Sample records for cycle regulating kinase

  1. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors

    PubMed Central

    Zheng, Yingfeng; Murphy, Leigh C.

    2016-01-01

    Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M. PMID:26778927

  2. Cell cycle proteins as promising targets in cancer therapy.

    PubMed

    Otto, Tobias; Sicinski, Piotr

    2017-01-27

    Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells and development of most tissues. By contrast, many cancers are uniquely dependent on these proteins and hence are selectively sensitive to their inhibition. After decades of research on the physiological functions of cell cycle proteins and their relevance for cancer, this knowledge recently translated into the first approved cancer therapeutic targeting of a direct regulator of the cell cycle. In this Review, we focus on proteins that directly regulate cell cycle progression (such as cyclin-dependent kinases (CDKs)), as well as checkpoint kinases, Aurora kinases and Polo-like kinases (PLKs). We discuss the role of cell cycle proteins in cancer, the rationale for targeting them in cancer treatment and results of clinical trials, as well as the future therapeutic potential of various cell cycle inhibitors.

  3. C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling

    PubMed Central

    Falin, Rebecca A.; Miyazaki, Hiroaki

    2011-01-01

    Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl− cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes. PMID:21160027

  4. The Yeast Cyclin-Dependent Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression.

    PubMed

    Ewald, Jennifer C; Kuehne, Andreas; Zamboni, Nicola; Skotheim, Jan M

    2016-05-19

    Cell division entails a sequence of processes whose specific demands for biosynthetic precursors and energy place dynamic requirements on metabolism. However, little is known about how metabolic fluxes are coordinated with the cell division cycle. Here, we examine budding yeast to show that more than half of all measured metabolites change significantly through the cell division cycle. Cell cycle-dependent changes in central carbon metabolism are controlled by the cyclin-dependent kinase (Cdk1), a major cell cycle regulator, and the metabolic regulator protein kinase A. At the G1/S transition, Cdk1 phosphorylates and activates the enzyme Nth1, which funnels the storage carbohydrate trehalose into central carbon metabolism. Trehalose utilization fuels anabolic processes required to reliably complete cell division. Thus, the cell cycle entrains carbon metabolism to fuel biosynthesis. Because the oscillation of Cdk activity is a conserved feature of the eukaryotic cell cycle, we anticipate its frequent use in dynamically regulating metabolism for efficient proliferation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Regulation of cAMP on the first mitotic cell cycle of mouse embryos.

    PubMed

    Yu, Aiming; Zhang, Zhe; Bi, Qiang; Sun, Bingqi; Su, Wenhui; Guan, Yifu; Mu, Runqing; Miao, Changsheng; Zhang, Jie; Yu, Bingzhi

    2008-03-01

    Mitosis promoting factor (MPF) plays a central role during the first mitosis of mouse embryo. We demonstrated that MPF activity increased when one-cell stage mouse embryo initiated G2/M transition following the decrease of cyclic adenosine 3', 5'-monophosphate (cAMP) and cAMP-dependent protein kinase (PKA) activity. When cAMP and PKA activity increases again, MPF activity decreases and mouse embryo starts metaphase-anaphase transition. In the downstream of cAMP/PKA, there are some effectors such as polo-like kinase 1 (Plk1), Cdc25, Mos (mitogen-activated protein kinase kinase kinase), MEK (mitogen-activated protein kinase kinase), mitogen-activated protein kinase (MAPK), Wee1, anaphase-promoting complex (APC), and phosphoprotein phosphatase that are involved in the regulation of MPF activity. Here, we demonstrated that following activation of MPF, MAPK activity was steady, whereas Plk1 activity fluctuated during the first cell cycle. Plk1 activity was the highest at metaphase and decreased at metaphase-anaphase transition. Further, we established a mathematical model using Gepasi algorithm and the simulation was in agreement with the experimental data. Above all the evidences, we suggested that cAMP and PKA might be the upstream factors which were included in the regulation of the first cell cycle development of mouse embryo. Copyright 2007 Wiley-Liss, Inc.

  6. Mitotic Regulation by NEK Kinase Networks

    PubMed Central

    Fry, Andrew M.; Bayliss, Richard; Roig, Joan

    2017-01-01

    Genetic studies in yeast and Drosophila led to identification of cyclin-dependent kinases (CDKs), Polo-like kinases (PLKs) and Aurora kinases as essential regulators of mitosis. These enzymes have since been found in the majority of eukaryotes and their cell cycle-related functions characterized in great detail. However, genetic studies in another fungal species, Aspergillus nidulans, identified a distinct family of protein kinases, the NEKs, that are also widely conserved and have key roles in the cell cycle, but which remain less well studied. Nevertheless, it is now clear that multiple NEK family members act in networks to regulate specific events of mitosis, including centrosome separation, spindle assembly and cytokinesis. Here, we describe our current understanding of how the NEK kinases contribute to these processes, particularly through targeted phosphorylation of proteins associated with the microtubule cytoskeleton. We also present the latest findings on molecular events that control the activation state of the NEKs and how these are revealing novel modes of enzymatic regulation relevant not only to other kinases but also to pathological mechanisms of disease. PMID:29250521

  7. Cell cycle-dependent regulation of Aurora kinase B mRNA by the Microprocessor complex.

    PubMed

    Jung, Eunsun; Seong, Youngmo; Seo, Jae Hong; Kwon, Young-Soo; Song, Hoseok

    2014-03-28

    Aurora kinase B regulates the segregation of chromosomes and the spindle checkpoint during mitosis. In this study, we showed that the Microprocessor complex, which is responsible for the processing of the primary transcripts during the generation of microRNAs, destabilizes the mRNA of Aurora kinase B in human cells. The Microprocessor-mediated cleavage kept Aurora kinase B at a low level and prevented premature entrance into mitosis. The cleavage was reduced during mitosis leading to the accumulation of Aurora kinase B mRNA and protein. In addition to Aurora kinase B mRNA, the processing of other primary transcripts of miRNAs were also decreased during mitosis. We found that the cleavage was dependent on an RNA helicase, DDX5, and the association of DDX5 and DDX17 with the Microprocessor was reduced during mitosis. Thus, we propose a novel mechanism by which the Microprocessor complex regulates stability of Aurora kinase B mRNA and cell cycle progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Bombyx mori cyclin-dependent kinase inhibitor is involved in regulation of the silkworm cell cycle.

    PubMed

    Tang, X-F; Zhou, X-L; Zhang, Q; Chen, P; Lu, C; Pan, M-H

    2018-06-01

    Cyclin-dependent kinase inhibitors (CKIs) are negative regulators of the cell cycle. They can bind to cyclin-dependent kinase (CDK)-cyclin complexes and inhibit CDK activities. We identified a single homologous gene of the CDK interacting protein/kinase inhibitory protein (Cip/Kip) family, BmCKI, in the silkworm, Bombyx mori. The gene transcribes two splice variants: a 654-bp-long BmCKI-L (the longer splice variant) encoding a protein with 217 amino acids and a 579-bp-long BmCKI-S (the shorter splice variant) encoding a protein with 192 amino acids. BmCKI-L and BmCKI-S contain the Cip/Kip family conserved cyclin-binding domain and the CDK-binding domain. They are localized in the nucleus and have an unconventional bipartite nuclear localization signal at amino acid residues 181-210. Overexpression of BmCKI-L or BmCKI-S affected cell cycle progression; the cell cycle was arrested in the first gap phase of cell cycle (G1). RNA interference of BmCKI-L or BmCKI-S led to cells accumulating in the second gap phase and the mitotic phase of cell cycle (G2/M). Both BmCKI-L and BmCKI-S are involved in cell cycle regulation and probably have similar effects. The transgenic silkworm with BmCKI-L overexpression (BmCKI-L-OE), exhibited embryonic lethal, larva developmental retardation and lethal phenotypes. These results suggest that BmCKI-L might regulate the growth and development of silkworm. These findings clarify the function of CKIs and increase our understanding of cell cycle regulation in the silkworm. © 2018 The Royal Entomological Society.

  9. Characterization of cyclin-dependent kinases and Cdc2/Cdc28 kinase subunits in Trichomonas vaginalis.

    PubMed

    Amador, Erick; López-Pacheco, Karla; Morales, Nataly; Coria, Roberto; López-Villaseñor, Imelda

    2017-04-01

    Cyclin-dependent kinases (CDKs) have important roles in regulating key checkpoints between stages of the cell cycle. Their activity is tightly regulated through a variety of mechanisms, including through binding with cyclin proteins and the Cdc2/Cdc28 kinase subunit (CKS), and their phosphorylation at specific amino acids. Studies of the components involved in cell cycle control in parasitic protozoa are limited. Trichomonas vaginalis is the causative agent of trichomoniasis in humans and is therefore important in public health; however, some of the basic biological processes used by this organism have not been defined. Here, we characterized proteins potentially involved in cell cycle regulation in T. vaginalis. Three genes encoding protein kinases were identified in the T. vaginalis genome, and the corresponding recombinant proteins (TvCRK1, TvCRK2, TvCRK5) were studied. These proteins displayed similar sequence features to CDKs. Two genes encoding CKSs were also identified, and the corresponding recombinant proteins were found to interact with TvCRK1 and TvCRK2 by a yeast two-hybrid system. One putative cyclin B protein from T. vaginalis was found to bind to and activate the kinase activities of TvCRK1 and TvCRK5, but not TvCRK2. This work is the first characterization of proteins involved in cell cycle control in T. vaginalis.

  10. Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation.

    PubMed

    Zhao, Zhiyong; Rivkees, Scott A

    2003-01-01

    Rho-associated coiled-coil kinases (ROCKs), initially identified as effectors for Rho GTPases, play a role in cardiac cell physiology and are also expressed in the developing heart. However, their role in cardiac development is not known. To investigate the role of these kinases in cardiac development, we examined cardiac development in cultured murine embryos treated with the ROCK inhibitor Y27632. After inhibition of ROCK activity, we found disturbed cardiac chamber formation and trabeculation. To further examine the mechanisms by which ROCK blockade causes cardiac hypoplasia, we assessed programmed cell death and cell proliferation in the hearts. We found decreased cell proliferation in the Y27632-treated hearts, but no changes in programmed cell death. We further observed that ROCK inhibition decreased cardiac myocyte proliferation, suggesting that ROCK kinases regulate cardiomyocyte division. To identify factors involved in ROCK action in regulation of cardiac cell division, we examined expression of cell cycle proteins by using Western blot analysis. We found that ROCK blockade decreased expression of cell cycle proteins, cyclin D3, CDK6, and p27(KIP1) in the hearts and cardiomyocytes, which are required for initiation of cell cycle and G1/S phase transition. These observations show that ROCK kinases play a role in cardiac development and that ROCK kinases regulate cardiac cell proliferation and cell cycle protein expression. Copyright 2002 Wiley-Liss, Inc.

  11. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms

    PubMed Central

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang

    2014-01-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27Kip1, p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27Kip1 at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. PMID:25349217

  12. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms.

    PubMed

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan

    2015-07-01

    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN. © 2014 by the Society for Experimental Biology and Medicine.

  13. Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.

    PubMed

    Frémin, Christophe; Bessard, Anne; Ezan, Frédéric; Gailhouste, Luc; Régeard, Morgane; Le Seyec, Jacques; Gilot, David; Pagès, Gilles; Pouysségur, Jacques; Langouët, Sophie; Baffet, Georges

    2009-03-01

    We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2. Our results emphasize that transient MAPK inhibition allows multiple cell cycles in primary cultures of hepatocytes and that ERK2 has a key role in the regulation of S phase entry. Moreover, we revealed a major and distinct role of ERK1 in the regulation of hepatocyte survival. Taken together, our results represent an important advance in understanding long-term survival and cell cycle regulation of hepatocytes.

  14. Deregulated expression of Cdc6 as BCR/ABL-dependent survival factor in chronic myeloid leukemia cells.

    PubMed

    Zhang, Jia-Hua; He, Yan-Li; Zhu, Rui; Du, Wen; Xiao, Jun-Hua

    2017-06-01

    Chronic myeloid leukemia is characterized by the presence of the reciprocal translocation t(9;22) and the BCR/ABL oncogene. The BCR/ABL oncogene activates multiple signaling pathways and involves the dysregulation of oncogenes during the progression of chronic myeloid leukemia. The cell division cycle protein 6, an essential regulator of DNA replication, is elevated in some human cancer cells. However, the expression of cell division cycle protein 6 in chronic myeloid leukemia and the underlying regulatory mechanism remain to be elucidated. In this study, our data showed that cell division cycle protein 6 expression was significantly upregulated in primary chronic myeloid leukemia cells and the chronic myeloid leukemia cell line K562 cells, as compared to the normal bone marrow mononuclear cells. BCR/ABL kinase inhibitor STI571 or BCR/ABL small interfering RNA could significantly downregulate cell division cycle protein 6 messenger RNA expression in K562 cells. Moreover, phosphoinositide 3-kinase/AKT pathway inhibitor LY294002 and Janus kinase/signal transducer and activator of transcription pathway inhibitor AG490 could downregulate cell division cycle protein 6 expression in K562 cells, but not RAS/mitogen-activated protein kinase pathway inhibitor PD98059 had such effect. Cell division cycle protein 6 gene silencing by small interfering RNA effectively resulted in decrease of proliferation, increase of apoptosis, and arrest of cell cycle in K562 cells. These findings have demonstrated that cell division cycle protein 6 overexpression may contribute to the high proliferation and low apoptosis in chronic myeloid leukemia cells and can be regulated by BCR/ABL signal transduction through downstream phosphoinositide 3-kinase/Akt and Janus kinase/signal transducer and activator of transcription pathways, suggesting cell division cycle protein 6 as a potential therapeutic target in chronic myeloid leukemia.

  15. Regulation of Mih1/Cdc25 by protein phosphatase 2A and casein kinase 1

    PubMed Central

    Pal, Gayatri; Paraz, Maria T.Z.; Kellogg, Douglas R.

    2008-01-01

    The Cdc25 phosphatase promotes entry into mitosis by removing cyclin-dependent kinase 1 (Cdk1) inhibitory phosphorylation. Previous work suggested that Cdc25 is activated by Cdk1 in a positive feedback loop promoting entry into mitosis; however, it has remained unclear how the feedback loop is initiated. To learn more about the mechanisms that regulate entry into mitosis, we have characterized the function and regulation of Mih1, the budding yeast homologue of Cdc25. We found that Mih1 is hyperphosphorylated early in the cell cycle and is dephosphorylated as cells enter mitosis. Casein kinase 1 is responsible for most of the hyperphosphorylation of Mih1, whereas protein phosphatase 2A associated with Cdc55 dephosphorylates Mih1. Cdk1 appears to directly phosphorylate Mih1 and is required for initiation of Mih1 dephosphorylation as cells enter mitosis. Collectively, these observations suggest that Mih1 regulation is achieved by a balance of opposing kinase and phosphatase activities. Because casein kinase 1 is associated with sites of polar growth, it may regulate Mih1 as part of a signaling mechanism that links successful completion of growth-related events to cell cycle progression. PMID:18316413

  16. The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms.

    PubMed

    Croft, Daniel R; Olson, Michael F

    2006-06-01

    The members of the Rho GTPase family are well known for their regulation of actin cytoskeletal structures. In addition, they influence progression through the cell cycle. The RhoA and RhoC proteins regulate numerous effector proteins, with a central and vital signaling role mediated by the ROCK I and ROCK II serine/threonine kinases. The requirement for ROCK function in the proliferation of numerous cell types has been revealed by studies utilizing ROCK-selective inhibitors such as Y-27632. However, the mechanisms by which ROCK signaling promotes cell cycle progression have not been thoroughly characterized. Using a conditionally activated ROCK-estrogen receptor fusion protein, we found that ROCK activation is sufficient to stimulate G1/S cell cycle progression in NIH 3T3 mouse fibroblasts. Further analysis revealed that ROCK acts via independent pathways to alter the levels of cell cycle regulatory proteins: cyclin D1 and p21(Cip1) elevation via Ras and the mitogen-activated protein kinase pathway, increased cyclin A via LIM kinase 2, and reduction of p27(Kip1) protein levels. Therefore, the influence of ROCK on cell cycle regulatory proteins occurs by multiple independent mechanisms.

  17. Selective Effects of PD-1 on Akt and Ras Pathways Regulate Molecular Components of the Cell Cycle and Inhibit T Cell Proliferation

    PubMed Central

    Patsoukis, Nikolaos; Brown, Julia; Petkova, Victoria; Liu, Fang; Li, Lequn; Boussiotis, Vassiliki A.

    2017-01-01

    The receptor programmed death 1 (PD-1) inhibits T cell proliferation and plays a critical role in suppressing self-reactive T cells, and it also compromises antiviral and antitumor responses. To determine how PD-1 signaling inhibits T cell proliferation, we used human CD4+ T cells to examine the effects of PD-1 signaling on the molecular control of the cell cycle. The ubiquitin ligase SCFSkp2 degrades p27kip1, an inhibitor of cyclin-dependent kinases (Cdks), and PD-1 blocked cell cycle progression through the G1 phase by suppressing transcription of SKP2, which encodes a component of this ubiquitin ligase. Thus, in T cells stimulated through PD-1, Cdks were not activated, and two critical Cdk substrates were not phosphorylated. Activation of PD-1 inhibited phosphorylation of the retinoblastoma gene product, which suppressed expression of E2F target genes. PD-1 also inhibited phosphorylation of the transcription factor Smad3, which increased its activity. These events induced additional inhibitory checkpoints in the cell cycle by increasing the abundance of the G1 phase inhibitor p15INK4 and repressing the Cdk-activating phosphatase Cdc25A. PD-1 suppressed SKP2 transcription by inhibiting phosphoinositide 3-kinase–Akt and Ras–mitogen-activated and extracellular signal–regulated kinase kinase (MEK)–extracellular signal–regulated kinase (ERK) signaling. Exposure of cells to the proliferation-promoting cytokine interleukin-2 restored activation of MEK-ERK signaling, but not Akt signaling, and only partially restored SKP2 expression. Thus, PD-1 blocks cell cycle progression and proliferation of T lymphocytes by affecting multiple regulators of the cell cycle. PMID:22740686

  18. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway.

    PubMed

    Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H

    1999-05-25

    To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

  19. Regulation of Cell Cycle and Stress Responses to Hydrostatic Pressure in Fission Yeast

    PubMed Central

    George, Vinoj T.; Brooks, Gavin

    2007-01-01

    We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress. PMID:17699598

  20. The therapeutic potential of cell cycle targeting in multiple myeloma.

    PubMed

    Maes, Anke; Menu, Eline; Veirman, Kim De; Maes, Ken; Vand Erkerken, Karin; De Bruyne, Elke

    2017-10-27

    Proper cell cycle progression through the interphase and mitosis is regulated by coordinated activation of important cell cycle proteins (including cyclin-dependent kinases and mitotic kinases) and several checkpoint pathways. Aberrant activity of these cell cycle proteins and checkpoint pathways results in deregulation of cell cycle progression, which is one of the key hallmarks of cancer. Consequently, intensive research on targeting these cell cycle regulatory proteins identified several candidate small molecule inhibitors that are able to induce cell cycle arrest and even apoptosis in cancer cells. Importantly, several of these cell cycle regulatory proteins have also been proposed as therapeutic targets in the plasma cell malignancy multiple myeloma (MM). Despite the enormous progress in the treatment of MM the past 5 years, MM still remains most often incurable due to the development of drug resistance. Deregulated expression of the cyclins D is observed in virtually all myeloma patients, emphasizing the potential therapeutic interest of cyclin-dependent kinase inhibitors in MM. Furthermore, other targets have also been identified in MM, such as microtubules, kinesin motor proteins, aurora kinases, polo-like kinases and the anaphase promoting complex/cyclosome. This review will provide an overview of the cell cycle proteins and checkpoint pathways deregulated in MM and discuss the therapeutic potential of targeting proteins or protein complexes involved in cell cycle control in MM.

  1. Inhibition of Aurora A Kinase by Alisertib Induces Autophagy and Cell Cycle Arrest and Increases Chemosensitivity in Human Hepatocellular Carcinoma HepG2 Cells.

    PubMed

    Zhu, Qiaohua; Yu, Xinfa; Zhou, Zhi-Wei; Zhou, Chengyu; Chen, Xiao-Wu; Zhou, Shu-Feng

    2017-01-01

    Aurora A kinase represent a feasible target in cancer therapy. To evaluate the proteomic response of human liver carcinoma cells to alisertib (ALS) and identify the molecular targets of ALS, we examined the effects of ALS on the proliferation, cell cycle, autophagy, apoptosis, and chemosensitivity in HepG2 cells. The stable-isotope labeling by amino acids in cell culture (SILAC) based quantitative proteomic study was performed to evaluate the proteomic response to ALS. Cell cycle distribution and apoptosis were assessed using flow cytometry and autophagy was determined using flow cytometry and confocal microscopy. Our SILAC proteomic study showed that ALS regulated the expression of 914 proteins, with 407 molecules being up-regulated and 507 molecules being down-regulated in HepG2 cells. Ingenuity pathway analysis (IPA) and KEGG pathway analysis identified 146 and 32 signaling pathways were regulated by ALS, respectively, which were associated with cell survival, programmed cell death, and nutrition-energy metabolism. Subsequently, the verification experiments showed that ALS remarkably arrested HepG2 cells in G2/M phase and led to an accumulation of aneuploidy via regulating the expression of key cell cycle regulators. ALS induced a marked autophagy in a concentration- and time-dependent manner via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Autophagy inhibition promoted the pro-apoptotic effect of ALS, indicating a cyto-protective role of ALS-induced autophagy. ALS increased the chemosensitivity of HepG2 cells to cisplatin and doxorubicin. Taken together, ALS induces autophagy and cell cycle arrest in HepG2 cells via PI3K/Akt/mTOR-mediated pathway. Autophagy inhibition may promote the anticancer effect of ALS and sensitize the chemotherapy in HepG2 cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. EBNA3C-Mediated Regulation of Aurora Kinase B Contributes to Epstein-Barr Virus-Induced B-Cell Proliferation through Modulation of the Activities of the Retinoblastoma Protein and Apoptotic Caspases

    PubMed Central

    Jha, Hem Chandra; Lu, Jie; Saha, Abhik; Cai, Qiliang; Banerjee, Shuvomoy; Prasad, Mahadesh A. J.

    2013-01-01

    Epstein-Barr virus (EBV) is an oncogenic gammaherpesvirus that is implicated in several human malignancies, including Burkitt's lymphoma (BL), posttransplant lymphoproliferative disease (PTLD), nasopharyngeal carcinoma (NPC), and AIDS-associated lymphomas. Epstein-Barr nuclear antigen 3C (EBNA3C), one of the essential EBV latent antigens, can induce mammalian cell cycle progression through its interaction with cell cycle regulators. Aurora kinase B (AK-B) is important for cell division, and deregulation of AK-B is associated with aneuploidy, incomplete mitotic exit, and cell death. Our present study shows that EBNA3C contributes to upregulation of AK-B transcript levels by enhancing the activity of its promoter. Further, EBNA3C also increased the stability of the AK-B protein, and the presence of EBNA3C leads to reduced ubiquitination of AK-B. Importantly, EBNA3C in association with wild-type AK-B but not with its kinase-dead mutant led to enhanced cell proliferation, and AK-B knockdown can induce nuclear blebbing and cell death. This phenomenon was rescued in the presence of EBNA3C. Knockdown of AK-B resulted in activation of caspase 3 and caspase 9, along with poly(ADP-ribose) polymerase 1 (PARP1) cleavage, which is known to be an important contributor to apoptotic signaling. Importantly, EBNA3C failed to stabilize the kinase-dead mutant of AK-B compared to wild-type AK-B, which suggests a role for the kinase domain in AK-B stabilization and downstream phosphorylation of the cell cycle regulator retinoblastoma protein (Rb). This study demonstrates the functional relevance of AK-B kinase activity in EBNA3C-regulated B-cell proliferation and apoptosis. PMID:23986604

  3. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing

    PubMed Central

    Laranjeiro, Ricardo; Tamai, T. Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-01-01

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors. PMID:23569261

  4. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing.

    PubMed

    Laranjeiro, Ricardo; Tamai, T Katherine; Peyric, Elodie; Krusche, Peter; Ott, Sascha; Whitmore, David

    2013-04-23

    Specific stages of the cell cycle are often restricted to particular times of day because of regulation by the circadian clock. In zebrafish, both mitosis (M phase) and DNA synthesis (S phase) are clock-controlled in cell lines and during embryo development. Despite the ubiquitousness of this phenomenon, relatively little is known about the underlying mechanism linking the clock to the cell cycle. In this study, we describe an evolutionarily conserved cell-cycle regulator, cyclin-dependent kinase inhibitor 1d (20 kDa protein, p20), which along with p21, is a strongly rhythmic gene and directly clock-controlled. Both p20 and p21 regulate the G1/S transition of the cell cycle. However, their expression patterns differ, with p20 predominant in developing brain and peak expression occurring 6 h earlier than p21. p20 expression is also p53-independent in contrast to p21 regulation. Such differences provide a unique mechanism whereby S phase is set to different times of day in a tissue-specific manner, depending on the balance of these two inhibitors.

  5. Kinases Involved in Both Autophagy and Mitosis.

    PubMed

    Li, Zhiyuan; Zhang, Xin

    2017-08-31

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations.

  6. Kinases Involved in Both Autophagy and Mitosis

    PubMed Central

    2017-01-01

    Both mitosis and autophagy are highly regulated dynamic cellular processes and involve various phosphorylation events catalysed by kinases, which play vital roles in almost all physiological and pathological conditions. Mitosis is a key event during the cell cycle, in which the cell divides into two daughter cells. Autophagy is a process in which the cell digests its own cellular contents. Although autophagy regulation has mainly been studied in asynchronous cells, increasing evidence indicates that autophagy is in fact tightly regulated in mitosis. Here in this review, we will discuss kinases that were originally identified to be involved in only one of either mitosis or autophagy, but were later found to participate in both processes, such as CDKs (cyclin-dependent kinases), Aurora kinases, PLK-1 (polo-like kinase 1), BUB1 (budding uninhibited by benzimidazoles 1), MAPKs (mitogen-activated protein kinases), mTORC1 (mechanistic target of rapamycin complex 1), AMPK (AMP-activated protein kinase), PI3K (phosphoinositide-3 kinase) and protein kinase B (AKT). By focusing on kinases involved in both autophagy and mitosis, we will get a more comprehensive understanding about the reciprocal regulation between the two key cellular events, which will also shed light on their related therapeutic investigations. PMID:28858266

  7. Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

    PubMed

    Hizli, Asli A; Chi, Yong; Swanger, Jherek; Carter, John H; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G; Clurman, Bruce E

    2013-02-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A-cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity.

  8. Phosphorylation of Eukaryotic Elongation Factor 2 (eEF2) by Cyclin A–Cyclin-Dependent Kinase 2 Regulates Its Inhibition by eEF2 Kinase

    PubMed Central

    Hizli, Asli A.; Chi, Yong; Swanger, Jherek; Carter, John H.; Liao, Yi; Welcker, Markus; Ryazanov, Alexey G.

    2013-01-01

    Protein synthesis is highly regulated via both initiation and elongation. One mechanism that inhibits elongation is phosphorylation of eukaryotic elongation factor 2 (eEF2) on threonine 56 (T56) by eEF2 kinase (eEF2K). T56 phosphorylation inactivates eEF2 and is the only known normal eEF2 functional modification. In contrast, eEF2K undergoes extensive regulatory phosphorylations that allow diverse pathways to impact elongation. We describe a new mode of eEF2 regulation and show that its phosphorylation by cyclin A–cyclin-dependent kinase 2 (CDK2) on a novel site, serine 595 (S595), directly regulates T56 phosphorylation by eEF2K. S595 phosphorylation varies during the cell cycle and is required for efficient T56 phosphorylation in vivo. Importantly, S595 phosphorylation by cyclin A-CDK2 directly stimulates eEF2 T56 phosphorylation by eEF2K in vitro, and we suggest that S595 phosphorylation facilitates T56 phosphorylation by recruiting eEF2K to eEF2. S595 phosphorylation is thus the first known eEF2 modification that regulates its inhibition by eEF2K and provides a novel mechanism linking the cell cycle machinery to translational control. Because all known eEF2 regulation is exerted via eEF2K, S595 phosphorylation may globally couple the cell cycle machinery to regulatory pathways that impact eEF2K activity. PMID:23184662

  9. The Down syndrome-related protein kinase DYRK1A phosphorylates p27Kip1 and Cyclin D1 and induces cell cycle exit and neuronal differentiation

    PubMed Central

    Soppa, Ulf; Schumacher, Julian; Florencio Ortiz, Victoria; Pasqualon, Tobias; Tejedor, Francisco J; Becker, Walter

    2014-01-01

    A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. PMID:24806449

  10. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor.

    PubMed

    Roy, R; Adamczewski, J P; Seroz, T; Vermeulen, W; Tassan, J P; Schaeffer, L; Nigg, E A; Hoeijmakers, J H; Egly, J M

    1994-12-16

    A protein kinase activity that phosphorylates the C-terminal domain (CTD) of RNA polymerase II and is associated with the basal transcription-repair factor TFIIH (also called BTF2) resides with MO15, a cyclin-dependent protein kinase that was first found to be involved in cell cycle regulation. Using in vivo and in vitro repair assays, we show that MO15 is important for nucleotide excision repair, most likely through its association with TFIIH, thus providing an unexpected link among three important cellular mechanisms.

  11. The Possible Crosstalk of MOB2 With NDR1/2 Kinases in Cell Cycle and DNA Damage Signaling.

    PubMed

    Gundogdu, Ramazan; Hergovich, Alexander

    2016-09-06

    This article is the authors' opinion of the roles of the signal transducer Mps one binder 2 (MOB2) in the control of cell cycle progression and the DNA Damage Response (DDR). We recently found that endogenous MOB2 is required to prevent the accumulation of endogenous DNA damage in order to prevent the undesired, and possibly detrimental, activation of cell cycle checkpoints. In this regard, it is noteworthy that MOB2 has been linked biochemically to the regulation of the NDR1/2 (aka STK38/STK38L) protein kinases, which themselves have functions at different steps of the cell cycle. Therefore, we are speculating in this article about the possible connections of MOB2 with NDR1/2 kinases in cell cycle and DDR Signaling.

  12. Cdc7 kinase - a new target for drug development.

    PubMed

    Swords, Ronan; Mahalingam, Devalingam; O'Dwyer, Michael; Santocanale, Corrado; Kelly, Kevin; Carew, Jennifer; Giles, Francis

    2010-01-01

    The cell division cycle 7 (Cdc7) is a serine threonine kinase that is of critical importance in the regulation of normal cell cycle progression. Cdc7 kinase is highly conserved during evolution and much has been learned about its biological roles in humans through the study of lower eukaryotes, particularly yeasts. Two important regulator proteins, Dbf4 and Drf1, bind to and modulate the kinase activity of human Cdc7 which phosphorylates several sites on Mcm2 (minichromosome maintenance protein 2), one of the six subunits of the replicative DNA helicase needed for duplication of the genome. Through regulation of both DNA synthesis and DNA damage response, both key functions in the survival of tumour cells, Cdc7 becomes an attractive target for pharmacological inhibition. There are much data available on the pre-clinical anti-cancer effects of Cdc7 depletion and although there are no available Cdc7 inhibitors in clinical trials as yet, several lead compounds are being optimised for this purpose. In this review, we will address the current status of Cdc7 as an important target for new drug development.

  13. The MPS1 family of protein kinases.

    PubMed

    Liu, Xuedong; Winey, Mark

    2012-01-01

    MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.

  14. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression.

    PubMed

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian; Kohlwein, Sepp D

    2015-03-10

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle-dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle-dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2A(Cdc55)) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle.

  15. Decursin inhibits growth of human bladder and colon cancer cells via apoptosis, G1-phase cell cycle arrest and extracellular signal-regulated kinase activation.

    PubMed

    Kim, Wun-Jae; Lee, Se-Jung; Choi, Young Deuk; Moon, Sung-Kwon

    2010-04-01

    Decursin, a pyranocoumarin isolated from the Korean Angelica gigas root, has demonstrated anti-cancer properties. In the present study, we found that decursin inhibited cell viability in cultured human urinary bladder cancer 235J cells and colon cancer HCT116 cells. The inhibited proliferation was due to apoptotic induction, because both cells treated with decursin dose-dependently showed a sub-G1 phase accumulation and an increased cytoplasmic DNA-histone complex. Cell death caused by decursin was also associated with the down-regulation of anti-apoptotic factor Bcl-2 and the up-regulation of pro-apoptotic molecules cytochrome c, caspase 3 and Bax. Treatment of both types of cancer cells with decursin resulted in G1-phase cell cycle arrest, as revealed by FACS analyses. In addition, decursin increased protein levels of p21WAF1 with a decrease in cyclins and cyclin dependent kinases (CDKs). Furthermore, decursin induced the activation of extracellular signal-regulated kinases (ERK) in both cancer cell lines, with the notable exceptions of c-Jun N-terminal kinase (JNK) and p38 mitogen activated protein (MAP) kinase. Finally, pretreatment with ERK-specific inhibitor PD98059 reversed decursin-induced p21WAF1 expression and decursin-inhibited cell growth. Thus, these findings suggest that decursin has potential therapeutic efficacy for the treatment of bladder and colon cancer.

  16. Persistence of the cell-cycle checkpoint kinase Wee1 in SadA- and SadB-deficient neurons disrupts neuronal polarity.

    PubMed

    Müller, Myriam; Lutter, Daniela; Püschel, Andreas W

    2010-01-15

    Wee1 is well characterized as a cell-cycle checkpoint kinase that regulates the entry into mitosis in dividing cells. Here we identify a novel function of Wee1 in postmitotic neurons during the establishment of distinct axonal and dendritic compartments, which is an essential step during neuronal development. Wee1 is expressed in unpolarized neurons but is downregulated after neurons have extended an axon. Suppression of Wee1 impairs the formation of minor neurites but does not interfere with axon formation. However, neuronal polarity is disrupted when neurons fail to downregulate Wee1. The kinases SadA and SadB (Sad kinases) phosphorylate Wee1 and are required to initiate its downregulation in polarized neurons. Wee1 expression persists in neurons that are deficient in SadA and SadB and disrupts neuronal polarity. Knockdown of Wee1 rescues the Sada(-/-);Sadb(-/-) mutant phenotype and restores normal polarity in these neurons. Our results demonstrate that the regulation of Wee1 by SadA and SadB kinases is essential for the differentiation of polarized neurons.

  17. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  18. Delayed cell cycle progression in selenoprotein W depleted cells is regulated by a mitogen-activated protein kinase kinase 4–p38–p53 pathway

    USDA-ARS?s Scientific Manuscript database

    Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a p53- and p21Cip1-dependent G1-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser33 in p53, which is associated with decreased p53...

  19. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases

    PubMed Central

    Rueda, Elda M.; Johnson, Jerry E.; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J.; Sigel, Irena; Chaney, Shawnta Y.

    2016-01-01

    Purpose The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. Methods mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. Results The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Conclusions Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes. PMID:27499608

  20. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    PubMed

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The combined results indicate that glycolysis is regulated by the compartmental expression of hexokinase 2, pyruvate kinase M1, and pyruvate kinase M2 in photoreceptors, whereas the inner retinal neurons exhibit a lower capacity for glycolysis and aerobic glycolysis. Expression of nucleoside diphosphate kinase, mitochondria-associated adenylate kinase, and several mitochondria-associated creatine kinase isozymes was highest in the outer retina, whereas expression of cytosolic adenylate kinase and brain creatine kinase was higher in the cones, horizontal cells, and amacrine cells indicating the diversity of ATP-buffering strategies among retinal neurons. Based on the antibody intensities and the COX and LDH activity, Müller glial cells (MGCs) had the lowest capacity for glycolysis, aerobic glycolysis, and OXPHOS. However, they showed high expression of glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate thiokinase, GABA transaminase, and ~P transferring kinases. This suggests that MGCs utilize TCA cycle anaplerosis and cataplerosis to generate GTP and ~P transferring kinases to produce ATP that supports MGC energy requirements. Our comprehensive and integrated results reveal that the adult mouse retina expresses numerous isoforms of ATP synthesizing, regulating, and buffering genes; expresses differential cellular and compartmental levels of glycolytic, OXPHOS, TCA cycle, and ~P transferring kinase proteins; and exhibits differential layer-by-layer LDH and COX activity. New insights into cell-specific and compartmental ATP and GTP production, as well as utilization and buffering strategies and their relationship with known retinal and cellular functions, are discussed. Developing therapeutic strategies for neuroprotection and treating retinal deficits and degeneration in a cell-specific manner will require such knowledge. This work provides a platform for future research directed at identifying the molecular targets and proteins that regulate these processes.

  1. CAK-Cyclin-dependent Activating Kinase: a key kinase in cell cycle control and a target for drugs?

    PubMed

    Lolli, Graziano; Johnson, Louise N

    2005-04-01

    The Cyclin-dependent kinase (CDK) Activating Kinase (CAK) is responsible for the activating phosphorylation of CDK1, CDK2, CDK4 and CDK6 and regulation of the cell cycle. The kinase is composed of three subunits: CDK7, Cyclin H and MAT1 (ménage a trois). Together with six other subunits, CAK is also part of the general transcription factor TFIIH where it is involved in promoter clearance and progression of transcription from the preinitiation to the initiation stage. CAK is required for cell cycle progression, which suggests that CDK7 could be a target for cancer therapy. However its role in transcription and its ubiquitous presence raise sensible concerns about possible toxicity of its inhibitors. The recently determined structure of CDK7 allows the design of inhibitors with differential specificity for the different CDKs. We review the role of CAK in different biological processes and evaluate the biological evidence for CDK7 as a possible pharmacological target.

  2. Cell cycle regulation in Schizosaccharomyces pombe.

    PubMed

    Moser, B A; Russell, P

    2000-12-01

    Cdc2, a cyclin-dependent kinase, controls cell cycle progression in fission yeast. New details of Cdc2 regulation and function have been uncovered in recent studies. These studies involve cyclins that associate with Cdc2 in G1-phase and the proteins that regulate inhibitory phosphorylation of Cdc2 during S-phase and G2-phase. Recent investigations have also provided a better understanding of proteins that regulate DNA replication and that are directly or indirectly controlled by Cdc2.

  3. Mechanisms involved in regulating DNA replication origins during the cell cycle and in response to DNA damage.

    PubMed Central

    Early, Anne; Drury, Lucy S; Diffley, John F X

    2004-01-01

    Replication origins in eukaryotic cells never fire more than once in a given S phase. Here, we summarize the role of cyclin-dependent kinases in limiting DNA replication origin usage to once per cell cycle in the budding yeast Saccharomyces cerevisiae. We have examined the role of different cyclins in the phosphorylation and regulation of several replication/regulatory factors including Cdc6, Sic1, ORC and DNA polymerase alpha-primase. In addition to being regulated by the cell cycle machinery, replication origins are also regulated by the genome integrity checkpoint kinases, Mec1 and Rad53. In response to DNA damage or drugs which interfere with the progression of replication forks, the activation of late-firing replication origins is inhibited. There is evidence indicating that the temporal programme of origin firing depends upon the local histone acetylation state. We have attempted to test the possibility that checkpoint regulation of late-origin firing operates through the regulation of the acetylation state. We found that overexpression of the essential histone acetylase, Esal, cannot override checkpoint regulation of origin firing. We have also constructed a temperature-sensitive esa1 mutant. This mutant is unable to resume cell cycle progression after alpha-factor arrest. This can be overcome by overexpression of the G1 cyclin, Cln2, revealing a novel role for Esal in regulating Start. PMID:15065654

  4. p21 stability: linking chaperones to a cell cycle checkpoint.

    PubMed

    Liu, Geng; Lozano, Guillermina

    2005-02-01

    Progression through the cell cycle is regulated by numerous proteins, one of which is the cyclin-dependent kinase inhibitor, p21. A new study identifies a novel protein complex that stabilizes p21. The stability of this complex is critical in effecting the p53-mediated cell cycle checkpoint.

  5. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cycle-related proteins.

    PubMed

    Wang, Wei Jie; Chen, Di; Jiang, Ming Zuo; Xu, Bing; Li, Xiao Wei; Chu, Yi; Zhang, Yu Jie; Mao, Ren; Liang, Jie; Fan, Dai Ming

    2018-02-01

    To explore the relationship between gasdermin D (GSDMD) and gastric cancer (GC) cell proliferation, and to determine whether the downregulated expression of GSDMD contributed to the tumorigenesis and proliferation of GC cells. GSDMD expressions in GC tissues and matched adjacent non-cancerous tissues were assessed by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry. The effect of GSDMD on cell proliferation in vitro was assessed by the colony formation assay and cell viability assays. In vivo, xenografted tumors in nude mice were evaluated. The cell cycle was analyzed by flow cytometry. In addition, the alterations of several cell cycle-related and cell signaling pathway proteins were analyzed by Western blot. GSDMD expression was decreased in GC, and the decreased expression of GSDMD could markedly promote the proliferation of tumors in vivo and in vitro. The downregulation of GSDMD accelerated S/G 2 cell transition by activating extracellular signal regulated kinase, signal transducer and activator of transcription 3 and phosphatidylinositol 3 kinase/protein kinase B signaling pathways and regulating cell cycle-related proteins in GC. GSDMD may protect against cell proliferation of GC, and it may be used as a diagnostic and treatment strategy for GC. © 2018 Chinese Medical Association Shanghai Branch, Chinese Society of Gastroenterology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  6. Cyclin A recruits p33cdk2 to the cellular transcription factor DRTF1.

    PubMed

    Bandara, L R; Adamczewski, J P; Zamanian, M; Poon, R Y; Hunt, T; Thangue, N B

    1992-01-01

    Cyclins are regulatory molecules that undergo periodic accumulation and destruction during each cell cycle. By activating p34cdc2 and related kinase subunits they control important events required for normal cell cycle progression. Cyclin A, for example, regulates at least two distinct kinase subunits, the mitotic kinase subunit p34cdc2 and related subunit p33cdk2, and is widely believed to be necessary for progression through S phase. However, cyclin A also forms a stable complex with the cellular transcription factor DRTF1 and thus may perform other functions during S phase. DRTF1, in addition, associates with the tumour suppressor retinoblastoma (Rb) gene product and the Rb-related protein p107. We now show, using biologically active fusion proteins, that cyclin A can direct the binding of the cdc2-like kinase subunit, p33cdk2, to complexed DRTF1, containing either Rb or p107, as well as activate its histone H1 kinase activity. Cyclin A cannot, however, direct p34cdc2 to the DRTF1 complex and we present evidence suggesting that the stability of the cyclin A-p33cdk2 complex is influenced by DRTF1 or an associated protein. Cyclin A, therefore, serves as an activating and targeting subunit of p33cdk2. The ability of cyclin A to activate and recruit p33cdk2 to DRTF1 may play an important role in regulating cell cycle progression and moreover defines a mechanism for coupling cell-cycle events to transcriptional initiation.

  7. The MPS1 Family of Protein Kinases

    PubMed Central

    Liu, Xuedong; Winey, Mark

    2014-01-01

    MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs. PMID:22482908

  8. Morphogenesis checkpoint kinase Swe1 is the executor of lipolysis-dependent cell-cycle progression

    PubMed Central

    Chauhan, Neha; Visram, Myriam; Cristobal-Sarramian, Alvaro; Sarkleti, Florian

    2015-01-01

    Cell growth and division requires the precise duplication of cellular DNA content but also of membranes and organelles. Knowledge about the cell-cycle–dependent regulation of membrane and storage lipid homeostasis is only rudimentary. Previous work from our laboratory has shown that the breakdown of triacylglycerols (TGs) is regulated in a cell-cycle–dependent manner, by activation of the Tgl4 lipase by the major cyclin-dependent kinase Cdc28. The lipases Tgl3 and Tgl4 are required for efficient cell-cycle progression during the G1/S (Gap1/replication phase) transition, at the onset of bud formation, and their absence leads to a cell-cycle delay. We now show that defective lipolysis activates the Swe1 morphogenesis checkpoint kinase that halts cell-cycle progression by phosphorylation of Cdc28 at tyrosine residue 19. Saturated long-chain fatty acids and phytosphingosine supplementation rescue the cell-cycle delay in the Tgl3/Tgl4 lipase-deficient strain, suggesting that Swe1 activity responds to imbalanced sphingolipid metabolism, in the absence of TG degradation. We propose a model by which TG-derived sphingolipids are required to activate the protein phosphatase 2A (PP2ACdc55) to attenuate Swe1 phosphorylation and its inhibitory effect on Cdc28 at the G1/S transition of the cell cycle. PMID:25713391

  9. Cell Signalling Through Covalent Modification and Allostery

    NASA Astrophysics Data System (ADS)

    Johnson, Louise N.

    Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases catalyze the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. This covalent modification allows activation or inhibition of enzyme activity, creates recognition sites for other proteins and promotes order/disorder or disorder/order transitions. These properties regulate ­signalling pathways and cellular processes that mediate metabolism, transcription, cell cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. In this lecture I shall review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase and the cell cycle cyclin dependent protein kinases as illustrations. Regulation of protein phosphorylation may be disrupted in the diseased state and protein kinases have become high profile targets for drug development. To date there are 11 compounds that have been approved for clinical use in the treatment of cancer.

  10. Direct targeting of MEK1/2 and RSK2 by silybin induces cell cycle arrest and inhibits melanoma cell growth

    PubMed Central

    Lee, Mee-Hyun; Huang, Zunnan; Kim, Dong Joon; Kim, Sung-Hyun; Kim, Myoung Ok; Lee, Sung-Young; Xie, Hua; Park, Si Jun; Kim, Jae Young; Kundu, Joydeb Kumar; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2013-01-01

    Abnormal functioning of multiple gene products underlies the neoplastic transformation of cells. Thus, chemopreventive and/or chemotherapeutic agents with multigene targets hold promise in the development of effective anticancer drugs. Silybin, a component of milk thistle, is a natural anticancer agent. In the present study, we investigated the effect of silybin on melanoma cell growth and elucidated its molecular targets. Our study revealed that silybin attenuated the growth of melanoma xenograft tumors in nude mice. Silybin inhibited the kinase activity of mitogen-activated protein kinase kinase (MEK)-1/2 and ribosomal S6 kinase (RSK)-2 in melanoma cells. The direct binding of silybin with MEK1/2 and RSK2 was explored using a computational docking model. Treatment of melanoma cells with silybin attenuated the phosphorylation of extracellular signal-regulated kinase (ERK)-1/2 and RSK2, which are regulated by the upstream kinases MEK1/2. The blockade of MEK1/2-ERK1/2-RSK2 signaling by silybin resulted in a reduced activation of nuclear factor-kappaB, activator protein-1 and signal transducer and activator of transcription-3, which are transcriptional regulators of a variety of proliferative genes in melanomas. Silybin, by blocking the activation of these transcription factors, induced cell cycle arrest at the G1 phase and inhibited melanoma cell growth in vitro and in vivo. Taken together, silybin suppresses melanoma growth by directly targeting MEK- and RSK-mediated signaling pathways. PMID:23447564

  11. G1/S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis.

    PubMed

    Giráldez, Servando; Galindo-Moreno, María; Limón-Mortés, M Cristina; Rivas, A Cristina; Herrero-Ruiz, Joaquín; Mora-Santos, Mar; Sáez, Carmen; Japón, Miguel Á; Tortolero, Maria; Romero, Francisco

    2017-07-01

    Polo-like kinase 1 (PLK1) is a serine/threonine kinase involved in several stages of the cell cycle, including the entry and exit from mitosis, and cytokinesis. Furthermore, it has an essential role in the regulation of DNA replication. Together with cyclin A, PLK1 also promotes CDH1 phosphorylation to trigger its ubiquitination and degradation, allowing cell cycle progression. The PLK1 levels in different type of tumors are very high compared to normal tissues, which is consistent with its role in promoting proliferation. Therefore, several PLK1 inhibitors have been developed and tested for the treatment of cancer. Here, we further analyzed PLK1 degradation and found that cytoplasmic PLK1 is ubiquitinated and subsequently degraded by the SCF βTrCP /proteasome. This procedure is triggered when heat shock protein (HSP) 90 is inhibited with geldanamycin, which results in misfolding of PLK1. We also identified CDK1 as the major kinase involved in this degradation. Our work shows for the first time that HSP90 inhibition arrests cell cycle progression at the G 1 /S transition. This novel mechanism inhibits CDH1 degradation through CDK1-dependent PLK1 destruction by the SCF βTrCP /proteasome. In these conditions, CDH1 substrates do not accumulate and cell cycle arrests, providing a novel pathway for regulation of the cell cycle at the G 1 -to-S boundary.-Giráldez, S., Galindo-Moreno, M., Limón-Mortés, M. C., Rivas, A. C., Herrero-Ruiz, J., Mora-Santos, M., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. G 1 /S phase progression is regulated by PLK1 degradation through the CDK1/βTrCP axis. © FASEB.

  12. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells.

    PubMed

    Fujiwara, Daichiro; Tsubaki, Masanobu; Takeda, Tomoya; Tomonari, Yoshika; Koumoto, Yu-Ichi; Sakaguchi, Katsuhiko; Nishida, Shozo

    2017-10-01

    Recently, statins have been demonstrated to improve cancer-related mortality or prognosis in patients of various cancers. However, the details of the apoptosis-inducing mechanisms remain unknown. This study showed that the induction of apoptosis by statins in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate biosynthesis. In addition, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin through suppressing Ras prenylation. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin by statins induced Bim expression via inhibition of Bim phosphorylation and ubiquitination and cell-cycle arrest at G1 phase via enhancement of p27 expression. Moreover, combined treatment of U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, and rapamycin, a mammalian target of rapamycin inhibitor, induced Bim and p27 expressions. The present results suggested that statins induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, enhancing Bim expression, and inducing cell-cycle arrest at G1 phase through inhibition of Ras/extracellular signal-regulated kinase and Ras/mammalian target of rapamycin pathways. Therefore, our findings support the use of statins as potential anticancer agents or concomitant drugs of adjuvant therapy.

  13. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases.

    PubMed

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M

    2005-02-01

    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  14. Apigenin induces DNA damage through the PKCδ-dependent activation of ATM and H2AX causing down-regulation of genes involved in cell cycle control and DNA repair

    PubMed Central

    Arango, Daniel; Parihar, Arti; Villamena, Frederick A.; Wang, Liwen; Freitas, Michael A.; Grotewold, Erich; Doseff, Andrea I.

    2014-01-01

    Apigenin, an abundant plant flavonoid, exhibits anti-proliferative and anti-carcinogenic activities through mechanisms yet not fully defined. In the present study, we show that the treatment of leukemia cells with apigenin resulted in the induction of DNA damage preceding the activation of the apoptotic program. Apigenin-induced DNA damage was mediated by p38 and protein kinase C-delta (PKCδ), yet was independent of reactive oxygen species or caspase activity. Treatment of monocytic leukemia cells with apigenin induced the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and histone H2AX, two key regulators of the DNA damage response, without affecting the ataxia-telangiectasia mutated and Rad-3-related (ATR) kinase. Silencing and pharmacological inhibition of PKCδ abrogated ATM and H2AX phosphorylation, whereas inhibition of p38 reduced H2AX phosphorylation independently of ATM. We established that apigenin delayed cell cycle progression at G1/S and increased the number of apoptotic cells. In addition, genome-wide mRNA analyses showed that apigenin-induced DNA damage led to down-regulation of genes involved in cell-cycle control and DNA repair. Taken together, the present results show that the PKCδ-dependent activation of ATM and H2AX define the signaling networks responsible for the regulation of DNA damage promoting genome-wide mRNA alterations that result in cell cycle arrest, hence contributing to the anti-carcinogenic activities of this flavonoid. PMID:22985621

  15. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma

    PubMed Central

    Desai, Shraddha R.; Pillai, Prajit P.; Patel, Rekha S.; McCray, Andrea N.; Win-Piazza, Hla Y.; Acevedo-Duncan, Mildred E.

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G1–S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway. PMID:22021906

  16. Regulation of Cdk7 activity through a phosphatidylinositol (3)-kinase/PKC-ι-mediated signaling cascade in glioblastoma.

    PubMed

    Desai, Shraddha R; Pillai, Prajit P; Patel, Rekha S; McCray, Andrea N; Win-Piazza, Hla Y; Acevedo-Duncan, Mildred E

    2012-01-01

    The objective of this research was to study the potential function of protein kinase C (PKC)-ι in cell cycle progression and proliferation in glioblastoma. PKC-ι is highly overexpressed in human glioma and benign and malignant meningioma; however, little is understood about its role in regulating cell proliferation of glioblastoma. Several upstream molecular aberrations and/or loss of PTEN have been implicated to constitutively activate the phosphatidylinositol (PI) (3)-kinase pathway. PKC-ι is a targeted mediator in the PI (3)-kinase signal transduction repertoire. Results showed that PKC-ι was highly activated and overexpressed in glioma cells. PKC-ι directly associated and phosphorylated Cdk7 at T170 in a cell cycle-dependent manner, phosphorylating its downstream target, cdk2 at T160. Cdk2 has a major role in inducing G(1)-S phase progression of cells. Purified PKC-ι phosphorylated both endogenous and exogenous Cdk7. PKC-ι downregulation reduced Cdk7 and cdk2 phosphorylation following PI (3)-kinase inhibition, phosphotidylinositol-dependent kinase 1 knockdown as well as PKC-ι silencing (by siRNA treatment). It also diminished cdk2 activity. PKC-ι knockdown inhibited overall proliferation rates and induced apoptosis in glioma cells. These findings suggest that glioma cells may be proliferating through a novel PI (3)-kinase-/PKC-ι/Cdk7/cdk2-mediated pathway.

  17. Protein kinase Cα phosphorylates a novel argininosuccinate synthase site at serine 328 during calcium-dependent stimulation of endothelial nitric-oxide synthase in vascular endothelial cells.

    PubMed

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Eichler, Duane C

    2012-07-27

    Endothelial nitric-oxide synthase (eNOS) utilizes l-arginine as its principal substrate, converting it to l-citrulline and nitric oxide (NO). l-Citrulline is recycled to l-arginine by two enzymes, argininosuccinate synthase (AS) and argininosuccinate lyase, providing the substrate arginine for eNOS and NO production in endothelial cells. Together, these three enzymes, eNOS, AS, and argininosuccinate lyase, make up the citrulline-NO cycle. Although AS catalyzes the rate-limiting step in NO production, little is known about the regulation of AS in endothelial cells beyond the level of transcription. In this study, we showed that AS Ser-328 phosphorylation was coordinately regulated with eNOS Ser-1179 phosphorylation when bovine aortic endothelial cells were stimulated by either a calcium ionophore or thapsigargin to produce NO. Furthermore, using in vitro kinase assay, kinase inhibition studies, as well as protein kinase Cα (PKCα) knockdown experiments, we demonstrate that the calcium-dependent phosphorylation of AS Ser-328 is mediated by PKCα. Collectively, these findings suggest that phosphorylation of AS at Ser-328 is regulated in accordance with the calcium-dependent regulation of eNOS under conditions that promote NO production and are in keeping with the rate-limiting role of AS in the citrulline-NO cycle of vascular endothelial cells.

  18. AMP-activated protein kinase is involved in neural stem cell growth suppression and cell cycle arrest by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and glucose deprivation by down-regulating phospho-retinoblastoma protein and cyclin D.

    PubMed

    Zang, Yi; Yu, Li-Fang; Nan, Fa-Jun; Feng, Lin-Yin; Li, Jia

    2009-03-06

    The fate of neural stem cells (NSCs), including their proliferation, differentiation, survival, and death, is regulated by multiple intrinsic signals and the extrinsic environment. We had previously reported that 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) directly induces astroglial differentiation of NSCs by activation of the Janus kinase (JAK)/Signal transducer and activator of transcription 3 (STAT3) pathway independently of AMP-activated protein kinase (AMPK). Here, we reported the observation that AICAR inhibited NSC proliferation and its underlying mechanism. Analysis of caspase activity and cell cycle showed that AICAR induced G1/G0 cell cycle arrest in NSCs, associated with decreased levels of poly(ADP-ribose) polymerase, phospho-retinoblastoma protein (Rb), and cyclin D but did not cause apoptosis. Iodotubericidin and Compound C, inhibitors of adenosine kinase and AMPK, respectively, or overexpression of a dominant-negative mutant of AMPK, but not JAK inhibitor, were able to reverse the anti-proliferative effect of AICAR. Glucose deprivation also activated the AMPK pathway, induced G0/G1 arrest, and suppressed the proliferation of NSCs, an effect associated with decreased levels of phospho-Rb and cyclin D protein. Furthermore, Compound C and overexpression of dominant-negative AMPK in C17.2 NSCs could block the glucose deprivation-mediated down-regulation of cyclin D and partially reverse the suppression of proliferation. These results suggest that AICAR and glucose deprivation might induce G1/G0 cell cycle arrest and suppress proliferation of NSCs via phospho-Rb and cyclin D down-regulation. AMPK, but not JAK/STAT3, activation is key for this inhibitory effect and may play an important role in the responses of NSCs to metabolic stresses such as glucose deprivation.

  19. Regulatory functional territory of PLK-1 and their substrates beyond mitosis.

    PubMed

    Kumar, Shiv; Sharma, Garima; Chakraborty, Chiranjib; Sharma, Ashish Ranjan; Kim, Jaebong

    2017-06-06

    Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.

  20. Cell-cycle regulation of formin-mediated actin cable assembly

    PubMed Central

    Miao, Yansong; Wong, Catherine C. L.; Mennella, Vito; Michelot, Alphée; Agard, David A.; Holt, Liam J.; Yates, John R.; Drubin, David G.

    2013-01-01

    Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation. PMID:24133141

  1. MarvelD3 regulates the c-Jun N-terminal kinase pathway during eye development in Xenopus

    PubMed Central

    Vacca, Barbara; Sanchez-Heras, Elena; Steed, Emily; Balda, Maria S.; Ohnuma, Shin-Ichi; Sasai, Noriaki; Mayor, Roberto

    2016-01-01

    ABSTRACT Ocular morphogenesis requires several signalling pathways controlling the expression of transcription factors and cell-cycle regulators. However, despite a well-known mechanism, the dialogue between those signals and factors remains to be unveiled. Here, we identify a requirement for MarvelD3, a tight junction transmembrane protein, in eye morphogenesis in Xenopus. MarvelD3 depletion led to an abnormally pigmented eye or even an eye-less phenotype, which was rescued by ectopic MarvelD3 expression. Altering MarvelD3 expression led to deregulated expression of cell-cycle regulators and transcription factors required for eye development. The eye phenotype was rescued by increased c-Jun terminal Kinase activation. Thus, MarvelD3 links tight junctions and modulation of the JNK pathway to eye morphogenesis. PMID:27870636

  2. Focal adhesion kinase (FAK) regulates polymerase activity of multiple influenza A virus subtypes.

    PubMed

    Elbahesh, Husni; Bergmann, Silke; Russell, Charles J

    2016-12-01

    Influenza A viruses (IAVs) cause numerous pandemics and yearly epidemics resulting in ~500,000 annual deaths globally. IAV modulates cellular signaling pathways at every step of the infection cycle. Focal adhesion kinase (FAK) has been shown to play a critical role in endosomal trafficking of influenza A viruses, yet it is unclear how FAK kinase activity regulates IAV replication. Using mini-genomes derived from H1N1, H5N1 and H7N9 viruses, we dissected RNA replication by IAVs independent of viral entry or release. Our results show FAK activity promotes efficient IAV polymerase activity and inhibiting FAK activity with a chemical inhibitor or a kinase-dead mutant significantly reduces IAV polymerase activity. Using co-immunoprecipitations and proximity ligation assays, we observed interactions between FAK and the viral nucleoprotein, supporting a direct role of FAK in IAV replication. Altogether, the data indicates that FAK kinase activity is important in promoting IAV replication by regulating its polymerase activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases.

    PubMed

    Huang, Yongqi; Yoon, Mi-Kyung; Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W

    2015-01-30

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21(Cip1), p27(Kip1) and p57(Kip2). Their kinase inhibitory activities are mediated by a homologous N-terminal kinase inhibitory domain. The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the kinase inhibitory domain and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, as well as its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Glycogen synthase kinase 3 has a limited role in cell cycle regulation of cyclin D1 levels.

    PubMed

    Yang, Ke; Guo, Yang; Stacey, William C; Harwalkar, Jyoti; Fretthold, Jonathan; Hitomi, Masahiro; Stacey, Dennis W

    2006-08-30

    The expression level of cyclin D1 plays a vital role in the control of proliferation. This protein is reported to be degraded following phosphorylation by glycogen synthase kinase 3 (GSK3) on Thr-286. We recently showed that phosphorylation of Thr-286 is responsible for a decline in cyclin D1 levels during S phase, an event required for efficient DNA synthesis. These studies were undertaken to test the possibility that phosphorylation by GSK3 is responsible for the S phase specific decline in cyclin D1 levels, and that this event is regulated by the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway which controls GSK3. We found, however, that neither PI3K, AKT, GSK3, nor proliferative signaling activity in general is responsible for the S phase decline in cyclin D1 levels. In fact, the activity of these signaling kinases does not vary through the cell cycle of proliferating cells. Moreover, we found that GSK3 activity has little influence over cyclin D1 expression levels during any cell cycle phase. Inhibition of GSK3 activity by siRNA, LiCl, or other chemical inhibitors failed to influence cyclin D1 phosphorylation on Thr-286, even though LiCl efficiently blocked phosphorylation of beta-catenin, a known substrate of GSK3. Likewise, the expression of a constitutively active GSK3 mutant protein failed to influence cyclin D1 phosphorylation or total protein expression level. Because we were unable to identify any proliferative signaling molecule or pathway which is regulated through the cell cycle, or which is able to influence cyclin D1 levels, we conclude that the suppression of cyclin D1 levels during S phase is regulated by cell cycle position rather than signaling activity. We propose that this mechanism guarantees the decline in cyclin D1 levels during each S phase; and that in so doing it reduces the likelihood that simple over expression of cyclin D1 can lead to uncontrolled cell growth.

  5. Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

    PubMed

    Princz, Lissa N; Wild, Philipp; Bittmann, Julia; Aguado, F Javier; Blanco, Miguel G; Matos, Joao; Pfander, Boris

    2017-03-01

    DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution. © 2017 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  6. p21 induction plays a dual role in anti-cancer activity of ursolic acid

    PubMed Central

    Zhang, Xudong; Song, Xinhua; Yin, Shutao; Zhao, Chong; Fan, Lihong

    2015-01-01

    Previous studies have shown that induction of G1 arrest and apoptosis by ursolic acid is associated with up-regulation of cyclin-dependent kinase inhibitor (CDKI) protein p21 in multiple types of cancer cells. However, the functional role of p21 induction in G1 cell cycle arrest and apoptosis, and the mechanisms of p21 induction by ursolic acid have not been critically addressed. In the current study, we demonstrated that p21 played a mediator role in G1 cell cycle arrest by ursolic acid, whereas p21-mediated up-regulation of Mcl-1 compromised apoptotic effect of ursolic acid. These results suggest that p21 induction plays a dual role in the anti-cancer activity of ursolic acid in terms of cell cycle and apoptosis regulation. p21 induction by ursolic acid was attributed to p53 transcriptional activation. Moreover, we found that ursolic acid was able to inhibit murine double minute-2 protein (MDM2) and T-LAK cell-originated protein kinase (TOPK), the two negative regulator of p53, which in turn contributed to ursolic acid-induced p53 activation. Our findings provided novel insights into understanding of the mechanisms involved in cell cycle arrest and apoptosis induction in response to ursolic acid exposure. PMID:26582056

  7. Cell cycle-dependent regulation of Greatwall kinase by protein phosphatase 1 and regulatory subunit 3B.

    PubMed

    Ren, Dapeng; Fisher, Laura A; Zhao, Jing; Wang, Ling; Williams, Byron C; Goldberg, Michael L; Peng, Aimin

    2017-06-16

    Greatwall (Gwl) kinase plays an essential role in the regulation of mitotic entry and progression. Mitotic activation of Gwl requires both cyclin-dependent kinase 1 (CDK1)-dependent phosphorylation and its autophosphorylation at an evolutionarily conserved serine residue near the carboxyl terminus (Ser-883 in Xenopus ). In this study we show that Gwl associates with protein phosphatase 1 (PP1), particularly PP1γ, which mediates the dephosphorylation of Gwl Ser-883. Consistent with the mitotic activation of Gwl, its association with PP1 is disrupted in mitotic cells and egg extracts. During mitotic exit, PP1-dependent dephosphorylation of Gwl Ser-883 occurs prior to dephosphorylation of other mitotic substrates; replacing endogenous Gwl with a phosphomimetic S883E mutant blocks mitotic exit. Moreover, we identified PP1 regulatory subunit 3B (PPP1R3B) as a targeting subunit that can direct PP1 activity toward Gwl. PPP1R3B bridges PP1 and Gwl association and promotes Gwl Ser-883 dephosphorylation. Consistent with the cell cycle-dependent association of Gwl and PP1, Gwl and PPP1R3B dissociate in M phase. Interestingly, up-regulation of PPP1R3B facilitates mitotic exit and blocks mitotic entry. Thus, our study suggests PPP1R3B as a new cell cycle regulator that functions by governing Gwl dephosphorylation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    PubMed Central

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  9. Pause, play, repeat

    PubMed Central

    Sansó, Miriam; Fisher, Robert P

    2013-01-01

    Cyclin-dependent kinases (CDKs) play a central role in governing eukaryotic cell division. It is becoming clear that the transcription cycle of RNA polymerase II (RNAP II) is also regulated by CDKs; in metazoans, the cell cycle and transcriptional CDK networks even share an upstream activating kinase, which is itself a CDK. From recent chemical-genetic analyses we know that CDKs and their substrates control events both early in transcription (the transition from initiation to elongation) and late (3′ end formation and transcription termination). Moreover, mutual dependence on CDK activity might couple the “beginning” and “end” of the cycle, to ensure the fidelity of mRNA maturation and the efficient recycling of RNAP II from sites of termination to the transcription start site (TSS). As is the case for CDKs involved in cell cycle regulation, different transcriptional CDKs act in defined sequence on multiple substrates. These phosphorylations are likely to influence gene expression by several mechanisms, including direct, allosteric effects on the transcription machinery, co-transcriptional recruitment of proteins needed for mRNA-capping, splicing and 3′ end maturation, dependent on multisite phosphorylation of the RNAP II C-terminal domain (CTD) and, perhaps, direct regulation of RNA-processing or histone-modifying machinery. Here we review these recent advances, and preview the emerging challenges for transcription-cycle research. PMID:23756342

  10. A mitogen-activated protein kinase regulates male gametogenesis and transmission of the malaria parasite Plasmodium berghei

    PubMed Central

    Rangarajan, Radha; Bei, Amy K; Jethwaney, Deepa; Maldonado, Priscilla; Dorin, Dominique; Sultan, Ali A; Doerig, Christian

    2005-01-01

    Differentiation of malaria parasites into sexual forms (gametocytes) in the vertebrate host and their subsequent development into gametes in the mosquito vector are crucial steps in the completion of the parasite's life cycle and transmission of the disease. The molecular mechanisms that regulate the sexual cycle are poorly understood. Although several signal transduction pathways have been implicated, a clear understanding of the pathways involved has yet to emerge. Here, we show that a Plasmodium berghei homologue of Plasmodium falciparum mitogen-activated kinase-2 (Pfmap-2), a gametocyte-specific mitogen-activated protein kinase (MAPK), is required for male gamete formation. Parasites lacking Pbmap-2 are competent for gametocytogenesis, but exflagellation of male gametocytes, the process that leads to male gamete formation, is almost entirely abolished in mutant parasites. Consistent with this result, transmission of mutant parasites to mosquitoes is grossly impaired. This finding identifies a crucial role for a MAPK pathway in malaria transmission. PMID:15864297

  11. Robust mitotic entry is ensured by a latching switch.

    PubMed

    Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla

    2013-01-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  12. The DivJ, CbrA and PleC system controls DivK phosphorylation and symbiosis in Sinorhizobium meliloti

    PubMed Central

    Pini, Francesco; Frage, Benjamin; Ferri, Lorenzo; De Nisco, Nicole J.; Mohapatra, Saswat S.; Taddei, Lucilla; Fioravanti, Antonella; Dewitte, Frederique; Galardini, Marco; Brilli, Matteo; Villeret, Vincent; Bazzicalupo, Marco; Mengoni, Alessio; Walker, Graham C.; Becker, Anke; Biondi, Emanuele G.

    2013-01-01

    SUMMARY Sinorhizobium meliloti is a soil bacterium that invades the root nodules it induces on Medicago sativa, whereupon it undergoes an alteration of its cell cycle and differentiates into nitrogen-fixing, elongated and polyploid bacteroid with higher membrane permeability. In Caulobacter crescentus, a related alphaproteobacterium, the principal cell cycle regulator, CtrA, is inhibited by the phosphorylated response regulator DivK. The phosphorylation of DivK depends on the histidine kinase DivJ, while PleC is the principal phosphatase for DivK. Despite the importance of the DivJ in C. crescentus, the mechanistic role of this kinase has never been elucidated in other Alphaproteobacteria. We show here that the histidine kinases DivJ together with CbrA and PleC participate in a complex phosphorylation system of the essential response regulator DivK in S. meliloti. In particular, DivJ and CbrA are involved in DivK phosphorylation and in turn CtrA inactivation, thereby controlling correct cell cycle progression and the integrity of the cell envelope. In contrast, the essential PleC presumably acts as a phosphatase of DivK. Interestingly, we found that a DivJ mutant is able to elicit nodules and enter plant cells, but fails to establish an effective symbiosis suggesting that proper envelope and/or low CtrA levels are required for symbiosis. PMID:23909720

  13. Cdc15 integrates Tem1 GTPase-mediated spatial signals with Polo kinase-mediated temporal cues to activate mitotic exit.

    PubMed

    Rock, Jeremy M; Amon, Angelika

    2011-09-15

    In budding yeast, a Ras-like GTPase signaling cascade known as the mitotic exit network (MEN) promotes exit from mitosis. To ensure the accurate execution of mitosis, MEN activity is coordinated with other cellular events and restricted to anaphase. The MEN GTPase Tem1 has been assumed to be the central switch in MEN regulation. We show here that during an unperturbed cell cycle, restricting MEN activity to anaphase can occur in a Tem1 GTPase-independent manner. We found that the anaphase-specific activation of the MEN in the absence of Tem1 is controlled by the Polo kinase Cdc5. We further show that both Tem1 and Cdc5 are required to recruit the MEN kinase Cdc15 to spindle pole bodies, which is both necessary and sufficient to induce MEN signaling. Thus, Cdc15 functions as a coincidence detector of two essential cell cycle oscillators: the Polo kinase Cdc5 synthesis/degradation cycle and the Tem1 G-protein cycle. The Cdc15-dependent integration of these temporal (Cdc5 and Tem1 activity) and spatial (Tem1 activity) signals ensures that exit from mitosis occurs only after proper genome partitioning.

  14. Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins

    PubMed Central

    Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.

    2016-01-01

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503

  15. Regulated eukaryotic DNA replication origin firing with purified proteins.

    PubMed

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  16. Extended-spectrum antiprotozoal bumped kinase inhibitors: A review.

    PubMed

    Van Voorhis, Wesley C; Doggett, J Stone; Parsons, Marilyn; Hulverson, Matthew A; Choi, Ryan; Arnold, Samuel L M; Riggs, Michael W; Hemphill, Andrew; Howe, Daniel K; Mealey, Robert H; Lau, Audrey O T; Merritt, Ethan A; Maly, Dustin J; Fan, Erkang; Ojo, Kayode K

    2017-09-01

    Many life-cycle processes in parasites are regulated by protein phosphorylation. Hence, disruption of essential protein kinase function has been explored for therapy of parasitic diseases. However, the difficulty of inhibiting parasite protein kinases to the exclusion of host orthologues poses a practical challenge. A possible path around this difficulty is the use of bumped kinase inhibitors for targeting calcium-dependent protein kinases that contain atypically small gatekeeper residues and are crucial for pathogenic apicomplexan parasites' survival and proliferation. In this article, we review efficacy against the kinase target, parasite growth in vitro, and in animal infection models, as well as the relevant pharmacokinetic and safety parameters of bumped kinase inhibitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs

    PubMed Central

    Sharifpoor, Sara; van Dyk, Dewald; Costanzo, Michael; Baryshnikova, Anastasia; Friesen, Helena; Douglas, Alison C.; Youn, Ji-Young; VanderSluis, Benjamin; Myers, Chad L.; Papp, Balázs; Boone, Charles; Andrews, Brenda J.

    2012-01-01

    A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of 8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens confirmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An integrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks. PMID:22282571

  18. Icotinib, a potent and specific EGFR tyrosine kinase inhibitor, inhibits growth of squamous cell carcinoma cell line A431 through negatively regulating AKT signaling.

    PubMed

    Gao, Zhenzhen; Chen, Wei; Zhang, Xiaohua; Cai, Peifen; Fang, Xianying; Xu, Qiang; Sun, Yang; Gu, Yanhong

    2013-06-01

    Icotinib is a potent and specific epidermal growth factor receptor tyrosine kinase inhibitor. In this study, we reported that icotinib had the antitumor activity on human squamous cell carcinoma cell line A431 in vitro. Meanwhile, adhesion to fibronectin and expression of integrin α3 and β1 were significantly reduced in a dose-dependent manner after the treatment of icotinib. Moreover, icotinib induced cell cycle arrested and affected expression of various cell cycle related proteins in squamous cancer cell line A431, whereas it did not cause apoptosis. Furthermore, icotinib remarkably down-regulated phosphorylation of protein kinase B (AKT) though blocking the interaction between 3-phosphoinositide-dependent protein kinase-1 (PDK1) and AKT in A431 cells. Taken together, it is shown that the small molecular compound, icotinib, has an anti-squamous cell carcinoma activity in vitro and its antitumor mechanism is associated with the blockage of the interaction between PDK1 and AKT. These results provide a novel strategy for anti-squamous cell carcinoma therapy. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. The activity and stability of the intrinsically disordered Cip/Kip protein family are regulated by non-receptor tyrosine kinases

    PubMed Central

    Otieno, Steve; Lelli, Moreno; Kriwacki, Richard W.

    2014-01-01

    The Cip/Kip family of cyclin-dependent kinase (Cdk) inhibitors includes p21Cip1, p27Kip1 and p57Kip2. Their kinase inhibitory activities are mediated by a homologous N-terminal kinase-inhibitory domain (KID). The Cdk inhibitory activity and stability of p27 have been shown to be regulated by a two-step phosphorylation mechanism involving a tyrosine residue within the KID and a threonine residue within the flexible C-terminus. We show that these residues are conserved in p21 and p57, suggesting that a similar phosphorylation cascade regulates these Cdk inhibitors. However, the presence of a cyclin binding motif within its C-terminus alters the regulatory interplay between p21 and Cdk2/cyclin A, and its responses to tyrosine phosphorylation and altered p21:Cdk2/cyclin A stoichiometry. We also show that the Cip/Kip proteins can be phosphorylated in vitro by representatives of many non-receptor tyrosine kinase (NRTK) sub-families, suggesting that NRTKs may generally regulate the activity and stability of these Cdk inhibitors. Our results further suggest that the Cip/Kip proteins integrate signals from various NRTK pathways and cell cycle regulation. PMID:25463440

  20. Recent Advances of Cell-Cycle Inhibitor Therapies for Pediatric Cancer.

    PubMed

    Mills, Christopher C; Kolb, E A; Sampson, Valerie B

    2017-12-01

    This review describes the pivotal roles of cell-cycle and checkpoint regulators and discusses development of specific cell-cycle inhibitors for therapeutic use for pediatric cancer. The mechanism of action as well as the safety and tolerability of drugs in pediatric patients, including compounds that target CDK4/CDK6 (palbociclib, ribociclib, and abemaciclib), aurora kinases (AT9283 and MLN8237), Wee1 kinase (MK-1775), KSP (ispinesib), and tubulin (taxanes, vinca alkaloids), are presented. The design of mechanism-based combinations that exploit the cross-talk of signals activated by cell-cycle arrest, as well as pediatric-focused drug development, are critical for the advancement of drugs for rare childhood diseases. Cancer Res; 77(23); 6489-98. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?

    PubMed

    Coqueret, Olivier

    2003-02-01

    Cell division relies on the activation of cyclins, which bind to cyclin-dependent kinases (CDKs) to induce cell-cycle progression towards S phase and later to initiate mitosis. Since uncontrolled cyclin-dependent kinase activity is often the cause of human cancer, their function is tightly regulated by cell-cycle inhibitors such as the p21 and p27 Cip/Kip proteins. Following anti-mitogenic signals or DNA damage, p21 and p27 bind to cyclin-CDK complexes to inhibit their catalytic activity and induce cell-cycle arrest. Interestingly, recent discoveries suggest that p21 and p27 might have new activities that are unrelated to their function as CDK inhibitors. The identification of new targets of Cip/Kip proteins as well as evidence of Cip/Kip cytoplasmic relocalization have revealed unexpected functions for these proteins in the control of CDK activation, in the regulation of apoptosis and in transcriptional activation. This article discusses recent insights into these possible additional functions of p21 and p27.

  2. The Roles of NDR Protein Kinases in Hippo Signalling.

    PubMed

    Hergovich, Alexander

    2016-05-18

    The Hippo tumour suppressor pathway has emerged as a critical regulator of tissue growth through controlling cellular processes such as cell proliferation, death, differentiation and stemness. Traditionally, the core cassette of the Hippo pathway includes the MST1/2 protein kinases, the LATS1/2 protein kinases, and the MOB1 scaffold signal transducer, which together regulate the transcriptional co-activator functions of the proto-oncoproteins YAP and TAZ through LATS1/2-mediated phosphorylation of YAP/TAZ. Recent research has identified additional kinases, such as NDR1/2 (also known as STK38/STK38L) and MAP4Ks, which should be considered as novel members of the Hippo core cassette. While these efforts helped to expand our understanding of Hippo core signalling, they also began to provide insights into the complexity and redundancy of the Hippo signalling network. Here, we focus on summarising our current knowledge of the regulation and functions of mammalian NDR kinases, discussing parallels between the NDR pathways in Drosophila and mammals. Initially, we provide a general overview of the cellular functions of NDR kinases in cell cycle progression, centrosome biology, apoptosis, autophagy, DNA damage signalling, immunology and neurobiology. Finally, we put particular emphasis on discussing NDR1/2 as YAP kinases downstream of MST1/2 and MOB1 signalling in Hippo signalling.

  3. The PIM kinases in hematological cancers.

    PubMed

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  4. ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord.

    PubMed

    Yu, Zhiyuan; Liu, Miao; Fu, Peicai; Xie, Minjie; Wang, Wei; Luo, Xiang

    2012-12-01

    Rho-associated Kinase (ROCK) has been identified as an important regulator of proliferation and cell cycle progression in a number of cell types. Although its effects on astrocyte proliferation have not been well characterized, ROCK has been reported to play important roles in gap junction formation, morphology, and migration of astrocytes. In the present study, our aim was to investigate the effect of ROCK inhibition by [(+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide dihydrochloride] (Y27632) on proliferation and DNA synthesis in cultured astrocytes from rat spinal cord and the possible mechanism involved. Western blots showed that treatment of astrocytes with Y27632 increased their expression of cyclin D1, CDK4, and cyclin E, thereby causing cell cycle progression. Furthermore, Y27632-induced astrocyte proliferation was mediated through the extracellular-signal-regulated kinase signaling cascade. These results indicate the importance of ROCK in astrocyte proliferation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Mip1 associates with both the Mps1 kinase and actin and is required for cell cortex stability and anaphase spindle positioning

    USDA-ARS?s Scientific Manuscript database

    The Mps1 family of protein kinases contributes to cell cycle control by regulating multiple microtubule cytoskeleton activities. We have uncovered a new Mps1 substrate that provides a novel link between Mps1 and the actin cytoskeleton. We have identified a conserved human Mps1 (hMps1) interacting pr...

  6. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene

    PubMed Central

    Niculescu, Mihai D.; Yamamuro, Yutaka; Zeisel, Steven H.

    2006-01-01

    Choline is an important methyl donor and a component of membrane phospholipids. In this study, we tested the hypothesis that choline availability can modulate cell proliferation and the methylation of genes that regulate cell cycling. In several other model systems, hypomethylation of cytosine bases that are followed by a guanosine (CpG) sites in the promoter region of a gene is associated with increased gene expression. We found that in choline-deficient IMR-32 neuroblastoma cells, the promoter of the cyclin-dependent kinase inhibitor 3 gene (CDKN3) was hypomethylated. This change was associated with increased expression of CDKN3 and increased levels of its gene product, kinase-associated phosphatase (KAP), which inhibits the G1/S transition of the cell cycle by dephosphorylating cyclin-dependent kinases. Choline deficiency also reduced global DNA methylation. The percentage of cells that accumulated bromodeoxyuridine (proportional to cell proliferation) was 1.8 times lower in the choline-deficient cells than in the control cells. Phosphorylated retinoblastoma (p110) levels were 3 times lower in the choline-deficient cells than in control cells. These findings suggest that the mechanism whereby choline deficiency inhibits cell proliferation involves hypomethylation of key genes regulating cell cycling. This may be a mechanism for our previously reported observation that stem cell proliferation in hippocampus neuroepithelium is decreased in choline-deficient rat and mouse fetuses. PMID:15147518

  7. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

    PubMed Central

    Ruijtenberg, Suzan; van den Heuvel, Sander

    2016-01-01

    ABSTRACT Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control. PMID:26825227

  8. Blockade of lipid accumulation by silibinin in adipocytes and zebrafish.

    PubMed

    Suh, Hyung Joo; Cho, So Young; Kim, Eun Young; Choi, Hyeon-Son

    2015-02-05

    Silibinin is a compound present mainly in milk thistle. In this study, we investigated the mechanism by which silibinin suppresses adipogenesis of 3T3-L1 cells, and evaluated the anti-adipogenic effect of silibinin in zebrafish. Silibinin reduced lipid accumulation by downregulating adipogenic factors, such as, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer binding protein α (C/EBPα), and fatty acid-binding protein 4 (FABP4). The reduction of these adipogenic protein levels was associated with the regulation of early adipogenic factors, such as, C/EBPβ and Krüppel-like factor 2 (KLF2), and was reflected in downregulation of lipid synthetic enzymes. Silibinin arrested cells in the G0/G1 phase of the cell cycle, accompanied by downregulation of cyclins and upregulation of p27, a cell cycle inhibitor. These results correlated with the finding of deactivation of extracellular signal-regulated kinase (ERK) and AKT, a serine/threonine-specific kinase. In addition, silibinin activated AMP-activated protein kinase α (AMPKα) to inhibit fatty acid synthesis. As observed in 3T3-L1 cells, silibinin inhibited lipid accumulation in zebrafish with the reduction of adipogenic factors and triglyceride levels. Our data revealed that silibinin inhibited lipid accumulation in 3T3-L1 cells and zebrafish, and this inhibitory effect was associated with abrogation of early adipogenesis via regulation of cell cycle and AMPKα signaling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity.

    PubMed

    Daraiseh, Susan I; Kassardjian, Ari; Alexander, Karen E; Rizkallah, Raed; Hurt, Myra M

    2018-05-25

    Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways. Copyright © 2018. Published by Elsevier B.V.

  10. Molecular machinery of signal transduction and cell cycle regulation in Plasmodium.

    PubMed

    Koyama, Fernanda C; Chakrabarti, Debopam; Garcia, Célia R S

    2009-05-01

    The regulation of the Plasmodium cell cycle is not understood. Although the Plasmodium falciparum genome is completely sequenced, about 60% of the predicted proteins share little or no sequence similarity with other eukaryotes. This feature impairs the identification of important proteins participating in the regulation of the cell cycle. There are several open questions that concern cell cycle progression in malaria parasites, including the mechanism by which multiple nuclear divisions is controlled and how the cell cycle is managed in all phases of their complex life cycle. Cell cycle synchrony of the parasite population within the host, as well as the circadian rhythm of proliferation, are striking features of some Plasmodium species, the molecular basis of which remains to be elucidated. In this review we discuss the role of indole-related molecules as signals that modulate the cell cycle in Plasmodium and other eukaryotes, and we also consider the possible role of kinases in the signal transduction and in the responses it triggers.

  11. SB202190 affects cell response to hydroxyurea-induced genotoxic stress in root meristems of Vicia faba.

    PubMed

    Winnicki, Konrad; Maszewski, Janusz

    2012-11-01

    Genotoxic stress caused by a variety of chemical and physical agents may lead to DNA breaks and genome instability. Response to DNA damage depends on ATM/ATR sensor kinases and their downstream proteins, which arrange cell cycle checkpoints. Activation of ATM (ataxia-telangiectasia-mutated)/ATR (ATM and Rad 3-related) signaling pathway triggers cell cycle arrest (by keeping cyclin-Cdk complexes inactive), combined with gamma-phosphorylation of histone H2A.X and induction of DNA repair processes. However, genotoxic stress activates also mitogen-activated protein kinases (MAPKs) which may control the functions of checkpoint proteins both directly, by post-translational modifications, or indirectly, by regulation of their expression. Our results indicate that in root meristem cells of Vicia faba, MAP kinase signaling pathway takes part in response to hydroxyurea-induced genotoxic stress. It is shown that SB202190, an inhibitor of p38 MAP kinase, triggers PCC (premature chromosome condensation) more rapidly, but only if cell cycle checkpoints are alleviated by caffeine. Since SB202190 and, independently, caffeine reduces HU-mediated histone H4 Lys5 acetylation, it may be that there is a cooperation of MAP kinase signaling pathways and ATM/ATR-dependent checkpoints during response to genotoxic stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation1[OPEN

    PubMed Central

    Yu, Peng; Eggert, Kai; von Wirén, Nicolaus; Li, Chunjian; Hochholdinger, Frank

    2015-01-01

    Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses. PMID:26198256

  13. Seasonal, tissue-specific regulation of Akt/protein kinase B and glycogen synthase in hibernators.

    PubMed

    Hoehn, Kyle L; Hudachek, Susan F; Summers, Scott A; Florant, Gregory L

    2004-03-01

    Yellow-bellied marmots (Marmota flaviventris) exhibit a circannual cycle of hyperphagia and nutrient storage in the summer followed by hibernation in the winter. This annual cycle of body mass gain and loss is primarily due to large-scale accumulation of lipid in the summer, which is then mobilized and oxidized for energy during winter. The rapid and predictable change in body mass makes these animals ideal for studies investigating the molecular basis for body weight regulation. In the study described herein, we monitored seasonal changes in the protein levels and activity of a central regulator of anabolic metabolism, the serine-threonine kinase Akt-protein kinase B (Akt/PKB), during the months accompanying maximal weight gain and entry into hibernation (June-November). Interestingly, under fasting conditions, Akt/PKB demonstrated a tissue-specific seasonal activation. Specifically, although Akt/PKB levels did not change, the activity of Akt/PKB (isoforms 1/alpha and 2/beta) in white adipose tissue (WAT) increased significantly in July. Moreover, glycogen synthase, which lies downstream of Akt/PKB on a linear pathway linking the enzyme to the stimulation of glycogen synthesis, demonstrated a similar pattern of seasonal activation. By contrast, Akt/PKB activity in skeletal muscle peaked much later (i.e., September). These data suggest the existence of a novel, tissue-specific mechanism regulating Akt/PKB activation during periods of marked anabolism.

  14. Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome

    PubMed Central

    Kuwano, Yuki; Nishida, Kensei; Akaike, Yoko; Kurokawa, Ken; Nishikawa, Tatsuya; Masuda, Kiyoshi; Rokutan, Kazuhito

    2016-01-01

    Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine kinase that phosphorylates and activates the apoptotic program through interaction with diverse downstream targets including tumor suppressor p53. HIPK2 is activated by genotoxic stimuli and modulates cell fate following DNA damage. The DNA damage response (DDR) is triggered by DNA lesions or chromatin alterations. The DDR regulates DNA repair, cell cycle checkpoint activation, and apoptosis to restore genome integrity and cellular homeostasis. Maintenance of the DDR is essential to prevent development of diseases caused by genomic instability, including cancer, defects of development, and neurodegenerative disorders. Recent studies reveal a novel HIPK2-mediated pathway for DDR through interaction with chromatin remodeling factor homeodomain protein 1γ. In this review, we will highlight the molecular mechanisms of HIPK2 and show its functions as a crucial DDR regulator. PMID:27689990

  15. Cell cycle gene expression under clinorotation

    NASA Astrophysics Data System (ADS)

    Artemenko, Olga

    2016-07-01

    Cyclins and cyclin-dependent kinase (CDK) are main regulators of the cell cycle of eukaryotes. It's assumes a significant change of their level in cells under microgravity conditions and by other physical factors actions. The clinorotation use enables to determine the influence of gravity on simulated events in the cell during the cell cycle - exit from the state of quiet stage and promotion presynthetic phase (G1) and DNA synthesis phase (S) of the cell cycle. For the clinorotation effect study on cell proliferation activity is the necessary studies of molecular mechanisms of cell cycle regulation and development of plants under altered gravity condition. The activity of cyclin D, which is responsible for the events of the cell cycle in presynthetic phase can be controlled by the action of endogenous as well as exogenous factors, but clinorotation is one of the factors that influence on genes expression that regulate the cell cycle.These data can be used as a model for further research of cyclin - CDK complex for study of molecular mechanisms regulation of growth and proliferation. In this investigation we tried to summarize and analyze known literature and own data we obtained relatively the main regulators of the cell cycle in altered gravity condition.

  16. [P21-activated kinases and their role in the nervous system].

    PubMed

    Qin, Yuan; Ding, Yue-Min; Xia, Qiang

    2012-12-25

    P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.

  17. NSC 95397 Suppresses Proliferation and Induces Apoptosis in Colon Cancer Cells through MKP-1 and the ERK1/2 Pathway.

    PubMed

    Dubey, Navneet Kumar; Peng, Bou-Yue; Lin, Chien-Min; Wang, Peter D; Wang, Joseph R; Chan, Chun-Hao; Wei, Hong-Jian; Deng, Win-Ping

    2018-05-31

    NSC 95397, a quinone-based small molecule compound, has been identified as an inhibitor for dual-specificity phosphatases, including mitogen-activated protein kinase phosphatase-1 (MKP-1). MKP-1 is known to inactivate mitogen-activated protein kinases by dephosphorylating both of their threonine and tyrosine residues. Moreover, owing to their participation in tumorigenesis and drug resistance in colon cancer cells, MKP-1 is an attractive therapeutic target for colon cancer treatment. We therefore investigated the inhibitory activity of NSC 95397 against three colon cancer cell lines including SW480, SW620, and DLD-1, and their underlying mechanisms. The results demonstrated that NSC 95397 reduced cell viability and anchorage-independent growth of all the three colon cancer cell lines through inhibited proliferation and induced apoptosis via regulating cell-cycle-related proteins, including p21, cyclin-dependent kinases, and caspases. Besides, by using mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126, we provided mechanistic evidence that the antineoplastic effects of NSC 95397 were achieved via inhibiting MKP-1 activity followed by ERK1/2 phosphorylation. Conclusively, our results indicated that NSC 95397 might serve as an effective therapeutic intervention for colon cancer through regulating MKP-1 and ERK1/2 pathway.

  18. Protoparvovirus Interactions with the Cellular DNA Damage Response

    PubMed Central

    Majumder, Kinjal; Etingov, Igor

    2017-01-01

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection. PMID:29088070

  19. Protoparvovirus Interactions with the Cellular DNA Damage Response.

    PubMed

    Majumder, Kinjal; Etingov, Igor; Pintel, David J

    2017-10-31

    Protoparvoviruses are simple single-stranded DNA viruses that infect many animal species. The protoparvovirus minute virus of mice (MVM) infects murine and transformed human cells provoking a sustained DNA damage response (DDR). This DDR is dependent on signaling by the ATM kinase and leads to a prolonged pre-mitotic cell cycle block that features the inactivation of ATR-kinase mediated signaling, proteasome-targeted degradation of p21, and inhibition of cyclin B1 expression. This review explores how protoparvoviruses, and specifically MVM, co-opt the common mechanisms regulating the DDR and cell cycle progression in order to prepare the host nuclear environment for productive infection.

  20. Priming integrin alpha 5 promotes the osteogenic differentiation of human periodontal ligament stem cells due to cytoskeleton and cell cycle changes.

    PubMed

    Wang, He; Li, Jianjia; Zhang, Xiaoyi; Ning, Tingting; Ma, Dandan; Ge, Yihong; Xu, Shuaimei; Hao, Yilin; Wu, Buling

    2018-05-15

    To seek a potential target for periodontal tissue regeneration, this study aimed to explore the role of Integrin alpha 5 (ITGA5) in human periodontal ligament stem cells (PDLSCs). Transwell assay, Cell Counting Kit 8 (CCK8) assay, cell cycle assay, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot were used to investigate the effects of ITGA5 on PDLSC migration, proliferation and osteogenic differentiation. The in vivo effect was investigated by nude mice subcutaneous transplantation with cell and hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) complex. The involved mechanism was explored by the iTRAQ proteomic technique and validated by western blot and immunofluorescence. We found that ITGA5forced expression enhanced the proliferation, migration, and osteogenic capacity of PDLSCs, while inhibited ITGA5 expression had the opposite effects. The phosphorylation of focal adhesion kinase (FAK), phosphatidylinositide 3-kinases/protein kinase B (PI3K/AKT), and mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinases 1 and 2 (MEK1/2/ERK1/2) were crucial in this process. Forced expression of ITGA5 in PDLSCs increased osteoid and PDL-like tissue formation in vivo. Proteomic and bioinformatic analysis revealed that cytoskeleton and cell cycle changes were involved. Keratin, type II cytoskeletal 6B (KRT6B) and desmin (DES) may distinguish this process and serve as new markers of PDLSC differentiation. Periodontitis is highly prevalent and can impair PDL and teeth functioning. One of the most promising therapies to periodontitis therapies is PDL regeneration by utilizing PDLSCs. While many obstacles remain to be resolved, the regulation of PDLSC osteogenic differentiation is a main concern. The present study demonstrated the potential clinical value of an ITGA5 priming peptide, which may be utilized in PDL tissue repair and regeneration. The mechanism elucidated in this study would help to fuel its application. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes.

    PubMed

    Zeng, Huawei; Wu, Min; Botnen, James H

    2009-09-01

    Methylselenol has been hypothesized to be a critical selenium (Se) metabolite for anticancer activity in vivo, and our previous study demonstrated that submicromolar methylselenol generated by incubating methionase with seleno-l-methionine inhibits the migration and invasive potential of HT1080 tumor cells. However, little is known about the association between cancer signal pathways and methylselenol's inhibition of tumor cell invasion. In this study, we demonstrated that methylselenol exposure inhibited cell growth and we used a cancer signal pathway-specific array containing 15 different signal transduction pathways involved in oncogenesis to study the effect of methylselenol on cellular signaling. Using real-time RT-PCR, we confirmed that cellular mRNA levels of cyclin-dependent kinase inhibitor 1C (CDKN1C), heme oxygenase 1, platelet/endothelial cell adhesion molecule, and PPARgamma genes were upregulated to 2.8- to 5.7-fold of the control. BCL2-related protein A1, hedgehog interacting protein, and p53 target zinc finger protein genes were downregulated to 26-52% of the control, because of methylselenol exposure. These genes are directly related to the regulation of cell cycle and apoptosis. Methylselenol increased apoptotic cells up to 3.4-fold of the control and inhibited the extracellular-regulated kinase 1/2 (ERK1/2) signaling and cellular myelocytomatosis oncogene (c-Myc) expression. Taken together, our studies identify 7 novel methylselenol responsive genes and demonstrate that methylselenol inhibits ERK1/2 pathway activation and c-Myc expression. The regulation of these genes is likely to play a key role in G1 cell cycle arrest and apoptosis, which may contribute to the inhibition of tumor cell invasion.

  2. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling.

    PubMed

    Nayak, G; Cooper, G M

    2012-10-11

    The phosphatidylinositol (PI) 3-kinase/Akt signaling pathway has a prominent role in cell survival and proliferation, in part, by regulating gene expression at the transcriptional level. Previous work using global expression profiling identified FOXOs and the E-box-binding transcription factors MITF and USF1 as key targets of PI 3-kinase signaling that lead to the induction of proapoptotic and cell cycle arrest genes in response to inhibition of PI 3-kinase. In this study, we investigated the role of p53 downstream of PI 3-kinase signaling by analyzing the effects of inhibition of PI 3-kinase in Rat-1 cells, which have wild-type p53, compared with Rat-1 cells expressing a dominant-negative p53 mutant. Expression of dominant-negative p53 conferred partial resistance to apoptosis induced by inhibition of PI 3-kinase. Global gene expression profiling combined with computational and experimental analysis of transcription factor binding sites demonstrated that p53, along with FOXO, MITF and USF1, contributed to gene induction in response to PI 3-kinase inhibition. Activation of p53 was mediated by phosphorylation of the histone acetyltransferase Tip60 by glycogen synthase kinase (GSK) 3, leading to activation of p53 by acetylation. Many of the genes targeted by p53 were also targeted by FOXO and E-box-binding transcription factors, indicating that p53 functions coordinately with these factors to regulate gene expression downstream of PI 3-kinase/Akt/GSK3 signaling.

  3. Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis

    PubMed Central

    Huang, Fang; Liu, Qiaoyun; Xie, Shujun; Xu, Jian; Huang, Bo; Wu, Yihua; Xia, Dajing

    2016-01-01

    Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway. PMID:27322250

  4. Cyclic AMP and protein kinase A rhythmicity in the mammalian suprachiasmatic nuclei.

    PubMed

    Ferreyra, G A; Golombek, D A

    2000-03-06

    The levels of cyclic AMP and protein kinase A, as well as the activity of this enzyme, were measured in the hamster suprachiasmatic nuclei at different time points throughout the daily or circadian cycle. Significant diurnal variations for levels of AMPc and the catalytic subunit of protein kinase A and the activity of this enzyme were found. All of these parameters tended to increase throughout the nocturnal phase, reaching higher values at the end of the night and the beginning of the day and minimal values around the time of lights off. This rhythmicity appears to be under exogenous control, since constant darkness abolished fluctuations throughout the circadian cycle. In vitro incubation in the presence of melatonin during the day significantly decreased cyclic AMP levels and basal protein kinase A activity in the SCN, while neither neuropeptide Y nor light pulses affected these parameters. These results suggest a significant diurnal regulation of the cyclic AMP-dependent system in the hamster circadian clock.

  5. The intricacies of p21 phosphorylation: protein/protein interactions, subcellular localization and stability.

    PubMed

    Child, Emma S; Mann, David J

    2006-06-01

    p21 was originally described as functioning as a cell cycle regulator via inhibition of both cyclin-dependent kinases and processive DNA replication. Nowadays it is recognized to play other fundamental roles including transcriptional regulation and the modulation of apoptosis. Each of these functions of p21 is achieved through direct p21/protein interactions and the subcellular localization of p21 plays an important part in dictating the binding partners to which p21 is exposed. Over recent years, a number of phosphorylation sites in p21 have been identified, these being targeted by several important intracellular signalling protein kinases. Here we review the state of our knowledge of p21 phosphorylation with respect to the kinases involved and the molecular biological effects of each phosphorylation event.

  6. Viral exploitation of the MEK/ERK pathway - A tale of vaccinia virus and other viruses.

    PubMed

    Bonjardim, Cláudio A

    2017-07-01

    The VACV replication cycle is remarkable in the sense that it is performed entirely in the cytoplasmic compartment of vertebrate cells, due to its capability to encode enzymes required either for regulating the macromolecular precursor pool or the biosynthetic processes. Although remarkable, this gene repertoire is not sufficient to confer the status of a free-living microorganism to the virus, and, consequently, the virus relies heavily on the host to successfully generate its progeny. During the complex virus-host interaction, viruses must deal not only with the host pathways to accomplish their temporal demands but also with pathways that counteract viral infection, including the inflammatory, innate and acquired immune responses. This review focuses on VACV and other DNA or RNA viruses that stimulate the MEK (MAPK - Mitogen Activated Protein Kinase)/ERK- Extracellular signal-Regulated Kinase) pathway as part of their replication cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1

    PubMed Central

    Zou, Jianqiu; Tian, Fen; Li, Ji; Pickner, Wyatt; Long, Molly; Rezvani, Khosrow; Wang, Hongmin; Zhang, Dong

    2013-01-01

    Summary DNA damage response (DDR) and the centrosome cycle are two of the most critical processes for maintaining a stable genome in animals. Sporadic evidence suggests a connection between these two processes. Here, we report our findings that six Fanconi Anemia (FA) proteins, including FancI and FancJ, localize to the centrosome. Intriguingly, we found that the localization of FancJ to the mother centrosome is stimulated by a DNA interstrand crosslinker, Mitomycin C (MMC). We further show that, in addition to its role in interstrand crosslinking (ICL) repair, FancJ also regulates the normal centrosome cycle as well as ICL induced centrosome amplification by activating the polo-like kinase 1 (PLK1). We have uncovered a novel function of FancJ in centrosome biogenesis and established centrosome amplification as an integral part of the ICL response. PMID:24167712

  8. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways

    PubMed Central

    Rhind, Nicholas; Russell, Paul

    2010-01-01

    SUMMARY Recent work on the mechanisms of DNA damage and replication cell cycle checkpoints has revealed great similarity between the checkpoint pathways of organisms as diverse as yeasts, flies and humans. However, there are differences in the ways these organisms regulate their cell cycles. To connect the conserved checkpoint pathways with various cell cycle targets requires an adaptable link that can target different cell cycle components in different organisms. The Chk1 and Cds1 protein kinases, downstream effectors in the checkpoint pathways, seem to play just such roles. Perhaps more surprisingly, the two kinases not only have different targets in different organisms but also seem to respond to different signals in different organisms. So, whereas in fission yeast Chk1 is required for the DNA damage checkpoint and Cds1 is specifically involved in the replication checkpoint, their roles seem to be shuffled in metazoans. PMID:11058076

  9. Rapid Translation of a Novel and Potent Vaccine in HER2+ Metastatic Breast Cancer Patients

    DTIC Science & Technology

    2013-10-01

    Figure 1A). Instead, phosphorylation of Akt threonine 308 remained intact, implicating a role for PDK1-the kinase responsible for phosphorylating AktT308...including key regulators in signal transduction and cell cycle con- trol, steroid hormone receptors, and tyrosine and serine/ threonine kinases [7-9...xenograft experiments, cells were injected s.c. into the flank of nonobese diabetic severe combined immunodeficient (NOD/SCID) mice (at indicated

  10. Regulation of Akt/FoxO3a/Skp2 Axis Is Critically Involved in Berberine-Induced Cell Cycle Arrest in Hepatocellular Carcinoma Cells

    PubMed Central

    Li, Fanni; Dong, Xiwen; Lin, Peng; Jiang, Jianli

    2018-01-01

    The maintenance of ordinal cell cycle phases is a critical biological process in cancer genesis, which is a crucial target for anti-cancer drugs. As an important natural isoquinoline alkaloid from Chinese herbal medicine, Berberine (BBR) has been reported to possess anti-cancer potentiality to induce cell cycle arrest in hepatocellular carcinoma cells (HCC). However, the underlying mechanism remains to be elucidated. In our present study, G0/G1 phase cell cycle arrest was observed in berberine-treated Huh-7 and HepG2 cells. Mechanically, we observed that BBR could deactivate the Akt pathway, which consequently suppressed the S-phase kinase-associated protein 2 (Skp2) expression and enhanced the expression and translocation of Forkhead box O3a (FoxO3a) into nucleus. The translocated FoxO3a on one hand could directly promote the transcription of cyclin-dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1, on the other hand, it could repress Skp2 expression, both of which lead to up-regulation of p21Cip1 and p27Kip1, causing G0/G1 phase cell cycle arrest in HCC. In conclusion, BBR promotes the expression of CDKIs p21Cip1 and p27Kip1 via regulating the Akt/FoxO3a/Skp2 axis and further induces HCC G0/G1 phase cell cycle arrest. This research uncovered a new mechanism of an anti-cancer effect of BBR. PMID:29360760

  11. Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma.

    PubMed

    Park, Soon Young; Piao, Yuji; Thomas, Craig; Fuller, Gregory N; de Groot, John F

    2016-05-03

    Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27.

  12. Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma

    PubMed Central

    Thomas, Craig; Fuller, Gregory N.; de Groot, John F.

    2016-01-01

    Cdc2-like kinase 2 (CLK2) is known as a regulator of RNA splicing that ultimately controls multiple physiological processes. However, the function of CLK2 in glioblastoma progression has not been described. Reverse-phase protein array (RPPA) was performed to identify proteins differentially expressed in CLK2 knockdown cells compared to controls. The RPPA results indicated that CLK2 knockdown influenced the expression of survival-, proliferation-, and cell cycle-related proteins in GSCs. Thus, knockdown of CLK2 expression arrested the cell cycle at the G1 and S checkpoints in multiple GSC lines. Depletion of CLK2 regulated the dephosphorylation of AKT and decreased phosphorylation of Forkhead box O3a (FOXO3a), which not only translocated to the nucleus but also increased p27 expression. In two glioblastoma xenograft models, the survival duration of mice with CLK2-knockdown GSCs was significantly longer than mice with control tumors. Additionally, tumor volumes were significantly smaller in CLK2-knockdown mice than in controls. Knockdown of CLK2 expression reduced the phosphorylation of FOXO3a and decreased Ki-67 in vivo. Finally, high expression of CLK2 protien was significantly associated with worse patient survival. These findings suggest that CLK2 plays a critical role in controlling the cell cycle and survival of glioblastoma via FOXO3a/p27. PMID:27050366

  13. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia

    PubMed Central

    Degryse, S; de Bock, C E; Demeyer, S; Govaerts, I; Bornschein, S; Verbeke, D; Jacobs, K; Binos, S; Skerrett-Byrne, D A; Murray, H C; Verrills, N M; Van Vlierberghe, P; Cools, J; Dun, M D

    2018-01-01

    Mutations in the interleukin-7 receptor (IL7R) or the Janus kinase 3 (JAK3) kinase occur frequently in T-cell acute lymphoblastic leukemia (T-ALL) and both are able to drive cellular transformation and the development of T-ALL in mouse models. However, the signal transduction pathways downstream of JAK3 mutations remain poorly characterized. Here we describe the phosphoproteome downstream of the JAK3(L857Q)/(M511I) activating mutations in transformed Ba/F3 lymphocyte cells. Signaling pathways regulated by JAK3 mutants were assessed following acute inhibition of JAK1/JAK3 using the JAK kinase inhibitors ruxolitinib or tofacitinib. Comprehensive network interrogation using the phosphoproteomic signatures identified significant changes in pathways regulating cell cycle, translation initiation, mitogen-activated protein kinase and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT signaling, RNA metabolism, as well as epigenetic and apoptotic processes. Key regulatory proteins within pathways that showed altered phosphorylation following JAK inhibition were targeted using selumetinib and trametinib (MEK), buparlisib (PI3K) and ABT-199 (BCL2), and found to be synergistic in combination with JAK kinase inhibitors in primary T-ALL samples harboring JAK3 mutations. These data provide the first detailed molecular characterization of the downstream signaling pathways regulated by JAK3 mutations and provide further understanding into the oncogenic processes regulated by constitutive kinase activation aiding in the development of improved combinatorial treatment regimens. PMID:28852199

  14. The TRPM7 channel kinase regulates store-operated calcium entry.

    PubMed

    Faouzi, Malika; Kilch, Tatiana; Horgen, F David; Fleig, Andrea; Penner, Reinhold

    2017-05-15

    Pharmacological and molecular inhibition of transient receptor potential melastatin 7 (TRPM7) reduces store-operated calcium entry (SOCE). Overexpression of TRPM7 in TRPM7 -/- cells restores SOCE. TRPM7 is not a store-operated calcium channel. TRPM7 kinase rather than channel modulates SOCE. TRPM7 channel activity contributes to the maintenance of store Ca 2+ levels at rest. The transient receptor potential melastatin 7 (TRPM7) is a protein that combines an ion channel with an intrinsic kinase domain, enabling it to modulate cellular functions either by conducting ions through the pore or by phosphorylating downstream proteins via its kinase domain. In the present study, we report store-operated calcium entry (SOCE) as a novel target of TRPM7 kinase activity. TRPM7-deficient chicken DT40 B lymphocytes exhibit a strongly impaired SOCE compared to wild-type cells as a result of reduced calcium release activated calcium currents, and independently of potassium channel regulation, membrane potential changes or changes in cell-cycle distribution. Pharmacological blockade of TRPM7 with NS8593 or waixenicin A in wild-type B lymphocytes results in a significant decrease in SOCE, confirming that TRPM7 activity is acutely linked to SOCE, without TRPM7 representing a store-operated channel itself. Using kinase-deficient mutants, we find that TRPM7 regulates SOCE through its kinase domain. Furthermore, Ca 2+ influx through TRPM7 is essential for the maintenance of endoplasmic reticulum Ca 2+ concentration in resting cells, and for the refilling of Ca 2+ stores after a Ca 2+ signalling event. We conclude that the channel kinase TRPM7 and SOCE are synergistic mechanisms regulating intracellular Ca 2+ homeostasis. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  15. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy.

    PubMed

    Bian, Zhouyan; Liao, Haihan; Zhang, Yan; Wu, Qingqing; Zhou, Heng; Yang, Zheng; Fu, Jinrong; Wang, Teng; Yan, Ling; Shen, Difei; Li, Hongliang; Tang, Qizhu

    2014-01-01

    Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. In the present study, the loss- and gain-of-function experiments were performed in Nek6 gene-deficient (Nek6-/-) mice and Nek6 overexpressing H9c2 cells to clarify whether Nek6 which promotes the cell cycle also mediates cardiac hypertrophy. Cardiac hypertrophy was induced by transthoracic aorta constriction (TAC) and then evaluated by echocardiography, pathological and molecular analyses in vivo. We got novel findings that the absence of Nek6 promoted cardiac hypertrophy, fibrosis and cardiac dysfunction, which were accompanied by a significant activation of the protein kinase B (Akt) signaling in an experimental model of TAC. Consistent with this, the overexpression of Nek6 prevented hypertrophy in H9c2 cells induced by angiotonin II and inhibited Akt signaling in vitro. In conclusion, our results demonstrate that the cell cycle regulatory gene Nek6 is also a critical signaling molecule that helps prevent cardiac hypertrophy and inhibits the Akt signaling pathway.

  16. Nitric oxide is involved in hydrogen gas-induced cell cycle activation during adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Niu, Lijuan; Wang, Meng; Ma, Zhanjun

    2016-06-28

    Adventitious root development is a complex process regulated through a variety of signaling molecules. Hydrogen gas (H2) and nitric oxide (NO), two new signaling molecules are both involved in plant development and stress tolerance. To investigate the mechanism of adventitious root development induced by hydrogen-rich water (HRW), a combination of fluorescence microscopy and molecular approaches was used to study cell cycle activation and cell cycle-related gene expression in cucumber (Cucumis sativus 'Xinchun 4') explants. The results revealed that the effect of HRW on adventitious root development was dose-dependent, with maximal biological responses at 50 % HRW. HRW treatment increased NO content in a time-dependent fashion. The results also indicated that HRW and NO promoted the G1-to-S transition and up-regulated cell cycle-related genes: CycA (A-type cyclin), CycB (B-type cyclin), CDKA (cyclin-dependent kinase A) and CDKB (cyclin-dependent kinase B) expression. Additionally, target genes related to adventitious rooting were up-regulated by HRW and NO in cucumber explants. While, the responses of HRW-induced adventitious root development and increase of NO content were partially blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt, NO synthase (NOS)-like enzyme inhibitor N(G) -nitro-L-arginine methylester hydrochloride, or nitrate reductase inhibitors tungstate and NaN3. These chemicals also partially reversed the effect of HRW on cell cycle activation and the transcripts of cell cycle regulatory genes and target genes related adventitious root formation. Together, NO may emerge as a downstream signaling molecule in H2-induced adventitious root organogenesis. Additionally, H2 mediated cell cycle activation via NO pathway during adventitious root formation.

  17. Rho/ROCK signaling in regulation of corneal epithelial cell cycle progression.

    PubMed

    Chen, Jian; Guerriero, Emily; Lathrop, Kira; SundarRaj, Nirmala

    2008-01-01

    The authors' previous study showed that the expression of a Rho-associated serine/threonine kinase (ROCK) is regulated during cell cycle progression in corneal epithelial cells. The present study was conducted to determine whether and how Rho/ROCK signaling regulates cell cycle progression. Rabbit corneal epithelial cells (RCECs) in culture were arrested in the G(0) phase of the cell cycle by serum deprivation and then allowed to re-enter the cell cycle in the presence or absence of the ROCK inhibitor (Y27632) in serum-supplemented medium. The number of cells in the S phase, the relative levels of specific cyclins and CDKs and their intracellular distribution, and the relative levels of mRNAs were determined by BrdU labeling, Western blot and immunocytochemical analyses, and real-time RT-PCR, respectively. ROCK inhibition delayed the progression of G(1) to S phase and led to a decrease in the number of RCECs entering the S phase between 12 and 24 hours from 31.5% +/- 4.5% to 8.1% +/- 2.6%. During the cell cycle progression, protein and mRNA levels of cyclin-D1 and -D3 and cyclin-dependent kinases CDK4 and CDK6 were significantly lower, whereas the protein levels of the CDK inhibitor p27(Kip1) were higher in ROCK-inhibited cells. Intracellular mRNA or protein levels of cyclin-E and protein levels of CDK2 were not significantly affected, but their nuclear translocation was delayed by ROCK inhibition. ROCK signaling is involved in cell cycle progression in RCECs, possibly by upregulation of cyclin-D1 and -D3 and CDK4, -6, and -2; nuclear translocation of CDK2 and cyclin-E; and downregulation of p27(Kip1).

  18. Pyruvate cycling and implications for regulation of gluconeogenesis in the insect, Manduca sexta L.

    PubMed

    Thompson, S N

    2000-08-11

    Pyruvate cycling was examined in the insect Manduca sexta L. (2-(13)C)pyruvate was injected into 5th instar larvae maintained on a semisynthetic high sucrose, low sucrose, or sucrose-free diet. Pyruvate cycling and gluconeogenesis were determined from the distribution of (13)C in blood metabolites, including trehalose, the blood sugar of insects, and alanine. Pyruvate cycling was evident from the (13)C enrichment of alanine C3, synthesized by transamination of pyruvate following carboxylation to oxaloacetate and cycling through phosphoenolpyruvate. Based on the relative (13)C enrichments of alanine C2 and C3, insects maintained on the high sucrose diet displayed higher levels of cycling than insects on the other diets. Insects on all the diets, when subsequently starved, displayed low levels of cycling. Gluconeogenesis was evident in insects on sucrose-free or low sucrose diets from the selective (13)C enrichment in trehalose. The level of gluconeogenesis relative to glycolysis was indicated by the (13)C enrichment of trehalose C6 and alanine C3, both enrichments metabolically derived in the same manner. Insects starved after maintenance on the sucrose-free or low sucrose diets remained glucogenic. Insects on the high sucrose diet were not glucogenic, and subsequent starvation did not induce gluconeogenesis. The results indicate that pyruvate kinase plays a critical role in regulating the gluconeogenic/glycolytic balance, and that inhibition of pyruvate kinase is a principal regulatory event during induction of de novo trehalose synthesis. Gluconeogenesis failed to maintain homeostatic levels of blood trehalose, supporting the conclusion that blood sugar level may be important for mediating nutrient intake. Possible factors involved in the regulation of gluconeogenesis in insects are discussed. Copyright 2000 Academic Press.

  19. Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry

    PubMed Central

    Haase, Steven B.; Wittenberg, Curt

    2014-01-01

    Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825

  20. FOXC2 regulates the G2/M transition of stem cell-rich breast cancer cells and sensitizes them to PLK1 inhibition

    PubMed Central

    Pietilä, Mika; Vijay, Geraldine V.; Soundararajan, Rama; Yu, Xian; Symmans, William F.; Sphyris, Nathalie; Mani, Sendurai A.

    2016-01-01

    Cancer cells with stem cell properties (CSCs) underpin the chemotherapy resistance and high therapeutic failure of triple-negative breast cancers (TNBCs). Even though CSCs are known to proliferate more slowly, they are sensitive to inhibitors of G2/M kinases such as polo-like kinase 1 (PLK1). Understanding the cell cycle regulatory mechanisms of CSCs will help target these cells more efficiently. Herein, we identify a novel role for the transcription factor FOXC2, which is mostly expressed in CSCs, in the regulation of cell cycle of CSC-enriched breast cancer cells. We demonstrate that FOXC2 expression is regulated in a cell cycle-dependent manner, with FOXC2 protein levels accumulating in G2, and rapidly decreasing during mitosis. Knockdown of FOXC2 in CSC-enriched TNBC cells delays mitotic entry without significantly affecting the overall proliferation rate of these cells. Moreover, PLK1 activity is important for FOXC2 protein stability, since PLK1 inhibition reduces FOXC2 protein levels. Indeed, FOXC2 expressing CSC-enriched TNBC cells are sensitive to PLK1 inhibition. Collectively, our findings demonstrate a novel role for FOXC2 as a regulator of the G2/M transition and elucidate the reason for the observed sensitivity of CSC-enriched breast cancer cells to PLK1 inhibitor. PMID:27064522

  1. Loss of DLK expression in WI-38 human diploid fibroblasts induces a senescent-like proliferation arrest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Alex; Couture, Jean-Philippe; Blouin, Richard, E-mail: Richard.Blouin@USherbrooke.ca

    Highlights: {yields} Role of DLK in cell proliferation. {yields} Modulation of DLK expression during cell cycle progression. {yields} DLK knockdown induces proliferation arrest and senescence. {yields} DLK-depleted cells display loss of cyclin D1 and up-regulation of p21. {yields} DLK participates in cell proliferation by modulating cell cycle regulator expression. -- Abstract: DLK, a serine/threonine kinase that functions as an upstream activator of the mitogen-activated protein kinase (MAPK) pathways, has been shown to play a role in development, cell differentiation, apoptosis and neuronal response to injury. Interestingly, recent studies have shown that DLK may also be required for cell proliferation, althoughmore » little is known about its specific functions. To start addressing this issue, we studied how DLK expression is modulated during cell cycle progression and what effect DLK depletion has on cell proliferation in WI-38 fibroblasts. Our results indicate that DLK protein levels are low in serum-starved cells, but that serum addition markedly stimulated it. Moreover, RNA interference experiments demonstrate that DLK is required for ERK activity, expression of the cell cycle regulator cyclin D1 and proliferation of WI-38 cells. DLK-depleted cells also show a senescent phenotype as revealed by senescence-associated galactosidase activity and up-regulation of the senescence pathway proteins p53 and p21. Consistent with a role for p53 in this response, inhibition of p53 expression by RNA interference significantly alleviated senescence induced by DLK knockdown. Together, these findings indicate that DLK participates in cell proliferation and/or survival, at least in part, by modulating the expression of cell cycle regulatory proteins.« less

  2. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    PubMed

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  3. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-04-15

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation.

  4. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH.

    PubMed Central

    Adamczewski, J P; Rossignol, M; Tassan, J P; Nigg, E A; Moncollin, V; Egly, J M

    1996-01-01

    MAT1, cyclin H and cdk7 are part of TFIIH, a class II transcription factor which possesses numerous subunits of which several have been shown to be involved in processes other than transcription. Two of them, XPD (ERCC2) and XPB (ERCC3), are helicases involved in nucleotide excision repair (NER), whereas cdk7, cyclin H and MAT1 are thought to participate in cell cycle regulation. MAT1, cyclin H and cdk7 exist as a ternary complex either free or associated with TFIIH from which the latter can be dissociated at high salt concentration. MAT1 is strongly associated with cdk7 and cyclin H. Although not strictly required for the formation and activity of the complex, it stimulates its kinase activity. The kinase activity of TFIIH, which is constant during the cell cycle, is reduced after UV light irradiation. Images PMID:8617234

  5. A Transcriptome-based Perspective of Cell Cycle Regulation in Dinoflagellates.

    PubMed

    Morse, David; Daoust, Philip; Benribague, Siham

    2016-12-01

    Dinoflagellates are a group of unicellular and generally marine protists, of interest to many because of their ability to form the large algal blooms commonly called "red tides". The large algal concentrations in these blooms require sustained cell replication, yet to date little is known about cell cycle regulation in these organisms. To address this issue, we have screened the transcriptomes of two dinoflagellates, Lingulodinium polyedrum and Symbiodinium sp., with budding yeast cell cycle pathway components. We find most yeast cell cycle regulators have homologs in these dinoflagellates, suggesting that the yeast model is appropriate for understanding regulation of the dinoflagellate cell cycle. The dinoflagellates are lacking several components essential in yeast, but a comparison with a broader phylogenetic range of protists reveals these components are usually also missing in other organisms. Lastly, phylogenetic analyses show that the dinoflagellates contain at least three cyclin-dependent kinase (CDK) homologs (belonging to the CDK1, CDK5 and CDK8 families), and that the dinoflagellate cyclins belong exclusively to the A/B type. This suggests that dinoflagellate CDKs likely play a limited role outside regulation of the cell cycle. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay.

    PubMed

    Cui, Heying; Loftus, Kyle M; Noell, Crystal R; Solmaz, Sozanne R

    2018-05-03

    Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.

  7. Rho-associated Kinase Connects a Cell Cycle-controlling Anchorage Signal to the Mammalian Target of Rapamycin Pathway*

    PubMed Central

    Park, Jung-ha; Arakawa-Takeuchi, Shiho; Jinno, Shigeki; Okayama, Hiroto

    2011-01-01

    When deprived of anchorage to the extracellular matrix, fibroblasts arrest in G1 phase at least in part due to inactivation of G1 cyclin-dependent kinases. Despite great effort, how anchorage signals control the G1-S transition of fibroblasts remains highly elusive. We recently found that the mammalian target of rapamycin (mTOR) cascade might convey an anchorage signal that regulates S phase entry. Here, we show that Rho-associated kinase connects this signal to the TSC1/TSC2-RHEB-mTOR pathway. Expression of a constitutively active form of ROCK1 suppressed all of the anchorage deprivation effects suppressible by tsc2 mutation in rat embryonic fibroblasts. TSC2 contains one evolutionarily conserved ROCK target-like sequence, and an alanine substitution for Thr1203 in this sequence severely impaired the ability of ROCK1 to counteract the anchorage loss-imposed down-regulation of both G1 cell cycle factors and mTORC1 activity. Moreover, TSC2 Thr1203 underwent ROCK-dependent phosphorylation in vivo and could be phosphorylated by bacterially expressed active ROCK1 in vitro, providing biochemical evidence for a direct physical interaction between ROCK and TSC2. PMID:21561859

  8. Cyclin-dependent kinases: engines, clocks, and microprocessors.

    PubMed

    Morgan, D O

    1997-01-01

    Cyclin-dependent kinases (Cdks) play a well-established role in the regulation of the eukaryotic cell division cycle and have also been implicated in the control of gene transcription and other processes. Cdk activity is governed by a complex network of regulatory subunits and phosphorylation events whose precise effects on Cdk conformation have been revealed by recent crystallographic studies. In the cell, these regulatory mechanisms generate an interlinked series of Cdk oscillators that trigger the events of cell division.

  9. Gene Expression Patterns Define Key Transcriptional Events InCell-Cycle Regulation By cAMP And Protein Kinase A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon

    Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrestmore » of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.« less

  10. The cell-cycle interactome: a source of growth regulators?

    PubMed

    Blomme, Jonas; Inzé, Dirk; Gonzalez, Nathalie

    2014-06-01

    When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain

    NASA Technical Reports Server (NTRS)

    Ikeda, M.; Takei, T.; Mills, I.; Kito, H.; Sumpio, B. E.

    1999-01-01

    The aim of this study was to determine whether extracellular signal-regulated kinases 1/2 (ERK1/ERK2) are activated and might play a role in enhanced proliferation and morphological change induced by strain. Bovine aortic endothelial cells (BAEC) were subjected to an average of 6 or 10% strain at a rate of 60 cycles/min for up to 4 h. Cyclic strain caused strain- and time-dependent phosphorylation and activation of ERK1/ERK2. Peak phosphorylation and activation of ERK1/ERK2 induced by 10% strain were at 10 min. A specific ERK1/ERK2 kinase inhibitor, PD-98059, inhibited phosphorylation and activation of ERK1/ERK2 but did not inhibit the increased cell proliferation and cell alignment induced by strain. Treatment of BAEC with 2,5-di-tert-butyl-1, 4-benzohydroquinone, to deplete inositol trisphosphate-sensitive calcium storage, and gadolinium chloride, a Ca2+ channel blocker, did not inhibit the activation of ERK1/ERK2. Strain-induced ERK1/ERK2 activation was partly inhibited by the protein kinase C inhibitor calphostin C and completely inhibited by the tyrosine kinase inhibitor genistein. These data suggest that 1) ERK1/ERK2 are not critically involved in the strain-induced cell proliferation and orientation, 2) strain-dependent activation of ERK1/ERK2 is independent of intracellular and extracellular calcium mobilization, and 3) protein kinase C activation and tyrosine kinase regulate strain-induced activation of ERK1/ERK2.

  12. An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila

    PubMed Central

    Eisman, Robert C.; Phelps, Melissa A. S.; Kaufman, Thomas

    2015-01-01

    The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. PMID:26447129

  13. An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila.

    PubMed

    Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas

    2015-10-01

    The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. Copyright © 2015 by the Genetics Society of America.

  14. Gene expression of cyclin-dependent kinase inhibitors and effect of heparin on their expression in mice with hypoxia-induced pulmonary hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Lunyin; Quinn, Deborah A.; Garg, Hari G.

    The balance between cell proliferation and cell quiescence is regulated delicately by a variety of mediators, in which cyclin-dependent kinases (CDK) and CDK inhibitors (CDKI) play a very important role. Heparin which inhibits pulmonary artery smooth muscle cell (PASMC) proliferation increases the levels of two CDKIs, p21 and p27, although only p27 is important in inhibition of PASMC growth in vitro and in vivo. In the present study we investigated the expression profile of all the cell cycle regulating genes, including all seven CDKIs (p21, p27, p57, p15, p16, p18, and p19), in the lungs of mice with hypoxia-induced pulmonarymore » hypertension. A cell cycle pathway specific gene microarray was used to profile the 96 genes involved in cell cycle regulation. We also observed the effect of heparin on gene expression. We found that (a) hypoxic exposure for two weeks significantly inhibited p27 expression and stimulated p18 activity, showing a 98% decrease in p27 and 81% increase in p18; (b) other CDKIs, p21, p57, p15, p16, and p19 were not affected significantly in response to hypoxia; (c) heparin treatment restored p27 expression, but did not influence p18; (d) ERK1/2 and p38 were mediators in heparin upregulation of p27. This study provides an expression profile of cell cycle regulating genes under hypoxia in mice with hypoxia-induced pulmonary hypertension and strengthens the previous finding that p27 is the only CDKI involved in heparin regulation of PASMC proliferation and hypoxia-induced pulmonary hypertension.« less

  15. Multifunctional Role of ATM/Tel1 Kinase in Genome Stability: From the DNA Damage Response to Telomere Maintenance

    PubMed Central

    2014-01-01

    The mammalian protein kinase ataxia telangiectasia mutated (ATM) is a key regulator of the DNA double-strand-break response and belongs to the evolutionary conserved phosphatidylinositol-3-kinase-related protein kinases. ATM deficiency causes ataxia telangiectasia (AT), a genetic disorder that is characterized by premature aging, cerebellar neuropathy, immunodeficiency, and predisposition to cancer. AT cells show defects in the DNA damage-response pathway, cell-cycle control, and telomere maintenance and length regulation. Likewise, in Saccharomyces cerevisiae, haploid strains defective in the TEL1 gene, the ATM ortholog, show chromosomal aberrations and short telomeres. In this review, we outline the complex role of ATM/Tel1 in maintaining genomic stability through its control of numerous aspects of cellular survival. In particular, we describe how ATM/Tel1 participates in the signal transduction pathways elicited by DNA damage and in telomere homeostasis and its importance as a barrier to cancer development. PMID:25247188

  16. Rho-associated coiled-coil kinase (ROCK) protein controls microtubule dynamics in a novel signaling pathway that regulates cell migration.

    PubMed

    Schofield, Alice V; Steel, Rohan; Bernard, Ora

    2012-12-21

    The two members of the Rho-associated coiled-coil kinase (ROCK1 and 2) family are established regulators of actin dynamics that are involved in the regulation of the cell cycle as well as cell motility and invasion. Here, we discovered a novel signaling pathway whereby ROCK regulates microtubule (MT) acetylation via phosphorylation of the tubulin polymerization promoting protein 1 (TPPP1/p25). We show that ROCK phosphorylation of TPPP1 inhibits the interaction between TPPP1 and histone deacetylase 6 (HDAC6), which in turn results in increased HDAC6 activity followed by a decrease in MT acetylation. As a consequence, we show that TPPP1 phosphorylation by ROCK increases cell migration and invasion via modulation of cellular acetyl MT levels. We establish here that the ROCK-TPPP1-HDAC6 signaling pathway is important for the regulation of cell migration and invasion.

  17. Silencing of the integrin-linked kinase gene suppresses the proliferation, migration and invasion of pancreatic cancer cells (Panc-1).

    PubMed

    Zhu, Xiang-Yu; Liu, Ning; Liu, Wei; Song, Shao-Wei; Guo, Ke-Jian

    2012-04-01

    Integrin-linked kinase (ILK) is an ankyrin repeat-containing serine-threonine protein kinase that is involved in the regulation of integrin-mediated processes such as cancer cell proliferation, migration and invasion. In this study, we examined the effect of a lentivirus-mediated knockdown of ILK on the proliferation, migration and invasion of pancreatic cancer (Panc-1) cells. Immunohistochemical staining showed that ILK expression was enhanced in pancreatic cancer tissue. The silencing of ILK in human Panc-1 cells led to cell cycle arrest in the G0/G1 phase and delayed cell proliferation, in addition to down-regulating cell migration and invasion. The latter effects were mediated by up-regulating the expression of E-cadherin, a key protein in cell adhesion. These findings indicate that ILK may be a new diagnostic marker for pancreatic cancer and that silencing ILK could be a potentially useful therapeutic approach for treating pancreatic cancer.

  18. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma.

    PubMed

    Zhou, Jin; Wu, Zhong; Wong, Gabrielle; Pectasides, Eirini; Nagaraja, Ankur; Stachler, Matthew; Zhang, Haikuo; Chen, Ting; Zhang, Haisheng; Liu, Jie Bin; Xu, Xinsen; Sicinska, Ewa; Sanchez-Vega, Francisco; Rustgi, Anil K; Diehl, J Alan; Wong, Kwok-Kin; Bass, Adam J

    2017-01-06

    Oesophageal squamous cell carcinoma is a deadly disease where systemic therapy has relied upon empiric chemotherapy despite the presence of genomic alterations pointing to candidate therapeutic targets, including recurrent amplification of the gene encoding receptor tyrosine kinase epidermal growth factor receptor (EGFR). Here, we demonstrate that EGFR-targeting small-molecule inhibitors have efficacy in EGFR-amplified oesophageal squamous cell carcinoma (ESCC), but may become quickly ineffective. Resistance can occur following the emergence of epithelial-mesenchymal transition and by reactivation of the mitogen-activated protein kinase (MAPK) pathway following EGFR blockade. We demonstrate that blockade of this rebound activation with MEK (mitogen-activated protein kinase kinase) inhibition enhances EGFR inhibitor-induced apoptosis and cell cycle arrest, and delays resistance to EGFR monotherapy. Furthermore, genomic profiling shows that cell cycle regulators are altered in the majority of EGFR-amplified tumours and a combination of cyclin-dependent kinase 4/6 (CDK4/6) and EGFR inhibitors prevents the emergence of resistance in vitro and in vivo. These data suggest that upfront combination strategies targeting EGFR amplification, guided by adaptive pathway reactivation or by co-occurring genomic alterations, should be tested clinically.

  19. Correlation between Cyclin Dependent Kinases and Artemisinin-Induced Dormancy in Plasmodium falciparum In Vitro

    PubMed Central

    Gray, Karen-Ann; Gresty, Karryn J.; Chen, Nanhua; Zhang, Veronica; Gutteridge, Clare E.; Peatey, Christopher L.; Chavchich, Marina; Waters, Norman C.; Cheng, Qin

    2016-01-01

    Background Artemisinin-induced dormancy provides a plausible explanation for recrudescence following artemisinin monotherapy. This phenomenon shares similarities with cell cycle arrest where cyclin dependent kinases (CDKs) and cyclins play an important role. Methods Transcription profiles of Plasmodium falciparum CDKs and cyclins before and after dihydroartemisinin (DHA) treatment in three parasite lines, and the effect of CDK inhibitors on parasite recovery from DHA-induced dormancy were investigated. Results After DHA treatment, parasites enter a dormancy phase followed by a recovery phase. During the dormancy phase parasites up-regulate pfcrk1, pfcrk4, pfcyc2 and pfcyc4, and down-regulate pfmrk, pfpk5, pfpk6, pfcrk3, pfcyc1 and pfcyc3. When entering the recovery phase parasites immediately up-regulate all CDK and cyclin genes. Three CDK inhibitors, olomoucine, WR636638 and roscovitine, produced distinct effects on different phases of DHA-induced dormancy, blocking parasites recovery. Conclusions The up-regulation of PfCRK1 and PfCRK4, and down regulation of other CDKs and cyclins correlate with parasite survival in the dormant state. Changes in CDK expression are likely to negatively regulate parasite progression from G1 to S phase. These findings provide new insights into the mechanism of artemisinin-induced dormancy and cell cycle regulation of P. falciparum, opening new opportunities for preventing recrudescence following artemisinin treatment. PMID:27326764

  20. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells

    NASA Technical Reports Server (NTRS)

    Swarthout, John T.; D'Alonzo, Richard C.; Selvamurugan, Nagarajan; Partridge, Nicola C.

    2002-01-01

    Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.

  1. DNA replication checkpoint promotes G1-S transcription by inactivating the MBF repressor Nrm1

    PubMed Central

    de Bruin, R. A. M.; Kalashnikova, T. I.; Aslanian, A.; Wohlschlegel, J.; Chahwan, C.; Yates, J. R.; Russell, P.; Wittenberg, C.

    2008-01-01

    The cell cycle transcriptional program imposes order on events of the cell-cycle and is a target for signals that regulate cell-cycle progression, including checkpoints required to maintain genome integrity. Neither the mechanism nor functional significance of checkpoint regulation of the cell-cycle transcription program are established. We show that Nrm1, an MBF-specific transcriptional repressor acting at the transition from G1 to S phase of the cell cycle, is at the nexus between the cell cycle transcriptional program and the DNA replication checkpoint in fission yeast. Phosphorylation of Nrm1 by the Cds1 (Chk2) checkpoint protein kinase, which is activated in response to DNA replication stress, promotes its dissociation from the MBF transcription factor. This leads to the expression of genes encoding components that function in DNA replication and repair pathways important for cell survival in response to arrested DNA replication. PMID:18682565

  2. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    PubMed Central

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  3. Dynamic ubiquitin signaling in cell cycle regulation

    PubMed Central

    Gilberto, Samuel

    2017-01-01

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. PMID:28684425

  4. Dynamic ubiquitin signaling in cell cycle regulation.

    PubMed

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  5. A map of protein dynamics during cell-cycle progression and cell-cycle exit

    PubMed Central

    Gookin, Sara; Min, Mingwei; Phadke, Harsha; Chung, Mingyu; Moser, Justin; Miller, Iain; Carter, Dylan

    2017-01-01

    The cell-cycle field has identified the core regulators that drive the cell cycle, but we do not have a clear map of the dynamics of these regulators during cell-cycle progression versus cell-cycle exit. Here we use single-cell time-lapse microscopy of Cyclin-Dependent Kinase 2 (CDK2) activity followed by endpoint immunofluorescence and computational cell synchronization to determine the temporal dynamics of key cell-cycle proteins in asynchronously cycling human cells. We identify several unexpected patterns for core cell-cycle proteins in actively proliferating (CDK2-increasing) versus spontaneously quiescent (CDK2-low) cells, including Cyclin D1, the levels of which we find to be higher in spontaneously quiescent versus proliferating cells. We also identify proteins with concentrations that steadily increase or decrease the longer cells are in quiescence, suggesting the existence of a continuum of quiescence depths. Our single-cell measurements thus provide a rich resource for the field by characterizing protein dynamics during proliferation versus quiescence. PMID:28892491

  6. A cdk1 gradient guides surface contraction waves in oocytes.

    PubMed

    Bischof, Johanna; Brand, Christoph A; Somogyi, Kálmán; Májer, Imre; Thome, Sarah; Mori, Masashi; Schwarz, Ulrich S; Lénárt, Péter

    2017-10-11

    Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase. The SCW's directionality and speed are controlled by a spatiotemporal gradient of cdk1-cyclinB. This gradient is formed by the release of cdk1-cyclinB from the asymmetrically located nucleus, and progressive degradation of cyclinB. By combining quantitative imaging, biochemical and mechanical perturbations with mathematical modeling, we demonstrate that the SCWs result from the spatiotemporal integration of two conserved regulatory modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.Surface contraction waves (SCWs) are prominent shape changes coupled to cell cycle transitions in oocytes. Here the authors show that SCWs are patterned by the spatiotemporal integration of two conserved modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.

  7. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulosa->luteal transition.

    PubMed

    Tong, W; Kiyokawa, H; Soos, T J; Park, M S; Soares, V C; Manova, K; Pollard, J W; Koff, A

    1998-09-01

    The involvement of cyclin-dependent kinase inhibitors in differentiation remains unclear: are the roles of cyclin-dependent kinase inhibitors restricted to cell cycle arrest; or also required for completion of the differentiation program; or both? Here, we report that differentiation of luteal cells can be uncoupled from growth arrest in p27-deficient mice. In these mice, female-specific infertility correlates with a failure of embryos to implant at embryonic day 4.5. We show by ovarian transplant and hormone reconstitution experiments that failure to regulate luteal cell estradiol is one physiological mechanism for infertility in these mice. This failure is not due to a failure of p27-deficient granulosa cells to differentiate after hormonal stimulation; P450scc, a marker for luteal progesterone biosynthesis, is expressed and granulosa cell-specific cyclin D2 expression is reduced. However, unlike their wild-type counterparts, p27-deficient luteal cells continue to proliferate for up to 3.5 days after hormonal stimulation. By day 5.5, however, these cells withdraw from the cell cycle, suggesting that p27 plays a role in the early events regulating withdrawal of cells from the cell cycle. We have further shown that in the absence of this timely withdrawal, estradiol regulation is perturbed, explaining in part how fertility is compromised at the level of implantation. These data support the interpretation of our previous observations on oligodendrocyte differentiation about a role for p27 in establishing the nonproliferative state, which in some cases (oligodendrocytes) is required for differentiation, whereas in other cases it is required for the proper functioning of a differentiated cell (luteal cell).

  8. Regulation of cellular growth by the Drosophila target of rapamycin dTOR

    PubMed Central

    Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.

    2000-01-01

    The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888

  9. Protein tyrosine phosphatase of liver regeneration-1 is required for normal timing of cell cycle progression during liver regeneration

    PubMed Central

    Jiao, Yang; Ye, Diana Z.; Li, Zhaoyu; Teta-Bissett, Monica; Peng, Yong; Taub, Rebecca; Greenbaum, Linda E.

    2014-01-01

    Protein tyrosine phosphatase of liver regeneration-1 (Prl-1) is an immediate-early gene that is significantly induced during liver regeneration. Several in vitro studies have suggested that Prl-1 is important for the regulation of cell cycle progression. To evaluate its function in liver regeneration, we ablated the Prl-1 gene specifically in mouse hepatocytes using the Cre-loxP system. Prl-1 mutant mice (Prl-1loxP/loxP;AlfpCre) appeared normal and fertile. Liver size and metabolic function in Prl-1 mutants were comparable to controls, indicating that Prl-1 is dispensable for liver development, postnatal growth, and hepatocyte differentiation. Mutant mice demonstrated a delay in DNA synthesis after 70% partial hepatectomy, although ultimate liver mass restoration was not affected. At 40 h posthepatectomy, reduced protein levels of the cell cycle regulators cyclin E, cyclin A2, cyclin B1, and cyclin-dependent kinase 1 were observed in Prl-1 mutant liver. Investigation of the major signaling pathways involved in liver regeneration demonstrated that phosphorylation of protein kinase B (AKT) and signal transducer and activator of transcription (STAT) 3 were significantly reduced at 40 h posthepatectomy in Prl-1 mutants. Taken together, this study provides evidence that Prl-1 is required for proper timing of liver regeneration after partial hepatectomy. Prl-1 promotes G1/S progression via modulating expression of several cell cycle regulators through activation of the AKT and STAT3 signaling pathway. PMID:25377314

  10. c-Abl tyrosine kinase regulates cardiac growth and development.

    PubMed

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P

    2010-01-19

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development.

  11. c-Abl tyrosine kinase regulates cardiac growth and development

    PubMed Central

    Qiu, Zhaozhu; Cang, Yong; Goff, Stephen P.

    2009-01-01

    The c-Abl protein is a ubiquitously expressed nonreceptor tyrosine kinase involved in the development and function of many mammalian organ systems, including the immune system and bone. Here we show that homozygous Abl mutant embryos and newborns on the C57BL/6J background, but not on other backgrounds, display dramatically enlarged hearts and die perinatally. The heart defects can be largely rescued by cardiomyocyte-specific restoration of the full-length c-Abl protein. The cardiac hyperplasia phenotype is not caused by decreased apoptosis, but rather by abnormally increased cardiomyocyte proliferation during later stages of embryogenesis. Genes involved in cardiac stress and remodeling and cell cycle regulation are also up-regulated in the mutant hearts. These findings reveal an essential role for c-Abl in mammalian heart growth and development. PMID:20080568

  12. Effect of Chimaerins, Novel Receptors for Phorbol Esters, on Breast Cancer Cell Proliferation and Cell Cycle Progression

    DTIC Science & Technology

    2006-07-01

    that is responsible for the phosphorylation of DAG to generate phosphatidic acid . DGKs might be key molecules in a negative feedback aimed at turning off...C2 Neurotransmitter release KinaseT PH PKCs EF DAG Phosphatidic acid EF C1 KinaseC2 C1 C1 KinaseC2C1 C1 C1 C1 C1 C1 C1 C1 C1 Rac–GTP Rac–GDP Protein...generate phosphatidic acid , and thus it decreases DAG levels. It is possible that DAG-regulated DGKs might serve as negative feedback molecules that turn

  13. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    PubMed

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  14. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis.

    PubMed

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina; Marshall, Christopher J

    2016-01-14

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.

  15. Histone phosphorylation: its role during cell cycle and centromere identity in plants.

    PubMed

    Zhang, B; Dong, Q; Su, H; Birchler, J A; Han, F

    2014-01-01

    As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs. © 2014 S. Karger AG, Basel.

  16. Inhibition of the ERK phosphorylation plays a role in terbinafine-induced p21 up-regulation and DNA synthesis inhibition in human vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.-Y.; Hsu, S.-P.; Liang, Y.-C.

    2008-05-15

    Previously, we showed that terbinafine (TB) induces cell-cycle arrest in cultured human umbilical vein endothelial cells (HUVEC) through an up-regulation of the p21 protein. The aim of this study is to delineate the molecular mechanisms underlying TB-induced increase of p21 protein. RT-PCR analysis demonstrated that the mRNA levels of p21 and p53 were increased in the TB-treated HUVEC. The p21 promoter activity was also increased by TB treatment. Transfection of HUVEC with p53 dominant negative (DN) abolished the TB-induced increases of p21 promoter activity and protein level, suggesting that the TB-induced increase of p21 is p53-dependent. Western blot analysis demonstratedmore » that TB decreased the levels of phosphorylated extracellular signal-regulated kinase (ERK). Over-expression of mitogen-activated protein kinase (MEK)-1, the immediate upstream activator kinase of ERK, abolished the TB-induced increases of p21 and p53 protein and decrease of thymidine incorporation. The ERK inhibitor (PD98059) enhanced the TB-induced inhibition of thymidine incorporation into HUVEC. Taken together, these data suggest that the decrease of ERK activity plays a role in the TB-induced up-regulation of p21 in HUVEC. On the other hand, pretreatment of the cells with geranylgeraniol (GGOH), farnesol (FOH), or Ras inhibitor peptide did not affect the TB-induced decrease of thymidine incorporation. Taken together, our results suggest that TB might cause a decrease of MEK, which in turn up-regulates p53 through the inhibition of ERK phosphorylation, and finally causes an increase of p21 expression and cell-cycle arrest.« less

  17. Tax-dependent stimulation of G1 phase-specific cyclin-dependent kinases and increased expression of signal transduction genes characterize HTLV type 1-transformed T cells.

    PubMed

    Haller, K; Ruckes, T; Schmitt, I; Saul, D; Derow, E; Grassmann, R

    2000-11-01

    Human T cell leukemia virus protein induces T cells to permanent IL-2-dependent growth. These cells occasionally convert to factor independence. The viral oncoprotein Tax acts as an essential growth factor of transformed lymphocytes and stimulates the cell cycle in the G(1) phase. In T cells and fibroblasts Tax enhances the activity of the cyclin-dependent kinases (CDK) CDK4 and CDK6. These kinases, which require binding to cyclin D isotypes for their activity, control the G(1) phase. Coimmunoprecipitation from these cells revealed that Tax associates with cyclin D3/CDK6, suggesting a direct activation of this kinase. The CDK stimulation may account in part for the mitogenic Tax effect, which causes IL-2-dependent T cell growth by Tax. To address the conversion to IL-2-independent proliferation and to identify overexpressed genes, which contribute to the transformed growth, the gene expression patterns of HTLV-1-transformed T cells were compared with that of peripheral blood lymphocytes. Potentially overexpressed cDNAs were cloned, sequenced, and used to determine the RNA expression. Genes found to be up-regulated are involved in signal transduction (STAT5a, cyclin G(1), c-fgr, hPGT) and also glycoprotein synthesis (LDLC, ribophorin). Many of these are also activated during T cell activation and implicated in the regulation of growth and apoptosis. The transcription factor STAT5a, which is involved in IL-2 signaling, was strongly up-regulated only in IL-2-independent cells, thus suggesting that it contributes to factor-independent growth. Thus, the differentially expressed genes could cooperate with the Tax-induced cell cycle stimulation in the maintenance of IL-2-dependent and IL-2-independent growth of HTLV-transformed lymphocytes.

  18. Enterolactone induces G1-phase cell cycle arrest in non-small cell lung cancer cells by down-regulating cyclins and cyclin-dependent kinases

    PubMed Central

    Chikara, Shireen; Lindsey, Kaitlin; Dhillon, Harsharan; Mamidi, Sujan; Kittilson, Jeffrey; Christofidou-Solomidou, Melpo; Reindl, Katie M.

    2017-01-01

    Flaxseed is a rich source of the plant lignan secoisolariciresinol diglucoside (SDG) which is metabolized into mammalian lignans enterodiol (ED) and enterolactone (EL) in the digestive tract. The anti-cancer properties of these lignans have been demonstrated for various cancer types, but have not been studied for lung cancer. In this study we investigated the anti-cancer effects of EL for several non-small cell lung cancer (NSCLC) cell lines of various genetic backgrounds. EL inhibited the growth of A549, H441, and H520 lung cancer cells in concentration- and time-dependent manners. The anti-proliferative effects of EL for lung cancer cells were not due to enhanced cell death, but rather due to G1-phase cell cycle arrest. Molecular studies revealed that EL- decreased mRNA or protein expression levels of the G1-phase promoters cyclin D1, cyclin E, cyclin-dependent kinases (CDK)-2, -4, and -6, and p-cdc25A; decreased phosphorylated retinoblastoma (p-pRb) protein levels; and simultaneously increased levels of p21WAF1/CIP1, a negative regulator of the G1-phase. The results suggest that EL inhibits the growth of NSCLC cell lines by down-regulating G1-phase cyclins and CDKs, and up-regulating p21WAF1/CIP1, which leads to G1-phase cell cycle arrest. Therefore, EL may hold promise as an adjuvant treatment for lung cancer therapy. PMID:28323486

  19. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.

    PubMed

    Llorens, Franc; Carulla, Patricia; Villa, Ana; Torres, Juan M; Fortes, Puri; Ferrer, Isidre; del Río, José A

    2013-10-01

    The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway. © 2013 International Society for Neurochemistry.

  20. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery

    PubMed Central

    Cook, Gemma S.; Grønlund, Anne Lentz; Siciliano, Ilario; Spadafora, Natasha; Amini, Maryam; Herbert, Robert J.; Bitonti, M. Beatrice; Graumann, Katja; Francis, Dennis; Rogers, Hilary J.

    2013-01-01

    In yeasts and animals, premature entry into mitosis is prevented by the inhibitory phosphorylation of cyclin-dependent kinase (CDK) by WEE1 kinase, and, at mitosis, WEE1 protein is removed through the action of the 26S proteasome. Although in higher plants WEE1 function has been confirmed in the DNA replication checkpoint, Arabidopsis wee1 insertion mutants grow normally, and a role for the protein in the G2/M transition during an unperturbed plant cell cycle is yet to be confirmed. Here data are presented showing that the inhibitory effect of WEE1 on CDK activity in tobacco BY-2 cell cultures is cell cycle regulated independently of the DNA replication checkpoint: it is high during S-phase but drops as cells traverse G2 and enter mitosis. To investigate this mechanism further, a yeast two-hybrid screen was undertaken to identify proteins interacting with Arabidopsis WEE1. Three F-box proteins and a subunit of the proteasome complex were identified, and bimolecular fluorescence complementation confirmed an interaction between AtWEE1 and the F-box protein SKP1 INTERACTING PARTNER 1 (SKIP1). Furthermore, the AtWEE1–green fluorescent protein (GFP) signal in Arabidopsis primary roots treated with the proteasome inhibitor MG132 was significantly increased compared with mock-treated controls. Expression of AtWEE1–YFPC (C-terminal portion of yellow fluorescent protein) or AtWEE1 per se in tobacco BY-2 cells resulted in a premature increase in the mitotic index compared with controls, whereas co-expression of AtSKIP1–YFPN negated this effect. These data support a role for WEE1 in a normal plant cell cycle and its removal at mitosis via the 26S proteasome. PMID:23536609

  1. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells.

    PubMed

    Uosaki, Hideki; Magadum, Ajit; Seo, Kinya; Fukushima, Hiroyuki; Takeuchi, Ayako; Nakagawa, Yasuaki; Moyes, Kara White; Narazaki, Genta; Kuwahara, Koichiro; Laflamme, Michael; Matsuoka, Satoshi; Nakatsuji, Norio; Nakao, Kazuwa; Kwon, Chulan; Kass, David A; Engel, Felix B; Yamashita, Jun K

    2013-12-01

    The proliferation of cardiomyocytes is highly restricted after postnatal maturation, limiting heart regeneration. Elucidation of the regulatory machineries for the proliferation and growth arrest of cardiomyocytes is imperative. Chemical biology is efficient to dissect molecular mechanisms of various cellular events and often provides therapeutic potentials. We have been investigating cardiovascular differentiation with pluripotent stem cells. The combination of stem cell and chemical biology can provide novel approaches to investigate the molecular mechanisms and manipulation of cardiomyocyte proliferation. To identify chemicals that regulate cardiomyocyte proliferation, we performed a screening of a defined chemical library based on proliferation of mouse pluripotent stem cell-derived cardiomyocytes and identified 4 chemical compound groups: inhibitors of glycogen synthase kinase-3, p38 mitogen-activated protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II, and activators of extracellular signal-regulated kinase. Several appropriate combinations of chemicals synergistically enhanced proliferation of cardiomyocytes derived from both mouse and human pluripotent stem cells, notably up to a 14-fold increase in mouse cardiomyocytes. We also examined the effects of identified chemicals on cardiomyocytes in various developmental stages and species. Whereas extracellular signal-regulated kinase activators and Ca(2+)/calmodulin-dependent protein kinase II inhibitors showed proliferative effects only on cardiomyocytes in early developmental stages, glycogen synthase kinase-3 and p38 mitogen-activated protein kinase inhibitors substantially and synergistically induced re-entry and progression of cell cycle in neonatal but also as well as adult cardiomyocytes. Our approach successfully uncovered novel molecular targets and mechanisms controlling cardiomyocyte proliferation in distinct developmental stages and offered pluripotent stem cell-derived cardiomyocytes as a potent tool to explore chemical-based cardiac regenerative strategies.

  2. Phosphatidylcholine and the CDP-Choline Cycle

    PubMed Central

    Fagone, Paolo; Jackowski, Suzanne

    2012-01-01

    The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism. PMID:23010477

  3. Distinct Signaling Pathways Mediate Stimulation of Cell Cycle Progression and Prevention of Apoptotic Cell Death by Estrogen in Rat Pituitary Tumor PR1 Cells

    PubMed Central

    Caporali, Simona; Imai, Manami; Altucci, Lucia; Cancemi, Massimo; Caristi, Silvana; Cicatiello, Luigi; Matarese, Filomena; Penta, Roberta; Sarkar, Dipak K.; Bresciani, Francesco; Weisz, Alessandro

    2003-01-01

    Estrogens control cell growth and viability in target cells via an interplay of genomic and extragenomic pathways not yet elucidated. Here, we show evidence that cell proliferation and survival are differentially regulated by estrogen in rat pituitary tumor PR1 cells. Pico- to femtomolar concentrations of 17β-estradiol (E2) are sufficient to foster PR1 cell proliferation, whereas nanomolar concentrations of the same are needed to prevent cell death that occurs at a high rate in these cells in the absence of hormone. Activation of endogenous (PRL) or transfected estrogen-responsive genes occurs at the same, higher concentrations of E2 required to promote cell survival, whereas stimulation of cyclin D3 expression and DNA synthesis occur at lower E2 concentrations. Similarly, the pure antiestrogen ICI 182,780 inhibits estrogen response element-dependent trans-activation and cell death more effectively than cyclin-cdk activity, G1-S transition, or DNA synthesis rate. In antiestrogen-treated and/or estrogen-deprived cells, death is due predominantly to apoptosis. Estrogen-induced cell survival, but not E2-dependent cell cycle progression, can be prevented by an inhibitor of c-Src kinase or by blockade of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathway. These data indicate the coexistence of two distinguishable estrogen signaling pathways in PR1 cells, characterized by different functions and sensitivity to hormones and antihormones. PMID:12960425

  4. ClC-3 Chloride Channel Proteins Regulate the Cell Cycle by Up-regulating cyclin D1-CDK4/6 through Suppressing p21/p27 Expression in Nasopharyngeal Carcinoma Cells

    PubMed Central

    Ye, Dong; Luo, Hai; Lai, Zhouyi; Zou, Lili; Zhu, Linyan; Mao, Jianwen; Jacob, Tim; Ye, Wencai; Wang, Liwei; Chen, Lixin

    2016-01-01

    It was shown in this study that knockdown of ClC-3 expression by ClC-3 siRNA prevented the activation of hypotonicity-induced chloride currents, and arrested cells at the G0/G1 phase in nasopharyngeal carcinoma CNE-2Z cells. Reconstitution of ClC-3 expression with ClC-3 expression plasmids could rescue the cells from the cell cycle arrest caused by ClC-3 siRNA treatments. Transfection of cells with ClC-3 siRNA decreased the expression of cyclin D1, cyclin dependent kinase 4 and 6, and increased the expression of cyclin dependent kinase inhibitors (CDKIs), p21 and p27. Pretreatments of cells with p21 and p27 siRNAs depleted the inhibitory effects of ClC-3 siRNA on the expression of CDK4 and CDK6, but not on that of cyclin D1, indicating the requirement of p21 and p27 for the inhibitory effects of ClC-3 siRNA on CDK4 and CDK6 expression. ClC-3 siRNA inhibited cells to progress from the G1 phase to the S phase, but pretreatments of cells with p21 and p27 siRNAs abolished the inhibitory effects of ClC-3 siRNA on the cell cycle progress. Our data suggest that ClC-3 may regulate cell cycle transition between G0/G1 and S phases by up-regulation of the expression of CDK4 and CDK6 through suppression of p21 and p27 expression. PMID:27451945

  5. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization.

    PubMed

    Zhang, Wenwu; Huang, Youliang; Gunst, Susan J

    2016-09-01

    In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin. The p21-activated kinases (Paks) can regulate the contractility of smooth muscle and non-muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation. We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization. We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott-Aldrich syndrome protein (N-WASP). These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. The p21-activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus-induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)-induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G-protein-coupled receptor kinase-interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak-GIT1-βPIX-paxillin complex was necessary for cdc42 and neuronal Wiskott-Aldrich syndrome protein (N-WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N-WASP activation, actin dynamics and cell contractility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Roles of CDK and DDK in Genome Duplication and Maintenance: Meiotic Singularities.

    PubMed

    Gómez-Escoda, Blanca; Wu, Pei-Yun Jenny

    2017-03-20

    Cells reproduce using two types of divisions: mitosis, which generates two daughter cells each with the same genomic content as the mother cell, and meiosis, which reduces the number of chromosomes of the parent cell by half and gives rise to four gametes. The mechanisms that promote the proper progression of the mitotic and meiotic cycles are highly conserved and controlled. They require the activities of two types of serine-threonine kinases, the cyclin-dependent kinases (CDKs) and the Dbf4-dependent kinase (DDK). CDK and DDK are essential for genome duplication and maintenance in both mitotic and meiotic divisions. In this review, we aim to highlight how these kinases cooperate to orchestrate diverse processes during cellular reproduction, focusing on meiosis-specific adaptions of their regulation and functions in DNA metabolism.

  7. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum.

    PubMed

    Liu, Huiquan; Zhang, Shijie; Ma, Jiwen; Dai, Yafeng; Li, Chaohui; Lyu, Xueliang; Wang, Chenfang; Xu, Jin-Rong

    2015-06-01

    Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle regulation is different between vegetative and infectious hyphae in F. graminearum and Cdc2A, possibly by interacting with a stage-specific cyclin, plays a more important role than Cdc2B during ascosporogenesis and plant infection.

  8. P‐TEFb goes viral

    PubMed Central

    Zaborowska, Justyna; Isa, Nur F.

    2015-01-01

    Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents. PMID:27398404

  9. Ephrin type-A receptor 2 regulates sensitivity to paclitaxel in nasopharyngeal carcinoma via the phosphoinositide 3-kinase/Akt signalling pathway

    PubMed Central

    WANG, YUNYUN; LIU, YONG; LI, GUO; SU, ZHONGWU; REN, SHULING; TAN, PINGQING; ZHANG, XIN; QIU, YUANZHENG; TIAN, YONGQUAN

    2015-01-01

    Ephrin type-A receptor 2 (EphA2) is a receptor tyrosine kinase that is associated with cancer cell metastasis. There has been little investigation into its impact on the regulation of sensitivity to paclitaxel in nasopharyngeal carcinoma (NPC). In the present study, upregulation of EphA2 expression enhanced the survival of NPC 5-8F cells, compared with control cells exposed to the same concentrations of paclitaxel. Flow cytometry and western blot analysis demonstrated that over-expression of EphA2 decreased NPC cancer cell sensitivity to paclitaxel by regulating paclitaxel-mediated cell cycle progression but not apoptosis in vitro. This was accompanied by alterations in the expression of cyclin-dependent kinase inhibitors, p21 and p27, and of inactive phosphorylated-retinoblastoma protein. Furthermore, paclitaxel stimulation and EphA2 over-expression resulted in activation of the phosphoinositide 3-kinase (PI3K)/Akt signalling pathway in NPC cells. Inhibition of the PI3K/Akt signalling pathway restored sensitivity to paclitaxel in 5-8F cells over-expressing EphA2, which indicated that the PI3K/Akt pathway is involved in EphA2-mediated paclitaxel sensitivity. The current study demonstrated that EphA2 mediates sensitivity to paclitaxel via the regulation of the PI3K/Akt signalling pathway in NPC. PMID:25351620

  10. Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway

    PubMed Central

    Adhikari, Hema; Cullen, Paul J.

    2014-01-01

    Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552

  11. AS160 controls eukaryotic cell cycle and proliferation by regulating the CDK inhibitor p21.

    PubMed

    Gongpan, Pianchou; Lu, Yanting; Wang, Fang; Xu, Yuhui; Xiong, Wenyong

    2016-07-02

    AS160 (TBC1D4) has been implicated in multiple biological processes. However, the role and the mechanism of action of AS160 in the regulation of cell proliferation remain unclear. In this study, we demonstrated that AS160 knockdown led to blunted cell proliferation in multiple cell types, including fibroblasts and cancer cells. The results of cell cycle analysis showed that these cells were arrested in the G1 phase. Intriguingly, this inhibition of cell proliferation and the cell cycle arrest caused by AS160 depletion were glucose independent. Moreover, AS160 silencing led to a marked upregulation of the expression of the cyclin-dependent kinase inhibitor p21. Furthermore, whereas AS160 overexpression resulted in p21 downregulation and rescued the arrested cell cycle in AS160-depeleted cells, p21 silencing rescued the inhibited cell cycle and proliferation in the cells. Thus, our results demonstrated that AS160 regulates glucose-independent eukaryotic cell proliferation through p21-dependent control of the cell cycle, and thereby revealed a molecular mechanism of AS160 modulation of cell cycle and proliferation that is of general physiological significance.

  12. Parkin New Cargos: a New ROS Independent Role for Parkin in Regulating Cell Division.

    PubMed

    Stieg, David C; Cooper, Katrina F

    2016-01-01

    Cell cycle progression requires the destruction of key cell cycle regulators by the multi-subunit E3 ligase called the anaphase promoting complex (APC/C). As the cell progresses through the cell cycle, the APC/C is sequentially activated by two highly conserved co-activators called Cdc20 and Cdh1. Importantly, APC/C Cdc20 is required to degrade substrates in G2/M whereas APC Cdh1 drives the cells into G1. Recently, Parkin, a monomeric E3 ligase that is required for ubiquitin-mediated mitophagy following mitochondrial stress, was shown to both bind and be activated by Cdc20 or Cdh1 during the cell cycle. This mitotic role for Parkin does not require an activating phosphorylation by its usual kinase partner PINK. Rather, mitotic Parkin activity requires phosphorylation on a different serine by the polo-like kinase Plk1. Interestingly, although Parkin Cdc20 and Parkin Cdh1 activity is independent of the APC/C, it mediates degradation of an overlapping subset of substrates. However, unlike the APC/C, Parkin is not necessary for cell cycle progression. Despite this, loss of Parkin activity accelerates genome instability and tumor growth in xenograft models. These findings provide a mechanism behind the previously described, but poorly understood, tumor suppressor role for Parkin. Taken together, studies suggest that the APC/C and Parkin have similar and unique roles to play in cell division, possibly being dependent upon the different subcellular address of these two ligases.

  13. An extensive program of periodic alternative splicing linked to cell cycle progression

    PubMed Central

    Dominguez, Daniel; Tsai, Yi-Hsuan; Weatheritt, Robert; Wang, Yang; Blencowe, Benjamin J; Wang, Zefeng

    2016-01-01

    Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control. DOI: http://dx.doi.org/10.7554/eLife.10288.001 PMID:27015110

  14. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, sensitizes lung cancer cells to treatment with epidermal growth factor receptor tyrosine kinase inhibitors

    PubMed Central

    Li, Ying; Li, Yongwen; Zhang, Hongbing; Liu, Hongyu; Chen, Jun

    2016-01-01

    Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a major challenge to targeted therapy for non-small cell lung cancer (NSCLC). We investigated whether a cyclin D kinase 4/6 (CDK4/6) inhibitor, PD 0332991, could reverse EGFR-TKI resistance in human lung cancer cells and explored the underlying mechanisms. We found that PD 0332991 potentiated gefitinib-induced growth inhibition in both EGFR-TKI-sensitive (PC-9) and EGFR-TKI-resistant (PC-9/AB2) cells by down-regulating proliferation and inducing apoptosis and G0/G1 cell cycle arrest. Tumor xenografts were then used to verify the effects of PD 0332991 in vivo. Mice treated with a combination of PD 0332991 and gefitinib had the fastest tumor regression and delayed relapse. Tumors from mice receiving the combination treatment exhibited down-regulated proliferation, up-regulated apoptosis, and less angiogenesis. Finally, lung adenocarcinoma patients with acquired resistance to EGFR-TKIs were given an exploratory treatment of PD 0332991. One patient with gefitinib resistance exhibited clinical remission after treatment with PD 0332991. These findings suggest PD 0332991 reverses acquired EGFR-TKI-resistance in NSCLC cells, and may provide a novel treatment strategy for NSLSC patients with EGFR-TKI resistance. PMID:27825114

  15. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis.

    PubMed

    Conery, Andrew R; Cao, Yanna; Thompson, E Aubrey; Townsend, Courtney M; Ko, Tien C; Luo, Kunxin

    2004-04-01

    Transforming growth factor beta (TGF-beta) induces both apoptosis and cell-cycle arrest in some cell lines, but only growth arrest in others. It is not clear how this differential response to TGF-beta is specified. Smad proteins are critical mediators of TGF-beta signalling. After stimulation by TGF-beta, Smad2 and Smad3 become phosphorylated by the activated TGF-beta receptor kinases, oligomerize with Smad4, translocate to the nucleus and regulate the expression of TGF-beta target genes. Here we report that the sensitivity to TGF-beta induced apoptosis is regulated by crosstalk between the Akt/PKB serine/threonine kinase and Smad3 through a mechanism that is independent of Akt kinase activity. Akt interacts directly with unphosphorylated Smad3 to sequester it outside the nucleus, preventing its phosphorylation and nuclear translocation. This results in inhibition of Smad3-mediated transcription and apoptosis. Furthermore, the ratio of Smad3 to Akt correlates with the sensitivity of cells to TGF-beta induced apoptosis. Alteration of this ratio changes the apoptotic, but not the growth-inhibitory, responses of cells to TGF-beta. These findings identify an important determinant of sensitivity to TGF-beta-induced apoptosis that involves crosstalk between the TGF-beta and phosphatidylinositol-3-OH kinase (PI(3)K) pathways.

  16. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage.

    PubMed

    Karimian, Ansar; Ahmadi, Yasin; Yousefi, Bahman

    2016-06-01

    An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Identification and characterization of the BmCyclin L1-BmCDK11A/B complex in relation to cell cycle regulation.

    PubMed

    Liu, Tai-Hang; Wu, Yun-Fei; Dong, Xiao-Long; Pan, Cai-Xia; Du, Guo-Yu; Yang, Ji-Gui; Wang, Wei; Bao, Xi-Yan; Chen, Peng; Pan, Min-Hui; Lu, Cheng

    2017-05-03

    Cyclin proteins are the key regulatory and activity partner of cyclin-dependent kinases (CDKs), which play pivotal regulatory roles in cell cycle progression. In the present study, we identified a Cyclin L1 and 2 CDK11 2 CDK11 splice variants, CDK11A and CDK11B, from silkworm, Bombyx mori. We determined that both Cyclin L1 and CDK11A/B are nuclear proteins, and further investigations were conducted to elucidate their spatiofunctional features. Cyclin L1 forms a complex with CDK11A/B and were co-localized to the nucleus. Moreover, the dimerization of CDK11A and CDK11B and the effects of Cyclin L1 and CDK11A/B on cell cycle regulation were also investigated. Using overexpression or RNA interference experiments, we demonstrated that the abnormal expression of Cyclin L1 and CDK11A/B leads to cell cycle arrest and cell proliferation suppression. Together, these findings indicate that CDK11A/B interacts with Cyclin L1 to regulate the cell cycle.

  18. Glycogen synthase kinase-3 as drug target: from wallflower to center of attention.

    PubMed

    Van Wauwe, Jean; Haefner, Burkhard

    2003-11-01

    Some 20 years ago, glycogen synthase kinase-3 (GSK-3) was categorized as one of several protein kinases that could phosphorylate glycogen synthase and regulate the glucose metabolism pathway. Today, GSK-3 is being identified as a ubiquitous serine/threonine protein kinase that participates in a multitude of cellular processes, ranging from cell membrane-to-nucleus signaling, gene transcription, translation, cytoskeletal organization to cell cycle progression and survival. Two functional aspects make GSK-3 a peculiar kinase: its activity is constitutive and downregulated after cell activation by phosphorylation or interaction with inhibitory proteins, and the enzyme prefers substrates that are specifically prepared, that is prephosphorylated, by other kinases. Its pleiotropic but unique activities have made GSK-3 a much sought-after target for the treatment of prevalent human diseases such as type 2 diabetes and Alzheimer's disease. Recent drug discovery efforts have identified small-molecule, orally active inhibitors of GSK-3. This accomplishment may represent the first step toward the development of novel therapeutic agents.

  19. Structural Basis of Wee Kinases Functionality and Inactivation by Diverse Small Molecule Inhibitors.

    PubMed

    Zhu, Jin-Yi; Cuellar, Rebecca A; Berndt, Norbert; Lee, Hee Eun; Olesen, Sanne H; Martin, Mathew P; Jensen, Jeffrey T; Georg, Gunda I; Schönbrunn, Ernst

    2017-09-28

    Members of the Wee family of kinases negatively regulate the cell cycle via phosphorylation of CDK1 and are considered potential drug targets. Herein, we investigated the structure-function relationship of human Wee1, Wee2, and Myt1 (PKMYT1). Purified recombinant full-length proteins and kinase domain constructs differed substantially in phosphorylation states and catalytic competency, suggesting complex mechanisms of activation. A series of crystal structures reveal unique features that distinguish Wee1 and Wee2 from Myt1 and establish the structural basis of differential inhibition by the widely used Wee1 inhibitor MK-1775. Kinome profiling and cellular studies demonstrate that, in addition to Wee1 and Wee2, MK-1775 is an equally potent inhibitor of the polo-like kinase PLK1. Several previously unrecognized inhibitors of Wee kinases were discovered and characterized. Combined, the data provide a comprehensive view on the catalytic and structural properties of Wee kinases and a framework for the rational design of novel inhibitors thereof.

  20. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Global increase in replication fork speed during a p57KIP2-regulated erythroid cell fate switch

    PubMed Central

    Hwang, Yung; Futran, Melinda; Hidalgo, Daniel; Pop, Ramona; Iyer, Divya Ramalingam; Scully, Ralph; Rhind, Nicholas; Socolovsky, Merav

    2017-01-01

    Cell cycle regulators are increasingly implicated in cell fate decisions, such as the acquisition or loss of pluripotency and self-renewal potential. The cell cycle mechanisms that regulate these cell fate decisions are largely unknown. We studied an S phase–dependent cell fate switch, in which murine early erythroid progenitors transition in vivo from a self-renewal state into a phase of active erythroid gene transcription and concurrent maturational cell divisions. We found that progenitors are dependent on p57KIP2-mediated slowing of replication forks for self-renewal, a novel function for cyclin-dependent kinase inhibitors. The switch to differentiation entails rapid down-regulation of p57KIP2 with a consequent global increase in replication fork speed and an abruptly shorter S phase. Our work suggests that cell cycles with specialized global DNA replication dynamics are integral to the maintenance of specific cell states and to cell fate decisions. PMID:28560351

  2. Cdk1 activity acts as a quantitative platform for coordinating cell cycle progression with periodic transcription

    PubMed Central

    Banyai, Gabor; Baïdi, Feriel; Coudreuse, Damien; Szilagyi, Zsolt

    2016-01-01

    Cell proliferation is regulated by cyclin-dependent kinases (Cdks) and requires the periodic expression of particular gene clusters in different cell cycle phases. However, the interplay between the networks that generate these transcriptional oscillations and the core cell cycle machinery remains largely unexplored. In this work, we use a synthetic regulable Cdk1 module to demonstrate that periodic expression is governed by quantitative changes in Cdk1 activity, with different clusters directly responding to specific activity levels. We further establish that cell cycle events neither participate in nor interfere with the Cdk1-driven transcriptional program, provided that cells are exposed to the appropriate Cdk1 activities. These findings contrast with current models that propose self-sustained and Cdk1-independent transcriptional oscillations. Our work therefore supports a model in which Cdk1 activity serves as a quantitative platform for coordinating cell cycle transitions with the expression of critical genes to bring about proper cell cycle progression. PMID:27045731

  3. Identification of a Lytic-Cycle Epstein-Barr Virus Gene Product That Can Regulate PKR Activation

    PubMed Central

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response. PMID:12477828

  4. Identification of a lytic-cycle Epstein-Barr virus gene product that can regulate PKR activation.

    PubMed

    Poppers, Jeremy; Mulvey, Matthew; Perez, Cesar; Khoo, David; Mohr, Ian

    2003-01-01

    The Epstein-Barr virus (EBV) SM protein is a posttranscriptional regulator of viral gene expression. Like many transactivators encoded by herpesviruses, SM transports predominantly unspliced viral mRNA cargo from the nucleus to the cytosol, where it is subsequently translated. This activity likely involves a region of the protein that has homology to the herpes simplex virus type 1 (HSV-1) ICP27 gene product, the first member of this class of regulators to be discovered. However, SM also contains a repetitive segment rich in arginine and proline residues that is dispensable for its effects on RNA transport and splicing. This portion of SM, comprised of RXP triplet repeats, shows homology to the carboxyl-terminal domain of Us11, a double-stranded RNA (dsRNA) binding protein encoded by HSV-1 that inhibits activation of the cellular PKR kinase. To evaluate the intrinsic ability of SM to regulate PKR, we expressed and purified several SM protein derivatives and examined their activity in a variety of biochemical assays. The full-length SM protein bound dsRNA, associated physically with PKR, and prevented PKR activation. Removal of the 37-residue RXP domain significantly compromised all of these activities. Furthermore, the SM RXP domain was itself sufficient to inhibit PKR activation and interact with the kinase. Relative to its Us11 counterpart, the SM RXP segment bound dsRNA with reduced affinity and responded differently to single-stranded competitor polynucleotides. Thus, SM represents the first EBV gene product expressed during the lytic cycle that can prevent PKR activation. In addition, the RXP repeat segment appears to be a conserved herpesvirus motif capable of associating with dsRNA and modulating activation of the PKR kinase, a molecule important for the control of translation and the cellular antiviral response.

  5. Computational synchronization of microarray data with application to Plasmodium falciparum.

    PubMed

    Zhao, Wei; Dauwels, Justin; Niles, Jacquin C; Cao, Jianshu

    2012-06-21

    Microarrays are widely used to investigate the blood stage of Plasmodium falciparum infection. Starting with synchronized cells, gene expression levels are continually measured over the 48-hour intra-erythrocytic cycle (IDC). However, the cell population gradually loses synchrony during the experiment. As a result, the microarray measurements are blurred. In this paper, we propose a generalized deconvolution approach to reconstruct the intrinsic expression pattern, and apply it to P. falciparum IDC microarray data. We develop a statistical model for the decay of synchrony among cells, and reconstruct the expression pattern through statistical inference. The proposed method can handle microarray measurements with noise and missing data. The original gene expression patterns become more apparent in the reconstructed profiles, making it easier to analyze and interpret the data. We hypothesize that reconstructed gene expression patterns represent better temporally resolved expression profiles that can be probabilistically modeled to match changes in expression level to IDC transitions. In particular, we identify transcriptionally regulated protein kinases putatively involved in regulating the P. falciparum IDC. By analyzing publicly available microarray data sets for the P. falciparum IDC, protein kinases are ranked in terms of their likelihood to be involved in regulating transitions between the ring, trophozoite and schizont developmental stages of the P. falciparum IDC. In our theoretical framework, a few protein kinases have high probability rankings, and could potentially be involved in regulating these developmental transitions. This study proposes a new methodology for extracting intrinsic expression patterns from microarray data. By applying this method to P. falciparum microarray data, several protein kinases are predicted to play a significant role in the P. falciparum IDC. Earlier experiments have indeed confirmed that several of these kinases are involved in this process. Overall, these results indicate that further functional analysis of these additional putative protein kinases may reveal new insights into how the P. falciparum IDC is regulated.

  6. The Septins Function in G1 Pathways that Influence the Pattern of Cell Growth in Budding Yeast

    PubMed Central

    Egelhofer, Thea A.; Villén, Judit; McCusker, Derek; Gygi, Steven P.; Kellogg, Douglas R.

    2008-01-01

    The septins are a conserved family of proteins that have been proposed to carry out diverse functions. In budding yeast, the septins become localized to the site of bud emergence in G1 but have not been thought to carry out important functions at this stage of the cell cycle. We show here that the septins function in redundant mechanisms that are required for formation of the bud neck and for the normal pattern of cell growth early in the cell cycle. The Shs1 septin shows strong genetic interactions with G1 cyclins and is directly phosphorylated by G1 cyclin-dependent kinases, consistent with a role in early cell cycle events. However, Shs1 phosphorylation site mutants do not show genetic interactions with the G1 cyclins or obvious defects early in the cell cycle. Rather, they cause an increased cell size and aberrant cell morphology that are dependent upon inhibitory phosphorylation of Cdk1 at the G2/M transition. Shs1 phosphorylation mutants also show defects in interaction with the Gin4 kinase, which associates with the septins during G2/M and plays a role in regulating inhibitory phosphorylation of Cdk1. Phosphorylation of Shs1 by G1 cyclin-dependent kinases plays a role in events that influence Cdk1 inhibitory phosphorylation. PMID:18431499

  7. Cell cycle sibling rivalry: Cdc2 vs. Cdk2.

    PubMed

    Kaldis, Philipp; Aleem, Eiman

    2005-11-01

    It has been long believed that the cyclin-dependent kinase 2 (Cdk2) binds to cyclin E or cyclin A and exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a major role in mitosis. We now provide evidence that Cdc2 binds to cyclin E (in addition to cyclin A and B) and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2 can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle model and how results from knockout mice provide new evidence that refute this model. We focus on the roles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cell cycle regulation that accommodates these novel findings.

  8. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumrejkanchanakij, Piyamas; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330; Eto, Kazuhiro

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, amore » process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.« less

  9. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells.

    PubMed

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16(INK4a), a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  10. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis

    PubMed Central

    Kümper, Sandra; Mardakheh, Faraz K; McCarthy, Afshan; Yeo, Maggie; Stamp, Gordon W; Paul, Angela; Worboys, Jonathan; Sadok, Amine; Jørgensen, Claus; Guichard, Sabrina

    2016-01-01

    Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility. DOI: http://dx.doi.org/10.7554/eLife.12203.001 PMID:26765561

  11. Cell cycle-regulated PLEIADE/AtMAP65-3 links membrane and microtubule dynamics during plant cytokinesis.

    PubMed

    Steiner, Alexander; Rybak, Katarzyna; Altmann, Melina; McFarlane, Heather E; Klaeger, Susan; Nguyen, Ngoc; Facher, Eva; Ivakov, Alexander; Wanner, Gerhard; Kuster, Bernhard; Persson, Staffan; Braun, Pascal; Hauser, Marie-Theres; Assaad, Farhah F

    2016-11-01

    Cytokinesis, the partitioning of the cytoplasm following nuclear division, requires extensive coordination between cell cycle cues, membrane trafficking and microtubule dynamics. Plant cytokinesis occurs within a transient membrane compartment known as the cell plate, to which vesicles are delivered by a plant-specific microtubule array, the phragmoplast. While membrane proteins required for cytokinesis are known, how these are coordinated with microtubule dynamics and regulated by cell cycle cues remains unclear. Here, we document physical and genetic interactions between Transport Protein Particle II (TRAPPII) tethering factors and microtubule-associated proteins of the PLEIADE/AtMAP65 family. These interactions do not specifically affect the recruitment of either TRAPPII or MAP65 proteins to the cell plate or midzone. Rather, and based on single versus double mutant phenotypes, it appears that they are required to coordinate cytokinesis with the nuclear division cycle. As MAP65 family members are known to be targets of cell cycle-regulated kinases, our results provide a conceptual framework for how membrane and microtubule dynamics may be coordinated with each other and with the nuclear cycle during plant cytokinesis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Cell Proliferation in Neuroblastoma

    PubMed Central

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  13. Oligomerization state in solution of the cell cycle regulators p13suc1 from the fission yeast and p9cksphy from the myxomycete Physarum, two members of the cks family.

    PubMed

    Birck, C; Raynaud-Messina, B; Samama, J P

    1995-04-17

    The cks proteins (for cdc2 kinase subunit) are essential cell cycle regulators. They interact strongly with the mitotic cdc2 kinase, but the mechanism and the biological function of this association still await understanding. The oligomerization state in solution of two members of this ubiquitous protein family, the suc1 gene product from the fission yeast and the newly cloned cksphy gene product from the myxomycete Physarum, was investigated by small-angle X-ray scattering (SAXS) and biochemical methods. We found that the major molecular species are monodispersed monomeric proteins. Minor amounts of dimeric suc1 proteins were also found, but no equilibrium between the two forms was observed and surprisingly, the hexameric assemblies observed in the crystal structure of the human ckshs2 homolog were not detected. These apparent discrepancies between proteins that display cross-complementation address the question of the control of the cks oligomerization process and its link to the biological function.

  14. Intercellular propagation of extracellular signal-regulated kinase activation revealed by in vivo imaging of mouse skin

    PubMed Central

    Hiratsuka, Toru; Fujita, Yoshihisa; Naoki, Honda; Aoki, Kazuhiro; Kamioka, Yuji; Matsuda, Michiyuki

    2015-01-01

    Extracellular signal-regulated kinase (ERK) is a key effector of many growth signalling pathways. In this study, we visualise epidermal ERK activity in living mice using an ERK FRET biosensor. Under steady-state conditions, the epidermis occasionally revealed bursts of ERK activation patterns where ERK activity radially propagated from cell to cell. The frequency of this spatial propagation of radial ERK activity distribution (SPREAD) correlated with the rate of epidermal cell division. SPREADs and proliferation were stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in a manner dependent on EGF receptors and their cognate ligands. At the wounded skin, ERK activation propagated as trigger wave in parallel to the wound edge, suggesting that ERK activation propagation can be superimposed. Furthermore, by visualising the cell cycle, we found that SPREADs were associated with G2/M cell cycle progression. Our results provide new insights into how cell proliferation and transient ERK activity are synchronised in a living tissue. DOI: http://dx.doi.org/10.7554/eLife.05178.001 PMID:25668746

  15. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases

    PubMed Central

    Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G.; Zhang, Nianshu

    2016-01-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding ‘signaling’ proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast. PMID:27923067

  16. Chronological Lifespan in Yeast Is Dependent on the Accumulation of Storage Carbohydrates Mediated by Yak1, Mck1 and Rim15 Kinases.

    PubMed

    Cao, Lu; Tang, Yingzhi; Quan, Zhenzhen; Zhang, Zhe; Oliver, Stephen G; Zhang, Nianshu

    2016-12-01

    Upon starvation for glucose or any other macronutrient, yeast cells exit from the mitotic cell cycle and acquire a set of characteristics that are specific to quiescent cells to ensure longevity. Little is known about the molecular determinants that orchestrate quiescence entry and lifespan extension. Using starvation-specific gene reporters, we screened a subset of the yeast deletion library representing the genes encoding 'signaling' proteins. Apart from the previously characterised Rim15, Mck1 and Yak1 kinases, the SNF1/AMPK complex, the cell wall integrity pathway and a number of cell cycle regulators were shown to be necessary for proper quiescence establishment and for extension of chronological lifespan (CLS), suggesting that entry into quiescence requires the integration of starvation signals transmitted via multiple signaling pathways. The CLS of these signaling mutants, and those of the single, double and triple mutants of RIM15, YAK1 and MCK1 correlates well with the amount of storage carbohydrates but poorly with transition-phase cell cycle status. Combined removal of the glycogen and trehalose biosynthetic genes, especially GSY2 and TPS1, nearly abolishes the accumulation of storage carbohydrates and severely reduces CLS. Concurrent overexpression of GSY2 and TSL1 or supplementation of trehalose to the growth medium ameliorates the severe CLS defects displayed by the signaling mutants (rim15Δyak1Δ or rim15Δmck1Δ). Furthermore, we reveal that the levels of intracellular reactive oxygen species are cooperatively controlled by Yak1, Rim15 and Mck1, and the three kinases mediate the TOR1-regulated accumulation of storage carbohydrates and CLS extension. Our data support the hypothesis that metabolic reprogramming to accumulate energy stores and the activation of anti-oxidant defence systems are coordinated by Yak1, Rim15 and Mck1 kinases to ensure quiescence entry and lifespan extension in yeast.

  17. A novel FIKK kinase regulates the development of mosquito and liver stages of the malaria

    PubMed Central

    Jaijyan, Dabbu Kumar; Verma, Praveen Kumar; Singh, Agam Prasad

    2016-01-01

    Protein phosphorylation is the most important post-translational event in the regulation of various essential signaling pathways in a cell. Here, we show the functional characterization of a FIKK family protein kinase of the rodent malaria parasite (PbMLFK), which is expressed only in mosquito and liver stages and contains two functional C-terminal PEXEL motifs. We demonstrate that this protein plays a role in mosquito and liver stages of parasite growth. The oocysts of PbMLFK-deficient parasites produced 4-fold fewer sporozoites. In the liver of infected mice, PbMLFK-deficient parasites grew 100-fold less than did wild type parasites. We also show that the C-terminal domain of this protein has a functional serine-threonine kinase and that its activity was inhibited by a known PKA inhibitor. Transcriptome analysis of infected host cells suggests that in absence of this protein expression of the 288 host mRNAs are perturbed which are primarily associated with the immune system, cell cycle and metabolism. PMID:27995998

  18. Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer.

    PubMed

    Marshall, Erin A; Ng, Kevin W; Anderson, Christine; Hubaux, Roland; Thu, Kelsie L; Lam, Wan L; Martinez, Victor D

    2015-12-01

    Lung cancer is the leading cause of cancer death worldwide, and has a five-year survival rate of 18% [1]. MARK2 is a serine/threonine-protein kinase, and is a key component in the phosphorylation of microtubule-associated proteins [2], [3]. A recent study published by Hubaux et al. found that microtubule affinity-regulating kinase 2 (MARK2) showed highly frequent DNA and RNA level disruption in lung cancer cell lines and independent non-small cell lung cancer (NSCLC) cohorts [4]. These alterations result in the acquisition of oncogenic properties in cell lines, such as increased viability and anchorage-independent growth. Furthermore, a microarray-based transcriptome analysis of three short hairpin RNA (shRNA)-mediated MARK2 knockdown lung adenocarcinoma cell lines (GEO#: GSE57966) revealed an association between MARK2 gene expression and cell cycle activation and DNA damage response. Here, we present a detailed description of transcriptome analysis to support the described role of MARK2 in promoting a malignant phenotype.

  19. Polo kinase Cdc5 is a central regulator of meiosis I

    PubMed Central

    Attner, Michelle A.; Miller, Matthew P.; Ee, Ly-sha; Elkin, Sheryl K.; Amon, Angelika

    2013-01-01

    During meiosis, two consecutive rounds of chromosome segregation yield four haploid gametes from one diploid cell. The Polo kinase Cdc5 is required for meiotic progression, but how Cdc5 coordinates multiple cell-cycle events during meiosis I is not understood. Here we show that CDC5-dependent phosphorylation of Rec8, a subunit of the cohesin complex that links sister chromatids, is required for efficient cohesin removal from chromosome arms, which is a prerequisite for meiosis I chromosome segregation. CDC5 also establishes conditions for centromeric cohesin removal during meiosis II by promoting the degradation of Spo13, a protein that protects centromeric cohesin during meiosis I. Despite CDC5’s central role in meiosis I, the protein kinase is dispensable during meiosis II and does not even phosphorylate its meiosis I targets during the second meiotic division. We conclude that Cdc5 has evolved into a master regulator of the unique meiosis I chromosome segregation pattern. PMID:23918381

  20. Rho-associated kinase (ROCK) inhibition reverses low cell activity on hydrophobic surfaces.

    PubMed

    Tian, Yu Shun; Kim, Hyun Jung; Kim, Hyun-Man

    2009-08-28

    Hydrophobic polymers do not offer an adequate scaffold surface for cells to attach, migrate, proliferate, and differentiate. Thus, hydrophobic scaffolds for tissue engineering have traditionally been physicochemically modified to enhance cellular activity. However, modifying the surface by chemical or physical treatment requires supplementary engineering procedures. In the present study, regulation of a cell signal transduction pathway reversed the low cellular activity on a hydrophobic surface without surface modification. Inhibition of Rho-associated kinase (ROCK) by Y-27632 markedly enhanced adhesion, migration, and proliferation of osteoblastic cells cultured on a hydrophobic polystyrene surface. ROCK inhibition regulated cell-cycle-related molecules on the hydrophobic surface. This inhibition also decreased expression of the inhibitors of cyclin-dependent kinases such as p21(cip1) and p27(kip1) and increased expression of cyclin A and D. These results indicate that defective cellular activity on the hydrophobic surface can be reversed by the control of a cell signal transduction pathway without physicochemical surface modification.

  1. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.

  2. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans

    PubMed Central

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J.; Guan, Guobo; Huang, Guanghua

    2017-01-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. PMID:28787458

  3. Inhibition of Pyruvate Dehydrogenase Kinase 2 Protects Against Hepatic Steatosis Through Modulation of Tricarboxylic Acid Cycle Anaplerosis and Ketogenesis.

    PubMed

    Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu

    2016-10-01

    Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease. © 2016 by the American Diabetes Association.

  4. CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle

    PubMed Central

    Fan, Yao; Li, Haiping; Liang, Xiaolong; Xiang, Zheng

    2017-01-01

    Heterochromatin protein 1γ (CBX3) links histone methylation marks to transcriptional silence, DNA repair and RNA splicing, but a role for CBX3 in cancer remains largely unknown. In this study, we show that CBX3 in colon cancer cells promotes the progression of the cell cycle and proliferation in vitro and in vivo. Cell cycle (G1 phase to S phase) related gene CDK6 and p21 were further identified as targets of CBX3. In addition, we found that enhancing CDK6 suppresses cell proliferation by upregulating inhibitor p21 in the absence of CBX3, and this function is independent of the kinase activity of CDK6. Our results demonstrate a key role of CBX3 in colon carcinogenesis via suppressing the expression of CDK6/p21, which may disrupt the role of CDK6 in transcriptionally regulating p21, as part of a negative feedback loop to limit CDK6 excessive activation. PMID:28193906

  5. Structural mechanisms of DREAM complex assembly and regulation

    PubMed Central

    Guiley, Keelan Z.; Liban, Tyler J.; Felthousen, Jessica G.; Ramanan, Parameshwaran

    2015-01-01

    The DREAM complex represses cell cycle genes during quiescence through scaffolding MuvB proteins with E2F4/5 and the Rb tumor suppressor paralog p107 or p130. Upon cell cycle entry, MuvB dissociates from p107/p130 and recruits B-Myb and FoxM1 for up-regulating mitotic gene expression. To understand the biochemical mechanisms underpinning DREAM function and regulation, we investigated the structural basis for DREAM assembly. We identified a sequence in the MuvB component LIN52 that binds directly to the pocket domains of p107 and p130 when phosphorylated on the DYRK1A kinase site S28. A crystal structure of the LIN52–p107 complex reveals that LIN52 uses a suboptimal LxSxExL sequence together with the phosphate at nearby S28 to bind the LxCxE cleft of the pocket domain with high affinity. The structure explains the specificity for p107/p130 over Rb in the DREAM complex and how the complex is disrupted by viral oncoproteins. Based on insights from the structure, we addressed how DREAM is disassembled upon cell cycle entry. We found that p130 and B-Myb can both bind the core MuvB complex simultaneously but that cyclin-dependent kinase phosphorylation of p130 weakens its association. Together, our data inform a novel target interface for studying MuvB and p130 function and the design of inhibitors that prevent tumor escape in quiescence. PMID:25917549

  6. p21 Activated kinase 1: Nuclear activity and its role during DNA damage repair.

    PubMed

    Pérez-Yépez, Eloy Andrés; Saldívar-Cerón, Héctor Iván; Villamar-Cruz, Olga; Pérez-Plasencia, Carlos; Arias-Romero, Luis Enrique

    2018-05-01

    p21-activated kinase 1 (PAK1) is a serine/threonine kinase activated by the small GTPases Rac1 and Cdc42. It is located in the chromosome 11q13 and is amplified and/or overexpressed in several human cancer types including 25-30% of breast tumors. This enzyme plays a pivotal role in the control of a number of fundamental cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, it is well documented that PAK1 also plays crucial roles in the nucleus participating in mitotic events and gene expression through its association and/or phosphorylation of several transcription factors, transcriptional co-regulators and cell cycle-related proteins, including Aurora kinase A (AURKA), polo-like kinase 1 (PLK1), the forkhead transcription factor (FKHR), estrogen receptor α (ERα), and Snail. More recently, PAK signaling has emerged as a component of the DNA damage response (DDR) as PAK1 activity influences the cellular sensitivity to ionizing radiation and promotes the expression of several genes involved in the Fanconi Anemia/BRCA pathway. This review will focus on the nuclear functions of PAK1 and its role in the regulation of DNA damage repair. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A winged helix forkhead (FOXD2) tunes sensitivity to cAMP in T lymphocytes through regulation of cAMP-dependent protein kinase RIalpha.

    PubMed

    Johansson, C Christian; Dahle, Maria K; Blomqvist, Sandra Rodrigo; Grønning, Line M; Aandahl, Einar M; Enerbäck, Sven; Taskén, Kjetil

    2003-05-09

    Forkhead/winged helix (FOX) transcription factors are essential for control of the cell cycle and metabolism. Here, we show that spleens from Mf2-/- (FOXD2-/-) mice have reduced mRNA (50%) and protein (35%) levels of the RIalpha subunit of the cAMP-dependent protein kinase. In T cells from Mf2-/- mice, reduced levels of RIalpha translates functionally into approximately 2-fold less sensitivity to cAMP-mediated inhibition of proliferation triggered through the T cell receptor-CD3 complex. In Jurkat T cells, FOXD2 overexpression increased the endogenous levels of RIalpha through induction of the RIalpha1b promoter. FOXD2 overexpression also increased the sensitivity of the promoter to cAMP. Finally, co-expression experiments demonstrated that protein kinase Balpha/Akt1 work together with FOXD2 to induce the RIalpha1b promoter (10-fold) and increase endogenous RIalpha protein levels further. Taken together, our data indicate that FOXD2 is a physiological regulator of the RIalpha1b promoter in vivo working synergistically with protein kinase B to induce cAMP-dependent protein kinase RIalpha expression, which increases cAMP sensitivity and sets the threshold for cAMP-mediated negative modulation of T cell activation.

  8. Diverse microRNAs with convergent functions regulate tumorigenesis.

    PubMed

    Zhu, Min-Yan; Zhang, Wei; Yang, Tao

    2016-02-01

    MicroRNAs (miRNAs) regulate several biological processes, including tumorigenesis. In order to comprehend the roles of miRNAs in cancer, various screens were performed to investigate the changes in the expression levels of miRNAs that occur in different types of cancer. The present review focuses on the results of five recent screens, whereby a number of overlapping miRNAs were identified to be downregulated or differentially regulated, whereas no miRNAs were observed to be frequently upregulated. Furthermore, the majority of the miRNAs that were common to >1 screen were involved in signaling networks, including wingless-related integration site, receptor tyrosine kinase and transforming growth factor-β, or in cell cycle checkpoint control. The present review will discuss the aforementioned miRNAs implicated in cell cycle checkpoint control and signaling networks.

  9. Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication.

    PubMed

    Ma, Zhiyong; Kanai, Masayuki; Kawamura, Kenji; Kaibuchi, Kozo; Ye, Keqiang; Fukasawa, Kenji

    2006-12-01

    Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr(199) by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr(199) remains at centrosomes. It has been shown that Thr(199) phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr(199). Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr(199)-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.

  10. An Unconventional Diacylglycerol Kinase That Regulates Phospholipid Synthesis and Nuclear Membrane Growth*♦

    PubMed Central

    Han, Gil-Soo; O'Hara, Laura; Carman, George M.; Siniossoglou, Symeon

    2008-01-01

    Changes in nuclear size and shape during the cell cycle or during development require coordinated nuclear membrane remodeling, but the underlying molecular events are largely unknown. We have shown previously that the activity of the conserved phosphatidate phosphatase Pah1p/Smp2p regulates nuclear structure in yeast by controlling phospholipid synthesis and membrane biogenesis at the nuclear envelope. Two screens for novel regulators of phosphatidate led to the identification of DGK1. We show that Dgk1p is a unique diacylglycerol kinase that uses CTP, instead of ATP, to generate phosphatidate. DGK1 counteracts the activity of PAH1 at the nuclear envelope by controlling phosphatidate levels. Overexpression of DGK1 causes the appearance of phosphatidate-enriched membranes around the nucleus and leads to its expansion, without proliferating the cortical endoplasmic reticulum membrane. Mutations that decrease phosphatidate levels decrease nuclear membrane growth in pah1Δ cells. We propose that phosphatidate metabolism is a critical factor determining nuclear structure by regulating nuclear membrane biogenesis. PMID:18458075

  11. Effects of the Kava Chalcone Flavokawain A Differ in Bladder Cancer Cells with Wild-type versus Mutant p53

    PubMed Central

    Tang, Yaxiong; Simoneau, Anne R.; Xie, Jun; Shahandeh, Babbak; Zi, Xiaolin

    2010-01-01

    Flavokawain A is the predominant chalcone from kava extract. We have assessed the mechanisms of flavokawain A's action on cell cycle regulation. In a p53 wild-type, low-grade, and papillary bladder cancer cell line (RT4), flavokawain A increased p21/WAF1 and p27/KIP1, which resulted in a decrease in cyclin-dependent kinase-2 (CDK2) kinase activity and subsequent G1 arrest. The increase of p21/WAF1 protein corresponded to an increased mRNA level, whereas p27/KIP1 accumulation was associated with the down-regulation of SKP2 and then increased the stability of the p27/KIP1 protein. The accumulation of p21/WAF1 and p27/KIP1 was independent of cell cycle position and thus not a result of the cell cycle arrest. In contrast, flavokawain A induced a G2-M arrest in six p53 mutant-type, high-grade bladder cancer cell lines (T24, UMUC3, TCCSUP, 5637, HT1376, and HT1197). Flavokawain A significantly reduced the expression of CDK1-inhibitory kinases, Myt1 and Wee1, and caused cyclin B1 protein accumulation leading to CDK1 activation in T24 cells. Suppression of p53 expression by small interfering RNA in RT4 cells restored Cdc25C expression and down-regulated p21/WAF1 expression, which allowed Cdc25C and CDK1 activation and then led to a G2-M arrest and an enhanced growth-inhibitory effect by flavokawain A. Consistently, flavokawain A also caused a pronounced CDK1 activation and G2-M arrest in p53 knockout but not in p53 wild-type HCT116 cells. This selectivity of flavokawain A for inducing a G2-M arrest in p53-defective cells deserves further investigation as a new mechanism for the prevention and treatment of bladder cancer. PMID:19138991

  12. Nuclear receptor TLX regulates cell cycle progression in neural stem cells of the developing brain.

    PubMed

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain.

  13. Nuclear Receptor TLX Regulates Cell Cycle Progression in Neural Stem Cells of the Developing Brain

    PubMed Central

    Li, Wenwu; Sun, Guoqiang; Yang, Su; Qu, Qiuhao; Nakashima, Kinichi; Shi, Yanhong

    2008-01-01

    TLX is an orphan nuclear receptor that is expressed exclusively in vertebrate forebrains. Although TLX is known to be expressed in embryonic brains, the mechanism by which it influences neural development remains largely unknown. We show here that TLX is expressed specifically in periventricular neural stem cells in embryonic brains. Significant thinning of neocortex was observed in embryonic d 14.5 TLX-null brains with reduced nestin labeling and decreased cell proliferation in the germinal zone. Cell cycle analysis revealed both prolonged cell cycles and increased cell cycle exit in TLX-null embryonic brains. Increased expression of a cyclin-dependent kinase inhibitor p21 and decreased expression of cyclin D1 provide a molecular basis for the deficiency of cell cycle progression in embryonic brains of TLX-null mice. Furthermore, transient knockdown of TLX by in utero electroporation led to precocious cell cycle exit and differentiation of neural stem cells followed by outward migration. Together these results indicate that TLX plays an important role in neural development by regulating cell cycle progression and exit of neural stem cells in the developing brain. PMID:17901127

  14. Natural Compounds as Modulators of Cell Cycle Arrest: Application for Anticancer Chemotherapies

    PubMed Central

    Bailon-Moscoso, Natalia; Cevallos-Solorzano, Gabriela; Romero-Benavides, Juan Carlos; Orellana, Maria Isabel Ramirez

    2017-01-01

    Natural compounds from various plants, microorganisms and marine species play an important role in the discovery novel components that can be successfully used in numerous biomedical applications, including anticancer therapeutics. Since uncontrolled and rapid cell division is a hallmark of cancer, unraveling the molecular mechanisms underlying mitosis is key to understanding how various natural compounds might function as inhibitors of cell cycle progression. A number of natural compounds that inhibit the cell cycle arrest have proven effective for killing cancer cells in vitro, in vivo and in clinical settings. Significant advances that have been recently made in the understanding of molecular mechanisms underlying the cell cycle regulation using the chemotherapeutic agents is of great importance for improving the efficacy of targeted therapeutics and overcoming resistance to anticancer drugs, especially of natural origin, which inhibit the activities of cyclins and cyclin-dependent kinases, as well as other proteins and enzymes involved in proper regulation of cell cycle leading to controlled cell proliferation. PMID:28367072

  15. Ubiquitylation and proteasomal degradation of the p21(Cip1), p27(Kip1) and p57(Kip2) CDK inhibitors.

    PubMed

    Lu, Zhimin; Hunter, Tony

    2010-06-15

    The expression levels of the p21(Cip1) family CDK inhibitors (CKIs), p21(Cip1), p27(Kip1) and p57(Kip2), play a pivotal role in the precise regulation of cyclin-dependent kinase (CDK) activity, which is instrumental to proper cell cycle progression. The stabilities of p21(Cip1), p27(Kip1) and p57(Kip2) are all tightly and differentially regulated by ubiquitylation and proteasome-mediated degradation during various stages of the cell cycle, either in steady state or in response to extracellular stimuli, which often elicit site-specific phosphorylation of CKIs triggering their degradation.

  16. Glycogen Synthase Kinase-3 and Mammalian Target of Rapamycin Pathways Contribute to DNA Synthesis, Cell Cycle Progression, and Proliferation in Human Islets

    PubMed Central

    Liu, Hui; Remedi, Maria S.; Pappan, Kirk L.; Kwon, Guim; Rohatgi, Nidhi; Marshall, Connie A.; McDaniel, Michael L.

    2009-01-01

    OBJECTIVE—Our previous studies demonstrated that nutrient regulation of mammalian target of rapamycin (mTOR) signaling promotes regenerative processes in rodent islets but rarely in human islets. Our objective was to extend these findings by using therapeutic agents to determine whether the regulation of glycogen synthase kinase-3 (GSK-3)/β-catenin and mTOR signaling represent key components necessary for effecting a positive impact on human β-cell mass relevant to type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS—Primary adult human and rat islets were treated with the GSK-3 inhibitors, LiCl and the highly potent 1-azakenpaullone (1-Akp), and with nutrients. DNA synthesis, cell cycle progression, and proliferation of β-cells were assessed. Measurement of insulin secretion and content and Western blot analysis of GSK-3 and mTOR signaling components were performed. RESULTS—Human islets treated for 4 days with LiCl or 1-Akp exhibited significant increases in DNA synthesis, cell cycle progression, and proliferation of β-cells that displayed varying degrees of sensitivity to rapamycin. Intermediate glucose (8 mmol/l) produced a striking degree of synergism in combination with GSK-3 inhibition to enhance bromodeoxyuridine (BrdU) incorporation and Ki-67 expression in human β-cells. Nuclear translocation of β-catenin responsible for cell proliferation was found to be particularly sensitive to rapamycin. CONCLUSIONS—A combination of GSK-3 inhibition and nutrient activation of mTOR contributes to enhanced DNA synthesis, cell cycle progression, and proliferation of human β-cells. Identification of therapeutic agents that appropriately regulate GSK-3 and mTOR signaling may provide a feasible and available approach to enhance human islet growth and proliferation. PMID:19073772

  17. Thioredoxin-dependent Redox Regulation of Chloroplastic Phosphoglycerate Kinase from Chlamydomonas reinhardtii*

    PubMed Central

    Morisse, Samuel; Michelet, Laure; Bedhomme, Mariette; Marchand, Christophe H.; Calvaresi, Matteo; Trost, Paolo; Fermani, Simona; Zaffagnini, Mirko; Lemaire, Stéphane D.

    2014-01-01

    In photosynthetic organisms, thioredoxin-dependent redox regulation is a well established mechanism involved in the control of a large number of cellular processes, including the Calvin-Benson cycle. Indeed, 4 of 11 enzymes of this cycle are activated in the light through dithiol/disulfide interchanges controlled by chloroplastic thioredoxin. Recently, several proteomics-based approaches suggested that not only four but all enzymes of the Calvin-Benson cycle may withstand redox regulation. Here, we characterized the redox features of the Calvin-Benson enzyme phosphoglycerate kinase (PGK1) from the eukaryotic green alga Chlamydomonas reinhardtii, and we show that C. reinhardtii PGK1 (CrPGK1) activity is inhibited by the formation of a single regulatory disulfide bond with a low midpoint redox potential (−335 mV at pH 7.9). CrPGK1 oxidation was found to affect the turnover number without altering the affinity for substrates, whereas the enzyme activation appeared to be specifically controlled by f-type thioredoxin. Using a combination of site-directed mutagenesis, thiol titration, mass spectrometry analyses, and three-dimensional modeling, the regulatory disulfide bond was shown to involve the not strictly conserved Cys227 and Cys361. Based on molecular mechanics calculation, the formation of the disulfide is proposed to impose structural constraints in the C-terminal domain of the enzyme that may lower its catalytic efficiency. It is therefore concluded that CrPGK1 might constitute an additional light-modulated Calvin-Benson cycle enzyme with a low activity in the dark and a TRX-dependent activation in the light. These results are also discussed from an evolutionary point of view. PMID:25202015

  18. Novel Roles of Focal Adhesion Kinase in Cytoplasmic Entry and Replication of Influenza A Viruses

    PubMed Central

    Cline, Troy; Baranovich, Tatiana; Govorkova, Elena A.; Schultz-Cherry, Stacey

    2014-01-01

    ABSTRACT Viruses modulate cellular signaling pathways at almost every step of the infection cycle. Cellular signaling pathways activated at later times of influenza infection have previously been investigated; however, early influenza virus-host cell interactions remain understudied. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates phosphatidylinositol 3-kinase (PI3K) activation and actin reorganization, two critical processes during influenza A virus (IAV) infection in most cell types. Using 6 influenza A virus strains (A/Puerto Rico/8/1934, A/Aichi/2/1968 × A/Puerto Rico/8/1934 reassortant [X-31], A/California/04/2009, mouse-adapted A/California/04/2009, A/WSN/1933, and A/New Caledonia/20/1999), we examined the role of FAK during IAV entry. We found that influenza virus attachment induced PI3K-dependent FAK-Y397 phosphorylation. Pharmacological FAK inhibition or expression of a kinase-dead mutant of FAK led to disruption of the actin meshwork that resulted in sequestration of IAV at the cell periphery and reduced virion localization to early endosomes. Additionally, FAK inhibition impeded viral RNA replication at later times of infection and ultimately resulted in significantly reduced viral titers in both A549 and differentiated normal human bronchial epithelial (NHBE) cells. Although not all tested strains activated FAK, all of them exhibited a reduction in viral replication in response to inhibition of FAK signaling. These findings highlight novel biphasic roles of FAK activation during IAV infection and indicate that FAK serves as a central link between receptor-mediated PI3K activation and actin reorganization during IAV infection. IMPORTANCE We found that FAK links early activation of PI3K and actin reorganization, thereby regulating influenza virus entry. Surprisingly, we also found that FAK can regulate viral RNA replication independently of its role in entry. Our study addresses a knowledge gap in the understanding of signaling events triggered by influenza virus that mediate its internalization and initiation of the infection cycle. Understanding of these fundamental molecular events will be necessary to identify novel host targets, such as FAK, and development of future anti-influenza virus therapeutics. PMID:24696469

  19. Sinorhizobium meliloti CtrA Stability Is Regulated in a CbrA-Dependent Manner That Is Influenced by CpdR1

    PubMed Central

    Schallies, Karla B.; Sadowski, Craig; Meng, Julia; Chien, Peter

    2015-01-01

    ABSTRACT CbrA is a DivJ/PleC-like histidine kinase of DivK that is required for cell cycle progression and symbiosis in the alphaproteobacterium Sinorhizobium meliloti. Loss of cbrA results in increased levels of CtrA as well as its phosphorylation. While many of the known Caulobacter crescentus regulators of CtrA phosphorylation and proteolysis are phylogenetically conserved within S. meliloti, the latter lacks the PopA regulator that is required for CtrA degradation in C. crescentus. In order to investigate whether CtrA proteolysis occurs in S. meliloti, CtrA stability was assessed. During exponential growth, CtrA is unstable and therefore likely to be degraded in a cell cycle-regulated manner. Loss of cbrA significantly increases CtrA stability, but this phenotype is restored to that of the wild type by constitutive ectopic expression of a CpdR1 variant that cannot be phosphorylated (CpdR1D53A). Addition of CpdR1D53A fully suppresses cbrA mutant cell cycle defects, consistent with regulation of CtrA stability playing a key role in mediating proper cell cycle progression in S. meliloti. Importantly, the cbrA mutant symbiosis defect is also suppressed in the presence of CpdR1D53A. Thus, regulation of CtrA stability by CbrA and CpdR1 is associated with free-living cell cycle outcomes and symbiosis. IMPORTANCE The cell cycle is a fundamental process required for bacterial growth, reproduction, and developmental differentiation. Our objective is to understand how a two-component signal transduction network directs cell cycle events during free-living growth and host colonization. The Sinorhizobium meliloti nitrogen-fixing symbiosis with plants is associated with novel cell cycle events. This study identifies a link between the regulated stability of an essential response regulator, free-living cell cycle progression, and symbiosis. PMID:25897034

  20. Cardiac system bioenergetics: metabolic basis of the Frank-Starling law

    PubMed Central

    Saks, Valdur; Dzeja, Petras; Schlattner, Uwe; Vendelin, Marko; Terzic, Andre; Wallimann, Theo

    2006-01-01

    The fundamental principle of cardiac behaviour is described by the Frank-Starling law relating force of contraction during systole with end-diastolic volume. While both work and respiration rates increase linearly with imposed load, the basis of mechano-energetic coupling in heart muscle has remained a long-standing enigma. Here, we highlight advances made in understanding of complex cellular and molecular mechanisms that orchestrate coupling of mitochondrial oxidative phosphorylation with ATP utilization for muscle contraction. Cardiac system bioenergetics critically depends on an interrelated metabolic infrastructure regulating mitochondrial respiration and energy fluxes throughout cellular compartments. The data reviewed indicate the significance of two interrelated systems regulating mitochondrial respiration and energy fluxes in cells: (1) the creatine kinase, adenylate kinase and glycolytic pathways that communicate flux changes generated by cellular ATPases within structurally organized enzymatic modules and networks; and (2) a secondary system based on mitochondrial participation in cellular calcium cycle, which adjusts substrate oxidation and energy-transducing processes to meet increasing cellular energy demands. By conveying energetic signals to metabolic sensors, coupled phosphotransfer reactions provide a high-fidelity regulation of the excitation–contraction cycle. Such integration of energetics with calcium signalling systems provides the basis for ‘metabolic pacing’, synchronizing the cellular electrical and mechanical activities with energy supply processes. PMID:16410283

  1. Glycogen synthase kinase 3: more than a namesake.

    PubMed

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-03-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.

  2. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation.

    PubMed

    Schofield, Alice V; Gamell, Cristina; Suryadinata, Randy; Sarcevic, Boris; Bernard, Ora

    2013-03-15

    Tubulin polymerization promoting protein 1 (Tppp1) regulates microtubule (MT) dynamics via promoting MT polymerization and inhibiting histone deacetylase 6 (Hdac6) activity to increase MT acetylation. Our results reveal that as a consequence, Tppp1 inhibits cell proliferation by delaying the G1/S-phase and the mitosis to G1-phase transitions. We show that phosphorylation of Tppp1 by Rho-associated coiled-coil kinase (Rock) prevents its Hdac6 inhibitory activity to enable cells to enter S-phase. Whereas, our analysis of the role of Tppp1 during mitosis revealed that inhibition of its MT polymerizing and Hdac6 regulatory activities were necessary for cells to re-enter the G1-phase. During this investigation, we also discovered that Tppp1 is a novel Cyclin B/Cdk1 (cyclin-dependent kinase) substrate and that Cdk phosphorylation of Tppp1 inhibits its MT polymerizing activity. Overall, our results show that dual Rock and Cdk phosphorylation of Tppp1 inhibits its regulation of the cell cycle to increase cell proliferation.

  3. Indomethacin promotes apoptosis in gastric cancer cells through concomitant degradation of Survivin and Aurora B kinase proteins.

    PubMed

    Chiou, Shiun-Kwei; Hoa, Neil; Hodges, Amy; Ge, Lishen; Jadus, Martin R

    2014-09-01

    Regular usage of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with reduced incidence of a variety of cancers. The molecular mechanisms underlying these chemopreventive effects remain poorly understood. This current investigation showed that in gastric cancer cells: (1) Indomethacin treatment enhanced the degradation of chromosomal passenger proteins, Survivin and Aurora B kinase; (2) Indomethacin treatment down-regulated Aurora B kinase activity in a cell cycle-independent fashion; (3) siRNA knockdown of Survivin level promoted Aurora B kinase protein degradation, and vice versa; (4) ectopic overexpression of Survivin blocked reduction of Aurora B kinase level and activity by indomethacin treatment, and vice versa; (5) siRNA knockdown of Aurora B kinase level and AZD1152 inhibition of its activity induced apoptosis, and overexpression of Aurora B kinase inhibited indomethacin-induced apoptosis; (6) indomethacin treatment reduced Aurora B kinase level, coinciding with reduction of Survivin level and induction of apoptosis, in KATO III and HT-29 cells, and in mouse gastric mucosa. A role for Aurora B kinase function in NSAID-induced apoptosis was not previously explored. Thus this report provides better understanding of the molecular mechanisms underlying the anti-cancer effect of NSAIDs by elucidating a significant role for Aurora B kinase in indomethacin-induced apoptosis.

  4. Disruption of the G1/S Transition in Human Papillomavirus Type 16 E7-Expressing Human Cells Is Associated with Altered Regulation of Cyclin E

    PubMed Central

    Martin, Larry G.; Demers, G. William; Galloway, Denise A.

    1998-01-01

    The development of neoplasia frequently involves inactivation of the p53 and retinoblastoma (Rb) tumor suppressor pathways and disruption of cell cycle checkpoints that monitor the integrity of replication and cell division. The human papillomavirus type 16 (HPV-16) oncoproteins, E6 and E7, have been shown to bind p53 and Rb, respectively. To further delineate the mechanisms by which E6 and E7 affect cell cycle control, we examined various aspects of the cell cycle machinery. The low-risk HPV-6 E6 and E7 proteins did not cause any significant change in the levels of cell cycle proteins analyzed. HPV-16 E6 resulted in very low levels of p53 and p21 and globally elevated cyclin-dependent kinase (CDK) activity. In contrast, HPV-16 E7 had a profound effect on several aspects of the cell cycle machinery. A number of cyclins and CDKs were elevated, and despite the elevation of the levels of at least two CDK inhibitors, p21 and p16, CDK activity was globally increased. Most strikingly, cyclin E expression was deregulated both transcriptionally and posttranscriptionally and persisted at high levels in S and G2/M. Transit through G1 was shortened by the premature activation of cyclin E-associated kinase activity. Elevation of cyclin E levels required both the CR1 and CR2 domains of E7. These data suggest that cyclin E may be a critical target of HPV-16 E7 in the disruption of G1/S cell cycle progression and that the ability of E7 to regulate cyclin E involves activities in addition to the release of E2F. PMID:9444990

  5. Cell cycle control, checkpoint mechanisms, and genotoxic stress.

    PubMed Central

    Shackelford, R E; Kaufmann, W K; Paules, R S

    1999-01-01

    The ability of cells to maintain genomic integrity is vital for cell survival and proliferation. Lack of fidelity in DNA replication and maintenance can result in deleterious mutations leading to cell death or, in multicellular organisms, cancer. The purpose of this review is to discuss the known signal transduction pathways that regulate cell cycle progression and the mechanisms cells employ to insure DNA stability in the face of genotoxic stress. In particular, we focus on mammalian cell cycle checkpoint functions, their role in maintaining DNA stability during the cell cycle following exposure to genotoxic agents, and the gene products that act in checkpoint function signal transduction cascades. Key transitions in the cell cycle are regulated by the activities of various protein kinase complexes composed of cyclin and cyclin-dependent kinase (Cdk) molecules. Surveillance control mechanisms that check to ensure proper completion of early events and cellular integrity before initiation of subsequent events in cell cycle progression are referred to as cell cycle checkpoints and can generate a transient delay that provides the cell more time to repair damage before progressing to the next phase of the cycle. A variety of cellular responses are elicited that function in checkpoint signaling to inhibit cyclin/Cdk activities. These responses include the p53-dependent and p53-independent induction of Cdk inhibitors and the p53-independent inhibitory phosphorylation of Cdk molecules themselves. Eliciting proper G1, S, and G2 checkpoint responses to double-strand DNA breaks requires the function of the Ataxia telangiectasia mutated gene product. Several human heritable cancer-prone syndromes known to alter DNA stability have been found to have defects in checkpoint surveillance pathways. Exposures to several common sources of genotoxic stress, including oxidative stress, ionizing radiation, UV radiation, and the genotoxic compound benzo[a]pyrene, elicit cell cycle checkpoint responses that show both similarities and differences in their molecular signaling. Images Figure 3 PMID:10229703

  6. The Giardia cell cycle progresses independently of the anaphase-promoting complex

    PubMed Central

    Gourguechon, Stéphane; Holt, Liam J.; Cande, W. Zacheus

    2013-01-01

    Summary Most cell cycle regulation research has been conducted in model organisms representing a very small part of the eukaryotic domain. The highly divergent human pathogen Giardia intestinalis is ideal for studying the conservation of eukaryotic pathways. Although Giardia has many cell cycle regulatory components, its genome lacks all anaphase-promoting complex (APC) components. In the present study, we show that a single mitotic cyclin in Giardia is essential for progression into mitosis. Strikingly, Giardia cyclin B lacks the conserved N-terminal motif required for timely degradation mediated by the APC and ubiquitin conjugation. Expression of Giardia cyclin B in fission yeast is toxic, leading to a prophase arrest, and this toxicity is suppressed by the addition of a fission yeast degradation motif. Cyclin B is degraded during mitosis in Giardia cells, but this degradation appears to be independent of the ubiquitination pathway. Other putative APC substrates, aurora and polo-like kinases, also show no evidence of ubiquitination. This is the first example of mitosis not regulated by the APC and might reflect an evolutionary ancient form of cell cycle regulation. PMID:23525017

  7. Comparative proteomics of a tor inducible Aspergillus fumigatus mutant reveals involvement of the Tor kinase in iron regulation.

    PubMed

    Baldin, Clara; Valiante, Vito; Krüger, Thomas; Schafferer, Lukas; Haas, Hubertus; Kniemeyer, Olaf; Brakhage, Axel A

    2015-07-01

    The Tor (target of rapamycin) kinase is one of the major regulatory nodes in eukaryotes. Here, we analyzed the Tor kinase in Aspergillus fumigatus, which is the most important airborne fungal pathogen of humans. Because deletion of the single tor gene was apparently lethal, we generated a conditional lethal tor mutant by replacing the endogenous tor gene by the inducible xylp-tor gene cassette. By both 2DE and gel-free LC-MS/MS, we found that Tor controls a variety of proteins involved in nutrient sensing, stress response, cell cycle progression, protein biosynthesis and degradation, but also processes in mitochondria, such as respiration and ornithine metabolism, which is required for siderophore formation. qRT-PCR analyses indicated that mRNA levels of ornithine biosynthesis genes were increased under iron limitation. When tor was repressed, iron regulation was lost. In a deletion mutant of the iron regulator HapX also carrying the xylp-tor cassette, the regulation upon iron deprivation was similar to that of the single tor inducible mutant strain. In line, hapX expression was significantly reduced when tor was repressed. Thus, Tor acts either upstream of HapX or independently of HapX as a repressor of the ornithine biosynthesis genes and thereby regulates the production of siderophores. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Journey of oocyte from metaphase-I to metaphase-II stage in mammals.

    PubMed

    Sharma, Alka; Tiwari, Meenakshi; Gupta, Anumegha; Pandey, Ashutosh N; Yadav, Pramod K; Chaube, Shail K

    2018-08-01

    In mammals, journey from metaphase-I (M-I) to metaphase-II (M-II) is important since oocyte extrude first polar body (PB-I) and gets converted into haploid gamete. The molecular and cellular changes associated with meiotic cell cycle progression from M-I to M-II stage and extrusion of PB-I remain ill understood. Several factors drive oocyte meiosis from M-I to M-II stage. The mitogen-activated protein kinase3/1 (MAPK3/1), signal molecules and Rho family GTPases act through various pathways to drive cell cycle progression from M-I to M-II stage. The down regulation of MOS/MEK/MAPK3/1 pathway results in the activation of anaphase-promoting complex/cyclosome (APC/C). The active APC/C destabilizes maturation promoting factor (MPF) and induces meiotic resumption. Several signal molecules such as, c-Jun N-terminal kinase (JNK2), SENP3, mitotic kinesin-like protein 2 (MKlp2), regulator of G-protein signaling (RGS2), Epsin2, polo-like kinase 1 (Plk1) are directly or indirectly involved in chromosomal segregation. Rho family GTPase is another enzyme that along with cell division cycle (Cdc42) to form actomyosin contractile ring required for chromosomal segregation. In the presence of origin recognition complex (ORC4), eccentrically localized haploid set of chromosomes trigger cortex differentiation and determine the division site for polar body formation. The actomyosin contractile activity at the site of division plane helps to form cytokinetic furrow that results in the formation and extrusion of PB-I. Indeed, oocyte journey from M-I to M-II stage is coordinated by several factors and pathways that enable oocyte to extrude PB-I. Quality of oocyte directly impact fertilization rate, early embryonic development, and reproductive outcome in mammals. © 2018 Wiley Periodicals, Inc.

  9. Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G(2)/M transition and sustained spindle checkpoint responses.

    PubMed

    Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui; Liu, Xuedong; Xu, Quanbin

    2011-08-15

    Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.

  10. Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G2/M transition and sustained spindle checkpoint responses

    PubMed Central

    Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui

    2011-01-01

    Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses. PMID:21778823

  11. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    PubMed

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous system and the rest of the body.

  12. Prolonged Sulforaphane Treatment Activates Extracellular-Regulated Kinase 1/2 Signaling in Nontumorigenic Colon Cells but not Colon Cancer Cells

    USDA-ARS?s Scientific Manuscript database

    Sulforaphane (SFN) is a naturally occurring member of the isothiocyanate family of chemopreventive agents and the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon c...

  13. Phosphorylation of serine96 of histidine-rich calcium-binding protein by the Fam20C kinase functions to prevent cardiac arrhythmia

    PubMed Central

    Pollak, Adam J.; Haghighi, Kobra; Kunduri, Swati; Arvanitis, Demetrios A.; Liu, Guan-Sheng; Singh, Vivek P.; Gonzalez, David J.; Sanoudou, Despina; Wiley, Sandra E.; Dixon, Jack E.; Kranias, Evangelia G.

    2017-01-01

    Precise Ca cycling through the sarcoplasmic reticulum (SR), a Ca storage organelle, is critical for proper cardiac muscle function. This cycling initially involves SR release of Ca via the ryanodine receptor, which is regulated by its interacting proteins junctin and triadin. The sarco/endoplasmic reticulum Ca ATPase (SERCA) pump then refills SR Ca stores. Histidine-rich Ca-binding protein (HRC) resides in the lumen of the SR, where it contributes to the regulation of Ca cycling by protecting stressed or failing hearts. The common Ser96Ala human genetic variant of HRC strongly correlates with life-threatening ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. However, the underlying molecular pathways of this disease remain undefined. Here, we demonstrate that family with sequence similarity 20C (Fam20C), a recently characterized protein kinase in the secretory pathway, phosphorylates HRC on Ser96. HRC Ser96 phosphorylation was confirmed in cells and human hearts. Furthermore, a Ser96Asp HRC variant, which mimics constitutive phosphorylation of Ser96, diminished delayed aftercontractions in HRC null cardiac myocytes. This HRC phosphomimetic variant was also able to rescue the aftercontractions elicited by the Ser96Ala variant, demonstrating that phosphorylation of Ser96 is critical for the cardioprotective function of HRC. Phosphorylation of HRC on Ser96 regulated the interactions of HRC with both triadin and SERCA2a, suggesting a unique mechanism for regulation of SR Ca homeostasis. This demonstration of the role of Fam20C-dependent phosphorylation in heart disease will open new avenues for potential therapeutic approaches against arrhythmias. PMID:28784772

  14. Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins.

    PubMed

    Mei, Yu; Jia, Wen-Jing; Chu, Yu-Jia; Xue, Hong-Wei

    2012-03-01

    Phosphatidylinositol monophosphate 5-kinase (PIP5K) catalyzes the synthesis of PI-4,5-bisphosphate (PtdIns(4,5)P(2)) by phosphorylation of PI-4-phosphate at the 5 position of the inositol ring, and is involved in regulating multiple developmental processes and stress responses. We here report on the functional characterization of Arabidopsis PIP5K2, which is expressed during lateral root initiation and elongation, and whose expression is enhanced by exogenous auxin. The knockout mutant pip5k2 shows reduced lateral root formation, which could be recovered with exogenous auxin, and interestingly, delayed root gravity response that could not be recovered with exogenous auxin. Crossing with the DR5-GUS marker line and measurement of free IAA content confirmed the reduced auxin accumulation in pip5k2. In addition, analysis using the membrane-selective dye FM4-64 revealed the decelerated vesicle trafficking caused by PtdIns(4,5)P(2) reduction, which hence results in suppressed cycling of PIN proteins (PIN2 and 3), and delayed redistribution of PIN2 and auxin under gravistimulation in pip5k2 roots. On the contrary, PtdIns(4,5)P(2) significantly enhanced the vesicle trafficking and cycling of PIN proteins. These results demonstrate that PIP5K2 is involved in regulating lateral root formation and root gravity response, and reveal a critical role of PIP5K2/PtdIns(4,5)P(2) in root development through regulation of PIN proteins, providing direct evidence of crosstalk between the phosphatidylinositol signaling pathway and auxin response, and new insights into the control of polar auxin transport.

  15. Casein kinase 2 and the cell response to growth factors.

    PubMed

    Filhol-Cochet, O; Loue-Mackenbach, P; Cochet, C; Chambaz, E M

    1994-01-01

    Different approaches have been followed with the aim of delineating a possible role of casein kinase 2 (CK2) in the mitogenic signalling in response to cell growth factors. (a) Immunocytochemical detection of CK2 showed that while the kinase is evenly distributed throughout cycle arrested cells, it becomes preferentially associated with the nuclear compartment in activity growing cells; (b) CK2 biosynthesis is activated as an early response of quiescent cells to growth factors. The newly synthesized CK2 steadily accumulates as the cells progress through the G1 phase. This growth factor-induced CK2 biosynthesis involves in parallel the two alpha and beta subunits of the kinase, with no detectable preferential subcellular localization of the newly synthesized enzyme; and (c) In addition to substrate phosphorylation, CK2 may form molecular complexes with cell components of functional significance. Such is the case with the protein p53, a major negative regulator of the cell cycle. CK2 forms a high affinity association (Kd 70 nM) with p53, through its beta subunit. The complex dissociates in the presence of adenosine triphosphate (ATP). These observations suggest that CK2 and p53 may play a coordinated regulatory role in the cell response to growth factors.

  16. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  17. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases.

    PubMed

    Abraham, R T; Acquarone, M; Andersen, A; Asensi, A; Bellé, R; Berger, F; Bergounioux, C; Brunn, G; Buquet-Fagot, C; Fagot, D

    1995-01-01

    Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.

  18. P38 Mitogen-Activated Protein Kinase in Metastasis Associated With Transforming Growth Factor Beta

    DTIC Science & Technology

    2005-06-01

    36, 2001. Shin I, Bakin AV, Rodeck U, Brunet A, Arteaga CL. TGFbeta enhances epithelial cell survival via Akt - dependent regulation of FKHRLI. Mol Biol... Akt mediates cell-cycle progression by phosphorylation of p27Kip’ at threonine 157 and modulation of its cellular localization. Nat Med 8:1145-1152...stress fibers. Ectopic- expression and siRNA experiments show that Smad3 and Smad4 mediate up-regulation of tropomyosins and stress fiber formation

  19. Complexes of D-type cyclins with CDKs during maize germination

    PubMed Central

    Vázquez-Ramos, Jorge M.

    2013-01-01

    The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation and advancement. Our aim has been to understand the role of D-type cyclins and type A and B CDKs in the cell cycle taking place during a developmental process such as maize seed germination. Results indicate that three maize D-type cyclins—D2;2, D4;2, and D5;3—(G1-S cyclins by definition) bind and activate two different types of CDK—A and B1;1—in a differential way during germination. Whereas CDKA–D-type cyclin complexes are more active at early germination times than at later times, it was surprising to observe that CDKB1;1, a supposedly G2-M kinase, bound in a differential way to all D-type cyclins tested during germination. Binding to cyclin D2;2 was detectable at all germination times, forming a complex with kinase activity, whereas binding to D4;2 and D5;3 was more variable; in particular, D5;3 was only detected at late germination times. Results are discussed in terms of cell cycle advancement and its importance for seed germination. PMID:24127516

  20. Overexpression of hypoxia-inducible factor and metabolic pathways: possible targets of cancer.

    PubMed

    Singh, Davinder; Arora, Rohit; Kaur, Pardeep; Singh, Balbir; Mannan, Rahul; Arora, Saroj

    2017-01-01

    Cancer, the main cause of human deaths in the modern world is a group of diseases. Anticancer drug discovery is a challenge for scientists because of involvement of multiple survival pathways of cancer cells. An extensive study on the regulation of each step of these pathways may help find a potential cancer target. Up-regulated HIF-1 expression and altered metabolic pathways are two classical characteristics of cancer. Oxygen-dependent (through pVHL, PHDs, calcium-mediated) and independent (through growth factor signaling pathway, mdm2 pathway, HSP90) regulation of HIF-1α leads to angiogenesis, metastasis, and cell survival. The two subunits of HIF-1 regulates in the same fashion through different mechanisms. HIF-1α translation upregulates via mammalian target of rapamycin and mitogen-activated protein kinase signaling pathways, whereas HIF-1β through calmodulin kinase. Further, the stabilized interactions of these two subunits are important for proper functioning. Also, metabolic pathways crucial for the formation of building blocks (pentose phosphate pathway) and energy generation (glycolysis, TCA cycle and catabolism of glutamine) are altered in cancer cells to protect them from oxidative stress and to meet the reduced oxygen and nutrient supply. Up-regulated anaerobic metabolism occurs through enhanced expression of hexokinase, phosphofructokinase, triosephosphate isomerase, glucose 6-phosphate dehydrogenase and down-regulation of aerobic metabolism via pyruvate dehydrogenase kinase and lactate dehydrogenase which compensate energy requirements along with high glucose intake. Controlled expression of these two pathways through their common intermediate may serve as potent cancer target in future.

  1. Myosin light chain kinase facilitates endocytosis of synaptic vesicles at hippocampal boutons.

    PubMed

    Li, Lin; Wu, Xiaomei; Yue, Hai-Yuan; Zhu, Yong-Chuan; Xu, Jianhua

    2016-07-01

    At nerve terminals, endocytosis efficiently recycles vesicle membrane to maintain synaptic transmission under different levels of neuronal activity. Ca(2+) and its downstream signal pathways are critical for the activity-dependent regulation of endocytosis. An activity- and Ca(2+) -dependent kinase, myosin light chain kinase (MLCK) has been reported to regulate vesicle mobilization, vesicle cycling, and motility in different synapses, but whether it has a general contribution to regulation of endocytosis at nerve terminals remains unknown. We investigated this issue at rat hippocampal boutons by imaging vesicle endocytosis as the real-time retrieval of vesicular synaptophysin tagged with a pH-sensitive green fluorescence protein. We found that endocytosis induced by 200 action potentials (5-40 Hz) was slowed by acute inhibition of MLCK and down-regulation of MLCK with RNA interference, while the total amount of vesicle exocytosis and somatic Ca(2+) channel current did not change with MLCK down-regulation. Acute inhibition of myosin II similarly impaired endocytosis. Furthermore, down-regulation of MLCK prevented depolarization-induced phosphorylation of myosin light chain, an effect shared by blockers of Ca(2+) channels and calmodulin. These results suggest that MLCK facilitates vesicle endocytosis through activity-dependent phosphorylation of myosin downstream of Ca(2+) /calmodulin, probably as a widely existing mechanism among synapses. Our study suggests that MLCK is an important activity-dependent regulator of vesicle recycling in hippocampal neurons, which are critical for learning and memory. The kinetics of vesicle membrane endocytosis at nerve terminals has long been known to depend on activity and Ca(2+) . This study provides evidence suggesting that myosin light chain kinase increases endocytosis efficiency at hippocampal neurons by mediating Ca(2+) /calmodulin-dependent phosphorylation of myosin. The authors propose that this signal cascade may serve as a common pathway contributing to the activity-dependent regulation of vesicle endocytosis at synapses. © 2016 International Society for Neurochemistry.

  2. Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.

    PubMed

    Liu, J; Kipreos, E T

    2000-07-01

    Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a central aspect of CAK regulation has been conserved in budding and fission yeast. Although there are metazoan CDK-family members for which we could not define ancestral lineage, our analysis failed to identify metazoan CAK1/csk1 orthologs, suggesting that if the CAK1/csk1 gene existed in the metazoan ancestor, it has not been conserved.

  3. p21‐Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization

    PubMed Central

    Zhang, Wenwu; Huang, Youliang

    2016-01-01

    Key points In airway smooth muscle, tension development caused by a contractile stimulus requires phosphorylation of the 20 kDa myosin light chain (MLC), which activates crossbridge cycling and the polymerization of a pool of submembraneous actin.The p21‐activated kinases (Paks) can regulate the contractility of smooth muscle and non‐muscle cells, and there is evidence that this occurs through the regulation of MLC phosphorylation.We show that Pak has no effect on MLC phosphorylation during the contraction of airway smooth muscle, and that it regulates contraction by mediating actin polymerization.We find that Pak phosphorylates the adhesion junction protein, paxillin, on Ser273, which promotes the formation of a signalling complex that activates the small GTPase, cdc42, and the actin polymerization catalyst, neuronal Wiskott–Aldrich syndrome protein (N‐WASP).These studies demonstrate a novel role for Pak in regulating the contractility of smooth muscle by regulating actin polymerization. Abstract The p21‐activated kinases (Pak) can regulate contractility in smooth muscle and other cell and tissue types, but the mechanisms by which Paks regulate cell contractility are unclear. In airway smooth muscle, stimulus‐induced contraction requires phosphorylation of the 20 kDa light chain of myosin, which activates crossbridge cycling, as well as the polymerization of a small pool of actin. The role of Pak in airway smooth muscle contraction was evaluated by inhibiting acetylcholine (ACh)‐induced Pak activation through the expression of a kinase inactive mutant, Pak1 K299R, or by treating tissues with the Pak inhibitor, IPA3. Pak inhibition suppressed actin polymerization and contraction in response to ACh, but it did not affect myosin light chain phosphorylation. Pak activation induced paxillin phosphorylation on Ser273; the paxillin mutant, paxillin S273A, inhibited paxillin Ser273 phosphorylation and inhibited actin polymerization and contraction. Immunoprecipitation analysis of tissue extracts and proximity ligation assays in dissociated cells showed that Pak activation and paxillin Ser273 phosphorylation triggered the formation of an adhesion junction signalling complex with paxillin that included G‐protein‐coupled receptor kinase‐interacting protein (GIT1) and the cdc42 guanine exchange factor, βPIX (Pak interactive exchange factor). Assembly of the Pak–GIT1–βPIX–paxillin complex was necessary for cdc42 and neuronal Wiskott–Aldrich syndrome protein (N‐WASP) activation, actin polymerization and contraction in response to ACh. RhoA activation was also required for the recruitment of Pak to adhesion junctions, Pak activation, paxillin Ser273 phosphorylation and paxillin complex assembly. These studies demonstrate a novel role for Pak in the regulation of N‐WASP activation, actin dynamics and cell contractility. PMID:27038336

  4. Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT

    PubMed Central

    Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D.; Desai, Avanti; Metcalfe, Dean D.; Olivera, Ana

    2018-01-01

    Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation. PMID:29643855

  5. GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication.

    PubMed

    Kuster, Diederik W D; Sequeira, Vasco; Najafi, Aref; Boontje, Nicky M; Wijnker, Paul J M; Witjas-Paalberends, E Rosalie; Marston, Steven B; Dos Remedios, Cristobal G; Carrier, Lucie; Demmers, Jeroen A A; Redwood, Charles; Sadayappan, Sakthivel; van der Velden, Jolanda

    2013-02-15

    Cardiac myosin-binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. To identify and characterize additional phosphorylation sites in human cMyBP-C. Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine-rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3β (GSK3β) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3β showed phosphorylation on Ser133. In addition, GSK3β phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A-induced phosphorylation at Ser304. GSK3β treatment of single membrane-permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. GSK3β phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine-rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3β at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.

  6. Targeting Sphingosine Kinase Isoforms Effectively Reduces Growth and Survival of Neoplastic Mast Cells With D816V-KIT.

    PubMed

    Bandara, Geethani; Muñoz-Cano, Rosa; Tobío, Araceli; Yin, Yuzhi; Komarow, Hirsh D; Desai, Avanti; Metcalfe, Dean D; Olivera, Ana

    2018-01-01

    Mastocytosis is a disorder resulting from an abnormal mast cell (MC) accumulation in tissues that is often associated with the D816V mutation in KIT, the tyrosine kinase receptor for stem cell factor. Therapies available to treat aggressive presentations of mastocytosis are limited, thus exploration of novel pharmacological targets that reduce MC burden is desirable. Since increased generation of the lipid mediator sphingosine-1-phosphate (S1P) by sphingosine kinase (SPHK) has been linked to oncogenesis, we studied the involvement of the two SPHK isoforms (SPHK1 and SPHK2) in the regulation of neoplastic human MC growth. While SPHK2 inhibition prevented entry into the cell cycle in normal and neoplastic human MCs with minimal effect on cell survival, SPHK1 inhibition caused cell cycle arrest in G2/M and apoptosis, particularly in D816V-KIT MCs. This was mediated via activation of the DNA damage response (DDR) cascade, including phosphorylation of the checkpoint kinase 2 (CHK2), CHK2-mediated M-phase inducer phosphatase 3 depletion, and p53 activation. Combination treatment of SPHK inhibitors with KIT inhibitors showed greater growth inhibition of D816V-KIT MCs than either inhibitor alone. Furthermore, inhibition of SPHK isoforms reduced the number of malignant bone marrow MCs from patients with mastocytosis and the growth of D816V-KIT MCs in a xenograft mouse model. Our results reveal a role for SPHK isoforms in the regulation of growth and survival in normal and neoplastic MCs and suggest a regulatory function for SPHK1 in the DDR in MCs with KIT mutations. The findings also suggest that targeting the SPHK/S1P axis may provide an alternative to tyrosine kinase inhibitors, alone or in combination, for the treatment of aggressive mastocytosis and other hematological malignancies associated with the D816V-KIT mutation.

  7. SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase.

    PubMed

    Zheng, P; Fay, D S; Burton, J; Xiao, H; Pinkham, J L; Stern, D F

    1993-09-01

    SPK1 was originally discovered in an immunoscreen for tyrosine-protein kinases in Saccharomyces cerevisiae. We have used biochemical and genetic techniques to investigate the function of this gene and its encoded protein. Hybridization of an SPK1 probe to an ordered genomic library showed that SPK1 is adjacent to PEP4 (chromosome XVI L). Sporulation of spk1/+ heterozygotes gave rise to spk1 spores that grew into microcolonies but could not be further propagated. These colonies were greatly enriched for budded cells, especially those with large buds. Similarly, eviction of CEN plasmids bearing SPK1 from cells with a chromosomal SPK1 disruption yielded viable cells with only low frequency. Spk1 protein was identified by immunoprecipitation and immunoblotting. It was associated with protein-Ser, Thr, and Tyr kinase activity in immune complex kinase assays. Spk1 was localized to the nucleus by immunofluorescence. The nucleotide sequence of the SPK1 5' noncoding region revealed that SPK1 contains two MluI cell cycle box elements. These elements confer S-phase-specific transcription to many genes involved in DNA synthesis. Northern (RNA) blotting of synchronized cells verified that the SPK1 transcript is coregulated with other MluI box-regulated genes. The SPK1 upstream region also includes a domain highly homologous to sequences involved in induction of RAD2 and other excision repair genes by agents that induce DNA damage. spk1 strains were hypersensitive to UV irradiation. Taken together, these findings indicate that SPK1 is a dual-specificity (Ser/Thr and Tyr) protein kinase that is essential for viability. The cell cycle-dependent transcription, presence of DNA damage-related sequences, requirement for UV resistance, and nuclear localization of Spk1 all link this gene to a crucial S-phase-specific role, probably as a positive regulator of DNA synthesis.

  8. Yak IGF2 Promotes Fibroblast Proliferation Via Suppression of IGF1R and PI3KCG Expression

    PubMed Central

    Wang, Qi; Gong, Jishang; Du, Jiaxing; Zhang, Yong; Zhao, Xingxu

    2018-01-01

    Insulin-like growth factor 2 (IGF2) recapitulates many of the activities of insulin and promotes differentiation of myoblasts and osteoblasts, which likely contribute to genetic variations of growth potential. However, little is known about the functions and signaling properties of IGF2 variants in yaks. The over-expression vector and knockdown sequence of yak IGF2 were transfected into yak fibroblasts, and the effects were detected by a series of assays. IGF2 expression in yak muscle tissues was significantly lower than that of other tissues. In yak fibroblasts, the up-regulated expression of IGF2 inhibits expression of IGF1 and insulin-like growth factor 2 receptor (IGF2R) and significantly up-regulates expression of IGF1R. Inhibition of IGF2 expression caused the up-regulates expression of IGF1, IGF1R and IGF2R. Both over-expression and knockdown of IGF2 resulted in up-regulation of threonine protein kinase 1 (Akt1) expression and down-regulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (PIK3CG). Cell cycle and cell proliferation assays revealed that over-expression of IGF2 enhanced the DNA synthesis phase and promoted yak fibroblasts proliferation. Conversely, knockdown of IGF2 decreased DNA synthesis and inhibited proliferation. These results suggested that IGF2 was negatively correlated with IGF1R and PIK3CG and demonstrated an association with the IGFs-PI3K-Akt (IGFs-phosphatidylinositol 3-kinase- threonine protein kinase) pathway in cell proliferation and provided evidence supporting the functional role of IGF2 for use in improving the production performance of yaks. PMID:29558395

  9. KSR2 Is an Essential Regulator of AMP Kinase, Energy Expenditure, and Insulin Sensitivity

    DTIC Science & Technology

    2009-11-04

    Metabolism 10, 366–378, November 4, 2009 ª2009 Elsevier Inc. acyl-CoA molecules into the mitochondria for oxidation. By inhibiting ACC, AMPK inhibits the...bars, n = 8 for each sex) and ksr2!/! mice (dark bars, n = 6 males, n = 11 females) during light (1 p.m.) and dark (9 p.m.) cycles (left panel). (C...impaired by the disruption of ksr2. Respiratory quotient (RQ) is lower in ksr2!/! mice during the dark cycle relative to wild-type mice (Figure 5A and

  10. Light at night activates IGF-1R/PDK1 signaling and accelerates tumor growth in human breast cancer xenografts.

    PubMed

    Wu, Jinghai; Dauchy, Robert T; Tirrell, Paul C; Wu, Steven S; Lynch, Darin T; Jitawatanarat, Potjana; Burrington, Christine M; Dauchy, Erin M; Blask, David E; Greene, Michael W

    2011-04-01

    Regulation of diurnal and circadian rhythms and cell proliferation are coupled in all mammals, including humans. However, the molecular mechanisms by which diurnal and circadian rhythms regulate cell proliferation are relatively poorly understood. In this study, we report that tumor growth in nude rats bearing human steroid receptor-negative MCF-7 breast tumors can be significantly accelerated by exposing the rats to light at night (LAN). Under normal conditions of an alternating light/dark cycle, proliferating cell nuclear antigen (PCNA) levels in tumors were maximal in the early light phase but remained at very low levels throughout the daily 24-hour cycle period monitored. Surprisingly, PCNA was expressed in tumors continually at a high level throughout the entire 24-hour period in LAN-exposed nude rats. Daily fluctuations of Akt and mitogen activated protein kinase activation in tumors were also disrupted by LAN. These fluctuations did not track with PCNA changes, but we found that activation of the Akt stimulatory kinase phosphoinositide-dependent protein kinase 1 (PDK1) directly correlated with PCNA levels. Expression of insulin-like growth factor 1 receptor (IGF-1R), an upstream signaling molecule for PDK1, also correlated with fluctuations of PDK1/PCNA in the LAN group. In addition, circulating IGF-1 concentrations were elevated in LAN-exposed tumor-bearing nude rats. Finally, RNAi-mediated knockdown of PDK1 led to a reduction in PCNA expression and cell proliferation in vitro and tumor growth in vivo, indicating that PDK1 regulates breast cancer growth in a manner correlated with PCNA expression. Taken together, our findings demonstrate that LAN exposure can accelerate tumor growth in vivo, in part through continuous activation of IGF-1R/PDK1 signaling.

  11. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension.

    PubMed

    Kim, Gwi Ran; Cho, Soo-Na; Kim, Hyung-Seok; Yu, Seon Young; Choi, Sin Young; Ryu, Yuhee; Lin, Ming Quan; Jin, Li; Kee, Hae Jin; Jeong, Myung Ho

    2016-11-01

    Histone deacetylase (HDAC) inhibitors have been reported to improve essential and secondary hypertension. However, the specific HDAC that might serve as a therapeutic target and the associated upstream and downstream molecules involved in regulating hypertension remain unknown. Our study was aimed at investigating whether a selective inhibitor of class II HDAC (MC1568) modulates hypertension, elucidating the underlying mechanism. Hypertension was established by administering angiotensin II (Ang II) to mice before treatment with MC1568. SBP was measured. Treatment with MC1568 reduced elevated SBP; attenuated arterial remodeling in the kidney's small arteries and thoracic aorta; and inhibited cell cycle regulatory gene expression, vascular smooth muscle cell (VSMC) proliferation, DNA synthesis, and VSMC hypertrophy in vivo and in vitro. Ang II enhanced the expression of phosphorylated HDAC4 and GATA-binding factor 6 (GATA6) proteins, which were specifically localized in the cytoplasm of cells in the arteries of kidneys and in aortas. Forced expression and knockdown of HDAC4 increased and decreased, respectively, the proliferation and expression of cell cycle genes in VSMCs. GATA6, a newly described binding partner of HDAC4, markedly enhanced the size and number of VSMCs. Calcium/calmodulin-dependent kinase IIα (CaMKIIα), but not HDAC4, translocated from the nucleus to the cytoplasm in response to Ang II. CaMKIIα and protein kinase D1 were associated with VSMC hypertrophy and hyperplasia via direct interaction with HDAC4. MC1568 treatment weakened the association between HDAC4 and CaMKIIα. These results suggest that class II HDAC inhibition attenuates hypertension by negatively regulating VSMC hypertrophy and hyperplasia via the CaMKIIα/protein kinase D1/HDAC4/GATA6 pathway.

  12. Regulation of tomato fruit pericarp development by an interplay between CDKB and CDKA1 cell cycle genes

    PubMed Central

    Czerednik, Anna; Busscher, Marco; Bielen, Bram A.M.; Wolters-Arts, Mieke; de Maagd, Ruud A.; Angenent, Gerco C.

    2012-01-01

    Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development. PMID:22282536

  13. Endothelial atheroprotective and anti-inflammatory mechanisms.

    PubMed

    Berk, B C; Abe, J I; Min, W; Surapisitchat, J; Yan, C

    2001-12-01

    Atherosclerosis preferentially occurs in areas of turbulent flow and low fluid shear stress, whereas laminar flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF), have been shown to stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent data suggest that steady laminar flow decreases EC apoptosis and blocks TNF-mediated EC activation. EC apoptosis is likely important in the process termed "plaque erosion" that leads to platelet aggregation. Steady laminar flow inhibits EC apoptosis by preventing cell cycle entry, by increasing antioxidant mechanisms (e.g., superoxide dismutase), and by stimulating nitric oxide-dependent protective pathways that involve enzymes PI3-kinase and Akt. Conversely, our laboratory has identified nitric oxide-independent mechanisms that limit TNF signal transduction. TNF regulates gene expression in EC, in part, by stimulating mitogen-activated protein kinases (MAPK) which phosphorylate transcription factors. We hypothesized that fluid shear stress modulates TNF effects on EC by inhibiting TNF-mediated activation of MAP kinases. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm2) on TNF-stimulated activity of two MAP kinases: extracellular signal regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). Flow alone stimulated ERK1/2 activity, but decreased JNK activity compared to static controls. TNF (10 ng/ml) alone activated both ERK1/2 and JNK maximally at 15 minutes in human umbilical vein EC (HUVEC). Pre-exposing HUVEC for 10 minutes to flow inhibited TNF activation of JNK by 46%, but it had no significant effect on ERK1/2 activation. Incubation of EC with PD98059, a specific mitogen-activated protein kinase kinase inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Flow-mediated inhibition of JNK was unaffected by 0.1 mM L-nitroarginine, 100 pM 8-bromo-cyclic GMP, or 100 microM 8-bromo-cyclic AMP. Transfection studies with dominant negative constructs of the protein kinase MEK1 and MEK5 suggested an important role for BMK1 in flow-mediated regulation of TNF signals. In summary, the atheroprotective effects of steady laminar flow on the endothelium involve multiple synergistic mechanisms.

  14. A Phosphorylation Switch Regulates the Transcriptional Activation of Cell Cycle Regulator p21 by Histone Deacetylase Inhibitors*

    PubMed Central

    Simboeck, Elisabeth; Sawicka, Anna; Zupkovitz, Gordin; Senese, Silvia; Winter, Stefan; Dequiedt, Franck; Ogris, Egon; Di Croce, Luciano; Chiocca, Susanna; Seiser, Christian

    2010-01-01

    Histone deacetylase inhibitors induce cell cycle arrest and apoptosis in tumor cells and are, therefore, promising anti-cancer drugs. The cyclin-dependent kinase inhibitor p21 is activated in histone deacetylase (HDAC) inhibitor-treated tumor cells, and its growth-inhibitory function contributes to the anti-tumorigenic effect of HDAC inhibitors. We show here that induction of p21 by trichostatin A involves MAP kinase signaling. Activation of the MAP kinase signaling pathway by growth factors or stress signals results in histone H3 serine 10 phosphorylation at the p21 promoter and is crucial for acetylation of the neighboring lysine 14 and recruitment of activated RNA polymerase II in response to trichostatin A treatment. In non-induced cells, the protein phosphatase PP2A is associated with the p21 gene and counteracts its activation. Induction of p21 is linked to simultaneous acetylation and phosphorylation of histone H3. The dual modification mark H3S10phK14ac at the activated p21 promoter is recognized by the phospho-binding protein 14-3-3ζ, which protects the phosphoacetylation mark from being processed by PP2A. Taken together we have revealed a cross-talk of reversible phosphorylation and acetylation signals that controls the activation of p21 by HDAC inhibitors and identify the phosphatase PP2A as chromatin-associated transcriptional repressor in mammalian cells. PMID:20952396

  15. DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.

    PubMed

    Ohouo, Patrice Y; Bastos de Oliveira, Francisco M; Liu, Yi; Ma, Chu Jian; Smolka, Marcus B

    2013-01-03

    In response to genotoxic stress, a transient arrest in cell-cycle progression enforced by the DNA-damage checkpoint (DDC) signalling pathway positively contributes to genome maintenance. Because hyperactivated DDC signalling can lead to a persistent and detrimental cell-cycle arrest, cells must tightly regulate the activity of the kinases involved in this pathway. Despite their importance, the mechanisms for monitoring and modulating DDC signalling are not fully understood. Here we show that the DNA-repair scaffolding proteins Slx4 and Rtt107 prevent the aberrant hyperactivation of DDC signalling by lesions that are generated during DNA replication in Saccharomyces cerevisiae. On replication stress, cells lacking Slx4 or Rtt107 show hyperactivation of the downstream DDC kinase Rad53, whereas activation of the upstream DDC kinase Mec1 remains normal. An Slx4-Rtt107 complex counteracts the checkpoint adaptor Rad9 by physically interacting with Dpb11 and phosphorylated histone H2A, two positive regulators of Rad9-dependent Rad53 activation. A decrease in DDC signalling results from hypomorphic mutations in RAD53 and H2A and rescues the hypersensitivity to replication stress of cells lacking Slx4 or Rtt107. We propose that the Slx4-Rtt107 complex modulates Rad53 activation by a competition-based mechanism that balances the engagement of Rad9 at replication-induced lesions. Our findings show that DDC signalling is monitored and modulated through the direct action of DNA-repair factors.

  16. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    PubMed Central

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  17. Modelling the CDK-dependent transcription cycle in fission yeast.

    PubMed

    Sansó, Miriam; Fisher, Robert P

    2013-12-01

    CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.

  18. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells.

    PubMed

    Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas

    2011-01-01

    Oral squamous cell carcinoma (OSCC) is a challenging disease with a high mortality rate. Natural products represent a valuable source for the development of novel anticancer drugs. We investigated the cytotoxic potential of essential oil from the leaves of a medicinal plant, Levisticum officinale (lovage) on head and neck squamous carcinoma cells (HNSCC). Cytotoxicity of lovage essential oil was investigated on the HNSCC cell line, UMSCC1. Additionally, we performed pharmacogenomics analyses. Lovage essential oil extract had an IC₅₀ value of 292.6 μg/ml. Genes involved in apoptosis, cancer, cellular growth and cell cycle regulation were the most prominently affected in microarray analyses. The three pathways to be most significantly regulated were extracellular signal-regulated kinase 5 (ERK5) signaling, integrin-linked kinase (ILK) signaling, virus entry via endocytic pathways and p53 signaling. Levisticum officinale essential oil inhibits human HNSCC cell growth.

  19. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp

    PubMed Central

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W.; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-01-01

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s−1). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. PMID:26345128

  20. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    PubMed

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  1. cdc-25.2, a Caenorhabditis elegans ortholog of cdc25, is required for male tail morphogenesis.

    PubMed

    Oh, Sangmi; Yoon, Sunghee; Youn, Esther; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-01-22

    Cell division cycle 25 (Cdc25) is an evolutionarily conserved phosphatase that promotes cell cycle progression by activating cyclin-dependent kinases (Cdks) which are inactivated by Wee1/Myt1 kinases. It was previously reported that cdc-25.2 promotes oocyte maturation and intestinal cell divisions in Caenorhabditis elegans hermaphrodites. Here, we report a novel function of cdc-25.2 in male tail development which was significantly deformed by cdc-25.2 RNAi depletion and in cdc-25.2 mutant males. The deformation was also observed after RNAi depletion of other cell cycle regulators, cdk-1, cyb-3, cyd-1, and cyl-1. Furthermore, wee-1.3 counteracted cdc-25.2 in male tail development as observed in oocyte maturation and intestine development. The number of cells in ray precursor cell lineages was significantly reduced in cdc-25.2 depleted males. These results indicate that CDC-25.2 is essential for cell divisions in ray precursor cell lineages for proper male tail development. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism.

    PubMed

    Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H

    2018-05-24

    The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.

  3. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina

    PubMed Central

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M.

    2015-01-01

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. SIGNIFICANCE STATEMENT The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal regeneration in these organisms will help to elucidate approaches to stimulate a similar response in humans. In the damaged zebrafish retina, Müller glia dedifferentiate and proliferate to generate neuronal progenitor cells (NPCs) that differentiate into the lost neurons. We show that the nuclei of Müller glia and NPCs migrate apically and basally in phase with the cell cycle. This migration is facilitated by the actin cytoskeleton and Rho-associated coiled-coil kinases (Rocks). We demonstrate that Rock function is required for sufficient proliferation and the regeneration of photoreceptors, likely via regulating nuclear migration. PMID:26609156

  4. Actin-Cytoskeleton- and Rock-Mediated INM Are Required for Photoreceptor Regeneration in the Adult Zebrafish Retina.

    PubMed

    Lahne, Manuela; Li, Jingling; Marton, Rebecca M; Hyde, David R

    2015-11-25

    Loss of retinal neurons in adult zebrafish (Danio rerio) induces a robust regenerative response mediated by the reentry of the resident Müller glia into the cell cycle. Upon initiating Müller glia proliferation, their nuclei migrate along the apicobasal axis of the retina in phase with the cell cycle in a process termed interkinetic nuclear migration (INM). We examined the mechanisms governing this cellular process and explored its function in regenerating the adult zebrafish retina. Live-cell imaging revealed that the majority of Müller glia nuclei migrated to the outer nuclear layer (ONL) to divide. These Müller glia formed prominent actin filaments at the rear of nuclei that had migrated to the ONL. Inhibiting actin filament formation or Rho-associated coiled-coil kinase (Rock) activity, which is necessary for phosphorylation of myosin light chain and actin myosin-mediated contraction, disrupted INM with increased numbers of mitotic nuclei remaining in the basal inner nuclear layer, the region where Müller glia typically reside. Double knockdown of Rho-associated coiled-coil kinase 2a (Rock2a) and Rho-associated coiled-coil kinase 2b (Rock2b) similarly disrupted INM and reduced Müller glial cell cycle reentry. In contrast, Rock inhibition immediately before the onset of INM did not affect Müller glia proliferation, but subsequently reduced neuronal progenitor cell proliferation due to early cell cycle exit. Long-term, Rock inhibition increased the generation of mislocalized ganglion/amacrine cells at the expense of rod and cone photoreceptors. In summary, INM is driven by an actin-myosin-mediated process controlled by Rock2a and Rock2b activity, which is required for sufficient proliferation and regeneration of photoreceptors after light damage. The human retina does not replace lost or damaged neurons, ultimately causing vision impairment. In contrast, zebrafish are capable of regenerating lost neurons. Understanding the mechanisms that regulate retinal regeneration in these organisms will help to elucidate approaches to stimulate a similar response in humans. In the damaged zebrafish retina, Müller glia dedifferentiate and proliferate to generate neuronal progenitor cells (NPCs) that differentiate into the lost neurons. We show that the nuclei of Müller glia and NPCs migrate apically and basally in phase with the cell cycle. This migration is facilitated by the actin cytoskeleton and Rho-associated coiled-coil kinases (Rocks). We demonstrate that Rock function is required for sufficient proliferation and the regeneration of photoreceptors, likely via regulating nuclear migration. Copyright © 2015 the authors 0270-6474/15/3515612-23$15.00/0.

  5. CYCLIN-DEPENDENT KINASE G1 Is Associated with the Spliceosome to Regulate CALLOSE SYNTHASE5 Splicing and Pollen Wall Formation in Arabidopsis[C][W][OA

    PubMed Central

    Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan

    2013-01-01

    Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5′ splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5. PMID:23404887

  6. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra.

    PubMed

    Kim, H J; Kim, M Y; Hwang, J S; Kim, H J; Lee, J H; Chang, K C; Kim, J-H; Han, C W; Kim, J-H; Seo, H G

    2010-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.

  7. Identification of a BET family bromodomain/casein kinase II/TAF-containing complex as a regulator of mitotic condensin function.

    PubMed

    Kim, Hyun-Soo; Mukhopadhyay, Rituparna; Rothbart, Scott B; Silva, Andrea C; Vanoosthuyse, Vincent; Radovani, Ernest; Kislinger, Thomas; Roguev, Assen; Ryan, Colm J; Xu, Jiewei; Jahari, Harlizawati; Hardwick, Kevin G; Greenblatt, Jack F; Krogan, Nevan J; Fillingham, Jeffrey S; Strahl, Brian D; Bouhassira, Eric E; Edelmann, Winfried; Keogh, Michael-Christopher

    2014-03-13

    Condensin is a central regulator of mitotic genome structure with mutants showing poorly condensed chromosomes and profound segregation defects. Here, we identify NCT, a complex comprising the Nrc1 BET-family tandem bromodomain protein (SPAC631.02), casein kinase II (CKII), and several TAFs, as a regulator of condensin function. We show that NCT and condensin bind similar genomic regions but only briefly colocalize during the periods of chromosome condensation and decondensation. This pattern of NCT binding at the core centromere, the region of maximal condensin enrichment, tracks the abundance of acetylated histone H4, as regulated by the Hat1-Mis16 acetyltransferase complex and recognized by the first Nrc1 bromodomain. Strikingly, mutants in NCT or Hat1-Mis16 restore the formation of segregation-competent chromosomes in cells containing defective condensin. These results are consistent with a model where NCT targets CKII to chromatin in a cell-cycle-directed manner in order to modulate the activity of condensin during chromosome condensation and decondensation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ionizing Radiation Activates AMP-Activated Kinase (AMPK): A Target for Radiosensitization of Human Cancer Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanli, Toran; Rashid, Ayesha; Liu Caiqiong

    2010-09-01

    Purpose: Adenosine monophosphate (AMP)-activated kinase (AMPK) is a molecular energy sensor regulated by the tumor suppressor LKB1. Starvation and growth factors activate AMPK through the DNA damage sensor ataxia-telangiectasia mutated (ATM). We explored the regulation of AMPK by ionizing radiation (IR) and its role as a target for radiosensitization of human cancer cells. Methods and Materials: Lung, prostate, and breast cancer cells were treated with IR (2-8 Gy) after incubation with either ATM or AMPK inhibitors or the AMPK activator metformin. Then, cells were subjected to either lysis and immunoblotting, immunofluorescence microscopy, clonogenic survival assays, or cell cycle analysis. Results:more » IR induced a robust phosphorylation and activation of AMPK in all tumor cells, independent of LKB1. IR activated AMPK first in the nucleus, and this extended later into cytoplasm. The ATM inhibitor KU-55933 blocked IR activation of AMPK. AMPK inhibition with Compound C or anti-AMPK {alpha} subunit small interfering RNA (siRNA) blocked IR induction of the cell cycle regulators p53 and p21{sup waf/cip} as well as the IR-induced G2/M arrest. Compound C caused resistance to IR, increasing the surviving fraction after 2 Gy, but the anti-diabetic drug metformin enhanced IR activation of AMPK and lowered the surviving fraction after 2 Gy further. Conclusions: We provide evidence that IR activates AMPK in human cancer cells in an LKB1-independent manner, leading to induction of p21{sup waf/cip} and regulation of the cell cycle and survival. AMPK appears to (1) participate in an ATM-AMPK-p21{sup waf/cip} pathway, (2) be involved in regulation of the IR-induced G2/M checkpoint, and (3) may be targeted by metformin to enhance IR responses.« less

  9. Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise.

    PubMed

    Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A

    2004-06-01

    Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.

  10. Human T-cell leukemia virus type 1 Tax interacts with Chk1 and attenuates DNA-damage induced G2 arrest mediated by Chk1.

    PubMed

    Park, Hyeon Ung; Jeong, Jae-Hoon; Chung, Jay H; Brady, John N

    2004-06-24

    Checkpoint kinase 1 (Chk1) mediates diverse cellular responses to genotoxic stress, regulating the network of genome-surveillance pathways that coordinate cell cycle progression with DNA repair. Chk1 is essential for mammalian development and viability, and has been shown to be important for both S and G(2) checkpoints. We now present evidence that the HTLV-1 Tax protein interacts directly with Chk1 and impairs its kinase activities in vitro and in vivo. The direct and physical interaction of Chk1 and Tax was observed in HTLV-1-infected T cells (C81, HuT 102 and MT-2) and transfected fibroblasts (293 T) by coimmunoprecipitation and by in vitro GST pull-down assays. Interestingly, Tax inhibited the kinase activity of Chk1 protein in in vitro and in vivo kinase assays. Consistent with these results, Tax inhibited the phosphorylation-dependent degradation of Cdc25A and G(2) arrest in response to gamma-irradiation (IR) in a dose-dependent manner in vivo. The G(2) arrest did not require Chk2 or p53. These studies provide the first example of a viral transforming protein targeting Chk1 and provide important insights into checkpoint pathway regulation.

  11. Glycogen synthase kinase 3: more than a namesake

    PubMed Central

    Rayasam, Geetha Vani; Tulasi, Vamshi Krishna; Sodhi, Reena; Davis, Joseph Alex; Ray, Abhijit

    2009-01-01

    Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, τ protein and β catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target. British Journal of Pharmacology (2009) doi:10.1111/j.1476-5381.2008.00085.x PMID:19366350

  12. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer

    PubMed Central

    Ge, Xin; Jiang, Cheng-Fei; Shi, Zhu-Mei; Li, Dong-Mei; Liu, Wei-Tao; Yu, Xiaobo; Shu, Yong-Qian

    2016-01-01

    Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. In this study, we explored miR-137's role in the chemosensitivity of lung cancer. We found that the expression level of miR-137 is down-regulated in the human lung cancer tissues and the resistant cells strains: A549/paclitaxel(A549/PTX) and A549/cisplatin (A549/CDDP) when compared with lung cancer A549 cells. Moreover, we found that overe-expression of miR-137 inhibited cell proliferation, migration, cell survival and arrest the cell cycle in G1 phase in A549/PTX and A549/CDDP. Furthermore, Repression of miR-137 significantly promoted cell growth, migration, cell survival and cell cycle G1/S transition in A549 cells. We further demonstrated that the tumor suppressive role of miR-137 was mediated by negatively regulating Nuclear casein kinase and cyclin-dependent kinase substrate1(NUCKS1) protein expression. Importantly, miR-137 inhibits A549/PTX, A549/CDDP growth and angiogenesis in vivo. Our study is the first to identify the tumor suppressive role of over-expressed miR-137 in chemosensitivity. Identification of a novel miRNA-mediated pathway that regulates chemosensitivity in lung cancer will facilitate the development of novel therapeutic strategies in the future. PMID:26989074

  13. MiR-506 suppresses cell proliferation and tumor growth by targeting Rho-associated protein kinase 1 in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Quanjun, E-mail: quanjun_d@126.com; Xie, Liqun; Li, Hua

    2015-11-27

    Recent studies have shown that miR-506 plays important roles in human cancer progression. However, little is known about the function of miR-506 in hepatocellular carcinoma (HCC). In this study, we found that miR-506 significantly inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. Moreover, miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. Rho-associated protein kinase 1(ROCK1) was identified as a novel target of miR-506; overexpression of ROCK1 reversed the suppressive effects of miR-506 in HCC cells. Additionally, ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues. Therefore, our findings collectively suggest that miR-506 acts asmore » a tumor suppressor via regulation of ROCK1 expression and may thus be a promising therapeutic target for HCC. - Highlights: • miR-506 inhibits HCC cell proliferation in vitro and tumorigenicity in vivo. • miR-506 induced G1/S cell cycle arrest and apoptosis in HCC cells. • ROCK1 was identified as a novel target of miR-506. • ROCK1 was found up-regulated and inversely correlated with miR-506 in HCC tissues.« less

  14. The Cdk4-E2f1 pathway regulates early pancreas development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors

    PubMed Central

    Kim, So Yoon; Rane, Sushil G.

    2011-01-01

    Cell division and cell differentiation are intricately regulated processes vital to organ development. Cyclin-dependent kinases (Cdks) are master regulators of the cell cycle that orchestrate the cell division and differentiation programs. Cdk1 is essential to drive cell division and is required for the first embryonic divisions, whereas Cdks 2, 4 and 6 are dispensable for organogenesis but vital for tissue-specific cell development. Here, we illustrate an important role for Cdk4 in regulating early pancreas development. Pancreatic development involves extensive morphogenesis, proliferation and differentiation of the epithelium to give rise to the distinct cell lineages of the adult pancreas. The cell cycle molecules that specify lineage commitment within the early pancreas are unknown. We show that Cdk4 and its downstream transcription factor E2f1 regulate mouse pancreas development prior to and during the secondary transition. Cdk4 deficiency reduces embryonic pancreas size owing to impaired mesenchyme development and fewer Pdx1+ pancreatic progenitor cells. Expression of activated Cdk4R24C kinase leads to increased Nkx2.2+ and Nkx6.1+ cells and a rise in the number and proliferation of Ngn3+ endocrine precursors, resulting in expansion of the β cell lineage. We show that E2f1 binds and activates the Ngn3 promoter to modulate Ngn3 expression levels in the embryonic pancreas in a Cdk4-dependent manner. These results suggest that Cdk4 promotes β cell development by directing E2f1-mediated activation of Ngn3 and increasing the pool of endocrine precursors, and identify Cdk4 as an important regulator of early pancreas development that modulates the proliferation potential of pancreatic progenitors and endocrine precursors. PMID:21490060

  15. A new MCM modification cycle regulates DNA replication initiation

    PubMed Central

    Wei, Lei; Zhao, Xiaolan

    2016-01-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1 and activated in S phase to initiate replication. During this transition, the only known chemical change on MCM is the gain of multi-site phosphorylation that promotes cofactor recruitment. As replication initiation is intimately linked to multiple biological cues, additional changes on MCM can provide further regulatory points. Here, we describe a yeast MCM sumoylation cycle that negatively regulates replication. MCM subunits undergo sumoylation upon loading at origins in G1 prior to MCM phosphorylation. MCM sumoylation levels then decline as MCM phosphorylation levels rise, suggesting an inhibitory role in replication. Indeed, increasing MCM sumoylation impairs replication initiation through promoting the recruitment of a phosphatase that reduces MCM phosphorylation and activation. MCM sumoylation thus counterbalances kinase-based regulation to ensure accurate control of replication initiation. PMID:26854664

  16. A new MCM modification cycle regulates DNA replication initiation.

    PubMed

    Wei, Lei; Zhao, Xiaolan

    2016-03-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.

  17. The Role of Bacterial Protein Tyrosine Phosphatases in the Regulation of the Biosynthesis of Secreted Polysaccharides

    PubMed Central

    Morona, Renato

    2014-01-01

    Abstract Significance: Tyrosine phosphorylation and associated protein tyrosine phosphatases are gaining prominence as critical mechanisms in the regulation of fundamental processes in a wide variety of bacteria. In particular, these phosphatases have been associated with the control of the biosynthesis of capsular polysaccharides and extracellular polysaccharides, critically important virulence factors for bacteria. Recent Advances: Deletion and overexpression of the phosphatases result in altered polysaccharide biosynthesis in a range of bacteria. The recent structures of associated auto-phosphorylating tyrosine kinases have suggested that the phosphatases may be critical for the cycling of the kinases between monomers and higher order oligomers. Critical Issues: Additional substrates of the phosphatases apart from cognate kinases are currently being identified. These are likely to be critical to our understanding of the mechanism by which polysaccharide biosynthesis is regulated. Future Directions: Ultimately, these protein tyrosine phosphatases are an attractive target for the development of novel antimicrobials. This is particularly the case for the polymerase and histidinol phosphatase family, which is predominantly found in bacteria. Furthermore, the determination of bacterial tyrosine phosphoproteomes will likely help to uncover the fundamental roles, mechanism, and critical importance of these phosphatases in a wide range of bacteria. Antioxid. Redox Signal. 20, 2274–2289. PMID:24295407

  18. Polo-like kinase 1 expression is suppressed by CCAAT/enhancer-binding protein α to mediate colon carcinoma cell differentiation and apoptosis.

    PubMed

    Dasgupta, Nirmalya; Thakur, Bhupesh Kumar; Ta, Atri; Das, Sayan; Banik, George; Das, Santasabuj

    2017-07-01

    Human polo-like kinase 1 (PLK1), a highly conserved serine/threonine kinase is a key player in several essential cell-cycle events. PLK1 is considered an oncogene and its overexpression often correlates with poor prognosis of cancers, including colorectal cancer (CRC). However, regulation of PLK1 expression in colorectal cells was never studied earlier and it is currently unknown if PLK1 regulates differentiation and apoptosis of CRC. PLK1 expression was analyzed by real-time PCR and western blotting. Transcriptional regulation was studied by reporter assay, gene knock-down, EMSA and ChIP. PLK1 expression was down-regulated during butyrate-induced differentiation of HT-29 and other CRC cells. Also, PLK1 down-regulation mediated the role of butyrate in CRC differentiation and apoptosis. We report here a novel transcriptional regulation of PLK1 by butyrate. Transcription factors CCAAT/enhancer-binding protein α (C/EBPα) and Oct-1 share an overlapping binding site over the PLK1 promoter. Elevated levels of C/EBPα by butyrate treatment of CRC cells competed out the activator protein Oct-1 from binding to the PLK1 promoter and sequestered it. Binding of C/EBPα was associated with increased deacetylation near the transcription start site (TSS) of the PLK1 promoter, which abrogated transcription through reduced recruitment of RNA polymerase II. We also found a synergistic role between the synthetic PLK1-inhibitor SBE13 and butyrate on the apoptosis of CRC cells. This study offered a novel p53-independent regulation of PLK1 during CRC differentiation and apoptosis. Down-regulation of PLK1 is one of the mechanisms underlying the anti-cancer role of dietary fibre-derived butyrate in CRC. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Alisertib induces cell cycle arrest and autophagy and suppresses epithelial-to-mesenchymal transition involving PI3K/Akt/mTOR and sirtuin 1-mediated signaling pathways in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Li, Hai; Yan, Xiao-Gang; Zhou, Zhi-Wei; Yi, Zhi-Gang; He, Zhi-Xu; Pan, Shu-Ting; Yang, Yin-Xue; Wang, Zuo-Zheng; Zhang, Xueji; Yang, Tianxing; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Pancreatic cancer is the most aggressive cancer worldwide with poor response to current therapeutics. Alisertib (ALS), a potent and selective Aurora kinase A inhibitor, exhibits potent anticancer effects in preclinical and clinical studies; however, the effect and underlying mechanism of ALS in the pancreatic cancer treatment remain elusive. This study aimed to examine the effects of ALS on cell growth, autophagy, and epithelial-to-mesenchymal transition (EMT) and to delineate the possible molecular mechanisms in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that ALS exerted potent cell growth inhibitory, pro-autophagic, and EMT-suppressing effects in PANC-1 and BxPC-3 cells. ALS remarkably arrested PANC-1 and BxPC-3 cells in G2/M phase via regulating the expression of cyclin-dependent kinases 1 and 2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. ALS concentration-dependently induced autophagy in PANC-1 and BxPC-3 cells, which may be attributed to the inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), p38 mitogen-activated protein kinase (p38 MAPK), and extracellular signal-regulated kinases 1 and 2 (Erk1/2) but activation of 5′-AMP-dependent kinase signaling pathways. ALS significantly inhibited EMT in PANC-1 and BxPC-3 cells with an increase in the expression of E-cadherin and a decrease in N-cadherin. In addition, ALS suppressed the expression of sirtuin 1 (Sirt1) and pre-B cell colony-enhancing factor/visfatin in both cell lines with a rise in the level of acetylated p53. These findings show that ALS induces cell cycle arrest and promotes autophagic cell death but inhibits EMT in pancreatic cancer cells with the involvement of PI3K/Akt/mTOR, p38 MAPK, Erk1/2, and Sirt1-mediated signaling pathways. Taken together, ALS may represent a promising anticancer drug for pancreatic cancer treatment. More studies are warranted to investigate other molecular targets and mechanisms and verify the efficacy and safety of ALS in the treatment of pancreatic cancer. PMID:25632225

  20. Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling

    PubMed Central

    Liu, D; Huang, Y; Bu, D; Liu, A D; Holmberg, L; Jia, Y; Tang, C; Du, J; Jin, H

    2014-01-01

    The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling. PMID:24853429

  1. Advances in lanthanide-based luminescent peptide probes for monitoring the activity of kinase and phosphatase.

    PubMed

    Pazos, Elena; Vázquez, M Eugenio

    2014-02-01

    Signaling pathways based on protein phosphorylation and dephosphorylation play critical roles in the orchestration of complex biochemical events and form the core of most signaling pathways in cells (i.e. cell cycle regulation, cell motility, apoptosis, etc.). The understanding of these complex signaling networks is based largely on the biochemical study of their components, i.e. kinases and phosphatases. The development of luminescent sensors for monitoring kinase and phosphatase activity is therefore an active field of research. Examples in the literature usually rely on the modulation of the fluorescence emission of organic fluorophores. However, given the exceptional photophysical properties of lanthanide ions, there is an increased interest in their application as emissive species for monitoring kinase and phosphatase activity. This review summarizes the advances in the development of lanthanide-based luminescent peptide sensors as tools for the study of kinases and phosphatases and provides a critical description of current examples and synthetic approaches to understand these lanthanide-based luminescent peptide sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  3. β-arrestin drives MAP kinase signaling from clathrin-coated structures after GPCR dissociation

    PubMed Central

    Eichel, K.; Jullié, D.

    2016-01-01

    β-arrestins critically regulate G protein-coupled receptor (GPCR) signaling, not only 'arresting' the G protein signal but also modulating endocytosis and initiating a discrete G protein-independent signal via MAP kinase1–3. Despite enormous recent progress toward understanding biophysical aspects of arrestin function4,5, its cell biology remains relatively poorly understood. Two key tenets underlie the present dogma: (1) β-arrestin accumulates in clathrin-coated structures (CCSs) exclusively in physical complex with its activating GPCR, and (2) MAP kinase activation requires endocytosis of formed GPCR - β-arrestin complexes6–9. We show here, using β1-adrenergic receptors, that β-arrestin-2 (Arrestin 3) accumulates robustly in CCSs after dissociating from its activating GPCR and transduces the MAP kinase signal from CCSs. Moreover, inhibiting subsequent endocytosis of CCSs enhances the clathrin and β-arrestin -dependent MAP kinase signal. These results demonstrate β-arrestin 'activation at a distance', after dissociating from its activating GPCR, and signaling from CCSs. We propose a β-arrestin signaling cycle that is catalytically activated by the GPCR and energetically coupled to the endocytic machinery. PMID:26829388

  4. Tangeretin, a citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation.

    PubMed

    Seo, Juhee; Lee, Hyun Sun; Ryoo, Sungwoo; Seo, Jee Hee; Min, Byung-Sun; Lee, Jeong-Hyung

    2011-12-30

    Tangeretin, a natural polymethoxylated flavone concentrated in the peel of citrus fruits, is known to have antiproliferative, antiinvasive, antimetastatic and antioxidant activities. However, the effect of tangeretin on vascular smooth muscle cells (VSMCs) is unknown. This study examined the effect of tangeretin on platelet-derived growth factor (PDGF)-BB-induced proliferation and migration of rat aortic smooth muscle cells (RASMCs) as well as its underlying mechanisms. Tangeretin significantly inhibited proliferation, DNA synthesis and migration of PDGF-BB-stimulated RASMCs without inducing cell death. Treatment with tangeretin-induced cell-cycle arrest in the G₀/G₁ phase was associated with down-regulation of cyclin D1 and cyclin E in addition to up-regulation of p27(kip1). We also showed that tangeretin inhibited PDGF-BB-induced phosphorylation of AKT, while it had no effect on the phosphorylation of phospholipase Cγ (PLCγ), PDGF receptor β-chain (PDGF-Rβ) and extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). An in vitro kinase assay revealed that tangeretin inhibited AKT activity in a dose-dependent manner. Moreover, treatment of LY294002, a phosphoinositide 3-kinase (PI3K) inhibitor, had similar effects than that of tangeretin on the expression of p27(kip1) and cyclin D1, as well as cell migration in PDFG-BB-stimulated RASMCs. Taken together, these findings suggest that tangeretin could suppress PDGF-BB-induced proliferation and migration of RASMCs through the suppression of PI3K/AKT signaling pathway, and may be a potential candidate for preventing or treating vascular diseases, such as atherosclerosis and restenosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Cdk7 mediates RPB1-driven mRNA synthesis in Toxoplasma gondii

    PubMed Central

    Deshmukh, Abhijit S.; Mitra, Pallabi; Maruthi, Mulaka

    2016-01-01

    Cyclin-dependent kinase 7 in conjunction with CyclinH and Mat1 activates cell cycle CDKs and is a part of the general transcription factor TFIIH. Role of Cdk7 is well characterized in model eukaryotes however its relevance in protozoan parasites has not been investigated. This important regulator of key processes warrants closer examination particularly in this parasite given its unique cell cycle progression and flexible mode of replication. We report functional characterization of TgCdk7 and its partners TgCyclinH and TgMat1. Recombinant Cdk7 displays kinase activity upon binding its cyclin partner and this activity is further enhanced in presence of Mat1. The activated kinase phosphorylates C-terminal domain of TgRPB1 suggesting its role in parasite transcription. Therefore, the function of Cdk7 in CTD phosphorylation and RPB1 mediated transcription was investigated using Cdk7 inhibitor. Unphosphorylated CTD binds promoter DNA while phosphorylation by Cdk7 triggers its dissociation from DNA with implications for transcription initiation. Inhibition of Cdk7 in the parasite led to strong reduction in Serine 5 phosphorylation of TgRPB1-CTD at the promoters of constitutively expressed actin1 and sag1 genes with concomitant reduction of both nascent RNA synthesis and 5′-capped transcripts. Therefore, we provide compelling evidence for crucial role of TgCdk7 kinase activity in mRNA synthesis. PMID:27759017

  6. Po2 cycling protects diaphragm function during reoxygenation via ROS, Akt, ERK, and mitochondrial channels.

    PubMed

    Zuo, Li; Pannell, Benjamin K; Re, Anthony T; Best, Thomas M; Wagner, Peter D

    2015-12-01

    Po2 cycling, often referred to as intermittent hypoxia, involves exposing tissues to brief cycles of low oxygen environments immediately followed by hyperoxic conditions. After experiencing long-term hypoxia, muscle can be damaged during the subsequent reintroduction of oxygen, which leads to muscle dysfunction via reperfusion injury. The protective effect and mechanism behind Po2 cycling in skeletal muscle during reoxygenation have yet to be fully elucidated. We hypothesize that Po2 cycling effectively increases muscle fatigue resistance through reactive oxygen species (ROS), protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and certain mitochondrial channels during reoxygenation. Using a dihydrofluorescein fluorescent probe, we detected the production of ROS in mouse diaphragmatic skeletal muscle in real time under confocal microscopy. Muscles treated with Po2 cycling displayed significantly attenuated ROS levels (n = 5; P < 0.001) as well as enhanced force generation compared with controls during reperfusion (n = 7; P < 0.05). We also used inhibitors for signaling molecules or membrane channels such as ROS, Akt, ERK, as well as chemical stimulators to close mitochondrial ATP-sensitive potassium channel (KATP) or open mitochondrial permeability transition pore (mPTP). All these blockers or stimulators abolished improved muscle function with Po2 cycling treatment. This current investigation has discovered a correlation between KATP and mPTP and the Po2 cycling pathway in diaphragmatic skeletal muscle. Thus we have identified a unique signaling pathway that may involve ROS, Akt, ERK, and mitochondrial channels responsible for Po2 cycling protection during reoxygenation conditions in the diaphragm. Copyright © 2015 the American Physiological Society.

  7. Aurora B kinase inhibition in mitosis: strategies for optimising the use of aurora kinase inhibitors such as AT9283.

    PubMed

    Curry, Jayne; Angove, Hayley; Fazal, Lynsey; Lyons, John; Reule, Matthias; Thompson, Neil; Wallis, Nicola

    2009-06-15

    Aurora kinases play a key role in regulating mitotic division and are attractive oncology targets. AT9283, a multi-targeted kinase inhibitor with potent activity against Aurora A and B kinases, inhibited growth and survival of multiple solid tumor cell lines and was efficacious in mouse xenograft models. AT9283-treatment resulted in endoreduplication and ablation of serine-10 histone H3 phosphorylation in both cells and tumor samples, confirming that in these models it acts as an Aurora B kinase inhibitor. In vitro studies demonstrated that exposure to AT9283 for one complete cell cycle committed an entire population of p53 checkpoint-compromised cells (HCT116) to multinucleation and death whereas treatment of p53 checkpoint-competent cells (HMEC, A549) for a similar length of time led to a reversible arrest of cells with 4N DNA. Further studies in synchronized cell populations suggested that exposure to AT9283 during mitosis was critical for optimal cytotoxicity. We therefore investigated ways in which these properties might be exploited to optimize the efficacy and therapeutic index of Aurora kinase inhibitors for p53 checkpoint compromised tumors in vivo. Combining Aurora B kinase inhibition with paclitaxel, which arrests cells in mitosis, in a xenograft model resulted in promising efficacy without additional toxicity. These findings have implications for optimizing the efficacy of Aurora kinase inhibitors in clinical practice.

  8. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huanchen; Falck, J.R.; Hall, Traci M. Tanaka

    2012-01-11

    Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domainmore » of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF{sub 3}{sup -} transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas themore » COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.« less

  10. Identification of an hexapeptide that binds to a surface pocket in cyclin A and inhibits the catalytic activity of the complex cyclin-dependent kinase 2-cyclin A.

    PubMed

    Canela, Núria; Orzáez, Mar; Fucho, Raquel; Mateo, Francesca; Gutierrez, Ricardo; Pineda-Lucena, Antonio; Bachs, Oriol; Pérez-Payá, Enrique

    2006-11-24

    The protein-protein complexes formed between different cyclins and cyclin-dependent kinases (CDKs) are central to cell cycle regulation. These complexes represent interesting points of chemical intervention for the development of antineoplastic molecules. Here we describe the identification of an all d-amino acid hexapeptide, termed NBI1, that inhibits the kinase activity of the cyclin-dependent kinase 2 (cdk2)-cyclin A complex through selective binding to cyclin A. The mechanism of inhibition is non-competitive for ATP and non-competitive for protein substrates. In contrast to the existing CDKs peptide inhibitors, the hexapeptide NBI1 interferes with the formation of the cdk2-cyclin A complex. Furthermore, a cell-permeable derivative of NBI1 induces apoptosis and inhibits proliferation of tumor cell lines. Thus, the NBI1-binding site on cyclin A may represent a new target site for the selective inhibition of activity cdk2-cyclin A complex.

  11. Roles of Apicomplexan protein kinases at each life cycle stage.

    PubMed

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. The conserved apicomplexan Aurora kinase TgArk3 is involved in endodyogeny, duplication rate and parasite virulence

    PubMed Central

    Morlon-Guyot, Juliette; Bordat, Yann; Lebrun, Maryse; Gubbels, Marc-Jan; Doerig, Christian; Daher, Wassim

    2016-01-01

    Aurora kinases are eukaryotic serine/threonine protein kinases that regulate key events associated with chromatin condensation, centrosome and spindle function, and cytokinesis. Elucidating the roles of Aurora kinases in apicomplexan parasites is crucial to understand the cell cycle control during Plasmodium schizogony or Toxoplasma endodyogeny. Here, we report on the localization of two previously uncharacterized Toxoplasma Aurora-related kinases (Ark2 and Ark3) in tachyzoites and of the uncharacterized Ark3 orthologue in Plasmodium falciparum erythrocytic stages. In T. gondii, we show that TgArk2 and TgArk3 concentrate at specific sub-cellular structures linked to parasite division: the mitotic spindle and intranuclear mitotic structures (TgArk2), and the outer core of the centrosome and the budding daughter cells cytoskeleton (TgArk3). By tagging the endogenous PfArk3 gene with the green fluorescent protein (GFP) in live parasites, we show that PfArk3 protein expression peaks late in schizogony and localizes at the periphery of budding schizonts. Disruption of the TgArk2 gene reveals no essential function for tachyzoite propagation in vitro, which is surprising giving that the P. falciparum and P. berghei orthologues are essential for erythrocyte schizogony. In contrast, knock-down of TgArk3 protein results in pronounced defects in parasite division and a major growth deficiency. TgArk3-depleted parasites display several defects, such as reduced parasite growth rate, delayed egress and parasite duplication, defect in rosette formation, reduced parasite size and invasion efficiency and lack of virulence in mice. Our study provides new insights into cell cycle control in Toxoplasma and malaria parasites, and highlights Aurora kinase 3 as potential drug target. PMID:26833682

  13. Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis.

    PubMed

    Romanov, V S; Pospelov, V A; Pospelova, T V

    2012-06-01

    p21(Waf1) was identified as a protein suppressing cyclin E/A-CDK2 activity and was originally considered as a negative regulator of the cell cycle and a tumor suppressor. It is now considered that p21(Waf1) has alternative functions, and the view of its role in cellular processes has begun to change. At present, p21(Waf1) is known to be involved in regulation of fundamental cellular programs: cell proliferation, differentiation, migration, senescence, and apoptosis. In fact, it not only exhibits antioncogenic, but also oncogenic properties. This review provides a contemporary understanding of the functions of p21(Waf1) depending on its intracellular localization. On one hand, when in the nucleus, it serves as a negative cell cycle regulator and tumor suppressor, in particular by participating in the launch of a senescence program. On the other hand, when p21(Waf1) is localized in the cytoplasm, it acts as an oncogene by regulating migration, apoptosis, and proliferation.

  14. O-Linked N-Acetylglucosamine Cycling Regulates Mitotic Spindle Organization*

    PubMed Central

    Tan, Ee Phie; Caro, Sarah; Potnis, Anish; Lanza, Christopher; Slawson, Chad

    2013-01-01

    Any defects in the correct formation of the mitotic spindle will lead to chromosomal segregation errors, mitotic arrest, or aneuploidy. We demonstrate that O-linked N-acetylglucosamine (O-GlcNAc), a post-translational modification of serine and threonine residues in nuclear and cytoplasmic proteins, regulates spindle function. In O-GlcNAc transferase or O-GlcNAcase gain of function cells, the mitotic spindle is incorrectly assembled. Chromosome condensation and centrosome assembly is impaired in these cells. The disruption in spindle architecture is due to a reduction in histone H3 phosphorylation by Aurora kinase B. However, gain of function cells treated with the O-GlcNAcase inhibitor Thiamet-G restored the assembly of the spindle and partially rescued histone phosphorylation. Together, these data suggest that the coordinated addition and removal of O-GlcNAc, termed O-GlcNAc cycling, regulates mitotic spindle organization and provides a potential new perspective on how O-GlcNAc regulates cellular events. PMID:23946484

  15. S phase entry causes homocysteine-induced death while ataxia telangiectasia and Rad3 related protein functions anti-apoptotically to protect neurons.

    PubMed

    Ye, Weizhen; Blain, Stacy W

    2010-08-01

    A major phenotype seen in neurodegenerative disorders is the selective loss of neurons due to apoptotic death and evidence suggests that inappropriate re-activation of cell cycle proteins in post-mitotic neurons may be responsible. To investigate whether reactivation of the G1 cell cycle proteins and S phase entry was linked with apoptosis, we examined homocysteine-induced neuronal cell death in a rat cortical neuron tissue culture system. Hyperhomocysteinaemia is a physiological risk factor for a variety of neurodegenerative diseases, including Alzheimer's disease. We found that in response to homocysteine treatment, cyclin D1, and cyclin-dependent kinases 4 and 2 translocated to the nucleus, and p27 levels decreased. Both cyclin-dependent kinases 4 and 2 regained catalytic activity, the G1 gatekeeper retinoblastoma protein was phosphorylated and DNA synthesis was detected, suggesting transit into S phase. Double-labelling immunofluorescence showed a 95% co-localization of anti-bromodeoxyuridine labelling with apoptotic markers, demonstrating that those cells that entered S phase eventually died. Neurons could be protected from homocysteine-induced death by methods that inhibited G1 phase progression, including down-regulation of cyclin D1 expression, inhibition of cyclin-dependent kinases 4 or 2 activity by small molecule inhibitors, or use of the c-Abl kinase inhibitor, Gleevec, which blocked cyclin D and cyclin-dependent kinase 4 nuclear translocation. However, blocking cell cycle progression post G1, using DNA replication inhibitors, did not prevent apoptosis, suggesting that death was not preventable post the G1-S phase checkpoint. While homocysteine treatment caused DNA damage and activated the DNA damage response, its mechanism of action was distinct from that of more traditional DNA damaging agents, such as camptothecin, as it was p53-independent. Likewise, inhibition of the DNA damage sensors, ataxia-telangiectasia mutant and ataxia telangiectasia and Rad3 related proteins, did not rescue apoptosis and in fact exacerbated death, suggesting that the DNA damage response might normally function neuroprotectively to block S phase-dependent apoptosis induction. As cell cycle events appear to be maintained in vivo in affected neurons for weeks to years before apoptosis is observed, activation of the DNA damage response might be able to hold cell cycle-induced death in check.

  16. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-β signaling.

    PubMed

    Nyati, Shyam; Schinske-Sebolt, Katrina; Pitchiaya, Sethuramasundaram; Chekhovskiy, Katerina; Chator, Areeb; Chaudhry, Nauman; Dosch, Joseph; Van Dort, Marcian E; Varambally, Sooryanarayana; Kumar-Sinha, Chandan; Nyati, Mukesh Kumar; Ray, Dipankar; Walter, Nils G; Yu, Hongtao; Ross, Brian Dale; Rehemtulla, Alnawaz

    2015-01-06

    Transforming growth factor-β (TGF-β) signaling regulates cell proliferation and differentiation, which contributes to development and disease. Upon binding TGF-β, the type I receptor (TGFBRI) binds TGFBRII, leading to the activation of the transcription factors SMAD2 and SMAD3. Using an RNA interference screen of the human kinome and a live-cell reporter for TGFBR activity, we identified the kinase BUB1 (budding uninhibited by benzimidazoles-1) as a key mediator of TGF-β signaling. BUB1 interacted with TGFBRI in the presence of TGF-β and promoted the heterodimerization of TGFBRI and TGFBRII. Additionally, BUB1 interacted with TGFBRII, suggesting the formation of a ternary complex. Knocking down BUB1 prevented the recruitment of SMAD3 to the receptor complex, the phosphorylation of SMAD2 and SMAD3 and their interaction with SMAD4, SMAD-dependent transcription, and TGF-β-mediated changes in cellular phenotype including epithelial-mesenchymal transition (EMT), migration, and invasion. Knockdown of BUB1 also impaired noncanonical TGF-β signaling mediated by the kinases AKT and p38 MAPK (mitogen-activated protein kinase). The ability of BUB1 to promote TGF-β signaling depended on the kinase activity of BUB1. A small-molecule inhibitor of the kinase activity of BUB1 (2OH-BNPP1) and a kinase-deficient mutant of BUB1 suppressed TGF-β signaling and formation of the ternary complex in various normal and cancer cell lines. 2OH-BNPP1 administration to mice bearing lung carcinoma xenografts reduced the amount of phosphorylated SMAD2 in tumor tissue. These findings indicated that BUB1 functions as a kinase in the TGF-β pathway in a role beyond its established function in cell cycle regulation and chromosome cohesion. Copyright © 2015, American Association for the Advancement of Science.

  17. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression

    PubMed Central

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-01-01

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division. PMID:24714560

  18. Regulation of a transcription factor network by Cdk1 coordinates late cell cycle gene expression.

    PubMed

    Landry, Benjamin D; Mapa, Claudine E; Arsenault, Heather E; Poti, Kristin E; Benanti, Jennifer A

    2014-05-02

    To maintain genome stability, regulators of chromosome segregation must be expressed in coordination with mitotic events. Expression of these late cell cycle genes is regulated by cyclin-dependent kinase (Cdk1), which phosphorylates a network of conserved transcription factors (TFs). However, the effects of Cdk1 phosphorylation on many key TFs are not known. We find that elimination of Cdk1-mediated phosphorylation of four S-phase TFs decreases expression of many late cell cycle genes, delays mitotic progression, and reduces fitness in budding yeast. Blocking phosphorylation impairs degradation of all four TFs. Consequently, phosphorylation-deficient mutants of the repressors Yox1 and Yhp1 exhibit increased promoter occupancy and decreased expression of their target genes. Interestingly, although phosphorylation of the transcriptional activator Hcm1 on its N-terminus promotes its degradation, phosphorylation on its C-terminus is required for its activity, indicating that Cdk1 both activates and inhibits a single TF. We conclude that Cdk1 promotes gene expression by both activating transcriptional activators and inactivating transcriptional repressors. Furthermore, our data suggest that coordinated regulation of the TF network by Cdk1 is necessary for faithful cell division.

  19. p205, a potential tumor suppressor, inhibits cell proliferation via multiple pathways of cell cycle regulation.

    PubMed

    Asefa, Benyam; Dermott, Jonathan M; Kaldis, Philipp; Stefanisko, Karen; Garfinkel, David J; Keller, Jonathan R

    2006-02-20

    p205 is a member of the interferon-inducible p200 family of proteins that regulate cell proliferation. Over-expression of p205 inhibits cell growth, although its mechanism of action is currently unknown. Therefore, we evaluated the effect of p205 on the p53 and Rb-dependent pathways of cell cycle regulation. p205 expression results in elevated levels of p21, and activates the p21 promoter in vitro in a p53-dependent manner. In addition, p205 induces increased expression of Rb, and binds directly to Rb and p53. Interestingly, p205 also induces growth inhibition independent of p53 and Rb by delaying G2/M progression in proliferating cells, and is a substrate for Cdk2 kinase activity. Finally, we have identified other binding partners of p205 by a yeast two-hybrid screen, including the paired homeodomain protein HoxB2. Taken together, our results indicate that p205 induces growth arrest by interaction with multiple transcription factors that regulate the cell cycle, including but not entirely dependent on the Rb- and p53-mediated pathways of growth inhibition.

  20. Cancer dormancy and cell signaling: Induction of p21waf1 initiated by membrane IgM engagement increases survival of B lymphoma cells

    PubMed Central

    Marches, Radu; Hsueh, Robert; Uhr, Jonathan W.

    1999-01-01

    The p21WAF1 (p21) cyclin-dependent kinase inhibitor plays a major role in regulating cell cycle arrest. It was recently reported that the p53-independent elevation of p21 protein levels is essential in mediating the G1 arrest resulting from signal transduction events initiated by the crosslinking of membrane IgM on Daudi Burkitt lymphoma cells. Although the role of p21 in cell cycle regulation is well documented, there is little information concerning its role in antibody-mediated apoptosis. In the present study, we examined the involvement of p21 in the regulation of apoptosis by suppressing its induction in anti-IgM-treated Daudi cells through a p21 antisense expression construct approach. Reduction in induced p21 protein levels resulted in diminished G1 arrest and increased apoptosis. The increased susceptibility to anti-IgM-mediated apoptosis was associated with increased caspase-3-like activity and poly-(ADP)ribose polymerase cleavage. These data suggest that p21 may directly interfere with the caspase cascade, thus playing a dual role in regulating both cell cycle progression and apoptosis. PMID:10411940

  1. A Noncanonical Role for the CKI-RB-E2F Cell Cycle Signaling Pathway in Plant Effector-Triggered Immunity

    PubMed Central

    Wang, Shui; Gu, Yangnan; Zebell, Sophia G.; Anderson, Lisa K.; Wang, Wei; Mohan, Rajinikanth; Dong, Xinnian

    2014-01-01

    SUMMARY Effector-triggered immunity (ETI), the major host defense mechanism in plants, is often associated with programmed cell death (PCD). Plants lack close homologs of caspases, the key mediators of PCD in animals. So although the NB-LRR receptors involved in ETI are well studied, how they activate PCD and confer disease resistance remains elusive. We show that the Arabidopsis nuclear envelope protein, CPR5, negatively regulates ETI and the associated PCD through a physical interaction with CYCLIN-DEPENDENT KINASE INHIBITORs (CKIs). Upon ETI induction, CKIs are released from CPR5 to cause over-activation of another core cell cycle regulator, E2F. In cki and e2f mutants, ETI responses induced by both TIR-NB-LRR and CC-NB-LRR classes of immune receptors are compromised. We further show that E2F is deregulated during ETI probably through CKI-mediated hyperphosphorylation of RETINOBLASTOMA-RELATED 1 (RBR1). This study demonstrates that canonical cell cycle regulators also play important noncanonical roles in plant immunity. PMID:25455564

  2. p21 in cancer: intricate networks and multiple activities.

    PubMed

    Abbas, Tarek; Dutta, Anindya

    2009-06-01

    One of the main engines that drives cellular transformation is the loss of proper control of the mammalian cell cycle. The cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/Cip1) promotes cell cycle arrest in response to many stimuli. It is well positioned to function as both a sensor and an effector of multiple anti-proliferative signals. This Review focuses on recent advances in our understanding of the regulation of p21 and its biological functions with emphasis on its p53-independent tumour suppressor activities and paradoxical tumour-promoting activities, and their implications in cancer.

  3. Role of Cyclin E as an Early Event in Ovarian Carcinogenesis

    DTIC Science & Technology

    2012-04-01

    degradation . P27 is a powerful negative regulator of the cell cycle, preventing activation of cyclin E- cdk2 or cyclin D-cdk4 complexes and cell cycle...Ahmed M, Bavi P, et al. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer. Cancer Res...CA1251CA72·4 CA 125 CA72-4 M-CSF CA 125/CA 72-4/M-CSFICA 15-3 CA125 CA 125/mesothelin CA 125/IL·6JIL·8NEGF;EGF CA 125/IL-6,G-CSFNEGF/EGF Leptin

  4. Epstein-Barr Virus BGLF4 Kinase Downregulates NF-κB Transactivation through Phosphorylation of Coactivator UXT

    PubMed Central

    Chang, Ling-Shih; Wang, Jiin-Tarng; Doong, Shin-Lian; Lee, Chung-Pei; Chang, Chou-Wei; Tsai, Ching-Hwa; Yeh, Sheng-Wen; Hsieh, Ching-Yueh

    2012-01-01

    Epstein-Barr virus (EBV) BGLF4 is a member of the conserved herpesvirus kinases that regulate multiple cellular and viral substrates and play an important role in the viral lytic cycles. BGLF4 has been found to phosphorylate several cellular and viral transcription factors, modulate their activities, and regulate downstream events. In this study, we identify an NF-κB coactivator, UXT, as a substrate of BGLF4. BGLF4 downregulates not only NF-κB transactivation in reporter assays in response to tumor necrosis factor alpha (TNF-α) and poly(I·C) stimulation, but also NF-κB-regulated cellular gene expression. Furthermore, BGLF4 attenuates NF-κB-mediated repression of the EBV lytic transactivators, Zta and Rta. In EBV-positive NA cells, knockdown of BGLF4 during lytic progression elevates NF-κB activity and downregulates the activity of the EBV oriLyt BHLF1 promoter, which is the first promoter activated upon lytic switch. We show that BGLF4 phosphorylates UXT at the Thr3 residue. This modification interferes with the interaction between UXT and NF-κB. The data also indicate that BGLF4 reduces the interaction between UXT and NF-κB and attenuates NF-κB enhanceosome activity. Upon infection with short hairpin RNA (shRNA) lentivirus to knock down UXT, a spontaneous lytic cycle was observed in NA cells, suggesting UXT is required for maintenance of EBV latency. Overexpression of wild-type, but not phosphorylation-deficient, UXT enhances the expression of lytic proteins both in control and UXT knockdown cells. Taking the data together, transcription involving UXT may also be important for EBV lytic protein expression, whereas BGLF4-mediated phosphorylation of UXT at Thr3 plays a critical role in promoting the lytic cycle. PMID:22933289

  5. FOXO3 Modulates Endothelial Gene Expression and Function by Classical and Alternative Mechanisms*

    PubMed Central

    Czymai, Tobias; Viemann, Dorothee; Sticht, Carsten; Molema, Grietje; Goebeler, Matthias; Schmidt, Marc

    2010-01-01

    FOXO transcription factors represent targets of the phosphatidylinositol 3-kinase/protein kinase B survival pathway controlling important biological processes, such as cell cycle progression, apoptosis, vascular remodeling, stress responses, and metabolism. Recent studies suggested the existence of alternative mechanisms of FOXO-dependent gene expression beyond classical binding to a FOXO-responsive DNA-binding element (FRE). Here we analyzed the relative contribution of those mechanisms to vascular function by comparing the transcriptional and cellular responses to conditional activation of FOXO3 and a corresponding FRE-binding mutant in human primary endothelial cells. We demonstrate that FOXO3 controls expression of vascular remodeling genes in an FRE-dependent manner. In contrast, FOXO3-induced cell cycle arrest and apoptosis occurs independently of FRE binding, albeit FRE-dependent gene expression augments the proapoptotic response. These findings are supported by bioinformatical analysis, which revealed a statistical overrepresentation of cell cycle regulators and apoptosis-related genes in the group of co-regulated genes. Molecular analysis of FOXO3-induced endothelial apoptosis excluded modulators of the extrinsic death receptor pathway and demonstrated important roles for the BCL-2 family members BIM and NOXA in this process. Although NOXA essentially contributed to FRE-dependent apoptosis, BIM was effectively induced in the absence of FRE-binding, and small interfering RNA-mediated BIM depletion could rescue apoptosis induced by both FOXO3 mutants. These data suggest BIM as a critical cell type-specific mediator of FOXO3-induced endothelial apoptosis, whereas NOXA functions as an amplifying factor. Our study provides the first comprehensive analysis of alternatively regulated FOXO3 targets in relevant primary cells and underscores the importance of such genes for endothelial function and integrity. PMID:20123982

  6. Vitamin D inhibits growth of human airway smooth muscle cells through growth factor-induced phosphorylation of retinoblastoma protein and checkpoint kinase 1

    PubMed Central

    Damera, G; Fogle, HW; Lim, P; Goncharova, EA; Zhao, H; Banerjee, A; Tliba, O; Krymskaya, VP; Panettieri, RA

    2009-01-01

    Background and purpose: Airway remodelling in asthma is manifested, in part, as increased airway smooth muscle (ASM) mass, reflecting myocyte proliferation. We hypothesized that calcitriol, a secosteroidal vitamin D receptor (VDR) modulator, would inhibit growth factor-induced myocyte proliferation. Experimental approach: Human ASM cell cultures were derived from bronchial samples taken during surgery. ASM cells were treated with platelet-derived growth factor (PDGF) (10 ng·mL−1) for 24 h in the presence of calcitriol, dexamethasone or a checkpoint kinase 1 (Chk1) inhibitor (SB218078). The effects of calcitriol on PDGF-mediated cell proliferation were assessed by thymidine incorporation assay, propidium iodide-based cell cycle analysis, caspase-3 assay and immunoblotting for specific cell cycle modulators. Key results: Calcitriol, but not dexamethasone, inhibited PDGF-induced ASM DNA synthesis concentration dependently (IC50= 520 ± 52 nM). These effects were associated with VDR-mediated expression of cytochrome CYP24A1 with no effects on ASM apoptosis. Calcitriol substantially inhibited (P < 0.01) PDGF-stimulated cell growth in ASM derived from both normal (59 ± 8%) and asthmatic subjects (57 ± 9%). Calcitriol inhibited PDGF-induced phosphorylation of retinoblastoma protein (Rb) and Chk1, with no effects on PDGF-mediated activation of extracellular signal-regulated kinases 1/2, PI3-kinase and S6 kinase, or expression of p21Waf/Cip-1, p27Kip1, cyclin D and E2F-1. Consistent with these observations, SB218078 also inhibited (IC50= 450 ± 100 pM) PDGF-induced cell cycle progression. Conclusions and implications: Calcitriol decreased PDGF-induced ASM cell growth by inhibiting Rb and Chk1 phosphorylation. This Research Paper is the subject of a Commentary in this issue by Clifford and Knox (pp. 1426–1428). To view this article visit http://www3.interscience.wiley.com/journal/121548564/issueyear?year=2009 PMID:19814732

  7. Spatiotemporal Regulation of the Anaphase-Promoting Complex in Mitosis

    PubMed Central

    Sivakumar, Sushama; Gorbsky, Gary J

    2015-01-01

    The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events. PMID:25604195

  8. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    PubMed Central

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  9. Regulation of a Rho-associated kinase expression during the corneal epithelial cell cycle.

    PubMed

    Anderson, S C; SundarRaj, N

    2001-04-01

    It has been recognized that an increased expression of the Rho-associated kinase (ROCK-I), a downstream target of Rho (a Ras-related small guanosine triphosphatase [GTPase]), is associated with limbal-to-corneal epithelial transition. The purpose of the present study was to determine whether the expression of ROCK-I is regulated during the cell cycle of corneal epithelial cells. Rabbit corneal epithelial cells in culture were subjected to different culture conditions to enrich them in the G0, G1, and S phases of the cell cycle. Indirect immunofluorescence staining and western blot techniques were used for analyzing the changes in the relative intracellular concentrations of ROCK-I. Northern blot analysis of the isolated cellular RNA was performed to estimate the relative concentrations of ROCK-I mRNA. Serum deprivation did not cause all the corneal epithelial cells in culture to be arrested in the G0 phase of the cell cycle. However, the cells could be arrested in G0 by treating them with culture medium supplemented with transforming growth factor (TGF)-beta1. The relative concentration of ROCK-I in the G0-arrested cells was higher than in the corresponding control untreated cultures. G0-arrested cells were induced to enter G1, followed by the S phase of the cell cycle, by refeeding them with the medium devoid of TGF-beta1. The total intracellular concentration of ROCK-I significantly decreased during the G1 phase of the cell cycle and increased again during the S phase. The decrease in intracellular ROCK-I during the G1 phase was confirmed by arresting the cells in G1 with isoleucine deprivation and thymidine-mimosine treatments. ROCK-I mRNA levels were also found to be decreased during the G1 phase of the cell cycle. The levels of ROCK-I in the corneal epithelial cells were significantly lower in the G1 phase than those in the S and G0 phases of the cell cycle. Therefore, a Rho signaling pathway(s) involving ROCK-I may be regulated during the corneal epithelial cell cycle. The downregulation of ROCK-I during the G1 phase, at least in part, is due to the decreased levels of its mRNA. Based on these findings, ROCK-I may have a role in the progression of the cell cycle in the corneal epithelial cells as they migrate centripetally from the limbal to the corneal surface.

  10. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis.

    PubMed

    Enriquez-Rios, Vanessa; Dumitrache, Lavinia C; Downing, Susanna M; Li, Yang; Brown, Eric J; Russell, Helen R; McKinnon, Peter J

    2017-01-25

    The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G 2 /M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G 2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system. Copyright © 2017 the authors 0270-6474/17/370893-13$15.00/0.

  11. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation.

    PubMed

    Celada, Lindsay J; Rotsinger, Joseph E; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene; Drake, Wonder P

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4 + T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4 + T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1 + CD4 + T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = -0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4 + T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression.

  12. Programmed Death-1 Inhibition of Phosphatidylinositol 3-Kinase/AKT/Mechanistic Target of Rapamycin Signaling Impairs Sarcoidosis CD4+ T Cell Proliferation

    PubMed Central

    Celada, Lindsay J.; Rotsinger, Joseph E.; Young, Anjuli; Shaginurova, Guzel; Shelton, Debresha; Hawkins, Charlene

    2017-01-01

    Patients with progressive sarcoidosis exhibit increased expression of programmed death-1 (PD-1) receptor on their CD4+ T cells. Up-regulation of this marker of T cell exhaustion is associated with a reduction in the proliferative response to T cell receptor (TCR) stimulation, a defect that is reversed by PD-1 pathway blockade. Genome-wide association studies and microarray analyses have correlated signaling downstream from the TCR with sarcoidosis disease severity, but the mechanism is not yet known. Reduced phosphatidylinositol 3-kinase (PI3K)/AKT expression inhibits proliferation by inhibiting cell cycle progression. To test the hypothesis that PD-1 expression attenuates TCR-dependent activation of PI3K/AKT activity in progressive systemic sarcoidosis, we analyzed PI3K/AKT/mechanistic target of rapamycin (mTOR) expression at baseline and after PD-1 pathway blockade in CD4+ T cells isolated from patients with sarcoidosis and healthy control subjects. We confirmed an increased percentage of PD-1+ CD4+ T cells and reduced proliferative capacity in patients with sarcoidosis compared with healthy control subjects (P < 0.001). There was a negative correlation with PD-1 expression and proliferative capacity (r = −0.70, P < 0.001). Expression of key mediators of cell cycle progression, including PI3K and AKT, were significantly decreased. Gene and protein expression levels reverted to healthy control levels after PD-1 pathway blockade. Reduction in sarcoidosis CD4+ T cell proliferative capacity is secondary to altered expression of key mediators of cell cycle progression, including the PI3K/AKT/mTOR pathway, via PD-1 up-regulation. This supports the concept that PD-1 up-regulation drives the immunologic deficits associated with sarcoidosis severity by inducing signaling aberrancies in key mediators of cell cycle progression. PMID:27564547

  13. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favreau, Catherine; Delbarre, Erwan; Courvalin, Jean-Claude

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation ofmore » proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.« less

  14. The metabolic advantage of tumor cells

    PubMed Central

    2011-01-01

    1- Oncogenes express proteins of "Tyrosine kinase receptor pathways", a receptor family including insulin or IGF-Growth Hormone receptors. Other oncogenes alter the PP2A phosphatase brake over these kinases. 2- Experiments on pancreatectomized animals; treated with pure insulin or total pancreatic extracts, showed that choline in the extract, preserved them from hepatomas. Since choline is a methyle donor, and since methylation regulates PP2A, the choline protection may result from PP2A methylation, which then attenuates kinases. 3- Moreover, kinases activated by the boosted signaling pathway inactivate pyruvate kinase and pyruvate dehydrogenase. In addition, demethylated PP2A would no longer dephosphorylate these enzymes. A "bottleneck" between glycolysis and the oxidative-citrate cycle interrupts the glycolytic pyruvate supply now provided via proteolysis and alanine transamination. This pyruvate forms lactate (Warburg effect) and NAD+ for glycolysis. Lipolysis and fatty acids provide acetyl CoA; the citrate condensation increases, unusual oxaloacetate sources are available. ATP citrate lyase follows, supporting aberrant transaminations with glutaminolysis and tumor lipogenesis. Truncated urea cycles, increased polyamine synthesis, consume the methyl donor SAM favoring carcinogenesis. 4- The decrease of butyrate, a histone deacetylase inhibitor, elicits epigenic changes (PETEN, P53, IGFBP decrease; hexokinase, fetal-genes-M2, increase) 5- IGFBP stops binding the IGF - IGFR complex, it is perhaps no longer inherited by a single mitotic daughter cell; leading to two daughter cells with a mitotic capability. 6- An excess of IGF induces a decrease of the major histocompatibility complex MHC1, Natural killer lymphocytes should eliminate such cells that start the tumor, unless the fever prostaglandin PGE2 or inflammation, inhibit them... PMID:21649891

  15. Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK).

    PubMed

    Yagi, M; Roth, G J

    2006-09-01

    During differentiation, megakaryocytes (MK), the bone marrow precursors of circulating blood platelets, undergo polyploidization, repeated rounds of DNA replication without cell division. Mature normal MK may contain a DNA content of up to 128N, in contrast to normal diploid (2N) cells. The extent of polyploidy may influence the number of platelets produced by the MK. Therefore, understanding the molecular mechanisms regulating polyploidization could identify events involved in controlling both cell division and thrombopoiesis. We investigated the expression of several proteins involved in mitosis in cultured mouse MK, and tested the effect of expression on polyploidization. Western blot and immunofluorescent analyses were used to assess expression of cell cycle proteins in cultured MK. Populations of polyploidizing MK were separated on the basis of DNA content by flow cytometry. The gene encoding mouse polo-like kinase 1 (PLK-1) was introduced into MK by retroviral transduction, and its effects measured by flow cytometry. Polyploid mouse MK expressed lower levels of two proteins, p55CDC and PLK-1, whose activity is necessary for cell cycle progression and completion of mitosis. Comparison of sorted 2N/4N and polyploid MK indicated that PLK-1 expression was absent in polyploid MK, while expression of other cell cycle proteins was similar in both populations. Forced expression of PLK-1 during MK differentiation was associated with decreased polyploidization. These experiments suggest that PLK-1 is an important regulator of polyploidization in differentiating MK.

  16. Cell Cycle Regulators during Human Atrial Development

    PubMed Central

    Kim, Won Ho; Joo, Chan Uhng; Ku, Ja Hong; Ryu, Chul Hee; Koh, Keum Nim; Koh, Gou Young; Ko, Jae Ki

    1998-01-01

    Objectives The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. Methods Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery, Cyclin and CDK proteins were determined by Western blot analysis, CDK activities were determined by phosphorylation amount using specific substrate. Results Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP 1 protein increased markedly in the adult period, while p21C IP 1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. Conclusion These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP 1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans. PMID:9735660

  17. Phosphorylation of mitogen-activated protein kinase (MAPK) is required for cytokinesis and progression of cell cycle in tobacco BY-2 cells.

    PubMed

    Ma, Zhaowu; Yu, Guanghui

    2010-02-15

    The role of mitogen-activated protein kinase (MAPK) in plant cytokinesis remains largely uncharacterized. To elucidate its role, tobacco Bright Yellow-2 (BY-2) cells have been synchronized using a two-step procedure, and the different phases of the cell cycle identified by Histone 4 gene expression and the mitotic index. MAPK expression was analyzed by semi-quantitative (SQ) RT-PCR and protein gel blot analysis for phosphorylated MAPK during cell cycle progression. The SQ RT-PCR analysis indicated that MAPK expression is lower in mitosis than in interphase (G1, G2 and S). However, the amount of phosphorylated MAPK remained stable throughout the cell cycle, indicating that MAPK activity is predominantly regulated at the post-translational level and that phosphorylation of MAPK plays an important role in mitosis. Application of the specific MAPK phosphorylation inhibitor U0126 revealed that while U0126 treatment decreases the phosphorylation of MAPK and the progression from telophase to early cytokinesis is significantly inhibited. The formation of the phragmoplast is also negatively affected at this stage. These results demonstrate that MAPK phosphorylation is involved in the formation of the cell plate within the phragmoplast during cytokinesis and that MAPK predominantly functions during the cytokinesis stage of the cell cycle in tobacco BY-2 cells. Copyright 2009 Elsevier GmbH. All rights reserved.

  18. Ca2+/Calmodulin-dependent kinase II signaling causes skeletal overgrowth and premature chondrocyte maturation.

    PubMed

    Taschner, Michael J; Rafigh, Mehran; Lampert, Fabienne; Schnaiter, Simon; Hartmann, Christine

    2008-05-01

    The long bones of vertebrate limbs originate from cartilage templates and are formed by the process of endochondral ossification. This process requires that chondrocytes undergo a progressive maturation from proliferating to postmitotic prehypertrophic to mature, hypertrophic chondrocytes. Coordinated control of proliferation and maturation regulates growth of the skeletal elements. Various signals and pathways have been implicated in orchestrating these processes, but the underlying intracellular molecular mechanisms are often not entirely known. Here we demonstrated in the chick using replication-competent retroviruses that constitutive activation of Calcium/Calmodulin-dependent kinase II (CaMKII) in the developing wing resulted in elongation of skeletal elements associated with premature differentiation of chondrocytes. The premature maturation of chondrocytes was a cell-autonomous effect of constitutive CaMKII signaling associated with down-regulation of cell-cycle regulators and up-regulation of chondrocyte maturation markers. In contrast, the elongation of the skeletal elements resulted from a non-cell autonomous up-regulation of the Indian hedgehog responsive gene encoding Parathyroid-hormone-related peptide. Reduction of endogenous CaMKII activity by overexpressing an inhibitory peptide resulted in shortening of the skeletal elements associated with a delay in chondrocyte maturation. Thus, CaMKII is an essential component of intracellular signaling pathways regulating chondrocyte maturation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Er-Wen; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou; Xue, Sheng-Jiang

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation,more » facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.« less

  20. Differential regulation of cyclin-dependent kinase inhibitors in neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Lan; Department of Pharmaceutical Sciences, Jilin University, Changchun 130021; Paul, Pritha

    2013-05-31

    Highlights: •GRP-R signaling differentially regulated the expression of p21 and p27. •Silencing GRP/GRP-R downregulated p21, while p27 expression was upregulated. •Inhibition of GRP/GRP-R signaling enhanced PTEN expression, correlative to the increased expression of p27. •PTEN and p27 co-localized in cytoplasm and silencing PTEN decreased p27 expression. -- Abstract: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated thatmore » GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.« less

  1. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    PubMed

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  2. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    PubMed

    Vieira, Gabriella Cunha; Chockalingam, S; Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O; Gabb, Peter David; Malik, Karim

    2015-11-24

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.

  3. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma

    PubMed Central

    Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O.; Gabb, Peter J.; Malik, Karim

    2015-01-01

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5. PMID:26517508

  4. Mechanisms of CaMKII Activation in the Heart.

    PubMed

    Erickson, Jeffrey R

    2014-01-01

    Calcium/calmodulin (Ca(2+)/CaM) dependent protein kinase II (CaMKII) has emerged as a key nodal protein in the regulation of cardiac physiology and pathology. Due to the particularly elegant relationship between the structure and function of the kinase, CaMKII is able to translate a diverse set of signaling events into downstream physiological effects. While CaMKII is typically autoinhibited at basal conditions, prolonged rapid Ca(2+) cycling can activate the kinase and allow post-translational modifications that depend critically on the biochemical environment of the heart. These modifications result in sustained, autonomous CaMKII activation and have been associated with pathological cardiac signaling. Indeed, improved understanding of CaMKII activation mechanisms could potentially lead to new clinical therapies for the treatment or prevention of cardiovascular disease. Here we review the known mechanisms of CaMKII activation and discuss some of the pathological signaling pathways in which they play a role.

  5. Structure and inhibition analysis of the mouse SAD-B C-terminal fragment.

    PubMed

    Ma, Hui; Wu, Jing-Xiang; Wang, Jue; Wang, Zhi-Xin; Wu, Jia-Wei

    2016-10-01

    The SAD (synapses of amphids defective) kinases, including SAD-A and SAD-B, play important roles in the regulation of neuronal development, cell cycle, and energy metabolism. Our recent study of mouse SAD-A identified a unique autoinhibitory sequence (AIS), which binds at the junction of the kinase domain (KD) and the ubiquitin-associated (UBA) domain and exerts autoregulation in cooperation with UBA. Here, we report the crystal structure of the mouse SAD-B C-terminal fragment including the AIS and the kinase-associated domain 1 (KA1) at 2.8 Å resolution. The KA1 domain is structurally conserved, while the isolated AIS sequence is highly flexible and solvent-accessible. Our biochemical studies indicated that the SAD-B AIS exerts the same autoinhibitory role as that in SAD-A. We believe that the flexible isolated AIS sequence is readily available for interaction with KD-UBA and thus inhibits SAD-B activity.

  6. In-phase oscillation of global regulons is orchestrated by a pole-specific organizer

    PubMed Central

    Janakiraman, Balaganesh; Mignolet, Johann; Narayanan, Sharath; Viollier, Patrick H.

    2016-01-01

    Cell fate determination in the asymmetric bacterium Caulobacter crescentus (Caulobacter) is triggered by the localization of the developmental regulator SpmX to the old (stalked) cell pole during the G1→S transition. Although SpmX is required to localize and activate the cell fate-determining kinase DivJ at the stalked pole in Caulobacter, in cousins such as Asticcacaulis, SpmX directs organelle (stalk) positioning and possibly other functions. We define the conserved σ54-dependent transcriptional activator TacA as a global regulator in Caulobacter whose activation by phosphorylation is indirectly down-regulated by SpmX. Using a combination of forward genetics and cytological screening, we uncover a previously uncharacterized and polarized component (SpmY) of the TacA phosphorylation control system, and we show that SpmY function and localization are conserved. Thus, SpmX organizes a site-specific, ancestral, and multifunctional regulatory hub integrating the in-phase oscillation of two global transcriptional regulators, CtrA (the master cell cycle transcriptional regulator A) and TacA, that perform important cell cycle functions. PMID:27791133

  7. Regulation of blood-testis barrier by actin binding proteins and protein kinases

    PubMed Central

    Li, Nan; Tang, Elizabeth I.; Cheng, C. Yan

    2016-01-01

    The blood-testis barrier (BTB) is an important ultrastructure in the testis since the onset of spermatogenesis coincides with the establishment of a functional barrier in rodents and humans. It is also noted that a delay in the assembly of a functional BTB following treatment of neonatal rats with drugs such as diethylstilbestrol or adjudin also delays the first wave of spermiation. While the BTB is one of the tightest blood-tissue barriers, it undergoes extensive remodeling, in particular at stage VIII of the epithelial cycle to facilitate the transport of preleptotene spermatocytes connected in clones across the immunological barrier. Without this timely transport of preleptotene spermatocytes derived from type B spermatogonia, meiosis will be arrested, causing aspermatogenesis. Yet the biology and regulation of the BTB remains largely unexplored since the morphological studies in the 1970s. Recent studies, however, have shed new light on the biology of the BTB. Herein, we critically evaluate some of these findings, illustrating that the Sertoli cell BTB is regulated by actin binding proteins (ABPs), likely supported by non-receptor protein kinases, to modulate the organization of actin microfilament bundles at the site. Furthermore, microtubule (MT)-based cytoskeleton is also working in concert with the actin-based cytoskeleton to confer BTB dynamics. This timely review provides an update on the unique biology and regulation of the BTB based on the latest findings in the field, focusing on the role of ABPs and non-receptor protein kinases. PMID:26628556

  8. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  9. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  10. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  11. Physiological, biochemical and molecular processes associated with gravitropism in roots of maize

    NASA Astrophysics Data System (ADS)

    Biermann, B.; Feldman, L. J.

    1994-08-01

    This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar `Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in `Merit' maize.

  12. Development of cell-cycle checkpoint therapy for solid tumors.

    PubMed

    Tamura, Kenji

    2015-12-01

    Cellular proliferation is tightly controlled by several cell-cycle checkpoint proteins. In cancer, the genes encoding these proteins are often disrupted and cause unrestrained cancer growth. The proteins are over-expressed in many malignancies; thus, they are potential targets for anti-cancer therapies. These proteins include cyclin-dependent kinase, checkpoint kinase, WEE1 kinase, aurora kinase and polo-like kinase. Cyclin-dependent kinase inhibitors are the most advanced cell-cycle checkpoint therapeutics available. For instance, palbociclib (PD0332991) is a first-in-class, oral, highly selective inhibitor of CDK4/6 and, in combination with letrozole (Phase II; PALOMA-1) or with fulvestrant (Phase III; PALOMA-3), it has significantly prolonged progression-free survival, in patients with metastatic estrogen receptor-positive, HER2-negative breast cancer, in comparison with that observed in patients using letrozole, or fulvestrant alone, respectively. In this review, we provide an overview of the current compounds available for cell-cycle checkpoint protein-directed therapy for solid tumors. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3

    PubMed Central

    Reid, Michael A.; Lowman, Xazmin H.; Pan, Min; Tran, Thai Q.; Warmoes, Marc O.; Ishak Gabra, Mari B.; Yang, Ying; Locasale, Jason W.; Kong, Mei

    2016-01-01

    Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability. PMID:27585591

  14. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.

    PubMed

    Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M

    2013-06-27

    WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

  15. An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis

    PubMed Central

    Brachmann, Andreas; Schirawski, Jan; Müller, Philip; Kahmann, Regine

    2003-01-01

    In Ustilago maydis, pathogenic development is controlled by a heterodimer of the two homeodomain proteins bW and bE. We have identified by RNA fingerprinting a b-regulated gene, kpp6, which encodes an unusual MAP kinase. Kpp6 is similar to a number of other fungal MAP kinases involved in mating and pathogenicity, but contains an additional N-terminal domain unrelated to other proteins. Transcription of the kpp6 gene yields two transcripts differing in length, but encoding proteins of identical mass. One transcript is upregulated by the bW/bE heterodimer, while the other is induced after pheromone stimulation. kpp6 deletion mutants are attenuated in pathogenicity. kpp6T355A,Y357F mutants carrying a non-activatable allele of kpp6 are more severely compromised in pathogenesis. These strains can still form appressoria, but are defective in the subsequent penetration of the plant cuticle. Kpp6 is expressed during all stages of the sexual life cycle except mature spores. We speculate that Kpp6 may respond to a plant signal and regulate the genes necessary for efficient penetration of plant tissue. PMID:12727886

  16. Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic.

    PubMed

    Ishikura, S; Koshkina, A; Klip, A

    2008-01-01

    Insulin stimulates glucose uptake into muscle and adipose tissues through glucose transporter 4 (GLUT4). GLUT4 cycles between the intracellular compartments and the plasma membrane. GLUT4 traffic-regulating insulin signals are largely within the insulin receptor-insulin receptor substrate-phosphatidylinositol 3-kinase (IR-IRS-PI3K) axis. In muscle cells, insulin signal bifurcates downstream of the PI3K into one arm leading to the activation of the Ser/Thr kinases Akt and atypical protein kinase C, and another leading to the activation of Rho family protein Rac1 leading to actin remodelling. Activated Akt inactivates AS160, a GTPase-activating protein for Rab family small G proteins. Here we review the roles of Rab and Rho proteins, particularly Rab substrates of AS160 and Rac1, in insulin-stimulated GLUT4 traffic. We discuss: (1) how distinct steps in GLUT4 traffic may be regulated by discrete Rab proteins, and (2) the importance of Rac1 activation in insulin-induced actin remodelling in muscle cells, a key element for the net gain in surface GLUT4.

  17. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    PubMed Central

    Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.

    2015-01-01

    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification. PMID:25688134

  18. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.

    PubMed

    Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita

    2012-02-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis.

  19. A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    PubMed Central

    Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita

    2012-01-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both likely to play independent but vital roles in male gametogenesis. PMID:22383885

  20. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors.

    PubMed

    Davis, S T; Benson, B G; Bramson, H N; Chapman, D E; Dickerson, S H; Dold, K M; Eberwein, D J; Edelstein, M; Frye, S V; Gampe, R T; Griffin, R J; Harris, P A; Hassell, A M; Holmes, W D; Hunter, R N; Knick, V B; Lackey, K; Lovejoy, B; Luzzio, M J; Murray, D; Parker, P; Rocque, W J; Shewchuk, L; Veal, J M; Walker, D H; Kuyper, L F

    2001-01-05

    Most traditional cytotoxic anticancer agents ablate the rapidly dividing epithelium of the hair follicle and induce alopecia (hair loss). Inhibition of cyclin-dependent kinase 2 (CDK2), a positive regulator of eukaryotic cell cycle progression, may represent a therapeutic strategy for prevention of chemotherapy-induced alopecia (CIA) by arresting the cell cycle and reducing the sensitivity of the epithelium to many cell cycle-active antitumor agents. Potent small-molecule inhibitors of CDK2 were developed using structure-based methods. Topical application of these compounds in a neonatal rat model of CIA reduced hair loss at the site of application in 33 to 50% of the animals. Thus, inhibition of CDK2 represents a potentially useful approach for the prevention of CIA in cancer patients.

  1. Ribonuclease 5 facilitates corneal endothelial wound healing via activation of PI3-kinase/Akt pathway

    PubMed Central

    Kim, Kyoung Woo; Park, Soo Hyun; Lee, Soo Jin; Kim, Jae Chan

    2016-01-01

    To maintain corneal transparency, corneal endothelial cells (CECs) exert a pump function against aqueous inflow. However, human CECs are arrested in the G1-phase and non-proliferative in vivo. Thus, treatment of corneal endothelial decompensation is limited to corneal transplantation, and grafts are vulnerable to immune rejection. Here, we show that ribonuclease (RNase) 5 is more highly expressed in normal human CECs compared to decompensated tissues. Furthermore, RNase 5 up-regulated survival of CECs and accelerated corneal endothelial wound healing in an in vitro wound of human CECs and an in vivo cryo-damaged rabbit model. RNase 5 treatment rapidly induced accumulation of cytoplasmic RNase 5 into the nucleus, and activated PI3-kinase/Akt pathway in human CECs. Moreover, inhibition of nuclear translocation of RNase 5 using neomycin reversed RNase 5-induced Akt activation. As a potential strategy for proliferation enhancement, RNase 5 increased the population of 5-bromo-2′-deoxyuridine (BrdU)-incorporated proliferating CECs with concomitant PI3-kinase/Akt activation, especially in CECs deprived of contact-inhibition. Specifically, RNase 5 suppressed p27 and up-regulated cyclin D1, D3, and E by activating PI3-kinase/Akt in CECs to initiate cell cycle progression. Together, our data indicate that RNase 5 facilitates corneal endothelial wound healing, and identify RNase 5 as a novel target for therapeutic exploitation. PMID:27526633

  2. Identification of glycogen synthase kinase 3α as a therapeutic target in melanoma

    PubMed Central

    Madhunapantula, SubbaRao V.; Sharma, Arati; Gowda, Raghavendra; Robertson, Gavin P.

    2014-01-01

    Summary Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA-mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis-inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR-A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma. PMID:24034838

  3. Translational Control in Plasmodium and Toxoplasma Parasites

    PubMed Central

    Joyce, Bradley R.; Sullivan, William J.; Nussenzweig, Victor

    2013-01-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis. PMID:23243065

  4. Translational control in Plasmodium and toxoplasma parasites.

    PubMed

    Zhang, Min; Joyce, Bradley R; Sullivan, William J; Nussenzweig, Victor

    2013-02-01

    The life cycles of apicomplexan parasites such as Plasmodium spp. and Toxoplasma gondii are complex, consisting of proliferative and latent stages within multiple hosts. Dramatic transformations take place during the cycles, and they demand precise control of gene expression at all levels, including translation. This review focuses on the mechanisms that regulate translational control in Plasmodium and Toxoplasma, with a particular emphasis on the phosphorylation of the α subunit of eukaryotic translation initiation factor 2 (eIF2α). Phosphorylation of eIF2α (eIF2α∼P) is a conserved mechanism that eukaryotic cells use to repress global protein synthesis while enhancing gene-specific translation of a subset of mRNAs. Elevated levels of eIF2α∼P have been observed during latent stages in both Toxoplasma and Plasmodium, indicating that translational control plays a role in maintaining dormancy. Parasite-specific eIF2α kinases and phosphatases are also required for proper developmental transitions and adaptation to cellular stresses encountered during the life cycle. Identification of small-molecule inhibitors of apicomplexan eIF2α kinases may selectively interfere with parasite translational control and lead to the development of new therapies to treat malaria and toxoplasmosis.

  5. Temporal self-organization of the cyclin/Cdk network driving the mammalian cell cycle

    PubMed Central

    Gérard, Claude; Goldbeter, Albert

    2009-01-01

    We propose an integrated computational model for the network of cyclin-dependent kinases (Cdks) that controls the dynamics of the mammalian cell cycle. The model contains four Cdk modules regulated by reversible phosphorylation, Cdk inhibitors, and protein synthesis or degradation. Growth factors (GFs) trigger the transition from a quiescent, stable steady state to self-sustained oscillations in the Cdk network. These oscillations correspond to the repetitive, transient activation of cyclin D/Cdk4–6 in G1, cyclin E/Cdk2 at the G1/S transition, cyclin A/Cdk2 in S and at the S/G2 transition, and cyclin B/Cdk1 at the G2/M transition. The model accounts for the following major properties of the mammalian cell cycle: (i) repetitive cell cycling in the presence of suprathreshold amounts of GF; (ii) control of cell-cycle progression by the balance between antagonistic effects of the tumor suppressor retinoblastoma protein (pRB) and the transcription factor E2F; and (iii) existence of a restriction point in G1, beyond which completion of the cell cycle becomes independent of GF. The model also accounts for endoreplication. Incorporating the DNA replication checkpoint mediated by kinases ATR and Chk1 slows down the dynamics of the cell cycle without altering its oscillatory nature and leads to better separation of the S and M phases. The model for the mammalian cell cycle shows how the regulatory structure of the Cdk network results in its temporal self-organization, leading to the repetitive, sequential activation of the four Cdk modules that brings about the orderly progression along cell-cycle phases. PMID:20007375

  6. RhoA influences the nuclear localization of extracellular signal-regulated kinases to modulate p21Waf/Cip1 expression.

    PubMed

    Zuckerbraun, Brian S; Shapiro, Richard A; Billiar, Timothy R; Tzeng, Edith

    2003-08-19

    The 42/44-kD mitogen-activated protein kinases (extracellular signal-regulated kinases, ERKs) regulate smooth muscle cell (SMC) cell-cycle progression and can either promote or inhibit proliferation depending on the activation status of the small GTPase RhoA. RhoA is involved in the regulation of the actin cytoskeleton and converges on multiple signaling pathways. However, the mechanism by which RhoA modulates ERK signaling is not well defined. The purpose of this investigation was to examine whether RhoA regulates ERK downstream signaling and cellular proliferation through its effects on the cytoskeleton and the nuclear localization of ERK. Treatment of SMCs with Clostridia botulinum C3 exoenzyme, which inhibits RhoA activation, decreased SMC proliferation to 24+/-7% of that of controls and increased p21Waf1/Cip1 transcription and protein levels. These effects of RhoA were reversed by inhibition of ERK phosphorylation. However, inactivation of RhoA did not alter levels of ERK phosphorylation but did increase nuclear localization of phosphorylated ERK. In addition, immunostaining demonstrated that phosphorylated ERK associated with the actin cytoskeleton, which was disrupted by C3 exoenzyme. Leptomycin B, an inhibitor of Crm1 that results in ERK nuclear accumulation, similarly increased p21Waf1/Cip1. RhoA inhibition increased levels of phosphorylated ERK in the cell nucleus. Inhibition of RhoA or pharmacological inhibition of nuclear export resulted in increased p21Waf1/Cip1 expression and decreased SMC proliferation, effects that were partially dependent on ERK. RhoA regulation of the actin cytoskeleton may determine ERK subcellular localization and its subsequent effects on SMC proliferation.

  7. Regulation of T cell homeostasis by JAKs and STATs.

    PubMed

    Ross, Jeremy A; Nagy, Zsuzsanna S; Cheng, Hanyin; Stepkowski, Stanislaw M; Kirken, Robert A

    2007-01-01

    Regulation of T cell homeostasis is critical for maintaining normal immune function. An imbalance in T cell proliferation can result in disorders ranging from cancer and autoimmunity to immunodeficiencies. Full activation of T cells requires three sequential signals, where signal 3, which is delivered by multiple cytokines, regulates proliferation, differentiation, and survival/death. Signaling from cytokines through their receptors is primarily delivered by two molecular families, namely Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). Invaluable knowledge about JAKs and STATs has arisen from studies of mice made genetically deficient in these molecules, analyses of tumor models, and studies of expression patterns by proteomics/genomics, which all have begun to define the role of JAKs and STATs in survival versus apoptosis. These findings also have suggested ways in which JAKs and STATs may be manipulated for therapeutic intervention in lymphoid-derived diseases. This review seeks to focus on the role of JAK tyrosine kinases and STAT transcription factors in mediating the lymphocyte life cycle and how they might be manipulated for therapeutic applications.

  8. Argininosuccinate synthetase regulates hepatic AMPK linking protein catabolism and ureagenesis to hepatic lipid metabolism

    PubMed Central

    Madiraju, Anila K.; Alves, Tiago; Zhao, Xiaojian; Cline, Gary W.; Zhang, Dongyan; Bhanot, Sanjay; Samuel, Varman T.; Kibbey, Richard G.; Shulman, Gerald I.

    2016-01-01

    A key sensor of cellular energy status, AMP-activated protein kinase (AMPK), interacts allosterically with AMP to maintain an active state. When active, AMPK triggers a metabolic switch, decreasing the activity of anabolic pathways and enhancing catabolic processes such as lipid oxidation to restore the energy balance. Unlike oxidative tissues, in which AMP is generated from adenylate kinase during states of high energy demand, the ornithine cycle enzyme argininosuccinate synthetase (ASS) is a principle site of AMP generation in the liver. Here we show that ASS regulates hepatic AMPK, revealing a central role for ureagenesis flux in the regulation of metabolism via AMPK. Treatment of primary rat hepatocytes with amino acids increased gluconeogenesis and ureagenesis and, despite nutrient excess, induced both AMPK and acetyl-CoA carboxylase (ACC) phosphorylation. Antisense oligonucleotide knockdown of hepatic ASS1 expression in vivo decreased liver AMPK activation, phosphorylation of ACC, and plasma β-hydroxybutyrate concentrations. Taken together these studies demonstrate that increased amino acid flux can activate AMPK through increased AMP generated by ASS, thus providing a novel link between protein catabolism, ureagenesis, and hepatic lipid metabolism. PMID:27247419

  9. Regulation of TBK1 activity by Optineurin contributes to cell cycle-dependent expression of the interferon pathway.

    PubMed

    Weil, Robert; Laplantine, Emmanuel; Génin, Pierre

    2016-06-01

    The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. p57KIP2 regulates radial glia and intermediate precursor cell cycle dynamics and lower layer neurogenesis in developing cerebral cortex

    PubMed Central

    Mairet-Coello, Georges; Tury, Anna; Van Buskirk, Elise; Robinson, Kelsey; Genestine, Matthieu; DiCicco-Bloom, Emanuel

    2012-01-01

    During cerebral cortex development, precise control of precursor cell cycle length and cell cycle exit is required for balanced precursor pool expansion and layer-specific neurogenesis. Here, we defined the roles of cyclin-dependent kinase inhibitor (CKI) p57KIP2, an important regulator of G1 phase, using deletion mutant mice. Mutant mice displayed macroencephaly associated with cortical hyperplasia during late embryogenesis and postnatal development. Embryonically, proliferation of radial glial cells (RGC) and intermediate precursors (IPC) was increased, expanding both populations, with greater effect on IPCs. Furthermore, cell cycle re-entry was increased during early corticogenesis, whereas cell cycle exit was augmented at middle stage. Consequently, neurogenesis was reduced early, whereas it was enhanced during later development. In agreement, the timetable of early neurogenesis, indicated by birthdating analysis, was delayed. Cell cycle dynamics analyses in mutants indicated that p57KIP2 regulates cell cycle length in both RGCs and IPCs. By contrast, related CKI p27KIP1 controlled IPC proliferation exclusively. Furthermore, p57KIP2 deficiency markedly increased RGC and IPC divisions at E14.5, whereas p27KIP1 increased IPC proliferation at E16.5. Consequently, loss of p57KIP2 increased primarily layer 5-6 neuron production, whereas loss of p27KIP1 increased neurons specifically in layers 2-5. In conclusion, our observations suggest that p57KIP2 and p27KIP1 control neuronal output for distinct cortical layers by regulating different stages of precursor proliferation, and support a model in which IPCs contribute to both lower and upper layer neuron generation. PMID:22223678

  11. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1.

    PubMed

    Silva, Gabriela; Aboussekhra, Abdelilah

    2016-05-01

    Extracellular signal-regulated kinase (ERK) is a downstream component of the evolutionarily conserved mitogen-activated protein kinase-signaling pathway, which controls the expression of a plethora of genes implicated in various physiological processes. This pathway is often hyper-activated by mutations or abnormal extracellular signaling in different types of human cancer, including the most common primary malignant bone tumor osteosarcomas. p16(INK4A) is an important tumor suppressor gene frequently lost in osteosarcomas, and is associated with the progression of these malignancies. We have shown, here, that the ERK1/2 protein kinase is also activated by p16(INK4A) down-regulation in osteosarcoma cells and normal human as well as mouse cells. This inhibitory effect is associated with the suppression of the upstream kinase MEK1/2, and is mediated via the repression of miR-21-5p and the consequent up-regulation of the MEK/ERK antagonist SPRY2 in osteosarcoma cells. Furthermore, we have shown that p16(INK4) inhibits the migration/invasion abilities of these cells through miR-21-5p-dependent inhibition of ERK1/2. In addition, we present clear evidence that p16(INK4) represses the paracrine pro-migratory effect of osteosarcoma cells on stromal fibroblasts through the inhibition of the TGF-β1 expression/secretion. This effect is also ERK1/2-dependent, indicating that in addition to their cell-autonomous actions, p16(INK4) and ERK1/2 have also non-cell-autonomous cancer-related functions. Together, these results indicate that the tumor suppressor p16(INK4) protein represses the carcinogenic process of osteosarcoma cells not only as a cell cycle regulator, but also as a negative regulator of pro-carcinogenic/-metastatic pathways. This indicates that targeting the ERK pathway is of utmost therapeutic value. © 2015 Wiley Periodicals, Inc.

  12. The Hsk1(Cdc7) Replication Kinase Regulates Origin Efficiency

    PubMed Central

    Patel, Prasanta K.; Kommajosyula, Naveen; Rosebrock, Adam; Bensimon, Aaron; Leatherwood, Janet; Bechhoefer, John

    2008-01-01

    Origins of DNA replication are generally inefficient, with most firing in fewer than half of cell cycles. However, neither the mechanism nor the importance of the regulation of origin efficiency is clear. In fission yeast, origin firing is stochastic, leading us to hypothesize that origin inefficiency and stochasticity are the result of a diffusible, rate-limiting activator. We show that the Hsk1-Dfp1 replication kinase (the fission yeast Cdc7-Dbf4 homologue) plays such a role. Increasing or decreasing Hsk1-Dfp1 levels correspondingly increases or decreases origin efficiency. Furthermore, tethering Hsk1-Dfp1 near an origin increases the efficiency of that origin, suggesting that the effective local concentration of Hsk1-Dfp1 regulates origin firing. Using photobleaching, we show that Hsk1-Dfp1 is freely diffusible in the nucleus. These results support a model in which the accessibility of replication origins to Hsk1-Dfp1 regulates origin efficiency and provides a potential mechanistic link between chromatin structure and replication timing. By manipulating Hsk1-Dfp1 levels, we show that increasing or decreasing origin firing rates leads to an increase in genomic instability, demonstrating the biological importance of appropriate origin efficiency. PMID:18799612

  13. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  14. Human Cytomegalovirus pUL97 Regulates the Viral Major Immediate Early Promoter by Phosphorylation-Mediated Disruption of Histone Deacetylase 1 Binding

    PubMed Central

    Bigley, Tarin M.; Reitsma, Justin M.; Mirza, Shama P.

    2013-01-01

    Human cytomegalovirus (HCMV) is a common agent of congenital infection and causes severe disease in immunocompromised patients. Current approved therapies focus on inhibiting viral DNA replication. The HCMV kinase pUL97 contributes to multiple stages of viral infection including DNA replication, controlling the cell cycle, and virion maturation. Our studies demonstrate that pUL97 also functions by influencing immediate early (IE) gene expression during the initial stages of infection. Inhibition of kinase activity using the antiviral compound maribavir or deletion of the UL97 gene resulted in decreased expression of viral immediate early genes during infection. Expression of pUL97 was sufficient to transactivate IE1 gene expression from the viral genome, which was dependent on viral kinase activity. We observed that pUL97 associates with histone deacetylase 1 (HDAC1). HDAC1 is a transcriptional corepressor that acts to silence expression of viral genes. We observed that inhibition or deletion of pUL97 kinase resulted in increased HDAC1 and decreased histone H3 lysine 9 acetylation associating with the viral major immediate early (MIE) promoter. IE expression during pUL97 inhibition or deletion was rescued following inhibition of deacetylase activity. HDAC1 associates with chromatin by protein-protein interactions. Expression of active but not inactive pUL97 kinase decreased HDAC1 interaction with the transcriptional repressor protein DAXX. Finally, using mass spectrometry, we found that HDAC1 is uniquely phosphorylated upon expression of pUL97. Our results support the conclusion that HCMV pUL97 kinase regulates viral immediate early gene expression by phosphorylation-mediated disruption of HDAC1 binding to the MIE promoter. PMID:23616659

  15. The E4 protein; structure, function and patterns of expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genomemore » amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup ∧}E4, these kinases regulate one of the E1{sup ∧}E4 proteins main functions, the association with the cellular keratin network, and eventually also its cleavage by the protease calpain which allows assembly into amyloid-like fibres and reorganisation of the keratin network. Although the E4 proteins of different HPV types appear divergent at the level of their primary amino acid sequence, they share a recognisable modular organisation and pattern of expression, which may underlie conserved functions and regulation. Assembly into higher-order multimers and suppression of cell proliferation are common to all E4 proteins examined. Although not yet formally demonstrated, a role in virus release and transmission remains a likely function for E4. - Highlights: • E4 gene products have a modular structure, and are expressed from the E1{sup ∧}E4 spliced mRNA. • E4 proteins are modified during epithelial differentiation by phosphorylation and proteolysis. • The E4 proteins contribute to genome amplification-efficiency and virus synthesis. • E4 proteins are abundantly expressed and may facilitate efficient virus release and transmission. • High-risk E4 proteins are deposited as amyloid fibres and can be used as infection biomarkers.« less

  16. Autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast.

    PubMed

    Matsuhara, Hirotada; Yamamoto, Ayumu

    2016-01-01

    Autophagy is a conserved intracellular degradation system, which contributes to development and differentiation of various organisms. Yeast cells undergo meiosis under nitrogen-starved conditions and require autophagy for meiosis initiation. However, the precise roles of autophagy in meiosis remain unclear. Here, we show that autophagy is required for efficient meiosis progression and proper meiotic chromosome segregation in fission yeast. Autophagy-defective strains bearing a mutation in the autophagy core factor gene atg1, atg7, or atg14 exhibit deformed nuclear structures during meiosis. These mutant cells require an extracellular nitrogen supply for meiosis progression following their entry into meiosis and show delayed meiosis progression even with a nitrogen supply. In addition, they show frequent chromosome dissociation from the spindle together with spindle overextension, forming extra nuclei. Furthermore, Aurora kinase, which regulates chromosome segregation and spindle elongation, is significantly increased at the centromere and spindle in the mutant cells. Aurora kinase down-regulation eliminated delayed initiation of meiosis I and II, chromosome dissociation, and spindle overextension, indicating that increased Aurora kinase activity may cause these aberrances in the mutant cells. Our findings show a hitherto unrecognized relationship of autophagy with the nuclear structure, regulation of cell cycle progression, and chromosome segregation in meiosis. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Human Cpr (Cell Cycle Progression Restoration) Genes Impart a Far(-) Phenotype on Yeast Cells

    PubMed Central

    Edwards, M. C.; Liegeois, N.; Horecka, J.; DePinho, R. A.; Sprague-Jr., G. F.; Tyers, M.; Elledge, S. J.

    1997-01-01

    Regulated cell cycle progression depends on the proper integration of growth control pathways with the basic cell cycle machinery. While many of the central molecules such as cyclins, CDKs, and CKIs are known, and many of the kinases and phosphatases that modify the CDKs have been identified, little is known about the additional layers of regulation that impinge upon these molecules. To identify new regulators of cell proliferation, we have selected for human and yeast cDNAs that when overexpressed were capable of specifically overcoming G(1) arrest signals from the cell cycle branch of the mating pheromone pathway, while still maintaining the integrity of the transcriptional induction branch. We have identified 13 human CPR (cell cycle progression restoration) genes and 11 yeast OPY (overproduction-induced pheromone-resistant yeast) genes that specifically block the G(1) arrest by mating pheromone. The CPR genes represent a variety of biochemical functions including a new cyclin, a tumor suppressor binding protein, chaperones, transcription factors, translation factors, RNA-binding proteins, as well as novel proteins. Several CPR genes require individual CLNs to promote pheromone resistance and those that require CLN3 increase the basal levels of Cln3 protein. Moreover, several of the yeast OPY genes have overlapping functions with the human CPR genes, indicating a possible conservation of roles. PMID:9383053

  18. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-Hours Post-Exposure to 532 nm, 120 ps Pulsed Laser Light

    DTIC Science & Technology

    2004-04-01

    cycling, anaerobic enzymes and kinase enzymes as well as specific cellular channel or receptor components. However, the most striking revelation of the...degradation. Most notably up-regulated were the genes for the enzymes essential in the ubiquitin-proteoasome pathway (UPP) shown to be up-regulated in response...to oxidative stress in eye tissue (1). These were ubiquitin [2.0], 3 ubiquitin-conjugating enzyme genes E2 [2.3], E2D2 [2.3] and E2D3 [2.8]. Also up

  19. The role of cGMP signalling in regulating life cycle progression of Plasmodium.

    PubMed

    Hopp, Christine S; Bowyer, Paul W; Baker, David A

    2012-08-01

    The 3'-5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling.

    PubMed

    Xiong, Hua; Chen, Zhao-Fei; Liang, Qin-Chuan; Du, Wan; Chen, Hui-Min; Su, Wen-Yu; Chen, Guo-Qiang; Han, Ze-Guang; Fang, Jing-Yuan

    2009-09-01

    DNA methyltransferase inhibitors (MTIs) have recently emerged as promising chemotherapeutic or preventive agents for cancer, despite their poorly characterized mechanisms of action. The present study shows that DNA methylation is integral to the regulation of SH2-containing protein tyrosine phosphatase 1 (SHP1) expression, but not for regulation of suppressors of cytokine signalling (SOCS)1 or SOCS3 in colorectal cancer (CRC) cells. SHP1 expression correlates with down-regulation of Janus kinase/signal transducers and activators of transcription (JAK2/STAT3/STAT5) signalling, which is mediated in part by tyrosine dephosphorylation events and modulation of the proteasome pathway. Up-regulation of SHP1 expression was achieved using a DNA MTI, 5-aza-2'-deoxycytidine (5-aza-dc), which also generated significant down-regulation of JAK2/STAT3/STAT5 signalling. We demonstrate that 5-aza-dc suppresses growth of CRC cells, and induces G2 cell cycle arrest and apoptosis through regulation of downstream targets of JAK2/STAT3/STAT5 signalling including Bcl-2, p16(ink4a), p21(waf1/cip1) and p27(kip1). Although 5-aza-dc did not significantly inhibit cell invasion, 5-aza-dc did down-regulate expression of focal adhesion kinase and vascular endothelial growth factor in CRC cells. Our results demonstrate that 5-aza-dc can induce SHP1 expression and inhibit JAK2/STAT3/STAT5 signalling. This study represents the first evidence towards establishing a mechanistic link between inhibition of JAK2/STAT3/STAT5 signalling and the anticancer action of 5-aza-dc in CRC cells that may lead to the use of MTIs as a therapeutic intervention for human colorectal cancer.

  1. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    PubMed Central

    Lindin, Inger; Wuxiuer, Yimingjiang; Ravna, Aina Westrheim; Moens, Ugo; Sylte, Ingebrigt

    2014-01-01

    The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD) simulations of: (1) MK5 alone; (2) MK5 in complex with an inhibitor; and (3) MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS) calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding. PMID:24651460

  2. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    PubMed

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1.

    PubMed

    Zhu, Kai-Chang; Sun, Jian-Mei; Shen, Jian-Guo; Jin, Ji-Zhong; Liu, Feng; Xu, Xiao-Lin; Chen, Lin; Liu, Lin-Tao; Lv, Jia-Ju

    2015-10-01

    Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata . The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G 0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential.

  4. Afzelin exhibits anti-cancer activity against androgen-sensitive LNCaP and androgen-independent PC-3 prostate cancer cells through the inhibition of LIM domain kinase 1

    PubMed Central

    ZHU, KAI-CHANG; SUN, JIAN-MEI; SHEN, JIAN-GUO; JIN, JI-ZHONG; LIU, FENG; XU, XIAO-LIN; CHEN, LIN; LIU, LIN-TAO; LV, JIA-JU

    2015-01-01

    Prostate cancer presents high occurrence worldwide. Medicinal plants are a major source of novel and potentially therapeutic molecules; therefore, the aim of the present study was to investigate the possible anti-prostate cancer activity of afzelin, a flavonol glycoside that was previously isolated from Nymphaea odorata. The effect of afzelin on the proliferation of androgen-sensitive LNCaP and androgen-independent PC-3 cells was evaluated by performing a water soluble tetrazolium salt-1 assay. In addition, the effect of afzelin on the cell cycle of the LNCaP and PC-3 prostate cancer cell lines was evaluated. Western blot analysis was performed to evaluate the effect of afzelin on the kinases responsible for the regulation of actin organization. Afzelin was identified to inhibit the proliferation of LNCaP and PC3 cells, and block the cell cycle in the G0 phase. The anticancer activity of afzelin in these cells was determined to be due to inhibition of LIM domain kinase 1 expression. Thus, the in vitro efficacy of afzelin against prostate cancer is promising; however, additional studies on different animal models are required to substantiate its anticancer potential. PMID:26622852

  5. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases

    PubMed Central

    Cargnello, Marie; Roux, Philippe P.

    2011-01-01

    Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries. PMID:21372320

  6. Recent Progress on Liver Kinase B1 (LKB1): Expression, Regulation, Downstream Signaling and Cancer Suppressive Function

    PubMed Central

    Gan, Ren-You; Li, Hua-Bin

    2014-01-01

    Liver kinase B1 (LKB1), known as a serine/threonine kinase, has been identified as a critical cancer suppressor in many cancer cells. It is a master upstream kinase of 13 AMP-activated protein kinase (AMPK)-related protein kinases, and possesses versatile biological functions. LKB1 gene is mutated in many cancers, and its protein can form different protein complexes with different cellular localizations in various cell types. The expression of LKB1 can be regulated through epigenetic modification, transcriptional regulation and post-translational modification. LKB1 dowcnstream pathways mainly include AMPK, microtubule affinity regulating kinase (MARK), salt-inducible kinase (SIK), sucrose non-fermenting protein-related kinase (SNRK) and brain selective kinase (BRSK) signalings, etc. This review, therefore, mainly discusses recent studies about the expression, regulation, downstream signaling and cancer suppressive function of LKB1, which can be helpful for better understanding of this molecular and its significance in cancers. PMID:25244018

  7. Proteomic analysis of the molecular response of Raji cells to maslinic acid treatment.

    PubMed

    Yap, W H; Khoo, K S; Lim, S H; Yeo, C C; Lim, Y M

    2012-01-15

    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Cell cycle effects of L-sulforaphane, a major antioxidant from cruciferous vegetables: The role of the anaphase promoting complex.

    PubMed

    Shelley, Zhaoping; Royce, Simon G; Ververis, Katherine; Karagiannis, Tom C

    2014-01-01

    L-sulforaphane (LSF) is a natural isothiocyanate found in cruciferous vegetables particularly broccoli. LSF has been identified as a potent antioxidant and anti-cancer agent and is widely known to regulate phase II detoxifying enzymes and induce cell cycle arrest or apoptosis in malignant cells in vitro and in vivo. Previous studies have found significant G2/M cell cycle arrest in response to LSF in various model of cancer and results have mainly been attributed to increased cyclin B1 protein levels and increased p21expression. Using genome-wide mRNA-Seq analysis we provide insights into the molecular mechanisms of action of LSF to identify a key pathway in cell cycle progression - the role of the anaphase promoting complex (APC) pathway. We evaluated gene expression changes in human erythroleukemic K562 cells following treatment with 15 μM LSF for 48h and compared them to immortalized human keratinocytes, human microvascular endothelial cells (HMEC-1) cells and normal human umbilical endothelial cells (HUVEC). We identified disparate gene expression changes in response to LSF between malignant and normal cells and immortalized cell lines. The results highlight significant down-regulation of kinase CDK1 which is suggestive that the existence and activity of APC/CDC20 complex will be inhibited along with its associated down-stream degradation of key cell cycle regulators preventing cell cycle progression from mitotic exit.

  9. Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.

    PubMed

    Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B

    2014-09-05

    The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.

  10. The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity.

    PubMed

    Dul, Barbara E; Walworth, Nancy C

    2007-06-22

    The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.

  11. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    PubMed

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  12. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability

    PubMed Central

    Ball, David A.

    2016-01-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally. PMID:27935947

  13. Cetuximab improves AZD6244 antitumor activity in colorectal cancer HT29 cells in vitro and in nude mice by attenuating HER3/Akt pathway activation.

    PubMed

    Zhang, Qin; Xiao, He; Jin, Feng; Li, Mengxia; Luo, Jia; Wang, Ge

    2018-07-01

    The present study investigated the molecular mechanism by which the epidermal growth factor receptor (EGFR) inhibitor cetuximab enhances the antitumor activity of the mitogen-activated protein kinase kinase (MEK) inhibitor AZD6244 in colorectal cancer HT29 cells. HT29 cells were treated with AZD6244 plus cetuximab and then subjected to the following assays: Cell Counting kit-8, BrdU-incorporation, flow cytometric cell cycle distribution and apoptosis analysis, western blot analysis, and nude mouse xenografts. The combination of AZD6244 and cetuximab significantly reduced HT29 cell viability and proliferation compared with AZD6244 alone. The combination treatment reduced the IC 50 value from 108.12±10.05 to 28.45±1.92 nM. AZD6244 and cetuximab also induced cell cycle arrest at G1 phase and reduced S phase (88.53% vs. 93.39%, P=0.080; 8.73% vs. 4.24%, P=0.082, respectively). Combination of AZD6244 with cetuximab significantly induced tumor cells apoptosis (14.61% vs. 8.99%, P=0.046). Inhibition of EGFR activity using cetuximab partially abrogated the feedback-activation of phosphorylated receptor tyrosine-protein kinase erB-3 (p-HER3) and p-AKT serine/threonine kinase (AKT), as well as prevented reactivation of p-extracellular regulated kinase (ERK) conferred by AZD6244 treatment. Combination of AZD6244 and cetuximab also inhibited HT29 cell xenograft growth in nude mice and suppressed HER3 and p-AKT levels in xenografts. The EGFR inhibitor cetuximab enhanced the antitumor activity of the MEK inhibitor AZD6244 in colorectal cells in vitro and in vivo . Co-inhibition of MEK and EGFR may be a promising treatment strategy in colorectal cancers.

  14. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    PubMed

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  15. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal.

    PubMed

    Xiang, Shulin; Dauchy, Robert T; Hauch, Adam; Mao, Lulu; Yuan, Lin; Wren, Melissa A; Belancio, Victoria P; Mondal, Debasis; Frasch, Tripp; Blask, David E; Hill, Steven M

    2015-08-01

    Chemotherapeutic resistance, particularly to doxorubicin (Dox), represents a major impediment to successfully treating breast cancer and is linked to elevated tumor metabolism and tumor over-expression and/or activation of various families of receptor- and non-receptor-associated tyrosine kinases. Disruption of circadian time structure and suppression of nocturnal melatonin production by dim light exposure at night (dLEN), as occurs with shift work, and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of an array of diseases, including breast cancer. Melatonin inhibits human breast cancer growth via mechanisms that include the suppression of tumor metabolism and inhibition of expression or phospho-activation of the receptor kinases AKT and ERK1/2 and various other kinases and transcription factors. We demonstrate in tissue-isolated estrogen receptor alpha-positive (ERα+) MCF-7 human breast cancer xenografts, grown in nude rats maintained on a light/dark cycle of LD 12:12 in which dLEN is present during the dark phase (suppressed endogenous nocturnal melatonin), a significant shortening of tumor latency-to-onset, increased tumor metabolism and growth, and complete intrinsic resistance to Dox therapy. Conversely, a LD 12:12 dLEN environment incorporating nocturnal melatonin replacement resulted in significantly lengthened tumor latency-to-onset, tumor regression, suppression of nighttime tumor metabolism, and kinase and transcription factor phosphorylation, while Dox sensitivity was completely restored. Melatonin acts as both a tumor metabolic inhibitor and circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to Dox and drive tumor regression, indicating that dLEN-induced circadian disruption of nocturnal melatonin production contributes to a complete loss of tumor sensitivity to Dox chemotherapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Ran1 functions to control the Cdc10/Sct1 complex through Puc1.

    PubMed Central

    Caligiuri, M; Connolly, T; Beach, D

    1997-01-01

    We have undertaken a biochemical analysis of the regulation of the G1/S-phase transition and commitment to the cell cycle in the fission yeast Schizosaccharomyces pombe. The execution of Start requires the activity of the Cdc2 protein kinase and the Sct1/Cdc10 transcription complex. Progression through G1 also requires the Ran1 protein kinase whose inactivation leads to activation of the meiotic pathway under conditions normally inhibitory to this process. We have found that in addition to Cdc2, Sct1/Cdc10 complex formation requires Ran1. We demonstrate that the Puc1 cyclin associates with Ran1 and Cdc10 in vivo and that the Ran1 protein kinase functions to control the association between Puc1 and Cdc10. In addition, we present evidence that the phosphorylation state of Cdc10 is altered upon inactivation of Ran1. These results provide biochemical evidence that demonstrate one mechanism by which the Ran1 protein kinase serves to control cell fate through Cdc10 and Puc1. Images PMID:9201720

  17. Phosphatidylinositol 4-Kinase IIIβ Is Required for Severe Acute Respiratory Syndrome Coronavirus Spike-mediated Cell Entry*

    PubMed Central

    Yang, Ning; Ma, Ping; Lang, Jianshe; Zhang, Yanli; Deng, Jiejie; Ju, Xiangwu; Zhang, Gongyi; Jiang, Chengyu

    2012-01-01

    Phosphatidylinositol kinases (PI kinases) play an important role in the life cycle of several viruses after infection. Using gene knockdown technology, we demonstrate that phosphatidylinositol 4-kinase IIIβ (PI4KB) is required for cellular entry by pseudoviruses bearing the severe acute respiratory syndrome-coronavirus (SARS-CoV) spike protein and that the cell entry mediated by SARS-CoV spike protein is strongly inhibited by knockdown of PI4KB. Consistent with this observation, pharmacological inhibitors of PI4KB blocked entry of SARS pseudovirions. Further research suggested that PI4P plays an essential role in SARS-CoV spike-mediated entry, which is regulated by the PI4P lipid microenvironment. We further demonstrate that PI4KB does not affect virus entry at the SARS-CoV S-ACE2 binding interface or at the stage of virus internalization but rather at or before virus fusion. Taken together, these results indicate a new function for PI4KB and suggest a new drug target for preventing SARS-CoV infection. PMID:22253445

  18. Cell cycle regulation by the intrinsically disordered proteins p21 and p27.

    PubMed

    Yoon, Mi-Kyung; Mitrea, Diana M; Ou, Li; Kriwacki, Richard W

    2012-10-01

    Today, it is widely accepted that proteins that lack highly defined globular three-dimensional structures, termed IDPs (intrinsically disordered proteins), play key roles in myriad biological processes. Our understanding of how intrinsic disorder mediates biological function is, however, incomplete. In the present paper, we review disorder-mediated cell cycle regulation by two intrinsically disordered proteins, p21 and p27. A structural adaptation mechanism involving a stretchable dynamic linker helix allows p21 to promiscuously recognize the various Cdk (cyclin-dependent kinase)-cyclin complexes that regulate cell division. Disorder within p27 mediates transmission of an N-terminal tyrosine phosphorylation signal to a C-terminal threonine phosphorylation, constituting a signalling conduit. These mechanisms are mediated by folding upon binding p21/p27's regulatory targets. However, residual disorder within the bound state contributes critically to these functional mechanisms. Our studies provide insights into how intrinsic protein disorder mediates regulatory processes and opportunities for designing drugs that target cancer-associated IDPs.

  19. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation

    PubMed Central

    Arsenault, Heather E.; Roy, Jagoree; Mapa, Claudine E.; Cyert, Martha S.; Benanti, Jennifer A.

    2015-01-01

    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation. PMID:26269584

  20. LIM Protein Ajuba associates with the RPA complex through direct cell cycle-dependent interaction with the RPA70 subunit.

    PubMed

    Fowler, Sandy; Maguin, Pascal; Kalan, Sampada; Loayza, Diego

    2018-06-22

    DNA damage response pathways are essential for genome stability and cell survival. Specifically, the ATR kinase is activated by DNA replication stress. An early event in this activation is the recruitment and phosphorylation of RPA, a single stranded DNA binding complex composed of three subunits, RPA70, RPA32 and RPA14. We have previously shown that the LIM protein Ajuba associates with RPA, and that depletion of Ajuba leads to potent activation of ATR. In this study, we provide evidence that the Ajuba-RPA interaction occurs through direct protein contact with RPA70, and that their association is cell cycle-regulated and is reduced upon DNA replication stress. We propose a model in which Ajuba negatively regulates the ATR pathway by directly interacting with RPA70, thereby preventing inappropriate ATR activation. Our results provide a framework to further our understanding of the mechanism of ATR regulation in human cells in the context of cellular transformation.

  1. An R132H Mutation in Isocitrate Dehydrogenase 1 Enhances p21 Expression and Inhibits Phosphorylation of Retinoblastoma Protein in Glioma Cells

    PubMed Central

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1R132H-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1R132H-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progressionof the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation. PMID:24077277

  2. An R132H mutation in isocitrate dehydrogenase 1 enhances p21 expression and inhibits phosphorylation of retinoblastoma protein in glioma cells.

    PubMed

    Miyata, Satsuki; Urabe, Masashi; Gomi, Akira; Nagai, Mutsumi; Yamaguchi, Takashi; Tsukahara, Tomonori; Mizukami, Hiroaki; Kume, Akihiro; Ozawa, Keiya; Watanabe, Eiju

    2013-01-01

    Cytosolic isocitrate dehydrogenase 1 (IDH1) with an R132H mutation in brain tumors loses its enzymatic activity for catalyzing isocitrate to α-ketoglutarate (α-KG) and acquires new activity whereby it converts α-KG to 2-hydroxyglutarate. The IDH1 mutation induces down-regulation of tricarboxylic acid cycle intermediates and up-regulation of lipid metabolism. Sterol regulatory element-binding proteins (SREBPs) regulate not only the synthesis of cholesterol and fatty acids but also acyclin-dependent kinase inhibitor p21 that halts the cell cycle at G1. Here we show that SREBPs were up-regulated in U87 human glioblastoma cells transfected with an IDH1(R132H)-expression plasmid. Small interfering ribonucleic acid (siRNA) for SREBP1 specifically decreased p21 messenger RNA (mRNA) levels independent of the p53 pathway. In IDH1(R132H)-expressing U87 cells, phosphorylation of Retinoblastoma (Rb) protein also decreased. We propose that metabolic changes induced by the IDH1 mutation enhance p21 expression via SREBP1 and inhibit phosphorylation of Rb, which slows progression of the cell cycle and may be associated with non-aggressive features of gliomas with an IDH1 mutation.

  3. Combining Microinjection and Immunoblotting to Analyze MAP Kinase Phosphorylation in Single Starfish Oocytes and Eggs

    NASA Astrophysics Data System (ADS)

    Carroll, David J.; Hua, Wei

    The starfish oocyte has proven useful for studies involving microinjection because it is relatively large (190 μm) and optically clear. These oocytes are easily obtained from the ovary arrested at prophase of meiosis I, making them useful as a model system for the study of cell cycle-related events. In this chapter, a method for combining microinjection with immunoblotting of single cells is described. Individual starfish oocytes are injected, removed from the microinjection chamber, and analyzed by immunoblotting for the dual-phosphorylated form of mitogen-activated protein kinase (MAPK). This method will allow for experiments testing the regulation of MAPK in single cells and for the manipulation of these cells by a quantitative microinjection technique.

  4. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    PubMed

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  5. MAP/microtubule affinity-regulating kinases, microtubule dynamics, and spermatogenesis.

    PubMed

    Tang, Elizabeth I; Mruk, Dolores D; Cheng, C Yan

    2013-05-01

    During spermatogenesis, spermatids derived from meiosis simultaneously undergo extensive morphological transformation, to become highly specialized and metabolically quiescent cells, and transport across the seminiferous epithelium. Spermatids are also transported back-and-forth across the seminiferous epithelium during the epithelial cycle until they line up at the luminal edge of the tubule to prepare for spermiation at stage VIII of the cycle. Spermatid transport thus requires the intricate coordination of the cytoskeletons in Sertoli cells (SCs) as spermatids are nonmotile cells lacking the ultrastructures of lamellipodia and filopodia, as well as the organized components of the cytoskeletons. In the course of preparing this brief review, we were surprised to see that, except for some earlier eminent morphological studies, little is known about the regulation of the microtubule (MT) cytoskeleton and the coordination of MT with the actin-based cytoskeleton to regulate spermatid transport during the epithelia cycle, illustrating that this is a largely neglected area of research in the field. Herein, we summarize recent findings in the field regarding the significance of actin- and tubulin-based cytoskeletons in SCs that support spermatid transport; we also highlight specific areas of research that deserve attention in future studies.

  6. The MAPK Signaling Cascade is a Central Hub in the Regulation of Cell Cycle, Apoptosis and Cytoskeleton Remodeling by Tripeptidyl-Peptidase II

    PubMed Central

    Sompallae, Ramakrishna; Stavropoulou, Vaia; Houde, Mathieu; Masucci, Maria G.

    2008-01-01

    Tripeptidyl-peptidase II (TPPII) is a serine peptidase highly expressed in malignant Burkitt’s lymphoma cells (BL). We have previously shown that overexpression of TPPII correlates with chromosomal instability, centrosomal and mitotic spindle abnormalities and resistance to apoptosis induced by spindle poisons. Furthermore, TPPII knockdown by RNAi was associated with endoreplication and the accumulation of polynucleated cells that failed to complete cell division, indicating a role of TPPII in the cell cycle. Here we have applied a global approach of gene expression analysis to gain insights on the mechanism by which TPPII regulates this phenotype. mRNA profiling of control and TPPII knockdown BL cells identified one hundred and eighty five differentially expressed genes. Functional categorization of these genes highlighted major physiological functions such as apoptosis, cell cycle progression, cytoskeleton remodeling, proteolysis, and signal transduction. Pathways and protein interactome analysis revealed a significant enrichment in components of MAP kinases signaling. These findings suggest that TPPII influences a wide network of signaling pathways that are regulated by MAPKs and exerts thereby a pleiotropic effect on biological processes associated with cell survival, proliferation and genomic instability. PMID:19787088

  7. SUMOylated MAFB promotes colorectal cancer tumorigenesis

    PubMed Central

    Xie, Yin-Yin; Sun, Xiao-Jian; Zhao, Ren; Huang, Qiu-Hua

    2016-01-01

    The transcription factor, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), promotes tumorigenesis in some cancers. In this study, we found that MAFB levels were increased in clinical colorectal cancer (CRC) samples, and higher expression correlated with more advanced TNM stage. We identified MAFB amplifications in a majority of tumor types in an assessment of The Cancer Genome Atlas database. Altered MAFB levels due to gene amplification, deletion, mutation, or transcription upregulation occurred in 9% of CRC cases within the database. shRNA knockdown experiments demonstrated that MAFB deficiency blocked CRC cell proliferation by arresting the cell cycle at G0/G1 phase in vitro. We found that MAFB could be SUMOylated by SUMO1 at lysine 32, and this modification was critical for cell cycle regulation by MAFB in CRC cells. SUMOylated MAFB directly regulated cyclin-dependent kinase 6 transcription by binding to its promoter. MAFB knockdown CRC cell xenograft tumors in mice grew more slowly than controls, and wild-type MAFB-overexpressing tumors grew more quickly than tumors overexpressing MAFB mutated at lysine 32. These data suggest that SUMOylated MAFB promotes CRC tumorigenesis through cell cycle regulation. MAFB and its SUMOylation process may serve as novel therapeutic targets for CRC treatment. PMID:27829226

  8. Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner

    PubMed Central

    Rattan, R; Giri, S; Hartmann, LC; Shridhar, V

    2011-01-01

    Abstract Metformin, the most widely used drug for type 2 diabetes activates 59 adenosine monophosphate (AMP)-activated protein kinase (AMPK), which regulates cellular energy metabolism. Here, we report that ovarian cell lines VOSE, A2780, CP70, C200, OV202, OVCAR3, SKOV3ip, PE01 and PE04 predominantly express -α1, -β1, -γ1 and -γ2 isoforms of AMPK subunits. Our studies show that metformin treatment (1) significantly inhibited proliferation of diverse chemo-responsive and -resistant ovarian cancer cell lines (A2780, CP70, C200, OV202, OVCAR3, SKVO3ip, PE01 and PE04), (2) caused cell cycle arrest accompanied by decreased cyclin D1 and increased p21 protein expression, (3) activated AMPK in various ovarian cancer cell lines as evident from increased phosphorylation of AMPKα and its downstream substrate; acetyl co-carboxylase (ACC) and enhanced β-oxidation of fatty acid and (4) attenuated mTOR-S6RP phosphorylation, inhibited protein translational and lipid biosynthetic pathways, thus implicating metformin as a growth inhibitor of ovarian cancer cells. We also show that metformin-mediated effect on AMPK is dependent on liver kinase B1 (LKB1) as it failed to activate AMPK-ACC pathway and cell cycle arrest in LKB1 null mouse embryo fibroblasts (mefs). This observation was further supported by using siRNA approach to down-regulate LKB1 in ovarian cancer cells. In contrast, met formin inhibited cell proliferation in both wild-type and AMPKα1/2 null mefs as well as in AMPK silenced ovarian cancer cells. Collectively, these results provide evidence on the role of metformin as an anti-proliferative therapeutic that can act through both AMPK-dependent as well as AMPK-independent pathways. PMID:19874425

  9. Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration.

    PubMed

    Chang, Yung-Ming; Chang, Hen-Hong; Tsai, Chin-Chuan; Lin, Hung-Jen; Ho, Tsung-Jung; Ye, Chi-Xin; Chiu, Ping-Ling; Chen, Yueh-Sheng; Chen, Ray-Jade; Huang, Chih-Yang; Lin, Chien-Chung

    2017-03-31

    It is known that the medicinal herb Alpinia oxyphylla Miq. is widely used as a remedy for diarrhea as well as the symptoms accompanying hypertension and cerebrovascular disorders. Moreover, it has also been reported that Alpinia oxyphylla Miq. has beneficial effects on anti-senescence and neuro-protection. This study focuses on the molecular mechanisms by which the Alpinia oxyphylla Miq. fruits promote neuron regeneration. A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with various doses of Alpinia oxyphylla Miq. fruits to assess their regenerative effect on damaged nerves. Further, we investigated the role of Alpinia oxyphylla Miq. fruits in RSC96 Schwann cell proliferation. Our current results showed that treatment with the extract of Alpinia oxyphylla Miq. fruits triggers the phosphorylated insulin-like growth factor-1 receptor- phosphatidylinositol 3-kinase/serine-threonine kinase pathway, and up-regulated the proliferating cell nuclear antigen in a dose-dependent manner. Cell cycle analysis on RSC96 Schwann cells showed that, after exposure to Alpinia oxyphylla Miq. fruit extract, the transition from the first gap phase to the synthesis phase occurs in 12-18 h. The expression of the cell cycle regulatory proteins cyclin D1, cyclin E and cyclin A increased in a dose-dependent manner. Transfection with a small interfering RNA blocked the expression of phosphatidylinositol 3-kinase and induced down-regulation both on the mRNA and protein levels, which resulted in a reduction of the expression of the survival factor B-cell lymphoma 2. We provide positive results that demonstrate that Alpinia oxyphylla Miq. fruits facilitate the survival and proliferation of RSC96 cells via insulin-like growth factor-1 signaling.

  10. The possible role of liver kinase B1 in hydroquinone-induced toxicity of murine fetal liver and bone marrow hematopoietic stem cells.

    PubMed

    Li, Zhen; Wang, Chunhong; Zhu, Jie; Bai, YuE; Wang, Wei; Zhou, Yanfeng; Zhang, Shaozun; Liu, Xiangxiang; Zhou, Sheng; Huang, Wenting; Bi, Yongyi; Wang, Hong

    2016-07-01

    Epidemiological studies suggest that the increasing incidence of childhood leukemia may be due to maternal exposure to benzene, which is a known human carcinogen; however, the mechanisms involved remain unknown. Liver Kinase B1 (LKB1) acts as a regulator of cellular energy metabolism and functions to regulate hematopoietic stem cell (HSC) homeostasis. We hypothesize that LKB1 contributes to the deregulation of fetal or bone hematopoiesis caused by the benzene metabolite hydroquinone (HQ). To evaluate this hypothesis, we compared the effects of HQ on murine fetal liver hematopoietic stem cells (FL-HSCs) and bone marrow hematopoietic stem cells (BM-HSCs). FL-HSCs and BM-HSCs were isolated and enriched by a magnetic cell sorting system and exposed to various concentrations of HQ (0, 1.25, 2.5, 5, 10, 20, and 40 μM) for 24 h. We found that the inhibition of differentiation and growth, as well as the apoptosis rate of FL-HSCs, induced by HQ were consistent with the changes in BM-HSCs. Furthermore, G1 cell cycle arrest was observed in BM-HSCs and FL-HSCs in response to HQ. Importantly, FL-HSCs were more sensitive than BM-HSCs after exposure to HQ. The highest induction of LKB1 and adenosine monophosphate-activated protein kinase (AMPK) was observed with a much lower concentration of HQ in FL-HSCs than in BM-HSCs. LKB1 may play a critical role in apoptosis and cell cycle arrest of HQ-treated HSCs. This research has developed innovative ideas concerning benzene-induced hematopoietic toxicity or embryotoxicity, which can provide a new experimental evidence for preventing childhood leukemia. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 830-841, 2016. © 2014 Wiley Periodicals, Inc.

  11. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice.

    PubMed

    Jojima, Teruo; Uchida, Kohsuke; Akimoto, Kazumi; Tomotsune, Takanori; Yanagi, Kazunori; Iijima, Toshie; Suzuki, Kunihiro; Kasai, Kikuo; Aso, Yoshimasa

    2017-06-01

    Several studies have demonstrated that both native glucagon-like peptide-1 (GLP-1) and GLP-1 receptor agonists suppress the progression of atherosclerosis in animal models. We investigated whether liraglutide, a GLP-1 analogue, could prevent the development of atherosclerosis in apolipoprotein E knockout mice (ApoE -/- ) on a high-fat diet. We also examined the influence of liraglutide on angiotensin II-induced proliferation of rat vascular smooth muscle cells (VSMCs) via enhancement of AMP-activated protein kinase (AMPK) signaling and regulation of cell cycle progression. Treatment of ApoE -/- mice with liraglutide (400 μg/day for 4 weeks) suppressed atherosclerotic lesions and increased AMPK phosphorylation in the aortic wall. Liraglutide also improved the endothelial function of thoracic aortas harvested from ApoE -/- mice in an ex vivo study. Furthermore, liraglutide increased AMPK phosphorylation in rat VSMCs, while liraglutide-induced activation of AMPK was abolished by exendin 9-39, a GLP-1 antagonist. Moreover, angiotensin (Ang) II-induced proliferation of VSMCs was suppressed by liraglutide in a dose-dependent manner, and flow cytometry of Ang II-stimulated VSMCs showed that liraglutide reduced the percentage of cells in G2/M phase (by arrest in G0/G1 phase). These findings suggest that liraglutide may inhibit Ang II-induced VSMC proliferation by activating AMPK signaling and inducing cell cycle arrest, thus delaying the progression of atherosclerosis independently of its glucose-lowering effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells

    PubMed Central

    Wang, Feng; Wang, Qi; Zhou, Zhi-Wei; Yu, Song-Ning; Pan, Shu-Ting; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Yin-Xue; Yang, Tianxing; Sun, Tao; Li, Min; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2015-01-01

    Plumbagin (PLB), an active naphthoquinone compound, has shown potent anticancer effects in preclinical studies; however, the effect and underlying mechanism of PLB for the treatment of pancreatic cancer is unclear. This study aimed to examine the pancreatic cancer cell killing effect of PLB and investigate the underlying mechanism in human pancreatic cancer PANC-1 and BxPC-3 cells. The results showed that PLB exhibited potent inducing effects on cell cycle arrest in PANC-1 and BxPC-3 cells via the modulation of cell cycle regulators including CDK1/CDC2, cyclin B1, cyclin D1, p21 Waf1/Cip1, p27 Kip1, and p53. PLB treatment concentration- and time-dependently increased the percentage of autophagic cells and significantly increased the expression level of phosphatase and tensin homolog, beclin 1, and the ratio of LC3-II over LC3-I in both PANC-1 and BxPC-3 cells. PLB induced inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin and p38 mitogen-activated protein kinase (p38 MAPK) pathways and activation of 5′-AMP-dependent kinase as indicated by their altered phosphorylation, contributing to the proautophagic activities of PLB in both cell lines. Furthermore, SB202190, a selective inhibitor of p38 MAPK, and wortmannin, a potent, irreversible, and selective PI3K inhibitor, remarkably enhanced PLB-induced autophagy in PANC-1 and BxPC-3 cells, indicating the roles of PI3K and p38 MAPK mediated signaling pathways in PLB-induced autophagic cell death in both cell lines. In addition, PLB significantly inhibited epithelial to mesenchymal transition phenotype in both cell lines with an increase in the expression level of E-cadherin and a decrease in N-cadherin. Moreover, PLB treatment significantly suppressed the expression of Sirt1 in both cell lines. These findings show that PLB promotes cell cycle arrest and autophagy but inhibits epithelial to mesenchymal transition phenotype in pancreatic cancer cells with the involvement of PI3K/protein kinase B/mammalian target of rapamycin and p38 MAPK mediated pathways. PMID:25632222

  13. Brassinosteroid regulated kinases (BRKs) that mediate brassinosteroid signal transduction and uses thereof

    DOEpatents

    Wang, Zhi-Yong; Tang, Wenqiang

    2013-09-24

    The present invention identifies a novel family of kinases regulated by brassinosteroids, referred to as BRKs (brassinosteroid regulated kinases) or BSKs (brassinosteroid signaling kinases). The present invention provides methods for modulating the response of a plant cell to a brassinosteroid using BRKs.

  14. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis.

    PubMed

    Maddika, Subbareddy; Ande, Sudharsana Rao; Wiechec, Emilia; Hansen, Lise Lotte; Wesselborg, Sebastian; Los, Marek

    2008-04-01

    Here, we show that CDK2, an S-phase cyclin-dependent kinase, is a novel target for Akt during cell cycle progression and apoptosis. Akt phosphorylates CDK2 at threonine 39 residue both in vitro and in vivo. Although CDK2 threonine 39 phosphorylation mediated by Akt enhances cyclin-A binding, it is dispensable for its basal binding and the kinase activity. In addition, for the first time, we report a transient nucleo-cytoplasmic shuttling of Akt during specific stages of the cell cycle, in particular during the late S and G2 phases. The Akt that is re-localized to the nucleus phosphorylates CDK2 and causes the temporary cytoplasmic localization of the CDK2-cyclin-A complex. The CDK2 cytoplasmic redistribution is required for cell progression from S to G2-M phase, because the CDK2 T39A mutant, which lacks the phosphorylation site and is defective in cytoplasmic localization, severely affects cell cycle progression at the transition from S to G2-M. Interestingly, we also show that the Akt/CDK2 pathway is constitutively activated by some anticancer drugs, such as methotrexate and docetaxel, and under these conditions it promotes, rather than represses, cell death. Thus, the constitutive activation of the Akt/CDK2 pathway and changed subcellular localization promotes apoptosis. By contrast, the transient, physiological Akt/CDK2 activation is necessary for cell cycle progression.

  15. Next generation sequencing of carcinoma of unknown primary reveals novel combinatorial strategies in a heterogeneous mutational landscape

    PubMed Central

    Subbiah, Ishwaria M.; Tsimberidou, Apostolia; Subbiah, Vivek; Janku, Filip; Roy-Chowdhuri, Sinchita; Hong, David S.

    2017-01-01

    Background Advanced carcinoma of unknown primary (CUP) has limited effective therapeutic options given the phenotypic and genotypic diversity. To identify future novel therapeutic strategies we conducted an exploratory analysis of next-generation sequencing (NGS) of relapsed, refractory CUP. Methods We identified patients in our phase I clinic where archival tissue was available for a targeted NGS CLIA-certified assay. Results Of 17 patients tested, 15 (88%) demonstrated genomic alterations (median 2 aberrations; range 0–8, total 59 alterations). Nine (53%) patients had altered cell signaling including the PI3K/AKT/MTOR (n=5, 29%) and MAPK pathways (n=3,18%); 7 (41%) patients demonstrated ≥1 alterations in tumor suppressor genes (TP53 in 5 patients), 8 (47%) had impaired epigenetic regulation and DNA methylation, 8 (47%) had aberrant cell cycle regulation, commonly in the cyclin dependent kinases. Ten (59%) patients had alterations in transcriptional regulators. Concurrent mutations affecting cell cycle regulation were noted to occur with aberrant epigenetic regulation (n=6, 35%) and MAPK/PI3K pathway (n=5, 29%). Conclusion Every patient had a unique molecular profile with no two patients demonstrating an identical panel of mutations. We identify two emerging novel combinatorial strategies targeting impaired cell cycle arrest, first with epigenetic modifiers and, second, with MAPK/PI3K pathway inhibition. PMID:28781987

  16. The MEK1/2 Inhibitor AZD6244 Sensitizes BRAF-Mutant Thyroid Cancer to Vemurafenib.

    PubMed

    Song, Hao; Zhang, Jinna; Ning, Liang; Zhang, Honglai; Chen, Dong; Jiao, Xuelong; Zhang, Kejun

    2018-05-08

    BACKGROUND [i]BRAF[/i]V600E mutation occurs in approximately 45% of papillary thyroid cancer (PTC) cases, and 25% of anaplastic thyroid cancer (ATC) cases. Vemurafenib/PLX4032, a selective BRAF inhibitor, suppresses extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) signaling and shows beneficial effects in patients with metastatic melanoma harboring the [i]BRAFV600E[/i] mutation. However, the response to vemurafenib is limited in BRAF-mutant thyroid cancer. The present study evaluated the effect of vemurafenib in combination with the selective MEK1/2 inhibitor AZD6244 on cell survival and explored the mechanism underlying the combined effect of vemurafenib and AZD6244 on thyroid cancer cells harboring BRAFV600E. MATERIAL AND METHODS Thyroid cancer 8505C and BCPAP cells harboring the [i]BRAFV600E[/i] mutation were exposed to vemurafenib (0.01, 0.1, and 1 µM) and AZD6244 (0.01, 0.1, and 1 µM) alone or in the indicated combinations for the indicated times. Cell viability was detected by the MTT assay. Cell cycle distribution and induction of apoptosis were detected by flow cytometry. The expression of cyclin D1, P27, (P)-ERK1/2 was evaluated by Western blotting. The effect of vemurafenib or AZD6244 or their combination on the growth of 8505C cells was examined in orthotopic xenograft mouse models [i]in vivo[/i]. RESULTS Vemurafenib alone did not increase cell apoptosis, whereas it decreased cell viability by promoting cell cycle arrest in BCPAP and 8505C cells. AZD6244 alone increased cell apoptosis by inducing cell cycle arrest in BCPAP and 8505C cells. Combination treatment with AZD6244 and vemurafenib significantly decreased cell viability and increased apoptosis in both BCPAP and 8505C cells compared with the effects of each drug alone. AZD6244 alone abolished phospho-ERK1/2 (pERK1/2) expression at 48 h, whereas vemurafenib alone downregulated pERK1/2 at 4-6 h, with rapid recovery of expression, reaching the highest level at 24-48 h. Combined treatment for 48 h completely inhibited pERK1/2 expression. Combination treatment with vemurafenib and AZD6244 inhibited cell growth and induced apoptosis by causing cell-cycle arrest, with the corresponding changes in the expression of the cell cycle regulators p27Kip1 and cyclin D1. Co-administration of vemurafenib and AZD6244 [i]in vivo[/i] had a significant synergistic antitumor effect in a nude mouse model. CONCLUSIONS Vemurafenib activated pERK1/2 and induced vemurafenib resistance in thyroid cancer cells. Combination treatment with vemurafenib and AZD6244 inhibited ERK signaling and caused cell cycle arrest, resulting in cell growth inhibition. Combination treatment in patients with thyroid cancer harboring the [i]BRAFV600E[/i] mutation may overcome vemurafenib resistance and enhance the therapeutic effect.

  17. CDK1 Prevents Unscheduled PLK4-STIL Complex Assembly in Centriole Biogenesis.

    PubMed

    Zitouni, Sihem; Francia, Maria E; Leal, Filipe; Montenegro Gouveia, Susana; Nabais, Catarina; Duarte, Paulo; Gilberto, Samuel; Brito, Daniela; Moyer, Tyler; Kandels-Lewis, Steffi; Ohta, Midori; Kitagawa, Daiju; Holland, Andrew J; Karsenti, Eric; Lorca, Thierry; Lince-Faria, Mariana; Bettencourt-Dias, Mónica

    2016-05-09

    Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Inhibiting glycogen synthase kinase-3 and transforming growth factor-β signaling to promote epithelial transition of human adipose mesenchymal stem cells.

    PubMed

    Setiawan, Melina; Tan, Xiao-Wei; Goh, Tze-Wei; Hin-Fai Yam, Gary; Mehta, Jodhbir S

    2017-09-02

    This study was aimed to investigate the epithelial differentiation of human adipose-derived mesenchymal stem cells (ADSCs) by inhibiting glycogen synthase kinase-3 (GSK3) and transforming growth factor β (TGFβ) signaling. STEMPRO human ADSCs at passage 2 were treated with CHIR99021 (GSK3 inhibitor), E-616452 (TGFβ1 receptor kinase inhibitor), A-83-01 (TGFβ type 1 receptor inhibitor), valproic acid (histone deacetylase inhibitor), tranylcypromine (monoamine oxidase inhibitor) and all-trans retinoic acid for 72 h. The mesenchymal-epithelial transition was shown by down-regulation of mesenchymal genes (Slug, Zinc Finger E-box Binding Homeobox 1 ZEB1, integrin α5 ITGA5 and vimentin VIM) and up-regulation of epithelial genes (E-cadherin, Epithelial Cell Adhesion Molecule EpCAM, Zonula Occludens-1 ZO-1, occludin, deltaN p63 δNp63, Transcription Factor 4 TCF4 and Twist Family bHLH Transcription Factor TWIST), compared to untreated ADSCs. Cell morphology and stress fiber pattern were examined and the treated cells became less migratory in scratch wound closure assay. The formation of cell junction complexes was observed under transmission electron microscopy. Global gene expression using GeneChip ® Human Genome U133 Array (Affymetrix) showed that the treatment up-regulated 540 genes (containing genes for cell cycle, cytoskeleton reorganization, chemotaxis, epithelium development and regulation of cell migration) and down-regulated 483 genes. Human ADSCs were transited to epithelial lineage by inhibiting GSK3 and TGFβ signaling. It can be an adult stem cell source for epithelial cell-based therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Low concentrations of methylmercury inhibit neural progenitor cell proliferation associated with up-regulation of glycogen synthase kinase 3β and subsequent degradation of cyclin E in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Masatake, E-mail: fujimura@nimd.go.jp; Usuki, Fusako

    2015-10-01

    Methylmercury (MeHg) is an environmental neurotoxicant. The developing nervous system is susceptible to low concentrations of MeHg; however, the effect of MeHg on neural progenitor cell (NPC) proliferation, a key stage of neurogenesis during development, remains to be clarified. In this study, we investigated the effect of low concentrations of MeHg on NPCs by using a primary culture system developed using the embryonic rat cerebral cortex. NPC proliferation was suppressed 48 h after exposure to 10 nM MeHg, but cell death was not observed. Western blot analyses for cyclins A, B, D1, and E demonstrated that MeHg down-regulated cyclin E,more » a promoter of the G1/S cell cycle transition. Cyclin E has been shown to be degraded following the phosphorylation by glycogen synthase kinase 3β (GSK-3β). The time course study showed that GSK-3β was up-regulated 3 h after exposure to 10 nM MeHg, and cyclin E degradation 48 h after MeHg exposure. We further demonstrated that GSK-3β inhibitors, lithium and SB-415286, suppressed MeHg-induced inhibition of NPC proliferation by preventing cyclin E degradation. These results suggest that the inhibition of NPC proliferation induced by low concentration of MeHg was associated with up-regulation of GSK-3β at the early stage and subsequent degeneration of cyclin E. - Highlights: • NPC proliferation was suppressed by 10 nM MeHg, but cell death was not observed. • MeHg induced down-regulation of cyclin E, a promoter of cell cycle progression. • GSK-3β was up-regulated by 10 nM MeHg, leading to cyclin E degradation. • GSK-3β inhibitors suppressed MeHg-induced degradation of cyclin E.« less

  20. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.

    PubMed Central

    Shah, R; Jensen, S; Frenz, L M; Johnson, A L; Johnston, L H

    2001-01-01

    The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis. PMID:11729145

  1. 1-(2-Hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione Induces G1 Cell Cycle Arrest and Autophagy in HeLa Cervical Cancer Cells.

    PubMed

    Tsai, Jie-Heng; Hsu, Li-Sung; Huang, Hsiu-Chen; Lin, Chih-Li; Pan, Min-Hsiung; Hong, Hui-Mei; Chen, Wei-Jen

    2016-08-05

    The natural agent, 1-(2-hydroxy-5-methylphenyl)-3-phenyl-1,3-propanedione (HMDB), has been reported to have growth inhibitory effects on several human cancer cells. However, the role of HMDB in cervical cancer remains unclear. Herein, we found that HMDB dose- and time-dependently inhibited growth of HeLa cervical cancer cells, accompanied with G1 cell cycle arrest. HMDB decreased protein expression of cyclins D1/D3/E and cyclin-dependent kinases (CDKs) 2/4/6 and reciprocally increased mRNA and protein levels of CDK inhibitors (p15, p16, p21, and p27), thereby leading to the accumulation of hypophosphorylated retinoblastoma (Rb) protein. HMDB also triggered the accumulation of acidic vesicles and formation of microtubule-associated protein-light chain 3 (LC3), followed by increased expression of LC3 and Beclin-1 and decreased expression of p62, suggesting that HMDB triggered autophagy in HeLa cells. Meanwhile, suppression of the expression of survivin and Bcl-2 implied that HMDB-induced autophagy is tightly linked to apoptosis. Exploring the action mechanism, HMDB induced autophagy via the modulation of AMP-activated protein kinase (AMPK) and mTOR signaling pathway rather than the class III phosphatidylinositol 3-kinase pathway. These results suggest that HMDB inhibits HeLa cell growth by eliciting a G1 arrest through modulation of G1 cell cycle regulators and by concomitantly inducing autophagy through the mediation of AMPK-mTOR and Akt-mTOR pathways, and may be a promising antitumor agent against cervical cancer.

  2. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  3. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  4. The In Vivo Activity of Ime1, the Key Transcriptional Activator of Meiosis-Specific Genes in Saccharomyces cerevisiae, Is Inhibited by the Cyclic AMP/Protein Kinase A Signal Pathway through the Glycogen Synthase Kinase 3-β Homolog Rim11

    PubMed Central

    Rubin-Bejerano, Ifat; Sagee, Shira; Friedman, Osnat; Pnueli, Lilach; Kassir, Yona

    2004-01-01

    Phosphorylation is the main mode by which signals are transmitted to key regulators of developmental pathways. The glycogen synthase kinase 3 family plays pivotal roles in the development and well-being of all eukaryotic organisms. Similarly, the budding yeast homolog Rim11 is essential for the exit of diploid cells from the cell cycle and for entry into the meiotic developmental pathway. In this report we show that in vivo, in cells grown in a medium promoting vegetative growth with acetate as the sole carbon source (SA medium), Rim11 phosphorylates Ime1, the master transcriptional activator required for entry into the meiotic cycle and for the transcription of early meiosis-specific genes. We demonstrate that in the presence of glucose, the kinase activity of Rim11 is inhibited. This inhibition could be due to phosphorylation on Ser-5, Ser-8, and/or Ser-12 because in the rim11S5AS8AS12A mutant, Ime1 is incorrectly phosphorylated in the presence of glucose and cells undergo sporulation. We further show that this nutrient signal is transmitted to Rim11 and consequently to Ime1 by the cyclic AMP/protein kinase A signal transduction pathway. Ime1 is phosphorylated in SA medium on at least two residues, Tyr-359 and Ser-302 and/or Ser-306. Ser-302 and Ser-306 are part of a consensus site for the mammalian homolog of Rim11, glycogen synthase kinase 3-β. Phosphorylation on Tyr-359 but not Ser-302 or Ser-306 is essential for the transcription of early meiosis-specific genes and sporulation. We show that Tyr-359 is phosphorylated by Rim11. PMID:15282298

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafsson, Karin; Heffner, Garrett; Wenzel, Pamela L.

    The widely expressed adaptor protein Shb has previously been reported to contribute to T cell function due to its association with the T cell receptor and furthermore, several of Shb's known interaction partners are established regulators of blood cell development and function. In addition, Shb deficient embryonic stem cells displayed reduced blood cell colony formation upon differentiation in vitro. The aim of the current study was therefore to explore hematopoietic stem and progenitor cell function in the Shb knockout mouse. Shb deficient bone marrow contained reduced relative numbers of long-term hematopoietic stem cells (LT-HSCs) that exhibited lower proliferation rates. Despitemore » this, Shb knockout LT-HSCs responded promptly by entering the cell cycle in response to genotoxic stress by 5-fluorouracil treatment. In competitive LT-HSC transplantations, Shb null cells initially engrafted as well as the wild-type cells but provided less myeloid expansion over time. Moreover, Shb knockout bone marrow cells exhibited elevated basal activities of focal adhesion kinase/Rac1/p21-activated kinase signaling and reduced responsiveness to Stem Cell Factor stimulation. Consequently, treatment with a focal adhesion kinase inhibitor increased Shb knockout LT-HSC proliferation. The altered signaling characteristics thus provide a plausible mechanistic explanation for the changes in LT-HSC proliferation since these signaling intermediates have all been shown to participate in LT-HSC cell cycle control. In summary, the loss of Shb dependent signaling in bone marrow cells, resulting in elevated focal adhesion kinase activity and reduced proliferative responses in LT-HSCs under steady state hematopoiesis, confers a disadvantage to the maintenance of LT-HSCs over time. -- Highlights: • Shb is an adaptor protein operating downstream of tyrosine kinase receptors. • Shb deficiency reduces hematopoietic stem cell proliferation. • The proliferative effect of Shb occurs via increased focal adhesion kinase activity. • Shb is critical for the long-term maintenance of the hematopoietic stem cell pool.« less

  6. [Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].

    PubMed

    Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y

    1996-03-01

    Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.

  7. Analysis of Schizosaccharomyces pombe Meiosis.

    PubMed

    Yamashita, Akira; Sakuno, Takeshi; Watanabe, Yoshinori; Yamamoto, Masayuki

    2017-09-01

    Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast. © 2017 Cold Spring Harbor Laboratory Press.

  8. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells

    PubMed Central

    Bolton, Eric C.

    2015-01-01

    The androgen receptor (AR) mediates the developmental, physiologic, and pathologic effects of androgens including 5α-dihydrotestosterone (DHT). However, the mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells are not well understood, though they are central to prostate development, homeostasis, and neoplasia. Here, we identify androgen-responsive genes that restrain cell cycle progression and proliferation of human prostate epithelial cell lines (HPr-1AR and PC3-Lenti-AR), and we investigate the mechanisms through which AR regulates their expression. DHT inhibited proliferation of HPr-1AR and PC3-Lenti-AR, and cell cycle analysis revealed a prolonged G1 interval. In the cell cycle, the G1/S-phase transition is initiated by the activity of cyclin D and cyclin-dependent kinase (CDK) complexes, which relieve growth suppression. In HPr-1AR, cyclin D1/2 and CDK4/6 mRNAs were androgen-repressed, whereas CDK inhibitor, CDKN1A, mRNA was androgen-induced. The regulation of these transcripts was AR-dependent, and involved multiple mechanisms. Similar AR-mediated down-regulation of CDK4/6 mRNAs and up-regulation of CDKN1A mRNA occurred in PC3-Lenti-AR. Further, CDK4/6 overexpression suppressed DHT-inhibited cell cycle progression and proliferation of HPr-1AR and PC3-Lenti-AR, whereas CDKN1A overexpression induced cell cycle arrest. We therefore propose that AR-mediated growth suppression of HPr-1AR involves cyclin D1 mRNA decay, transcriptional repression of cyclin D2 and CDK4/6, and transcriptional activation of CDKN1A, which serve to decrease CDK4/6 activity. AR-mediated inhibition of PC3-Lenti-AR proliferation occurs through a similar mechanism, albeit without down-regulation of cyclin D. Our findings provide insight into AR-mediated regulation of prostate epithelial cell proliferation. PMID:26372468

  9. Hypothalamic mTOR signaling regulates food intake.

    PubMed

    Cota, Daniela; Proulx, Karine; Smith, Kathi A Blake; Kozma, Sara C; Thomas, George; Woods, Stephen C; Seeley, Randy J

    2006-05-12

    The mammalian Target of Rapamycin (mTOR) protein is a serine-threonine kinase that regulates cell-cycle progression and growth by sensing changes in energy status. We demonstrated that mTOR signaling plays a role in the brain mechanisms that respond to nutrient availability, regulating energy balance. In the rat, mTOR signaling is controlled by energy status in specific regions of the hypothalamus and colocalizes with neuropeptide Y and proopiomelanocortin neurons in the arcuate nucleus. Central administration of leucine increases hypothalamic mTOR signaling and decreases food intake and body weight. The hormone leptin increases hypothalamic mTOR activity, and the inhibition of mTOR signaling blunts leptin's anorectic effect. Thus, mTOR is a cellular fuel sensor whose hypothalamic activity is directly tied to the regulation of energy intake.

  10. Up-regulation of tumor suppressor genes by exogenous dhC16-Cer contributes to its anti-cancer activity in primary effusion lymphoma.

    PubMed

    Cao, Yueyu; Qiao, Jing; Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang

    2017-02-28

    Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides "killing" PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors.

  11. A Clb/Cdk1-mediated regulation of Fkh2 synchronizes CLB expression in the budding yeast cell cycle.

    PubMed

    Linke, Christian; Chasapi, Anastasia; González-Novo, Alberto; Al Sawad, Istabrak; Tognetti, Silvia; Klipp, Edda; Loog, Mart; Krobitsch, Sylvia; Posas, Francesc; Xenarios, Ioannis; Barberis, Matteo

    2017-01-01

    Precise timing of cell division is achieved by coupling waves of cyclin-dependent kinase (Cdk) activity with a transcriptional oscillator throughout cell cycle progression. Although details of transcription of cyclin genes are known, it is unclear which is the transcriptional cascade that modulates their expression in a timely fashion. Here, we demonstrate that a Clb/Cdk1-mediated regulation of the Fkh2 transcription factor synchronizes the temporal mitotic CLB expression in budding yeast. A simplified kinetic model of the cyclin/Cdk network predicts a linear cascade where a Clb/Cdk1-mediated regulation of an activator molecule drives CLB3 and CLB2 expression. Experimental validation highlights Fkh2 as modulator of CLB3 transcript levels, besides its role in regulating CLB2 expression. A Boolean model based on the minimal number of interactions needed to capture the information flow of the Clb/Cdk1 network supports the role of an activator molecule in the sequential activation, and oscillatory behavior, of mitotic Clb cyclins. This work illustrates how transcription and phosphorylation networks can be coupled by a Clb/Cdk1-mediated regulation that synchronizes them.

  12. Interplay between cancer cell cycle and metabolism: Challenges, targets and therapeutic opportunities.

    PubMed

    Roy, Debmalya; Sheng, Gao Ying; Herve, Semukunzi; Carvalho, Evandro; Mahanty, Arpan; Yuan, Shengtao; Sun, Li

    2017-05-01

    A growing interest has emerged in the field of studying the cross-talk between cancer cell cycle and metabolism. In this review, we aimed to present how metabolism and cell cycle are correlated and how cancer cells get energy to drive cell cycle. Cell proliferation and cell death largely depend on the metabolic activity of the cell. Cell cycle proteins, e.g. cyclin D, cyclin dependent kinase (CDK), some pro-apoptotic and anti-apoptotic proteins, and P53 have been shown to be regulated by metabolic crosstalk. Dysregulation of this cross-talk between metabolism and cell cycle leads to degenerative disorder(s) and cancer. It is not fully understood the actual reason of aberration between metabolism and cell cycle, but it is a hallmark of cancer research. Herein, we discussed the role of some regulatory molecules relative of cell cycle and metabolism and highlight how they control the function of each other. We also pointed out, current therapeutic opportunities and some additional crucial therapeutic targets on these fields that could be a breakthrough in cancer research. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    PubMed Central

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B.; Murray, Brion W.

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; K i<0.5 nM; cellular IC50 2–6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug. PMID:26398286

  14. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    PubMed

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Ki<0.5 nM; cellular IC50 2-6 nM). Treatment of tumor cells in vitro with PF-7006 modulates expected Mps1-dependent biology as demonstrated by molecular and phenotypic measures (reduced pHH3-Ser10 levels, shorter duration of mitosis, micro-nucleation, and apoptosis). Tumor-bearing mice treated with PF-7006 exhibit tumor growth inhibition concomitant with pharmacodynamic modulation of a downstream biomarker (pHH3-Ser10). Unfortunately, efficacy only occurs at drug exposures that cause dose-limiting body weight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.

  15. The proteome and phosphoproteome of maize pollen uncovers fertility candidate proteins.

    PubMed

    Chao, Qing; Gao, Zhi-Fang; Wang, Yue-Feng; Li, Zhe; Huang, Xia-He; Wang, Ying-Chun; Mei, Ying-Chang; Zhao, Biligen-Gaowa; Li, Liang; Jiang, Yu-Bo; Wang, Bai-Chen

    2016-06-01

    Maize is unique since it is both monoecious and diclinous (separate male and female flowers on the same plant). We investigated the proteome and phosphoproteome of maize pollen containing modified proteins and here we provide a comprehensive pollen proteome and phosphoproteome which contain 100,990 peptides from 6750 proteins and 5292 phosphorylated sites corresponding to 2257 maize phosphoproteins, respectively. Interestingly, among the total 27 overrepresented phosphosite motifs we identified here, 11 were novel motifs, which suggested different modification mechanisms in plants compared to those of animals. Enrichment analysis of pollen phosphoproteins showed that pathways including DNA synthesis/chromatin structure, regulation of RNA transcription, protein modification, cell organization, signal transduction, cell cycle, vesicle transport, transport of ions and metabolisms, which were involved in pollen development, the following germination and pollen tube growth, were regulated by phosphorylation. In this study, we also found 430 kinases and 105 phosphatases in the maize pollen phosphoproteome, among which calcium dependent protein kinases (CDPKs), leucine rich repeat kinase, SNF1 related protein kinases and MAPK family proteins were heavily enriched and further analyzed. From our research, we also uncovered hundreds of male sterility-associated proteins and phosphoproteins that might influence maize productivity and serve as targets for hybrid maize seed production. At last, a putative complex signaling pathway involving CDPKs, MAPKs, ubiquitin ligases and multiple fertility proteins was constructed. Overall, our data provides new insight for further investigation of protein phosphorylation status in mature maize pollen and construction of maize male sterile mutants in the future.

  16. Estrogen regulates energy metabolic pathway and upstream adenosine 5'-monophosphate-activated protein kinase and phosphatase enzyme expression in dorsal vagal complex metabolosensory neurons during glucostasis and hypoglycemia.

    PubMed

    Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P

    2015-02-01

    The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury. © 2014 Wiley Periodicals, Inc.

  17. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.

    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based proteinmore » profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.« less

  18. Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1

    PubMed Central

    Xu, Zhiwei; Potula, Hari-Hara SK; Vallurupalli, Anusha; Perry, Daniel; Baker, Henry; Croker, Byron P.; Dozmorov, Igor; Morel, Laurence

    2013-01-01

    Sle2c1 is an NZM2410 and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18INK4c (p18), as the top candidate gene for inducing the Slec2c1 associated expansion of B1a cells. A novel SNP in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and Pc B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of Pc B1a cells. As cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal, and that its impaired expression leads to an accumulation of these cells with high autoreactive potential. PMID:21543644

  19. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi.

    PubMed

    Rojas-Pirela, Maura; Rigden, Daniel J; Michels, Paul A; Cáceres, Ana J; Concepción, Juan Luis; Quiñones, Wilfredo

    2018-01-01

    Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR

    PubMed Central

    Zhang, Xu Hannah; Zhao, Chunying; Ma, Zhongmin Alex

    2010-01-01

    Summary The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca2+-independent-phospholipase A2 (iPLA2). We previously reported that inhibition of iPLA2 arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA2 induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA2. The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA2-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway. PMID:18032786

  1. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR.

    PubMed

    Zhang, Xu Hannah; Zhao, Chunying; Ma, Zhongmin Alex

    2007-12-01

    The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca(2+)-independent-phospholipase A(2) (iPLA(2)). We previously reported that inhibition of iPLA(2) arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA(2) induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA(2). The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA(2)-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway.

  2. Signaling pathways involved in the inhibition of epidermal growth factor receptor by erlotinib in hepatocellular cancer

    PubMed Central

    Huether, Alexander; Höpfner, Michael; Sutter, Andreas P; Baradari, Viola; Schuppan, Detlef; Scherübl, Hans

    2006-01-01

    AIM: To examine the underlying mechanisms of erlotinib-induced growth inhibition in hepatocellular carcinoma (HCC). METHODS: Erlotinib-induced alterations in gene expression were evaluated using cDNA array technology; changes in protein expression and/or protein activation due to erlotinib treatment as well as IGF-1-induced EGFR transactivation were investigated using Western blotting. RESULTS: Erlotinib treatment inhibited the mitogen activated protein (MAP)-kinase pathway and signal transducer of activation and transcription (STAT)-mediated signaling which led to an altered expression of apoptosis and cell cycle regulating genes as demonstrated by cDNA array technology. Overexpression of proapoptotic factors like caspases and gadds associated with a down-regulation of antiapoptotic factors like Bcl-2, Bcl-XL or jun D accounted for erlotinib's potency to induce apoptosis. Downregulation of cell cycle regulators promoting the G1/S-transition and overexpression of cyclin-dependent kinase inhibitors and gadds contributed to the induction of a G1/G0-arrest in response to erlotinib. Furthermore, we displayed the transactivation of EGFR-mediated signaling by the IGF-1-receptor and showed erlotinib’s inhibitory effects on the receptor-receptor cross talk. CONCLUSION: Our study sheds light on the under-standing of the mechanisms of action of EGFR-TK-inhibition in HCC-cells and thus might facilitate the design of combination therapies that act additively or synergistically. Moreover, our data on the pathways responding to erlotinib treatment could be helpful in predicting the responsiveness of tumors to EGFR-TKIs in the future. PMID:16937526

  3. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    PubMed Central

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  4. Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment

    PubMed Central

    Dou, Zhen; Liu, Xing; Wang, Wenwen; Zhu, Tongge; Wang, Xinghui; Xu, Leilei; Abrieu, Ariane; Fu, Chuanhai; Hill, Donald L.; Yao, Xuebiao

    2015-01-01

    The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C–MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression. PMID:26240331

  5. Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment.

    PubMed

    Dou, Zhen; Liu, Xing; Wang, Wenwen; Zhu, Tongge; Wang, Xinghui; Xu, Leilei; Abrieu, Ariane; Fu, Chuanhai; Hill, Donald L; Yao, Xuebiao

    2015-08-18

    The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.

  6. Urea-induced denaturation of human calcium/calmodulin-dependent protein kinase IV: a combined spectroscopic and MD simulation studies.

    PubMed

    Naz, Huma; Shahbaaz, Mohd; Haque, Md Anzarul; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a multifunctional enzyme which belongs to the Ser/Thr kinase family. CaMKIV plays important role in varieties of biological processes such as gene expression regulation, memory consolidation, bone growth, T-cell maturation, sperm motility, regulation of microtubule dynamics, cell-cycle progression, and apoptosis. To measure stability parameters, urea-induced denaturation of CaMKIV was carried out at pH 7.4 and 25°C, using three different probes, namely far-UV CD, near-UV absorption, and tryptophan fluorescence. A coincidence of normalized denaturation curves of these optical properties suggests that urea-induced denaturation is a two-state process. Analysis of these denaturation curves gave values of 4.20 ± 0.12 kcal mol -1 , 2.95 ± 0.15 M, and 1.42 ± 0.06 kcal mol -1  M -1 for [Formula: see text] (Gibbs free energy change (ΔG D ) in the absence of urea), C m (molar urea concentration ([urea]) at the midpoint of the denaturation curve), and m (=∂ΔG D /∂[urea]), respectively. All these experimental observations have been fully supported by 30 ns molecular dynamics simulation studies.

  7. Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway

    NASA Technical Reports Server (NTRS)

    Chakravarthy, M. V.; Abraha, T. W.; Schwartz, R. J.; Fiorotto, M. L.; Booth, F. W.

    2000-01-01

    Interest is growing in methods to extend replicative life span of non-immortalized stem cells. Using the insulin-like growth factor I (IGF-I) transgenic mouse in which the IGF-I transgene is expressed during skeletal muscle development and maturation prior to isolation and during culture of satellite cells (the myogenic stem cells of mature skeletal muscle fibers) as a model system, we elucidated the underlying molecular mechanisms of IGF-I-mediated enhancement of proliferative potential of these cells. Satellite cells from IGF-I transgenic muscles achieved at least five additional population doublings above the maximum that was attained by wild type satellite cells. This IGF-I-induced increase in proliferative potential was mediated via activation of the phosphatidylinositol 3'-kinase/Akt pathway, independent of mitogen-activated protein kinase activity, facilitating G(1)/S cell cycle progression via a down-regulation of p27(Kip1). Adenovirally mediated ectopic overexpression of p27(Kip1) in exponentially growing IGF-I transgenic satellite cells reversed the increase in cyclin E-cdk2 kinase activity, pRb phosphorylation, and cyclin A protein abundance, thereby implicating an important role for p27(Kip1) in promoting satellite cell senescence. These observations provide a more complete dissection of molecular events by which increased local expression of a growth factor in mature skeletal muscle fibers extends replicative life span of primary stem cells than previously known.

  8. Biochemical changes of salivary gland adenoid cystic carcinoma cells induced by SGI-1776

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Xiuxiu, E-mail: show-1989@163.com; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000; Yu, Yunfang, E-mail: yyf_8247425@163.com

    Provirus integration site for Moloney murine leukemia virus 1 (Pim-1) has proved to be an oncogene and it is known that to depress Pim-1 activity may be a novel oncological treatment strategy. SGI-1776, a small molecule, is the first clinically tested inhibitor of the Pim kinase family. Here, we aimed to explore the effect of SGI-1776 on salivary adenoid cystic carcinoma (SACC). Expression of Pim-1 was confirmed in SACC and control tissues by qRT-PCR. After SGI-1776 treatment, the Pim-1 expressions and Pim-1 kinase activity in both SACC-83 and SACC-LM cell lines were measured. Cell proliferation, cell invasion, cell cycle, apoptosismore » and mitochondrial membrane potential were analyzed. Also, the expression of FOXO3a, p-FOXO3a, RUNX3, Bcl-2, BAD, p-BAD, Bim and p-Bim were detected by Western blot. The results showed that Pim-1 was significantly overexpressed in SACC tissues. SGI-1776 down-regulated the Pim-1 expression, inhibited Pim-1 kinase activity, reduced cell proliferation, decreased invasive ability, increased caspase-3 activity and induced apoptosis, cell cycle arrest and mitochondrial depolarization. Reduced expression was also seen in p-FOXO3a, RUNX3, Bcl-2, p-BAD and p-Bim, whereas no significant changes were observed from FOXO3a, BAD and Bim. These results confirm the pivotal role of Pim-1 in SACC and suggest that targeting Pim-1 kinase signal pathway by SGI-1776 might be a promising therapeutic modality for SACC.« less

  9. Biochemical changes of salivary gland adenoid cystic carcinoma cells induced by SGI-1776.

    PubMed

    Hou, Xiuxiu; Yu, Yunfang; Feng, Jianguo; Wang, Jiafeng; Zheng, Chuanming; Ling, Zhiqiang; Ge, Minghua; Zhu, Xin

    2017-03-15

    Provirus integration site for Moloney murine leukemia virus 1 (Pim-1) has proved to be an oncogene and it is known that to depress Pim-1 activity may be a novel oncological treatment strategy. SGI-1776, a small molecule, is the first clinically tested inhibitor of the Pim kinase family. Here, we aimed to explore the effect of SGI-1776 on salivary adenoid cystic carcinoma (SACC). Expression of Pim-1 was confirmed in SACC and control tissues by qRT-PCR. After SGI-1776 treatment, the Pim-1 expressions and Pim-1 kinase activity in both SACC-83 and SACC-LM cell lines were measured. Cell proliferation, cell invasion, cell cycle, apoptosis and mitochondrial membrane potential were analyzed. Also, the expression of FOXO3a, p-FOXO3a, RUNX3, Bcl-2, BAD, p-BAD, Bim and p-Bim were detected by Western blot. The results showed that Pim-1 was significantly overexpressed in SACC tissues. SGI-1776 down-regulated the Pim-1 expression, inhibited Pim-1 kinase activity, reduced cell proliferation, decreased invasive ability, increased caspase-3 activity and induced apoptosis, cell cycle arrest and mitochondrial depolarization. Reduced expression was also seen in p-FOXO3a, RUNX3, Bcl-2, p-BAD and p-Bim, whereas no significant changes were observed from FOXO3a, BAD and Bim. These results confirm the pivotal role of Pim-1 in SACC and suggest that targeting Pim-1 kinase signal pathway by SGI-1776 might be a promising therapeutic modality for SACC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Cytoplasmic p21Cip1/WAF1 regulates neurite remodeling by inhibiting Rho-kinase activity

    PubMed Central

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-01-01

    p21Cip1/WAF1 has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21Cip1/WAF1 is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21Cip1/WAF1 lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21Cip1/WAF1 forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21Cip1/WAF1 is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21Cip1/WAF1 may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions. PMID:12119358

  11. Cytoplasmic p21(Cip1/WAF1) regulates neurite remodeling by inhibiting Rho-kinase activity.

    PubMed

    Tanaka, Hiroyuki; Yamashita, Toshihide; Asada, Minoru; Mizutani, Shuki; Yoshikawa, Hideki; Tohyama, Masaya

    2002-07-22

    p21(Cip1/WAF1) has cell cycle inhibitory activity by binding to and inhibiting both cyclin/Cdk kinases and proliferating cell nuclear antigen. Here we show that p21(Cip1/WAF1) is induced in the cytoplasm during the course of differentiation of chick retinal precursor cells and N1E-115 cells. Ectopic expression of p21(Cip1/WAF1) lacking the nuclear localization signal in N1E-115 cells and NIH3T3 cells affects the formation of actin structures, characteristic of inactivation of Rho. p21(Cip1/WAF1) forms a complex with Rho-kinase and inhibits its activity in vitro and in vivo. Neurite outgrowth and branching from the hippocampal neurons are promoted if p21(Cip1/WAF1) is expressed abundantly in the cytoplasm. These results suggest that cytoplasmic p21(Cip1/WAF1) may contribute to the developmental process of the newborn neurons that extend axons and dendrites into target regions.

  12. Large-scale label-free comparative proteomics analysis of polo-like kinase 1 inhibition via the small-molecule inhibitor BI 6727 (Volasertib) in BRAF(V600E) mutant melanoma cells.

    PubMed

    Cholewa, Brian D; Pellitteri-Hahn, Molly C; Scarlett, Cameron O; Ahmad, Nihal

    2014-11-07

    Polo-like kinase 1 (Plk1) is a serine/threonine kinase that plays a key role during the cell cycle by regulating mitotic entry, progression, and exit. Plk1 is overexpressed in a variety of human cancers and is essential to sustained oncogenic proliferation, thus making Plk1 an attractive therapeutic target. However, the clinical efficacy of Plk1 inhibition has not emulated the preclinical success, stressing an urgent need for a better understanding of Plk1 signaling. This study addresses that need by utilizing a quantitative proteomics strategy to compare the proteome of BRAF(V600E) mutant melanoma cells following treatment with the Plk1-specific inhibitor BI 6727. Employing label-free nano-LC-MS/MS technology on a Q-exactive followed by SIEVE processing, we identified more than 20 proteins of interest, many of which have not been previously associated with Plk1 signaling. Here we report the down-regulation of multiple metabolic proteins with an associated decrease in cellular metabolism, as assessed by lactate and NAD levels. Furthermore, we have also identified the down-regulation of multiple proteasomal subunits, resulting in a significant decrease in 20S proteasome activity. Additionally, we have identified a novel association between Plk1 and p53 through heterogeneous ribonucleoprotein C1/C2 (hnRNPC), thus providing valuable insight into Plk1's role in cancer cell survival.

  13. Overexpression of Cdk5 or non-phosphorylatable retinoblastoma protein protects septal neurons from oxygen-glucose deprivation.

    PubMed

    Panickar, Kiran S; Nonner, Doris; White, Michael G; Barrett, John N

    2008-09-01

    Activation of cyclin dependent kinases (Cdks) contributes to neuronal death following ischemia. We used oxygen-glucose deprivation (OGD) in septal neuronal cultures to test for possible roles of cell cycle proteins in neuronal survival. Increased cdc2-immunoreactive neurons were observed at 24 h after the end of 5 h OGD. Green fluorescent protein (GFP) or GFP along with a wild type or dominant negative form of the retinoblastoma protein (Rb), or cyclin-dependent kinase5 (Cdk5), were overexpressed using plasmid constructs. Following OGD, when compared to controls, neurons expressing both GFP and dominant negative Rb, RbDeltaK11, showed significantly less damage using microscopy imaging. Overexpression of Rb-wt did not affect survival. Surprisingly, overexpression of Cdk5-wild type significantly protected neurons from process disintegration but Cdk5T33, a dominant negative Cdk5, gave little or no protection. Thus phosphorylation of the cell cycle regulator, Rb, contributes to death in OGD in septal neurons but Cdk5 can have a protective role.

  14. Differential downstream functions of protein kinase Ceta and -theta in EL4 mouse thymoma cells.

    PubMed

    Resnick, M S; Kang, B S; Luu, D; Wickham, J T; Sando, J J; Hahn, C S

    1998-10-16

    Sensitive EL4 mouse thymoma cells (s-EL4) respond to phorbol esters with growth inhibition, adherence to substrate, and production of cytokines including interleukin 2. Since these cells express several of the phorbol ester-sensitive protein kinase C (PKC) isozymes, the function of each isozyme remains unclear. Previous studies demonstrated that s-EL4 cells expressed substantially more PKCeta and PKCtheta than did EL4 cells resistant to phorbol esters (r-EL4). To examine potential roles for PKCeta and PKCtheta in EL4 cells, wild type and constitutively active versions of the isozymes were transiently expressed using a Sindbis virus system. Expression of constitutively active PKCeta, but not PKCtheta, in s- and r-EL4 cells altered cell morphology and cytoskeletal structure in a manner similar to that of phorbol ester treatment, suggesting a role for PKCeta in cytoskeletal organization. Prolonged treatment of s-EL4 cells with phorbol esters results in inhibition of cell cycling along with a decreased expression of most of the PKC isozymes, including PKCtheta. Introduction of virally expressed PKCtheta, but not PKCeta, overcame the inhibitory effects of the prolonged phorbol ester treatment on cell cycle progression, suggesting a possible involvement of PKCtheta in cell cycle regulation. These results support differential functions for PKCeta and PKCtheta in T cell activation.

  15. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    PubMed Central

    Datta, Antara; Silverman, Lee; Phipps, Andrew J; Hiraragi, Hajime; Ratner, Lee; Lairmore, Michael D

    2007-01-01

    Background Human T-lymphotropic virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C), had enhanced checkpoint kinase 1 (Chk1) serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1), diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T-cell survival. PMID:17634129

  16. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication.

    PubMed

    Hossain, Manzar; Stillman, Bruce

    2012-08-15

    Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.

  17. P276-00, a cyclin-dependent kinase inhibitor, modulates cell cycle and induces apoptosis in vitro and in vivo in mantle cell lymphoma cell lines

    PubMed Central

    2012-01-01

    Background Mantle cell lymphoma (MCL) is a well-defined aggressive lymphoid neoplasm characterized by proliferation of mature B-lymphocytes that have a remarkable tendency to disseminate. This tumor is considered as one of the most aggressive lymphoid neoplasms with poor responses to conventional chemotherapy and relatively short survival. Since cyclin D1 and cell cycle control appears as a natural target, small-molecule inhibitors of cyclin-dependent kinases (Cdks) and cyclins may play important role in the therapy of this disorder. We explored P276-00, a novel selective potent Cdk4-D1, Cdk1-B and Cdk9-T1 inhibitor discovered by us against MCL and elucidated its potential mechanism of action. Methods The cytotoxic effect of P276-00 in three human MCL cell lines was evaluated in vitro. The effect of P276-00 on the regulation of cell cycle, apoptosis and transcription was assessed, which are implied in the pathogenesis of MCL. Flow cytometry, western blot, immunoflourescence and siRNA studies were performed. The in vivo efficacy and effect on survival of P276-00 was evaluated in a Jeko-1 xenograft model developed in SCID mice. PK/PD analysis of tumors were performed using LC-MS and western blot analysis. Results P276-00 showed a potent cytotoxic effect against MCL cell lines. Mechanistic studies confirmed down regulation of cell cycle regulatory proteins with apoptosis. P276-00 causes time and dose dependent increase in the sub G1 population as early as from 24 h. Reverse transcription PCR studies provide evidence that P276-00 treatment down regulated transcription of antiapoptotic protein Mcl-1 which is a potential pathogenic protein for MCL. Most importantly, in vivo studies have revealed significant efficacy as a single agent with increased survival period compared to vehicle treated. Further, preliminary combination studies of P276-00 with doxorubicin and bortezomib showed in vitro synergism. Conclusion Our studies thus provide evidence and rational that P276-00 alone or in combination is a potential therapeutic molecule to improve patients’ outcome in mantle cell lymphoma. PMID:23075291

  18. Altered Body Weight Regulation in CK1ε Null and tau Mutant Mice on Regular Chow and High Fat Diets

    PubMed Central

    Zhou, Lili; Summa, Keith C.; Olker, Christopher; Vitaterna, Martha H.; Turek, Fred W.

    2016-01-01

    Disruption of circadian rhythms results in metabolic dysfunction. Casein kinase 1 epsilon (CK1ε) is a canonical circadian clock gene. Null and tau mutations in CK1ε show distinct effects on circadian period. To investigate the role of CK1ε in body weight regulation under both regular chow (RC) and high fat (HF) diet conditions, we examined body weight on both RC and HF diets in CK1ε −/− and CK1ε tau/tau mice on a standard 24 hr light-dark (LD) cycle. Given the abnormal entrainment of CK1ε tau/tau mice on a 24 hr LD cycle, a separate set of CK1ε tau/tau mice were tested under both diet conditions on a 20 hr LD cycle, which more closely matches their endogenous period length. On the RC diet, both CK1ε −/− and CK1ε tau/tau mutants on a 24 hr LD cycle and CK1ε tau/tau mice on a 20 hr LD cycle exhibited significantly lower body weights, despite similar overall food intake and activity levels. On the HF diet, CK1ε tau/tau mice on a 20 hr LD cycle were protected against the development of HF diet-induced excess weight gain. These results provide additional evidence supporting a link between circadian rhythms and energy regulation at the genetic level, particularly highlighting CK1ε involved in the integration of circadian biology and metabolic physiology. PMID:27144030

  19. Discovery of 2-(1H-indol-5-ylamino)-6-(2,4-difluorophenylsulfonyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-one (7ao) as a potent selective inhibitor of Polo like kinase 2 (PLK2)

    PubMed Central

    Reddy, M. V. Ramana; Akula, Balireddy; Jatiani, Shashidhar; Vasquez-Del Carpio, Rodrigo; Billa, Vinay K.; Mallireddigari, Muralidhar R.; Cosenza, Stephen C.; Subbaiah, D. R. C. Venkata; Bharathi, E. Vijaya; Pallela, Venkat R.; Ramkumar, Poornima; Jain, Rinku; Aggarwal, Aneel K.; Reddy, E. Premkumar

    2018-01-01

    Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao. PMID:26762835

  20. Discovery of 2-(1H-indol-5-ylamino)-6-(2,4-difluorophenylsulfonyl)-8-methylpyrido[2,3-d]pyrimidin-7(8H)-one (7ao) as a potent selective inhibitor of Polo like kinase 2 (PLK2).

    PubMed

    Reddy, M V Ramana; Akula, Balireddy; Jatiani, Shashidhar; Vasquez-Del Carpio, Rodrigo; Billa, Vinay K; Mallireddigari, Muralidhar R; Cosenza, Stephen C; Venkata Subbaiah, D R C; Bharathi, E Vijaya; Pallela, Venkat R; Ramkumar, Poornima; Jain, Rinku; Aggarwal, Aneel K; Reddy, E Premkumar

    2016-02-15

    Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Kinome-wide transcriptional profiling of uveal melanoma reveals new vulnerabilities to targeted therapeutics.

    PubMed

    Bailey, Fiona P; Clarke, Kim; Kalirai, Helen; Kenyani, Jenna; Shahidipour, Haleh; Falciani, Francesco; Coulson, Judy M; Sacco, Joseph J; Coupland, Sarah E; Eyers, Patrick A

    2018-03-01

    Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients. © 2017 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons.

  2. PDK1-dependent activation of atypical PKC leads to degradation of the p21 tumour modifier protein

    PubMed Central

    Scott, Mary T.; Ingram, Angela; Ball, Kathryn L.

    2002-01-01

    p21WAF1/CIP1 contributes to positive and negative growth control on multiple levels. We previously mapped phosphorylation sites within the C-terminal domain of p21 that regulate proliferating cell nucear antigen binding. In the current study, a kinase has been fractionated from mammalian cells that stoichiometrically phosphorylates p21 at the Ser146 site, and the enzyme has been identified as an insulin-responsive atypical protein kinase C (aPKC). Expression of PKCζ or activation of the endogenous kinase by 3-phosphoinositide dependent protein kinase-1 (PDK1) decreased the half-life of p21. Conversely, dnPKCζ or dnPDK1 increased p21 protein half-life, and a PDK1-dependent increase in the rate of p21 degradation was mediated by aPKC. Insulin stimulation gave a biphasic response with a rapid transient decrease in p21 protein levels during the initial signalling phase that was dependent on phosphatidylinositol 3- kinase, PKC and proteasome activity. Thus, aPKC provides a physiological signal for the degradation of p21. The rapid degradation of p21 protein during the signalling phase of insulin stimulation identifies a novel link between energy metabolism and a key modulator of cell cycle progression. PMID:12485998

  3. TgTKL1 Is a Unique Plant-Like Nuclear Kinase That Plays an Essential Role in Acute Toxoplasmosis

    PubMed Central

    Varberg, Joseph M.; Coppens, Isabelle; Arrizabalaga, Gustavo

    2018-01-01

    ABSTRACT In the protozoan parasite Toxoplasma gondii, protein kinases have been shown to play key roles in regulating parasite motility, invasion, replication, egress, and survival within the host. The tyrosine kinase-like (TKL) family of proteins are an unexplored set of kinases in Toxoplasma. Of the eight annotated TKLs in the Toxoplasma genome, a recent genome-wide loss-of-function screen showed that six are important for tachyzoite fitness. By utilizing an endogenous tagging approach, we showed that these six T. gondii TKLs (TgTKLs) localize to various subcellular compartments, including the nucleus, the cytosol, the inner membrane complex, and the Golgi apparatus. To gain insight into the function of TKLs in Toxoplasma, we first characterized TgTKL1, which contains the plant-like enhanced disease resistance 1 (EDR1) domain and localizes to the nucleus. TgTKL1 knockout parasites displayed significant defects in progression through the lytic cycle; we show that the defects were due to specific impairment of host cell attachment. Transcriptomics analysis identified over 200 genes of diverse functions that were differentially expressed in TgTKL1 knockout parasites. Importantly, numerous genes implicated in host cell attachment and invasion were among those most significantly downregulated, resulting in defects in microneme secretion and processing. Significantly, all of the mice inoculated intraperitoneally with TgTKL1 knockout parasites survived the infection, suggesting that TgTKL1 plays an essential role in acute toxoplasmosis. Together, these findings suggest that TgTKL1 mediates a signaling pathway that regulates the expression of multiple factors required for parasite virulence, underscoring the potential of this kinase as a novel therapeutic target. PMID:29559568

  4. Nuclear glycogen and glycogen synthase kinase 3.

    PubMed

    Ragano-Caracciolo, M; Berlin, W K; Miller, M W; Hanover, J A

    1998-08-19

    Glycogen is the principal storage form of glucose in animal cells. It accumulates in electron-dense cytoplasmic granules and is synthesized by glycogen synthase (GS), the rate-limiting enzyme of glycogen deposition. Glycogen synthase kinase-3 (GSK-3) is a protein kinase that phosphorylates GS. Two nearly identical forms of GSK-3 exist: GSK-3 alpha and GSK-3 beta. Both are constitutively active in resting cells and their activity can be modulated by hormones and growth factors. GSK-3 is implicated in the regulation of many physiological responses in mammalian cells by phosphorylating substrates including neuronal cell adhesion molecule, neurofilaments, synapsin I, and tau. Recent observations point to functions for glycogen and glycogen metabolism in the nucleus. GSK-3 phosphorylates several transcription factors, and we have recently shown that it modifies the major nuclear pore protein p62. It also regulates PK1, a protein kinase required for maintaining the interphase state and for DNA replication in cycling Xenopus egg extracts. Recently, glycogen was shown to be required for nuclear reformation in vitro using ovulated Xenopus laevis egg lysates. Because neither glycogen nor GSK-3 has been localized to the nuclear envelope or intranuclear sites, glycogen and GSK-3 activites were measured in rat liver nuclei and nuclear reformation extracts. Significant quantities of glycogen-like material co-purified with the rat-liver nuclear envelope. GSK-3 is also highly enriched in the glycogen pellet of egg extracts of Xenopus that is required for nuclear assembly in vitro. Based on the finding that enzymes of glycogen metabolism copurify with glycogen, we propose that glycogen may serve a structural role as a scaffold for nuclear assembly and sequestration of critical kinases and phosphatases in the nucleus. Copyright 1998 Academic Press.

  5. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain

    PubMed Central

    2011-01-01

    Background The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. Results In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). Conclusions Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain. PMID:21320329

  6. Comparative analysis of Homo sapiens and Mus musculus cyclin-dependent kinase (CDK) inhibitor genes p16 (MTS1) and p15 (MTS2).

    PubMed

    Jiang, P; Stone, S; Wagner, R; Wang, S; Dayananth, P; Kozak, C A; Wold, B; Kamb, A

    1995-12-01

    Cyclin-dependent kinase inhibitors are a growing family of molecules that regulate important transitions in the cell cycle. At least one of these molecules, p16, has been implicated in human tumorigenesis while its close homolog, p15, is induced by cell contact and transforming growth factor-beta (TGF-beta). To investigate the evolutionary and functional features of p15 and p16, we have isolated mouse (Mus musculus) homologs of each gene. Comparative analysis of these sequences provides evidence that the genes have similar functions in mouse and human. In addition, the comparison suggests that a gene conversion event is part of the evolution of the human p15 and p16 genes.

  7. Molecular Genetic Traits Influencing Maize Endosperm Development and Value: Closeout Report for DOE Grant DE-FG02-96ER20242

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian A. Larkins

    2012-09-12

    Development of the endosperm in cereal grasses entails different phases characterized by cell division, endoreduplication, accumulation of storage metabolites and cell death, which need to be carried out in an orderly fashion. While correct regulation of the cell cycle plays an essential role in endosperm development, the key regulatory factors and how the cell cycle interfaces with other pathways in this developmental context are largely unknown. We investigated the cyclin-dependent kinase (CDK)-retinoblastoma pathway and how it controls the cell cycle and coordinates it with other processes during maize endosperm development. Retinoblastoma-related (RBR) proteins may be inactivated through CDK-mediated phosphorylation, butmore » the identity of the responsible kinase in maize is unknown. We have previously shown that down-regulation of CDKA;1 severely inhibits the endoreduplication cell cycle and suggested that CDK may be an up-stream regulator of the retinoblastoma pathway. We discovered two types of maize RBR genes, RBR1 and RBR3, which differ in terms of structure, regulation and function. Phylogenetic analyses indicate that these genes may be distinctive features of the Poaceae. We found that RBR3 plays a positive rather than a negative role in DNA replication, cell transformation, and the expression of the minichromosome maintenance (MCM)2-7 family of DNA replication factors. These features are a paradigm shift in RBR gene function and appear to be unique within the RBR gene family. They suggest the existence in maize and related cereal crops of specific RBR/E2F-dependent pathways impinging on the cell cycle and development. RBR1 was down-regulated in transgenic endosperm using RNAi approaches. This resulted in the de-repression of a number of down-stream E2F targets, including RBR3, the MCM2-7 gene family, DNA methyltransferase (MET)1, CDKB;1, and the recently identified RBR4 gene. It also increased endosperm ploidy levels, stimulated the production of a larger number of cells, reduced the average cell size, and promoted programmed cell death. To test whether CDKA;1 inhibits RBR1 (through phosphorylation) in the pathway that leads to DNA synthesis and endoreduplication, the two CDKA;1 and RBR1 down-regulated mutants were crossed and their progeny analyzed. Our results indicate that CDKA;1 controls endoreduplication through an RBR1-dependent pathway. However, the ability of RBR1 to repress gene expression programs is independent from CDKA1, suggesting the presence of two differently regulated RBR1 activities in developing endosperm. One type of RBR1 activity controls E2F-dependent gene expression and is largely independent from CDKA;1, while another suppresses endoreduplication and can be inhibited by CDKA;1. In addition, RBR1 is part of a regulatory feedback loop that impinges on CDK activity. Together, these results indicate that the CDKA;1-RBR1 pathway integrates and controls different processes associated with endosperm development. Genome-wide analyses of the transcriptome, metabolome, and epigenetic mechanisms to understand how the cell cycle is coordinated with other pathways at a systems biology level are currently underway.« less

  8. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer.

    PubMed

    Mason, Jacqueline M; Wei, Xin; Fletcher, Graham C; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R; Mak, Tak W

    2017-03-21

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 K i = 0.09 ± 0.02 nM; cellular Mps1 EC 50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.

  9. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer

    PubMed Central

    Mason, Jacqueline M.; Wei, Xin; Fletcher, Graham C.; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R.; Mak, Tak W.

    2017-01-01

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors. PMID:28270606

  10. Suppressive activities and mechanisms of ugonin J on vascular smooth muscle cells and balloon angioplasty-induced neointimal hyperplasia.

    PubMed

    Pan, Chun-Hsu; Li, Pei-Chuan; Chien, Yi-Chung; Yeh, Wan-Ting; Liaw, Chih-Chuang; Sheu, Ming-Jyh; Wu, Chieh-Hsi

    2018-02-01

    Neointimal hyperplasia (or restenosis) is primarily attributed to excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, we investigated the inhibitory effects and mechanisms of ugonin J on VSMC proliferation and migration as well as neointimal formation. Cell viability and the cell-cycle distribution were, respectively, analyzed using an MTT assay and flow cytometry. Cell migration was examined using a wound-healing analysis and a transwell assay. Protein expressions and gelatinase activities were, respectively, measured using Western blot and gelatin zymography. Balloon angioplasty-induced neointimal formation was induced in a rat carotid artery model and then examined using immunohistochemical staining. Ugonin J induced cell-cycle arrest at the G 0 /G 1 phase and apoptosis to inhibit VSMC growth. Ugonin J also exhibited marked suppressive activity on VSMC migration. Ugonin J significantly reduced activations of focal adhesion kinase, phosphoinositide 3-kinase, v-akt murine thymoma viral oncogene homolog 1, and extracellular signal-regulated kinase 1/2 proteins. Moreover, ugonin J obviously reduced expressions and activity levels of matrix metalloproteinase-2 and matrix metalloproteinase-9. In vivo data indicated that ugonin J prevented balloon angioplasty-induced neointimal hyperplasia. Our study suggested that ugonin J has the potential for application in the prevention of balloon injury-induced neointimal formation. Copyright © 2017 John Wiley & Sons, Ltd.

  11. MIR7-3HG, a MYC-dependent modulator of cell proliferation, inhibits autophagy by a regulatory loop involving AMBRA1.

    PubMed

    Capizzi, Mariacristina; Strappazzon, Flavie; Cianfanelli, Valentina; Papaleo, Elena; Cecconi, Francesco

    2017-03-04

    Macroautophagy/autophagy is a tightly regulated intracellular catabolic pathway involving the lysosomal degradation of cytoplasmic organelles and proteins to be recycled into metabolic precursors. AMBRA1 (autophagy and Beclin 1 regulator 1) has a central role in the autophagy signaling network; it acts upstream of MTORC1-dependent autophagy by stabilizing the kinase ULK1 (unc-51 like autophagy activating kinase 1) and by favoring autophagosome core complex formation. AMBRA1 also regulates the cell cycle by modulating the activity of the phosphatase PPP2/PP2A (protein phosphatase 2) and degradation of MYC. Of note, post-transcriptional regulation mediated by noncoding microRNAs (MIRNAs) contributes significantly to control autophagy. Here we describe a new role for the microRNA MIR7-3HG/MIR-7 as a potent autophagy inhibitor. Indeed, MIR7-3HG targets the 3' untranslated region (UTR) of AMBRA1 mRNA, inducing a decrease of both AMBRA1 mRNA and protein levels, and thus causing a block in autophagy. Furthermore, MIR7-3HG, through AMBRA1 downregulation, prevents MYC dephosphorylation, establishing a positive feedback for its own transcription. These data suggest a new and interesting role of MIR7-3HG as an anti-autophagic MIRNA that may affect oncogenesis through the regulation of the tumor suppressor AMBRA1.

  12. Emodin Increases Expression of Insulin-Like Growth Factor Binding Protein 1 through Activation of MEK/ERK/AMPKα and Interaction of PPARγ and Sp1 in Lung Cancer.

    PubMed

    Tang, Qing; Wu, JingJing; Zheng, Fang; Hann, Swei Sunny; Chen, YuQing

    2017-01-01

    Emodin has anti-neoplastic activities on multiple tumors. However, the molecular mechanisms underlying this effect still remain to be fully understood. Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays and flow cytometry, respectively. Cell invasion and migration were examined by transwell invasion and wound healing assays. Western blot analysis was performed to examine the phosphorylation and protein expression of AMP-activated protein kinase alpha (AMPKα), extracellular signaling-regulated kinase 1/2 (ERK1/2), peroxisome proliferators-activated receptor gamma (PPARγ), insulin-like growth factor (IGF) binding protein 1 (IGFBP1) and the transcription factor Sp1. QRT-PCR was used to examine the mRNA levels of the IGFBP1 gene. Small interfering RNAs (siRNAs) were used to knockdown PPARγ and IGFBP1 genes. Exogenously expression of IGFBP1 and Sp1 was determined by transient transfection assays. IGFBP1 promoter activity was measured by Secrete-Pair Dual Luminescence Assay Kit. In vivo nude mice xenograft model and bioluminescent imaging system were used to confirm the findings. We showed that emodin induced cell cycle arrest of NSCLC cells. Emodin increased PPARγ protein and luciferase reporter activity, which were abolished by inhibitors of MAPK extracellular signaling-regulated kinase (ERK) kinase (MEK)/ERK and AMPK. Silencing of PPARγ abrogated emodin-inhibited cell growth and cell cycle arrest. Furthermore, emodin elevated IGFBP1 mRNA, protein, and promoter activity through activation of PPARγ. Intriguingly, overexpressed Sp1 attenuated emodin-induced IGFBP1 expression, which was not observed in cells with silenced PPARγ gene. Moreover, silencing of IGFBP1 gene blunted emodin-induced inhibition of cell growth and cell cycle arrest. On the contrary, overexpressed IGFBP1 enhanced emodin-induced phosphorylation of AMPKα and ERK1/2, and restored emodin-inhibited growth in cells with silenced endogenous IGFBP1 gene. Emodin also inhibited growth of lung xenograft tumors and Sp1, and increased IGFBP1 and PPARγ protein expressions In vivo. Collectively, our results show that emodin inhibits growth of non-small-cell lung cancer (NSCLC) cells through ERK and AMPKα-mediated induction of PPARγ, followed by reduction of Sp1. This in turn induces IGFBP1 gene expression. Thus, the signaling cascades, positive feedback loop and cooperative interplay between transcription factors-induced the expression of IGFBP1 gene contribute to the overall responses of emodin. This study provides a novel mechanism by which emodin inhibits growth of human lung cancer cells. © 2017 The Author(s) Published by S. Karger AG, Basel.

  13. Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response.

    PubMed

    Cazzalini, Ornella; Scovassi, A Ivana; Savio, Monica; Stivala, Lucia A; Prosperi, Ennio

    2010-01-01

    Among cell cycle regulatory proteins that are activated following DNA damage, the cyclin-dependent kinase inhibitor p21(CDKN1A) plays essential roles in the DNA damage response, by inducing cell cycle arrest, direct inhibition of DNA replication, as well as by regulating fundamental processes, like apoptosis and transcription. These functions are performed through the ability of p21 to interact with a number of proteins involved in these processes. Despite an initial controversy, during the last years several lines of evidence have also indicated that p21 may be directly involved in DNA repair. In particular, the participation of p21 in nucleotide excision repair (NER), base excision repair (BER), and DNA translesion synthesis (TLS), has been suggested to occur thanks to its interaction with proliferating cell nuclear antigen (PCNA), a crucial protein involved in several aspects of DNA metabolism, and cell-cycle regulation. In this review, the multiple roles of p21 in the DNA damage response, including regulation of cell cycle, apoptosis and gene transcription, are discussed together with the most recent findings supporting the direct participation of p21 protein in DNA repair processes. In particular, spatio-temporal dynamics of p21 recruitment to sites of DNA damage will be considered together with several lines of evidence indicating a regulatory role for p21. In addition, the relevance of post-translational regulation in the fate (e.g. degradation) of p21 protein after cell exposure to DNA damaging agents will be analyzed. Both sets of evidence will be discussed in terms of the overall DNA damage response. 2010 Elsevier B.V. All rights reserved.

  14. A novel miRNA-mediated STOP sign in lung cancer: miR-340 inhibits the proliferation of lung cancer cells through p27KIP1

    PubMed Central

    Fernandez, Serena; Risolino, Maurizio; Verde, Pasquale

    2015-01-01

    Oncosuppressor miRNAs inhibit cancer cell proliferation by targeting key components of the cell cycle machinery. In our recent report we showed that miR-340 is a novel tumor suppressor in non-small cell lung cancer. miR-340 inhibits neoplastic cell proliferation and induces p27KIP1 by targeting multiple translational and post-translational regulators of this cyclin-dependent kinase inhibitor. PMID:27308439

  15. The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors.

    PubMed

    Tury, Anna; Mairet-Coello, Georges; DiCicco-Bloom, Emanuel

    2011-08-01

    Mounting evidence indicates cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family, including p57(Kip2) and p27(Kip1), control not only cell cycle exit but also corticogenesis. Nevertheless, distinct activities of p57(Kip2) remain poorly defined. Using in vivo and culture approaches, we show p57(Kip2) overexpression at E14.5-15.5 elicits precursor cell cycle exit, promotes transition from proliferation to neuronal differentiation, and enhances process outgrowth, while opposite effects occur in p57(Kip2)-deficient precursors. Studies at later ages indicate p57(Kip2) overexpression also induces precocious glial differentiation, suggesting stage-dependent effects. In embryonic cortex, p57(Kip2) overexpression advances cell radial migration and alters postnatal laminar positioning. While both CKIs induce differentiation, p57(Kip2) was twice as effective as p27(Kip1) in inducing neuronal differentiation and was not permissive to astrogliogenic effects of ciliary neurotrophic factor, suggesting that the CKIs differentially modulate cell fate decisions. At molecular levels, although highly conserved N-terminal regions of both CKIs elicit cycle withdrawal and differentiation, the C-terminal region of p57(Kip2) alone inhibits in vivo migration. Furthermore, p57(Kip2) effects on neurogenesis and gliogenesis require the N-terminal cyclin/CDK binding/inhibitory domains, while previous p27(Kip1) studies report cell cycle-independent functions. These observations suggest p57(Kip2) coordinates multiple stages of corticogenesis and exhibits distinct and common activities compared with related family member p27(Kip1).

  16. Extracellular signal-regulated kinase activation and endothelin-1 production in human endothelial cells exposed to vibration

    PubMed Central

    White, Charles R; Haidekker, Mark A; Stevens, Hazel Y; Frangos, John A

    2004-01-01

    Hand–arm vibration syndrome is a vascular disease of occupational origin and a form of secondary Raynaud's phenomenon. Chronic exposure to hand-held vibrating tools may cause endothelial injury. This study investigates the biomechanical forces involved in the transduction of fluid vibration in the endothelium. Human endothelial cells were exposed to direct vibration and rapid low-volume fluid oscillation. Rapid low-volume fluid oscillation was used to simulate the effects of vibration by generating defined temporal gradients in fluid shear stress across an endothelial monolayer. Extracellular signal-regulated kinase (ERK1/2) phosphorylation and endothelin-1 (ET-1) release were monitored as specific biochemical markers for temporal gradients and endothelial response, respectively. Both vibrational methods were found to phosphorylate ERK1/2 in a similar pattern. At a fixed frequency of fluid oscillation where the duration of each pulse cycle remained constant, ERK1/2 phosphorylation increased with the increasing magnitude of the applied temporal gradient. However, when the frequency of flow oscillation was increased (thus decreasing the duration of each pulse cycle), ERK1/2 phosphorylation was attenuated across all temporal gradient flow profiles. Fluid oscillation significantly stimulated ET-1 release compared to steady flow, and endothelin-1 was also attenuated with the increase in oscillation frequency. Taken together, these results show that both the absolute magnitude of the temporal gradient and the frequency/duration of each pulse cycle play a role in the biomechanical transduction of fluid vibrational forces in endothelial cells. Furthermore, this study reports for the first time a link between the ERK1/2 signal transduction pathway and transmission of vibrational forces in the endothelium. PMID:14724194

  17. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: implications for the regulatory impact of glucose on fatty acid oxidation.

    PubMed

    Sugden, M C; Lall, H S; Harris, R A; Holness, M J

    2000-11-01

    The pyruvate dehydrogenase kinases (PDK1-4) regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Immunoblot analysis with antibodies raised against recombinant PDK isoforms demonstrated changes in PDK isoform expression in response to experimental hyperthyroidism (100 microg/100 g body weight; 3 days) that was selective for fast-twitch vs slow-twitch skeletal muscle in that PDK2 expression was increased in the fast-twitch skeletal muscle (the anterior tibialis) (by 1. 6-fold; P<0.05) but not in the slow-twitch muscle (the soleus). PDK4 protein expression was increased by experimental hyperthyroidism in both muscle types, there being a greater response in the anterior tibialis (4.2-fold increase; P<0.05) than in the soleus (3.2-fold increase; P<0.05). The hyperthyroidism-associated up-regulation of PDK4 expression was observed in conjunction with suppression of skeletal-muscle PDC activity, but not suppression of glucose uptake/phosphorylation, as measured in vivo in conscious unrestrained rats (using the 2-[(3)H]deoxyglucose technique). We propose that increased PDK isoform expression contributes to the pathology of hyperthyroidism and to PDC inactivation by facilitating the operation of the glucose --> lactate --> glucose (Cori) and glucose --> alanine --> glucose cycles. We also propose that enhanced relative expression of the pyruvate-insensitive PDK isoform (PDK4) in skeletal muscle in hyperthyroidism uncouples glycolytic flux from pyruvate oxidation, sparing pyruvate for non-oxidative entry into the tricarboxylic acid (TCA) cycle, and thereby supporting entry of acetyl-CoA (derived from fatty acid oxidation) into the TCA cycle.

  18. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise.

    PubMed

    Pourteymour, Shirin; Hjorth, Marit; Lee, Sindre; Holen, Torgeir; Langleite, Torgrim M; Jensen, Jørgen; Birkeland, Kåre I; Drevon, Christian A; Eckardt, Kristin

    2017-10-01

    Physical activity promotes specific adaptations in most tissues including skeletal muscle. Acute exercise activates numerous signaling cascades including pathways involving mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK)1/2, which returns to pre-exercise level after exercise. The expression of MAPK phosphatases (MKPs) in human skeletal muscle and their regulation by exercise have not been investigated before. In this study, we used mRNA sequencing to monitor regulation of MKPs in human skeletal muscle after acute cycling. In addition, primary human myotubes were used to gain more insights into the regulation of MKPs. The two ERK1/2-specific MKPs, dual specificity phosphatase 5 (DUSP5) and DUSP6, were the most regulated MKPs in skeletal muscle after acute exercise. DUSP5 expression was ninefold higher immediately after exercise and returned to pre-exercise level within 2 h, whereas DUSP6 expression was reduced by 43% just after exercise and remained below pre-exercise level after 2 h recovery. Cultured myotubes express both MKPs, and incubation with dexamethasone (Dex) mimicked the in vivo expression pattern of DUSP5 and DUSP6 caused by exercise. Using a MAPK kinase inhibitor, we showed that stimulation of ERK1/2 activity by Dex was required for induction of DUSP5 However, maintaining basal ERK1/2 activity was required for basal DUSP6 expression suggesting that the effect of Dex on DUSP6 might involve an ERK1/2-independent mechanism. We conclude that the altered expression of DUSP5 and DUSP6 in skeletal muscle after acute endurance exercise might affect ERK1/2 signaling of importance for adaptations in skeletal muscle during exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. PCI-24781 down-regulates EZH2 expression and then promotes glioma apoptosis by suppressing the PIK3K/Akt/mTOR pathway.

    PubMed

    Zhang, Wei; Lv, Shengqing; Liu, Jun; Zang, Zhenle; Yin, Junyi; An, Ning; Yang, Hui; Song, Yechun

    2014-10-01

    PCI-24781 is a novel histone deacetylase inhibitor that inhibits tumor proliferation and promotes cell apoptosis. However, it is unclear whether PCI-24781 inhibits Enhancer of Zeste 2 (EZH2) expression in malignant gliomas. In this work, three glioma cell lines were incubated with various concentrations of PCI-24781 (0, 0.25, 0.5, 1, 2.5 and 5 μM) and analyzed for cell proliferation by the MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay and colony formation, and cell cycle and apoptosis were assessed by flow cytometry. The expression of EZH2 and apoptosis-related proteins was assessed by western blotting. Malignant glioma cells were also transfected with EZH2 siRNA to examine how PCI-24781 suppresses tumor cells. EZH2 was highly expressed in the three glioma cell lines. Incubation with PCI-24781 reduced cell proliferation and increased cell apoptosis by down-regulating EZH2 in a concentration-dependent manner. These effects were simulated by EZH2 siRNA. In addition, PCI-24781 or EZH2 siRNA accelerated cell apoptosis by down-regulating the expression of AKT, mTOR, p70 ribosomal protein S6 kinase (p70s6k), glycogen synthase kinase 3A and B (GSK3a/b) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). These data suggest that PCI-24781 may be a promising therapeutic agent for treating gliomas by down-regulating EZH2 which promotes cell apoptosis by suppressing the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway.

  20. Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase.

    PubMed

    Monge, Claire; Beraud, Nathalie; Kuznetsov, Andrey V; Rostovtseva, Tatiana; Sackett, Dan; Schlattner, Uwe; Vendelin, Marko; Saks, Valdur A

    2008-11-01

    The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.

  1. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia.

    PubMed

    Chen, Jiwei; Zhang, Qian; Wang, Qigang; Feng, Ming; Li, Yang; Meng, Yonglu; Zhang, Yi; Liu, Guoqin; Ma, Zhimin; Wu, Hongzhi; Gao, Junping; Ma, Nan

    2017-02-23

    Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.

  2. Multiple degradation pathways regulate versatile CIP/KIP CDK inhibitors.

    PubMed

    Starostina, Natalia G; Kipreos, Edward T

    2012-01-01

    The mammalian CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors (CKIs) comprises three proteins--p21(Cip1/WAF1), p27(Kip1), and p57(Kip2)--that bind and inhibit cyclin-CDK complexes, which are key regulators of the cell cycle. CIP/KIP CKIs have additional independent functions in regulating transcription, apoptosis and actin cytoskeletal dynamics. These divergent functions are performed in distinct cellular compartments and contribute to the seemingly contradictory observation that the CKIs can both suppress and promote cancer. Multiple ubiquitin ligases (E3s) direct the proteasome-mediated degradation of p21, p27 and p57. This review analyzes recent data highlighting our current understanding of how distinct E3 pathways regulate subpopulations of the CKIs to control their diverse functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The negative cell cycle regulators, p27Kip1, p18Ink4c, and GSK-3, play critical role in maintaining quiescence of adult human pancreatic β-cells and restrict their ability to proliferate

    PubMed Central

    Stein, Jeffrey; Milewski, Wieslawa M; Dey, Arunangsu

    2013-01-01

    Adult human pancreatic β-cells are primarily quiescent (G0) yet the mechanisms controlling their quiescence are poorly understood. Here, we demonstrate, by immunofluorescence and confocal microscopy, abundant levels of the critical negative cell cycle regulators, p27(Kip1) and p18(Ink4c), 2 key members of cyclin-dependent kinase (CDK) inhibitor family, and glycogen synthase kinase-3 (GSK-3), a serine-threonine protein kinase, in islet β-cells of adult human pancreatic tissue. Our data show that p27(Kip1) localizes primarily in β-cell nuclei, whereas, p18(Ink4c) is mostly present in β-cell cytosol. Additionally, p-p27(S10), a phosphorylated form of p27(Kip1), which was shown to interact with and to sequester cyclinD-CDK4/6 in the cytoplasm, is present in substantial amounts in β-cell cytosol. Our immunofluorescence analysis displays similar distribution pattern of p27(Kip1), p-p27(S10), p18(Ink4c) and GSK-3 in islet β-cells of adult mouse pancreatic tissue. We demonstrate marked interaction of p27(Kip1) with cyclin D3, an abundant D-type cyclin in adult human islets, and vice versa as well as with its cognate kinase partners, CDK4 and CDK6. Likewise, we show marked interaction of p18(Ink4c) with CDK4. The data collectively suggest that inhibition of CDK function by p27(Kip1) and p18(Ink4c) contributes to human β-cell quiescence. Consistent with this, we have found by BrdU incorporation assay that combined treatments of small molecule GSK-3 inhibitor and mitogen/s lead to elevated proliferation of human β-cells, which is caused partly due to p27(Kip1) downregulation. The results altogether suggest that ex vivo expansion of human β-cells is achievable via increased proliferation for β-cell replacement therapy in diabetes. PMID:23896637

  4. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2.

    PubMed

    Lim, Tae-Gyu; Lee, Sung-Young; Huang, Zunnan; Lim, Do Young; Chen, Hanyong; Jung, Sung Keun; Bode, Ann M; Lee, Ki Won; Dong, Zigang

    2014-04-01

    Curcumin, the yellow pigment of turmeric found in Southeast Indian food, is one of the most popular phytochemicals for cancer prevention. Numerous reports have demonstrated modulation of multiple cellular signaling pathways by curcumin and its molecular targets in various cancer cell lines. To identify a new molecular target of curcumin, we used shape screening and reverse docking to screen the Protein Data Bank against curcumin. Cyclin-dependent kinase 2 (CDK2), a major cell-cycle protein, was identified as a potential molecular target of curcumin. Indeed, in vitro and ex vivo kinase assay data revealed a dramatic suppressive effect of curcumin on CDK2 kinase activity. Furthermore, curcumin induced G1 cell-cycle arrest, which is regulated by CDK2 in HCT116 cells. Although the expression levels of CDK2 and its regulatory subunit, cyclin E, were not changed, the phosphorylation of retinoblastoma (Rb), a well-known CDK2 substrate, was reduced by curcumin. Because curcumin induced cell-cycle arrest, we investigated the antiproliferative effect of curcumin on HCT116 colon cancer cells. In this experiment, curcumin suppressed HCT116 cell proliferation effectively. To determine whether CDK2 is a direct target of curcumin, CDK2 expression was knocked down in HCT116 cells. As expected, HCT116 sh-CDK2 cells exhibited G1 arrest and reduced proliferation. Because of the low levels of CDK2 in HCT116 sh-CDK2 cells, the effects of curcumin on G1 arrest and cell proliferation were not substantially relative to HCT116 sh-control cells. From these results, we identified CDK2 as a direct target of curcumin in colon cancer cells.

  5. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2

    PubMed Central

    Lim, Tae-Gyu; Lee, Sung-Young; Huang, Zunnan; Lim, Do Young; Chen, Hanyong; Jung, Sung Keun; Bode, Ann M.; Lee, Ki Won; Dong, Zigang

    2014-01-01

    Curcumin, the yellow pigment of turmeric found in Southeast Indian food, is one of the most popular phytochemicals for cancer prevention. Numerous reports have demonstrated modulation of multiple cellular signaling pathways by curcumin and its molecular targets in various cancer cell lines. To identify a new molecular target of curcumin, we used shape screening and reverse docking to screen the protein data bank against curcumin. Cyclin dependent kinase 2 (CDK2), a major cell cycle protein, was identified as a potential molecular target of curcumin. Indeed, in vitro and ex vivo kinase assay data revealed a dramatic suppressive effect of curcumin on CDK2 kinase activity. Furthermore, curcumin induced G1 cell cycle arrest, which is regulated by CDK2 in HCT116 cells. Although the expression levels of CDK2 and its regulatory subunit, cyclin E, were not changed, the phosphorylation of Rb, a well-known CDK2 substrate, was reduced by curcumin. Because curcumin induced cell cycle arrest, we investigated the anti-proliferative effect of curcumin on HCT116 colon cancer cells. In this experiment, curcumin suppressed HCT116 cell proliferation effectively. To determine if CDK2 is a direct target of curcumin, CDK2 expression was knocked down in HCT116 cells. As expected, HCT116 sh-CDK2 cells exhibited G1 arrest and reduced proliferation. Because of the low levels of CDK2 in HCT116 sh-CDK2 cells, the effects of curcumin on G1 arrest and cell proliferation were not substantial relative to HCT116 sh-control cells. From these results, we identified CDK2 as a direct target of curcumin in colon cancer cells. PMID:24550143

  6. Triiodothyronine promotes the proliferation of epicardial progenitor cells through the MAPK/ERK pathway.

    PubMed

    Deng, Song-Bai; Jing, Xiao-Dong; Wei, Xiao-Ming; Du, Jian-Lin; Liu, Ya-Jie; Qin, Qin; She, Qiang

    2017-04-29

    Thyroid hormone has important functions in the development and physiological function of the heart. The aim of this study was to determine whether 3,5,3'-Triiodothyronine (T3) can promote the proliferation of epicardial progenitor cells (EPCs) and to investigate the potential underlying mechanism. Our results showed that T3 significantly promoted the proliferation of EPCs in a concentration- and time-dependent manner. The thyroid hormone nuclear receptor inhibitor bisphenol A (100 μmol/L) did not affect T3's ability to induce proliferation. Further studies showed that the mRNA expression levels of mitogen-activated protein kinase 1 (MAPK1), MAPK3, and Ki67 in EPCs in the T3 group (10 nmol/L) increased 2.9-, 3-, and 4.1-fold, respectively, compared with those in the control group (P < 0.05). In addition, the mRNA expression of the cell cycle protein cyclin D1 in the T3 group increased approximately 2-fold compared with the control group (P < 0.05), and there were more EPCs in the S phase of the cell cycle (20.6% vs. 12.0%, P < 0.05). The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway inhibitor U0126 (10 μmol/L) significantly inhibited the ability of T3 to promote the proliferation of EPCs and to alter cell cycle progression. This study suggested that T3 significantly promotes the proliferation of EPCs, and this effect may be achieved through activation of the MAPK/ERK signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Akt interaction with PLC(gamma) regulates the G(2)/M transition triggered by FGF receptors from MDA-MB-231 breast cancer cells.

    PubMed

    Browaeys-Poly, Edith; Perdereau, Dominique; Lescuyer, Arlette; Burnol, Anne-Françoise; Cailliau, Katia

    2009-12-01

    Estrogen-independent breast cancer cell growth is under the control of fibroblast growth factors receptors (FGFRs), but the role of phospholipase C gamma (PLC(gamma)) and Akt, the downstream effectors activated by FGFRs, in cell proliferation is still unresolved. FGFRs from highly invasive MDA-MB-231 cells were expressed in Xenopus oocyte, a powerful model system to assess the G(2)/M checkpoint regulation. Under FGF1 stimulation, an analysis of the progression in the M-phase of the cell cycle and of the Akt signaling cascades were performed using the phosphatidylinositol-3-kinase inhibitor, LY294002, and a mimetic peptide of the SH3 domain of PLC(gamma). Activated Akt binds and phosphorylates PLC(gamma) before Akt targets the tumor suppressor Chfr. Disruption of the Akt-PLC(gamma) interaction directs Akt binding to Chfr and accelerates the alleviation of the G(2)/M checkpoint. The PLC(gamma)-Akt interaction, triggered by FGF receptors from estrogen-independent breast cancer cells MDA-MB-231, regulates progression in the M-phase of the cell cycle.

  8. Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways.

    PubMed

    Oster, Michael; Murani, Eduard; Metges, Cornelia C; Ponsuksili, Siriluck; Wimmers, Klaus

    2012-08-17

    Inadequate maternal protein supply during gestation represents an environmental factor that affects physiological signaling pathways with long-term consequences for growth, function, and structure of various tissues. Hypothesizing that the offspring's transcriptome is persistently altered by maternal diets, we used a porcine model to monitor the longitudinal expression changes in muscle to identify pathways relevant to fetal initiation of postnatal growth and development. German Landrace gilts were fed isoenergetic gestational diets containing 6.5% (LP) or 12.1% protein. The longissimus dorsi samples were collected from offspring at 94 days postconception (dpc) and 1, 28, and 188 days postnatum (dpn) for expression profiling. At 94 dpc, 1 dpn, and 28 dpn relatively few transcripts (<130) showed an altered abundance between the dietary groups. In fact, at 94 dpc genes of G2/M checkpoint regulation and mitotic roles of Polo-like kinases showed lowered transcript abundance in LP. At 188 dpn 677 transcripts were altered including those related to oxidative phosphorylation, citrate cycle, fatty acid metabolism (higher abundance in LP) and cell cycle regulation (lower abundance in LP). Correspondingly, transcriptional alterations during pre and postnatal development differed considerably among dietary groups, particularly for genes related to cell cycle regulation (G1/S and G2/M checkpoint regulation; cyclines), growth factor signaling (GH, IGF1, mTOR, RAN, VEGF, INSR), lipid metabolism, energy metabolism, and nucleic acid metabolism. In skeletal muscle, fetal programming related to maternal LP diets disturbed gene expression in growth-related pathways into adulthood. Diet-dependent gene expression may hamper proper development, thereby affecting signaling pathways related to energy utilization.

  9. Peptide microarray analysis of substrate specificity of the transmembrane Ser/Thr kinase KPI-2 reveals reactivity with cystic fibrosis transmembrane conductance regulator and phosphorylase.

    PubMed

    Wang, Hong; Brautigan, David L

    2006-11-01

    Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.

  10. Intestinal Cell Proliferation and Senescence Are Regulated by Receptor Guanylyl Cyclase C and p21*

    PubMed Central

    Basu, Nirmalya; Saha, Sayanti; Khan, Imran; Ramachandra, Subbaraya G.; Visweswariah, Sandhya S.

    2014-01-01

    Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c−/−, mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence. PMID:24217248

  11. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress

    PubMed Central

    Lehman, Stacey L.; Cerniglia, George J.; Johannes, Gregg J.; Ye, Jiangbin; Ryeom, Sandra; Koumenis, Constantinos

    2015-01-01

    Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress. PMID:26102367

  12. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    PubMed

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation.

    PubMed

    Carcagno, Abel L; Marazita, Mariela C; Ogara, María F; Ceruti, Julieta M; Sonzogni, Silvina V; Scassa, María E; Giono, Luciana E; Cánepa, Eduardo T

    2011-01-01

    A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity.

  14. E2F1-Mediated Upregulation of p19INK4d Determines Its Periodic Expression during Cell Cycle and Regulates Cellular Proliferation

    PubMed Central

    Carcagno, Abel L.; Marazita, Mariela C.; Ogara, María F.; Ceruti, Julieta M.; Sonzogni, Silvina V.; Scassa, María E.; Giono, Luciana E.; Cánepa, Eduardo T.

    2011-01-01

    Background A central aspect of development and disease is the control of cell proliferation through regulation of the mitotic cycle. Cell cycle progression and directionality requires an appropriate balance of positive and negative regulators whose expression must fluctuate in a coordinated manner. p19INK4d, a member of the INK4 family of CDK inhibitors, has a unique feature that distinguishes it from the remaining INK4 and makes it a likely candidate for contributing to the directionality of the cell cycle. p19INK4d mRNA and protein levels accumulate periodically during the cell cycle under normal conditions, a feature reminiscent of cyclins. Methodology/Principal Findings In this paper, we demonstrate that p19INK4d is transcriptionally regulated by E2F1 through two response elements present in the p19INK4d promoter. Ablation of this regulation reduced p19 levels and restricted its expression during the cell cycle, reflecting the contribution of a transcriptional effect of E2F1 on p19 periodicity. The induction of p19INK4d is delayed during the cell cycle compared to that of cyclin E, temporally separating the induction of these proliferative and antiproliferative target genes. Specific inhibition of the E2F1-p19INK4d pathway using triplex-forming oligonucleotides that block E2F1 binding on p19 promoter, stimulated cell proliferation and increased the fraction of cells in S phase. Conclusions/Significance The results described here support a model of normal cell cycle progression in which, following phosphorylation of pRb, free E2F induces cyclin E, among other target genes. Once cyclinE/CDK2 takes over as the cell cycle driving kinase activity, the induction of p19 mediated by E2F1 leads to inhibition of the CDK4,6-containing complexes, bringing the G1 phase to an end. This regulatory mechanism constitutes a new negative feedback loop that terminates the G1 phase proliferative signal, contributing to the proper coordination of the cell cycle and provides an additional mechanism to limit E2F activity. PMID:21765927

  15. Ethylene Rapidly Up-Regulates the Activities of Both Monomeric GTP-Binding Proteins and Protein Kinase(s) in Epicotyls of Pea1

    PubMed Central

    Moshkov, Igor E.; Novikova, Galina V.; Mur, Luis A.J.; Smith, Aileen R.; Hall, Michael A.

    2003-01-01

    It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants. PMID:12692330

  16. PRAK, a novel protein kinase regulated by the p38 MAP kinase.

    PubMed Central

    New, L; Jiang, Y; Zhao, M; Liu, K; Zhu, W; Flood, L J; Kato, Y; Parry, G C; Han, J

    1998-01-01

    We have identified and cloned a novel serine/ threonine kinase, p38-regulated/activated protein kinase (PRAK). PRAK is a 471 amino acid protein with 20-30% sequence identity to the known MAP kinase-regulated protein kinases RSK1/2/3, MNK1/2 and MAPKAP-K2/3. PRAK was found to be expressed in all human tissues and cell lines examined. In HeLa cells, PRAK was activated in response to cellular stress and proinflammatory cytokines. PRAK activity was regulated by p38alpha and p38beta both in vitro and in vivo and Thr182 was shown to be the regulatory phosphorylation site. Activated PRAK in turn phosphorylated small heat shock protein 27 (HSP27) at the physiologically relevant sites. An in-gel kinase assay demonstrated that PRAK is a major stress-activated kinase that can phosphorylate small heat shock protein, suggesting a potential role for PRAK in mediating stress-induced HSP27 phosphorylation in vivo. PMID:9628874

  17. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2F.

    PubMed Central

    Bandara, L R; Buck, V M; Zamanian, M; Johnston, L H; La Thangue, N B

    1993-01-01

    It is widely believed that the cellular transcription factor DRTF1/E2F integrates cell cycle events with the transcription apparatus because during cell cycle progression in mammalian cells it interacts with molecules that are important regulators of cellular proliferation, such as the retinoblastoma tumour suppressor gene product (pRb), p107, cyclins and cyclin-dependent kinases. Thus, pRb, which negatively regulates early cell cycle progression and is frequently mutated in tumour cells, and the Rb-related protein p107, bind to and repress the transcriptional activity of DRTF1/E2F. Viral oncoproteins, such as adenovirus E1a and SV40 large T antigen, overcome such repression by sequestering pRb and p107 and in so doing are likely to activate genes regulated by DRTF1/E2F, such as cdc2, c-myc and DHFR. Two sequence-specific DNA binding proteins, E2F-1 and DP-1, which bind to the E2F site, contain a small region of similarity. The functional relationship between them has, however, been unclear. We report here that DP-1 and E2F-1 exist in a DNA binding complex in vivo and that they bind efficiently and preferentially as a heterodimer to the E2F site. Moreover, studies in yeast and Drosophila cells indicate that DP-1 and E2F-1 interact synergistically in E2F site-dependent transcriptional activation. Images PMID:8223441

  18. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    PubMed

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Use of LC-MS/MS and Bayes' theorem to identify protein kinases that phosphorylate aquaporin-2 at Ser256.

    PubMed

    Bradford, Davis; Raghuram, Viswanathan; Wilson, Justin L L; Chou, Chung-Lin; Hoffert, Jason D; Knepper, Mark A; Pisitkun, Trairak

    2014-07-15

    In the renal collecting duct, binding of AVP to the V2 receptor triggers signaling changes that regulate osmotic water transport. Short-term regulation of water transport is dependent on vasopressin-induced phosphorylation of aquaporin-2 (AQP2) at Ser256. The protein kinase that phosphorylates this site is not known. We use Bayes' theorem to rank all 521 rat protein kinases with regard to the likelihood of a role in Ser256 phosphorylation on the basis of prior data and new experimental data. First, prior probabilities were estimated from previous transcriptomic and proteomic profiling data, kinase substrate specificity data, and evidence for kinase regulation by vasopressin. This ranking was updated using new experimental data describing the effects of several small-molecule kinase inhibitors with known inhibitory spectra (H-89, KN-62, KN-93, and GSK-650394) on AQP2 phosphorylation at Ser256 in inner medullary collecting duct suspensions. The top-ranked kinase was Ca2+/calmodulin-dependent protein kinase II (CAMK2), followed by protein kinase A (PKA) and protein kinase B (AKT). Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based in vitro phosphorylation studies compared the ability of three highly ranked kinases to phosphorylate AQP2 and other inner medullary collecting duct proteins, PKA, CAMK2, and serum/glucocorticoid-regulated kinase (SGK). All three proved capable of phosphorylating AQP2 at Ser256, although CAMK2 and PKA were more potent than SGK. The in vitro phosphorylation experiments also identified candidate protein kinases for several additional phosphoproteins with likely roles in collecting duct regulation, including Nedd4-2, Map4k4, and 3-phosphoinositide-dependent protein kinase 1. We conclude that Bayes' theorem is an effective means of integrating data from multiple data sets in physiology.

  20. Phosphorylation-Dependent Regulation of Ryanodine Receptors

    PubMed Central

    Marx, Steven O.; Reiken, Steven; Hisamatsu, Yuji; Gaburjakova, Marta; Gaburjakova, Jana; Yang, Yi-Ming; Rosemblit, Nora; Marks, Andrew R.

    2001-01-01

    Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function. PMID:11352932

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinotti, Simona; Ranzato, Elia, E-mail: ranzato@unipmn.it; Parodi, Monica

    Malignant mesothelioma (MMe) is a poor-prognosis tumor in need of innovative therapies. In a previous in vivo study, we showed synergistic anti-MMe properties of the ascorbate/epigallocatechin-3-gallate/gemcitabine combination. We have now focused on the mechanism of action, showing the induction of apoptosis and cell cycle arrest through measurements of caspase 3, intracellular Ca{sup 2+}, annexin V, and DNA content. StellArray™ PCR technology and Western immunoblotting revealed DAPK2-dependent apoptosis, upregulation of cell cycle promoters, downregulation of cell cycle checkpoints and repression of NFκB expression. The complex of data indicates that the mixture is synergistic in inducing cell cycle deregulation and non-inflammatory apoptosis,more » suggesting its possible use in MMe treatment. - Highlights: • Ascorbate/epigallocathechin-gallate/gemcitabine has been tested on mesothelioma cells • A synergistic mechanism has been shown for cell cycle arrest and apoptosis • PCR-array analysis has revealed the de-regulation of apoptosis and cell cycle genes • Maximum upregulation has been found for the Death-Associated Protein Kinase-2 gene • Data suggest that the mixture could be used as a clinical treatment.« less

  2. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools.

    PubMed

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan; Chang, Karen T

    2016-08-24

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication. Copyright © 2016 the authors 0270-6474/16/368882-13$15.00/0.

  3. Phosphorylation of Synaptojanin Differentially Regulates Endocytosis of Functionally Distinct Synaptic Vesicle Pools

    PubMed Central

    Geng, Junhua; Wang, Liping; Lee, Joo Yeun; Chen, Chun-Kan

    2016-01-01

    The rapid replenishment of synaptic vesicles through endocytosis is crucial for sustaining synaptic transmission during intense neuronal activity. Synaptojanin (Synj), a phosphoinositide phosphatase, is known to play an important role in vesicle recycling by promoting the uncoating of clathrin following synaptic vesicle uptake. Synj has been shown to be a substrate of the minibrain (Mnb) kinase, a fly homolog of the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A); however, the functional impacts of Synj phosphorylation by Mnb are not well understood. Here we identify that Mnb phosphorylates Synj at S1029 in Drosophila. We find that phosphorylation of Synj at S1029 enhances Synj phosphatase activity, alters interaction between Synj and endophilin, and promotes efficient endocytosis of the active cycling vesicle pool (also referred to as exo-endo cycling pool) at the expense of reserve pool vesicle endocytosis. Dephosphorylated Synj, on the other hand, is deficient in the endocytosis of the active recycling pool vesicles but maintains reserve pool vesicle endocytosis to restore total vesicle pool size and sustain synaptic transmission. Together, our findings reveal a novel role for Synj in modulating reserve pool vesicle endocytosis and further indicate that dynamic phosphorylation and dephosphorylation of Synj differentially maintain endocytosis of distinct functional synaptic vesicle pools. SIGNIFICANCE STATEMENT Synaptic vesicle endocytosis sustains communication between neurons during a wide range of neuronal activities by recycling used vesicle membrane and protein components. Here we identify that Synaptojanin, a protein with a known role in synaptic vesicle endocytosis, is phosphorylated at S1029 in vivo by the Minibrain kinase. We further demonstrate that the phosphorylation status of Synaptojanin at S1029 differentially regulates its participation in the recycling of distinct synaptic vesicle pools. Our results reveal a new role for Synaptojanin in maintaining synaptic vesicle pool size and in reserve vesicle endocytosis. As Synaptojanin and Minibrain perturbations are associated with various neurological disorders, such as Parkinson's, autism, and Down syndrome, understanding mechanisms modulating Synaptojanin function provides valuable insights into processes affecting neuronal communication. PMID:27559170

  4. Predicting network modules of cell cycle regulators using relative protein abundance statistics.

    PubMed

    Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J

    2017-02-28

    Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.

  5. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

    PubMed Central

    Li, Yubing; Liu, Dianyi; López-Paz, Cristina; Olson, Bradley JSC; Umen, James G

    2016-01-01

    Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a ‘counting’ mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control. DOI: http://dx.doi.org/10.7554/eLife.10767.001 PMID:27015111

  6. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    PubMed

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  7. Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

    PubMed Central

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression. PMID:25265012

  8. Regulatory functions of SnRK1 in stress-responsive gene expression and in plant growth and development.

    PubMed

    Cho, Young-Hee; Hong, Jung-Woo; Kim, Eun-Chul; Yoo, Sang-Dong

    2012-04-01

    Sucrose-nonfermentation1-related protein kinase1 (SnRK1) is an evolutionarily conserved energy sensor protein that regulates gene expression in response to energy depletion in plants. Efforts to elucidate the functions and mechanisms of this protein kinase are hampered, however, by inherent growth defects of snrk1-null mutant plants. To overcome these limitations and study SnRK1 functions in vivo, we applied a method combining transient expression in leaf mesophyll protoplasts and stable expression in transgenic plants. We found that both rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) SnRK1 activities critically influence stress-inducible gene expression and the induction of stress tolerance. Genetic, molecular, and chromatin immunoprecipitation analyses further revealed that the nuclear SnRK1 modulated target gene transcription in a submergence-dependent manner. From early seedling development through late senescence, SnRK1 activities appeared to modulate developmental processes in the plants. Our findings offer insight into the regulatory functions of plant SnRK1 in stress-responsive gene regulation and in plant growth and development throughout the life cycle.

  9. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2.

    PubMed

    Xie, Suqing; Wu, Huiyun; Wang, Qi; Kunicki, Jan; Thomas, Raymond O; Hollingsworth, Robert E; Cogswell, John; Dai, Wei

    2002-01-01

    Polo-like kinase 3 (Plk3, alternatively termed Prk) is involved in the regulation of DNA damage checkpoint as well as in M-phase function. Plk3 physically interacts with p53 and phosphorylates this tumor suppressor protein on serine-20, suggesting that the role of Plk3 in cell cycle progression is mediated, at least in part, through direct regulation of p53. Here we show that Plk3 is rapidly activated by reactive oxygen species in normal diploid fibroblast cells (WI-38), correlating with a subsequent increase in p53 protein level. Plk3 physically interacts with Chk2 and the interaction is enhanced upon DNA damage. In addition, Chk2 immunoprecipitated from cell lysates of Daudi (which expressed little Plk3) is capable of stimulating the kinase activity of purified recombinant Plk3 in vitro, and this stimulation is more pronounced when Plk3 is supplemented with Chk2 immunoprecipitated from Daudi after DNA damage. Furthermore, ectopic expression Chk2 activates cellular Plk3. Together, our studies suggest Chk2 may mediate direct activation of Plk3 in response to genotoxic stresses.

  10. Nonreceptor Protein-Tyrosine Kinases in Neutrophil Activation

    PubMed

    Welch; Mauran; Maridonneau-Parini

    1996-06-01

    Nonreceptor protein-tyrosine kinases are involved in the regulation of almost all neutrophil responses such as adhesion, chemotaxis, priming, oxidative burst, and degranulation. Here, we show that phagocytosis is also regulated by protein-tyrosine kinase activity. Using various protein-tyrosine kinase inhibitors, we further demonstrate that opsonized zymosan-induced degranulation of specific and azurophil granules is regulated by protein-tyrosine kinase activity, whereas phorbol ester-induced degranulation is not. Several of the nonreceptor protein-tyrosine kinases involving in neutrophil signal transduction are known, including Fgr, Hck, Lyn, Yes, and Syk. Among these, Hck and Fgr are localized on the azurophil and specific granules, suggesting the involvement of these two protein-tyrosine kinases in the regulation of degranulation. In this report, we characterize some of the molecular properties of Hck and Fgr. We discuss the methods generally used for the measurement of protein-tyrosine kinase activities in neutrophils highlighting precautions against proteolysis. In addition, we show that in subcellular fractions of retinoic acid-differentiated neutrophil-like NB4 cells, the 59- and 61-kDa forms of Hck are attached to the membranes of their respective compartments by different mechanisms. Finally, we discuss the functional roles of protein-tyrosine kinases in the regulation of neutrophil activation and speculate on the importance of their subcellular localization.

  11. Contribution of Rho-kinase to membrane excitability of murine colonic smooth muscle.

    PubMed

    Bayguinov, O; Dwyer, L; Kim, H; Marklew, A; Sanders, K M; Koh, S D

    2011-06-01

    The Rho-kinase pathway regulates agonist-induced contractions in several smooth muscles, including the intestine, urinary bladder and uterus, via dynamic changes in the Ca(2+) sensitivity of the contractile apparatus. However, there is evidence that Rho-kinase also modulates other cellular effectors such as ion channels. We examined the regulation of colonic smooth muscle excitability by Rho-kinase using conventional microelectrode recording, isometric force measurements and patch-clamp techniques. The Rho-kinase inhibitors, Y-27632 and H-1152, decreased nerve-evoked on- and off-contractions elicited at a range of frequencies and durations. The Rho-kinase inhibitors decreased the spontaneous contractions and the responses to carbachol and substance P independently of neuronal inputs, suggesting Y-27632 acts directly on smooth muscle. The Rho-kinase inhibitors significantly reduced the depolarization in response to carbachol, an effect that cannot be due to regulation of Ca(2+) sensitization. Patch-clamp experiments showed that Rho-kinase inhibitors reduce GTPγS-activated non-selective cation currents. The Rho-kinase inhibitors decreased contractions evoked by nerve stimulation, carbachol and substance P. These effects were not solely due to inhibition of the Ca(2+) sensitization pathway, as the Rho-kinase inhibitors also inhibited the non-selective cation conductances activated by excitatory transmitters. Thus, Rho-kinase may regulate smooth muscle excitability mechanisms by regulating non-selective cation channels as well as changing the Ca(2+) sensitivity of the contractile apparatus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  12. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    PubMed

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  13. Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation

    PubMed Central

    Róna, Gergely; Borsos, Máté; Ellis, Jonathan J; Mehdi, Ahmed M; Christie, Mary; Környei, Zsuzsanna; Neubrandt, Máté; Tóth, Judit; Bozóky, Zoltán; Buday, László; Madarász, Emília; Bodén, Mikael; Kobe, Bostjan; Vértessy, Beáta G

    2014-01-01

    Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle. PMID:25483092

  14. The M-phase specific hyperphosphorylation of Staufen2 involved the cyclin-dependent kinase CDK1.

    PubMed

    Beaujois, Rémy; Ottoni, Elizabeth; Zhang, Xin; Gagnon, Christina; HSine, Sami; Mollet, Stéphanie; Viranaicken, Wildriss; DesGroseillers, Luc

    2017-07-14

    Staufen2 (STAU2) is an RNA-binding protein involved in the post-transcriptional regulation of gene expression. This protein was shown to be required for organ formation and cell differentiation. Although STAU2 functions have been reported in neuronal cells, its role in dividing cells remains deeply uncharacterized. Especially, its regulation during the cell cycle is completely unknown. In this study, we showed that STAU2 isoforms display a mitosis-specific slow migration pattern on SDS-gels in all tested transformed and untransformed cell lines. Deeper analyses in hTert-RPE1 and HeLa cells further indicated that the slow migration pattern of STAU2 isoforms is due to phosphorylation. Time course studies showed that STAU2 phosphorylation occurs before prometaphase and terminates as cells exit mitosis. Interestingly, STAU2 isoforms were phosphorylated on several amino acid residues in the C-terminal half via the cyclin-dependent kinase 1 (Cdk1), an enzyme known to play crucial roles during mitosis. Introduction of phospho-mimetic or phospho-null mutations in STAU2 did not impair its RNA-binding capacity, its stability, its interaction with protein co-factors or its sub-cellular localization, suggesting that STAU2 phosphorylation in mitosis does not regulate these functions. Similarly, STAU2 phosphorylation is not likely to be crucial for cell cycle progression since expression of phosphorylation mutants in hTert-RPE1 cells did not impair cell proliferation. Altogether, these results indicate that STAU2 isoforms are phosphorylated during mitosis and that the phosphorylation process involves Cdk1. The meaning of this post-translational modification is still elusive.

  15. Up-regulation of tumor suppressor genes by exogenous dhC16-Cer contributes to its anti-cancer activity in primary effusion lymphoma

    PubMed Central

    Lin, Zhen; Zabaleta, Jovanny; Dai, Lu; Qin, Zhiqiang

    2017-01-01

    Primary effusion lymphoma (PEL) is a rare and highly aggressive B-cell malignancy with Kaposi's sarcoma-associated herpesvirus (KSHV) infection, while lack of effective therapies. Our recent data indicated that targeting the sphingolipid metabolism by either sphingosine kinase inhibitor or exogenous ceramide species induces PEL cell apoptosis and suppresses tumor progression in vivo. However, the underlying mechanisms for these exogenous ceramides “killing” PEL cells remain largely unknown. Based on the microarray analysis, we found that exogenous dhC16-Cer treatment affected the expression of many cellular genes with important functions within PEL cells such as regulation of cell cycle, cell survival/proliferation, and apoptosis/anti-apoptosis. Interestingly, we found that a subset of tumor suppressor genes (TSGs) was up-regulated from dhC16-Cer treated PEL cells. One of these elevated TSGs, Thrombospondin-1 (THBS1) was required for dhC16-Cer induced PEL cell cycle arrest. Moreover, dhC16-Cer up-regulation of THBS1 was through the suppression of multiple KSHV microRNAs expression. Our data demonstrate that exogenous ceramides display anti-cancer activities for PEL through regulation of both host and oncogenic virus factors. PMID:28146424

  16. Biochemical Characterization of Complexes with p21, a CDK Inhibitor

    DTIC Science & Technology

    1998-08-01

    of kinases at different stages of the cell cycle or at different times during development . Since p107 is highly related to the retinoblastoma tumor...and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012. 13. ABSTRACT (Maximum 200 Cell cycle progression and proliferation are...cells. 14. SUBJECT TERMS Breast Cancer , cell cycle , cyclin-dependent 15. NUMBER OF PAGES cycli-depedent66 kinases (Cdks), p21, p107, growth control

  17. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast.

    PubMed

    Meyer, Régis E; Kim, Seoyoung; Obeso, David; Straight, Paul D; Winey, Mark; Dawson, Dean S

    2013-03-01

    The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.

  18. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer

    DOE PAGES

    Staquicini, Fernanda I.; Qian, Ming D.; Salameh, Ahmad; ...

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. In conclusion, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lungmore » cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications.« less

  19. Physalis angulata induced G2/M phase arrest in human breast cancer cells.

    PubMed

    Hsieh, Wen-Tsong; Huang, Kuan-Yuh; Lin, Hui-Yi; Chung, Jing-Gung

    2006-07-01

    Physalis angulata (PA) is employed in herbal medicine around the world. It is used to treat diabetes, hepatitis, asthma and malaria in Taiwan. We have evaluated PA as a cancer chemopreventive agent in vitro by studying the role of PA in regulation of proliferation, cell cycle and apoptosis in human breast cancer cell lines. PA inhibited cell proliferation and induced G2/M arrest and apoptosis in human breast cancer MAD-MB 231 and MCF-7 cell lines. In this study, under treatment with various concentrations of PA in MDA-MB 231 cell line, we checked mRNA levels for cyclin A and cyclin B1 and the protein levels of cyclin A and cyclin B1, Cdc2 (cyclin-dependent kinases), p21(waf1/cip1) and P27(Kip1) (cyclin-dependent kinase inhibitors), Cdc25C, Chk2 and Wee1 kinase (cyclin-dependent kinase relative factors) in cell cycle G2/M phase. From those results, we determined that PA arrests MDA-MB 231 cells at the G2/M phase by (i) inhibiting synthesis or stability of mRNA and their downstream protein levels of cyclin A and cyclin B1, (ii) increasing p21(waf1/cip1) and P27(kip1) levels, (iii) increasing Chk2, thus causing an increase in Cdc25C phosphorylation/inactivation and inducing a decrease in Cdc2 levels and an increase in Wee1 level. According to the results obtained, PA appears to possess anticarcinogenic properties; these results suggest that the effect of PA on the levels of phosphorylated/inactivated Cdc25C are mediated by Chk2 activation, at least in part, via p21(waf1/cip1) and P27(kip1) cyclin-dependent kinase inhibitors pathway to arrest cells at G2/M phase in breast cancer carcinoma cells.

  20. A novel imidazopyridine derivative, HS-106, induces apoptosis of breast cancer cells and represses angiogenesis by targeting the PI3K/mTOR pathway.

    PubMed

    Li, Guang-Yong; Jung, Kyung Hee; Lee, Hyunseung; Son, Mi Kwon; Seo, JuHyeon; Hong, Sang-Won; Jeong, Yujeong; Hong, Sungwoo; Hong, Soon-Sun

    2013-02-01

    Abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is an essential step for the formation and growth of tumors in humans. HS-106 is an imidazopyridine derivative that inhibits the kinase activity of PI3K by binding to the ATP-binding cleft. We found that this compound suppressed breast cancer cell proliferation and induced apoptosis by specifically inhibiting the activity of target proteins in the PI3K/Akt/mTOR signaling pathway. Cell cycle analysis revealed that treatment with HS-106 resulted in cell cycle arrest at the G(2)/M phase due to up-regulation of p-cdc25 and down-regulation of cyclin B1. Also, HS-106 induced apoptosis by increasing the levels of cleaved caspase-3 and cleaved PARP. In addition, chromatin condensation and apoptotic bodies were detected in HS-106-treated breast cancer cells. Furthermore, HS-106 decreased the expression of hypoxia-inducible factor 1α (HIF-1α), and inhibited tube formation and migration of human umbilical vein endothelial cells (HUVECs) in vitro and blood vessel formation in an in vivo Matrigel plug assay. These results show that HS-106 may be an effective novel therapeutic candidate in clinical trials as a potential treatment for human breast cancers or other advanced malignancies with aberrant PI3K/Akt/mTOR signaling. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

Top