADS)

    Al-Ansari, Tareq; Korre, Anna; Nie, Zhenggang; Shah, Nilay

    2015-04-01

    The utilisation of Energy, Water and Food (EWF) resources can be described as a nexus of complex linkages embodied in industrial and natural processes. Food production is one such example of a system that mobilises EWF resources to deliver a product which is highly influenced by the efficiency of the industrial processes contributing to it and the conditions of the surrounding natural environment. Aggregating the utilisation of EWF resources into interconnected sub-systems is necessary for the accurate representation of the system's dynamics in terms of its material flow and resource consumption. The methodology used in this study is an extension of previous work developed regarding nexus analysis (Al-Ansari et al. 2014a, Al-Ansari et al. 2014b). Life cycle assessment (LCA) is used to prepare detailed models of the sub-system components, determine the linkages between the different nexus constituents and evaluate impacts on the natural environment. The nexus system is comprised of water sub-systems represented by a reverse osmosis (RO) desalination process. Energy sub-systems for power generation include models for a combined cycle gas turbine (CCGT) and solar Photovoltaics (PV) energy generation, as well as an amine based CO2 capture process enabling the utilisation of CO2 for the artificial fertilization of crops. The agricultural sub-systems include the production and application of fertilizers and the raising of livestock. A biomass integrated gasification combined cycle (BIGCC) for power generation using waste manure from the livestock sub-system is also included. The objective of this study is to consider a conventional food system in Qatar and enhance its environmental performance by using a nexus approach to examine different scenarios and operating modes. For the Qatar case study, three scenarios and four modes of operation were developed as part of the analysis. The baseline scenario uses fossil fuel to power the entire EWF nexus system using CCGT, the second scenario integrates PV to power the RO units and the third scenario uses solar PV to power the RO and fertilizer production facilities. The second operating mode integrates the BIGCC for power generation and the third mode utilises the gasification by-product biochar for the enhancement of agricultural productivity in addition to the power generated from the BIGCC. The final mode of operation examines the use of CO2 capture technology in the baseline scenario to support fertilization resulting in productivity increases for crops. References: Al-Ansari, T., Korre, A., Nie, Z., Shah, N., "Development of a life cycle assessment model for the analysis of the energy, water and food nexus" Computer Aided Chemical Engineering, 33, (2014), 1039-1044. Al-Ansari, T., Korre, A., Nie, Z., Shah, N., Integrated Modelling of the Energy, Water and Food Nexus to Enhance the Environmental Performance of Food Production Systems, 9th International Conference LCA of Food, San Francisco, USA, 8 - 10 October 2014

  18. 78 FR 34099 - FCC Extends Pleading Cycle for Indecency Cases Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... FEDERAL COMMUNICATIONS COMMISSION [GN Docket No. 13-86; DA 13-1071] FCC Extends Pleading Cycle for Indecency Cases Policy AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: In this document, the Federal Communications Commission Enforcement Bureau and Office of General Counsel extend the...

  19. Crank case scavenging of a two-stroke-cycle engine

    NASA Technical Reports Server (NTRS)

    Holm, Otto

    1928-01-01

    Experiments with a two-stroke-cycle, crank case scavenging engine. Effect of systematic variation of the height of the scavenge and exhaust ports on the scavenging, as determined by gas analysis. The best results were obtained under conditions differing from the usual ones.

  20. Probing soil C metabolism in response to temperature: results from experiments and modeling

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Dalder, J.; Blankinship, J.; Selmants, P. C.; Schwartz, E.; Koch, G. W.; Hart, S.; Hungate, B. A.

    2010-12-01

    C use efficiency (CUE) is one of the least understood aspects of soil C cycling, has a very large effect on soil respiration and C sequestration, and decreases with elevated temperature. CUE is directly related to substrate partitioning over energy production and biosynthesis. The production of energy and metabolic precursors occurs in well-known processes such as glycolysis and Krebs cycle. We have developed a new stable isotope approach using position-specific 13C-labeled metabolic tracers to measure these fundamental metabolic processes in intact soil communities (1). We use this new approach, combined with models of soil metabolic flux patterns, to analyze the response of microbial energy production, biosynthesis, and CUE to temperature. The method consists of adding small but precise amounts of position-specific 13C -labeled metabolic tracers to parallel soil incubations, in this case 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose. The measurement of CO2 released from the labeled tracers is used to calculate the C flux rates through various metabolic pathways. A simplified metabolic model consisting of 23 reactions is iteratively solved using results of the metabolic tracer experiments and information on microbial precursor demand under different temperatures. This new method enables direct study of fundamental aspects of microbial energy production, C use efficiency, and soil organic matter formation in response to temperature. (1) Dijkstra P, Blankinship JC, Selmants PC, Hart SC, Koch GW, Schwarz E and Hungate BA. Probing metabolic flux patterns of soil microbial communities using parallel position-specific tracer labeling. Soil Biology and Biochemistry (accepted)

  1. Changing the renewable fuel standard to a renewable material standard: bioethylene case study.

    PubMed

    Posen, I Daniel; Griffin, W Michael; Matthews, H Scott; Azevedo, Inês L

    2015-01-06

    The narrow scope of the U.S. renewable fuel standard (RFS2) is a missed opportunity to spur a wider range of biomass use. This is especially relevant as RFS2 targets are being missed due to demand-side limitations for ethanol consumption. This paper examines the greenhouse gas (GHG) implications of a more flexible policy based on RFS2, which includes credits for chemical use of bioethanol (to produce bioethylene). A Monte Carlo simulation is employed to estimate the life-cycle GHG emissions of conventional low-density polyethylene (LDPE), made from natural gas derived ethane (mean: 1.8 kg CO2e/kg LDPE). The life-cycle GHG emissions from bioethanol and bio-LDPE are examined for three biomass feedstocks: U.S. corn (mean: 97g CO2e/MJ and 2.6 kg CO2e/kg LDPE), U.S. switchgrass (mean: -18g CO2e/MJ and -2.9 kg CO2e/kg LDPE), and Brazilian sugar cane (mean: 33g CO2e/MJ and -1.3 kg CO2e/kg LDPE); bioproduct and fossil-product emissions are compared. Results suggest that neither corn product (bioethanol or bio-LDPE) can meet regulatory GHG targets, while switchgrass and sugar cane ethanol and bio-LDPE likely do. For U.S. production, bioethanol achieves slightly greater GHG reductions than bio-LDPE. For imported Brazilian products, bio-LDPE achieves greater GHG reductions than bioethanol. An expanded policy that includes bio-LDPE provides added flexibility without compromising GHG targets.

  2. Price corrected domestic technology assumption--a method to assess pollution embodied in trade using primary official statistics only. With a case on CO2 emissions embodied in imports to Europe.

    PubMed

    Tukker, Arnold; de Koning, Arjan; Wood, Richard; Moll, Stephan; Bouwmeester, Maaike C

    2013-02-19

    Environmentally extended input output (EE IO) analysis is increasingly used to assess the carbon footprint of final consumption. Official EE IO data are, however, at best available for single countries or regions such as the EU27. This causes problems in assessing pollution embodied in imported products. The popular "domestic technology assumption (DTA)" leads to errors. Improved approaches based on Life Cycle Inventory data, Multiregional EE IO tables, etc. rely on unofficial research data and modeling, making them difficult to implement by statistical offices. The DTA can lead to errors for three main reasons: exporting countries can have higher impact intensities; may use more intermediate inputs for the same output; or may sell the imported products for lower/other prices than those produced domestically. The last factor is relevant for sustainable consumption policies of importing countries, whereas the first factors are mainly a matter of making production in exporting countries more eco-efficient. We elaborated a simple correction for price differences in imports and domestic production using monetary and physical data from official import and export statistics. A case study for the EU27 shows that this "price-adjusted DTA" gives a partial but meaningful adjustment of pollution embodied in trade compared to multiregional EE IO studies.

  3. Performance improvement: an active life cycle product management

    NASA Astrophysics Data System (ADS)

    Cucchiella, Federica; Gastaldi, Massimo; Lenny Koh, S. C.

    2010-03-01

    The management of the supply chain has gained importance in many manufacturing firms. Operational flexibility can be considered a crucial weapon to increase competitiveness in a turbulent marketplace. It reflects the ability of a firm to properly and rapidly respond to a variable and dynamic environment. For the firm operating in a fashion sector, the management of the supply chain is even more complex because the product life cycle is shorter than that of the firm operating in a non-fashion sector. The increase of firm flexibility level can be reached through the application of the real option theory inside the firm network. In fact, real option may increase the project value by allowing managers to more efficiently direct the production. The real option application usually analysed in literature does not take into account that the demands of products are well-defined by the product life cycle. Working on a fashion sector, the life cycle pattern is even more relevant because of an expected demand that grows according to a constant rate that does not capture the demand dynamics of the underlying fashion goods. Thus, the primary research objective of this article is to develop a model useful for the management of investments in a supply chain operating in a fashion sector where the system complexity is increased by the low level of unpredictability and stability that is proper of the mood phenomenon. Moreover, unlike the traditional model, a real option framework is presented here that considers fashion product characterised by uncertain stages of the production cycle.

  4. Sustainable biofuel contributions to carbon mitigation and energy independence

    DOE PAGES

    Lippke, Bruce; Gustafson, Richard; Venditti, Richard; ...

    2011-10-19

    The growing interest in US biofuels has been motivated by two primary national policy goals, (1) to reduce carbon emissions and (2) to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle datamore » for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Furthermore, substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.« less

  5. LIFE CYCLE DESIGN FRAMEWORK AND DEMONSTRATION PROJECTS PROFILES OF AT&T AND ALLIED SIGNAL

    EPA Science Inventory

    Life cycle design seeks to minimize the environmental burden associated with a product life cycle from raw materials acquisition through manufacturing, use, and end-of-life management. ife cycle design emphasizes integrating environmental requirements into the earliest phases of ...

  6. Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution.

    PubMed

    Pourzahedi, Leila; Vance, Marina; Eckelman, Matthew J

    2017-06-20

    Increasing use of silver nanoparticles (AgNPs) in consumer products as antimicrobial agents has prompted extensive research toward the evaluation of their potential release to the environment and subsequent ecotoxicity to aquatic organisms. It has also been shown that AgNPs can pose significant burdens to the environment from life cycle emissions associated with their production, but these impacts must be considered in the context of actual products that contain nanosilver. Here, a cradle-to-gate life cycle assessment for the production of 15 different AgNP-enabled consumer products was performed, coupled with release studies of those same products, thus providing a consistent analytical platform for investigation of potential nanosilver impacts across a range of product types and concentrations. Environmental burdens were assessed over multiple impact categories defined by the United States Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) method. Depending on the product composition and silver loading, the contribution of AgNP synthesis to the overall impacts was seen to vary over a wide range from 1% to 99%. Release studies found that solid polymeric samples lost more silver during wash compared to fibrous materials. Estimates of direct ecotoxicity impacts of AgNP releases from those products with the highest leaching rates resulted in lower impact levels compared to cradle-to-gate ecotoxicity from production for those products. Considering both cradle-to-gate production impacts and nanoparticle release studies, in conjunction with estimates of life cycle environmental and health benefits of nanoparticle incorporation, can inform sustainable nanoenabled product design.

  7. Organic carbon fluxes in the Atlantic and the Southern Ocean: relationship to primary production compiled from satellite radiometer data

    NASA Astrophysics Data System (ADS)

    Fischer, G.; Ratmeyer, V.; Wefer, G.

    Fluxes of organic carbon normalised to a depth of 1000 m from 18 sites in the Atlantic and the Southern Ocean are presented, comprising nine biogeochemical provinces as defined by Longhurst et al. (1995. Journal of Plankton Research 17, 1245-1271). For comparison with primary production, we used a recent compilation of primary production values derived from CZCS data (Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69). In most cases, the seasonal patterns stood reasonably well in accordance with the carbon fluxes. Particularly, organic carbon flux records from two coastal sites off northwest and southwest Africa displayed a more distinct correlation to the primary production in sectors (1×1°) which are situated closer to the coastal environments. This was primarily caused by large upwelling filaments streaming far offshore, resulting in a cross-shelf carbon transport. With respect to primary production, organic carbon export to a water depth of 1000 m, and the fraction of primary production exported to a depth of 1000 m (export fraction=EF 1000), we were able to distinguish between: (1) the coastal environments with highest values (EF 1000=1.75-2.0%), (2) the eastern equatorial upwelling area with moderately high values (EF 1000=0.8-1.1%), (3) and the subtropical oligotrophic gyres that yielded lowest values (EF 1000=0.6%). Carbon export in the Southern Ocean was low to moderate, and the EF 1000 value seems to be quite low in general. Annual organic carbon fluxes were proportional to primary production, and the export fraction EF 1000 increased with primary production up to 350 gC m -2 yr-1. Latitudinal variations in primary production were reflected in the carbon flux pattern. A high temporal variability of primary production rates and a pronounced seasonality of carbon export were observed in the polar environments, in particular in coastal domains, although primary production (according to Antoine et al., 1996. Global Biogeochemical Cycles 10, 57-69), carbon fluxes, and the export fraction remained at low.

  8. Guidance for Product Category Rule Development, Version 1.0

    EPA Science Inventory

    Environmental claims based on life cycle assessment (LCA) can provide quantitative, full life cycle information on products in a format that can permit comparisons and thereby inform purchasing decisions. In recent years, a number of standards and guides have emerged for making b...

  9. Detailed Life Cycle Assessment of Bounty Paper Towel Operations in the United States

    EPA Science Inventory

    Life Cycle Assessment (LCA) is a well-established and informative method of understanding the environmental impacts of consumer products across the entire value chain. However, companies committed to sustainability are interested in more methods that examine their products and ac...

  10. LIFE CYCLE DESIGN GUIDANCE MANUAL: ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    EPA Science Inventory

    This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. he approach is based on the product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, and...

  11. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    EPA Science Inventory

    The U.S Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory and the University of Michigan are cooperating in a project to reduce environmental impacts and health risks through product system design. The resulting framework for life cycle design is pr...

  12. LIFE CYCLE DESIGN GUIDANCE MANUAL - ENVIRONMENTAL REQUIREMENTS AND THE PRODUCT SYSTEM

    EPA Science Inventory

    This document seeks to promote the reduction of environmental impacts and health risks through a systems approach to design. The approach is based on die product life cycle, which includes raw materials acquisition and processing, manufacturing, use/service, resource recovery, an...

  13. Mitochondrial redox cycling of mitoquinone leads to superoxide production and cellular apoptosis.

    PubMed

    Doughan, Abdulrahman K; Dikalov, Sergey I

    2007-11-01

    The mitochondria-targeted drug mitoquinone (MitoQ) has been used as an antioxidant that may selectively block mitochondrial oxidative damage; however, it has been recently suggested to increase reactive oxygen species (ROS) generation in malate- and glutamate-fueled mitochondria. To address this controversy, we studied the effects of MitoQ on endothelial and mitochondrial ROS production. We found that in a cell-free system with flavin-containing enzyme cytochrome P-450 reductase, MitoQ is a very efficient redox cycling agent and produced more superoxide compared with equal concentrations of menadione (10-1,000 nM). Treatment of endothelial cells with MitoQ resulted in a dramatic increase in superoxide production. In isolated mitochondria, MitoQ increased complex I-driven mitochondrial ROS production, whereas supplementation with ubiquinone-10 had no effect on ROS production. Similar results were observed in mitochondria isolated from endothelial cells incubated for 1 h with MitoQ. Inhibitor analysis suggested that the redox cycling of MitoQ occurred at two sites on complex I, proximal and distal to the rotenone-binding site. This was confirmed by demonstrating the redox cycling of MitoQ on purified mitochondrial complex I as well as NADH-fueled submitochondrial particles. Mitoquinone time- and dose-dependently increased endothelial cell apoptosis. These findings demonstrate that MitoQ may be prooxidant and proapoptotic because its quinone group can participate in redox cycling and superoxide production. In light of these results, studies using mitoquinone as an antioxidant should be interpreted with caution.

  14. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage-host interactions in Lactobacillus helveticus.

    PubMed

    Zago, Miriam; Scaltriti, Erika; Fornasari, Maria Emanuela; Rivetti, Claudio; Grolli, Stefano; Giraffa, Giorgio; Ramoni, Roberto; Carminati, Domenico

    2012-01-01

    Bacteriophages attacking lactic acid bacteria (LAB) still represent a crucial problem in industrial dairy fermentations. The consequences of a phage infection against LAB can lead to fermentation delay, alteration of the product quality and, in most severe cases, the product loss. Phage particles enumeration and phage-host interactions are normally evaluated by conventional plaque count assays, but, in many cases, these methods can be unsuccessful. Bacteriophages of Lactobacillus helveticus, a LAB species widely used as dairy starter or probiotic cultures, are often unable to form lysis plaques, thus impairing their enumeration by plate assay. In this study, we used epifluorescence microscopy to enumerate L. helveticus phage particles from phage-infected cultures and Atomic Force Microscopy (AFM) to visualize both phages and bacteria during the different stages of the lytic cycle. Preliminary, we tested the sensitivity of phage counting by epifluorescence microscopy. To this end, phage particles of ΦAQ113, a lytic phage of L. helveticus isolated from a whey starter culture, were stained by SYBR Green I and enumerated by epifluorescence microscopy. Values obtained by the microscopic method were 10 times higher than plate counts, with a lowest sensitivity limit of ≥6log phage/ml. The interaction of phage ΦAQ113 with its host cell L. helveticus Lh1405 was imaged by AFM after 0, 2 and 5h from phage-host adsorption. The lytic cycle was followed by epifluorescence microscopy counting and the concomitant cell wall changes were visualized by AFM imaging. Our results showed that these two methods can be combined for a reliable phage enumeration and for studying phage and host morphology during infection processes, thus giving a complete overview of phage-host interactions in L. helveticus strains involved in dairy productions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  16. The impact of soil amendments on greenhouse gas emissions: a comprehensive life cycle assessment approach

    NASA Astrophysics Data System (ADS)

    DeLonge, M. S.; Ryals, R.; Silver, W. L.

    2011-12-01

    Soil amendments, such as compost and manure, can be applied to grasslands to improve soil conditions and enhance aboveground net primary productivity. Applying such amendments can also lead to soil carbon (C) sequestration and, when materials are diverted from waste streams (e.g., landfills, manure lagoons), can offset greenhouse gas (GHG) emissions. However, amendment production and application is also associated with GHG emissions, and the net impact of these amendments remains unclear. To investigate the potential for soil amendments to reduce net GHG emissions, we developed a comprehensive, field-scale life cycle assessment (LCA) model. The LCA includes GHG (i.e., CO2, CH4, N2O) emissions of soil amendment production, application, and ecosystem response. Emissions avoided by diverting materials from landfills or manure management systems are also considered. We developed the model using field observations from grazed annual grassland in northern California (e.g., soil C; above- and belowground net primary productivity; C:N ratios; trace gas emissions from soils, manure piles, and composting), CENTURY model simulations (e.g., long-term soil C and trace gas emissions from soils under various land management strategies), and literature values (e.g., GHG emissions from transportation, inorganic fertilizer production, composting, and enteric fermentation). The LCA quantifies and contrasts the potential net GHG impacts of applying compost, manure, and commercial inorganic fertilizer to grazing lands. To estimate the LCA uncertainty, sensitivity tests were performed on the most widely ranging or highly uncertain parameters (e.g., compost materials, landfill emissions, manure management system emissions). Finally, our results are scaled-up to assess the feasibility and potential impacts of large-scale adoption of soil amendment application as a land-management strategy in California. Our base case results indicate that C sinks and emissions offsets associated with compost production and application can exceed life cycle emissions, potentially leading to a net reduction in GHG emissions of over 20 Mg CO2e per hectare of treated land. If similar results could be obtained in only 5% of California's 2,550,000 ha of rangeland, compost amendment application could offset the annual emissions of the California agriculture and forestry industries (> 28.25 million Mg CO2e, California Air Resources Board, 2008). Our findings indicate that application of compost amendments to grasslands may be an effective, beneficial, and relatively inexpensive strategy to contribute to climate change mitigation.

  17. Supporting Sustainable Markets Through Life Cycle Assessment: Evaluating emerging technologies, incorporating uncertainty and the consumer perspective

    NASA Astrophysics Data System (ADS)

    Merugula, Laura

    As civilization's collective knowledge grows, we are met with the realization that human-induced physical and biological transformations influenced by exogenous psychosocial and economic factors affect virtually every ecosystem on the planet. Despite improvements in energy generation and efficiencies, demand of material goods and energy services increases with no sign of a slowing pace. Sustainable development requires a multi-prong approach that involves reshaping demand, consumer education, sustainability-oriented policy, and supply chain management that does not serve the expansionist mentality. Thus, decision support tools are needed that inform developers, consumers, and policy-makers for short-term and long-term planning. These tools should incorporate uncertainty through quantitative methods as well as qualitatively informing the nature of the model as imperfect but necessary and adequate. A case study is presented of the manufacture and deployment of utility-scale wind turbines evaluated for a proposed change in blade manufacturing. It provides the first life cycle assessment (LCA) evaluating impact of carbon nanofibers, an emerging material, proposed for integration to wind power generation systems as blade reinforcement. Few LCAs of nanoproducts are available in scientific literature due to research and development (R&D) for applications that continues to outpace R&D for environmental, health, and safety (EHS) and life cycle impacts. LCAs of emerging technologies are crucial for informing developers of potential impacts, especially where market growth is swift and dissipative. A second case study is presented that evaluates consumer choice between disposable and reusable beverage cups. While there are a few studies that attempt to make the comparison using LCA, none adequately address uncertainty, nor are they representative for the typical American consumer. By disaggregating U.S. power generation into 26 subregional grid production mixes and evaluating the comparison with respect to a representative range of efficiencies in dishwasher units, a realistic comparison was made. A statistical approach was devised to process the available output by combining a Z-score test with the Cox method for confidence intervals. Despite the common use of LCA software with Monte Carlo analysis, this approach to compare distributions has not been discovered in LCA-related literature and offers a straightforward method for extending analysis under conditions of positive skew approximated by a lognormal distribution, which is common in LCA parameters. The two case studies provide product developer and consumer guidance, respectively. They furthermore may be used to inform policy in both direct and nuanced manners. The encouragement of product reuse is facilitated for individuals and organizations providing food-service facilities. Caution in efforts to increase power generation capacity with renewable energy not coupled with reduction of demand is implied.

  18. Methods Used to Support a Life Cycle of Complex Engineering Products

    NASA Astrophysics Data System (ADS)

    Zakharova, Alexandra A.; Kolegova, Olga A.; Nekrasova, Maria E.; Eremenko, Andrey O.

    2016-08-01

    Management of companies involved in the design, development and operation of complex engineering products recognize the relevance of creating systems for product lifecycle management. A system of methods is proposed to support life cycles of complex engineering products, based on fuzzy set theory and hierarchical analysis. The system of methods serves to demonstrate the grounds for making strategic decisions in an environment of uncertainty, allows the use of expert knowledge, and provides interconnection of decisions at all phases of strategic management and all stages of a complex engineering product lifecycle.

  19. Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder

    PubMed Central

    Curtin, Paul; Curtin, Austen; Gennings, Chris; Arora, Manish; Siper, Paige; Meyering, Kristin; Kolevzon, Alexander; Mollon, Josephine; Zammit, Stanley; Wright, Robert O.; Reichenberg, Abraham

    2018-01-01

    Metals are critical to neurodevelopment, and dysregulation in early life has been documented in autism spectrum disorder (ASD). However, underlying mechanisms and biochemical assays to distinguish ASD cases from controls remain elusive. In a nationwide study of twins in Sweden, we tested whether zinc-copper cycles, which regulate metal metabolism, are disrupted in ASD. Using novel tooth-matrix biomarkers that provide direct measures of fetal elemental uptake, we developed a predictive model to distinguish participants who would be diagnosed with ASD in childhood from those who did not develop the disorder. We replicated our findings in three independent studies in the United States and the UK. We show that three quantifiable characteristics of fetal and postnatal zinc-copper rhythmicity are altered in ASD: the average duration of zinc-copper cycles, regularity with which the cycles recur, and the number of complex features within a cycle. In all independent study sets and in the pooled analysis, zinc-copper rhythmicity was disrupted in ASD cases. In contrast to controls, in ASD cases, the cycle duration was shorter (F = 52.25, P < 0.001), regularity was reduced (F = 47.99, P < 0.001), and complexity diminished (F = 57.30, P < 0.001). With two distinct classification models that used metal rhythmicity data, we achieved 90% accuracy in classifying cases and controls, with sensitivity to ASD diagnosis ranging from 85 to 100% and specificity ranging from 90 to 100%. These findings suggest that altered zinc-copper rhythmicity precedes the emergence of ASD, and quantitative biochemical measures of metal rhythmicity distinguish ASD cases from controls. PMID:29854952

  20. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment.

    PubMed

    Singh, Shweta; Bakshi, Bhavik R

    2013-08-20

    Nitrogen is indispensable for sustaining human activities through its role in the production of food, animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen cycle. This paper incorporates the biogeochemical cycle of nitrogen into the 2002 input-output model of the U.S. economy. Due to the complexity of this cycle, this work proposes a unique classification of nitrogen flows to facilitate understanding of the interaction between economic activities and various flows in the nitrogen cycle. The classification scheme distinguishes between the mobilization of inert nitrogen into its reactive form, use of nitrogen in various products, and nitrogen losses to the environment. The resulting inventory and model of the US economy can help quantify the direct and indirect impacts or dependence of economic sectors on the nitrogen cycle. This paper emphasizes the need for methods to manage the N cycle that focus not just on N losses, which has been the norm until now, but also include other N flows for a more comprehensive view and balanced decisions. Insight into the N profile of various sectors of the 2002 U.S. economy is presented, and the inventory can also be used for LCA or Hybrid LCA of various products. The resulting model is incorporated in the approach of Ecologically-Based LCA and available online.

Top